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ABSTRACT

This thesis is devoted to the stability study of time-delay systems, a

subject that has been vigorously pursued by such learned societies as

diversely represented in mathematics, science, engineering, and econom-

ics. Time-delay systems, which are also sometimes known as heredit-

ary systems, systems with memory, after effects and time-lag, represent a

class of infinite-dimensional systems used to describe, among other types

of systems, propagation and transport phenomena, population dynamics,

economic systems, communication networks, and neural network mod-

els. The aim of the present thesis is to develop techniques and tools that

may help to study the stability of commensurate time-delay systems. Sta-

bility analysis methods are developed based on the corresponding char-

acteristic equation following a frequency sweeping test and constant mat-

rix tests. Rewriting the quasi-polynomial equation, the coefficients can

be found and then the roots of the characteristic equation can be plotted

in a complex plane. If the roots cross the imaginary axis of the sys-

tem, it is said to be Delay-Dependent Stable System (DDSS). A control-

ler design procedure for Commensurate Multiple Time-Delay Systems

(CMTDSs) is developed, able to transform the system into a Delay In-

dependent Stable System (DISS). The controller based on a single para-

meter is used to make the system DISS. It may be determined by adopting

different strategies, either analytical or graphical. Based on this theorem,

a stability chart is partitioned into two regions, that are DDSS and DISS.

As an application, it is demonstrated that model-based design can be used
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to design systems with time delays. The stability analysis methods de-

veloped in this thesis are tailored and applied to find if the system is

DDSS and to transform systems from DDSS to DISS.
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CHAPTER 1 INTRODUCTION

1.1 CHAPTER OVERVIEW

This chapter aims to provide state-of-the-art results and techniques

adopted as a background for the development of the proposed theorems.

The literature reviewed in this chapter is closely related to this thesis.

First, various problems arising due to delays in linear time-invariant

(LTI) systems are discussed. Then, the basic principles of Time-Delay

Systems (TDSs) including the transfer function, stability approaches, and

some approximations for the general delay element are presented.

Finally, the basic notion of functional differential equations is repor-

ted, also including the definition of general TDSs form and some import-

ant proprieties of the TDSs characteristic equation are provided. Moreover,

the principal research objectives and contributions are discussed along

with chapters organizations.

1.2 INTRODUCTION TO TIME DELAYS SYSTEMS

TDSs are also called systems with after effect or dead-time, heredit-

ary systems, equations with deviating argument, or differential-difference

equations. They belong to the class of functional differential equations

(FDEs) which are infinite-dimensional, as opposed to ordinary differen-

tial equations (ODEs).

There exists a great number of monographs devoted to this field of

active research (at least 40 English-language books since 1963). In this

section, several TDSs fields are presented. This should give the reader a
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glimpse of how widely time delays may occur in practice.

TDSs are frequently encountered in various fields, such as economy

[1], chemistry [2], network control systems [3] and control engineering

systems [4]. A time-delay term is also used to model several biological

processes [5–7].

For example, in economics, delays can arise in data analysis or stra-

tegic decisions. As shown in [8], the analysis of the time delay of in-

formation flow may help to better understand stock market processes and

control its behavior at times of drastic instabilities.

Delays arise also in biology. For instance, a population can grow

only after the offspring mature and become reproductive, Models of re-

action chains or a transport process, gestation times, incubation periods,

transport delays, or lump biological processes take into account delay

terms. In [9], the delays can be presents also in Epidemic Models such

as COVID-19 [10], MERS-CoV and SARS-CoV [11] swine flu viruses

H1N12 [12] and H5N1 which have sparked a deadly outbreak in some

countries and spread into other parts of the world.

In network control systems [13], delays can be found in the commu-

nication network. Usually, in this case two types of delays can occur:

internal delays(due to specific internal dynamics of a given node) and

external delays (related to the communication process, due to the inform-

ation transmission and processing).

In control engineering, delay terms arise from mass transport phe-

nomena in stirred-tank reactors and flow temperature-composition con-

2



trol [14,15]. Moreover, many systems in control engineering are based on

the existence of a time-delay, such as radars [16] and sonars [17] whose

working principle relies on the time-delay between the emitted wave and

the reception of the echo.

Indeed, the presence of a human operator in a control loop is modeled

as a time-delay, an aspect of crucial importance in the theory of human-

machine interaction [18].

Besides, in industrial automation time delays are a common feature, al-

ways appearing in plants and systems involved in automatic factories. In

the evaluation of just-in-time production, the queue delay systems are the

key points of the optimization. Time delays are present in the temperat-

ure control system for our showers [19] and, particularly referring to the

internal combustion engines [20], also the production of torque [21] is

delayed with respect to the required one.

An interesting series of examples of systems with time delays include

different classes of systems:

• fluid flow models for a congested router in TCP/AQM controlled

network [22];

• car following systems [23];

• heating systems [24].

In the last decade, particular interest has been also devoted to internet

congestion [25] with many contributions proposed to understand the role

of time-delay in this field. In particular, the topic of robust control of

3



time-delay systems is dealt with in several books [19, 26].

Important applications in underwater control systems [27], in biosys-

tems analysis and control, and the area of mathematical modeling have

been also discussed. Delays terms also model circulation dynamics of

hormones in the bloodstream [28], and the dynamics of chronic myelo-

genous leukemia [29].

Delays also found in teleoperation [30] telesurgery [31], the coordina-

tion of unmanned vehicles [32, 33], decentralized and collaborative con-

trol of multiple agents [34] , [35], synchronization and haptics [36].

The presence of time delays may be either beneficial or detrimental to

a dynamic system. A feedback system that is unstable without delays

can become stable when a delay is added [37], and, on the contrary,

a system that is stable without delays may become unstable for some

delays [38, 39]. That is why the topic receives substantial attention from

the control research community [40, 41].

For example, appropriate adjustment of the spindle speed helps in

tuning the delay to avoid chattering in metal machining, while inten-

tionally adding delays to decision-making allows supply-chain managers

to observe consumer trends to make better purchasing and stocking de-

cisions [42].

1.3 BASIC PRINCIPLES OF TIME-DELAY SYSTEMS

Let us consider the continuous-time linear system S1, where the output

y(t) is related to the input u(t) by the relationship y(t) = u(t− τ). This

4



system represents an ideal time-delay. In fact, the output is a replica of

the input after a delay τ . The transfer function of this system is given by:

G(s) = e−sτ (1.1)

which is a direct application of one of the properties of the Laplace trans-

form.

The characteristic of G(s) is that it is an all-pass stable system, i.e.,|G( jω)|=

1,∀ω . The system is BIBO stable, the unique singularity is for s→−∞

and the unique zero is at s→∞. The system belongs to the class of infin-

ite dimensional linear systems.

Let us now consider the closed-loop system reported in Figure. 1.1.

The transfer function is

F(s) =
ke−sτ

1+ ke−sτ
(1.2)

Figure 1.1: A closed-loop system with a time-delay block.

In order to check its stability the poles of the systems must be com-

puted by solving

1+ ke−sτ = 0 (1.3)

5



Equation (1.3) is a transcendental equation that can be rewritten as

ke−στe− jωτ =−1 (1.4)

that is a complex equation corresponding to the following conditions on

the real and imaginary part:

ke−στ cosωτ =−1

ke−στ sinωτ = 0
(1.5)

The second condition yields sinωτ = 0, that is solved by ωτ = iπ ,

with i = 1,2, ...,n. The first condition implies that the index i must be

odd. In this case, the solution is given by σ = lnk
τ

. The system is therefore

stable if 0 < k < 1.

The same result can be obtained considering the small-gain theorem.

In fact, since it is an unitary control feedback scheme, then |ke− jωτ |must

be less than 1, ∀ωτ that leads to the condition 0 < k < 1.

Another possibility to derive the same result is to consider the Nyquist

plot and determine the number of encirclements of the critical point (−1,0).

In fact, in this case, for each k > 1 the critical point is encircled and thus

the system is unstable.

From this simple example, the poles of time-delay system are an in-

finite number. In order to have information about the stability of a time-

delay system, several approaches can be used:

1. the analytical one, that means to find the infinite roots of the charac-

teristic equation;

6



2. the classical approach in the frequency domain by using the Nyquist

criterion and the Bode diagrams.

The stability of delayed systems depends not only on the static gain

k, but also on the time-delay τ . The next example illustrates another

important case study.

Ex 1.3.0.1 Let us consider the classical control scheme shown in Figure.

1.2. It can be physically interpreted as a delay speed control system for

a motion controlled system. The controlled system may represent a car,

an airplane, a bicycle and so on, whereas the control action is performed

with some delay, due to the physiological characteristics of the human

response.

Figure 1.2: The closed-loop system used in Example 1.3.

To obtain the stability condition, the phase margin of the open-loop

system must be considered. Stability requires that it is positive. In order

to compute it, the so-called crossover frequency can be calculated as

| k
jωc

e− jωcτ |= 1 (1.6)

therefore, ωc = k. The phase margin is given as follows:

7



mφ = π−ψωc = π− π

2
−ωcτ =

π

2
−ωcτ =

π

2
− kτ (1.7)

Then, the stability condition yields kτ < π

2 .

It is evident that high values of the time-delay τ require to decrease the

gain, at the expenses of the precision of the control. On the contrary, for

small values of the time-delay τ , an higher gain can be used, with better

performance.

The examples reported above show the effects of the time-delay in

simple case studies. More in general, systems may include more than a

single delay. In similar cases, in order to get some insights on the sys-

tem behavior, it is often convenient to introduce an approximation of the

various time-delay elements. It therefore useful to get a rational function

approximation of the general delay element e−sτ that reflects its import-

ant properties.

The Padé approximation is the one more commonly used in many ap-

plications. It is derived by matching the first coefficient of the Taylor

expansion of e−sτ with that of a rational transfer function of order n that

must have all-pass characteristics. Therefore, if the approximation func-

tion is indicated as Rn(s) =
Nn(s)
Dn(s)

, we have

Dn(s) = Nn(−s) (1.8)
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1.4 FUNCTIONAL DIFFERENTIAL EQUATIONS

Functional differential equations can be used to describe time-delay

systems. To formally introduce the concept of functional differential

equations, let C([a,b],Rn) be the set of continuous functions mapping

the interval [a,b] to Rn. In many situations, one way wish to identify

a maximum time-delay r of a system. In this case, it is important to set

the continuous functions mapping [−r,0] to Rn, whose notation can be

simplified with C = C ([−r,0],Rn). For any A > 0 and any continu-

ous function of time ψ ∈ C ([t0− r, t0 +A],Rn), and t0 ≤ t ≤ t0 +A, let

ψt(t +θ), −r ≤ θ ≤ 0. The general form of a retarded functional differ-

ential equation (RFDE) (or functional differential equation of retarded

type) is

ẋ(t) = f (t,xt) (1.9)

where x(t) ∈Rn and f : RxC −→Rn. Equation (1.9) indicates that the

derivative of the state variables x at time t depends on t and x(ξ ) for

t− r ≤ ξ ≤ t. As such, to determine the future evolution of the state, it

is necessary to specify the initial state variables x(t) in a time interval of

length r, say, from t0− r to t0, i.e.,

ẋt0 = φ , (1.10)

where φ ∈ C is given. In other words, x(t0 +θ) = φ(θ),−r ≤ θ ≤ 0..

For examples of retarded functional differential equations, let us con-

9



sider

ẋt0 = ax(t)+b(x− r)+ cos(ωt), (1.11)

ẋ = (2+ sinωt)x(t), (1.12)

ẋt0 = φ , (1.13)

A retarded functional differential equation may also involve higher order

derivatives, which is known as a higher order RFDE.

1.5 CHARACTERISTIC ROOTS

The state-space representation of a linear time-invariant (LTI) system

with time delays is the following:

ẋ(t) = A0x(t)+
m

∑
k=1

Akx(t− τk) (1.14)

where A0,Ak ∈ IRnxn with k = 0, ...,q are constant state matrices and

τi ≥ 0 for i = 1, . . . ,q are time delays. Two types of TDSs can be dis-

tinguished, as reported below.

Definition 1 Incommensurate Time-Delay System

A TDS (1.15) is said uncommensurate if rk (k=1,. . . ,m where m is the

number of delays) are free parameters, i.e. the delays are rationally in-

dependent numbers.

ẋ(t) = A0x(t)+
m

∑
k=1

Akx(t− rk) (1.15)
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where A0, Ak ∈Rn×n are constant system matrices, rk ≥ 0, are time delays

and x(t) ∈ Rn×n is the state vector.

Definition 2 Commensurate Time-Delay System

A TDS (1.16) is said commensurate if rk ( k=1,. . . ,m) are rationally de-

pendent numbers, i.e. rk = kτ .

ẋ(t) = A0x(t)+
m

∑
k=1

Akx(t− kτ) (1.16)

In this thesis, only the commensurate TDSs are taken into account.

