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Abstract
Starting from the quantum Liouville equation for the density operator and applying
the Weyl quantization, Wigner equations for the acoustic, optical and Z phonons are
deduced. The equations are valid for any solid, including 2D crystals like graphene.
With the use of Moyal’s calculus and its properties, the pseudo-differential operators
are expanded up to the second order in �. An energy transport model is obtained
by using the moment method with closure relations based on a quantum version of
the Maximum Entropy Principle by employing a relaxation time approximation for
the production terms of energy and energy flux. An explicit form of the thermal
conductivity with quantum correction up to �

2 order is obtained under a long-time
scaling for the most relevant phonon branches.

Keywords Wigner equations · Phonons transport · Heat flux · Quantum Maximum
Entropy Principle

Mathematics Subject Classification 82C70 · 82C31 · 82D20 · 82D80 · 82D37

1 Introduction

The use of the Wigner function is one of the most promising ways to study quantum
transport. Its main advantage is that a description similar to the classical or semiclas-
sical transport is obtained in a suitable phase-space. The mean values are expectation
values with respect to theWigner function as if the latter was a probability density and
the semiclassical limit of the Wigner transport equation recovers, at least formally,
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the Boltzmann transport one. There is a huge body of literature regarding the Wigner
equation and the way to numerically solve it (see for example Morandi and Schürrer
2011; Muscato and Wagner 2016; Querlioz and Dollfus 2010 and references therein).
However, the most of the works on the subject consider a quadratic dispersion relation
for the energy. Instead, for several materials like semiconductors or semimetal, e.g.,
graphene, other dispersion relations must be considered (Jacoboni 2013; Jüngel 2009;
Mascali and Romano 2020). From the Wigner transport equation, quantum hydrody-
namical models have been obtained in Romano (2007) for charge transport in silicon
in the case of parabolic bands, while in Luca and Romano (2018) the same has been
devised for electrons moving in graphene.

The enhancedminiaturizationof electron andmechanical devicesmakes the thermal
effects increasingly relevant (Simoncelli et al. 2022; Sellitto et al. 2016; Jou and
Restuccia 2023) requiring the use of physically accurate models. At kinetic level, a
good description is the one based on the semiclassical Peierls–Boltzmann equation for
each phonon branch. However, for typical lengths smaller than the phonon mean-free
path also quantum effects must be considered (see for example Simoncelli et al. 2022).
The Wigner equation is a natural approach that better reveals the quantum nature of
phonons in such circumstances, gives the Peierls–Boltzmann equation as semiclassical
limit and still keeps the structure of a kinetic formulation. In this work, the focus is
on the acoustic and optical phonons dynamics with a general dispersion relation.

In order to get insights into the quantum corrections, moment equations are deduced
from the corresponding Wigner equation. As in the classical case, one is led to a
system of balance equations that are not closed. So, the well-known problem of getting
closure relations arises, that is the issue to express the additional fields appearing in
the moment equations in terms of a set of fundamental variables, e.g., the phonon
energy density and energy flux. A sound way to accomplish this task is resorting to
a quantum formulation of the maximum entropy principle (Jaynes 1957a) (hereafter
QMEP), formulated for thefirst timeby Jaynes (1957b).Recently, amore formal theory
has been developed in a series of papers (Degond and Ringhofer 2003; Degond et al.
2005) with several applications, for example for charge transport in semiconductors
(Romano 2007; Barletti 2014; Barletti and Cintolesi 2012; Luca and Romano 2019).
The interested reader is also referred to Camiola et al. (2020).

We apply QMEP to the Wigner equations assuming the energy density and the
energy flux for each species of phonons as basic fields. By expanding up to the second
order in �, quantum corrections to the semiclassical case (Mascali and Romano 2017)
are deduced. In particular, in a long time scaling an asymptotic expression for the
heat flux is obtained. The latter consists of a Fourier-like part with a highly nonlinear
second-order correction in the temperature gradient. Explicit formulas for acoustic
phonons in the Debye approximation are written.

The plan of the paper is as follows. In Sect. 2, the semiclassical phonon transport
is summarized, while in Sect. 3 we write down the Wigner equations for phonons.
Section4 is dedicated to deducing the moment equations whose closure relations are
achieved by QMEP in Sect. 5. In Sect. 6, a definition of local temperature is introduced
by generalizing what has been proposed in Mascali and Romano (2017) and in the last
section an asymptotic expression of the quantum correction to the heat flux is obtained
for the most relevant branches of phonons.

123



Journal of Nonlinear Science            (2024) 34:10 Page 3 of 25    10 

2 Semiclassical Phonon Transport

In a crystal lattice, the transport of energy is quantized in terms of quasi-particles
named phonons which are present with several branches and propagation modes. The
latters vary from a material to another but in any case they are grouped in acoustic and
optical phonon branches which, in turn, can oscillate in the longitudinal or transversal
direction. The complete dispersion relations can be usually obtained by a numeri-
cal approach in the first Brillouin zone (FBZ) B. However, in the applications some
standard approximations are often adopted.

For the acoustic phonons, the Debye approximation for the dispersion relation
εμ(q) is usually assumed, εμ(q) = cμ|q|, μ = L A, T A, where q is the phonon
momentum. L A stands for longitudinal acoustic while T A for transversal acoustic. cμ

is the sound speed of the μ-branch. Consistently, the first Brillouin zone is extended
to R

d . Here, d is the dimension of the space; d = 3 for bulk crystal while d = 2
for graphene or similar 2D material like dichalcogenides. Sometimes also the case
d = 1 is considered, but it represents an oversimplification from a physical point of
view. We remark that the standard way to express the dispersion relation is in terms
of wave-vector. However, in view of the quantum kinetic formulation which will be
devised in the next sections, the phonon momentum is a more appropriate variable.

For the longitudinal optical (LO) and the transversal optical (TO) phonon, the
Einstein dispersion relation, εμ(q) ≈ const, with μ = L O, T O , is usually adopted.
Note that under such an assumption, the group velocity of the optical phonons is
negligible.

In somepeculiarmaterials like graphene, it is customary to introduce also a fictitious
branch called K -phonons constituted by the phonons having wave vectors close to the
Dirac points, K or K ′, in the first Brillouin zone (taking the origin in the center � of
FBZ). Also in this case the Einstein approximation is used on account of the limited
variability of the phonon energy near those points. Moreover, in graphene the phonons
are classified as in-plane, representing vibration parallel to the material, and out of
plane, representing vibrational mode orthogonal to the material. The L A, T A, L O ,
T O and K phonons are in plane. The out of plane phonons belong to the acoustic
branch and are named Z A phonons. For them, a quadratic dispersion relation is a
good approximation: εZ A(q) = α|q|2, where α = α/� with α = 6.2 × 107m2/s (see
Mounet and Marzari 2005; Nika and Balandin 2012; Pop et al. 2012) and � is the
reduced Planck constant.

