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Bias-Adjusted Three-Step Multilevel Latent Class Modeling with Covariates

Johan Lyrvalla,b , Zsuzsa Bakkb , Jennifer Oserc and Roberto Di Maria 

aUniversity of Catania; bLeiden University; cBen-Gurion University 

ABSTRACT 
We present a bias-adjusted three-step estimation approach for multilevel latent class models (LC) with 
covariates. The proposed approach involves (1) fitting a single-level measurement model while ignor-
ing the multilevel structure, (2) assigning units to latent classes, and (3) fitting the multilevel model 
with the covariates while controlling for measurement error introduced in the second step. Simulation 
studies and an empirical example show that the three-step method is a legitimate modeling option 
compared to the existing one-step and two-step methods.
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1. Introduction

Latent class analysis is a model-based approach used to cre-
ate a clustering of units of analysis on the basis of a set of 
observed indicator variables. The clustering is expressed in 
terms of a latent variable with some number of discrete cat-
egories, or latent classes. For example, latent class analysis 
has been used to identify repertoires of political participa-
tion (Oser, 2022), risk profiles for adolescent substance 
abuse (Lanza & Rhoades, 2013), and patterns of study strat-
egy (Hickendorff et al., 2010). When the data have a multi-
level structure, that is, when lower-level units are nested in 
higher-level units (for example, students nested in a school, 
patients nested in a centre), the multilevel latent class model 
(Vermunt, 2003) is used to account for higher-level depend-
encies in the observed variables. Such non-independence 
arises because respondents in the same group give more 
similar answers to each other than respondents from differ-
ent groups.

Multilevel latent class analysis involves introducing a 
latent variable at the higher level as a categorical random 
effect defining the distribution of the lower-level clusters 
within groups. For example, Henry & Muth�en (2010) identi-
fied a typology of adolescent smokers, non-, moderate, and 
heavy smokers, and found that the types can be clustered 
into two community-level segments: low-use and high-use 
communities. Fagginger Auer et al. (2016) identified four 
study strategies among students, which could be clustered 
into four types of teachers with different probabilities of 
eliciting these study strategies.

Usually, the research interest in latent class analysis lies 
in explaining latent class membership by covariates, or 
external variables (for example, neighborhood effects on 
school performance). Identifying the latent classes (measure-
ment model) is then only the first step of the analysis, after 

which a more complex model that includes the covariates 
(structural model) is specified. In most applications, the 
focus is on the lower-level latent classes and covariates are 
included only on this level.

In single-level latent class analysis, different approaches 
for estimation of the covariate effects are available, namely 
the classical one-step, or simultaneous, approach (Lazarsfeld 
& Henry, 1968), the two-step approach (Bakk & Kuha, 
2018) and the different three-step approaches. The seminal 
works on three-step LCA were put forth by Vermunt (2010) 
and Bolck et al. (2004). Extensions include three-step LCA 
for distal outcomes (Bakk et al., 2013; Lanza et al., 2013) 
and for latent Markov models (Di Mari et al., 2016). The 
general recommendation is to use stepwise methods 
(Asparouhov & Muth�en, 2014).

Using the one-step approach, both the measurement and 
structural model are estimated simultaneously to obtain 
maximum-likelihood estimates. This approach is apparently 
natural, however it has serious defects (see e.g., Asparouhov 
& Muth�en, 2014; Bakk & Kuha, 2018; Vermunt, 2010). The 
full model needs to be re-estimated when a change is made 
to only one part of it, e.g., increase or decrease in the num-
ber of classes, inclusion or exclusion of covariates in the 
structural model.

Practically, re-estimating the full model can be computa-
tionally demanding, especially when the number of potential 
covariates is large. Furthermore, while the covariates are 
taken to be class predictors, changes to the structural model 
can change the latent class solution, especially if underlying 
model assumptions are violated (Bakk & Kuha, 2018; 
Masyn, 2017; Vermunt, 2010). This can occur to the extent 
that comparisons of different estimated structural models 
become effectively meaningless. In addition, many applied 
researchers see the introduction of covariates as a separate 

� 2024 The Author(s). Published with license by Taylor & Francis Group, LLC 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted 
Manuscript in a repository by the author(s) or with their consent.

CONTACT Johan Lyrvall johan.lyrvall@phd.unict.it Department of Economics and Business, Universit�a degli Studi di Catania, Catania, Italy.

STRUCTURAL EQUATION MODELING: A MULTIDISCIPLINARY JOURNAL 
https://doi.org/10.1080/10705511.2023.2300087 

http://crossmark.crossref.org/dialog/?doi=10.1080/10705511.2023.2300087&domain=pdf&date_stamp=2024-02-16
http://orcid.org/0000-0002-1863-8147
http://orcid.org/0000-0001-9352-4812
http://orcid.org/0000-0002-1531-4606
http://orcid.org/0000-0001-5498-009X
http://www.tandfonline.com
https://doi.org/10.1080/10705511.2023.2300087


step after the classification model has been constructed. 
Different research groups may even build different structural 
models on the same measurement model.

To avoid the problems of the one-step approach, stepwise 
methods separate the estimation of the measurement model 
from the estimation of the structural model. Using the naive 
three-step approach, (1) the measurement model is esti-
mated alone, (2) units are assigned to latent classes and (3) 
posterior class assignments are related to the covariates. 
This was a popular approach as it avoids the defects of the 
one-step approach, however it introduces a problem of its 
own: classification error in the second step, yielding bias in 
the step-3 estimates of the covariate effects (Bolck et al., 
2004).

In the last 20 years, many developments have been sug-
gested for single-level latent class analysis to address this 
issue. The bias-adjusted three-step methods correct the bias 
by explicitly modeling the classification error in the second 
step (Bakk et al., 2013; Bolck et al., 2004; Vermunt, 2010). 
Using the two-step approach (Bakk & Kuha, 2018), (1) the 
measurement model is estimated alone and (2) the full 
model is estimated with the measurement parameters held 
fixed at their step-1 estimates. In the two-step approach, the 
structural model is estimated conditional on measurement 
model parameter estimates from step 1, and no actual clus-
tering step is performed.

While the one-step approach can be considered the stat-
istical benchmark in bias and efficiency compared to the 
stepwise estimators (Bakk et al., 2013; Bakk & Kuha, 2018; 
Bolck et al., 2004; Vermunt, 2010), applied researchers tend 
to prefer using the bias-adjusted three step approach, 
because of the practical appeal of working with an explicit 
dependent variable. However, while extensions to multilevel 
latent class models exist for both the one-step approach 
(Vermunt, 2003) and the two-step approach (Di Mari et al., 
2023), the bias-adjusted three-step approach exists only for 
single-level latent class models. As such, there is a lack of 
modeling options for multilevel latent class analysis with 
covariates with respect to single-level latent class analysis 
with covariates.

In the current paper, we fill this important gap by intro-
ducing a bias-adjusted three-step approach for multilevel 
latent class analysis. The proposed method is a multilevel 
extension of the bias-adjusted three-step ML approach for 
single-level LCA of Vermunt (2010). Our contribution com-
plements the existing set of methodologies for the multilevel 
context with the typically preferred analytical approach in 
applied social research. Since the research interest in applied 
latent class analysis typically lies in the association between 
covariates and the lower-level latent classification, the pro-
posed method was developed for structural modelling on 
this level. A similar extension has been developed previously 
for latent Markov modeling with covariates (Di Mari et al., 
2016).

The remainder of the paper is outlined as follows. First 
we introduce the multilevel latent class model with covari-
ates. Then, we discuss the bias-adjusted three-step ML 
approach for this model, deriving the correction under 

standard model assumptions. Subsequently, we report the 
results of a simulation study in which we compare the 
method to the one- and two-step methods under different 
conditions. We next present an empirical application 
wherein we identify citizenship norms among adolescents 
and analyze its association with socioeconomic status. The 
article ends with a summary of the main results and pos-
sible directions for future research.