The stability of those systems is fully determined by its characteristic

quasi-polynomial a(s,τk), which is given by

a(s,τk) = det(sI−A0−
q

∑
k=1

Ake−sτk) (1.17)

or equivalently:

a(s,e−τs) =
q

∑
k=0

ak(s)e−kτs, (1.18)

where

a0(s) = sn +
n−1

∑
i=0

a0isi, ak(s) =
n−1

∑
i=0

akisi,k = 1, . . . ,q. (1.19)

Definition 3 The characteristic quasi-polynomial is said to be stable if

all its roots a(s,τ) lie in the open left half plane. It is said to be delay-

independent stable if this condition is valid for all τ ≥ 0. System is stable

if and only if its characteristic quasi-polynomial is stable.
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It is convenient to introduce the variable z = e−τs, and write (1.18) as

a bi-variate polynomial

a(s,z) =
q

∑
k=0

ak(s)z−k,z = e−τs (1.20)

Notice that the order of a0(s), often known as the ”principal term”, is

higher than the order of any ak(s), k = 1,2, . . . ,q. Throughout this thesis,

it is assumed that the system (1.16) is stable for τ = 0 or, equivalently,

a(s,1) is stable. Following the above continuity argument, the smallest

deviation of τ from τ = 0 such that the system becomes unstable can be

determined as

τ̄ := min{τ ≥ 0| a( jω,e− jτω) = 0 for some ω ∈ R}. (1.21)

τ̄ is called the delaymargin of the system. For any τ ∈ [0, τ̄) the sys-

tem is stable and, whenever τ̄ = ∞, the system is stable independent of

delay. Note that for any finite τ̄ , the frequency at which a( jω,e− jτ̄ω) = 0

represents the first contact or crossing of the characteristic roots from the

stable region to the unstable one. Note also that multiple crossings may

exist. However, since only finitely many unstable roots may be in the

right half plane, there are only a finite number of zero crossings.

Moreover, since a(s,e−τs) is a real quasi-polynomial, all its complex

roots appear in complex conjugate pairs; that is, it satisfies the conjugate

symmetry property. Consequently, it suffices to consider only the zero

crossings at positive frequencies. Let
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a( jωi,e− jθi) = 0,ωi > 0,ωi ∈ [0,2π], i = 1,2, . . . ,N.

Furthermore, define ηi = θi/ωi. It is clear that

τ̄ := min
1≤i≤N

ηi = min
{

θi

ωi
|ωi > 0

}
. (1.22)

This gives a general formula for computing the delay margin. More gen-

erally, it can be assumed, with no loss of generality, that η1 < η2 < · · ·<

ηN . It follows that the system is stable for all τ ∈ (ηi,ηi+1) whenever it is

stable for some τ∗ ∈ (ηi,ηi+1). Then, this allows to ascertain a system’s

stability in the full range of delay values, beyond the interval determined

by τ̄ . It also indicates that the stability at τ = 0 can be made without loss

of generality.

By using the bi-variate polynomial representation (1.20), it is rather

evident that can be found by solving the imaginary roots s ∈ ∂C+ and

the unitary roots z ∈ ∂D of a(s,z), giving rise to a stability criterion com-

monly referred to as two-variable criterion.

The two-variable criterion appears to be the origin of many classical

stability tests for systems with commensurate delays, which attempt to

solve the bi-variate polynomial (1.20) in one way or another.

In particular, most of the classical tests attempt to accomplish this by

means of eliminating one variable, thus converting the stability problem

to one free of delay, then seeking the solution of polynomials of one

single variable.

In the next chapter, a number of tests related to the previously men-

tioned theory are presented. These sample tests are rather representative
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of classical results and should give the reader the essential flavor of the

two-variable criterion.
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1.6 STATE-OF-THE-ART GAPS

As mentioned above, several works have been published on CTDSs

subject. However, there are cases in which some gaps can be overcome,

which are the objectives of this thesis. These gaps are summarized below:

• In order to find the quasi-polynomial coefficients, the literature based

on the symbolic method is hard to compute when the multiple delays

are present within TDSs;

• when studying the stability of CTDSs, there is a list of analytical and

graphical methods that allows finding the roots of the characteristic

equation and the delay margin. However, the approaches have a list

of drawbacks. In case of analytical method, which includes:

1. Hermite Matric Formation [65, 66]

2. Elimination of Transcendental terms [67]

3. Matrix Pencil [68]

4. Rekasius Substitution [70]

5. Kronecker Multiplication [69]

6. Nyquist criteria path immaginary axis and a half circle [71–76]

they all contain some small numerical errors, high degree complex

polynomial to be solved and some of them require special atten-

tion avoiding the false solutions besides hardness in the numerical

algorithm.
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Instead, for the graphical methods including the one based on root-

loci, it takes several steps to obtain the stability results;

• many theoretical results reported in literature provide necessary and

sufficient conditions for the TDSs stability, but most of them deal

with systems with only one or two delay parameters [45–48]. In [49]

some conditions for ensuring a DDSS were proposed, based on find-

ing a time-delay range for which the system is stable. In [26], a

method based on the analytic curve perspective is introduced to cal-

culate the spectrum of a time-delay system. It is shown that the

asymptotic behavior of the critical imaginary roots can be invest-

igated through the Puiseux series. A recent result was presented

in [52], which shows that the asymptotic behavior of imaginary roots

with multiplicity can be completely characterized by the Newton-

Puiseux series. However, all the approaches presented in the liter-

ature are based on finding the stable regions in the delay parameter

space using the concept that the crossing frequencies are only de-

pendent on the delay. On the other side, some results were discussed

in the literature which gives necessary and sufficient conditions for

DISSs [53, 54], that require the computation of constant matrices

in the frequency domain. However, although this approach allows

to know whether the system is DDSS or not, it does not provide a

strategy to render a DDSS into a DISS;

• the main idea behind the MBD is the development of a complete

16



system in a virtual environment, to reproduce the expected behavior

of the real system and to predict its performances before the build-

ing. The MBD can be applied to model different systems such as

embedded systems [77, 78], on-board power systems [79], protec-

tion devices [80]. However, a dedicated modeling approach for a

time-delay systems does not exist in the MBD literature.

1.7 RESEARCH OBJECTIVES

The contents of this thesis are centered on the theme of stability of

commensurate time-delay systems and their application. The contribu-

tion of this work is to overcome the State-Of-The-Art drawbacks previ-

ously mentioned. The main objectives are:

• To develop a simplified and efficient method to find the quasi-polynomial

coefficients of CTDSs especially for systems with multiple delays,

in order to overcome the hard computation of the symbolic approach;

• to design a graphical method for stability delay-dependent analysis,

thus allowing to immediately obtain the imaginary roots in the com-

plex plane and the correspondent delay margin, that avoids inaccur-

acy and complex computations;

• to present a controller design procedure able to transform the system

into a delay-independent stable system without any condition of the

delay parameter as in the literature;
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• to draw a stability chart for delay independent stability that depends

only on two parameters;

• to model an application example on how time-delay affects the sys-

tem stability towards a model-based design approach.

1.8 CHAPTERS ORGANIZATION

This chapter has begun with several areas where time delays play an

important role. Then, it continues to provide an introductory exposi-

tion of some basic concepts and results for stability analysis, such as

functional differential equation representation and characteristic quasi-

polynomial. Moreover, a state-of-the-art, particularly regarding the CTDSs

stability is reported. Finally, a brief outline of research objectives is

shown.

Chapter 2 focuses on systems with commensurate delays only. It

shows the correspondent results presented in the literature which helps

to build the main contributions of this thesis. It begin by presenting the

main approaches to find the imaginary characteristic equation roots and

then it shows both frequency sweeping and constant matrix tests. They

are necessary and sufficient conditions for delay-dependent and delay-

independent stability, and both of them require computing matrix pencils.

Chapter 3 is divided into two main sections which regard the two first

contributions of this work. The former is developing a numerical proced-

ure to obtain the pseudo-polynomial characteristic equation coefficients.

The method is formulated in terms of an interpolation problem, and it
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is based on the generation of a suitable set of random numbers to find

the characteristic equation coefficients. The latter is based on the de-

velopment of a graphical approach that provides the necessary and suf-

ficient condition for stability dependent on delay. Finally, the chapter

provides a comparison between one of the analytical approaches presen-

ted in Chapter 2 and the graphical approach in terms of complexity, de-

gree of the polynomial, and numerical errors.

Independent delay stability systems approaches are addressed in Chapter

4 and it also contains other two contributions of this thesis. Firstly, it in-

troduces a single controller gain that allows making the system DISS. The

approach could be applied to any CTDS, independently from the number

of delays. It is based on two fundamental steps: the analysis of the system

stability (both delay-dependent or independent) and, in case of a DDSS,

the design of the gain able to transform it in a DISS. A control gain para-

meter, that allows shifting the roots from the Right Half Complex Plane

(RHCP) to the Left Half Complex Plane (LHCP) for any values of delay,

is proven. Finally, visualization of asymptotic stability in the form of

stability chart is demonstrated using the controller gain parameter and

another variable.

Chapter 5 contains the last contribution, that concentrates on Model-

Based Design approach with time-delay. It shows how the model-based

design approach can be used to implement the time delay in a feedback

control scheme. The block time delay in Simulink is adopted to approx-

imate the time delay. An application based on STM32 Motor Control

19



Embedded Software System will be reported to show how time delays

affect such systems.
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CHAPTER 2 STABILITY OF SYSTEMS WITH

COMMENSURATE DELAYS - STATE-OF-THE-ART

2.1 CHAPTER OVERVIEW

This chapter presents how the stability of systems with commensurate

delays has been exploited in the literature. From Chapter 1, it is clear that

the stability of an LTI delay system can be completely characterized by

its characteristic roots, i.e., the solutions to its characteristic equation.

Two stability notions, known as delay-independent stability (or sta-

bility independent of delay) and delay-dependent stability (or stability

dependent of delay) are covered in this chapter.

The chapter opens with discussing a number of classical tests to study

the system stability using two-variable criterion. Then, it gives a general

method to determine if the system is Delay Dependent Stability (DDS)

or Delay Independent Stability (DIS). It also includes the Schr-Cohn

method, Elimination of transcendental terms, Matrix pencil and Rekasius

substitution. These methods allow to find the corresponding frequencies

of imaginary characteristic roots if they exist. Then, the main results re-

lated to DISs conditions for LTI systems with commensurate delays will

be discussed.

In particular, for systems with commensurate delays, a frequency sweep-

ing test is presented which requires computing the spectral radius of a

frequency-dependent matrix.

Finally, it covers the visualization of asymptotic stability in the form
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of stability charts.

2.2 CLASSICAL STABILITY TESTS

2.2.1 2-D Stability Tests

Given that the characteristic quasi-polynomial can be presented as a

bi-variate polynomial, therefore, it can be treated as the characteristic

polynomial of a 2-D system, and its stability would be analyzed as in the

case of a 2-D polynomial. Indeed, let consider the bi-linear transforma-

tion

s =
1+λ

a−λ
(2.23)

which maps s from the open right half complex plane C+ to λ in the open

unit disk D. Construct the 2−D polynomial

b(λ ,z) := (1−λ )na(
1+λ

1−λ
,z) (2.24)

It is evident that a(s,z) = 0 for some (s,z) ∈ ∂Dx∂D. In addition,

the quasi-polynomial a(s,e−τs) has no root in C̄+ if and only if b(λ ,z) is

stable; stability of a 2-D polynomial means that all its roots lie outside

the closed region D̄xD̄. Hence, to verify if the system is stable independ-

ent of delay, it suffices to check whether the 2-D polynomial b(λ ,z) is

stable. Moreover, to determine whether the stability is delay-dependent,

it is necessary to calculate the roots of b(λ ,z). Stability of 2-D polyno-

mials and 2-D systems were deeply covered in the theory of signal pro-

cessing. The equivalence noted here between the stability of a time-delay
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system and that of a 2-D polynomial enables us to draw upon the existing

analysis techniques developed extensively for the latter, although 2-D sta-

bility tests themselves generally pose a rather formidable computational

task.

In broader terms, one may view the bi-variate polynomial a(s,z) as

a 2-D polynomial and tackle the stability problem directly. Define the

conjugate polynomial

ā(s,z) := zqa(−s,z−1). (2.25)

By the conjugate symmetry of a(s,z), it follows that (s,z) ∈ ∂C+x∂D

is a root of a(s,z) if and only if it is also a root of ā(s,z). Thus, in order to

find the roots of a(s,z) on ∂C+x∂D, it suffices to solve the simultaneous

polynomial equations

a(s,z) = 0, (2.26)

ā(s,z) = 0. (2.27)

When no solution exists, and when the system is stable in the delay-

free case, it must also be stable independent of delay. Otherwise, when

the two equations do admit a common solution, it is possible to elimin-

ate one variable, resulting in a polynomial of one single variable. For

example, we may eliminate s and obtain a polynomial in z, i.e. b(z). If

b(z) has no unitary root, we may again conclude that the system is stable

independent of delay. Otherwise, we may proceed to find all the unitary
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roots zi of b(z).

