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INTRODUCTION 
 

Recent evidence shows that the aging human brain 

suffers a fall of aerobic glycolysis (AG) (i.e., the use of 

glucose outside oxidative phosphorylation, OP) rather 

than a global decrease in glucose metabolism [1]. AG 

accounts for about 10–12% of glucose used by the adult 

brain and has its highest levels in the default mode 

network (DMN) [2], where it markedly drops with 

aging [1]. 

 

The DMN is a cluster of regions underlying the ability 

of the young adult brain to maintain the self-referential 

functions, and showing hypoactivity and Aβ deposition 

in older adults with Alzheimer’s disease (AD) [3]. AG 

has been associated with synaptic activity [4] and is 

considered an adaptive advantage over OP for those 

areas requiring a fast ATP supply to active synapses and 

a fast synaptic turnover [1, 5]. The high intrinsic 

activity of the DMN, possibly permitted by AG, and the 

ensuing activity-driven Aβ release [6], could explain the 

topographical association between DMN, AG and Aβ 

deposition [2–3]. 

 

A recent study by Vlassenko and colleagues has shown 

that in individuals with significant Aβ load, lower AG is 
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ABSTRACT 
 

Research on cerebral glucose metabolism has shown that the aging brain experiences a fall of aerobic glycolysis, 
and that the age-related loss of aerobic glycolysis may accelerate Alzheimer’s disease pathology. In the healthy 
brain, aerobic glycolysis, namely the use of glucose outside oxidative phosphorylation, may cover energy demand 
and increase neuronal resilience to stressors at once. Currently, the drivers of aerobic glycolysis in neurons are 
unknown. We previously demonstrated that synthetic monomers of β-amyloid protein (Aβ) enhance glucose 
uptake in neurons, and that endogenous Aβ is required for depolarization-induced glucose uptake in cultured 
neurons. In this work, we show that cultured cortical neurons increased aerobic glycolysis in response to the 
inhibition of oxidative phosphorylation by oligomycin or to a kainate pulse. Such an increase was prevented by 
blocking the endogenous Aβ tone and re-established by the exogenous addition of synthetic Aβ monomers. The 
activity of mitochondria-bound hexokinase-1 appeared to be necessary for monomers-stimulated aerobic 
glycolysis during oxidative phosphorylation blockade or kainate excitation. Our data suggest that, through Aβ 
release, neurons coordinate glucose uptake with aerobic glycolysis in response to metabolic stressors. The 
implications of this new finding are that the age-related drop in aerobic glycolysis and the susceptibility to 
Alzheimer’s disease could be linked to factors interfering with release and functions of Aβ monomers. 
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associated with higher tau deposition [7], suggesting that 

an age-related loss of AG may accelerate AD pathology. 

Accordingly, it has been hypothesized that, by diminishing 

mitochondrial activity and reactive oxygen species (ROS) 

production, AG could represent a pre-emptive protective 

mechanism against neuronal stressors [8]. 

 

The reason why brain AG falls with age, and 

particularly in the DMN, favoring the appearance of AD 

pathology [7] is not clear. Although astrocytes are the 

major site of AG in the brain [9–10], recent evidence 

shows that neurons undergo AG during activation [11–

13]. We previously demonstrated that Aβ42, in the form 

of physiological monomer, is endowed with a broad 

neuroprotective activity [14], and enhances glucose 

uptake in neurons by activating type-1 insulin-like 

growth factor receptors (IGF-IRs) [15]. Moreover, we 

found that Aβ release is required for depolarization-

induced glucose uptake in neurons, and that amyloid 

precursor protein (APP)-null neurons fail to enhance 

depolarization-stimulated glucose uptake unless 

exogenous Aβ42 monomers are added [15]. Thus, Aβ 

released at the synapses could be critical for 

maintaining neuronal glucose homeostasis. 

 

In APP transgenic mice, prior to plaque deposition, 

neuronal activity appears to co-regulate the regional 

concentrations of interstitial fluid Aβ and lactate (the 

end-product of AG) [16], suggesting to us that secreted 

Aβ could drive AG beside promoting neuronal glucose 

uptake. Given our previous demonstration that Aβ42 

monomers selectively activate IGF-IRs to enhance 

glucose uptake in neurons [15], in close similarity with 

the contribution offered by the IGF-1 signaling pathway 

to the high glycolytic flux of many tumor cells [17], it is 

conceivable that Aβ42 monomers may support neuronal 

AG via IGF-IR activation. 

 

By using long term primary neuronal cultures, virtually 

devoid of potentially confounding glia cells, we aimed at 

exploring whether physiological forms of Aβ can 

promote AG in neurons under basal and/or metabolic 

stress conditions. The novel demonstration of a causal 

link between the endogenous Aβ tone and neuronal AG 

would suggest that the intrinsic vulnerability of the aging 

brain to different stressors (including β-amyloidosis) 

could stay in those factors that interfere with the release 

and functions of physiological Aβ monomers. 

