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Abstract
It is generally accepted that glioblastoma (GBM) arise from cancer stem cells (CSC); however, there is little evidence on 
their anatomical distribution. We investigated the expression and distribution of SOX-2-positive and CD133-positive CSCs 
both in the enhancing nodule (EN) of GBM and in the FLAIR hyperintensity zones on a surgical, histopathological series 
of 33 GBMs. The inclusion criterion was the intraoperative sampling of different tumor regions individualized, thanks to 
neuronavigation and positivity to intraoperative fluorescence with the use of 5-aminolevulinic acid (5-ALA). Thirty-three 
patients (20 males and 13 females with a mean age at diagnosis of 56 years) met the inclusion criterion. A total of 109 histo-
logical samples were evaluated, 52 for ENs and 57 for FLAIR hyperintensity zone. Considering the quantitative distribution 
of levels of intensity of staining (IS), ES (extent score), and immunoreactivity score (IRS), no difference was found between 
ENs and FLAIR regions for both the SOX-2 biomarker (respectively, IS p = 0.851, ES p = 0.561, IRS p = 1.000) and the 
CD133 biomarker (IS p = 0.653, ES p = 0.409, IRS p = 0.881). This evidence suggests to recalibrate the target of surgery for 
FLAIRECTOMY and 5-ALA could improve the possibility to achieve this goal.

Keywords Glioblastoma · Cancer stem cells · FLAIRectomy · 5-ALA · Supratotal resection

Introduction

One of the most debated neuro-oncological issues today is 
the use of an aggressive resection beyond enhancing nodule 
(EN) for glioblastoma (GBM); this question arose from the 
evidence that recurrences generally occur in peritumoral areas 
[1]. Cancer stem cells (CSCs) have been shown to play an 
initiating role in gliomagenesis, inducing angiogenesis, met-
astatic spread and resistance to conventional radiotherapic 
and chemotherapic treatments [2]. Few published researches 
have studied the anatomical distribution of CSCs in GBM. We 
would like to investigate the distribution of CSC both in the 
EN and in the peritumoral region of GBM corresponding to 
the FLAIR hyperintensity. These results allow to understand 
the basics of tumor progression and recurrence, suggesting 
the necessity to recalibrate the surgical and therapeutic target.

It is a matter of fact that the etiology of GBM remains 
largely unknown. It is generally accepted that GBM arise from 
CSC. Due to their biological features, especially the capability 
of self-renewal and migratory potential, CSCs might be the 
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starting point of gliomagenesis [3]. It has been widely dem-
onstrated that tumor cells are found beyond the central core 
of the tumor [4, 5] but there is little evidence about the ana-
tomical distribution of CSCs. Peng et al. recently described, in 
two autoptic cases of patients affected by GBM [6], a higher 
expression of CSC immunohistochemical markers at the infil-
trating tumor edge with respect to other GBM areas. This evi-
dence suggests that the edge of the tumor is the moving front 
for tumor progression and invasion and if this was confirmed 
in vivo and on a larger series, it would lay the foundations 
for remodulating local treatments on a different target. Based 
on this assumption, the eradication of CSCs may induce a 
stable disease-remission, having a potentially curative role on 
GBM. Many immunohistochemical markers of stem cell dif-
ferentiation have been studied in different types of cancer [7], 
but the transcription factor sex-determining region Y-box 2 
(SOX-2) and prominin-1, also known as cluster of differentia-
tion 133 (CD133), are the most widely used for brain tumors 
[8, 9]. In this paper, we investigated ex vivo the expression 
and distribution of SOX-2-positive and CD133-positive CSCs 
both in the central core of GBM (radiologically identified with 
the Enhancing Nodule -EN- on MRI) and in the peritumoral 
region (radiologically identified with the FLAIR hyperinten-
sity zone beyond the EN) on a surgical and histopathological 
series of 33 GBM.