2. The Multilevel Latent Class Model

Let Yij ¼ ðYij1, . . . , YijHÞ be a vector of observed responses, 
where Yijh denotes the response of low-level unit (individ-
ual) i ¼ 1, . . . , nj in high-level unit (group) j ¼ 1, . . . , J on 
the h-th categorical indicator variable (item) (Vermunt, 
2003). For simplicity of exposition, we focus on dichotom-
ous indicators with values 0 and 1. Let Yj ¼ ðY1j, . . . , YnJ jÞ

be the set of responses for all low-level units i in high-level 
unit j. The Yj for different j are taken to be independent.

Let Wj be a categorical latent class (LC) variable defined 
at the higher level, with possible, mutually exclusive values 
m ¼ 1, . . . , M and probabilities xm ¼ PðWj ¼ mÞ > 0:
Given a realization of Wj, let Xij be a categorical LC variable 
defined at the low level with possible, mutually exclusive 
values t ¼ 1, . . . , T and conditional probabilities ptjm ¼

PðXij ¼ tjWj ¼ mÞ > 0: The Xij for the same j are taken to 
be conditionally independent given Wj, that is,

PðXij, . . . , XnjjÞ ¼
XM

m¼1
PðWj ¼ mÞ

Ynj

i¼1
PðXij ¼ tjWj ¼ mÞ:

(1) 

The simple LC model defines the following probability 
structure on Yij,

PðYijÞ ¼
XT

t¼1
PðXij ¼ tÞPðYijjXij ¼ tÞ: (2) 

The probability of observing a particular response pattern 
PðYijÞ is a linear combination of T class-specific item 
response probabilities PðYijjXij ¼ tÞ, where the (uncondi-
tional) class proportions PðXij ¼ tÞ serve as weights. 
Furthermore, we make the local independence assumption 
that the H indicator variables are conditionally independent 
within the Xij, so that

PðYijjXij ¼ tÞ ¼
YH

h¼1
PðYijhjXij ¼ tÞ ¼

YH

h¼1
/

Yijh

hjt ð1 − /hjtÞ
1−Yijh ,

(3) 

where /hjt ¼ PðYijh ¼ 1jXij ¼ tÞ: For simplicity of notation, 
we express the local independence assumption in terms of 
the second equality, leading to the following specification of 
the simple LC model,

PðYijÞ ¼
XT

t¼1
PðXij ¼ tÞ

YH

h¼1
PðYijhjXij ¼ tÞ: (4) 

To account for the multilevel structure of the data, the 
multilevel LC model of Vermunt (2003) defines the 
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following probability structure on Yij,

PðYijÞ ¼
XM

m¼1
xm
XT

t¼1
ptjm

YH

h¼1
PðYijhjXij ¼ tÞ: (5) 

The probability of observing a particular response pattern 
PðYijÞ is a linear combination of M high-level class-specific 
simple LC models, where the class proportions xm serve as 
weights. This is the so-called non-parametric modeling 
approach (for the parameteric approach, wherein the 
higher-level latent variable is continuous, see, e.g., 
Asparouhov & Muth�en, 2014). As can be seen, we make the 
common assumption that the item response probabilities do 
not directly depend on Wj, that is, PðYijjXij ¼ t, Wj ¼ mÞ ¼
PðYijjXij ¼ tÞ (Vermunt, 2003).

The multilevel LC model can be defined in terms of 
logistic equations. For xm we can consider the following 
nonparametric random-effect model,

PðWj ¼ mÞ ¼
exp ða0mÞ

1þ
PM

l¼2 exp ða0lÞ
, (6) 

while for ptjm,

PðXij ¼ tjWj ¼ mÞ ¼
exp ðc0tmÞ

1þ
PT

s¼2 exp ðc0smÞ
, (7) 

and for /hjt ,

PðYijh ¼ 1jXij ¼ tÞ ¼
exp ðbh

t Þ

1þ exp ðbh
t Þ

, (8) 

where the parameters for the first classes and response cate-
gories are set to zero for identification purposes, that is, 
a01 ¼ c01m ¼ bh

1 ¼ 0: We denote the vector of parameters of 
the measurement model for the items Yijh by h1 ¼

ð/1j1, . . . , /HjTÞ: A logistic parametrization of the simple LC 
model can be obtained similarly on the basis of these equa-
tions. For PðXij ¼ tÞ, the m-subscripts can be omitted from 
Equation (7), while, for /hjt , Equation (8) can be used 
directly.

Covariates can be included in the multilevel LC model to 
predict class membership. Let ZH

j be a high-level covariate, 
ZL

ija low-level covariate, and Zij ¼ ðZH
j , ZL

ijÞ: To predict high- 
level and low-level class membership, we can extend the 
logistic equations as follows,

PðWj ¼ mjZH
j Þ ¼

exp ða0m þ a1mZH
j Þ

1þ
PM

l¼2 exp ða0l þ a1lZH
j Þ

(9) 

PðXij ¼ tjWj ¼ m, ZijÞ ¼
exp ðc0tm þ c1tmZL

ij þ c2tmZH
j Þ

1þ
PT

s¼2 exp ðc0sm þ c1smZL
ij þ c2smZH

j Þ
,

(10) 

with a11 ¼ c11m ¼ c21m ¼ 0 for identification. We collect 
the structural model parameters in the vector by c ¼

ðc011, . . . , c2TMÞ: Under these parametrizations we can 
define the multilevel LC model for YijjZij as

PðYijjZijÞ ¼
XM

m¼1
PðWj ¼ mjZH

j Þ
XT

t¼1
PðXij ¼ tjWj ¼ m, ZijÞ

YH

h¼1
PðYijhjXij ¼ tÞ,

(11) 

where we further assume that the observed response pat-
terns Yij are conditionally independent of the covariates Zij 
given low-level class membership Xij and high-level class 
membership Wj. This conditional independence assumption 
is standard in the multilevel LCA literature (Bakk et al., 
2022; Di Mari et al., 2023). The equivalent conditional inde-
pendence assumption in single-level LC modelling is stand-
ard as well (e.g. Bakk & Kuha, 2018).

In applied multilevel LCA with covariates the research 
interest typically lies in the lower-level structural model for 
Xij. Then, covariates ZH

j may be excluded, or included to 
control for variation at the higher level, while the substan-
tive research questions regard the effect of ZL

ij on Xij. For 
example, Bijmolt et al. (2004) fit a multilevel LC model for 
international consumer segmentation in financial product 
ownership, excluding predictors of country-level segments 
and including demographic variables as predictors of indi-
vidual-level segments.

3. Selecting the Numbers of Latent Classes on 
Lower and Higher Level

The description of the multilevel LC model with covariates 
above takes the numbers of LCs on lower and higher level 
as given. In applied LCA, selecting these values is often a 
distinct exercise. It is generally recommended to carry out 
this task on the model without the covariates, and then hold 
the selected numbers of classes fixed when the covariates 
are added (Masyn, 2017). To do so, two approaches are typ-
ically used, namely the sequential and the simultaneous 
approaches.

The sequential approach of Luko�cien_e et al. (2010) 
involves a hierarchical three-step model fitting procedure. 
First, a set of simple LC models with different numbers of 
LCs (T) are fitted and the optimal number is selected. 
Second, this value is held fixed and a set of multilevel LC 
models with different numbers of high-level LCs (M) are fit-
ted, selecting the best candidate. Third, the selected M is 
held fixed and model selection is done again at the lower 
level, to determine the final T.