 

RESULTS 
 

The endogenous release of Aβ sustained neuronal 

survival and AG when OP was inhibited 

 

Experiments were carried out in primary cultures of 

pure cortical neurons, obtained from E15 rat embryos 

according to a well-established protocol that produces 

99% neurons [18]. Neuronal cultures were grown for 

over two weeks by replacing half the volume of the 

culture media every 3 or 4 days. Mature neurons (14–17 

DIV) were maintained for 2 hours (hr) in artificial 

excitable cerebrospinal fluid (CSF) (i.e., containing 

10 μM glycine), lacking glucose, and then forced to 

uptake new glucose added at a known concentration 

(i.e., the 3 mM concentration that lies in the normal 

CSF glucose range). We have previously shown that in 

glucose-starved cultures, the addition of synthetic Aβ42 

monomers, 100 nM for 15 minutes (min), stimulates 

neuronal glucose uptake through the activation of 

IGF-IRs [15]. 

 

In this set of experiments, following 2 hr of glucose 

deprivations, neurons were returned to 3 mM glucose 

in either the absence or the presence of oligomycin 

(5 μg/ml) to inhibit ATP synthase, with ensuing 

reduction of mitochondrial OP. Oligomycin induced 

a 60% neuronal death after 2.5 hr, whereas 

2-deoxyglucose (2-DG, 3 mM), which inhibits overall 

glucose metabolism, virtually killed all neurons 

(Figure 1A, 1B). Inhibition of the pentose phosphate 

(PP) pathway (i.e., a metabolic pathway parallel to 

glycolysis) by 6-aminonicotinamide (6-AN, 5 mM) 

did not potentiate significantly oligomycin toxicity, 

suggesting that neuronal survival did not depend 

greatly on the PP pathway when OP was blockade 

(Figure 1A, 1B). 

 

We have previously shown that γ-secretase inhibitor IX 

(100 nM for 2 hr) blocks the endogenous production of 

Aβ42 under basal conditions or following neuronal 

excitation [15]. Interestingly, when OP was impeded by 

oligomycin, blockade of Aβ42 production by γ-secretase 

inhibitor IX worsened neuronal survival, whereas the 

exogenous addition of synthetic Aβ42 monomers (at the 

known effective concentration of 100 nM [14]) opposed 

the effects of γ-secretase inhibitor IX (Figure 2A, 2B). 

Hence, endogenous Aβ was required to sustain neuronal 

survival following OP blockade. To investigate the 

relationship between neuronal survival under OP 

blockade and the trigger of AG (i.e., the glycolysis of 

glucose to lactate), we measured the lactate 

concentration in the bathing medium of neurons treated 

with oligomycin for 1 hr (Figure 2A, 2C). Basal lactate 

concentration varied widely across the different 

cultures, ranging from 10 ng to 200 ng/μl, depending on 

neuronal density and maturation age. Lactate 

concentration raised more than 2 folds in oligomycin-

treated neurons with respect to the controls (Figure 2C). 

Noteworthy, a pre-treatment with γ-secretase inhibitor 
IX reduced lactate release in oligomycin-treated 

neurons, whereas the exogenous addition of synthetic 

Aβ42 monomers (100 nM) opposed the effects of 
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γ-secretase inhibitor IX once again (Figure 2C). In the 

absence of oligomycin, neither blocking of Aβ 

production (up to 3 hours), nor adding synthetic Aβ42 

monomers, which however stimulates glucose uptake 

[15], affected lactate release (ng/μl: basal = 50.63 ± 9.4; 

γ-secretase inhibitor IX = 44.15 ± 10.4; Aβ42 monomers 

= 47.97 ± 11.56; γ-secretase inhibitor IX + Aβ42 

monomers = 48.82 ± 6.3). Under OP blockade, the total 

neuronal ATP content tended to decrease not 

significantly (Figure 2D), indicating that the production 

of ATP by forced AG largely compensated for the 

inhibition of mitochondrial ATP production. Following 

the pre-treatment with γ-secretase inhibitor IX, the ATP 

content fell below the detection limits (0.1 ng/ml) in 

oligomycin-treated neurons, whereas it increased again 

with the addition of synthetic Aβ42 monomers (Figure 

2D). Hence, both lactate release (Figure 2C) and ATP 

levels (Figure 2D) appeared to depend on Aβ 

production following neuronal exposure to oligomycin. 

Interestingly, when Aβ release and OP were both 

blocked, the ATP levels dropped markedly with respect 

to the controls (Gluc 3 mM) (Figure 2D), whereas 

lactate levels were comparable between the two 

conditions (Gluc 3 mM vs. Gluc + Oligo in the presence 

 

 
 

Figure 1. Inhibition of the PP pathway by 6-aminonicotinamide did not increase significantly oligomycin toxicity. Experiments 
were performed as represented in the drawing. (A) Following 2 hours of glucose deprivation, neurons were returned to 3 mM glucose (Gluc) 
in either the absence or the presence of oligomycin (5 μg/ml) to inhibit ATP synthase. (B) Oligomycin induced a 60% neuronal death after 2.5 
hours, whereas 2-deoxyglucose (2-DG, 3 mM), which inhibits overall glucose metabolism, virtually killed all neurons. The addition of 
6-aminonicotinamide (6-AN, 5 mM) did not potentiate significantly oligomycin toxicity. Neuronal death was quantified by propidium iodide 
(PI) staining of neurons that had lost membrane integrity and expressed as percentage of 2-DG-induced death. Bars represent the means ± 
SEM of 4 determinations. *P < 0.001 vs. 2-DG; one-way ANOVA with post hoc Fisher LSD multiple comparison method. 
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of γ-Sec Inh) (Figure 2C). It follows that the ATP levels 

associated with basal lactate production (which did not 

rely on endogenous Aβ) were probably negligible. 

