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Abstract: Alzheimer’s disease (AD) represents the most common neurodegenerative disorder,
with 47 million affected people worldwide. Current treatment strategies are aimed at reducing the
symptoms and do slow down the progression of the disease, but inevitably fail in the long-term.
Induced pluripotent stem cells (iPSCs)-derived neuronal cells from AD patients have proven to be a
reliable model for AD pathogenesis. Here, we have conducted an in silico analysis aimed at identifying
pathogenic gene-expression profiles and novel drug candidates. The GSE117589 microarray dataset
was used for the identification of Differentially Expressed Genes (DEGs) between iPSC-derived
neuronal progenitor (NP) cells and neurons from AD patients and healthy donors. The Discriminant
Analysis Module (DAM) algorithm was used for the identification of biomarkers of disease. Drugs with
anti-signature gene perturbation profiles were identified using the L1000FWD software. DAM analysis
was used to identify a list of potential biomarkers among the DEGs, able to discriminate AD patients
from healthy people. Finally, anti-signature perturbation analysis identified potential anti-AD drugs.
This study set the basis for the investigation of potential novel pharmacological strategies for AD.
Furthermore, a subset of genes for the early diagnosis of AD is proposed.

Keywords: Alzheimer disease; Induced pluripotent stem cells-derived neuronal cells; drug
repurposing; biomarkers

1. Introduction

Alzheimer’s disease (AD) represents the most common neurodegenerative disorder, with 47 million
affected people worldwide. AD is characterized by several neuropathological changes—including
cerebral atrophy, intense synaptic loss, and neuronal death—in regions of the prefrontal cortex and
hippocampus that are responsible for cognitive functions. The disease shows a prodromal period
that can last for decades and is characterized by a preclinical asymptomatic phase before cognitive
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impairment occurs [1]. Mild cognitive impairment (MCI) represents the first clinical phase of AD,
characterized by an alteration in episodic memory. It is reasonable to believe that treatment with
disease-modifying agents would likely be most effective in this stage of AD, before neurodegeneration
is too marked and widespread. Thus, studies aimed at identifying potential AD biomarkers for early
diagnosis is warranted. However, MCI can derive from a variety of causes (e.g., vascular, presence
of Lewy bodies) and only approximately half of cases is associated to AD, with consequent obvious
diagnostic difficulties. Indeed, magnetic resonance imaging (MRI)-based regional brain volumes,
cerebrospinal fluid (CSF) analytes, and positron emission tomography (PET) imaging of cerebral
fibrillar β-amyloid along ad hoc cognitive tests have been investigated as biomarkers of disease,
they are useful only for the late stages of the disease, and may not be sensitive enough to detect initial
neuropathophysiological processes occurring in AD patients who show mild cognitive impairment [2,3].
Hence for most cases, definite diagnosis is only possible with the post-mortem analysis of the brain
and with the observation of severe brain atrophy and neuronal loss, as well as the presence of dense
extracellular deposits and intracellular aggregates within neurons, identified as amyloid plaques and
neurofibrillary tangles, respectively.

As regards AD therapy, up to now, only five drugs have been approved by FDA for human
use. However, none of them are able to cure the disease and are only modestly able to slow down
AD progression and improve the cognitive abilities of the patients. The reason for the lack of an
effective treatment for AD likely relies on the multifactorial pathology of this disease, as well as the
heterogeneous patient population [4]. Therefore, there is a strong need to develop novel anti-AD
therapies. However, traditional drug development is burdened by the requirement of long time,
high financial investments, and low success rate. In recent years, a large number of in vitro and in vivo
studies, as well as some clinical studies, have been carried out with the aim of evaluating protective
effects of some known multitarget molecules with antioxidant, anti-inflammatory, and neuroprotective
potential on neurodegenerative processes [5]. On the other hand, drug repurposing can be used to
redirect approved drugs for treating different disorders and seems an attractive strategy in AD, as it
may expedite the design of phase II-III clinical trials, reduce the risks associated with early stages of
drug development, while being cost-effective. Fessel et al. proposed that the combination of eight
drugs that are already approved for different clinical indications and with limited or null overlapping
activities that may warrant preclinical studies in animal models or Phase II PoC studies in humans [6].
Clearly, daily combination of eight drugs is clinically difficult and a trial of this kind would require
adequate compliance of patients and also considerable economic supports that may be difficult to
obtain in view of the lack of adequate patent protection of these drugs in the area of AD [6].