There are only a finite number of such roots since b(z) is a polyno-

mial. For each zi, a(s,zi) is a polynomial of the variable s, which ad-

mits only a finite number of possible roots si ∈ ∂C+. Thus, all the roots

(si,zi)∈ ∂C+x∂D such that a(si,zi) = 0 can be found. Since the bi-variate

polynomial satisfies the conjugate symmetry property, only the si on the

positive imaginary axis need to be considered, where si = jωi, zi = e−ωi,

and, ωi > 0, ωi ∈ [0,2π]. The delay margin can then be determined using

(1.22).

2.2.2 Direct Method

This section is devoted to illustrate the directmethod that provides a

criterion to evaluate the stability of quasi-polynomials of the form:

p(s,τ) = p0(s)+ p1(s)e−sτ (2.28)

under the hypothesis that the system without delay is stable, that means

the roots of p(s,0) are all in the left-half plane. The limit value of the

delay, τ∗, for which the delay system is stable, is found by considering

when the characteristic equation p(s,τ) has some solution on the ima-

ginary axis. Thanks to the complex conjugate symmetry of the complex

roots, this root is also a solution of the equation p(−s,τ) = 0 for the same

value τ . Thus, simultaneous solutions of p(s,τ) = 0 and p(−s,τ) = 0 for

s = jω allow to obtain the following equations:
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p0( jω)+ p1( jω)e− jωτ = 0

p0(− jω)+ p1(− jω)e jωτ = 0
(2.29)

that prompts for the derivation of the exponential term as follows:

e jωτ =− p0(− jω)

p1(− jω)
(2.30)

Substituting this expression in 2.29 it results

p0( jω)p0(− jω)− p1( jω)p1(− jω) = 0 (2.31)

or equivalently

|p1( jω)|2−|p0( jω)|2 = 0 (2.32)

When equation (2.31) (or equation (2.32)) admits a solution, i.e. ,

then, the limit delay for stability can be derived from (2.30) with = ω̄ .

Otherwise, if equation (2.31) (or equation (2.32)) does not have any solu-

tions, then the system with characteristic equation p(s,τ) is stable for any

value of τ .

2.3 DELAY DEPENDENT STABILITY

To determine if the system stability is delay dependent or independent,

it must be verified if the roots of the characteristic equation cross the

imaginary axe in the complex plane. In case of delay dependent systems

stability, the transition points from stable to unstable behavior are given

by the pure imaginary roots.
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There exist five frequency approaches in the literature to find the ima-

ginary roots of the characteristic equation:

• Schur-Cohn method

• Elimination of transcendental terms

• Matrix pencil, Kronecker sum method

• Kronecker multiplication and elementary transformation

• Rekasius substitution

The first two and the last approaches are described in details below.

2.3.1 Schur-Cohn Method

To obtain the Schur-Cohn matrix, the first step is rewriting (1.20) by

multiplying it with zk, for k = 0,1, . . . ,q−1. This generates q equations in

terms of zk, k =−q, . . . ,−1,0,1, . . . ,q−2,q−1, which are 2q linearly in-

dependent terms. Let us consider the companion equation, a(−s,z) = 0,

which also satisfies for s = jω due to the fact that the imaginary charac-

teristic root jω always appears as a complex conjugate pair.

a(s,z) = a(−s,z) =
q

∑
k=0

ak(s)zk =
q

∑
k=0

ak(−s)zk (2.33)

Then, multiplying a(s,z) with z−k, k = 1,2, . . . ,q, it generates other q

equations in terms of the same 2q linearly independent terms zk. Both of

these sets of q equations can be combined in a single matrix equation as:

Σ(s)E2 = 0
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E2 :=



e0

e1

...

...

eq

e−q

e−q+1

...

...

e−1



(2.34)

where ek represents zk as a shorthand notation and ∑(s) is known to be

as Schur-Cohn matrix:

Σ(s) :=

 Σ1(s) Σ2(s)

Σ2
H(s) Σ1

H(s)

 (2.35)

where Σ1
H implies the hermitian of Σ1. Σ1 and Σ2 are:

Σ1(s) =


a0(s) 0 . . . 0

a1(s) a0(s) . . . 0
... . . . ... ...

aq−1(s) aq−2(s) . . . a0(s)

 (2.36)
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Σ2(s) =


aq(s) aq−1(s) . . . a1(s)

0 aq(s) . . . a2(s)
... . . . ... ...

0 0 . . . aq(s)

 (2.37)

The determinant of the matrix (2.35) for s = jω is:

B(s) = detΣ(s) = (−1)q | aq(s) |2q
n

∏
i, j=1

(1− ziz̄ j),z = eτs (2.38)

where zi, i = 1,. . . ,q, are the roots of the polynomial a(z) for fixed s.

Therefore, for all frequencies ω > 0, there is a z ∈ ∂D (D is the open unit

disk) such that a(s) = a(z) = 0 whenever B(s) = 0.

By solving the equation B(s) = 0, all such ω > 0 where a(z) = a(s,z)

has a root on the unit circle ∂D can be found. Since B(s) defines a poly-

nomial in ω , the solutions can be found by solving the eigenvalues of a

constant matrix. Obviously there are only a finite number of solutions.

2.3.2 Elimination of Transcendental Terms

This procedure follows the similar starting premise as in Schur-Cohn

methodology. If the characteristic quasi-polynomial a(s,τ) have an ima-

ginary roots the corresponding ā(s,τ) should also have the same roots.

By multiplying it with e−kτs leads to:

e−kτsā(s,τ) =
k

∑
i=1

āi(s)e(i−k)τs = 0 (2.39)

Then, it can be eliminated the highest commensurate term (i.e.e−pτs)

between equation (1.20) and equation (4.102) yielding a new equation:
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a1(s,τ) =
k−1

∑
i=1

ai(s)
(1)eiτs = 0 (2.40)

which has degree of k-1 . If this procedure of eliminating the highest

degree terms k is repeated successively, until it arrives at

ak(s,τ) = a(k)0 (s) = 0 (2.41)

an algebraic characteristic equation with no transcendentally left. It can

be shown that ak
0 is a polynomial of degree n2k. Notice that due to the

successive substitution of ”s” with ”− s” during the manipulations, the

imaginary roots of the original characteristic equation a are preserved,

although the degree of the s terms in polynomials ai(s) continuously in-

creases. Ultimately there remains only n2k finite roots of ak(s) instead

of the infinitely many roots of the original a(s,τ). It is guaranteed that

only the imaginary roots of these two equations are identical. Therefore

searching for the imaginary roots of ak(s) is the sufficient procedure for

the mission.

2.3.3 Rekasius Substitution

Rekasius substitution is based on a substitution in equation (1.20).

e−pτs =
1− τs
1+ τs

, when s = ωi only,τ ∈ℜ where (2.42)
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τ = 2
ω
[tan−1(ωτ)± lπ], l = 0,1, . . .

This exact substitution creates a new characteristic equation

a(s,τ) =
p

∑
k=0

āk(s)
(1− τs

1+ τs

)k
= 0 (2.43)

Multiplying (2.43)with 1+ τsp leads to:

p

∑
k=0

āk(s)(1+ τs)p−k(1− τs)k = 0 (2.44)

Considering that ak(s) are ordinary polynomials, equation (2.44) is

nothing other than a polynomial in s with parameters coefficients in τ .

Since the system in equation (1.16) is retarded type, the highest degree

term of s is n and it is in a0(s). Therefore, equation (2.44) is a polynomial

of s in degree n + p. The question is to determine all τ ∈R values, which

cause imaginary roots of s = ωi. This can be achieved by forming the

Routh’s array of the equation (2.44), and setting the only term in the 1s

row to zero. It can be shown that this polynomial is of degree np in τ , of

which only the real roots are searched. Once these roots are determined

the corresponding crossing frequencies s = ωi can be found using the

auxiliary equation, which is formed by the s2i row of the Routh’s array.

Notice that, the s2i row has two terms, which are functions of τ . They

must agree in sign for those τ values to yield imaginary roots. Final

results are exhaustive in detecting all the imaginary characteristic roots

we set out to solve. In the case of degenerate imaginary roots at the

origin, s = ωi with ωi, one needs to check in addition, the constant term

in equation (2.44) with no s term; if
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p

∑
k=0

ak(0) = 0 (2.45)

is satisfied or not. If it does there is at least one root at s = 0, which

remains there for all τ ∈ R+. It is easy to determine if this root is a

multiple root for some τ values.

2.4 DELAY INDEPENDENT STABILITY

Frequency domain delay-independent and necessary and sufficient sta-

bility conditions will be presented.

2.4.1 Frequency Sweeping Method

The characteristic equation (1.17) is said to be DISS if and only if it

occurs

1. a0(s) is Hurwitz

2. a0(s)+∑
q
k=1 ak(s) is Hurwitz

3. ρ(M( jω))< 1, ∀ω > 0,

where ρ(M( jω)) indicates the spectral radius of the matrix M defined as

M(s) =


−a1(s)

a0(s)
. . . −aq−1(s)

a0(s)
−aq(s)

a0(s)

1 . . . 0 0
... . . . ... ...

0 . . . 1 0

 (2.46)
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Stability conditions of this type are routinely found in robust control

theory, and are generally held as efficient measures in stability analysis.

Unlike the classical results, it rids of any variable elimination proced-

ure and lends a readily implementable criterion. The test can be eas-

ily checked by computing essentially the frequency-dependent measure

ρ(M( jω))< 1, which is rather amenable to computation due to the ease

in computing the spectral radius.

2.4.2 Stability Charts

Stability intervals can be extended to a two-dimensional (2D) map,

known as a stability chart, in which the intervals are displayed with re-

spect to a controller gain.

A stability chart can also be obtained in the plane of two delays, where

each delay arises from a different input-output system in the closed-loop

control. Compared to the one-dimensional (1D) stability analysis along

a single delay axis, the stability information in a 2D delay plane is richer

since it represents whether a system is stable or not with respect to all

combinations of delays. A stability chart can reveal whether increasing a

delay value favors stability or instability.

2.5 CHAPTER SUMMARY

In this chapter, the classical methods for TDS stability analysis were

presented.

Firstly, it was shown that the stability tests are rooted in the same fun-
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damental idea, which is to find the roots of characteristic equation in the

complex plane. Then, the classical methods lied in a variable elimination

procedure which required a complex symbolic computation.

Finally, the frequency sweeping method has been presented to provide

sufficient conditions to have a DISS.
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CHAPTER 3 NUMERICAL AND GRAPHICAL METHOD FOR

THE STABILITY ANALYSIS OF COMMENSURATE MULTIPLE

TIME-DELAY IMPERFECT SYSTEMS

3.1 CHAPTER OVERVIEW

In this chapter, by using the concepts covered in chapter 1 and 2, a

numerical methodology which finds the coefficients of the characteristic

quasi-polynomial is presented. Some case studied will be illustrated to

show how the random number generation method affects the procedure

convergence.

Then, the stability analysis to find the purely imaginary characteristic

roots of LTI will be carried out through a graphical method. This method

gives a quick conclusion on the stability analysis which means finding if

the system is delay-dependent or independent.

Comparative cases study between this graphical method and the nu-

merical one (Schur-Cohn) will be shown in order to demonstrate the

strengths and weaknesses of the presented method. A part of this chapter

has been published in [43, 44].

3.2 NUMERICAL PROCEDURE TO OBTAIN THE COEFFICIENTS OF THE

PSEUDO-POLYNOMIAL EQUATION

In this section, a numerical procedure to obtain the coefficients of the

pseudo-polynomial equation of a commensurate time-delay system is de-

scribed.
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3.2.1 Proposed Procedure

The main objective of this section is to describe how the coefficients of

the pseudo-polynomial characteristic equation can be obtained by using

a numerical interpolation procedure. For the sake of simplicity, let us

consider the case where k = 2 in the equation 1.20. The described method

can be easily generalized to any value of k. In the considered case, the

equation (1.20) can be written as:

a(s,z) = (a00sn +a01sn−1 + · · ·+a0n)z0

+(a11sn−1 +(a12sn−2 + · · ·+(a1n)z1

+(a21sn−1 +(a22sn−2 + · · ·+(a2n)z2

+(a31sn−2 +(a32sn−3 + · · ·+(a3n)z3

+ · · ·+(akn)zq

(3.47)

The above equation has r unknown coefficients, a00, akn, with r given

by the following formula:

r =
n

∑
i=1

r0 + ki, r0 = n+1 (3.48)

In order to find the unknown coefficients, the following system of r linear

equations should be solved:

C = H.M (3.49)

with C, M ∈ Rr, H ∈ Rrxr defined as follow:

M = [a0n, . . . ,a00,a1n, . . . ,a11, . . . ,akn] (3.50)
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C = [c1, . . . ,cr] (3.51)

where H(s,τ) is:

H = (H0|H1| . . . |Hq) (3.52)

Hi =


sn−i

1 zi
1 sn−i−1

1 zi
1 · · · zi

1

sn−i
2 zi

2 sn−i−1
2 zi

2 · · · zi
2

... ... ... ...

sn−i
r zi

r sn−i−1
r zi

r · · · zi
r

 , i = 0, · · · ,q (3.53)

The ci, i = 1, · · · ,r coefficients can be computed by using 1.18:

ci = det(siI−A0−
m

∑
k=1

Akzk
i ) (3.54)

According to the system 3.49, the vector M containing the constant coef-

ficients of the pseudo-polynomial can be obtained as:

M = H−1C (3.55)

where H−1 is the inverse of H. The system 3.54 is solved by using a

numerical procedure which is described below.