Materials and methods

We have prospectively collected tissue samples in different 
tumor areas (see below), and we have then retrospectively 
retrieved all cases with a histopathologically and molecularly 
proven diagnosis of WHO grade IV IDH-wild type GBM from 
the Pathology archive of the Department “G.F. Ingrassia” of 
the University of Catania, Italy, between January 2020 and 
December 2021. All these patients were surgically treated at 
the Neurosurgery Unit of the University-Hospital Policlinico 
“G. Rodolico-S. Marco”, Catania, Italy. The study protocol was 
approved by the local ethics committee (CE 165/2015/PO) and 
all patients had signed a specific informed consent for the study 
before surgery. The informed consent form for study participa-
tion was also approved by the local ethics committee and all 
signed informed consents were archived in the study files.

The inclusion criterion was pathological proved GBM in 
patients with an age > 18 y.o. eligible for surgery; intraop-
erative sampling of different tumor regions (EN and FLAIR) 
identified thanks to neuronavigation and intraoperative fluo-
rescence with the use of 5-aminolevulinic acid (5-ALA) 
(Fig. 1). Pre-operative Gad-T1 and FLAIR sequences were 
merged with [11C]-methionine Positron Emission Tomogra-
phy (11[C]-MET PET/CT) on StealthStation S8 (Medtronic 
Navigation, Louisville, CO, USA) and we took different tis-
sue samples targeting the EN and FLAIR hyperintense areas 

beyond the tumoral central core identified with Gad-T1 and 
[11C]-methionine uptake. Only tumor samples with clear 
5-ALA fluorescence were selected for the analyses of the 
different tumor zones. The surgical protocol for resectable 
tumors was previously detailed [10, 11] and the intraoperative 
fluorescence was evaluated using a surgical microscope with 
400 nm filter (Zeiss; Kinevo®) by 3 trained neurosurgeons 
(G.B., F.C., R.A.). The unresectable tumors (deep/eloquent 
locations, low KPS, etc.) were biopsied with frameless neu-
ronavigated system (Navigus, Medtronic) and every sample 
was also evaluated for 5-ALA positivity (Fig. 2).

Of the 58 patients, surgically treated for brain tumor, 33 
(20 males and 13 females with a mean age at diagnosis of 
56 years) met the inclusion criteria and were included in 
the study. Twenty-two (66.6%) underwent resection while 
11 (33,3%) underwent biopsy. A total of 109 histologi-
cal samples were evaluated, 52 for EN and 57 for FLAIR 
hyperintensity zone. The clinico-pathological features of 
the GBM cases are summarized in Table 1.

Hematoxylin and eosin (H&E)–stained slides and addi-
tional slides stained with numerous immunohistochemi-
cal antibodies were available for each case. All the H&E 
slides were reviewed by three pathologists (G.B., R.C., and 
G.M.) to confirm the histopathological diagnosis and the 
correct sampling of the EN and FLAIR regions.

Immunohistochemical analyses were performed on both 
EN and FLAIR samples, as previously described [12, 13]. 
Deparaffinized sections were incubated with rabbit poly-
clonal anti-SOX-2 (ab97959; 1 µg/ml; Abcam, Cambridge, 
UK) and rabbit monoclonal anti-CD133 (ab222782; 
0.5 µg/ml; Abcam, Cambridge, UK) for 15 and 30 min 
at room temperature, respectively. A semiquantitative 
assessment of the immunohistochemical staining was per-
formed by three pathologists (G.B., R.C., and G.M.) with 
no access to the clinico-pathological data of the patients, 
as previously described [14, 15]. SOX-2 and CD133 were 
considered positive if brown chromogen was observed 
within the tumor cell nuclei and cytoplasm, respectively.

The intensity of staining (IS) was classified on a 0–3 scale: 
absent, 0; mild, 1; moderate, 2; strong, 3. Similarly, 5 groups 
of extent scores (ES; the percentage of stained cells) were 
found: < 5%, 0; 5–30%, 1; 31–50%, 2; 51–75%, 3; > 75%, 4.