Observe that in all the cases considered above, the dispersion relation is isotropic.
Hereafter, we assume such a property for εμ(q), μ = L A, T A, L O, T O, K , Z A.

The thermal transport is usually described by macroscopic models, e.g., the Fourier
one, those based on the Maximum Entropy methods (Camiola et al. 2020) or on
phenomenological description (Sellitto et al. 2016). A more accurate way to tackle
the question is to resort to semiclassical transport equations, the so-called Peierls–
Boltzmann equations, for each phonon branch for the phonon distributions fμ(t, x,q)

∂ fμ
∂t

+ cμ · ∇x fμ = Cμ, μ = L A, T A, . . . , (1)
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where cμ = ∇q εμ(q) is the group velocity of the μ-th phonon specie.
The phonon collision term Cμ splits into two terms

Cμ = Cμ
μ +

∑

ν,ν �=μ

Cν
μ, μ = L A, T A, . . . . (2)

Cμ
μ describes the phonon interaction within the same branch while Cν

μ describes
the phonon–phonon interaction between different species. To deal with the complete
expressions of the Cμ’s is a very complicated task even from a numerical point of
view (Srivastava 1990). So, they are usually simplified by theBhatnagar–Gross–Krook
(BGK) approximation

Cμ = − fμ − f L E
μ

τμ(q)
,

which mimics the relaxation of each phonon branch toward a common local equilib-
rium condition, characterized by a local equilibrium temperature TL that is the same
for each phonon population. The functions τμ are the phonon relaxation times

The local equilibrium phonon distributions are given by the Bose–Einstein distri-
butions

f L E
μ =

[
eεμ(q)/kB TL − 1

]−1
. (3)

where kB is the Boltzmann constant. Additional BGK terms can be added to include
the interaction between pairs of different branches.

Themoderndevices, e.g., the electronones like double gateMOSFETs (seeCamiola
et al. 2020), are undergoing more and more miniaturization. This implies that the
characteristic scales are of the same order as the typical lengths where quantum effects
become more and more relevant. Therefore, quantum effects must be included and
the semiclassical phonon transport equations must be replaced by a more accurate
model. Among the possible approaches, the one based on the Wigner equation has the
advantage to be formulated in a phase-space, allowing us to guess the features of the
solutions in analogy with the semiclassical counterpart.

A huge literature has been devoted to the application of the Wigner equations to
charge transport (seeMorandi andSchürrer 2011;Muscato andWagner 2016;Querlioz
and Dollfus 2010), but a limited use has been made for phonon transport. In the next
sections, a transport model, based on the Wigner quasi distribution, will be devised
for phonon transport in nano-structures.

3 PhononWigner Functions

The main point of our derivation is the kinetic description of a one-particle quantum
statistical state, given in terms of one-particle Wigner functions. Let us now briefly
recall the basic definitions and properties. A mixed (statistical) one-particle quantum
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state for an ensemble of scalar particles in R
d is described by a density operator ρ̂,

i.e., a bounded non-negative operator with unit trace, acting on L2(Rd , C). Given
the density operator ρ̂ on L2(Rd , C), the associated Wigner function, g = g(x,q),
(x,q) ∈ R

2d , is the inverse Weyl quantization of ρ̂,

g = Op−1
�

(ρ̂). (4)

We recall that the Weyl quantization of a phase-space function (a symbol) a = a(x,q)

is the (Hermitian) operator Op�(a) formally defined by Hall (2013)

Op�(a)ψ(x) = 1

(2π�)d

∫

R2d
a

(
x + y
2

,q
)

ψ(y)ei(x−y)·q/�dy dq (5)

for any ψ ∈ L2(Rd , C). The inverse quantization of ρ̂ can be written as the Wigner
transform

g(x,q) = 1

�d

∫

Rd
ρ(x + ξ/2, x − ξ/2)eiq·ξ/�dξ , (6)

of the kernel ρ(x, y) of the density operator.
The dynamics of the time-dependent phonon Wigner functions for the several

phonon branches gμ(x,q, t), μ = L A, T A, . . . steams directly from the dynamics
of the corresponding density operator ρ̂μ(t), i.e., from the Von Neumann or quantum
Liouville equation

i�∂t ρ̂μ(t) = [Ĥμ, ρ̂μ(t)] := Ĥμρ̂μ(t) − ρ̂μ(t)Ĥμ, (7)

where Ĥμ denotes the Hamiltonian operators of the μth phonons and [·, ·] the com-
mutator. If hμ = Op−1

�
(Ĥμ) is the symbol associated with Ĥμ, then, from Eq. (7),

we obtain the Wigner equation for each phonon species

i�∂t gμ(x,q, t) = {hμ, gμ(x,q, t)}# := hμ#gμ(x,q, t) − gμ(x,q, t)#hμ. (8)

With the symbol #, we have denoted theMoyal (or twisted) product which translates
the product of operators at the level of symbols according to

a#b = Op−1
�

(Op�(a)Op�(b)), (9)

for any pair of symbols a and b. Here, we do not tackle the analytical issues which
guarantee the existence of the previous relations but limit ourselves to the remark that
if two operators are in the Hilbert–Schmidt class, that is the trace there exists and it
is not negative and bounded, then the product is still Hilbert–Schmidt and the Moyal
calculus is well defined. In the sequel, we will suppose that such conditions are valid.
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The Moyal product, under suitable regularity assumptions (see Folland 1989), pos-
sesses the following formal semiclassical expansion

a#�b(x,q) =
∑

α,β

(
i�

2

)|α|+|β|
(−1)|β|

α!β! ∂α
x ∂

β
q a(x,q)∂

β
x ∂α

q b(x,q) (10)

where α = (α1, ..., αd) ∈ N
d is a multi-index, |α| = ∑

i αi , α! = ∏
i αi !, ∂α

x =∏
i ∂

αi
xi and similarly for ∂

β
q .

The expansion (10) can be rewritten as

a#�b(x,q) =
∞∑

n=0

�
na#nb (11)

where

a#nb(x,q) =
∑

α,β,|α|+|β|=n

(
i

2

)n
(−1)|β|

α!β! ∂α
x ∂

β
q a(x,q)∂

β
x ∂α

q b(x,q) (12)

It is easy to see that

a#nb(x,q) = (−1)nb#na(x,q),

that is the operation #n is commutative (respectively, anticommutative) when n is even
(respectively, odd).