Let us choose r random values to compute si and to construct a vector

S ∈ R1xr with i = 1, · · · ,r. The corresponding zi values are calculated for

each si according to the formula z = e−τs. The coefficients ci in 3.54 can

therefore be calculated. The matrix H in 3.53 can also be determined

using si. This is very critical task because ill-conditioning of the matrix

H should be avoided. That is not obvious, giving that the matrix H has

been obtained using random vector S.
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3.2.2 Procedure Summary

The proposed algorithm is summarized in the following points:

Step 1. Compute the index q = nxk.

Step 2. Find the index r in 3.48.

Step 3. Generate a random vector S of size r.

Step 4. Calculate the vector C using 3.54

Step 5. Find the matrix H using 3.53.

Step 6. Solve the system 3.55 to obtain the vector M.

3.2.3 Case Studies

In the next section, two examples will be presented to show how the

choice of the random values affects the matrix H.

Ex 3.2.3.1 Let us consider the following LTI-TDS with n = 2 and k = 1.

ẋ(t) = A0x(t)+A1x(t− τ) (3.56)

where

A0 =

 0 1

−1 1

 (3.57)

A1 =

 0 0

−9 −1.5

 (3.58)
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It can be easily verified to be stable for τ = 0. The characteristic quasi-

polynomial is obtained as

a(s,z) = (s2− s+1)+(
3
2

s+9)z (3.59)

The coefficients of the characteristic equation (3.59), obtained by us-

ing symbolic calculus, are:

coe f = [1 −1 1
3
2

9] (3.60)

The results obtained with the proposed procedure, with different ran-

dom number generators, are shown below, outlining how this choice af-

fects the matrix inevitability. The effect of the choice of the random

vector S in step 3 is evaluated using different distribution ranges. The

procedure is repeated over 100 times to access the stability of the solu-

tion with respect to different choices of the random number generator.

The performance is evaluated by computing the real coefficients using

the symbolic calculus and comparing the mean and variance values of

the two solutions.

Exponential Distribution

In this section, the random numbers are generated from the exponen-

tial distribution in order to obtain the quasi-polynomial coefficients .

In MATLAB to generate random numbers from this distribution the

function exprnd(mu) with mean mu can be used.
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Figure 3.1: Comparison between the real coefficients (red) and the coefficients calcu-

lated from the exponential distribution (blue).

Figure. 3.1 shows that the coefficients generated using the numerical

procedure and the symbolic one are equal for the 100 simulations run.

The mean value of the coefficients for the 100 simulations is:

coe fmean = [1 −1 1
3
2

9] (3.61)

with variance:

coe fvariance = [1.75e−26 4.68e−24 5.12e−23 2.80e−21 5.53e−20]

(3.62)

The results shows that the exponential distribution is suitable to gen-

erate the random numbers to construct the quasi-polynomial coefficients.

The same results in term of mean values were obtained using the fol-

lowing distributions:
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• Uniform Distribution

• Beta Distribution

• weibull distribution

It should be mention that the best results were obtained with exponen-

tial distribution for a very small variance. In the next example, the matrix

system number and the time delays are increasing, then reporting how the

coefficients are being affected using the above mentioned distributions.

Ex 3.2.3.2 Let us consider the following LTI-TDS with n = 3 and k = 2.

ẋ(t) = A0x(t)+A1x(t− τ)+A2x(t−2τ) (3.63)

where

A0 =


4 −3 6

5 2 9

1 3 6

 (3.64)

A1 =


2 0 1

−1 1 7

9 3 4

 (3.65)

A2 =


7 −2 9

−1 6 0

2 −3 1

 (3.66)

It can be easily verified to be stable at τ = 0. The respective characteristic

equation is
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a(s,z) = (s3−12s2 +26s−81)

+(−7s2−56s+417)z

+(−14s2 +119s+327)z2

+(10s+602)z3

+(35s+193)z4

+217z5

+41z6

(3.67)

The coefficients of the equation (3.67), obtained by using symbolic

calculus, are:

coe f = [1 −12 26 −81 −7 −56 417 −14

119 327 10 602 35 193 217 41]
(3.68)

Uniform Distribution

In this section, the random command in MATLAB is used for generat-

ing the values si in the interval [0,1]. Figure. 3.2 shows the solutions for

the 100 simulations.
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Figure 3.2: Comparison between the real coefficients (red) and the coefficients calcu-

lated by using the rand function (blue).

The mean value of the coefficients over the 100 simulations is:

coe fmean = [−1.6 −55.71 732.03 781.43 −913.23 2.104e3

2.7e3 −8.5e3 1.25e4 −7.15e3 −9.27e3 −914

−2.41e3 177 42.62]

(3.69)

with variance:

coe fvarience = [2.76e3 7.74e5 5.85e7 2.07e8 2.35e7 2.6e7

2.89e8 2.4e81.93e9 6.39e9 1.41e9 2.79e9 2.37e7

1.98e8 7.32e4 99.16]

(3.70)
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It can be observed from Figure. 3.2 that the results of the rand func-

tion in terms of mean and variance for the case of two delays provided

a large error between the values computed with respect to the symbolic

one. Therefore the use of the rand function to generate the random num-

bers is not a suitable solution.

Exponential Distribution

In this section, the random numbers to generate the quasi-polynomial

coefficients are from the exponential distribution.

Figure 3.3: Comparison between the real coefficients (red) and the coefficients calcu-

lated by using the exponential distribution (blue).

The mean value over the 100 simulations is:
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coe fmean = [1 −12 26 −81 −7 −56 417

−14 119 327 10 602 35 193 217 41]
(3.71)

coe f fvarience = [8.44e−23 3.05e−19 1.25e−16 5.23e−16

3.11e−12 1.934e−9 7.277e−9 1.01e−6 2.1e−4 0.0017

0.0038 0.0046 0.2534 0.0076 0.0035 0.00152]

(3.72)

As it can be observed from Figure. 3.2 that the exponential distribution

provided a suitable results. The coefficients computed with the symbolic

method and those obtained with this method are equal.

Weibull distribution

In this section, the wblrnd command in MATLAB will be used to gen-

erate the random numbers from the weibull distribution. Figure 3.4 shows

the solutions over 100 simulations.
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Figure 3.4: Comparison between the real coefficients (red) and the coefficients calcu-

lated by using the wblrnd function (blue).

The mean solution over 100 trials is:

coe fmean = [0.9996 −11.98 25.82 −80.56 −10.16 −26.45

297.76 82.32 −593.49 1.68e3 −1.45e3 2.06e3

−1.87e3 −562.45 −492.37 1e3]

(3.73)

with variance of:

coe fvarience = [6.027e−7 0.0015 0.2225 1.356 58.01 7.55e3

1.59e5 8.39e4 4.57e6 1.27e7 1.63e7 2.02e7

3.08e7 3.81e6 3.93e6 8.75e6]

(3.74)

Figure. 3.4 illustrates that the Weibull distribution is not suitable to
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generate the random numbers to obtain the coefficients of the quasi-

polynomial.

The results described above show that the choice of the random num-

ber distribution is relevant to the robustness of the solution. Satisfactory

results are obtained with a exponential distribution, which is able to guar-

antee the reliability and robustness of the method.

3.3 GRAPHICAL METHOD FOR DELAY DEPENDENT STABILITY ANALYSIS

Stability criteria based on frequency domain representations are time-

honored tools in the study of dynamical systems. Classical examples

of frequency domain stability criteria include different results such as

the Nyquist test and root-locus method. With the aid of the small gain

theorem, frequency domain tests have become increasingly more pre-

valent in stability analysis, and have played especially a central role in

the theory of robust control. More generally, while frequency-domain

methods are used predominantly in the analysis of linear systems, they

have also found utilities in the studies of nonlinear systems. Various

frequency-sweeping tests are now commonplace. This section develops

a frequency domain stability method for LTI systems with commensur-

ate delays. From Chapter 2, it is well known that the stability of an LTI

delay system can be completely characterized by its characteristic roots.

In this section, a graphical method to obtain the imaginary roots of the

characteristic equation is described. Then, by using equation (1.22), the

delay margin for which the system becomes unstable can be computed.
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3.3.1 Graphical Method Procedure

As a first step, the characteristic equation introduced in (1.17) can be

rewritten as:

det( jω−A0−
m

∑
k=0

Akzk) = det(λ I−A) = 0 (3.75)

where

A = A0 +
m

∑
k=0

Akzk (3.76)

and z = e− jθ and λ is the eigenvalues of the matrix A. It represents the

imaginary roots of the characteristic equation. As described in Chapter

2, to obtain the imaginary roots, following variable definitions are taken

into account λ = jω , z = e− jθ , where ω > 0, and θ ∈ [0,2π].

Therefore, the method is based on fixing a number r of θp values

where p = [1 . . .r]. It should be mentioned that the choice of r is very

important because it impacts the precision of the eigenvalues and there-

fore their real parts; the higher is r value, the closer to zero is its real

part.

The next steps are the computation of the matrix A for each value of

θp, and then the computation and the plot of the eigenvalues λp by using

a numerical algorithm, which has been implemented in MATLAB.

From the obtained plot, a conclusion can be done easily on the system

stability analysis: if there are no crosses of the plot with the imaginary

axes, it can be concluded that the system is delay independent stable, i.e.

it is stable for any τ ∈ [0, inf).

Otherwise, if the obtained plot presents crossing of the imaginary
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axes, the system stability is time-delay dependent and it exists a delay

margin for which the system become unstable. The imaginary roots

λi = jωi can be easily extracted along with the crossing frequencies ωi to

be used in the next step.

The last step is the computation of the delay margin, that can be done

by computing the corresponding zi over the crossing frequencies ωi found

in the previous step. It should be mentioned that zi = e− jωiτ is a vector

of solutions. The delay margin is calculated according to (1.22) and it

presents the minimum value of the solution vector.

3.3.2 Algorithm to Find the Characteristic Equation Imaginary Roots

The procedure is summarized below. Given a system matrices with

size n and time-delay k:

Step 1. Choose a value for r , and determine the r values of θp.

Step 2. Compute all the matrices Ap for each θp by using (3.75).

Step 3. For each matrix Ap, compute the corresponding eigenvalues vector

λp.

Step 4. Plot all the eigenvalues λp on the complex plane s = σ + jω .

Step 5. From the plot, get its N crossing points on the imaginary axe ωi.

Step 6. If N ≥ 1, construct a vector ωi ∈ [1, . . .N] containing these values.

Step 7. Compute the vector zi (size q) corresponding to the imaginary roots

ωi obtained in step 6 by using (3.75).
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Step 8. Compute the delay margin by using (1.22).

The graphical method proposed in this section for the stability ana-

lysis of TDSs is a very feasible method, due to the directness of getting

the imaginary roots. The method does not require the solution of high

degree 2 variables polynomials, as described above for some of the ana-

lytical methods. Also, using the proposed graphical method enables us

to visualize in short time a conclusion on the system stability analysis. A

drawback of this graphical method is that it is not possible to have com-

puted roots with the real parts perfectly equal to zero, although they are

very close to the imaginary axe.

In this case, the criteria followed to choose the crossing ωi frequencies

is to search for their real part zero crossing. For an acceptable accuracy,

a good practice is to set a value of r sufficiently high (>1000). This, in

turn, is more demanding in terms of execution speed and RAM memory

size. In the next section, numerical examples are reported to show the

behavior of the proposed method.
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3.3.3 Case Studies

In this part, three examples are reported to show a comparison among

the proposed method and the analytical method (Schur-Cohn).

Ex 3.3.3.1 Let us consider the following LTI-TDS with n = 2 and k = 1.

ẋ(t) = A0x(t)+A1x(t− τ) (3.77)

with the system matrices defined as:

A0 =

 −4 −1

3.57 0

 (3.78)

A1 =

−6 −1

3 −2

 (3.79)

The eigenvalues of the system matrices are:

• λA0 =−6.4142,−3.5858,

• λA1 =−5,−3

• λA0+A1 =−9.0000+1.7321i,−9.0000−1.7321i.