With the aim to identify possible diagnostic and therapeutic (e.g., theranostic) markers of AD
development and progression, we have presently used a machine learning approach to identify a subset
of genes that may predict AD in Induced Pluripotent Stem Cells (iPSC)-derived neuronal cells from
dermal fibroblasts. The generation of iPSCs derived neuronal cells from patients with AD represent
a unique opportunity to create a relevant in vitro model for mechanistic studies and preclinical
drug discovery, and have been widely exploited in AD [7–12], as well as in other diseases such as
amyotrophic lateral sclerosis [13], Parkinson’s disease [14], Rett syndrome [15], schizophrenia [16],
Duchenne muscular dystrophy, Becker muscular dystrophy, Down syndrome, Juvenile diabetes
mellitus, Huntington disease and Lesch-Nyhan syndrome [17].

Furthermore, we have performed a computational analysis of candidate drugs, based on their
ability to modulate in an opposite manner the transcriptional profiles characterizing AD, in order to
shortlist promising anti-AD drugs. A diagram showing the study plan is presented as Figure 1.



Brain Sci. 2020, 10, 166 3 of 14

Brain Sci. 2020, 10, x; doi: FOR PEER REVIEW www.mdpi.com/journal/brainsci 

 

Figure 1. Study plan. 

2. Material and Methods 

2.1. Dataset Selection 

The publicly available microarray dataset GSE117589, originally generated and analyzed by 

Meyer and collaborators [1] was used for the identification of Differentially Expressed Genes (DEGs) 

between Induced Pluripotent Stem Cells (iPSC)-derived Neural Progenitor cells (NPCs) and neurons 

from AD patients and healthy donors. GSE117589 was retrieved from the Gene Expression Omnibus 

(GEO) databank (https://www.ncbi.nlm.nih.gov/gds) [1]. Briefly, for the generation of the dataset, 

iPSCs were obtained by retroviral transduction of KLF4, SOX2, c-MYC, and OCT4 in human dermal 

fibroblasts (Coriell Cell Repository, Camden, NJ, USA) from 5 healthy donors and 5 individuals with 

sporadic AD (SAD). Cells were then differentiated into NPCs and neurons, as described in the 

Meyer et al., 2019 [1]. The age of the healthy donors was 72.2 ± 13.3 and the age of the SAD patients 

was 69.6 ± 11.1. The female to male ratio was 2/3 and 3/2 in the healthy controls and SAD patients, 

respectively. All healthy donors had the E3/E3 APOE genotype, with the exception for one subject, 

who had the E3/E4 genotype. Two SAD patients had the E3/E3 genotype, two had the E4/E4 

genotype and one the E2/E3 genotype [1]. Transcriptomic profiling was performed using the 

Affymetrix U133 Plus 2.0 arrays. The submitter-supplied pre-preprocessed and normalized gene 

expression matrix was used for the analysis [1]. Briefly, the probesets from the U133 Plus 2.0 

platform were first converted into Ensembl genes and gene ids without annotation were removed 

[1]. Raw data were then preprocessed using the Robust Multi-array Average (RMA) algorithm [1]. 

2.2. Identification of Biomarkers of Disease and Validation 

For the identification of the Differentially Expressed Genes (DEGs) in the cells from SAD 

individuals and Healthy donors, the LIMMA (Linear models for microarray data) parametric test 

was used. An adjusted p-value < 0.1 was considered to indicate a statistically significant difference. 