If we neglect, temporarily, the phonon–phonon interactions, the Hamiltonian sym-
bol for each phonon branch is given by

hμ(q) = εμ(q) μ = L A, T A, . . . . (13)

By using the Moyal calculus, one can expand the second members of the previous
Wigner equations. Up to first order in �

2, we have

∂t gμ(t) + S[hμ]gμ(t) = 0, μ = L A, T A, . . . , (14)

where1

S[hμ]gμ(x,q, t) := cμ · ∇xgμ(x,q, t)

−�
2

24

∂3hμ(q)

∂qi∂q j∂qk

∂3gμ(x,q, t)

∂xi∂x j∂xk
+ O(�4) μ = L A, T A, . . . . (15)

The previous equations describe only ballistic transport and include only the har-
monic contribution to the Hamiltonian. In order to describe also intra and inter-branch

1 Summation over repeated indices is understood from 1 to d.
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phonon–phonon interactions, an additional anharmonic term Ĥint encompassing the
high order correction to the Hamiltonian operator must be added. So doing, one gets
the so-called Wigner–Boltzmann equations

∂t gμ(x,q, t) + S[hμ]gμ(x,q, t) = Cμ(x,q, t), μ = L A, T A, . . . , (16)

In the quantum case, the expression ofCμ is rather cumbersome. For electron transport
in semiconductors, the interested reader can see Frommlet et al. (1999). In certain
regimes, it is justified to retain the same form of the semiclassical collision operator
as the semiclassical case (Querlioz and Dollfus 2010).

Eq. (16) represents our starting point for the phonon transport. Note that for the
optical phonons under the Einstein approximation for the energy bands one has for-
mally the same transport equation as the semiclassical case because the group velocity
vanishes.

An alternative derivation of (16) can be obtained by explicitly writing the von
Neumann equation (see Luca and Romano 2019; Camiola et al. 2020 for the details).
One obtains

S[hμ]gμ(t)

= i

�(2π)d

∫

R
d
x′×R

d
ν

[
εμ

(
q + �

2
ν, t

)
− εμ

(
q − �

2
ν, t

)]
gμ(x′, q, t)e−i(x′−x)·νdx′dν,

(17)

whose expansion is of course in agreement with the Moyal calculus.

4 PhononMoment Equations

Getting analytical solutions to Eq. (16) is a daunting task. Therefore, viable approaches
are numerical solutions based on finite differences or finite elements (Morandi and
Schürrer 2011) or stochastic solutions, e.g., those obtainedwith a suitablemodification
of the Monte Carlo methods for the semiclassical Boltzmann equation (Muscato and
Wagner 2016). However, it is possible to have simpler, even if approximate, models
resorting to the moment method for the expectation values of interest. In fact, it is well
known that, although not positive definite, theWigner function is real and the expecta-
tion values of an operator can be formally obtained as an average of the corresponding
symbol with respect to gμ(x,q, t). So, for any regular enough weight function ψ(q),
let us introduce the short notation

< ψ >μ (x, t) := 1

(2π)d

∫

Rd
ψ(q)gμ(x,q, t)dq, (18)

which represents a partial average with respect to the phonon momentum q.
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More in general, if a = a(x,q) is a smooth symbol, then it is possible to prove that
the expectation of the (hermitian) operator A = Op�(a) satisfies2

E[A] = tr(ρ̂ A) =
∫

R2d
ρ(x, y, t)kA(x, y)dxdy = 1

(2π)d

∫

R2d
a(x,q)gμ(x,q, t)dxdq

=
∫

Rd
< a >μ (x, t)dx,

where kA(x, y) is the kernel of A.
We want to consider a minimum set of moments whose physical meaning is well

clear. In particular,we shall consider the phonon energy density and energyflux density
of each branch

Wμ(x, t) =< hμ >μ (x, t), Qμ(x, t) =< hμcμ >μ (x, t). (19)

Note that the latter is directly related to the heat flux.
The evolution equations for Wμ(x, t) andQμ(x, t) are obtained by multiplying the

relative Wigner equation by hμ(q), and hμ(q)cμ and integrating with respect to q

∂t Wμ(x, t) + 1

(2π)d

∫

Rd
hμ(q)S[hμ]gμ dq = 1

(2π)d

∫

Rd
hμ(q)Cμ dq,

∂tQμ(x, t) + 1

(2π)d

∫

Rd
hμ(q)cμS[hμ]gμ dq = 1

(2π)d

∫

Rd
hμ(q)cμCμ dq.

μ = L A, T A, . . . .

(20)

We implicitly assume that the resulting integrals there exist, at least in the principal
value sense. In order to get some global insight from Eq. (20), we formally assume
the following expansions for each phonon branch3

gμ(x,q, t) = g(0)
μ (x,q, t) + �

2g(2)
μ (x,q, t) + o(�2). (21)

It is possible to prove, at least formally (Jüngel 2009), that the semiclassical
Boltzmann equation is recovered from the Wigner equation as � → 0+. Therefore,
g(0)
μ (x,q, t) can be considered as the solution fμ of the semiclassical transport equa-

tion. Accordingly, we write

Wμ = W (0)
μ + �

2W (2)
μ + o(�2), Qμ = Q(0)

μ + �
2Q(2)

μ + o(�2), (22)

2 Here we are considering a fixed instant of time.
3 The coefficients of the odd powers in � are assumed zero in according to the previous Moyal expansion.
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where

W (0)
μ = 1

(2π)d

∫

Rd
hμg(0)

μ (x,q, t)dq, W (2)
μ = 1

(2π)d

∫

Rd
hμg(2)

μ (x,q, t)dq,

Q(0)
μ = 1

(2π)d

∫

Rd
hμcμg(0)

μ (x,q, t)dq, Q(2)
μ = 1

(2π)d

∫

Rd
hμcμg(2)

μ (x,q, t)dq.

Regarding themoments of the collision terms, only with drastic simplifications analyt-
ical expressions can be deduced. In analogy with the BGK approximation, we assume
that the r.h.s. of Eq. (20) are expressed as relaxation time terms

1

(2π)d

∫

Rd
hμ(q)Cμ dq = − Wμ − W L E

μ

τ W
μ

= − W (0)
μ − W (0)L E

μ

τ W
μ

− �
2 W (2)

μ − W (2)L E
μ

τ W
μ

+ o(�2),

1

(2π)d

∫

Rd
hμ(q)cμCμ dq = −Qμ

τ
Q
μ

= −Q(0)
μ + �

2Q(2)
μ

τ
Q
μ

+ o(�2),

where

W L E
μ = 1

(2π)d

∫

Rd
hμ(q)gL E

μ dq.

Note that we have used the fact that the local equilibrium values of the energy-flux
QL E

μ vanishes. The energy and energy-flux relaxation times, τ W
μ and τ

Q
μ , respectively,

are assumed to depends on the temperature, which will be defined in the next section,
of the relative branch (see for example Vallabhaneni et al. 2016).