Therefore, the system (3.77) is stable for τ = 0. The corresponding char-

acteristic equation for this system is:

a(s,z) = s2 +10s+23

+(8s+46)z

+15z2

(3.80)
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Let us use the Schur-Cohn method and make the computation of the

imaginary roots of (3.77), it they exist.

To this aim, the method described in the Section above was adopted

and the computation of the matrix ∑(s) and the polynomial det(∑(s))

was done.

The results of the computation show that:

• the system stability is time-delay dependent;

• the matrix ∑(s) size is 4×4

S =


s2 +10s+23 0 15 8s+46

8s+46 s2 +10s+23 0 15

15 0 s2−10s+23 46−8s

46−8s 15 0 s2−10s+23


(3.81)

• The polynomial det(∑(s)) degree is 2n2 = 50 and the imaginary

root is:

σ ± jω =± j4.2937 (3.82)

The Table (3.1) illustrates the delay corresponding to the crossing fre-

quency of this system.

Now the crossing frequencies in the case of the graphical method are

evaluated.
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Table 3.1: Delays corresponding to the crossing frequencies of the system (3.77) using

Schur-Cohn method

Crossing frequency ωk z = e(− jωkτ) Time delay τk

4.2937 -0.606-j0.795 0.5173

Figure 3.5: Plot of the eigenvalues of the characteristic equation (3.80) in the complex

plane of the system (blue) and the imaginary axis (red) for the system 3.77.

From Figure. 3.5, only one imaginary root that cross the imaginary

axis is observed, where:

σ ± jω =± j4.3 (3.83)

The correspondent delay margin is τ = 0.518.

Ex 3.3.3.2 This part presents the second example in which the system has

a single time delay. Let us consider the following LTI-TDS with n = 5
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and k = 1.

ẋ(t) = A0x(t)+A1x(t− τ) (3.84)

with the system matrices defined as:

A0 =



−2 −0.9 1.1 −0.075 0

3.57 0 −1.25 0 −2

−0.23 0.5 0 −0.16 2

0 0 0.16 0 0

−3 0 −1 0.265 −1.86


(3.85)

A1 =



−3 −2.67 0 0 0

0.89 0 −1.2 −3 −2

−0.7 0.2 0 −0.16 2

0 0 0.9 0 0

−5 3.8 −1 2.9 −3


(3.86)

According to (1.17) it can be easily verified that the system matrices

are stable and, therefore, the system is stable for τ = 0.

The corresponding characteristic equation for the system is:
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a(s,z) = s5 +3.86s4 +9.8366s3 +22.1658s2 +6.6107s+0.197

+(5.982s4 +32.6665s3 +114.1315s2 +57.3834s+4.9852)z

+(18.7063s3 +158.9594s2 +176.7873s+43.3706)z2

+(61.3260s2 +195.8586s+163.7519)z3

+(71.2247s+263.7726)z4 +(139.8779)z5

(3.87)

Let us use the Schur-Cohn method and make the computation of the

imaginary roots of (3.84), it they exist. To this aim, the method described

in the Section above was followed and the computation of the matrix ∑(s)

and the polynomial det(∑(s)) was done.

The results of the computation show that:

• the system stability is time delay dependent;

• the matrix ∑(s) size is 10×10;

• the polynomial det(∑(s)) degree is 2n2 = 50 and the imaginary

roots are:

σ ± jω =± j6.1133,± j3.0060,± j1.3618,± j0.8398 (3.88)

The table below presents the delays corresponding to the crossing fre-

quencies of this system:

from Table 3.2 τmin = 0.0315 is the delay margin. This next part

focuses on the computing of the imaginary roots using the graphical
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Table 3.2: Delays corresponding to the crossing frequencies of the system (3.84) using

Schur-Cohn method

Crossing frequency ωk z = e(− jωkτ) Time delay τk

6.1133 0.9816 -j0.192 0.03153

3.0060 0.0965 -j0.088 0.4904

1.3618 -0.23 - j0.040 1.3239

1.3221 -0.235- j0.0389 1.3676

0.8398 -0.282 -j0.0153 2.2119

method. As described in Section above the graphical method is based

on finding the eigenvalues:

det(λpI−Ap) = 0where Ap = A0 +A1zp, p ∈ [0 . . .6284], (3.89)

and ωi = 0 : 0.001 : 2π..
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Figure 3.6: Plot of the eigenvalues of the characteristic equation in the complex plane

of the system (blue) and the imaginary axis (red) for the system 3.84.

Based on the Figure. 3.6, the curve crosses the imaginary axes. It can

be concluded that the system (3.84) stability is delay dependent. The plot

shows that exist five crossing points and they are the imaginary roots of

(3.84):

σ ± jω =± j6.1133,± j3.0070,± j1.362,± j0.8398 (3.90)

According to the steps described in the Section above, it is straight-

forward to obtain the corresponding z for each frequency crossing (3.90).

The following Table ??, presents the z and the time delay τk correspond-

ing to the crossing frequencies.

According to Table. ?? τmin = 0.0314 is the delay margin. The res-
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Table 3.3: Delays corresponding to the crossing frequencies of the system (3.84) using

graphical method

Crossing frequency ωk z = e(− jωkτ) Time delay τk

6.1133 0.9815 -j0.191 0.0314

3.0070 0.096 -j0.088 0.4902

1.362 -0.23 - j0.040 1.3237

1.3221 -0.235- j0.0389 1.3676

0.8398 -0.282 -j0.0153 2.2119

ults of the two methods are almost equal in term of the imaginary roots

and the delay margin. As expected, the example demonstrates that the

graphical method gives an immediate result in term of stability analysis

and imaginary roots.

Ex 3.3.3.3 This part presents a third example in which the system has

four time delays. Let us consider the following LTI-TDS with n = 3 and

k = 4.

ẋ(t) = A0x(t)+A1x(t− τ)+A2x(t−2τ)+A3x(t−3τ)+A4x(t−4τ)

(3.91)

with the system matrices defined as:

A0 =


−1 4.5 −7

−2.5 0 −5.08

0 1 −4

 (3.92)
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A1 =


−4.8 5 −2.4

−1.3 −3.2 0

−2.7 1 −6

 (3.93)

A2 =


−6 −33 −9

6.7 −1 5

1 3 −2

 (3.94)

A3 =


−8.9 −27 −18.9

2 1 7

1 −2 4

 (3.95)

A4 =


−5 2 −3.4

1 −2 0

−5.9 0 2

 (3.96)

It can simply verified that the system matrices are stable, and therefore

the system is stable for τ = 0.

The corresponding characteristic equation for this system is:

a(s,z) = s3 +5s2 +20.33s+32.58+(14s2 +45.73s+88.842)z

+(9s2−1.03s−294.776)z2 +(3.9s2−81.36s−431.044)z3

+(5s2 +243.25s+337.68)z4 +(308.68s+165.738)z5

+(139.5s+1109.836)z6 +(106.91s+130.914)z7

+(14.06s+553.876)z8 +(1751.602)z9 +(836.25)z10

+(16.76)z11 +(24.12)z12
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A computation of the polynomial det(∑(s)) was done with the Schur-

Cohn method. The results show that:

• The system stability is time delay dependent;

• The size of the matrix det(∑(s)) is 24x24;

• The polynomial det(∑(s)) degree is 2n2 = 72 and the imaginary

roots are:

σ ± jω =± j30.029,± j19.446,±

j16.956,± j11.905,± j8.4169,± j1.8344,± j1.2601

The Table. 3.4 presents the delays corresponding to the crossing frequen-

cies of this system: According to Table. 3.4 τmin = 0.0555 is the delay

margin. In the next part the graphical method is used for computing the

imaginary roots. The Figure 3.7 below represents the plot eigenvalues of

the matrix A.

det(λpI−Ap)= 0; p∈ [0 . . .6284] whereAp =A0+A1zp+A2z2
p+A3z3

p+A4z4
p

(3.97)
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Table 3.4: Delays corresponding to the crossing frequencies of the system (3.91) using

Schur-Cohn method

Crossing frequency ωk z = e(− jωkτ) Time delay τk

30.029 0.095-j1.014 0.0555

19.446 -0.052-j0.796 0.0835

16.956 -0.0413-j0.729 0.0951

11.905 -0.0239-j0.5606 0.134

8.4169 -0.029-j0.405 0.1901

1.8344 -0.205-j0.074 0.9693

1.2601 -0.210-j0.0565 1.4148

Figure 3.7: Plot of the eigenvalues of the characteristic equation in the complex plane

of the system (blue) and the imaginary axis (red) for the system 3.91.
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From the Figure. 3.7 the imaginary roots can be get easily:

σ ± jω =± j30.029,± j19.446,±

j16.956,± j11.905,± j8.4169,± j1.8344,± j1.2601

The delays corresponding to the crossing frequencies of this system

are:

Table 3.5: Delays corresponding to the crossing frequencies of the system (3.91) using

graphical method

Crossing frequency ωk z = e(− jωkτ) Time delay τk

30.03 0.095-j1.014 0.0555

19.58 -0.053-j0.799 0.0829

16.96 -0.0414-j0.729 0.0951

11.91 -0.0239-j0.5608 0.1339

8.4169 -0.029-j0.405 0.1901

1.8344 -0.205-j0.074 0.9695

1.26 -0.210-j0.0566 1.4150

According to Table 3.5, τmin is the delay margin.

In addition to the comments written above for the comparison in first

example, this one shows that the graphical method does not limit to a

single delay, but it can be extended to an infinite commensurate time

delays, thus demonstrating the robustness of the method proposed.
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3.4 CHAPTER SUMMARY

A method to obtain the coefficients of the quasi-polynomial has been

developed. The method can be used to substitute the symbolic method

that is time-consuming when we have multiple commensurate time-delay

systems. The method is based on constructing a new matrices system to

find the coefficients of pseudo-polynomial and it is based on generating

a suitable random numbers to find the system solution. Then, a graphical

method for the stability analysis of TDSs with commensurate multiple

time delays has been presented. The results of this study indicate that

the graphical method is an efficient alternative approach for the stability

time delay systems analysis. Satisfactory results have been obtained by

showing all the imaginary roots in a graphical plot.
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CHAPTER 4 DELAY INDEPENDENT STABILITY CONTROL

FOR COMMENSURATE MULTIPLE TIME-DELAY SYSTEMS

4.1 CHAPTER OVERVIEW

The major difficulty in the field of TDSs is the study of the asymptotic

stability with respect to the delay. The stability analysis of TDSs is not

a trivial task, due to the infinite number of roots in the complex plane of

the characteristic equation associated to the TDSs. Moreover, the system

could be stable independently of the delay value DISSs or it could be

stable only for some values of the delay DDSSs. A DDE that is stable for

only some values in the delay parameter space is called DDSS. Otherwise

if the stability of a DDE is maintained independently of the delay, then

DDE is called DISS.

Multiple disjoint delay regions may also exist where the system may

be stable within each region, while becoming unstable outside. These

regions, which are known as stability regions, become stability intervals.

Besides, there exist several methods for clustering the delay parameter

space based on the τ-decomposition concept. It consists in dividing the

delay region into intervals with the same number of unstable roots NU(τ).

For example, in [50] the stability regions with respect to the delay are

determined, and a method called cluster treatment of characteristic roots

(CTCR) is proposed. It can detect all the stability regions of a DDSS in

the space of the time delays. The study is focused on finding specific

intervals for the time delays for which the system is stable and has been
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developed only for third-order systems with two time-delay parameters.

In this chapter, we introduce two approaches that allow to make the

system DISS. The first method is based on the design of a controller

which is based on a single gain. The control gain parameter that allows

shifting the roots from the Right Half complex Plane (RHP) to the Left

Half Plane (LHP) for any value of delay is therefore derived. The second

method uses two parameters to make the system DISS. Both approaches

can be applied to any commensurate multiple TDS (CMTDS), independ-

ently from the number of delays.

This chapter is organized as follows: Section 4.2 introduces the new

design procedure to obtain a DISS and the proof of the related theorem;

Section 4.3 presents two algorithms allowing to get the suitable control-

ler gain parameter; Section 4.4 shows the efficiency of the proposed ap-

proach through the discussion of several case studies. Finally, in Section

4.5 the main results for DISS using two parameters will be presented.

4.2 A LINEAR STATE FEEDBACK REGULATOR TO MAKE SYSTEMS DELAY-

INDEPENDENT STABLE

In this section, the main design procedure will be described. Let

us consider a CMTDS as in Eq. (1.16) with A0 and A0 +∑
m
k=1 Ak stable

matrices. It exists a linear state-space regulator with gain matrix L0 such

that the controlled system is delay-independent stable, it is expressed as

ẋ(t) = Ā0x(t)+
m

∑
k=1

Akx(t− kτ) (4.98)
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where Ā0 = A0−L0 and L0 = lI, with l being the scalar controller para-

meter gain and I is the identity matrix.