Overall, these data indicate that endogenous Aβ was 

required to sustain AG when OP was blockade. 

Blockade of endogenous Aβ prevented kainate-

stimulated AG 

 

We have previously shown that a depolarization pulse 

with KCl (40 mM for 15 min) evokes a significant 

 

 
 

Figure 2. The endogenous release of Aβ sustained neuronal survival, lactate release and ATP levels in the presence of 
oligomycin. Experiments were performed as represented in the drawing (A). In the presence of oligomycin (Oligo, 5 μg/ml), blockade of Aβ 

production by γ-secretase inhibitor IX (γ-Sec Inh, 100 nM) worsened neuronal survival (B), reduced lactate release (C) and ATP content (D). 
The addition of synthetic Aβ42 monomers (mAβ, 100 nM) prevented the effects of γ-Sec Inh (B–D). Both in (B and C) bars represent the means 
± SEM of 4 determinations. P < 0.001 vs. *glucose (Gluc), or #Gluc ± Oligo in the absence of γ-Sec Inh, or **Gluc ± Oligo in the presence of γ-Sec 
Inh; one-way ANOVA with post hoc Fisher LSD multiple comparison method. In (D) bars represent the means ± SEM of 3–4 determinations. 
*P < 0.05 vs. 2-DG or Gluc ± Oligo in the presence of γ-Sec Inh; one-way ANOVA with post hoc Fisher LSD multiple comparison method. 
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increase in neuronal glucose uptake, which is 

prevented by either γ-secretase inhibitor IX or the 

IGF-IR antagonist, PPP, (i.e., by blocking Aβ 

production or Aβ activity) [15]. Similar to the 

depolarizing pulse with KCl, the application of kainic 

acid (100 μM for 10 min) promoted glucose uptake in 

neurons, which was prevented by the pre-exposure to 

γ-secretase inhibitor IX (100 nM) (Figure 3A). In 

parallel, at 40 min, lactate concentration raised in 

kainate-treated neurons and the rise was prevented 

by the pre-exposure to γ-secretase inhibitor IX. 

γ-Secretase inhibitor IX per se was ineffective 

(Figure 3B). PPP (500 nM) prevented kainate-

stimulated lactate release to the same extent of 

γ-secretase inhibitor IX, (Figure 3B). Thus, the 

endogenous production of Aβ and the endogenous 

activation of IGF-IRs were required to sustain AG 

during neuronal activation. 

 

 
 

Figure 3. Inhibition of Aβ release or blockade of IGF-IRs prevent kainate-stimulated lactate release. Following 2 hours of glucose 

deprivation, 3 mM glucose was added to neuronal cultures. A treatment with kainate (KA, 100 μM) stimulated glucose uptake after 10 min 
(A) and lactate release after 40 min (B). Glucose consumption was measured as glucose (mg/dl) remaining in the incubation buffer 10 
minutes following re-addition. With respect to the initial 3 mM glucose concentration, no glucose uptake occurred within 10 min unless KA 
was added. The IGF-IR antagonist, PPP (500 nM), and γ-secretase inhibitor IX (γ-Sec Inh, 100 nM) prevented kainate-stimulated lactate 
release at 40 min (B). Bars represent the means ± SEM of 4 determinations. In (A) p < 0.001 vs. *control (CTRL) or **KA alone. In (B) p < 0.001 
vs. *CTRL or #KA alone; one-way ANOVA with post hoc Fisher LSD multiple comparison method. 
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Inhibition of AMP-activated protein kinase (AMPK) 

did not prevent the up-regulation of AG due to Aβ 

monomers 
 

The AMPK is able to reprogram cell metabolism for 

adaptation to energy stress [19]. Therefore, we 

investigated whether AMPK was required to sustain 

Aβ-mediated AG under conditions that interfere with 

ATP production (e.g., exposure to oligomycin) or 

accelerate ATP consumption (e.g., exposure to kainate). 

As before, a pre-treatment with γ-secretase inhibitor IX 

reduced lactate release in oligomycin-treated neurons, 

which was rescued by the exogenous addition of 

synthetic Aβ42 monomers (Figure 4A). The addition of 

the AMPK inhibitor, Compound C (10 μM), to 

exogenous Aβ42 monomers showed a trend toward the 

 

 
 

Figure 4. Inhibition of AMPK by Compound C did not prevent lactate production due to Aβ release. Neurons were glucose-

starved for 2 hours before returning to 3 mM glucose. γ-Secretase inhibitor IX (γ-Sec Inh, 100 nM) reduced lactate release both in oligomycin-
treated neurons (Oligo, 5 μg/ml for 1 hr) (A) and kainate-treated neurons (KA, 100 μM for 40 min) (B). The addition of synthetic Aβ42 
monomers (mAβ, 100 nM) prevented the reduction of lactate release, induced by γ-Sec Inh, both in (A and B). Compound C (10 μM), did not 
affect significantly the rescuing effect of exogenous Aβ42 monomers in either (A or B). Bars represent the means ± SEM of 4 determinations. 
In (A) p < 0.001 vs. *control (CTRL) or **Oligo in the absence of γ-Sec Inh, and p < 0.05 vs. #Oligo + γ-Sec Inh. In (B) p < 0.001 vs. *control (CTRL) or 
**KA in the absence of γ-Sec Inh, and p < 0.001 vs. ***KA + γ-Sec Inh; one-way ANOVA with post hoc Fisher LSD multiple comparison method. 
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reduction of lactate release that, however, did not reach 

significance. Compound C per se was ineffective 

(Figure 4A). γ-Secretase inhibitor IX completely 

prevented kainate-induced lactate release, which was re-

established by exogenous Aβ42 monomers (Figure 4B). 