Altogether, the resulting model is made of the following fluid-type equations

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂t Wμ + ∂(Qr )μ

∂xr
− �

2

24

∂3(Ti jk)μ

∂xi ∂x j ∂xk
= − W (0)

μ − W (0)L E
μ

τ W
μ

− �
2 W (2)

μ − W (2)L E
μ

τ W
μ

+ o(�2)

∂t (Qr )μ + ∂(Jri )μ

∂xi
− �

2

24

∂3(Uri jk)μ

∂xi ∂x j ∂xk
= − (Q(0)

r )μ + �
2(Q(2)

r )μ

τ
Q
μ

+ o(�2),

(23)

where Jμ = J(0)
μ + �

2J(2)
μ with components

(J(0)
ri )μ = 1

(2π)d

∫

Rd
(cr )μ(ci )μhμ(q)g(0)

μ (x,q, t)dq,

(J(2)
ri )μ = 1

(2π)d

∫

Rd
(cr )μ(ci )μhμ(q)g(2)

μ (x,q, t)dq,
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and the complete symmetric tensors Tμ and Uμ have components

(Ti jk)μ = 1

(2π)d

∫

Rd
hμ(q)

∂3hμ(q)

∂qi∂q j∂qk
g(0)
μ (x,q, t)dq,

(Uri jk)μ = 1

(2π)d

∫

Rd
(cμ)r hμ(q)

∂3hμ(q)

∂qi∂q j∂qk
g(0)
μ (x,q, t)dq.

If we split into zero and first order in �
2, the evolution equations read

∂t W
(0)
μ + ∇x · Q(0)

μ = −W (0)
μ − W (0)L E

μ

τ W
μ

(24)

∂t W
(2)
μ + ∇x · Q(2)

μ − 1

24

∂3

∂xi∂x j∂xk

(
Ti jk

)
μ

= −W (2)
μ − W (2)L E

μ

τ W
μ

, (25)

∂t (Q(0)
r )μ + ∂(J(0)

ri )μ

∂xi
= − (Q(0)

r )μ

τ
Q
μ

, (26)

∂t (Q(2)
r )μ + ∂(J(2)

ri )μ

∂xi
− 1

24

∂3

∂xi∂x j∂xk
(Uri jk)μ = − (Q(2)

r )μ

τ
Q
μ

. (27)

The zero-order equations are themodel already investigated in several papers (Mascali
and Romano 2020, 2017) (for specific materials see also Mascali 2022, 2023), where
is proved that it is a hyperbolic system of conservation law, while the first-order
corrections in �

2 introduce dispersive terms. This is not surprising on account of the
nonlocal character of the quantum evolution equations.

5 QMEP for the Closure Relations

The evolution equations (24)–(27) do not form a closed system of balance laws. If
we assume the energies Wμ and the energy-fluxes Qμ as the main fields, in order to
get a set of closed equations we need to express the additional fields Jμ, Tμ and Uμ

as functions of Wμ and Qμ. A successful approach in a semiclassical setting is that
based on the Maximum Entropy Principle (MEP) (see also Camiola et al. 2020 for a
complete review) which is based on a pioneering paper of Jaynes (1957a, b) who also
proposed a way to extend the approach to the quantum case. The MEP in a quantum
setting has been the subject of several papers (Romano 2007; Degond and Ringhofer
2003; Degond et al. 2005; Barletti 2014; Barletti and Cintolesi 2012) with several
applications, e.g., to charge transport in graphene (Luca and Romano 2019; Mascali
and Romano 2017). Here, we will use such an approach for phonon transport.

The starting point is the entropy for the quantum system under consideration. In
Luca and Romano (2019), the authors have employed the Von-Neumann entropy
which, however, does not take into account the statistical aspects. Therefore, we take
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as entropy a generalization of the classical one for bosons. Let us introduce the operator

s(ρ̂μ) = −kB[ρ̂μ ln ρ̂μ − (1 + ρ̂μ) ln(1 + ρ̂μ)], (28)

which must be intended in the sense of the functional calculus. Here, kB is the Boltz-
mann constant. The entropy of the μ-th phonon branch reads

S(ρ̂μ) = Tr{s(ρ̂μ)}

which can be viewed as a quantum Bose–Einstein entropy.
According to MEP, we estimate ρ̂μ with ρ̂MEP

μ which is obtained by maximizing
S(ρ̂μ) under the constraints that some expectation values have to be preserved. In
the semiclassical point case, one maximizes the entropy preserving the values of the
moments we have taken as basic field variables

(Wμ(x, t),Qμ(x, t)) = 1

(2π)d

∫

Rd
ψμ(q)gμ(x, q, t)dq = 1

(2π)d

∫

Rd
ψμ(q)gMEP

μ (x, q, t)dq,

(29)

where

ψμ(q) = (hμ(q), cμhμ(q)) (30)

is the vector of the weight functions and gMEP
μ is the Wigner function associated with

ρ̂MEP
μ . In the previous relations, the time t and position x must be considered as fixed.
The quantum formulation of MEP is given in terms of expectation values

E1(t) = tr
{
ρ̂μOp�(hμ(q))

}
(t), E2(t) = tr

{
ρ̂μOp�(cμhμ(q))

}
(t),

as follows: for fixed t

ρ̂MEP
μ = argument max S(ρ̂μ) (31)

under the constraints

tr{ρ̂MEP
μ Op�(hμ(q))} = E1(t), tr{ρ̂MEP

μ Op�(cμhμ(q))} = E2(t), (32)

in the space of the Hilbert–Schmidt operators on L2(Rd , C) which are positive, with
trace one and such that the previous expectation values there exist. Note that we are
applying the maximization of the entropy for each phonon branch separately. In other
words, we are requiring the additivity of the entropy.

If we introduce the vector of the Lagrange multipliers

ημ = (η0μ(x, t), η1μ(x, t)), (33)

the vector of the moments

m[ρμ](x, t) := mμ(x, t) = 1

(2π)d

∫

Rd
ψμ(q)gμ(x,q, t)dq, (34)
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and the vector of the moments which must be considered as known

Mμ(x, t) := (
Wμ(x, t),Qμ(x, t)

)
, (35)

the constrained optimization problem (31) and (32) can be rephrased as a saddle-point
problem for the Lagrangian

Lμ(ρ̂μ, ημ) = S(ρ̂μ) −
∫

Rd
ημ · (mμ(x, t) − Mμ(x, t)

)
dx

= S(ρ̂μ) − tr
{
ρ̂μOp�(ημ · ψμ(q))

}+
∫

Rd
ημ · Mμ(x, t) dx (36)

in the space of the admissible ρ̂μ and smooth function ημ.
If the Lagrangian Lμ(ρ̂μ, ημ) is Gâteaux-differentiable with respect to ρ̂μ, the

first-order optimality conditions require

δLμ(ρ̂μ, ημ)(δρ̂) = 0

for each Hilbert–Schmidt operators δρ̂ on L2(Rd , C)which is positive, with trace one
and such that the previous expectation values there exist.

The existence of the first-order Gâteaux derivative is a consequence of the following
Lemma (for the proof see Nier 1993; an elementary proof in the case of discrete
spectrum is given in Degond and Ringhofer 2003).