Gene Ontology (GO) analysis was performed for the DEGs, using the Metascape web-based tool, 

using default settings [18]. 

In order to identify a specific transcriptomic signature able to discriminate healthy subjects 

from AD patients, we used the Discriminant Analysis Module (DAM) algorithm [19]. DEGs were 

used as input data. DAM performs first a gene dimensional reduction method, the Multivariate 

Partial Least Squares (MPLS). Afterwards, the Polychotomous Discriminant Analysis (PDA) was 

applied as classification method. Hierarchical Clustering (HCL) was performed using the identified 

Figure 1. Study plan.

2. Material and Methods

2.1. Dataset Selection

The publicly available microarray dataset GSE117589, originally generated and analyzed by Meyer
and collaborators [1] was used for the identification of Differentially Expressed Genes (DEGs) between
Induced Pluripotent Stem Cells (iPSC)-derived Neural Progenitor cells (NPCs) and neurons from AD
patients and healthy donors. GSE117589 was retrieved from the Gene Expression Omnibus (GEO)
databank (https://www.ncbi.nlm.nih.gov/gds) [1]. Briefly, for the generation of the dataset, iPSCs were
obtained by retroviral transduction of KLF4, SOX2, c-MYC, and OCT4 in human dermal fibroblasts
(Coriell Cell Repository, Camden, NJ, USA) from 5 healthy donors and 5 individuals with sporadic
AD (SAD). Cells were then differentiated into NPCs and neurons, as described in the Meyer et al.,
2019 [1]. The age of the healthy donors was 72.2 ± 13.3 and the age of the SAD patients was 69.6 ± 11.1.
The female to male ratio was 2/3 and 3/2 in the healthy controls and SAD patients, respectively. All
healthy donors had the E3/E3 APOE genotype, with the exception for one subject, who had the E3/E4
genotype. Two SAD patients had the E3/E3 genotype, two had the E4/E4 genotype and one the E2/E3
genotype [1]. Transcriptomic profiling was performed using the Affymetrix U133 Plus 2.0 arrays.
The submitter-supplied pre-preprocessed and normalized gene expression matrix was used for the
analysis [1]. Briefly, the probesets from the U133 Plus 2.0 platform were first converted into Ensembl
genes and gene ids without annotation were removed [1]. Raw data were then preprocessed using the
Robust Multi-array Average (RMA) algorithm [1].

2.2. Identification of Biomarkers of Disease and Validation

For the identification of the Differentially Expressed Genes (DEGs) in the cells from SAD
individuals and Healthy donors, the LIMMA (Linear models for microarray data) parametric test
was used. An adjusted p-value < 0.1 was considered to indicate a statistically significant difference.
Gene Ontology (GO) analysis was performed for the DEGs, using the Metascape web-based tool, using
default settings [18].

In order to identify a specific transcriptomic signature able to discriminate healthy subjects from
AD patients, we used the Discriminant Analysis Module (DAM) algorithm [19]. DEGs were used
as input data. DAM performs first a gene dimensional reduction method, the Multivariate Partial
Least Squares (MPLS). Afterwards, the Polychotomous Discriminant Analysis (PDA) was applied as
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classification method. Hierarchical Clustering (HCL) was performed using the identified predictors in
order to determine the relative distance of samples using Pearson’s correlation as similarity comparison.