Even in this case, the addition of the AMPK inhibitor, 

Compound C (10 μM), did not affect the rescuing effect 

of exogenous Aβ42 monomers (Figure 4B). In the 

absence of γ-secretase inhibitor IX, Compound C 

slightly reduced both basal and kainate-stimulated 

lactate release. Blockade of basal Aβ production and re-

addition of Aβ42 monomers, in the absence of kainate, 

were ineffective (Figure 4B). Hence, endogenous Aβ 

was required to sustain AG in kainate-stimulated 

neurons. In addition, AMPK did not seem to be required 

to support Aβ-mediated AG under metabolic stresses 

(i.e., neuronal exposure to oligomycin or kainate). 

 

Mitochondria-bound HK-1 was needed for Aβ-

mediated AG under metabolic stresses 

 

We have previously shown that endogenously released 

Aβ, similarly to synthetic Aβ42 monomers, activates 

IGF-IRs to start glucose uptake in neurons [15]. Here, 

blockade of IGF-IRs by PPP, similar to the blockade of 

Aβ production, prevented kainate-stimulated lactate 

release (Figure 3B), suggesting that glucose uptake and 

lactate release lie along the same pathway activated by 

Aβ. The IGF-IR/Phosphatidylinositol 3-kinase (PI-

3K)/AKT pathway can promote the binding of HK-1 to 

the outer mitochondrial membrane (OMM) [20], thus 

allowing the rapid formation of large amounts of 

glucose-6-phopshate (Gluc-6-P) and, consequently, of 

pyruvate that cannot be oxidized readily by the 

mitochondria and is diverged toward lactate production 

[20–21]. HK-1 is normally 75%–90% bound to 

mitochondria in neurons [22] and, therefore, small 

increments of mitochondria-bound HK-1 could be 

functionally significant. 

 

We investigated whether Aβ42 monomers were able to 

increase the fraction of mitochondria-bound HK-1 

under conditions of forced-glucose uptake. Neurons 

were starved for 2 hr before returning to 3 mM glucose 

in the absence or in the presence of synthetic Aβ42 

monomers (100 nM for 40 min). When required, the 

IGF-IR antagonist, PPP (500 nM), was added. 

Immunofluorescence analysis, by confocal microscopy, 

of neurons labeled for HK-1 (green) (Figure 5A, 5D, 

5G) and the voltage-dependent anion channel (VDAC) 

(red) OMM protein (Figure 5B, 5E, 5H), showed that 

HK-1 and VDAC signals overlapped almost perfectly 

(average Manders’ co-localization coefficients for the 
green channel and the red channel were 0.893 and 

0.903, respectively) under basal conditions (Figure 5C). 

Interestingly, neurite processes in cultures exposed to 

synthetic Aβ42 monomers often exhibited a co-

localization of the two fluorescence signals (Figure 5F), 

which was mostly absent in the presence of PPP (Figure 

5I) and in the controls (Figure 5C). This subtle 

difference paralleled the increase in the percentage of 

image volume co-localized, which was observed in 

cultures exposed to Aβ42 monomers (Figure 5J). Hence, 

Aβ42 monomers appeared to increase the mitochondrial 

localization of HK-1 in a manner dependent on IGFI-R 

activation. Western blot analysis confirmed that Aβ42 

monomers enhanced the amount of HK-1 that co-

fractioned with neuronal mitochondria, when HK-1 

densitometry signals were normalized against VDAC as 

fractionation control (Figure 6A). As in the case of 

immunofluorescence analysis, this effect was prevented 

by the addition of PPP to Aβ42 monomers (Figure 6A). 

The evidence that Aβ42 monomers did not really alter 

the total amounts of neuronal HK-1 (Figure 6B) and 

VDAC (Figure 6C), when the respective densitometry 

signals were normalized against β-actin as loading 

control, confirmed that the increase in the mitochondrial 

abundance of HK-1 was due to the enhanced association 

of the enzyme with the OMM. 

 

To determine whether mitochondria-bound HK-1 was 

needed for Aβ-mediated AG under metabolic stresses, 

we used lonidamine, an inhibitor of mitochondria-

bound HK [23]. As before, a pre-treatment with 

γ-secretase inhibitor IX reduced lactate release both in 

oligomycin-treated neurons (Figure 7A) and kainate-

excited neurons (Figure 7B), which was rescued by 

adding synthetic Aβ42 monomers (Figure 7A, 7B). The 

addition of lonidamine (120 μM) prevented the rescuing 

effects of exogenous Aβ42 monomers in both cases 

(Figure 7A, 7B), indicating that Aβ42 monomers used 

mitochondrial HK-1 to favor lactate production and 

release. 

 

Although Aβ42 monomers per se were able to promote 

the mitochondrial localization of HK-1 in response to 

glucose uptake (Figures 5F, 5J, 6A), they were not able 

to promote AG in the absence of oligomycin or kainate 

(Figure 4B). This evidence suggested that other key 

components facilitated Aβ-mediated lactate release 

under metabolic stresses. 