The more direct simultaneous approach involves estimat-
ing the multilevel LC model for all combinations of the dif-
ferent values of T and M of interest. In both model 
selection approaches, the optimal values of T and M can be 
selected with standard information criteria, such as the BIC. 
This can be combined with measures of class separation, 
such as the entropy-based R2 (Magidson, 1981), which can 
be defined at both the lower level and the higher level 
(Luko�cien_e et al., 2010).

For a detailed discussion about information criteria and 
likelihood-based tests for model selection in LC analysis, see 
Nylund et al. (2007) (see also Collins et al., 1993). When 
the selection of indicators is an issue, see the approaches 
proposed by Bartolucci et al. (2016) and by Dean & Raftery 
(2010).
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4. Three-Step Estimation of the Multilevel Latent 
Class Model

In this section we describe a bias-adjusted three-step ML 
estimation approach for the multilevel LC model, taking the 
number of LCs on lower level and higher level as given. The 
procedure involves (i) estimating the simple LC model with-
out covariates, (ii) estimating class membership and classifi-
cation error, and (iii) estimating a logistic regression model 
for LC membership while correcting for the classification 
error introduced in step 2. As such, the proposed method is 
a multilevel extension of the bias-adjusted three-step ML 
approach for single-level LCA of Vermunt (2010).

4.1. Step 1 - Estimating the Multilevel Measurement 
Model

In the first step, the LC model without covariates is esti-
mated by maximum likelihood (ML). The model of interest 
is the multilevel LC model in Equation (5), which the 
researcher may identify by means of model selection, using 
for example the sequential approach (Luko�cien_e et al., 2010) 
or the simultaneous approach.

In step 1 the simple LC model is fitted, ignoring the 
multilevel structure. Parameter estimates can be obtained by 
maximizing the following log-likelihood function

lstep1 ¼
XN

i¼1
log

XT

t¼1
PðXij ¼ tÞ

YH

h¼1
PðYijhjXij ¼ tÞ

" #

, (12) 

We graphically summarize the first step in the left-most 
panel of Figure 1.

4.2. Step 2 - Posterior Classification and Classification 
Error

Given the step-1 parameter estimates, the posterior LC 
membership probability PðXij ¼ tjYijÞ can be obtained using 
Bayes’ rule (Goodman, 1974a, 1974b; Hagenaars, 1992; 
MacLahlan & Peel, 2000) in the following manner

PðXij ¼ tjYijÞ ¼
PðXij ¼ tÞPðYijjXij ¼ tÞ

PðYijÞ
: (13) 

From this equation, individual i can be assigned to the 
LC t on the basis of different classification rules, the most 
common of which are modal assignment and proportional 
assignment.

Let ~Xij denote the estimated class membership of individ-
ual i in group j. Modal assignment yields a hard partitioning 
in which i is allocated weight Pð~Xij ¼ sjYijÞ ¼ 1 if the pos-
terior membership probability PðXij ¼ sjYijÞ is the largest, 
and weight zero otherwise. Proportional assignment yields a 
soft (crisp) partitioning in which i is allocated weight 
Pð~Xij ¼ sjYijÞ ¼ PðXij ¼ sjYijÞ: Another classification rule is 
random assignment, which yields a hard partitioning by 
assigning i to the ~Xij that is randomly drawn from the dis-
tribution Pð~Xij ¼ sjYijÞ (Goodman, 2007). In most applica-
tions the preferred rule is modal assignment because it 
minimizes classification error (see e.g., Bakk et al., 2013; 
Vermunt, 2010).

Regardless of which classification rule is used, the 
assigned class will differ from the true class for some 
units (Bolck et al., 2004; Hagenaars, 1990). The overall qual-
ity of the classification can be quantified by the expected 
proportion of classification error Pð~Xij ¼ sjXij ¼ tÞ, which 
expresses the probability of assignment to a certain class 
conditional on the true class membership. This quantity can 
be computed as a weighted average over all possible 
response patterns,

20Pð~Xij ¼ sjXij ¼ tÞ ¼
P

Y PðYjXij ¼ tÞPð~Xij ¼ sjYÞ

¼

P
Y PðYÞPðXij ¼ tjYÞPð~Xij ¼ sjYÞ

PðXij ¼ tÞ
:

(14) 

When the number of unique response patterns is very 
large, it is convenient to replace the weights PðYÞ with their 
empirical distribution, leading to

Pð~Xij ¼ sjXij ¼ tÞ ¼
1
N
PJ

j¼1
Pnj

i¼1
PðXij ¼ tjYijÞPð~Xij ¼ sjYijÞ

PðXij ¼ tÞ
:

(15) 

The second step is summarized graphically in the mid 
panel of Figure 1.

4.3. Step 3 - Estimating the Multilevel Structural Model

The starting point of the correction methods for three- 
step LC analysis is that unadjusted estimation of the rela-
tionship between ~Xij and Zij causes bias toward zero in 
the covariate effects of interest (Bolck et al., 2004). Given 
the step-2 LC assignments ~Xij and the expected frequency 
of classification error Pð~Xij ¼ sjXij ¼ tÞ, we can obtain 
unbiased coefficient estimates defining the relationship 
between the unobservable LC variable Xij and the covari-
ates Zij:

Consider the joint distribution of W, X, Y, ~X given Z. 
Given the assumptions of Equation (11), that Y is condi-
tionally independent of Z and W given X, and that ~X only 
depends on Y, this quantity can be decomposed asFigure 1. The steps of the proposed three-step approach.
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PðW, X, Y, ~X jZÞ ¼ PðWjZHÞPðXjW, ZÞPðYjXÞPð~X jYÞ:
(16) 

From this equation it is possible to derive the conditional 
distribution Pð~X jZÞ by marginalising over lower- and higher- 
level LCs, and by summing over response patterns, which 
yields

Pð~X jZÞ ¼
P

W
P

X
P

Y PðWjZHÞPðXjW, ZÞPðYjXÞPð~X jYÞ

¼
P

W PðWjZHÞ
P

X PðXjW, ZÞ
P

Y PðYjXÞPð~X jYÞ

¼
P

W PðWjZHÞ
P

X PðXjW, ZÞ
P

Y PðXjYÞPðYÞPð~X jYÞ
PðXÞ

¼
P

W PðWjZHÞ
P

X PðXjW, ZÞPð~X jXÞ:

(17) 

The first equality follows directly from Equation (16), 
and the second equality re-arranges the summations. The 
third equality re-writes the last term based on the equation 
for the expected proportion of classification error. This was 
defined in the right-hand side of Equation (14). The fourth 
equality simplifies this term into the notation for the 
expected proportion of classification error. This is the multi-
level version of the derivation for the three-step approach in 
single-level LC modeling (Vermunt, 2010) and latent 
Markov modeling (Di Mari et al., 2016). As can be seen, the 
last right-hand side of the last equality of Equation (17) is 
similar to the equation for the multilevel LC model with 
covariates, but with the step-2 estimates for the expected 
proportion of classification error in the role of the response 
probabilities PðYjXÞ:

Unbiased estimates of the structural parameters c and a 

can be obtained by estimating the right-hand side of 
Equation (17) as a multilevel LC model with covariates, 
with the low-level class assignments ~Xij as a single indicator 
with known error probabilities Pð~XijjXijÞ: This involves 
maximizing the log-likelihood function

lstep3 ¼
XJ

j¼1
log

XM

m¼1
PðWj ¼ mjZH

j Þ
Ynj

i¼1

XT

t¼1
PðXij ¼ tjWj

¼ m, ZijÞPð~Xij ¼ sjXij ¼ tÞ:
(18) 

This is similar to the second step of the two-step 
approach, but with the classification error probabilities in 
the place of the item-specific response probabil-
ities 

QH
h¼1 PðYijhjXij ¼ tÞ:

Step 3 is summarized graphically in the right-most panel 
of Figure 1.