Proof. Let us consider the quasi-polynomial equation correspondent

to the system (4.98), which can be written as:

a(s,e−τs) = det

(
sI− Ā0−

m

∑
k=1

Ake−kτs

)
(4.99)

that, in terms of the coefficients, becomes:

a(s,z) = ā0(s)+
q

∑
k=1

ak(s)z−k z = eτs (4.100)

with τ ≥ 0 and ā0(s), . . . , āk(s) are the coefficients of the characteristic

equation of the controlled system.

The frequency sweeping method, described in Chapter 2, is used to

prove the existence of the parameter l. According to Lemma described in

4.2, the system (4.98) is stable if:

ρ(M̄( jω))< 1 (4.101)

where M̄(s) is:

M̄(s) =


−a1(s)

ā0(s)
. . . −am−1(s)

ā0(s)
−am(s)

ā0(s)

1 . . . 0 0
... . . . ... ...

0 . . . 1 0

 (4.102)

for s= jω . The characteristic polynomial of matrix (4.102), whose struc-

ture follows that of a state matrix in a canonical form, can be written as:
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ā0(s)λ m +a1(s)λ m−1 + . . .+am(s) = 0 (4.103)

where λ1,λ2, . . . ,λm are the eigenvalues of M̄.

If the maximum modulus of λ1,λ2, . . . ,λm is less than 1, ā0 ( jω) is

suitable, i.e. ā0( jω) makes the system DIS. By using the Rouché’s the-

orem [55], the roots of the polynomial (4.103) are in modulus all less of

the quantity

R = max
{

1,
1

|ā0( jω)|
[|am( jω)|+ |am−1( jω)|+ . . .+ |a1( jω)|]

}
(4.104)

Remind that, according to Eqs.(1.4), the degree of ā0( jω) in ω is always

greater than ak( jω). Therefore, the ā0( jω) can be chosen in such a way

that each term

|am( jω)
ā0( jω)

|, |am−1( jω)
ā0( jω)

|, . . . , |a1( jω)
ā0( jω)

| is less than one. In order to make (4.101)

true, i.e. R < 1, the ā0( jω) can be set in such a way that each term in

(4.104) is less than 1
m , which means the sum is less then 1 for all ω . This

can be done acting just on ā0( jω), i.e. working on Ā0 = A0− lI the

system becomes DIS. �

The value of l can be derived with different algorithms, as described

below. The technique is a clear advance on current methods, since it

allows us to stabilize a DDS with an infinite number of commensurate

delays.
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4.3 ALGORITHMS TO DETERMINE THE VALUE OF THE CONTROL GAIN

In this section, two algorithms will be presented to get a suitable con-

trol parameter l̄.

4.3.1 Algorithm 1

The characteristic equation of the controlled system is B(s, l) as in

Eq. (2.38), which is a function of s and l. The condition in which the

characteristic equation admits a pair of purely imaginary solutions should

be found by varying l. Due to the continuity of the roots of B(s, l) with

respect to l, this is the limit condition for roots passing from the RHP

to the LHP. The condition can be retrieved performing the polynomial

division between B(s, l) and a generic polynomial B1(s) = s2 +α , with

α > 0, and searching the values of α and l for which the remainder is

null, i.e. R(α, l) = 0.

The algorithm is based on fixing different values of α and calcu-

lating the roots of R(α, l) with respect to l. The value l̄ is chosen as

maxl {R(α, l) = 0,∀α}.

An alternative way to find l̄ is computing the roots of the polynomial

B(s, l) for a high value of l and decreasing the parameter l until all roots

are in the LHP. A precise value of l̄ can be obtained applying the bisection

algorithm.
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4.3.2 Algorithm 2

In the case of a low order polynomial B(s, l), the Routh criterion can

be adopted to find an analytical expression for the stabilizing controller

parameter l.

The method relies on finding the values of l for which null entries on

the first column of the Routh table appear, thus ensuring the existence

of purely imaginary roots for B(s, l). Considering that B(s, l) is an even

polynomial of degree n, a variable change t = s2 leads to the polynomial

D(t, l) of degree n
2 . The Routh table for D(t, l) is constructed and the

roots of Ci(l) can be found, where Ci(l), i = 1, . . . , n
2 are the terms of the

first column of the Routh table. In this way, these values of l ensure

the existence of two purely imaginary roots D(t, l). Substituting the real

positive roots of Ci(l) in polynomial D(t, l) leads to factorization of type

D(t) = F(t)(t− t1) · (t− tn/2−2), where F(t) is the polynomial associated

to the two imaginary roots and t1, . . . , tn/2−2 are the real solutions of D(t).

When ti < 0 for a given i, a real negative root for D(t) is found and, hence,

a pair of purely imaginary roots for B(s, l). The controller gain parameter

represents the largest value of l satisfying this condition.

4.4 ILLUSTRATIVE EXAMPLES

In this section, three illustrative examples are presented.

Ex 4.4.0.1 Let us consider the system presented in [28], where a single

delay τ occurs:
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ẋ(t) = A0x(t)+A1x(t− τ) (4.105)

with the system matrices defined as:

A0 =


0 1 0

0 0 1

0 −2π−π2 2

 (4.106)

A1 =


0 0 0

0 0 0

π3 −2π 2−π

 (4.107)

The roots of the characteristic function are plotted in blue in Fig-

ure. 4.1, retrieving that the system is DDS, since the curves cross the

imaginary axis.

Method 1. By applying the algorithm presented in Subsect. 4.3.1, the

matrix Ā0 is defined as:

Ā0 = A0−L0 =


0− l 1 0

0 0− l 1

0 −2π−π2 2− l

 (4.108)

where l is the control parameter. The polynomial B(s, l) is computed

and divided by B1(s) = s2 +α , obtaining the remainder R(α, l). Then,

different values of α are fixed, i.e. ᾱ = 1, . . . ,100, and the positive real

roots of the polynomial R(ᾱ, l) are plotted, as reported in Figure. 4.2. The

maximum value l̄ in the graph represents the controller gain parameter
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Figure 4.1: Solutions of Eq. (1.17) (in blue) and of Eq. (4.99) with l̄ = π for Example

.4.4.0.1

that makes the system DIS, i.e. l̄ = π , as shown in red in Figure. 4.1.

Alternatively, l̄ can be found by fixing l = 10, verifying graphically

that all roots of B(s, l) are in the LHP and decreasing l until the roots

cross the imaginary axis, or by using the bisection algorithm. Then, again

l̄ = π .

Method 2. The value l̄ is derived analytically by applying the method

in Subsect. 4.3.2. The polynomial B(s, l) is calculated as:

B(s, l) =−s6 +(3l2−4l−29.6088)s4+

(−3l4 +8l3−5.3935l2 +78.9568l−292.2273)s2+

+(L6−4l5 +35.0023l4−78.9568l3 +150.6411l2−

−389.6364l−961.3892)

(4.109)

and, assuming t = s2, the polynomial D(t, l) is obtained as:

70



0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5 X: 0

Y: 3.142

α

l

Figure 4.2: Positive real solutions of R(ᾱ, l). The value of l̄ is the maximum, i.e. l̄ = π .

t3 −1 −3l4 +8l3−5.4l2 +79l−292.2

t2 3l2−4l−29.6 l6−4l5 +35l4−79l3 +150.6l2−389.6l−961.4

t1 (8l6−32l5−75.6l4 +57.4l3 +882.2l2 +1558.5l−7691.1)/(3l2−4l−29.6088) 0

t0 l6−4l5 +35l4−79l3 +150.6l2−389.6l−961.4 0

Table 4.1: Routh table for polynomial D(t, l) as in Eq.(4.110).

D(t, l) =−t3 +(3l2−4l−29.6088)t2+

(−3l4 +8l3−5.3935l2 +78.9568l−292.2273)t+

+(l6−4l5 +35.0023l4−78.9568l3 +150.6411l2

−389.6364l−961.3892)

(4.110)

The Routh table for Eq. (4.110), with l parameter, is constructed as

reported in Tab. 4.1.

The values of l for which the elements of the first column of the

Routh table are null, imply the existence of purely imaginary solutions

for D(t, l). Therefore, for these values of l, the polynomial D(t) can be

factorized as D(t) = F(t)(t + t1) · (t + tn/2−2). Thus, the controller gain
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parameter ensuring the DIS for system (4.105) can be chosen as the max-

imum value of l which makes null one (or more) elements in the first

column of the Routh table. In this case, l̄ = π is one of the solutions of

the polynomial in l appearing as the last element of the first column of

the Routh table in Tab. 4.1.

Ex 4.4.0.2 Let us consider the fifth-order TDS, with one delay parameter

and system matrices:

A0 =



−2 −0.9 1.1 −0.075 0

3.57 0 −1.25 0 −2

−0.23 0.5 0 −0.16 2

0 0 0.16 0 0

−3 0 −1 0.265 −1.86


(4.111)

A1 =



−3 2.67 0 0 0

0.89 0 −1.2 −3 −2

−0.7 0.2 0 −0.16 2

0 0 0.9 0 0

−5 3.8 −1 2.9 −3


(4.112)

The system is DDS as shown in the blue curves in Figure. 4.3 which

represents the roots of the characteristic function.

Method 1. The controlled matrix Ā0 is:
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Figure 4.3: Solutions of Eq. (1.17) (in blue) and of Eq. (4.99) with l̄ = 2.8384 for

Example 4.4.0.2

Ā0 = A0−L0 =

−2− l −0.9 1.1 −0.075 0

3.57 −l −1.25 0 −2

−0.23 0.5 0− l −0.16 2

0 0 0.16 0− l 0

−3 0 −1 0.265 −1.86− l


(4.113)

The controller gain l̄ = 2.8384 is found by following the procedure de-

scribed above as reported in the plot in Figure. 4.4. The control is effect-

ive as shown by the roots of the characteristic polynomial in Eq. (1.17)

reported in red in Figure. 4.4. Similar results can be found using the

alternative procedure of algorithm in Subsect. 4.3.1. In this case, the ap-

plication of algorithm in Subsect. 4.3.2 would lead to an high order B(s, l)

polynomial and hence to a more complex Routh table.
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Figure 4.4: Positive real solutions of R(ᾱ, l). The value of l̄ is the maximum, i.e. l̄ =

2.8384.

Ex 4.4.0.3 Consider the following TDS, with third-order dynamics and

three delay parameters as described in compact form as:

ẋ(t) = A0x(t)+A1x(t− τ)+A2x(t−2τ)+A3x(t−3τ) (4.114)

with system matrices defined as:

A0 =


−1 4.5 −7

−2.5 0 −5.08

0 1 −4

 A1 =


−4.8 5 −2.4

−1.3 −3.2 0

−2.7 1 −6



A2 =


−6 −33 −9

6.7 −1 5

1 3 −2

 A3 =


−8.9 −27 −18.9

2 1 7

1 −2 4


(4.115)

It can be verified that the system matrices satisfy hypotheses of The-

orem 4.2, while Figure. 4.5 illustrates that the system is DDS.

Method 1. Similarly to what have been done in the previous ex-

amples, from Figure. 4.6, the controller gain l̄ = 17.86 can be retrieved
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Figure 4.5: Solutions of Eq. (1.17) (in blue) and of Eq. (4.99) with l̄ = π for Example

.4.4.0.1
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Figure 4.6: Positive real solutions of R(ᾱ, l). The value of l̄ is the maximum, i.e. l̄ =

17.87.

as the maximum positive real solution of the remainder R(α, l). Using

this value, the closed matrix Ā0 leads to a DISS as clearly shown in the

red curves in Figure. 4.5.

In this section, three case studies are considered to illustrate the effect-

iveness of the presented method. In the first case, only one delay para-
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meter is considered with a fifth-order system. The second case takes into

account three delay parameters with a third-order system and it shows

that the method can handle many delay parameters. In the third case,

by considering a DDSS, the proposed procedure is used to find the gain

parameter of the controller which makes the systems a DISS.

4.5 TWO VARIABLES TO STABILIZE THE DELAY DEPENDENT SYSTEM:

STABILITY CHART

4.5.1 Proposed Approach

After designing a proportional controller gain that allows to make the

system delay independent stability, a system dependent on the controller

gain and an other variable to make a 2-D stability analysis are designed.

The two variables will be used to construct a stability intervals of a two

dimensional (2D) map, known as stability chart, in which the intervals are

displayed with respect to a controller gain.

Let us consider a CMTDS as in Eq. (4.116) with A0 and A0+∑
m
k=1 Ak

stable matrices. It exists a linear state-space regulator with gain matrix

L0 and a variable β for which the system is DIS such that the controlled

system, expressed as

ẋ(t) =
Ā0

1+β
x(t)+

m

∑
k=1

Ak

1+β
x(t− kτ) (4.116)

where Ā0 = A0−L0 and L0 = lI, with l being the scalar controller para-

meter gain and I is the identity matrix.