In order to validate the results from the biomarkers prediction, we interrogated the GSE118553
microarray dataset [20]. This dataset was chosen as it included whole-genome expression data of brain
areas known to be affected by AD pathology (i.e., entorhinal cortex, temporal cortex, and frontal cortex)
and an area partially spared by the disease (i.e., cerebellum) from healthy controls (n = 27) and AD
patients (n = 52) [20]. Not all subjects had tissue samples extracted from all four brain regions [20].
Entorhinal cortex AD patients were 83.9 ± 9.7 years old (vs. 71.9 ± 15.6 of control subjects), had a
Braak stage of 4.9 ± 1 and a disease duration of 11.8 ± 5.2 years. Temporal cortex AD patients were
82.7 ± 9.8 years old (vs. 71.5 ± 16.9 of controls subjects), had a Braak stage of 4.9 ± 0.9 and a disease
duration of 9.7 ± 5.4 years. Frontal cortex AD patients were 82.5 ± 4.7 years old (vs. 69.8 ± 15.4 of
controls subjects), had a Braak stage of 4.9 ± 1 and a disease duration of 10.5 ± 5.7 years. Cerebellum
AD patients were 82.6 ± 10.6 years old (vs. 69.4 ± 16 of controls subjects), had a Braak stage of 5.1 ± 0.3
and a disease duration of 9.4 ± 5.6 years. Principal Component Analysis (PCA) was used to evaluate
the segregation of the samples using the predicted biomarkers.

2.3. Drug Prediction Analysis

The L1000FDW web-based utility [21] was used to identify potential novel pharmacological
strategies for the treatment of AD. L1000FWD calculates the similarity between an input gene expression
signature vector and the LINCS-L1000 data, in order to rank drugs potentially able to reverse the
transcriptional signature [21]. The L1000 transcriptomic database is part of the Library of Integrated
Network-based Cellular Signatures (LINCS) project, a NIH Common Fund program, that extended
the Connectivity Map project and includes the transcriptional profiles of approximately 50 human
cell lines upon exposure to about 20,000 compounds, over a range of concentrations and time [21].
An adjusted p-value (q-value) of 0.05 has been considered as threshold for statistical significance.

2.4. Statistical Analysis

GraphPad Prism (v. 8) and MeV (v. 4.9) software programs were used for the statistical analysis
and the generation of the graphs. Differentially expression analysis, PCA and DAM have been
performed using the MeV 4.9 software, which used R v.2.11.1 and LIMMA v3.4.5.

3. Results

3.1. Machine Learning-Identified Genes for the Diagnosis of AD

In order to identify a specific gene signature characterizing AD, we first interrogated the GSE117589
microarray dataset. LIMMA analysis identified 65 DEGs in NP cells from SAD patients as compared
to Healthy controls, 30 upregulated and 35 downregulated. When analyzing iPSC-derived neurons,
386 DEGs were found, 131 upregulated and 255 downregulated in SAD patients as compared to
Healthy controls. Gene Ontology analysis revealed a partial overlapping of enriched biological
processes among the upregulated DEGs in AD NP cells and neurons, that included “regulation of ion
transport”, “regulation of neuron differentiation”, “chemical synaptic transmission”, “neuron projection
morphogenesis”, “negative regulation of cell differentiation” and “axon guidance” (Figure 2A,B).

Among the DEGs identified for the iPSC-derived neurons, five have been associated to AD by
GWAS: SPON1, ANKRD55, RHOBTB22, TTLL7 and MRPL10. With the exception of MRPL10, which is
downregulated, all of the other genes are upregulated in AD samples. None of the DEGs identified in
iPSC-derived NP cells have been associated to AD.
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Figure 2. (A) Hierarchical clustering of the top 20 most enriched terms by genes significantly modulated
in Induced pluripotent stem cells (iPSCs)-derived neuronal progenitors cells (NP) and iPSCs-derived
neurons from sporadic Alzheimer’s disease patients vs. healthy donors. The heatmap is colored by the
p-values, and grey cells indicate the lack of significant enrichment; (B) Circos plot showing overlapping
between the genes significantly modulated in iPSCs-derived neuronal progenitors cells (NP) and
iPSCs-derived neurons from sporadic Alzheimer’s disease patients vs. healthy donors. Purple lines
link the same genes that are shared by the input lists. Blue lines link the different genes that fall in the
same ontology term.