5. Simulation Study

5.1. Design

We conduct a simulation study to assess the quality of the 
proposed bias-adjusted three-step ML approach when the 
model is correctly specified. As classification rule we use 
modal assignment, which is the most common in LCA 

applications and minimizes classification error. The method 
is compared to the one-step and two-step approaches, which 
are the currently available modeling options for multilevel 
latent class analysis with covariates.

We evaluate the relative performance of the three-step 
estimator based on bias and variation in the estimated cova-
riate effects. The finite-sample quality of stepwise estimators 
for LCA has been found to depend on class separation and 
sample size (Bakk & Kuha, 2018; Di Mari et al., 2023; 
Vermunt, 2010). In multilevel LCA, both lower-level and 
higher-level class separation affect the finite-sample behav-
iour (Luko�cien_e et al., 2010).

As population model we use the multilevel LC model with 
3 lower-classes X, 2 higher-level classes W, and 10 binary 
indicator variables Y. Higher-level class proportions are 
PðWj ¼ 1Þ ¼ 0:6 and PðWj ¼ 2Þ ¼ 0:4: We consider one 
continuous lower-level covariate Z generated from the stand-
ard normal distribution. The population slope parameters 
c1tm are set to c121 ¼ c131 ¼ −0:25 and c122 ¼ c132 ¼ 0:25:
Additionally, we consider population slope parameters equal 
to zero, c121 ¼ c131 ¼ c122 ¼ c132 ¼ 0, however, we discuss 
this in a more limited investigation of statistical power in the 
results. The first class X¼ 1 has high probability to score 1 
on all items, the second class has high probability to score 1 
on the last 5 items and 0 on the first 5 items, and class X¼ 3 
has high probability to score 0 on all items.

Lower-level class separation is manipulated via the item- 
response probabilities. In the small, moderate and large separ-
ation conditions, the probabilities of the most likely response 
are 0.7, 0.8 or 0.9, respectively. At the higher level we manipu-
late class separation via the random intercepts, such that the 
expected conditional class proportions in the moderate separ-
ation condition are equal to PðXij ¼ 1jWj ¼ 1Þ ¼
0:29, PðXij ¼ 2jWj ¼ 1Þ ¼ 0:33, PðXij ¼ 3jWj ¼ 1Þ ¼ 0:38 
and PðXij ¼ 1jWj ¼ 2Þ ¼ 0:38, PðXij ¼ 2jWj ¼ 2Þ ¼
0:33, PðXij ¼ 3jWj ¼ 2Þ ¼ 0:29, while in the large separation 
condition they are equal to PðXij ¼ 1jWj ¼ 1Þ ¼ 0:14, PðXij ¼

2jWj ¼ 1Þ ¼ 0:32, PðXij ¼ 3jWj ¼ 1Þ ¼ 0:54 and PðXij ¼ 1j
Wj ¼ 2Þ ¼ 0:60, PðXij ¼ 2jWj ¼ 2Þ ¼ 0:25, PðXij ¼ 3jWj ¼

2Þ ¼ 0:15: For the sample size, we use 100 or 500 lower-level 
units and 30, 50 or 100 higher-level units.

We quantify class separation as the average entropy-based 
R2 (Luko�cien_e et al., 2010; Magidson, 1981) across the 500 
random samples, which is one of the most commonly used 
measures of class separation in the social sciences. The 
entropy-based R2 expresses how much the prediction of class 
membership improves when using the information on the 
responses: a value equal to 0 corresponds to no separation 
and a value equal to 1 corresponds to perfect separation. The 
average higher-level R2-entropy for the samples with the 
moderate and large higher-level separation conditions are 
0.76 (0.57 when the lower-level sample size is equal to 100 
and 0.96 when the lower-level sample size is equal to 500) 
and 1.00, respectively. The average lower-level R2-entropy for 
the samples with the small, moderate, and large lower-level 
separation conditions are 0.51, 0.80, and 0.96, respectively.

From each of the 36 crossed simulation conditions (see 
Table 1) we generate 500 random samples. Our simulation 
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setting is similar to previous studies on multilevel LCA (Di 
Mari et al., 2023; Luko�cien_e et al., 2010). Data generation 
and model estimation is carried out using the R package 
multilevLCA (Lyrvall et al., 2023)1.

5.2. Results

The results are presented averaged across the four slope 
parameters c121, c131, c122, and c132 and the 500 replications 
for the three-, two-, and one-step estimators. Figure 2 dis-
plays average relative absolute bias and efficiency, measured 
in terms of the Monte Carlo standard deviation of the rela-
tive absolute bias. As can be seen, when the degree of 
higher-level separation is moderate (simulation conditions 
1-18) the three-step method performs essentially identical to 
the one- and two-step methods. In these conditions the per-
formance varies systematically across the two values for the 
lower-level sample size: the three estimators are less biased 
and more efficient when the lower-level sample size is 500 
(average R 2

high-entropy equal to 0.96) compared to when the 
lower-level sample size is 100 (average R 2

high-entropy equal 
to 0.57).

The same systematic variation in efficiency is shown for 
the three estimators when the higher-level separation is 
large (simulations conditions 19-36, average R 2

high-entropy 
equal to 1.00), however, the performance in terms of bias 
varies across them in these conditions. While the one-step 
and two-step methods perform comparably, it can be 
observed that the performance of the three-step method 
improves when the degree of lower-level separation is larger. 
Its performance is problematic when the lower-level separ-
ation is small (simulation conditions 19-24, average R 
2
low-entropy equal to 0.51) - in these situations the alternative 
methods are preferred. The bias for the three-step estimator 
is reduced substantially when the lower-level separation is 
moderate (simulation conditions 25-30, average R 
2
low-entropy equal to 0.80) but still slightly higher compared 
to the one-step estimator and the two-step estimator. The 
three-step is unbiased when the lower-level separation is 
large (simulation conditions 31-36, average R 2

low-entropy 
equal to 0.96).

Figure 3 displays the ratio of the average SE to SD. For 
the two-step method we use the corrected SEs to account 
for measurement uncertainty in its first step (the correction 
is based on pseudo-ML theory and exploits the full variance 
matrix; see Bakk & Kuha, 2018; Di Mari et al., 2023, for 
details). The one-step SEs and the three-step SEs are based 
on the expected information matrix. We first note that the 
one-step SEs are closest to unbiased in most conditions 
compared to the SEs for the two-step method and the 
three-step method, while the two-step SEs are over- 
estimated in most simulation conditions for the over-correc-
tion of the two-step estimator in the single-level context, see 
Bakk & Kuha, 2018). The three-step SEs are under- 
estimated, which is in line with previous findings for the 
single-level context (Bolck et al., 2004; Vermunt, 2010). The 
downward bias for the three-step method is serious (10- 
30%) when the higher-level separation is moderate and the 
lower-level separation is small (simulation conditions 1-6), 
but is reduced as these conditions improve. When the 
higher-level separation is large and the lower-level separ-
ation is large (simulation conditions 31-36), the under-esti-
mation for the three-step method is slight (up to about 5%).

The top panel of Figure 4 displays the estimated coverage 
rates of 95% confidence intervals. The bottom panel displays 
these values for the samples with population covariate 
effects equal to zero. The three-step estimator yields under-
coverage of the true covariate effects, but this undercoverage 
is slight (below 5%) when the higher-level separation is large 
and the lower-level separation is moderate to large (simula-
tion conditions 25-36). When the higher-level separation is 
large and the lower-level separation is small (simulation 
conditions 19-24), the performance of the three-step estima-
tor is equally good with zero effect covariates, but problem-
atic with non-zero effect covariates. The problematic 
performance can be explained by the severe bias in the 
three-step estimates for the covariate effects in the same 
conditions. Regardless of the covariate effects, the one-step 
estimator yields close to correct coverage, while the two-step 
estimator yields slight overcoverage.