The immunoreactivity score (IRS), originating from the 
IS multiplied by the ES, was obtained: the immunohisto-
chemical expressions of SOX-2 and CD133 were consid-
ered low if the IRS was ≤ 6, and high if the IRS > 6.

Statistical analyses

EN and FLAIR levels of IS, ES, and IRS for each stem 
cell marker (SOX-2 and CD133) are described as Median 
with 95% confidence interval for quantitative data and with 
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frequency and percentage for categorical data. Difference 
within subjects between EN and FLAIR regions were com-
puted with Wilcoxon signed-rank test for quantitative values, 
while categorical differences between EN and FLAIR levels 
were computed with Fisher’s exact test. For all analyses, 
a p-value < 0.05 was considered statistically significant. 
Analyses were performed using the statistical software R, 
version 4.0.3.

Results

All samples were fluorescent according to the inclu-
sion criteria, the EN revealed a lava-like fluorescence 
while FLAIR samples had a faint fluorescence. Immu-
nohistochemical results are summarized in Tables  2, 
and 3 and Fig. 3. All histological samples from the EN 
region showed a proliferation of tumor cells with ovoidal, 
to elongated, morphology, moderate to severe nuclear 
atypia, brisk mitotic activity, foci of necrosis and/or 
microvascular proliferation; all these features were con-
sistent with the diagnosis of WHO grade IV GBM [16, 

17]. Similarly, histological samples from FLAIR regions 
exhibited fragments of brain white matter tissue with 
focal to diffuse infiltration of GBM cells; neither necrosis 
nor microvascular proliferation were histologically found 
within these samples.

Among the EN regions, the immunohistochemical expres-
sion of SOX-2 was high (IRS > 6) in 27/33 cases (82%) 
and low (IRS ≤ 6) in 6/33 cases (18%). Among the FLAIR 
regions, high and low immunoexpression of SOX-2 were 
found in 25/33 (76%) and in 8/33 (24%) cases, respectively. 
A discrepancy in SOX-2 levels between EN and FLAIR was 
observed in only 2/33 cases (6%) with no significant differ-
ence between the two regions (p =  > 0.999) (Fig. 4A, B) 
(Table 2).

Similarly, the immunohistochemical expression of CD133 
was high (IRS > 6) in 24/33 (73%) and low (IRS ≤ 6) in 
9/33 (27%) %) GBM ENs. In addition, high and low CD133 
immunoexpression were observed in 22/33 (67%) and 11/33 
(33%) GBM FLAIR regions, respectively; for CD133, a dis-
crepancy between EN and FLAIR was seen only in 3/33 
cases (9%), with no significant difference between them 
(p =  > 0.999) (Fig. 4C, D) (Table 2).

Fig. 1  These images show 
the multimodal intraoperative 
approach used to select the 
samples in central core and peri-
tumoral areas. In the first image 
(A) we can see a screenshot of 
neuronavigation in which Gad-
T1 and FLAIR (B) sequences 
are merged with [11C]-methio-
nine Positron Emission Tomog-
raphy (11[C]-MET PET/CT) on 
StealthStation S8 (Medtronic 
Navigation, Louisville, CO, 
USA). The tracer is placed 
on the edge of the EN zone, 
confirmed by the overlap with 
the high uptake area of the PET. 
The EN is shown under white 
light (C) and under ultraviolet 
light filter (D) revealing the 
presence of lava-like fluores-
cence. Instead, Gad-T1 (E) and 
FLAIR (F) sequences merged 
with 11[C]-MET PET/CT show 
the tracer placed in the FLAIR 
hyperintense area beyond the 
EN. The FLAIR hyperintensity 
zone is then displayed under 
white light (G) and under ultra-
violet light filter (H) revealing 
faint fluorescence
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Considering the quantitative distribution of levels of IS, 
ES, and IRS, no difference was found between the EN and 
FLAIR regions for both the SOX-2 biomarker (IS p = 0.7173, 

ES p = 0.2023, IRS p = 0.91) and the CD133 biomarker (IS 
p = 0.8037, ES p = 0.2222, IRS p = 0.3944) (Table 3).