Next, we employed the DAM analysis, in order to identify the lowest number of genes able
to differentiate SAD patients from healthy individuals. A total of 10 predictors out of the 65 NP
cells DEGs were identified from the DAM analysis. Consistent with these findings, HCL accurately
segregated iPSC-derived NP cells from SAD patients from those obtained from non-demented controls
(Figure 3A). The 10 identified predictors are presented in Table 1. In order to validate the reliability
of the identified biomarkers, we performed a PCA on the entorhinal, frontal and temporal cortex,
as well as on cerebellum, from healthy controls and AD patients. As shown in Figure 3B–D, a discrete
separation of samples from healthy and AD subjects was observed for the entorhinal cortex. Only a
partial segregation was observed for the temporal and frontal cortex (Figure 3B). An overlapping
distribution of samples was instead observed for the cerebellum (Figure 3B).

As regards iPSC-derived neurons, DAM analysis identified 12 predictors out of 386 DEGs.
Consistent with these findings, HCL accurately segregated iPSC-derived neurons from SAD patients
from those obtained from non-demented controls (Figure 4A). The 12 identified predictors are presented
in Table 2 and were used to perform a PCA analysis on samples of entorhinal, frontal and temporal
cortex, as well as of cerebellum, from healthy controls and AD patients, obtained from the GSE118553
dataset. As shown in Figure 4B–D, a discrete separation of samples from healthy and AD subjects
was observed.
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Figure 3. (A) Hierarchical clustering of the Alzheimer’s disease (AD) biomarkers identified using the
Discriminant Analysis Module (DAM) algorithm in the Induced pluripotent stem cells (iPSCs)-derived
neuronal progenitors (NP) cells from sporadic Alzheimer’s disease patients vs. healthy donors (CTRL);
(B) Principal Component Analysis (PCA) using the identified AD biomarkers on the samples from the
GSE118553 dataset; (C) Scatterplot showing Principal Component (PC)1 and PC2 for the entorhinal
samples from the GSE118553 dataset; (D) Scatterplot showing PC1 and PC3 for the entorhinal samples
from the GSE118553 dataset.

Table 1. List of biomarkers identified by DAM analysis in iPSC-derived NP cells 1.

Gene Stable ID Gene Name Gene Description

ENSG00000134138 MEIS2 Meis homeobox 2

ENSG00000105996 HOXA2 homeobox A2

ENSG00000050767 COL23A1 collagen type XXIII alpha 1 chain

ENSG00000156427 FGF18 fibroblast growth factor 18

ENSG00000173917 HOXB2 homeobox B2

ENSG00000139352 ASCL1 achaete-scute family bHLH
transcription factor 1

ENSG00000148926 ADM adrenomedullin

ENSG00000204103 MAFB MAF bZIP transcription factor B

ENSG00000143995 MEIS1 Meis homeobox 1

ENSG00000158234 FAIM Fas apoptotic inhibitory molecule
1DAM: Discriminant Analysis Module; iPSC: induced Pluripotent Stem Cell; NP: neuronal progenitor.
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Figure 4. (A) Hierarchical clustering of the Alzheimer’s disease (AD) biomarkers identified using the
Discriminant Analysis Module (DAM) algorithm in the Induced pluripotent stem cells (iPSCs)-derived
neurons from sporadic Alzheimer’s disease patients (SAD) vs. healthy donors; (B) Principal Component
Analysis (PCA) using the identified AD biomarkers on the samples from the GSE118553 dataset;
(C) Scatterplot showing PC1 and PC2 for the entorhinal samples from the GSE118553 dataset;
(D) Scatterplot showing PC1 and PC3 for the entorhinal samples from the GSE118553 dataset.

Table 2. List of biomarkers identified by DAM analysis in iPSC-derived neuronal cells 1.