Table 1. Simulation conditions with crossed combinations of lower-level (LL) 
and higher-level (HL) sample size and separation for simulation study with 
100 replications for each condition.

Condition
Sample size Separation

LL HL LL HL

1 100 30 small moderate
2 500 30 small moderate
3 100 50 small moderate
4 500 50 small moderate
5 100 100 small moderate
6 500 100 small moderate
7 100 30 moderate moderate
8 500 30 moderate moderate
9 100 50 moderate moderate
10 500 50 moderate moderate
11 100 100 moderate moderate
12 500 100 moderate moderate
13 100 30 large moderate
14 500 30 large moderate
15 100 50 large moderate
16 500 50 large moderate
17 100 100 large moderate
18 500 100 large moderate
19 100 30 small large
20 500 30 small large
21 100 50 small large
22 500 50 small large
23 100 100 small large
24 500 100 small large
25 100 30 moderate large
26 500 30 moderate large
27 100 50 moderate large
28 500 50 moderate large
29 100 100 moderate large
30 500 100 moderate large
31 100 30 large large
32 500 30 large large
33 100 50 large large
34 500 50 large large
35 100 100 large large
36 500 100 large large

1Replication files are available from the corresponding author upon request.
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These results are aligned with previous research in sin-
gle-level LC modeling, in which the bias has been shown to 
be greater and the efficiency to be lower when the sample 

size is smaller and the separation is weaker (Bakk & Kuha, 
2018; Vermunt, 2010). The present study shows how this 
performance varies across combinations of separation on 

Figure 2. Estimated bias (solid) and their Monte Carlo standard deviation (dotted) for the 500 replications per 36 conditions, averaged across the four different 
c1tm , separately for the three estimators.
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the lower level and the higher level in the multilevel LC 
modeling. How can we explain that the three-step method 
is sensitive to the lower-level separation when the higher- 
level separation is large? The explanation lies in the feature 
that the three-step method involves a classification step 
wherein the higher-level clustering is ignored, meaning that 
it does not take into account the information about the 
hierarchical clustering structure. This loss of information is 
greater when the higher-level separation is larger. In com-
parison, the one-step and two-step methods always use the 
full amount of information on the clustering, making their 
performance less sensitive to the degree of higher-level 
separation.

6. An Application

To illustrate the proposed bias-adjusted three-step ML 
method we analyze citizenship norms among adolescents 
using survey data from the International Civic and 
Citizenship Education Study, which were collected by the 
International Association for the Evaluation of Educational 
Achievement (IEA) in 2016 (Schulz et al., 2018). The survey 
was conducted in school classes of 14 years old in 22 differ-
ent areas: Bulgaria, Chile, Colombia, Croatia, Denmark, 
Dominican Republic, Estonia, Finland, Hong Kong, Italy, 
Latvia, Lithuania, Malta, Mexico, Netherlands, Norway, 
Peru, Russia, Slovenia, South Korea, Sweden, and Taiwan. 
Prior political research has analyzed different waves of the 
survey to investigate citizenship norms using latent class 
analysis (Hooghe et al., 2016; Hooghe & Oser, 2015; Oser 

et al., 2023; Oser & Hooghe, 2013). The data analysis is car-
ried out using the R package multilevLCA (Lyrvall et al., 
2023)2.

Respondents were presented a variety of citizenship norms 
and asked to rate each item in terms of what defines a good 
adult citizen. We combine the answer options “very 
important” and “quite important” into the value 1, while we 
combine the answer options “not important at all” and “not 
very important” into the value 0. The 12-item battery 
includes obeying the law (obey), promoting human rights 
(rights), participating in local activities (local), working hard 
(work), supporting activities to protect the environment 
(envir), voting (vote), learning about the country’s history 
(history), showing respect for government representatives 
(respect), following political news (news), participating in 
peaceful protest (protest), engaging in political conversations 
(discuss), and joining a political party (party). Table 2 shows 
that the means in the pooled sample range from 0.34 to 0.92.

Consistent with previous research on the same data (Di 
Mari et al., 2023), we consider the model T ¼ 4, M ¼ 3:
The separation conditions for this model are rather typical 
in applied LCA (the R 2

low-entropy is equal to 0.64 and the 
average proportion of classification error for step-1 model is 
equal to 0.17). Compared to the simulation study, the esti-
mated class solution exhibits large class separation at the 
higher level and somewhere between small and moderate 
separation on the lower level, which are suboptimal condi-
tions for the performance of the three-step. This allows us 

Figure 3. Ratio of estimated standard error to Monte Carlo standard deviation for the 500 replications per 36 conditions, averaged across the four different c1tm:

2Replication files are available from the corresponding author upon request.
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to see how severely the performance of the proposed estima-
tor are affected by these suboptimal conditions.

Table 3 presents the estimated class solution of this speci-
fication. At the lower level, class 1, the “Maximal” adoles-
cent, places importance on all the items; class 2, the 

Figure 4. Estimated coverage rates of 95% confidence intervals for the 500 replications per 36 conditions, averaged across the four different c1tm , separately for 
the simulation study with non-zero covariate effects and the simulation study with zero covariate effects.

Table 2. Means of the 12 dichotomous items in the pooled sample.

Item Mean

obey 0.92
rights 0.84
local 0.82
work 0.86
envir 0.87
vote 0.83
history 0.82
respect 0.83
news 0.77
protest 0.64
discuss 0.46
party 0.34

Table 3. Class proportions on lower level (LL) and higher level (HL) and class- 
specific response probabilities for the multilevel measurement model.

LL Class 1 LL Class 2 LL Class 3 LL Class 4
(Maximal) (Engaged) (Duty) (Subject)

Class proportion
HL Class 1 (0.5000) 0.3292 0.4676 0.1584 0.0448
HL Class 2 (0.4091) 0.5714 0.2803 0.1190 0.0293
HL Class 3 (0.0909) 0.2064 0.2842 0.4783 0.0312
Response probability
obey 0.9788 0.9217 0.8793 0.4080
rights 0.9819 0.9456 0.4364 0.1337
local 0.9698 0.9145 0.4243 0.1391
work 0.9368 0.8450 0.7824 0.3820
envir 0.9834 0.9622 0.5251 0.2207
vote 0.9699 0.7477 0.7803 0.1768
history 0.9461 0.7939 0.6825 0.2175
respect 0.9341 0.7969 0.7926 0.1844
news 0.9603 0.6586 0.7021 0.0908
protest 0.8632 0.5885 0.2959 0.1107
discuss 0.7925 0.2079 0.2816 0.0229
party 0.5983 0.1303 0.2440 0.0209
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“Engaged”, scores somewhat lower on all items, placing little 
importance on engaging in political conversations or joining 
a political party; class 3, the “Duty”, emphasizes the trad-
itional items but not the more self-expressive items; class 4, 
“Subject”, has low probabilities to assign importance to all the 
items. At the higher level, class 1 (50%) has the highest rela-
tive frequency of “Engaged” adolescents, while in class 2 
(41%) the majority of youth are “Maximal”, and class 3 (9%) 
has the highest conditional probability for “Duty” students. In 
all the country-level classes, “Subject” is the least prevalent.