Lemma 1 If r(x) is a continuously differentiable increasing function on R
+, then

tr{r(ρ̂)} is Gâteaux-differentiable in the class of the Hermitian Hilbert–Schmidt pos-
itive operators on L2(Rd , C). The Gâteaux derivative along δρ is given by

δtr{r(ρ̂)}(δρ̂) = tr
{
r ′(ρ̂)δρ̂

}
. (37)

The extremality conditions for the unconstrained minimization problem (31) and (32)
are similar to that of the semiclassical case, as expressed by the following lemma (see
Degond and Ringhofer 2003).

Lemma 2 The first-order optimality condition for the minimization problem (31) and
(32) is equivalent to

ρ̂μ = (s′)−1(Op�(ημ · ψμ)) (38)

where (s′)−1 is the inverse function of the first derivative of s.

Proof By applying Lemma 1, the Gâteaux derivative of the Lagrangian is given by

δLμ(ρ̂μ, ημ)(δρ̂) = tr
{(

s′(ρ̂μ) − Op�(ημ · ψμ)
)
δρ̂
}
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∀δρ̂ perturbation in the class of the Hermitian Hilbert–Schmidt positive operators on
L2(Rd , C). This implies

s′(ρ̂μ) = Op�(ημ · ψμ).


�
Since the function s(x) is concave, s′(x) is invertible. Explicitly, we have

(s′)−1(z) = 1

ez/kB − 1
,

and the operator solving the first-order optimality condition reads

ρ̂∗
μ = (s′)−1(Op�(ημ · ψμ)) = 1

eOp�(ημ·ψμ) − 1
. (39)

where we have rescaled the Lagrange multipliers including the factor 1/kB . Moreover,
such an operator is a point of maximum for the Lagrangian.

Now, to complete the program we have to determine, among the smooth functions,
the Lagrange multipliers ημ by solving the constraint

tr
{
ρ̂μOp�(ημ · (hμ(q), cμhμ(q))

}−
∫

Rd
ημ · Mμ(x, t) dx = 0. (40)

If such an equation has a solution η∗
μ, altogether the MEP density operator reads

ρ̂MEP
μ = 1

exp
[

Op�

(
η∗
0μ(x, t)hμ(q) + η∗

1μ(x, t) · cμhμ(q)
)]

− 1
. (41)

To determine conditions under which Eq. (40) admits solutions is a very difficult
task. Even in the semiclassical case, there are examples (see Junk 1998) of sets of
moments that cannot be moments of a MEP distribution.

We will directly find out the solution at least up to first order in �
2.

Once the MEP density function has been determined, the MEP Wigner function is
given by

gMEP
μ (x,q, t) = Op−1

�
(ρ̂MEP

μ )

which can be used to get the necessary closure relations by evaluating the additional
fields with gμ replaced by gMEP

μ .
We remark that the constraints (40) can be more conveniently expressed as

1

(2π)d

∫

R2d
ημ · ψμ(x, t)gMEP

μ (x,q, t) dq dx −
∫

Rd
ημ · Mμ(x, t) dx = 0
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and indeed we will require, in analogy with the semiclassical case, the stronger con-
ditions

1

(2π)d

∫

Rd
ψμ(x, t)gMEP

μ (x,q, t) dq = Mμ(x, t),

where the Lagrange multipliers enter through gMEP
μ (x,q, t).

5.1 Determination of the LagrangeMultipliers

For the sake of making lighter the notation, let us consider a single branch and drop
the index μ in the Wigner function in this section. We look formally for a solution in
powers of �

gMEP = gMEP
0 + �gMEP

1 + �
2gMEP

2 + ... (42)

firstly without taking into account the dependence of the Lagrange multipliers on �.
Of course, on account of the properties of the Weyl quantization, gMEP

0 is equal to
the semiclassical counterpart (Hall 2013)

gMEP
0 = 1

eξ − 1

where

ξ = η0(x, t)h(q) + η1(x, t) · ch(q).

In order to determine the higher order terms gMEP
k , k ≥ 1, given a symbol a(x,q) let

us introduce the so-called quantum exponential Exp(a) defined as

Exp(a) = Op−1
�

[exp(Op�(a))]

which can be expanded as

Exp(a) = Exp0(a) + �Exp1(a) + �
2Exp2(a) + ... (43)

Proposition Let a(x,q) be a smooth symbol. Then, the following expansion is valid

Exp(a) = exp(a) − �
2

8
exp(a)

(
∂2a

∂xi ∂x j

∂2a

∂qi ∂q j
− ∂2a

∂xi ∂q j

∂2a

∂qi ∂x j
+ 1

3

∂2a

∂xi ∂x j

∂a

∂qi

∂a

∂q j

− 2

3

∂2a

∂xi ∂q j

∂a

∂qi

∂a

∂x j
+ 1

3

∂2a

∂qi ∂q j

∂a

∂xi

∂a

∂x j

)
+ O(�4), (44)

where Einstein’s convention has been used.

123



Journal of Nonlinear Science            (2024) 34:10 Page 15 of 25    10 

The proof can be found for example in Degond et al. (2005).
By using what is proved in Barletti and Cintolesi (2012), we have

gMEP
2n+1 = 0, n ≥ 0, (45a)

gMEP
2n = −

n−1∑

m=0

∑

k+l+m=n

Exp2k(ξ)#2l gMEP
2m

eξ − 1
, n ≥ 1 (45b)

where #2l are the even terms of the Moyal product expansion.
In particular,

gMEP
1 = 0

and

gMEP
2 = −1

8

eξ

(eξ − 1)3

[
(eξ + 1)

(
∂2ξ

∂xi ∂x j

∂2ξ

∂qi ∂q j
− ∂2ξ

∂xi ∂q j

∂2ξ

∂qi ∂x j

)

− (e2ξ + 4eξ + 1)

3(eξ − 1)

(
∂2ξ

∂xi ∂x j

∂ξ

∂qi

∂ξ

∂q j
− 2

∂2ξ

∂xi ∂q j

∂ξ

∂qi

∂ξ

∂x j
+ ∂2ξ

∂qi ∂q j

∂ξ

∂xi

∂ξ

∂x j

)]

Therefore, up to first order in �
2 we have

gMEP = gMEP
0 + �

2gMEP
2 .

and the constraints for each phonon branch read

W = 1

(2π)d

∫

Rd

h(q)

eξ − 1
dq + �

2 1

(2π)d

∫

Rd
h(q)gMEP

2 dq, (46)

Q = 1

(2π)d

∫

Rd

ch(q)

eξ − 1
dq + �

2 1

(2π)d

∫

Rd
ch(q)gMEP

2 dq. (47)

The previous equations form a nonlinear system of PDEs for the Lagrange mul-
tipliers whose analytical solution seems very difficult to get. Indeed, the situation is
evenmore cumbersome because in a numerical scheme the inversion of the constraints
should be performed at each time step.