Gene Stable ID Gene Name Gene Description

ENSG00000060718 COL11A1 collagen type XI alpha 1 chain

ENSG00000103528 SYT17 synaptotagmin 17

ENSG00000105825 TFPI2 tissue factor pathway inhibitor 2

ENSG00000108231 LGI1 leucine rich glioma inactivated 1

ENSG00000109099 PMP22 peripheral myelin protein 22

ENSG00000134569 LRP4 LDL receptor related protein 4

ENSG00000152214 RIT2 Ras like without CAAX 2

ENSG00000163536 SERPINI1 serpin family I member 1

ENSG00000163661 PTX3 pentraxin 3

ENSG00000164484 TMEM200A transmembrane protein 200A

ENSG00000164778 EN2 engrailed homeobox 2

ENSG00000262655 SPON1 spondin 1
1DAM: Discriminant Analysis Module; iPSC: induced Pluripotent Stem Cell; NP: neuronal progenitor.
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3.2. Prediction of Novel Chemotherapeutics for AD

Anti-signature perturbation analysis was performed using the DEGs identified for the
iPSCs-derived NP cells and neurons (Figure 5A,B, respectively). Among the significant predicted drugs,
we have prioritized those already in clinical use. In Table 3, we have enlisted the potential anti-AD
drugs identified by the L1000FWD analysis using the iPSC-derived NP cells model of AD. Among
them, the top three drugs are: etacrynic-acid, a diuretic; cytarabine, a chemotherapy medication used
to treat acute myeloid leukemia, acute lymphocytic leukemia, chronic myelogenous leukemia and
non-Hodgkin’s lymphoma; and betamethasone, a corticosteroid. Table 4 contains a list of the potential
anti-AD drugs identified using the iPSC-derived neuronal cells model of AD. Among them, the top
three drugs are: cyclosporin-a, an immunesuppressive agent; dabrafenib, a B-raf inhibition used to
treat melanoma; and penfluridol, indicated for antipsychotic treatment of schizophrenia and psychotic
disorders. Interestingly, from our analysis, cyclosporin-a is the only drug that has been convergently
predicted using both iPSC-derived NP and neuronal cells (Tables 3 and 4).
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Figure 5. L1000FDW visualization of drug-induced signature. Input genes are represented by the
significantly upregulated and downregulated genes obtained from the analysis of the GSE117589
dataset, for iPSC-derived NP cells (A) and neuronal cells (B). Blue and red circles identify drugs with
similar and anti-similar signatures. Dots are color-coded based on the Mode of Action (MOA) of the
respective drug.

Table 3. Potential anti-AD drugs identified by the L1000FWD analysis using the iPSC-derived NP cells
model of AD.

Drug Similarity
Score p-Value q-Value Z-Score Combined

Score Category

etacrynic-acid −0.1739 1.36E-06 5.49E-03 1.8 −10.58 sodium/potassium/chloride
transporter inhibitor

cytarabine −0.1522 6.38E-06 1.29E-02 1.74 −9.02 ribonucleotide reductase
inhibitor

betamethasone −0.1522 1.69E-05 1.29E-02 1.85 −8.81 glucocorticoid receptor
agonist

triamcinolone −0.1522 2.32E-05 1.38E-02 1.84 −8.52 glucocorticoid receptor
agonist

flecainide −0.1304 2.14E-04 2.73E-02 1.65 −6.05 sodium channel blocker

econazole −0.1304 1.57E-04 2.65E-02 1.85 −7.03
lanosterol demethylase

inhibitor, sterol
demethylase inhibitor

cyclosporin-a −0.1304 1.59E-04 2.65E-02 1.84 −6.99 calcineurin inhibitor
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Table 4. Potential anti-AD drugs identified by the L1000FWD analysis using the iPSC-derived neuronal
cells model of AD.