Considering the estimated high-class membership, we 
can see a geographical pattern. Most of the Nordic- 
European, Eastern European, and South American countries 
belong to class 1: Bulgaria, Estonia, Finland, Latvia, 
Lithuania, Malta, Norway, Slovenia, Sweden, Chile, and 
Colombia. The countries that belong to class 2 are the 
Mediterranean-European, North American, Central 
American, and Asian countries and one South American 
country: Hong Kong, Russia, South Korea, Taiwan, 
Dominican Republic, Mexico, Italy, Croatia, and Peru. The 
Continental Northern European countries belong to class 3: 
Denmark and the Netherlands.

We now investigate the association between lower-level 
class membership and maternal education using the pro-
posed bias-adjusted three-step ML approach for multilevel 
LC models and compare the results to the one- and two- 
step approaches. The covariate is a binary indicator that 
takes on the value 1 if the mother has post-high school edu-
cation level (50% of the respondents), and 0 otherwise 
(50%). In step 2, respondents are assigned to latent classes 
by means of modal assignment, since this is the most com-
monly used assignment rule in applied LCA. Table 4 shows 
that the (lower-level) classes do not differ much in their 
probability of assignment to the wrong class. The lower-level 
entropy-based R2 is equal to 0.64 and the higher-level 
entropy-based R2 is equal to 1, which, based on the simula-
tion results, are sub-optimal conditions. On the basis of the 
simulation results, we can therefore expect a larger differ-
ence across the estimated covariate effects between the 
three-step method and its alternatives than between the 
one-step method and the two-step method.

Table 5 presents the estimated covariate effects on lower- 
level class membership. “Maximal” is the reference class and 
“high school or less” is the reference level of the covariate. 
As expected, the three-step slope estimates differ more from 
the slope estimates for the one-step method and the two- 
step method compared to the difference between the alter-
native estimators. Nevertheless, substantively, the results for 
three approaches are well aligned. When maternal education 
is higher the probability of belonging to the “Engaged” class 

relative to the “Maximal” class is smaller, with the greatest 
effect size in country-level class 3. We can see a similar posi-
tive effect, but at a greater magnitude, with respect to the 
probability of belonging to the “Subject” class relative to the 
“Maximal” class. It is substantial in country-level class 3. The 
effect of maternal education on the probability of belonging 
to the “Duty” class relative to the “Maximal” class is rather 
weak. The precise point estimates for the three-step estimator 
are in line with the direction of the effects and the relative 
effect sizes. We can also see that the difference in the one- 
step SEs and the two-step SEs is smaller than what we would 
expect given the simulation results. As such, the pattern of 
significance of the covariate effects is overall comparable.

In light of the similarity in the substantive results for the 
methods, we can consider the performance of the three-step 
methods acceptable even under these suboptimal class separ-
ation conditions.

7. Discussion

We have proposed a bias-adjusted three-step ML estimator 
for multilevel latent class analysis with covariates. In the 
first step, the single-level LC model without covariates is fit-
ted to the data, ignoring the multilevel structure. In the 
second step, (lower-level) units are assigned to the classes 
on the basis of some classification rule, e.g., modal 

Table 4. Estimated misclassification probabilities for step 2 of the three-step 
approach, with X the true class and ~X the assigned class.

X¼ 1 X¼ 2 X¼ 3 X¼ 4
(Maximal) (Engaged) (Duty) (Subject)

~X ¼ 1 0.8702 0.1381 0.0235 0.0000
~X ¼ 2 0.1156 0.7817 0.1363 0.0059
~X ¼ 3 0.0142 0.0794 0.8142 0.1022
~X ¼ 4 0.0000 0.0008 0.0260 0.8920

Table 5. Estimated effect of maternal post-high school education on latent 
class membership for the three-, two-, and one-step estimators, where class 1 
(maximal) is the reference category, ��� p-value < 0.01, �� p-value < 0.05, 
� p-value < 0.1.

HL Class 1 LL Class 2 (Engaged)
one-step two-step three-step

matern. educ. −0.1588��� −0.1536��� −0.1610���

(0.0417) (0.0415) (0.0432)
LL Class 3 (Duty)

one-step two-step three-step
matern. educ. 0.1196��� 0.1049�� 0.0026

(0.0415) (0.0438) (0.0478)
LL Class 4 (Subject)

one-step two-step three-step
matern. educ. −0.5551��� −0.5542��� −0.6117���

(0.0582) (0.0592) (0.0714)
HL Class 2 LL Class 2 (Engaged)

one-step two-step three-step
matern. educ. −0.0175 −0.0158 −0.0029

(0.0434) (0.0431) (0.0482)
LL Class 3 (Duty)

one-step two-step three-step
matern. educ. 0.1983��� 0.1922��� 0.1924���

(0.0463) (0.0494) (0.0520)
LL Class 4 (Subject)

one-step two-step three-step
matern. educ. −0.2471��� −0.2517��� −0.3088���

(0.0732) (0.0745) (0.0893)
HL Class 3 LL Class 2 (Engaged)

one-step two-step three-step
matern. educ. −0.4458��� −0.4301��� −0.2059���

(0.0741) (0.0743) (0.0782)
LL Class 3 (Duty)

one-step two-step three-step
matern. educ. −0.1262 −0.1316 −0.1444

(0.1047) (0.1080) (0.1269)
LL Class 4 (Subject)

one-step two-step three-step
matern. educ. −1.1527��� −1.1487��� −1.2835���

(0.1691) (0.1911) (0.2537)

10 LYRVALL ET AL.



assignment. In the third step, the multilevel LC model with 
the covariates is estimated while correcting for classification 
error to obtain unbiased logistic parameter estimates for the 
association between class membership and covariates.

The performance of the three-step estimator was com-
pared to the currently available modeling options for multi-
level LCA with covariates, namely the one-step and two-step 
estimators, by means of a simulation study. Considering 
bias, the results showed that the three-step method is a 
viable alternative in most of the simulation conditions that 
were considered. Its performance is problematic when the 
higher-level separation is large and lower-level separation is 
small, but this bias is reduced substantially when the lower- 
level separation is at least moderate, and eliminated when 
the lower-level separation is high. When the higher-level 
separation is also moderate the three-step method performs 
as good as identical to the alternative estimators. 
Considering standard errors, the simulation study showed 
that the three-step method under-estimates them, which is a 
known feature of the method in single-level LCA (Bolck 
et al., 2004; Vermunt, 2010). The bias is less severe when 
the separation is larger on both the lower level and also 
larger on the higher level.

The findings for the performance of the three-step bias- 
correction method in multilevel LCA inform the ongoing 
debate about the choice between random-effect specifications 
and fixed-effect specifications. This debate has a long history 
in latent variable modeling (Aitkin, 1999; Aitkin & Alf�o, 
1998; Kankara�s et al., 2018) and beyond (for example in 
econometrics; see e.g., Peracchi, 2001). The reported perform-
ance of the random-effect three-step method under different 
combinations of lower-level separation and higher-level separ-
ation can serve as a practical indication of best-practice mod-
eling approaches to applied multilevel LCA users. If the 
interest is in the lower-level structure, fixed-effect modeling 
may be a more appealing option when the higher-level separ-
ation is stronger relative to the lower-level separation.

In a real data example with moderate class separation at 
the lower level and between moderate and large class separ-
ation at the higher level, we compared the estimated covari-
ate effects and their SEs for the three-step estimator and the 
alternative one-step and two-step estimators. Specifically, we 
identified citizenship norms among adolescents and ana-
lyzed its association with socioeconomic status. While the 
estimates were not identical, we observed that the three 
methods produced well-aligned substantial results, such that 
the three-step could be considered a legitimate modeling 
option even under these suboptimal conditions.