 

Lactate dehydrogenase (LDH) is a key enzyme that 

catalyzes the reversible conversion of pyruvate to 

lactate. LDH is a tetramer assembled by association of 

two different subunits, LDH-A and LDH-B. Five LDH 

isoenzymes exist that differ in their proportions of 

LDH-A and LDH-B subunits. The ratio of the two 

subunits determines the activity of LDH [24]. LDH-A 
mainly reduces pyruvate to lactate under anaerobic 

conditions, whereas LDH-B catalyzes the 

interconversion of low concentrations of pyruvate and 
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Figure 5. Synthetic Aβ42 monomers increased the mitochondrial localization of HK-1 at the neurite processes in a manner 
dependent on IGF-IR activation. Confocal images of primary cortical neurons glucose-starved for 2 hours before returning to 3 mM 
glucose, in the absence (CTRL, A–C) or in the presence of either 100 nM synthetic Aβ42 monomers for 40 min (mAβ, D–F) or synthetic Aβ42 
monomers + 500 nM PPP (mAβ + PPP, G–I). Neurons were immunostained for HK-1 (green fluorescence) and VDAC (red fluorescence). 
Overlays of green and red fluorescence for each experimental conditions are shown on the right side of the figure (C, F, I). In (F) asterisks 
indicate neurite processes exhibiting green (HK-1)/red (VDAC) co-localization (orange to yellow). Images were not altered in any way, but 
were despeckled by ImageJ to reduce noise. Scale bar = 20 μm. In (J), bars represent the % image volume colocalized (i.e., the percentage of 
voxels which have both green (HK-1) and red (VDAC) fluorescence intensity above the threshold with respect to the total number of pixels in 
the image) for each experimental conditions, and values are expressed as means ± S.E.M. of 3 determinations. Each determination 
represented a culture dish in which the % of image volume colocalized was calculated from three random fields. *p < 0.001 vs. control (CTRL); 
one-way ANOVA with post hoc Holm-Sidak multiple comparisons vs. control group. 
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Figure 6. Synthetic Aβ42 monomers enhanced the mitochondrial abundance of HK-1 without altering the total protein 
content. In (A), the western blot analysis of HK-1 in the mitochondrial fraction of neurons that, following glucose deprivation and 

replenishing, were exposed to Aβ42 monomers in the absence (mAβ, 100 nM for 40 min) and in the presence of 500 nM PPP (mAβ ± PPP). 
Densitometric values of HK-1, normalized on VDAC signals, are represented in the graph bars (right). In (B and C), the western blot analysis of 
HK-1 and VDAC, respectively, in the whole neuronal lysate. Densitometric values of HK-1 or VDAC, normalized on β-actin signals, are 
represented in the respective graph bars (right). The whole cell lysate and the mitochondrial fraction were derived from the same 
experiment, but proteins were loaded in different amounts/gel (15 μg in (A), 20 μg in (B) and 10 μg in (C)) to avoid the saturation of 
hybridization signals. The experiment was repeated twice with similar results. Hybridization signals were detected with the Odyssey infrared 
imaging system in their original green or red colors and automatically converted into greyscale. M = protein marker. 
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lactate, as present in aerobic tissues, because of its high 

affinity for both substrates [25]. Western blot analysis 

of cell lysates obtained from neurons that had been 

exposed to kainate, as described previously, showed an 

increased LDH-B/LDH-A ratio (Figure 8C), mainly due 

to the reduction of the LDH-A expression (Figure 8A). 

γ-Secretase inhibitor IX, which per se never increased 

lactate release, did not affect the LDH-B/LDH-A ratio 

(Figure 8C), although it increased both LDH-A (Figure 

8A) and LDH-B (Figure 8B) expression. Hence, the 

LDH-B/LDH-A ratio rather than the total content of 

LDH seemed relevant for lactate production by neurons. 

Accordingly, Aβ42 monomers, which promoted the 
mitochondrial localization of HK-1 in response to 

 

 
 

Figure 7. Inhibition of mitochondria-bound HK-1 by lonidamine prevented lactate production due to Aβ release. Neurons were 

glucose-starved for 2 hours before returning to 3 mM glucose. γ-Secretase inhibitor IX (γ-Sec Inh, 100 nM) reduced lactate release both in 
oligomycin-treated neurons (Oligo, 5 µg/ml for 1 hr) (A) and kainate-treated neurons (KA, 100 µM for 40 min) (B). The addition of synthetic 
Aβ42 monomers (mAβ, 100 nM) prevented the reduction of lactate release, induced by γ-Sec Inh, both in (A and B). Lonidamine (200 µM) 
reduced the rescuing effect of exogenous Aβ42 monomers in both cases (A and B). Bars represent the means ± SEM of 4 determinations. In 
(A) p < 0.001 vs. *control (CTRL) or **Oligo in the absence of γ-Sec Inh, and p < 0.05 vs. #Oligo + γ-Sec Inh or ##Oligo + γ-Sec Inh + mAβ. In (B) p < 
0.001 vs. *control (CTRL) or **KA in the absence of γ-Sec Inh or #KA + γ-Sec Inh, and p < 0.05 vs. ##KA + γ-Sec Inh + mAβ; one-way ANOVA with 
post hoc Fisher LSD multiple comparison method. 
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glucose uptake but not lactate production, did not 

affect the expression of either LDH-A and LDH-B 

(Figure 8D). Hence, the increased LDH-B/LDH-A 

ratio could act in tandem with the mitochondrial HK-1 

to allow the Aβ-mediated lactate release under 

metabolic stresses. 