A viable strategy is to use the Lagrange multipliers as field variables by rewriting
the evolution equations (23) in the form

∂W

∂ηk

∂ηk

∂t
+ ∂Qi

∂ηk

∂ηk

∂xi
− �

2

24

(
∂

∂ηk

∂2Ti jk

∂x j∂xk

)
∂ηk

∂xi
= −W − W L E

τ W
, (48)

∂Qi

∂ηk

∂ηk

∂t
+ ∂Jir

∂ηk

∂ηk

∂xr
− �

2

24

(
∂

∂ηh

∂2Ui jkr

∂xk∂xr

)
∂ηh

∂x j
= − Qi

τQ
, (49)

getting a highly nonlinear system of PDEs.
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A further simplification can be obtained by expanding the Lagrange multipliers as

η = η(0) + �
2η(2) + o(�2).

Therefore, the basic fields are also expanded with respect to �
2

W = W (0) + �
2W (2) + o(�2), Q = Q(0) + �

2Q(2) + o(�2)

where

W (0) = 1

(2π)d

∫

Rd

h(q)

eξ (0) − 1
dq,

W (2) = − 1

(2π)d
η(2) ·

∫

Rd
eξ (0) h(q)ψ

(
eξ (0) − 1

)2 dq + 1

(2π)d

∫

Rd
h(q)gMEP

2 (η(0))dq,

Q(0)
i = 1

(2π)d

∫

Rd

ci h(q)

eξ (0) − 1
dq,

Q(2)
i = − 1

(2π)d
η(2) ·

∫

Rd

ciψeξ (0)
h(q)

(eξ (0) − 1)2
dq + 1

(2π)d

∫

Rd
ci h(q)gMEP

2 (η(0))dq,

with ξ (0) = η(0) · ψ .
The balance equations become

∇η(0) W (0) ∂

∂t
(η(0))T +

d∑

i=1

[
∇η(0) Q(0)

i
∂

∂xi
(η(0))T

]
= −W (0) − W (0)L E

τ W
, (50)

∇η(0) Q(0)
i

∂

∂t
(η(0))T +

d∑

j=1

[
∇η(0) J (0)

i j
∂

∂x j
(η(0))T

]
= − Q(0)

i

τQ
, (51)

∂t W
(2) + ∇x · Q(2) − 1

24

∂3

∂xi∂x j∂xk
T(0)

i jk = −W (2) − W (2)L E

τ W
, (52)

∂tQ(2)
r + ∂J0ri

∂xi
− 1

24

∂3

∂xi∂x j∂xk
U(0)

ri jk = −Q(2)

τQ
. (53)

with

T(0)
i jk = 1

(2π)d

∫

Rd
h(q)gMEP

0 (η(0))
∂3

∂qi∂q j∂qk
h(q)dq

U(0)
ri jk = 1

(2π)d

∫

Rd
cr h(q)gMEP

0 (η(0))
∂3

∂qi∂q j∂qk
h(q)dq

We observe that Eqs. (50) and (51) decouple. Once they are solved, one can get the
second-order term of the Lagrange multipliers from (52) and (53) which form a linear
system for η(2). This is rather beneficial from a computational point of view
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Proposition 1 At zero order in �
2, the map η → M(η) is (locally) invertible.

Proposition 2 Eqs. (50) and (51) form a symmetric hyperbolic system of balance laws.

The proofs can be found in Camiola et al. (2020).

6 Local Equilibrium Temperature

The concept of temperature out of equilibrium is a subtle topic and still a matter of
debate. In the case of charge transport in semiconductors often, the phonons are con-
sidered as a thermal bath and under some reasonable assumptions one can hypothesize
that the electrons are in thermal equilibrium with the bath. In general, if the dynamics
of the phonons must be included, a thermal bath for these does not exist, unless a ther-
mostated system is considered. Therefore, we need to introduce a local equilibrium
temperature for the overall phonon system.

In statistical mechanics, one of the most reasonable and adopted ways to general-
ize the concept of temperature in a non-equilibrium state is that of relating it to the
Lagrange multipliers associated with the energy constraint. For the phonon transport
in graphene, an approach based on the Lagrange multipliers was followed in Mascali
and Romano (2017) (which the interested reader is referred to for the details). Let
us recall here the main features. At equilibrium, the phonon temperatures and the
corresponding Lagrange multipliers are related by

kB Tμ(x) = 1

η0,μ(x)
= 1

η
(0)
0,μ(x)

− �
2

η
(2)
0,μ(x)

(η
(0)
0,μ(x))2

+ o(�2).

If we assume that such relations hold, even out of equilibrium, the definition of the
local temperature can be given in terms of the Lagrangian multipliers as follows.

Definition 1 The local temperature of a system of two or more branches of phonons
is TL E := 1

kBηL E
0 (x)

, where ηL E
0 (x) is the common Lagrange multiplier that the occu-

pation numbers of the branches, taken into account, would have if they were in the
local thermodynamic equilibrium corresponding to their total energy density, that is,
the following:

W (ηL E
0 (x)) :=

∑

μ

Wμ(η0,μ(x)) =
∑

μ

Wμ(ηL E
0 (x)), (54)

where the sum runs over all the phonon branches.

At global equilibrium, the temperature is constant T = T̄ and the Wigner function
reduced to the Bose–Einstein distribution

gμ =
[
ehμ(q)/kB T̄ − 1

]−1
, (55)
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with the same temperature for each phonon branch.
Let us consider a small perturbation δTμ(x) of the temperature in the sense that

δTμ(x)/T̄ � 1. We can expand gMEP
μ in powers of δTμ(x)/T̄

gMEP
μ =

[
ehμ(q)/kB T̄ − 1

]−1 +
[
ehμ(q)/kB T̄ − 1

]−2
ehμ(q)/kB T̄ hμ(q)

kB T̄

δTμ(x)

T̄

+ �
2T̄

∂gMEP
2,μ (T̄ )

∂T

δTμ

T̄
+ o

(
δTμ

T̄
+ �

2 + �
2 δTμ

T̄

)
.

Note that gMEP
2,μ (T̄ ) is zero because

∂ξ

∂xi
= ∂ξ

∂T

∂T

∂xi
= 0 in the case of uniform

temperature.

7 Heat Flux in the Stationary Regime

In order to have a guess of the main features of the constitutive relations deduced with
QMEP, wewould like to get some asymptotic expression for the heat fluxwhich can be
compared with that in the semiclassical case. In particular, in order to devise a suitable
coefficient of thermal conductivity, we try to put (Qr )μ in form as close as possible
to the Fourier one. Since in the semiclassical case, the Fourier form is obtained from
the hyperbolic balance equations in the stationary regime, we consider a steady state.

In such a case, the time derivatives can be dropped and one gets

Qμ = −τQ
[
∇x · Jμ − �

2

(2π)d

∂3

∂xi ∂x j ∂xk

∫

Rd
cμ

hμ(q)

24
gMEP
0,μ (η(0)

μ )
∂3

∂qi ∂q j ∂qk
hμ(q)dq

]
+ o(�2).