The current study is limited in the sense that we analyzed 
the performance of the proposed three-step method only for 
situations when the estimated model was correctly specified. 
One interesting avenue for future research is therefore to 
investigate the performance of the proposed method when 
modeling assumptions do not hold. In multilevel contexts, 
measurement non-invariance on the higher level, in which 
the item-response probabilities for the lower-level classes dif-
fer between higher-level classes, is likely to occur. This may 
lead to differences in the estimated response probabilities for 

the multilevel measurement model of interest and the step 1 
single-level measurement model, thus introducing additional 
error in the step 2 class assignment. As such, it is recom-
mended that future research look into controlling for meas-
urement non-invariance on the higher level. For example, 
measurement non-invariance could be corrected for by means 
of fitting the multilevel measurement model and deriving the 
single-level model by marginalizing the conditional lower- 
level class proportions over the unconditional higher-level 
class proportions. Alternatively, measurement non-invariance 
could be corrected for by means of group (i.e., j-identifier) 
fixed effects (similar to Vermunt & Magidson, 2021).

Another topic for future research is the correction of the 
SEs of the covariate effects. In the single-level context, cor-
rection methods for the bias-adjusted three-step ML method 
have been presented by Bakk et al. (2014). The need for cor-
rection can be expected to depend on sample size and class 
separation at the lower level and the higher level. It would 
be worthwhile investigating how to extend these correction 
methods to the multilevel case and when the corrections are 
likely to be necessary in practice.

Finally, we have focused on the fully general paramet-
rization of the multilevel latent class model. In applied 
research it is sometimes more appealing to adopt more con-
strained versions, such as random intercepts only and fixed 
slope parameters. While such models were outside the scope 
of the current study, it is nevertheless an interesting avenue 
for future research to examine the performance of the 
three-step under more constrained parametrizations.

Disclosure Statement

The authors report there are no competing interests to declare.

Funding

This work was funded by the European Union (ERC, PRD, project 
number 101077659 to Oser).

ORCID

Johan Lyrvall http://orcid.org/0000-0002-1863-8147 
Zsuzsa Bakk http://orcid.org/0000-0001-9352-4812 
Jennifer Oser http://orcid.org/0000-0002-1531-4606 
Roberto Di Mari http://orcid.org/0000-0001-5498-009X 

References

Aitkin, M. (1999). A general maximum likelihood analysis of variance 
components in generalized linear models. Biometrics, 55, 117–128. 
https://doi.org/10.1111/j.0006-341x.1999.00117.x

Aitkin, M., & Alf�o, M. (1998). Regression models for binary longitu-
dinal responses. Statistics and Computing, 8, 289–307. https://doi. 
org/10.1023/A:1008847820371

Asparouhov, T., & Muth�en, B. (2014). Auxiliary variables in mixture 
modeling: Three-step approaches usingMplus. Structural Equation 
Modeling: A Multidisciplinary Journal, 21, 329–341. https://doi.org/ 
10.1080/10705511.2014.915181

Bakk, Z., & Kuha, J. (2018). Two-step estimation of models between 
latent classes and external variables. Psychometrika, 83, 871–892. 
https://doi.org/10.1007/s11336-017-9592-7

STRUCTURAL EQUATION MODELING: A MULTIDISCIPLINARY JOURNAL 11

https://doi.org/10.1111/j.0006-341x.1999.00117.x
https://doi.org/10.1023/A:1008847820371
https://doi.org/10.1023/A:1008847820371
https://doi.org/10.1080/10705511.2014.915181
https://doi.org/10.1080/10705511.2014.915181
https://doi.org/10.1007/s11336-017-9592-7


Bakk, Z., Di Mari, R., Oser, J., & Kuha, J. (2022). Two-stage multilevel 
latent class analysis with covariates in the presence of direct effects. 
Structural Equation Modeling: A Multidisciplinary Journal, 29, 267– 
277. https://doi.org/10.1080/10705511.2021.1980882

Bakk, Z., Oberski, D. L., & Vermunt, J. K. (2014). Relating latent class 
assignments to external variables: Standard errors for correct infer-
ence. Political Analysis, 22, 520–540. https://doi.org/10.1093/pan/ 
mpu003

Bakk, Z., Tekle, F. B., & Vermunt, J. K. (2013). Estimating the associ-
ation between latent class membership and external variables using 
bias-adjusted three-step approaches. Sociological Methodology, 43, 
272–311. https://doi.org/10.1177/0081175012470644

Bartolucci, F., Montanari, G. E., & Pandolfi, S. (2016). Item selection 
by latent class-based methods: An application to nursing home 
evaluation. Advances in Data Analysis and Classification, 10, 245– 
262. https://doi.org/10.1007/s11634-016-0232-3

Bijmolt, T. H., Paas, L. J., & Vermunt, J. K. (2004). Country and con-
sumer segmentation: Multi-level latent class analysis of financial 
product ownership. International Journal of Research in Marketing, 
21, 323–340. https://doi.org/10.1016/j.ijresmar.2004.06.002

Bolck, A., Croon, M., & Hagenaars, J. (2004). Estimating latent struc-
ture models with categorical variables: One-step versus three-step 
estimators. Political Analysis, 12, 3–27. https://doi.org/10.1093/pan/ 
mph001

Collins, L. M., Fidler, P. L., Wugalter, S. E., & Long, J. D. (1993). 
Goodness-of-fit testing for latent class models. Multivariate 
Behavioral Research, 28, 375–389. https://doi.org/10.1207/s153279 
06mbr2803_4

Dean, N., & Raftery, A. E. (2010). Latent class analysis variable selec-
tion. Annals of the Institute of Statistical Mathematics, 62, 11–35. 
https://doi.org/10.1007/s10463-009-0258-9

Di Mari, R., Bakk, Z., Oser, J., & Kuha, J. (2023). A two-step estimator 
for multilevel latent class analysis with covariates. Psychometrika, 88, 
1144–1170. https://doi.org/10.1007/s11336-023-09929-2

Di Mari, R., Oberski, D. L., & Vermunt, J. K. (2016). Bias-adjusted 
three-step latent markov modeling with covariates. Structural 
Equation Modeling: A Multidisciplinary Journal, 23, 649–660. 
https://doi.org/10.1080/10705511.2016.1191015

Fagginger Auer, M. F., Hickendorff, M., Van Putten, C. M., B�eguin, 
A. A., & Heiser, W. J. (2016). Multilevel latent class analysis for 
large-scale educational assessment data: Exploring the relation 
between the curriculum and students’ mathematical strategies. 
Applied Measurement in Education, 29, 144–159. https://doi.org/10. 
1080/08957347.2016.1138959

Goodman, L. A. (1974a). The analysis of systems of qualitative varia-
bles when some of the variables are unobservable.PartI-AModified 
latent structure approach. American Journal of Sociology, 79, 1179– 
1259. https://doi.org/10.1086/225676

Goodman, L. A. (1974b). Exploratory latent structure analysis using 
both identifiable and unidentifiable models. Biometrika, 61, 215– 
231. https://doi.org/10.1093/biomet/61.2.215

Goodman, L. A. (2007). On the assignment of individuals to latent 
classes. Sociological Methodology, 37, 1–22. https://doi.org/10.1111/j. 
1467-9531.2007.00184.x

Hagenaars, J. A. (1990). Categorical longitudinal data: Log-linear panel, 
trend, and cohort analysis. Sage.

Hagenaars, J. A. (1992). Exemplifying longitudinal log-linear analysis 
with latent variables. European Science Foundation, Scientific 
Network on Household Panel Studies.