 

 
 

Figure 8. Increased LDH-B/LDH-A expression ratio in neurons challenged with kainate. Western blot analysis of LDH-A (A) and 

LDH-B (B) in lysates obtained from neurons that were deprived from glucose for 2 hr before returning to 3 mM glucose. Kainate (KA, 100 µM 
for 40 min) reduced LDH-A (A) without affecting LDH-B expression (B). γ-Secretase inhibitor IX (SI IX), 100 nM during glucose deprivation and 
for 40 min following glucose re-addition, increased both LDH-A (A) and LDH-B (B) expression. In (A and B), graph bars represent fold changes 
of LDH-A and LDH-B over the respective control (CTRL). Densitometry signals were normalized on β-actin. In (C), graph bars represent the 
ratio between LDH-B and LDH-A values as expressed in (B and A), respectively. The experiment was repeated twice with similar results. 
Hybridization signals were detected with the Odyssey infrared imaging system in their original green or red colors and automatically 
converted into greyscale. In (D), western blot images of LDH-A and LDH-B in lysates from neurons that, following glucose deprivation and 
replenishing, were exposed to Aβ42 monomers in the absence (mAβ, 100 nM for 40 min) and in the presence of 500 nM PPP (mAβ + PPP). 
None of the treatments modified LDH-A or LDH-B expression. 
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DISCUSSION 
 

Energy metabolism in AD brain has been given 

increasing attention, mainly because regional metabolic 

deficits antedate the clinical onset of AD [26–28] and 

show no match with the areas of structural atrophy that 

are usually observed in early-stage AD [29]. Therefore, 

the unresolved question is the correlation between 

glucose hypometabolism, cognitive functions and AD 

neuropathology (i.e., amyloid plaques and 

neurofibrillary tangles). Based on the evidence that Aβ 

monomers are able to enhance glucose uptake in 

cultured neurons by activating IGF-IRs and promoting 

the membrane translocation of the Glut3 glucose 

transporter [15], we speculated that a reduced neuronal 

secretion of Aβ occurring with aging [30] or a loss of Aβ 

monomers due to the self-oligomerization process, could 

be related to the impairment of brain glucose uptake 

antedating the clinical onset of AD [31]. In this sense, 

was meaningful to us the evidence that a defective IGF-

IR signaling was reported in AD brain tissue even in the 

absence of obvious plaque pathology [32]. 

 

Targeted investigations into the relationship among 

changes in brain energy metabolism, normal aging and 

AD have led to the conclusion that age affects brain 

metabolism independently of AD [1] and that age-

related metabolic reductions largely overlay the DMN 

and concern specifically AG (i.e., the ability of nervous 

cells to quickly process glucose to the high energy 

intermediate, lactate) [1]. Because the DMN is prone to 

developing AD [3, 33], a loss of AG could be both a 

change related to aging and a factor of disease 

susceptibility. With this premise, and assuming that 

several factor can influence the availability of Aβ 

monomers, we intended to investigate the hypothesis 

that monomers were required to sustain neuronal AG 

via IGF-IR activation. 

 

In vitro, both astrocytes [34] and neurons [12, 35] are able 

to increase glycolysis and secrete lactate after stimulation, 

and both cell types are capable of oxidizing the lactate that 

is provided to them exogenously [36–37]. Since we were 

interested in studying neuronal AG as a direct response of 

neurons to physiological forms of Aβ, we performed all 

experiments in mature cultures of pure cortical neurons to 

avoid potential confounds arising from the presence of 

glia cells. Moreover, since micronutrients are known to 

influence neuronal metabolism even in acute [38], we 

decided to perform short-term experiments in aCSF. 

Cultured neurons adapt quickly to metabolic challenges 

and recover their metabolic abilities following a 

non-lethal time of glucose deprivation [39]. We found that 

neuronal survival, after glucose deprivation and 

re-addition, did not entirely relied on OP or glucose 

metabolism through the PP shunt, suggesting a pro-

survival role for AG. Accordingly, in response to the 

inhibition of OP by oligomycin, neurons largely increased 

their basal release of lactate and kept most of their ATP 

levels, which were both prevented by blocking the 

endogenous Aβ tone and re-established by the exogenous 

addition of synthetic Aβ monomers. Blockade of the 

endogenous Aβ tone was able to prevent AG even when 

stimulated by a kainate pulse, but never affected the basal 

release of lactate in the absence of a metabolic stressor 

(i.e., oligomycin or kainate). Similarly, Aβ monomers per 

se did not promote neuronal lactate release, suggesting 

that Aβ was physiologically required to sustain forced but 

not basal AG. In searching for the molecular tools 

necessary for Aβ monomers to sustain forced AG, we 

initially investigated the role of AMPK, an enzyme that 

has been shown to maintain cell energy levels during 

synaptic activation [40] or following OP suppression [19]. 

Surprisingly, the AMPK inhibitor, Compound C, did not 

prevent lactate release due to Aβ during OP blockade or 

kainate stimulation, suggesting that AMPK was not 

involved. 