(56)

The relation between the Lagrange multipliers and the basic fields, as seen, can
hardly be inverted analytically, but a numerical procedure is necessary. However,
if we consider a situation where the system is not too far from the equilibrium an
expansion of the Lagrange multipliers around the equilibrium state can be performed.
At equilibrium, gMEP

μ is isotropic and therefore, ηequil
1,μ

= 0 and in a neighborhood of
the equilibrium η1,μ remains small.

More in general, in the spirit of Levermore theory of moments (Levermore 1996),
we can consider the distribution depending on both energy density and energy-flux
density as a perturbation of the distribution when only Wμ is the macroscopic field
variable. Consistently, we assume that η1,μ remains small. Formally, we introduce an
anisotropy parameter 0 < δ � 1 and require

ημ =
(

1

kB Tμ

, δη1,μ

)
. (57)

Note that in this way we are not necessarily restricted to situation close to equilib-
rium. So the temperature can vary without any constraints. By expanding in power of
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δ, one gets, at zero order in �
2,

gMEP
0,μ =

[
ehμ(q)/kB Tμ − 1

]−1 − δ
[
ehμ(q)/kB Tμ − 1

]−2
ehμ(q)/kB Tμ hμ(q)η1,μ · cμ + O(�2 + δ2).

We remark that the higher order terms do not enter the constitutive relation for Qμ

and observe that ∀n ∈ Sd

∫

Sd
ni1ni2 · · · nir d� = 0 if r odd,

Sd being the unit sphere in R
d .

The previous relation implies

∫

Rd
cμ ⊗ cμ ⊗ · · · ⊗ cμ︸ ︷︷ ︸

r times

hμ(q)
[
ehμ(q)/kB Tμ − 1

]−1
dq = 0

if r is odd because the Bose–Einstein distribution is isotropic(remember that the dis-
persion relation is assumed isotropic).

At the zero order in �
2, we have

Q(0)
μ = −τQ∇xJ(0)

μ = − τQ

(2π)d
∇x

∫

Rd
cμ ⊗ cμhμ(q)gMEP

0,μ (η(0)(x,q, t))dq + o(δ)

= − τQ

(2π)d
∇x

∫

Rd
cμ ⊗ cμhμ(q)

[
ehμ(q)/kB Tμ − 1

]−1
dq + o(δ)

= − τQ

(2π)d

∫

Rd
cμ ⊗ cμhμ(q)

∂

∂Tμ

[
ehμ(q)/kB Tμ − 1

]−1
dq∇xTμ + o(δ)

= − τQ

(2π)dkB T 2
μ

∫

Rd
cμ ⊗ cμh2

μ(q)
ehμ(q)/kB Tμ

(
ehμ(q)/kB Tμ − 1

)2 dq∇xTμ + o(δ),

which can be written in the Fourier form

Q(0)
μ = −K(0)

μ ∇xTμ

with the thermal conductivity tensor given by

K(0)
μ = τQ

(2π)dkB T 2
μ

∫

Rd
cμ ⊗ cμh2

μ(q)
ehμ(q)/kB Tμ

(
ehμ(q)/kB Tμ − 1

)2 dq.

It is evident that K(0)
μ is positive definite.

Therefore, if hμ(q) is isotropic, then K(0)
μ is isotropic as well

K(0)
μ = 1

d
k(0)I,
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with I identity matrix of order d and k(0) the zero order trace

k(0) = τQ

(2π)dkB T 2
μ

∫

Rd

∣∣cμ

∣∣2 h2
μ(q)

ehμ(q)/kB Tμ

(
ehμ(q)/kB Tμ − 1

)2 dq.

The second-order correction in �
2 reads

Q(2)
μ = − τQ

(2π)d
∇x

∫

Rd
cμ ⊗ cμhμ(q)gMEP

2,μ (η(0)(x,q, t))dq

+ δ
τQ

(2π)d

∂3

∂xi∂x j∂xk

∫

Rd
cμ

hμ(q)

24

[
ehμ(q)/kB Tμ − 1

]−2
ehμ(q)/kB Tμhμ(q)η1,μ

·cμ

∂3

∂qi∂q j∂qk
hμ(q)dq + o(δ).

Indeed, if we are close to equilibrium the last term in the previous relation is of order
�
2δ and can be considered negligible for small deviations from local equilibrium. In

any case, the remaining part gives a highly nonlinear correction which cannot be put
in a Fourier form.

In the next subsections,wewill analyze the quantumcorrections in themost relevant
phonon branches. Of course, the optical phonons, and in particular the K -phonons in
graphene, have a zero group velocity in the Einstein approximation and, as a conse-
quence, they do not contribute directly to the thermal diffusion even if they play an
indirect role on account of the scattering with the acoustic branches.

7.1 Acoustic Phonons

In this subsection and in the next one, only the zero order terms in δ are retained in
the �

2 contribution.
In the case of the longitudinal and transversal acoustic phonons in theDebye approx-

imation for a single branch, the corresponding symbol of the phononHamiltonian reads
cac|q| and therefore,

k(0)
ac = τQ

(2π)dkB T 2

∫

Rd
c4ac|q|2 ecac|q|/kB T

(
ecac|q|/kB T − 1

)2 dq

= τQc4ac

(2π)dkB T 2 meas(Sd)

∫ +∞

0
|q|d+1 ecac|q|/kB T

(
ecac|q|/kB T − 1

)2 d|q|

= kBτQc2−d
ac

(2π)d
meas(Sd) (kB T )d

∫ +∞

0
ξd+1 eξ

(
eξ − 1

)2 d ξ (58)

with now ξ = cac|q|/kB T and

meas(Sd) = 2πd/2

�(d/2)
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the measure of Sd , �(x) being the Euler gamma function. The previous integral is
convergent for any d ∈ N. Observe that we get a dependence on the temperature
proportional to T d .

We observe that

gMEP
2 = −1

8

eξ

(eξ − 1)3

{
c2ac(e

ξ + 1)

k2B T (x, t)4|q|2
[
δi j |q|2

(
2

∂T

∂xi

∂T

∂x j
− T

∂2T

∂xi∂x j

)

+qi q j

(
T

∂2T

∂xi∂x j
− 3

∂T

∂xi

∂T

∂x j

)]

− c3ac(e
2ξ + 4eξ + 1)

3k3B |q|(eξ − 1)T (x, t)5

[
(δi j |q|2 − qi q j )

∂T

∂xi

∂T

∂x j
− qi q j T

∂2T

∂xi∂x j

]}

= −1

8

c2aceξ

(eξ − 1)3

{
(eξ + 1)

k2B T (x, t)4

[
2|∇xT |2 − T �xT + ni n j

(
T

∂2T

∂xi∂x j
− 3

∂T

∂xi

∂T

∂x j

)]

− cac(e2ξ + 4eξ + 1)|q|
3k3B(eξ − 1)T (x, t)5

[
(δi j − ni n j )

∂T

∂xi

∂T

∂x j
− ni n j T

∂2T

∂xi∂x j

]}
.

and, therefore, the second-order correction to the heat flux is given by

Q(2) = −τQ∇xJ(2)

with

J(2) = 1

(2π)d

∫

Rd
cac ⊗ cach(q)gMEP

2 dq

= c2ac

(2π)d

∫

Rd
nhnkh(q)gMEP

2 dq eh ⊗ ek := J(2)
hk eh ⊗ ek

(e1, e2, · · · , ed) being an orthonormal basis of R
d .