Henry, K. L., & Muth�en, B. (2010). Multilevel latent class analysis: An 
application of adolescent smoking typologies with individual and con-
textual predictors. Structural Equation Modeling: a Multidisciplinary 
Journal, 17, 193–215. https://doi.org/10.1080/10705511003659342

Hickendorff, M., van Putten, C. M., Verhelst, N. D., & Heiser, W. J. 
(2010). Individual differences in strategy use on division problems: 
Mental versus written computation. Journal of Educational 
Psychology, 102, 438–452. https://doi.org/10.1037/a0018177

Hooghe, M., & Oser, J. (2015). The rise of engaged citizenship: The 
evolution of citizenship norms among adolescents in 21 countries 

between 1999 and 2009. International Journal of Comparative 
Sociology, 56, 29–52. https://doi.org/10.1177/0020715215578488

Hooghe, M., Oser, J., & Marien, S. (2016). A comparative analysis of 
‘good citizenship’: A latent class analysis of adolescents’ citizenship 
norms in 38 countries. International Political Science Review, 37, 
115–129. https://doi.org/10.1177/0192512114541562

Kankara�s, M., Moors, G., & Vermunt, J. K. (2018). Testing for meas-
urement invariance with latent class analysis. In Cross-cultural ana-
lysis (pp. 393–419). Routledge.

Lanza, S. T., & Rhoades, B. L. (2013). Latent class analysis: An alterna-
tive perspective on subgroup analysis in prevention and treatment. 
Prevention Science: The Official Journal of the Society for Prevention 
Research, 14, 157–168. https://doi.org/10.1007/s11121-011-0201-1

Lanza, S. T., Tan, X., & Bray, B. C. (2013). Latent class analysis with 
distal outcomes: A flexible model-based approach. Structural 
Equation Modeling: a Multidisciplinary Journal, 20, 1–26. https://doi. 
org/10.1080/10705511.2013.742377

Lazarsfeld, P. F., & Henry, N. W. (1968). Latent structure analysis. 
Houghton Mifflin.

Luko�cien_e, O., Varriale, R., & Vermunt, J. K. (2010). The simultaneous 
decision(s) about the number of lower-and higher-level classes in 
multilevel latent class analysis. Sociological Methodology, 40, 247– 
283. https://doi.org/10.1111/j.1467-9531.2010.01231.x

Lyrvall, J., Di Mari, R., Bakk, Z., Oser, J., & Kuha, J. (2023). 
MultilevLCA: AnR package for single-level and multilevel latent 
class analysis with covariates. arXiv preprint arXiv:2305.07276.

MacLahlan, G., & Peel, D. (2000). Finite mixture models. John Wiley & 
Sons.

Magidson, J. (1981). Qualitative variance, entropy, and correlation 
ratios for nominal dependent variables. Social Science Research, 10, 
177–194. https://doi.org/10.1016/0049-089X(81)90003-X

Masyn, K. E. (2017). Measurement invariance and differential item 
functioning in latent class analysis with stepwise multiple indicator 
multiple cause modeling. Structural Equation Modeling: A 
Multidisciplinary Journal, 24, 180–197. https://doi.org/10.1080/ 
10705511.2016.1254049

Nylund, K. L., Asparouhov, T., & Muth�en, B. O. (2007). Deciding on 
the number of classes in latent class analysis and growth mixture 
modeling: AMonteCarlo simulation study. Structural Equation 
Modeling: A Multidisciplinary Journal, 14, 535–569. https://doi.org/ 
10.1080/10705510701575396

Oser, J. (2022). Protest as one political act in individuals’ participation 
repertoires: Latent class analysis and political participant types. 
American Behavioral Scientist, 66, 510–532. https://doi.org/10.1177/ 
00027642211021633

Oser, J., & Hooghe, M. (2013). The evolution of citizenship norms 
among scandinavian adolescents, 1999–2009. Scandinavian Political 
Studies, 36, 320–346. https://doi.org/10.1111/1467-9477.12009

Oser, J., Hooghe, M., Bakk, Z., & Di Mari, R. (2023). Changing citizen-
ship norms among adolescents, 1999-2009-2016: A two-step latent 
class approach with measurement equivalence testing. Quality & 
Quantity, 57, 4915–4933. https://doi.org/10.1007/s11135-022-01585-5

Peracchi, F. (2001). Econometrics. John Wiley & Sons.
Schulz, W., Ainley, J., Fraillon, J., Losito, B., Agrusti, G., & Friedman, 

T. (2018). Becoming citizens in a changing world: 
IEAInternationalCivic andCitizenshipEducationStudy 2016 inter-
national report. Springer Nature.

Vermunt, J. K. (2003). Multilevel latent class models. Sociological 
Methodology, 33, 213–239. https://doi.org/10.1111/j.0081-1750.2003. 
t01-1-00131.x

Vermunt, J. K. (2010). Latent class modeling with covariates: Two 
improved three-step approaches. Political Analysis, 18, 450–469. 
https://doi.org/10.1093/pan/mpq025

Vermunt, J. K., & Magidson, J. (2021). How to perform three-step 
latent class analysis in the presence of measurement non-invariance 
or differential item functioning. Structural Equation Modeling: A 
Multidisciplinary Journal, 28, 356–364. https://doi.org/10.1080/ 
10705511.2020.1818084

12 LYRVALL ET AL.

https://doi.org/10.1080/10705511.2021.1980882
https://doi.org/10.1093/pan/mpu003
https://doi.org/10.1093/pan/mpu003
https://doi.org/10.1177/0081175012470644
https://doi.org/10.1007/s11634-016-0232-3
https://doi.org/10.1016/j.ijresmar.2004.06.002
https://doi.org/10.1093/pan/mph001
https://doi.org/10.1093/pan/mph001
https://doi.org/10.1207/s15327906mbr2803_4
https://doi.org/10.1207/s15327906mbr2803_4
https://doi.org/10.1007/s10463-009-0258-9
https://doi.org/10.1007/s11336-023-09929-2
https://doi.org/10.1080/10705511.2016.1191015
https://doi.org/10.1080/08957347.2016.1138959
https://doi.org/10.1080/08957347.2016.1138959
https://doi.org/10.1086/225676
https://doi.org/10.1093/biomet/61.2.215
https://doi.org/10.1111/j.1467-9531.2007.00184.x
https://doi.org/10.1111/j.1467-9531.2007.00184.x
https://doi.org/10.1080/10705511003659342
https://doi.org/10.1037/a0018177
https://doi.org/10.1177/0020715215578488
https://doi.org/10.1177/0192512114541562
https://doi.org/10.1007/s11121-011-0201-1
https://doi.org/10.1080/10705511.2013.742377
https://doi.org/10.1080/10705511.2013.742377
https://doi.org/10.1111/j.1467-9531.2010.01231.x
https://doi.org/10.1016/0049-089X(81)90003-X
https://doi.org/10.1080/10705511.2016.1254049
https://doi.org/10.1080/10705511.2016.1254049
https://doi.org/10.1080/10705510701575396
https://doi.org/10.1080/10705510701575396
https://doi.org/10.1177/00027642211021633
https://doi.org/10.1177/00027642211021633
https://doi.org/10.1111/1467-9477.12009
https://doi.org/10.1007/s11135-022-01585-5
https://doi.org/10.1111/j.0081-1750.2003.t01-1-00131.x
https://doi.org/10.1111/j.0081-1750.2003.t01-1-00131.x
https://doi.org/10.1093/pan/mpq025
https://doi.org/10.1080/10705511.2020.1818084
https://doi.org/10.1080/10705511.2020.1818084

	Bias-Adjusted Three-Step Multilevel Latent Class Modeling with Covariates
	Abstract
	Introduction
	The Multilevel Latent Class Model
	Selecting the Numbers of Latent Classes on Lower and Higher Level
	Three-Step Estimation of the Multilevel Latent Class Model
	Step 1 - Estimating the Multilevel Measurement Model
	Step 2 - Posterior Classification and Classification Error
	Step 3 - Estimating the Multilevel Structural Model

	Simulation Study
	Design
	Results

	An Application
	Discussion
	Disclosure Statement
	Funding
	Orcid
	References