 

Based on these finding, we thought of investigating a 

molecular determinant intrinsic to the signaling pathway 

activated by Aβ, on the one hand, and a permissive 

component for Aβ-induced lactate release under 

conditions of metabolic stress, on the other. With respect 

to the first point, we focused on HK-1, which is able to 

translocate from the cytosol to the OMM in response to 

the activation of the PI-3K/AKT pathway [20] (i.e., the 

signaling pathway triggered by Aβ monomers [14]) and, 

as mitochondria-bound HK-1, is found in cells with a 

high rate of AG [21]. As assessed by confocal analysis, 

HK-1 was mostly mitochondrial under conditions of 

glucose uptake, and Aβ monomers, through the 

activation of IGF-IRs, appeared to increase further the 

mitochondrial localization of HK-1 in correspondence 

with neuronal processes. Although the relevance of 

mitochondria-bound HK-1 at neuritic level remains 

partly unclear, the use of lonidamine, an inhibitor of 

mitochondria-bound HK [23], demonstrated that Aβ 

monomers used mitochondrial HK-1 to support lactate 

release during OP blockade or kainate stimulation. 

Regarding the second aspect, namely the search for a 

key component facilitating Aβ-mediated lactate release 

under metabolic stresses, we focused on LDH. LDH 

catalyzes the bidirectional conversion of pyruvate and 

lactate and the direction of conversion, whether from 

pyruvate to lactate or vice versa, would appear to depend 

on the relative proportion of LDH-A and LDH-B type 

subunits that make up the enzyme [24]. We found that a 

40 min pulse with kainate reduced neuronal LDH-A 

content and, consequently, the LDH-B/LDH-A ratio 
increased. This result disagrees with the old statement 

that LDH-A favors lactate production, while the LDH-B 

isoform favors pyruvate production [41]. Specifically, it 
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has been suggested that an increased LDH-A/LDH-B 

ratio causes high brain lactate levels in response to a 

reduced mitochondrial oxidative capacity in a mouse 

model of advanced aging [42]. In APP/PS1 mice, an 

increased ratio of neuronal LDH-A/LDH-B has been 

proposed to occur as a reaction of neurons to a lactate 

deficit deriving from a reduced lactate transport from 

astrocytes to neurons [43]. Always in APP/PS1 mice, 

LDH-A is primarily expressed in neurons and astrocytes 

surrounding amyloid plaques, and is associated with 

high levels of lactate in the hippocampal interstitial fluid 

[44]. On the contrary, LDH-A has been found to be 

decreased in the cerebral cortex of aged mice, where 

LDH-B remains unchanged and lactate levels rise [45]. 

Overall, the role of LDH isoforms in lactate production 

versus utilization, as well as the relevance of total LDH 

content regardless of isoform patterns are not fully 

elucidated [46]. Our evidence that a kainate pulse 

increased both the LDH-B/LDH-A ratio and the release 

of lactate is in line with the suggestion that LDH-B can 

catalyze efficiently the conversion of low concentrations 

of pyruvate to lactate under normoxic conditions [25] 

and when the metabolic flux is positive (i.e., when 

pyruvate is supplied and lactate is released) [47]. At this 

stage, we can only hypothesize that the increase in the 

LDH-B/LDH-A ratio, induced by kainate, was 

permissive for Aβ-induced lactate release. It remains to 

be determined what would be the ultimate effects of the 

released lactate, which can be captured by neighboring 

neurons as metabolic fuel [12], is potentially able to 

modulate neuronal firing through membrane receptors 

[48], and can even regulate the expression of plasticity 

genes [49]. In the specific case of AD, lactate production 

has been seen as a transient compensation mechanism to 

maximize energy metabolism in the brain [44] and 

mitigate the toxic effects of Aβ aggregates by 

counteracting mitochondrial oxygen consumption and 

associated ROS production [10, 50]. Our data suggest 

that, through Aβ release, stimulated neurons coordinate 

glucose uptake with AG and, possibly, become lactate 

exporters. Several reports indicate that factors enhancing 

glucose uptake and glycolytic flux (e.g., Wnt3a) [51–52] 

or downregulating mitochondrial OP (e.g., soluble APP) 

[53] could be beneficial in AD. Hence, further studies 

are needed to understand the molecular mechanisms 

responsible for metabolic disturbances in early AD and 

enable new approaches to sustain the DMN efficiency. 

 

METHODS 
 

Primary neuronal cultures: preparation and 

treatments 
 

Animal care and experimentation were in accordance 

with national and institutional guidelines. Cultures of 

pure cortical neurons were obtained from rats at 

embryonic day 15 and grown as described previously 

[14, 18]. Cortical cells were plated onto 35 mm dishes or 

glass bottom culture dishes pre-coated with 0.1 mg mL−1 

poly-D-lysine and incubated at 37°C with 5% CO2 in a 

humidified atmosphere. Cytosine arabinoside (1-β-D-

arabinofuranosylcytosine, Ara-C) (5 μM) was added to 

the cultures 18 h after plating to avoid the proliferation of 

non-neuronal elements and was kept for 3 days before 

partial medium replacement. Experiments were 

performed in mature culture at 13–17 days in vitro (DIV). 

 

All experiments were performed in artificial excitable 

CSF (3.5 mM KCl, 126 mM NaCl, 1.25 mM NaH2PO4, 

0.5 mM MgSO4, 1 mM CaCl2, 26 mM NaHCO3) 

containing 10 μM glycine and, when required, 3 mM 

glucose. To block Aβ release, 100 nM γ-secretase 

inhibitor IX was added to the artificial excitable CSF 

2 hr before the experiments. 