Drug Similarity
Score p-Value Q-Value Z-Score Combined

Score Category

cyclosporin-a −0.0954 2.84E-10 6.41E-07 1.64 −15.7 calcineurin inhibitor

dabrafenib −0.0954 1.82E-11 1.12E-07 1.84 −19.78 RAF inhibitor

penfluridol −0.0954 3.91E-11 1.53E-07 1.83 −19.02 T-type calcium channel
blocker

niclosamide −0.0916 5.26E-10 1.13E-06 1.82 −16.9 DNA replication
inhibitor, STAT inhibitor

lasalocid −0.0878 2.56E-09 3.42E-06 1.77 −15.22 bacterial permeability
inducer

triclosan −0.084 1.82E-08 1.43E-05 1.79 −13.84 antibacterial agent

progesterone −0.084 6.17E-10 1.26E-06 1.66 −15.31 progesterone receptor
agonist

artesunate −0.0802 1.87E-08 1.43E-05 1.66 −12.81 DNA synthesis
inhibitor

selamectin −0.0802 2.32E-08 1.63E-05 1.7 −12.95 nematocide

4. Discussion

Given the limited access to brain-derived neuronal cells, little information is still available on
the pathogenic processes that characterize the initial phases of sporadic AD. Therefore, the use of
in-vitro-based models that reflect AD-affected neurons may allow for early diagnosis, and to test
preventive approaches for patient treatment. Recently, independent groups have differentiated cells
from AD patients into neuronal progenitors and neuronal cells using iPSC-based methods, and
evaluated them for the molecular mechanisms underlying disease development. These studies are
thought to give valuable insights regarding AD molecular phenotypes, and could represent predictive
models to be used in the future in a clinical setting.

We have here identified a gene-signature that could be used for the diagnosis of AD, by using a
publicly available whole-genome transcriptomic dataset on iPSC-derived NP cells and neurons from
AD patients and non-demented controls. Our analysis followed a more conservative approach than
those used by Meyer and collaborators [1], resulting in a lower number of prioritized DEGs.

Interestingly, we observed that the identified AD biomarkers allowed to differentially segregate
brain samples from healthy subjects and AD patients. When using the biomarkers identified using the
NP cells, a better segregation was observed for the entorhinal cortex, while a poor segregation was
observed for frontal cortex, temporal cortex and cerebellum. This is in line with the observation from
Patel and collaborators [20] who described a higher percentage of perturbed genes in the entorhinal
cortex, followed by progressively reduced numbers of DEGs in the temporal cortex, frontal cortex
and, finally in the cerebellum [20]. This seems to reflect the pattern of AD progression and suggests
that the iPSC-based model used in the present analysis may better mirror ab initio transcriptional
defects underlying AD pathogenesis. Furthermore, gene ontology analysis revealed that these genes
are involved in the regulation of cell differentiation and neurogenesis. These data support the
hypothesis that the early identification of susceptible individuals is possible using iPSCs-based models.
Furthermore, the biomarkers predicted using the iPSC-derived neurons showed a similar ability to
discriminate AD from non-demented patients.