IS, ES, IRS of each patient are summarized in Supple-
mentary Table S1.

Discussion

One of the most debated neuro-oncological issues today is 
the use of an aggressive resection beyond EN for GBM; this 
question arose from the evidence that recurrences generally 
occur in peritumoral areas [18–20]. It has been demonstrated 
that cellular composition and molecular signatures of the 
GBM core compared with infiltrative margins are different 
and many papers described the role of cross-talk between 
tumoral cells and the tumoral microenvironment in the regu-
lation of tumor growth and progression [21–23].

The first evidence of the key role of CSCs in tumor 
maintenance, growth and recurrence originated from stud-
ies conducted in hematopoietic and solid neoplasms [7]. 
CSCs are a subpopulation of cells with several capabilities, 

Fig. 2  These images show the 
intraoperative biopsy approach 
with frameless neuronavigated 
system (Navigus, Medtronic) 
used to select the samples in 
central core and PTA. In the 
first image (A) we can see 
T1-Gad sequence merged with 
11[C]-MET PET/CT on Stealth-
Station S8. The neuronavigated 
biopsy needle is placed into the 
EN, confirmed by the overlap 
with the high metabolic uptake 
area. The EN sample is shown 
under ultraviolet light filter 
(B) revealing the presence of 
lava-like fluorescence. Instead, 
FLAIR sequence merged with 
11[C]-MET PET/CT show the 
neuronavigated biopsy needle 
placed into the FLAIR hyper-
intense area beyond the EN/
uptake area of the PET. (C) The 
sample of the FLAIR hyperin-
tensity zone is then displayed 
under ultraviolet light filter (D) 
revealing faint fluorescence

Table 1  Clinico-pathological features of the GBM cases

GBM, glioblastoma; EN, enhancing nodule; L, lobes

GBM 
cases

Gender Mean 
Age 
(years)

Anatomic 
Location

N. of 
samples 
from EN

N. of 
samples 
from 
FLAIR

n = 33 Male 
(n = 20)

Female 
(n = 13)

56 Temporal  
L (n = 13)

Frontal 
L(n = 9)

Parietal 
L(n = 8)

Occipital L 
(n = 2)

Corpus 
Callosum 
(n = 1)

52 57

3712 Neurosurgical Review (2022) 45:3709–3716
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including self-renewal, multi-cell lineage differentiation 
and induction of resistance to conventional therapies. As 
demonstrated in other human neoplasms, CSCs were also 
isolated in GBMs in 2002 [24, 25]; although their origin is 
still largely unknown, these cells have been shown to play 
an initiating role in gliomagenesis, inducing angiogenesis, 
metastatic spread and resistance to conventional radiothera-
pic and chemotherapic treatments [8]. Furthermore, CSCs 
seem to have an increased DNA repair mechanism, through 
which they tend to easily overcome the cell stress induced by 
anti-cancer therapy, resulting in shorter resistance and dis-
ease recurrence times in GBM patients [26]. Due to the criti-
cal role played by CSCs in gliomagenesis, several studies 
have been carried out to better understand their genetic and 
immunohistochemical features, as well as their anatomic dis-
tribution, in patients affected by malignant gliomas. Based 
on these assumptions, it has been suggested that, eradicat-
ing CSCs, might affect stable, long-lasting remission and 
potentially treat cancer [27, 28].

The detection of proteins that are differentially expressed 
by CSCs and targetable by immunohistochemistry, repre-
sents the best and easiest way to study the expression and 
distribution of this cell subpopulation [8]. SOX-2 and 
CD133 are the most used immunomarkers of CSCs in GBM.