The proof presented in Section. 4.2 could be followed to demonstrate
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the existing of the two variables l and β .

4.5.2 Algorithm to Plot the Stability Chart

The characteristic equation of the controlled system is B(s, l,β ) as in

Eq. (2.38), which is a function of s, l, and β . The condition in which

the characteristic equation admits a pair of purely imaginary solutions is

found by varying l and β . Due to the continuity of the roots of B(s, l,β )

with respect to l and β , this is the limit condition for roots passing from

the RHP to the LHP. The condition can be retrieved performing the poly-

nomial division between B(s, l,β ) and a generic polynomial B1(s) =

s2 +α , with α > 0, and searching the values of α , l, β for which the

remainder is null, i.e. R(α, l) = 0.

The algorithm is based on fixing different values of α , β and calcu-

lating the roots of R(α, l) with respect to l. The value l̄ is chosen as

maxl {R(α, l) = 0,∀α}.

Ex 4.5.2.1 In this section, a case study is presented to show the stability

chart for l and βwiththe f ollowingsystemmatrixwithn = 3andk = 1 :

A0 =


−1 13.5 −1

−3 −1 −2

−2 −1 −4

 (4.117)

A1 =


−5.9 7.1 −70.3

2 −1 5

2 0 6

 (4.118)
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Figure 4.7: Solutions of Eq. (1.17) (in blue) and of Eq. (4.116) with l̄ = 3.6 and β = 0.6

for Example .4.4.0.1

The correspondent characteristic equation can be written as:

a(s,τ) = (s3 +6s2 +45.5s+111)+(0.9s2−116.8s−22.1)z

+(90.9s−185.1)z2 +119.4z3
(4.119)

The stability chart with respect to the controller gain and the variable

β following the procedure described above is shown in the plot in Fig-

ure. 4.8. This stability chart provides the regions where the system is

DDS or DIS.

Based on the results illustrated in Figure. 4.8, the combination of the

variables l and β are adopted to have a system DIS. As shown by the

roots of the characteristic polynomial in Eq. (1.17) reported in blue in

Figure. 4.7 the system is DDS. By using l̄ = 3.6 and β = 0.6, the roots of

the characteristic polynomial in Equation. (4.116) are obtained in black

as reported in Figure. 4.8 and it shows that the system is DIS.
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Figure 4.8: Stability chart

4.6 CHAPTER SUMMARY

In this chapter, the design of a state feedback controller is explained

and it is theoretically demonstrated that such a controller can transform

the system into a DISS.

The proposed controller, which uses only one parameter, can translate

the roots of the characteristic equation of the system from the unstable

region to the stable region, for any value of the time delay. As a further

result, it is shown that the controller gain can be obtained by an easy

graphical method, based on the Schur-Cohn criterion and the frequency

sweeping method.

As can be observed from the two case studies, the proposed controller

design procedure is efficient and simple, even for multiple time delays.

Finally, based on the above mentioned assumption, a stability chart us-

ing two variables was presented to show the delay dependence stability
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regions.
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CHAPTER 5 MODEL BASED DESIGN APPLICATIONS: A

DISCUSSION ON THE ROLE OF TIME DELAY SYSTEMS

5.1 CHAPTER OVERVIEW

In this chapter, the Model-Based Design approach is adopted to model

the time delay in a feedback control systems.

The MBD approach is introduced with it is benefits, then an example

application is built to understand how the MBD helps engineer to speed

their designs especially when time delays are presented within a loop.

Moreover, the chosen of the application was based on the fact that the

stability of a PMSM FOC drive is a high sensitive problem and the system

can become unstable for different reasons. Time delay is one of the main

reasons that can cause the PMSM to become unstable, therefore, for high-

speed PMSM motors, it is important to check the stability of current and

speed control loops while considering time delays.

This chapter is organized as follows: Section 5.2 gives a brief over-

view of MBD methodology definitions; Section 5.3 presents how Sim-

ulink models time delays; Section 5.4 describes the STM32 FOC PMSM

Drive application. It presents the hardware and software for modeling

the PMSM motor drive; Section 5.5 examines the implementation of

the MBD approach for the STM32 motor drive ecosystem; Section 5.6

presents the simulation and code generation results; Finally, in Section

5.7 presents the main source of delays in the PMSM FOC and how the

delays affects the stability of such system.
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5.2 INTRODUCTION TO MODEL-BASED DESIGN

Many industries and control systems engineers need to reduce time-

consume and errors when they start the development of a new product.

Working efficiently is indispensable to success in a globalized market

[56].

Model-Based Design (MBD) methodologies have been introduced for

time-saving, cost-effective, design reuse [57, 58]. These methods and

tools may permit to obtain the structural response under relevant loads

and improve the structural capacity to withstand extreme loads by a spe-

cific design solution.

MBD provides a mathematical and visual approach to develop com-

plex systems. It supports and encourages collaboration by providing a

common language for cross-functional teams that work in multiple do-

mains.

MBD is used across a wide-variety of industries and applications, in-

cluding motion control, signal processing, industrial equipment, aerospace,

and auto-motive applications. It centers on the systematic use of models

throughout the development process for requirements specification, sys-

tem architecture modeling, design implementation, simulation, automatic

code generation, and verification and validation.

The MBD approach is widely considered to be the most important

design flow method as it allows to transform the classical design methods

from the lab and handwritten to the desktop.
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It uses the same elements as traditional development work flows, but

with two key differences:

• many of the time-consuming or error-prone steps in the workflow—for

example, code generation are automated;

• a system model is at the heart of development, from requirements

capture through design, implementation, and testing.

Figure. 5.1 shows the MBD workflow [60] .

Figure 5.1: MBD workflow

Requirements Capture and Management

In a traditional workflow, where requirements are captured in docu-

ments, handoff can lead to errors and delay. Often, the engineers creat-

ing the design documents or requirements are different from those who

design the system. In MBD, you author, analyze, and manage require-

ments within your Simulink model. It can create rich text requirements

with custom attributes and link them to designs, code, and tests.
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Design

In a traditional approach, every design idea must be coded and tested

on a physical prototype. As a result, only a limited number of design

ideas and scenarios can be explored because each test iteration adds to

the project development time and cost. In MBD, the number of ideas that

can be explored is virtually limitless. Requirements, system components,

IP, and test scenarios are all captured in the model, and because the model

can be simulated, it can investigate design problems and questions long

before building expensive hard-ware.

Code generation

In a traditional workflow, embedded code must be handwritten from

system models or from scratch. With MBD, instead of writing thousands

of lines of code by hand, it allows to generate code directly from the

model, and the model acts as a bridge between the software engineers

and the control systems engineers. The generated code can be used for

rapid prototyping or production.

Test and Verification

In a traditional development workflow, test and verification typically

occur late in the process, making it difficult to identify and correct er-

rors introduced during the design and coding phases. In MBD, test and

verification occur throughout the development cycle, starting with model-

ing requirements and specifications and continuing through design, code

generation, and integration.

Simulink [59] from Mathworks is a block diagram environment for
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a multi-domain simulation that can be used to implement Model-Based

Design. Beyond Simulink, the required toolboxes for the presented use

case example are Simscape Electrical, State-flow, Embedded Coder.

5.3 MODELING TIME DELAYS IN SIMULINK

In Simulink, there exist both Continuous and discrete Time Delays

blocks. SubLibrary contains the blocks of continuous library described

below (see Figure 5.2).

The Transport Delay Block delays the input by a specified amount

of time. It can be used to simulate a time delay. At the start of the sim-

ulation, the block outputs the Initial input parameter until the simulation

time exceeds the Time delay parameter. The Time delay parameter must

be non negative. Best accuracy is achieved when the delay is larger than

the simulation step size.

The Variable Time Delay Block appear as two blocks in the Simulink

block library. However, they are actually the same builtin Simulink block

with different settings of a Select delay type parameter. In the Variable

Time Delay mode, the block has a data input, a time delay input, and a

data output. The block’s output at the current time step equals the value

of its data input at a previous time which is equal to the current simulation

time minus a delay time specified by the block’s time delay input.

The Variable Transport Delay Block The output is equal to the value

of its data input at an earlier time which is equal to the current time minus

a transportation delay.if we let u(t) be the input, td(t) the transportation
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delay, and y(t) the output, then y = u(t− td(t))

Figure 5.2: Continous time delay in Simulink

Delay discrete-time the Delay block delays a discrete-time input by

the number of samples or frames specified in the Delay units and Delay

parameters. The Delay value must be an integer value greater than or

equal to zero.

In the PMSM DRIVE application, the delay discrete-time will be used

because the Simulink model is based on discrete time for embedded ap-

plications.

5.4 MBD WITH TIME DELAY: STM32 FOC OF PMSM DRIVE APPLICATION

In this section, the STM32 ecosystem both as regard the hardware

and the software is described. The target drive system is a PMSM motor

with encoder position feedback connected to a 3-phase ac power inverter

with three shunt resistors for phase current feedbacks. The drive control

algorithm is implemented on a STM32 MCU that includes peripherals

dedicated to advanced motor control techniques as shown in Figure. 5.3.

The drive system hardware consists of an X-Nucleo-IHM07M1 power

board, a NucleoF302R8 control board, and a 3-PH PMSM motor with en-

coder feedback. The control board is based on a MCU of the STM32F302x6/8

family. These MCUs are perfectly suited for Motor Control application
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Figure 5.3: Drive system scheme

as they feature a fast 12-bit ADC (5 Msps), three comparators, one op-

erational amplifier, one advanced-timer dedicated to motor control. The

STM32F302 MCU executes the drive control algorithm [61] based on

the commonly used Field Oriented Control (FOC), whose basic scheme

is shown in Figure. 5.4.

Figure 5.4: FOC scheme

Motor currents and rotor position feedback signal acquisitions are syn-

chronized to the PWM switching frequency using the processor interrupt

mechanism. When a new acquisition is completed, the FOC control al-

gorithm executes. In FOC algorithm, sensed motor currents are math
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transformation performed by Clarke and Park blocks to get two time-

invariant components ids and iqs respectively in phase and quadrature

with rotor flux. In this way, it is possible to offer electromagnetic torque

Te regulation by acting on component iqs and using a PID regulator and,

to some extent, to operate a flux weakening, by acting on component ids

and using a second PID.

For modeling purposes, the system has three main components: the

power inverter and motor (plant), the device interfaces for the control

and feedback signals and the digital control unit.

The plant model uses Simulink Simscape components to simulate the

power inverter electrical circuit and the motor electro-mechanical ele-

ments in the continuous-time domain. The feedback circuit models take

care of the gain and data type conversions between the controller and mo-

tor drive models. The models for the embedded signal interfaces replic-

ate the MCU peripherals by function emulation. They include conversion

functions because the ADC converter, the MC dedicated PWM Timer, the

encoder timer have 16-bit or 32-bit fixed-point output data registers.

The motor drive system performs several functions beyond the ones

dedicated to the motor control algorithm. The embedded software ar-

chitecture is modular to match both usual demanding requirements for

platform flexibility and to make easier the development. These modules

typically are devoted to system initialization, communications interface,

application tasks, motor control interface, and motor control algorithm as

illustrated in Figure. 5.5.
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Figure 5.5: Motor drive system tasks

The MC interface module manages the signal data flow between the

motor drive hardware and the control algorithm. The code is specific

to the drive circuit connections and the MC peripheral configurations

needed to provide the appropriate feedback signals for the control al-

gorithm [62].

The system model is partitioned into the logical blocks [63] shown in

Table 5.1. Each block is divided into sub-blocks.

Table 5.1: Model partitioning

Block Modeling/Code Generation

Electromechanical System Inverter/Motor/Mech-System

Sensors and Interfaces Function peripherals models

Processor Peripherals/Code algorithm

Driver Circuits Function models

In the next section, two dedicated Simulink toolboxes, respectively

dedicated to Motor Control Algorithm and STM32 peripheral driver will

be described and used to implement MBD workflow.
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5.5 IMPLEMENTATION DETAILS

A PMSM Motor drive model has been realized to show the applic-

ation of MBD concepts to design an embedded control system. This

model is used for both drive simulation and code generation for target

device. In order to exploit all the potentialities offered by MBD ap-

proach, the designer should be given the chance to continue using existing

application-dedicated tools offered by ST when start using new tools of

MATLAB/Simulink environment. For this reason, the ST Motor Control

Workbench (STMCWB) tool is used to generate a system configuration

file (.ioc file) and it is passed as an input to the Simulink environment

through MC Config block to set model parameters.

Maths and IPs blocks dedicated to FOC algorithm has been strictly

built on STM32 Motor Control library and they allow accurate simula-

tions (in normal, SIL and PIL modes) replicating the same behavior of

the application running in the real STM32 hardware system. The applic-

ation designer can configure all the system parameters using the most ap-

propriate method, conceive his project completely in the desktop, exploit

all the powerful toolboxes available from Mathworks to test and validate

the results, analyze wave-forms, and so on. Finally, numerical approxim-

ations generally introduced by micro-controller based calculations (due

to fixed-point mathematics, for instance) are also taken in consideration

at this stage.