 

Propidium iodide (PI) staining 

 

For PI staining of dead neurons, culture dishes were 

washed once with PBS and exposed to the PI working 

solution (5 μg/ml) for 3 min. Then, dishes were returned to 

PBS and visualized by fluorescent microscopy. PI-positive 

neurons were scored from three random fields/dish. 

 

Glucose, lactate and ATP assays 

 

Glucose content in the culture buffer was measured by 

Cayman’s Glucose Colorimetric Assay Kit. Lactate 

release in the culture buffer was quantified by Sigma-

Aldrich Lactate Assay Kit (colorimetric detection). ATP 

content in neuronal lysates was measured by Rat ATP 

Elisa KIT (Creative Diagnostics). In all cases, following 

the technical instructions, absorbance was read by a 

spectrophotometric multiwell plate reader. 

 

Peptide monomers preparation 

 

Aβ1–42 (HFIP-treated) was purchased from Bachem 

Distribution Services GmbH, Germany, dissolved at a 5 

mm concentration in anhydrous dimethyl sulfoxide 

(DMSO) and stored at −20°C. At the time of its use, a 

solution of 100 μm Aβ in ice-cold DMEM F-12 was 

prepared and allowed to oligomerize overnight at 4°C 

according to our previously described method [14]. 

Monomers were isolated from the peptide suspension, 

containing both monomers and oligomers, by filtration 

through 10 kD cutoff filters as previously described [14]. 

 

Confocal analysis 

 
For confocal analysis, neurons were grown on glass 

bottom dishes (WillCo-dish®, Willco Wells, B.V., 

Amsterdam, The Netherlands). After the experiments, 
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neurons were fixed in 2% paraformaldehyde and 

permeabilized using 0.1% Triton X-100. Unspecific 

binding was blocked by 30 min of incubation in 4% 

bovine serum albumin (BSA) in 0.1% Triton X-100-

PBS. HK-1 was detected by incubating neurons for 2 hr 

with rabbit anti-HK-1 antibody (1:100, Abcam 150423). 

After PBS washing, neurons were exposed for 45 min to 

the anti-rabbit Alexa Fluor 488 antibody (1:500, 

Thermofisher). Cultures were blocked again with 4% 

BSA before second staining with rabbit anti-VDAC 

antibody (1:1000, Abcam 154856) for 2 hr, followed by 

45 min exposure to the anti-rabbit Alexa Fluor 546 

antibody (1:300, Thermofisher). Confocal images were 

acquired with an Olympus FV1000 confocal 

microscope, using two laser lines (Argon 488 nm and 

HeNe 543 nm) and two detection channels (500–530 

nm and 550–600 nm) for the green and red false colour 

channels, employed to measure the brightness of HK-1 

and VDAC, respectively. The detector gain was fixed at 

a constant value, with spectral filtering systems active, 

and images were collected, in sequential mode, 

randomly all through the area of the glass bottom dish 

by using an oil immersion objective (60xO PLAPO). 

The image deconvolution analysis was carried out using 

Huygens Essential software (by Scientific Volume 

Imaging B.V., The Netherlands). The co-localization 

analysis was performed by freely available ImageJ 

software. 

 

Western blot analysis 

 

Western blotting analysis of LDH-A and LDH-B was 

performed with 20 μg of total proteins and samples 

were loaded onto 10% bis-Tris Plus gel (Bolt, 

Invitrogen). Western blotting analysis of HK-1 was 

performed with 20 μg of total proteins or 15 μg of 

mitochondrial proteins loaded onto 8% bis-Tris Plus 

gel. The mitochondrial fraction was obtained according 

to the protocol described by Schindler and Foley [54]. 

Western blotting analysis of VDAC was performed with 

10 μg of total proteins loaded onto 4–12% bis-Tris Plus 

gel or 15 μg of mitochondrial proteins loaded onto 8% 

bis-Tris Plus gel. After separation, proteins were 

transferred onto a nitrocellulose membrane (Hybond 

ECL, Amersham Italia) using a transblot semi-dry 

transfer cell. Membranes were incubated over night at 

4°C with the following primary antibodies: rabbit anti-

LDH-A (1:250, MyBioSource 355106), rabbit anti-

LDH-B (1:500, MyBioSource 9434882), rabbit anti-

HK-1 antibody (1:10,000, Abcam 150423), rabbit anti-

VDAC antibody (1:5,000, Abcam 154856), and mouse 

anti-ß-actin (1:1,500, Sigma Aldrich A4700). For the 

detection of hybridization signals, membranes were 
incubated with secondary goat anti-rabbit labeled with 

IRDye 800 (1:35,000 Li-COR Biosciences) and goat 

anti-mouse labeled with IRDye 680 (1:30,000 Li-COR 

Biosciences) for 45 min at RT. Signals were detected 

with the Odyssey Infrared Imaging System (LI-COR 

Biosciences). 

 

Statistical analysis 

 

Quantitative data were expressed as the mean ± 

standard error (SEM). P values were calculated with 

analysis of variance (ANOVA), followed by post hoc 

Fisher LSD multiple comparison method or post hoc 

Holm-Sidak multiple comparisons vs. control group. 

Analysis was carried out using SigmaPlot 12.5. 
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