The SOX-2 gene, located on chromosome 3q26.3-q27, is part of 
the SOX family of transcription factors [29]. It encodes a protein that 
is highly expressed during the development of the central nervous 
system and downregulated when neural cells start to differentiate; 
SOX-2 is involved in the regulation of several genes that play key 
roles in neurogenesis and gliogenesis [9]. In the adult unaffected 
brain, SOX-2 expression is almost absent and restricted to prolifer-
ating cells, neural stem cells and progenitor cells. In brain tumors, 
SOX-2 expression has been found in glial tumors, such as astrocy-
tomas, oligodendrogliomas and ependymomas, but not in neuronal 
neoplasms; in particular, a higher histological grade is associated 
with a higher expression of this protein [9, 30].

CD133, also known as prominin-1, is a cell surface trans-
membrane glycoprotein, originally isolated from murine 
neuroepithelial cells [31]. It has been demonstrated that 
CD133-positive tumor cells have a greater tumor-initiating 
capability and high self-renewal ability. CD133-positive 
tumor cells also show more rapid DNA repair than those 
with no expression of CD133. Assuming the central role 
of CSCs in the physiopathology of GBM, they could be a 
good therapeutical target for local treatment but there is lit-
tle evidence on their anatomical distribution. Lama et al. 
demonstrated the presence of CSCs in peritumoral areas of 
GBM [32]. Angelucci et al. showed that CSCs residing in 
peritumoral tissue and in central core tumors show differ-
ent biological behavior. They demonstrated in a sample of 
4 patients affected by GBM that the comparison between 
CSCs of both areas is different in terms of proliferative 
potential, ultrastructure and expression of stem cell markers, 
c-Met, MAPK, H19 lncRNA and miR-675-5p, suggesting 

Table 2  Difference between 
frequencies of FLAIR and 
EN levels ≤ 6 and > 6 for both 
SOX-2 and CD133 biomarkers

 IRS, immunoreactivity score

Marker IRS ≤ 6 EN IRS > 6 EN IRS ≤ 6 FLAIR IRS > 6 FLAIR P-value

SOX-2 6(18%) 27(82%) 8(24%) 25(76%)  > 0.999
CD133 8(24%) 25(76%) 11(33%) 22(67%)  > 0.999

Table 3  Difference between FLAIR and EN levels for both SOX-2 and CD133 biomarkers

IS, Intensity of staining; EN, enhancing nodule; ES, Extent score; IRS, Immunoreactivity score

SOX-2

IS EN  
Median [95% CI]

IS FLAIR  
Median [95% CI]

P-value ES EN  
Median [95% CI]

ES FLAIR 
Median [95% CI]

P-value IRS EN  
Median [95% CI]

IRS FLAIR 
Median [95% CI]

P-value

3 [2, 3] 3 [2, 3] 0.7173 4 [3, 4] 3 [3, 4] 0.2023 8 [8, 9] 9 [8, 9] 0.91
CD133
2 [2, 3] 2 [2, 3] 0.8037 3 [3, 4] 3 [2–4] 0.2222 8 [8, 9] 8 [4–9] 0.3944

Fig. 3  Immunohistochemical expression of stem cell markers SOX-2 
and CD133 in GBM cases. Data are represented as mean + / − stand-
ard deviation of  immunohistochemical expression, reported as arbi-
trary units (A.U.). Abbreviations: IS, intensity of staining; ES, extent 
score; IRS, immunoreactivity score; EN, enhancing nodule
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that CSCs of peritumoral areas are less aggressive than 
CSCs of the central core [33, 34].

Peng et al. [3] studied the different percentage of CSCs on an 
autoptic series of two patients affected by GBM and described 
their spatial distribution identifying CSCs with CD133 and 
SOX-2. They found that the greatest concentration of SCSs were 
in the peritumoral edge suggesting that the areas beyond the EN 
are responsible for progression and tumor recurrence [6].