By taking into account, the well-known formulas

∫

Sd

nhnkd� = meas(Sd)

d
δhk,

∫

Sd

ni n j nhnkd� = meas(Sd)

d(d + 2)
(δi jδhk + δihδ jk + δikδ jh),

the components of J(2) read

J(2)
hk = − c5ac

8(2π)d

meas(Sd )

d

1

k2B T 4(x, t)

(
kB T

cac

)d+1

{[(
2d + 1

d + 2
I1(d) − d + 1

3(d + 2)
I2(d)

)
|∇x T |2 −

(
d + 1

d + 2
I1(d) − I2(d)

3(d + 2)

)
T �x T

]
δhk

+ 2

3(d + 2)

[
(I2(d) − 9I1(d))

∂T

∂xh

∂T

∂xk
+ (3I1(d) + I2(d)) T

∂2T

∂xh∂xk

]}
,
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where

I1(d) =
∫ +∞

0

eξ (eξ + 1)

(eξ − 1)3
ξddξ,

I2(d) =
∫ +∞

0

eξ (e2ξ + 4eξ + 1)

(eξ − 1)4
ξd+1dξ.

From the above results, one gets the second-order correction to the energy flux density

(Q(2))h = τQ

8(2π)d
c4−d

ac
meas(Sd)

d
kd−1

B T d−4(x, t)
{
(d − 3)

(
2d − 5

d + 2
I1(d) − d − 1

3(d + 2)
I2(d)

)
|∇x T |2 ∂T

∂xh

−
(

d2 − d + 4

d + 2
I1(d) − d

3(d + 2)
I2(d)

)
T

∂T

∂xh
�x T

+
(
6d − 8

d + 2
I1(d) − 4

3(d + 2)
I2(d)

)
T

∂2T

∂xh∂xk

∂T

∂xk

+
(
1 − d

d + 2
I1(d) + 1

d + 2
I2(d)

)
T 2 ∂�x T

∂xh

}
. (59)

The integrals I1(d) and I2(d) are divergent in the cases d = 1 and d = 2. As a
consequence, the quantum corrections are valid only in the bulk (d = 3) case where
I1(3) = π2, I2(3) = 4π2. This peculiarity is physically related to the density of
states and the form of the energy dispersion relations and cannot be ascribed to the
approximation of the first Brillouin zone with all R

d because the singularity appears
as the momentum tends to zero, that is at the center � of the first Brillouin zone. Since
this pathology is not present for quadratic dispersion relations (see the next subsection)
such as for Z-phonons, to overcome the divergence of the integrals I1(d) and I2(d),
a viable way could be to quadratically regularize the dispersion relation in a suitable
small neighborhood of the � point of the first Brillouin zone and matching it with a
linear function for higher energies.

7.2 Quadratic Dispersion Relations and Z-Phonons

The Z-phonons have a quadratic dispersion relation hZ A(q) = ᾱ|q|2, which is also a
rather common approximation in a neighborhood of a energy minimum, and the group
velocity is cZ A(q) = 2ᾱq.

One gets the following zero-order thermal conductivity

k(0)
Z A = 2kBτQ

(2π)d

(kB T )
d
2 +1

ᾱ
d
2 −1

meas(Sd)

∫ +∞

0

eξ

(eξ − 1)2
ξ

d
2 +2dξ (60)

123
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with ξ = ᾱ|q|2
kB T

. Observe that previous integral is always convergent for any d and

that k(0)
Z A depends on the temperature as T

d
2 +1.

The second-order correction to the distribution function reads

gMEP
2 = − 1

4

ᾱξ

kB T 3

[
eξ (eξ + 1)

(eξ − 1)3

(
2|∇x T |2 − T �x T − 2

∂T

∂xi

∂T

∂x j
ni n j

)

+ eξ (e2ξ + 4eξ + 1)

3(eξ − 1)4
ξ

(
2T

∂2T

∂xi∂x j
ni n j − |∇x T |2

)]

and one gets

J(2)
hk = − ᾱ2− d

2 k
d
2 +1
B T

d
2 −1

(2π)d

meas(Sd)

2d
{[(

2d + 2

d + 2
H1(d) − 1

3
H2(d)

)
|∇x T |2 −

(
H1(d) − 2

3(d + 2)
H2(d)

)
T �x T

]
δhk

− 4

d + 2

[
H1(d)

∂T

∂xh

∂T

∂xk
− 1

3
H2(d)T

∂2T

∂xh∂xk

]}

where

H1(d) =
∫ +∞

0

eξ (eξ + 1)

(eξ − 1)3
ξ

d
2 +2dξ,

H2(d) =
∫ +∞

0

eξ (e2ξ + 4eξ + 1)

(eξ − 1)4
ξ

d
2 +3dξ.

Note that the integrals H1(d) and H2(d) are convergent in the two- and three-
dimensional cases which are the relevant ones from a physical point of view. For
d = 1, they diverge, but this case can be considered as an oversimplification.

By evaluating the divergence of the completely symmetric second-order tensor J(2),
one finds out the second-order correction to the energy-flux density

(
Q(2)

Z A

)

h
= τQ

ᾱ2− d
2 k

d
2 +1
B

(2π)d

meas(Sd)

2d
T

d
2 −2

{[
d2 − 3d + 2

d + 2
H1(d) − d − 2

6
H2(d)

]
∂T

∂xh
|∇x T |2

−
[

d2 + 2d + 8

2(d + 2)
H1(d) − d

3(d + 2)
H2(d)

]
T

∂T

∂xh
�x T

+
[

4d

d + 2
H1(d) − 4

3(d + 2)
H2(d)

]
T

∂T

∂xk

∂2T

∂xh∂xk

−
[

H1(d) − 2

d + 2
H2(d)

]
T 2 ∂

∂xh
�x T

}
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Conclusions

The Wigner equation for phonons has been written in the case of a generic dispersion
relation. Moment equations have been deduced and closed by QMEP. Under a long-
time scaling, an expression for the heat flux with a nonlinear quantum correction has
been obtained. The model is suited for the investigation in modern micro-devices
where the enhanced miniaturization makes thermal effects more and more relevant.
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