It is believed that early interventions that tackle factors that are associated and increase the
relative risk of AD development, could drastically reduce the burden of dementia associated with
AD at the population level. Indeed, such interventions could reduce the development of signs and
symptoms of AD, preventing the progression from MCI to AD, and reducing the subclinical deficits in
dementia individuals.
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Typically, development of a new drug takes up to 15 years and requires between 2 to 3 billion dollars
of investment. In addition, on average, only 10% of drugs entering phase I trials obtain approval for
human use. The rest of the molecules are dropped because of toxicity issues or lack of efficacy [22,23].
Drug repurposing, i.e., finding novel indications for already approved drugs, overcomes these
limitations, as toxicity, pharmacokinetic and pharmacodynamic are already available and consequently,
the drugs can rapidly be tested in phase II-III trials, dramatically reducing development risk, time
and cost. Nowadays, almost 30% of new drugs are repositioned drugs [22]. Drug repurposing
can be investigated both experimentally and computationally (in silico) [24]. The latter is based
on the evaluation of the anti-similarity between drugs and a disease [25–27]. To this aim, gene
expression signatures obtained from -omics data [28] are used to discover novel mechanisms of
disease and searches inverse drug–disease relationships by matching gene expression profiles. We
and others have used whole-genome expression databases for the better understanding of pathogenic
pathways and the prediction of diagnostic and therapeutic strategies for a series of disorders—e.g.,
immunoinflammatory and autoimmune diseases [29–37], and cancer [38,39]—which has led to the
identification of potential novel therapeutic targets [40–51]. However, gene perturbation alone cannot
accurately predict treatment options due to variability related to disease genetics and epigenetics, as
well as, experimental settings. For instance, although arginase inhibitor was expected to increase
neurotoxicity, in preclinical model of AD, it has been shown to exert protection in mice [52]. Limitations
of our work rely on the fact that our model does not account for epigenetic and post-transcription
modifications affecting the final phenotype. Furthermore, although drug gene perturbation signatures
come from genes ubiquitously modulated across a series of cell lines, however, they are constructed on
cell types strikingly different from those found in the central nervous system, and treatments are limited
in terms of concentrations and time points. Finally, drug candidates for AD, and neurodegenerative
disease in general, should also be selected on the basis on their ability to cross the blood–brain barrier.

Interestingly, in our study, cyclosporine-a was predicted to be a potential anti-AD drug,
when using both the iPSC-derived NP cells and neurons. This is in line with recent data from
Stallings’ group, showing that cyclosporine-a blocked dendritic spine loss in Aβ42-treated cells [53].
Furthermore, cyclosporine-a inhibited amyloid synthesis and improved amyloid induced neurotoxicity
in neuroblastoma cells [54]. Finally, a pilot open-label study of tacrolimus, which shares the same
mode of action with cyclosporin-a in AD (ClinicalTrials.gov Identifier: NCT04263519) is expected to be
completed by December 2021.

In addition, our analysis has identified the corticosteroids, betamethasone and triamcinolone,
as potential anti-AD drugs. This seems consistent with a post mortem study conducted by Beeri
et al. [55] on 694 brains of subjects who did not have neuropathologies other than neuritic plaques
(NPs), neurofibrillary tangles (NFTs), or cerebrovascular disease, that patients receiving corticosteroids
had significantly lower ratings and counts of NPs for all neuropathological measures, and NFTs
overall and in the cerebral cortex and amygdala. In contrast, no significance was observed for
subjects who received NSAIDs. AD has been linked to neuroinflammation [56], and biochemical and
neuropathological studies on AD brains provide evidence for the activation of inflammatory pathways
and glial inflammation [57]. Notably, women are more susceptible to developing immunoinflammatory
disorders than men [58], and accordingly, the estimated lifetime risk of developing AD shows a female
to male ratio of 1.8. Based on these observations, the nasal administration of corticosteroids has
been proposed for the early stages of AD [59]. On the other hand, preclinical studies have shown
conflicting effects of glucocorticoids on CNS, as hypersecretion was shown to contribute to age-related
hippocampal degeneration [60].

5. Conclusions

Our study set the basis for the identification of biomarkers for the early diagnosis of AD, using
the low invasive model of iPSC-derived neuronal cells. Indeed, the use of imaging techniques or the
measurement of CSF markers is difficult to achieve for the costs and invasive procedures. Furthermore,

ClinicalTrials.gov
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blood biomarkers have not yet given satisfactory results as diagnostic tools in AD. However, this is an
exploratory study and future studies on larger cohorts of patients with SAD are needed to validate the
data here generated. Furthermore, since other cellular types—including astrocytes and microglia—are
likely to be directly involved in the etiopathogenesis of AD, future studies aimed at investigating
potential glial-related biomarkers are warranted. Finally, the single and combined administration
of the potential anti-AD drugs that has emerged from our study seems worthy being evaluated in
preclinical models of AD to exploit the translatability of these findings to the clinical setting.
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