We first compared the concentration of CSCs in the EN and 
FLAIR hyperintensity zones using the aid of a multimodal 
intraoperative imaging approach (especially neuronavigation 
and a metabolic intraoperative fluorescence tracer) to select the 
correct samples [35]. We found that 5-ALA correlated with 
the presence of CSCs. The peritumoral areas, corresponding 
to the FLAIR hyperintense zone, are populated by CSCs in the 
absence of necrosis and microvascular proliferation. There are 
no differences in CSC concentration between EN and FLAIR, 
which is in agreement with our hypothesis of GBM growth 
parabola that we previously described with a radiological series. 
This evidence indeed seems to suggest that gliomatogenesis 
starts in some specific areas of the brain thanks to a favorable 
microenvironment. The neural stem cell undergoes transforma-
tion in CSC and this population replicates in the corresponding 
FLAIR areas with a velocity of mean diametric expansion of 
about 40 mm/years. The continuous accumulation of muta-
tions determines the acquisition of a more malignant property 

in some areas that acquire a velocity of mean diametric expan-
sion of about 45 mm/year. This is radiologically visible with 
the appearance of the EN that appears more than 1 year after 
the first molecular events. Therefore, the discrepancy between 
the metabolic needs and supply, create the central core necrosis 
with a deceleration of EN velocity of mean diametric expansion 
according to the Gompertz curve [36, 37]. In this way, if we 
surgically treat the EN, the presence of CSCs within the FLAIR 
zone starts the processes that will lead to the genesis of another 
EN. This is in agreement with the median free progression sur-
vival of 5 months without radiotherapy [38]. At this time there 
is no evidence about the possibilities to individualize the CSCs 
with radiomic technologies. Their surgical mapping could open 
the way to planning local treatment (surgery and radiotherapy) 
on the new imaging showing the real therapeutical target. 
Another future perspective could be to find an intraoperative 
tool (intraoperative fluorescent dye?) to visualize CSCs as well 
as guiding and maximizing resection.

Conclusion

We have confirmed that 5-ALA can visualize a tumor beyond 
the classical margins of the EN, and we have histologically 
proved that there are no differences between the concentration 

Fig. 4  (A) Neoplastic cells from EN were diffusely stained with SOX-
2. Note the diffuse foci of microvascular proliferation and the nuclear 
immunoreactivity for SOX-2 (insert). (B) High SOX-2 levels were 
also observed in the FLAIR regions; diffuse perineuronal satellitosis 
was seen (insert). (immunoperoxidase stainings; original magnifica-
tions 100 × and 200 × , inserts). (C) High CD133 immunoreactivity 

in the EN regions. Note the strong cytoplasmic positivity of CD133 
(insert). (D) Similarly, high CD133 levels were also observed in the 
FLAIR regions; cancer stem cells, diffusely infiltrating areas of reac-
tive astrogliosis were found (insert). (immunoperoxidase stainings; 
original magnifications 100 × and 200 × , inserts)
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of CSCs in FLAIR and EN of GBM. This evidence suggests 
to recalibrate the target of surgery and radiotherapy on the 
FLAIR hyperintensity areas in order to achieve a better local 
control of the disease. In this way, 5-ALA could improve the 
possibility of achieving a FLAIRECTOMY and, if effected 
within the functional boundaries, could improve patient out-
come [39]. Neuronavigation could have some degree of inac-
curacy due to brain shift. Therefore, the sampling of FLAIR 
tissue versus EN could be theoretically inaccurate. However, 
the neuronavigation update with intraoperative CT scan [10, 
11], surgical experience of trained neurosurgeons on dis-
tinguishing different tissues, the use of 5-ALA besides the 
number of patients who underwent frameless neuronavigated 
needle biopsy mitigates this limitation. CD 133 and SOX-2 
alone could be disputable as stemness markers but there is a 
robust literature about the trustworthiness of each marker, and 
we have tested both to enhance their reliability.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10143- 022- 01863-8.
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