Once the simulation results match the project requirements, the second
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important aspect of MBD methodology is the automatic code generation

for target device. By leveraging on STM32 Motor Control SDK and the

Embedded Coder tool from Simulink, the application model will generate

embedded code (in C or C++ language) in order to create the Application

Software layer represented by MC App in Figure. 5.6. The software

project can be organized into several C modules for code readability and

easy debugging.

Figure 5.6: Modeling and code generation scheme

A detailed explanation of the STM32 MC toolbox is given below.

5.5.1 Simulink Toolbox for STM32 Motor Control

A Simulink toolbox, STM32-MAT/MC, has been developed for provid-

ing a set of motor control libraries that supports maths, algorithms, in-

terface devices, hardware IPs for FOC motor control design as seen in

Figure. 5.7.

• STM32 FOC Blocks: It provides Simulink blocks for mathemat-

ical transformations and a PID controller normally used to design

FOC Motor Control algorithm. Each block is an S-Function and it
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Figure 5.7: Motor control library for STM32

has been coded in C-MEX language by using same function proto-

types of C libraries of STM32 Motor Control SDK [62]. A block

target file (TLC) has been developed for each block to inline the

S-function and to perform an automatic code generation. The Fig-

ure. 5.8 shows the mathematical blocks currently available in the

STM32 FOC blocks library:

Figure 5.8: STM32 FOC blocks library

• STM32 Peripherals: The STM32 Peripherals blocks library as seen

in Figure. 5.9 provides three blocks replicating basic operations of

STM32 peripherals: an Advanced PWM Timer, an ADC converter
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and an Encoder Timer. The functional peripherals were implemen-

ted in order to behave, in simulation, like the real ones do. The

Timer block emulates the operations of an STM32 Advanced PWM

timer by providing three complementary PWM outputs at a specified

frequency. The ADC block emulates the operations of an STM32

ADC 12-bit converter which converts input signals under external

trigger event occurrence; when a conversion cycle is completed, an

external event is generated to run the FOC algorithm. The Encoder

timer emulates the operations of an STM32 Timer configured in En-

coder mode.

Figure 5.9: STM32 peripherals library

• STM32 System Hw: The STM32 System HW library as seen in Fig-

ure. 5.10 provides two basic blocks to model a 3-PH inverter with

shunt resistors and an incremental encoder. They can be considered

just as off-the-shelf utility blocks to allow the MC designer to use

the same hardware devices found in the majority of the motor con-

trol kit available from ST.
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Figure 5.10: STM32 HW library

5.5.2 Model Configuration Parameters

STM32 STMCWB software GUI contains several sections to config-

ure motor drive operations and parameters: PMSM Motor, Power Stage,

Drive Management and Control stage just to cite some. Outputs from this

tool lead to H files generation that can be included in the MC project. To

import configuration parameters set by means STMCWB, a MC Config

block is available from STM32-MAT/MC toolbox; it allows configuring

each block of model for simulation in a rapid and seamless manner.

Figure 5.11: Motor control workbench vs MC Config
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5.5.3 FOC Engine Algorithm

The FOC control scheme is shown in Figure. 5.12. It consists of

blocks from the STM32 FOC blocks library. Each block contains spe-

cific parameters that can be set automatically by referring to MC Config

block and by specifying the motor drive ID (integer number).

Figure 5.12: FOC engine

5.5.4 Model Architecture

The model architecture presented in Figure. 5.13 follows the model

partitioning scheme described in Table 5.1:

This architecture has been conceived to easily move from normal mode

simulation, entirely executed on the host PC, to PIL mode simulation,

where math’s and IPs blocks (and subsystem) are executed in the target

STM32 MCU. By using a specific configuration block, this model can

be used for both normal simulation and automatic code generation. The

only difference between the two configurations consists of the replace-
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Figure 5.13: Model architecture

ment of functional peripheral blocks into the correspondent ones from

STM32-MAT/TARGET [64] peripheral driver library.

5.5.5 Code Generation

As indicated in Figure. 5.14, FOC C code is generated from the

motor control algorithm part of the model. The settings for the code

generation are in the Simulink Configuration parameters −→ code gener-

ation −→ System Target File, where the target file stm32.tlc must be spe-

cified. In STM32 Options, the paths for STM32CubeMX and STM32-

MAT/TARGET must be specified as well.

The code is organized in a modular fashion that makes integration of

application-specific functions easier. High priority tasks, such as the FOC

motor control algorithm, are executed in the Interrupt Service Routines at

peripheral event occurences. Application-level tasks are called, as sched-

uled tasks, from a basic scheduler kernel. Simulink Embedded Coder and

STM32-MAT/TARGET toolboxes take care of all these aspects automat-

ically.
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Figure 5.14: Code module organization

5.6 SYSTEM RESULTS

5.6.1 Simulation Results

By simulating the model shown in Figure. 5.15, relevant signal wave-

forms can be viewed in the scope Simulink block. For example, Torque

Mode was chosen. The scope screen in Figure. 14 has been divided into

three subscreens: the first one is the iq quadrature current, the second one

is the motor phase current and the third one represents the three inverter

duty cycles computed by SVPWM block. The shapes of waveforms show

that the motor runs well.

5.6.2 Code Generation Results

The experimental set-up consists of interfacing the STM32-Nucleo

board (connected to the host PC via USB cable) with the inverter board

and the power supply and the PMSM motor as shown in section 3. After

the project generation from Simulink Embedded Coder, the binary applic-

ation code is built in the user IDE and downloaded in the STM32F302R8
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Figure 5.15: Simulation results

MCU. Then, the DC link is supplied with 24V DC. The Figure. 5.16

shows the system. By pushing the user button on the control board the

Figure 5.16: The hardware system

motor shaft starts spinning. Two channels of an oscilloscope were con-

nected to the Nucleo CN10 connector pins to read two PWM outputs.

A third scope channel was connected to read the motor phase current.
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The Figure. 5.17 shows a screenshot from the actual oscilloscope: as

Figure 5.17: The motor wave-forms, the motor phase current (cyan), the duty cycles

(red and yellow)

can be easily seen, the motor waveforms are quite similar to the ones got

in simulation. Absolute values for phase current and PWMs are differ-

ent because torque load conditions, applied to the motor shaft, used in

simulation model and in the real system were different.

5.7 SOURCE OF DELAYS

In this section, the source of delays and their block representation on

the adopted FOC PMSM control scheme are considered.

Fig. 5.18 depicts a typical speed and current control system for a

PMSM FOC motor. In the model different blocks have source of delays,

they can be individuated as: FOC Controller (MCU), Actuator (3-phase

Inverter), Plant (PMSM motor) and Sensor (the speed and current sensors

for signals feedback readings).

Two time delays will be considered: the first affecting the motor cur-

rent sensing (Sensor block) and the second due to the presence of a digital

processing unit device (MCU block). Fig. 5.19 shows the same scheme
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but considering the insertion of two time delay blocks:

• e−τdelay1s, where τdelay1 represents the delay in the current reading

path, generated by the current sensing sensor and the analog to

digital conversion process necessary for digital processing by the

MCU;

• e−τdelay2s, where τdelay2 represents the total delay introduced by the

FOC algorithm computation time, by the MCU, plus a further time

delay due to MCU embedded Timer peripheral generating the PWM

signals for the inverter.

Figure 5.18: Schematic diagram of a speed and current control system controlled by a

FOC control

Figure 5.19: Block diagram of Fig.5.18, where the delays are taken into consideration

5.7.1 The Current Sensing Delay Modeling

Now let us take in consideration just the delay due to the current sens-

ing τdelay1 as shown in Figure. 5.19. The following practical assumptions
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are made when modeling the delay of the current sensors.

The currents in the motor constitutes a balanced three-phase current

triple. The delay time introduced by the current sensor and ADC con-

verter does not affect the frequency and amplitude of this current triple.

The delay time τdelay1 is the sum of the current sensors’ internal reaction

delay (Tsens) and the analog to digital conversion time:

τdelay1 = τDelayCurrSens + τDelayADC (5.120)

Where current sensing delay in introduced in 5.121 can be re-written as

the formula in 5.122, and it shows that the sensing delay will affect the

sensing gain and the phase. 5.122 can be re-arrange as shown in 5.123.

i0 = Asin(ωt +ϕ0) (5.121)

isense = AKsin(ω(t− τdelay1)+ϕ0) (5.122)

where K is the gain due to sensor and ADC.

phase =−ωτdelay1 +ϕ0 (5.123)

5.7.2 The Current Sensing Delay Effects

The simulation was performed for time of 2 s, the delay parameter was

increased until the system response become unstable. The delay para-

meter margin is 6 * Ts i.e. that the system is stable for the value of delay

below 300us.
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Figure. 5.20 and Figure. 5.21 show respectively Id and Iq wave-forms

for different delay parameter, it can be noticed that by increasing the

current sensing delay the signals Id and Iq starts to be distorted.

Figure 5.20: Id response with different delay parameter

Figure 5.21: Iq response with different delay parameter

This distortion was calculated in term of RMS Error for both signals

as illustrated in Figure. 5.22 and Figure. 5.23. It can be seen that the

error correspondent to Iq is more higher respect the Id signal.

5.8 CHAPTER SUMMARY

A time delay application example based on Model-Based design meth-

odologies was presented. The implemented MBD approach has been
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Figure 5.22: RMS Error Id

Figure 5.23: RMS Error Iq

conceived as a complementary design path to the traditional one and

it provides blocks IP that integrates on existing tools dedicated to the

STM32 Motor Control ecosystem. The results shows that increasing the

time delay in the feedback loop leads to have an unstable system.
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CONCLUSION

Multiple Commensurate Time-Delay Systems appear in various sci-

entific and engineering disciplines. This thesis contributes to the stability

analysis of those systems by overcoming the gaps present in state-of-the-

art literature.

In the previous chapters, new methodologies were proposed that guar-

antee the asymptotic stability of linear time-invariant delay systems. Lis-

ted below are the main contributions of this research work:

• Provided an approach to obtain the coefficients of time-delay system

characteristic equation based on numerical computation;

• Illustrative examples to show how the random number can be chosen

to obtain the coefficients of the quasi-polynomial equation;

• Delay-dependent stability criteria to find the imaginary roots of the

quasi-polynomial equation of linear commensurate time-delay sys-

tem;

• Delay-independent stability criteria based on a controller gain able

to transform the system from DDS to DIS;

• Stability chart is partitioned into two regions, namely DDS and DIS.

• Design of a STM32 PMSM motor drive model example of applica-

tion using MBD methodologies also taking into consideration time

delays
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In Chapter 3, an approach to find the coefficients of the characteristic

equation has been developed. The method is based on constructing a mat-

rix system to find the coefficients using suitable random numbers. Then, a

graphical method for delay-dependent stability analysis has been presen-

ted. It allows determining the imaginary roots in the complex plane. The

results of this study indicate that the graphical method is an efficient al-

ternative approach for the stability time delay systems analysis.

In Chapter 4, the control of CMTDS with delay-dependent stability

has been addressed. Firslty, the design of a state feedback controller is

introduced, that is able to make the system delay-independent stable. The

proposed controller, which is based on a single gain parameter, translates

the roots of the characteristic equation of the system from the RHP to the

LHP, for any value of the time delay. The existence of the stabilizing con-

trol gain is theoretically proved in the theorem. As a further result, it is

shown that the suitable controller gain can be obtained through both ana-

lytical and graphical methods. Three case studies have been discussed to

assess the validity of the approach also for multiple time delays. Then, a

stability chart based on two variables was illustrated which allows provid-

ing the stability regions of commensurate time-delay systems. The chart

can handle multiple system delays.

In chapter 5, a time delay application example adopting a Model-

based design approach was presented. A new Simulink toolbox, STM32-

MAT/MC, for STM32 Motor Control design has been presented. It is

applied to develop a PMSM motor drive model by taking into consid-

105



eration time delays. Then, the embedded C code for the STM32F3 tar-

get has been automatically generated through the Embedded Coder and

the STM32-MAT/TARGET toolboxes. The implemented MBD approach

has been conceived as a complementary design path to the traditional one

and it provides IP blocks that integrates the existing tools dedicated to the

STM32 Motor Control ecosystem. The modeling of time delays was real-

ised in Simulink software and given the stable PMSM system, it becomes

instable by increasing the time delay in the feedback loop.

The signal waveforms from the simulation model and the real system

are comparable, showing that the MBD approach and developed tool-

boxes are useful tools to speed up and improve the design development

cycle. The developed toolbox aims to support ST teams and customers

to move from the traditional workflow to a new platform control design

approach.

In conclusion, the research in this dissertation will add new theorems

and methods to the stability analysis of linear commensurate time-delay

systems.
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