
University of Catania
Department of Mathematics and Computer Science

PhD in Computer Science

Compact and Flexible Suffix Automata
Representations for Online String Matching

Stefano Scafiti

Supervisor
Prof. Simone Faro

XXXVI Cycle

To my family.

Index

Index i

1 Introduction 2
1.1 Motivation . 2

1.1.1 Main contributions . 6
1.1.2 Outline . 7

2 Preliminaries 8
2.0.1 Notation . 8
2.0.2 Factor based searching . 9
2.0.3 Condensed Alphabets . 11

3 PBNDM: a sampled bit-parallel suffix automata for large strings 13
3.1 The Pruned BNDM Algorithm . 13

3.1.1 The Pruned Version of a Pattern 14
3.1.2 The Preprocessing Phase . 17
3.1.3 The Searching Phase . 18

3.2 Experimental comparison . 21
3.3 Chapter summary . 22

4 The Range Automaton: An Efficient Approach to Text-Searching 24
4.1 The Range Automaton . 24
4.2 The Backward Range Automaton Matcher 28

4.2.1 Speeding-up Searching by Condensed Alphabets 30
4.3 Extensions to Non-Standard Matching Problems 32

4.3.1 Extension to Swap matching 32
4.3.2 BRAM for Swap Matching . 34

4.4 Extension to Order Preserving String Matching 37
4.4.1 BRAM for Order Preserving String Matching 39

4.5 Extension to Multiple String Matching 41
4.5.1 BRAM for Multiple String Matching 43

4.6 Experimental Comparison . 44
4.6.1 Exact string matching . 45
4.6.2 Experimental Results on Swap Matching 48
4.6.3 Experimental Results on Order Preserving String Matching . . 49
4.6.4 Experimental Results on Multiple String Matching 51

4.7 Chapter summary . 54

1

5 UFM: a Two-Step Simulation of the Suffix Automaton 56
5.1 The Unique Factor Matcher . 56

5.1.1 A Generic Backward-Two-Step-Matcher Algorithm 57
5.1.2 A Practical Implementation: The UFM Algorithm 59
5.1.3 A Relaxed Variant of the UFM Algorithm 64
5.1.4 Improving the space usage . 67

5.2 Experimental Results . 67
5.2.1 Experimental Setting . 68
5.2.2 Evaluation . 69
5.2.3 Chapter Summary . 72

6 Conclusions 74

Appendices 75

A On the Longest Common Cartesian Substring Problem 76
A.1 Introduction . 76
A.2 Notations and Definitions . 78
A.3 Building a Cartesian Tree . 79
A.4 A Suffix Tree Based Approach . 84
A.5 Computing the LCCS by Dynamic Programming 85
A.6 A Constructive Approach for the LCCS Problem 90

A.6.1 A Backward Approach Over the Constructive Solution 97
A.7 Experimental Results . 99

A.7.1 Implementation Details . 100
A.7.2 Results on Random and Real Data 101
A.7.3 Results on Real Data . 106
A.7.4 Conclusions . 109

Bibliography 108

1
Introduction

String matching is a fundamental problem in computer science [1], with a myriad

of direct applications into several distinct areas of computing, including information

retrieval, data compression, bioinformatics, natual language processing, linguistics

and network security. It consists in finding all the occurrences of a pattern x of

length m in a text y of length n, both drawn from a common alphabet Σ of size σ.

The problem has attracted researchers’ interest over the years, inspiring solutions of

particular practical and theoretical interest. Among them, those based on automata

deserve a special mention, since they have always led to the design of flexible and

efficient algorithms.

1.1 Motivation

Despite a multitude of possible solutions already available, in the last few decades,

alternative solutions to the problem have been proposed, based on very different

techniques [2], proving that the demand for more and more efficient solutions is

still high. After the first linear-time solution to the problem has been presented by

1. Introduction 3

Knuth, Morris and Pratt (KMP [3]), efforts have been directed in finding solutions

which perform well on the average, rather then on the worst case. It is the case of the

Boyer and Moore (BM) [4], which trades the O(m+ n) worst case time complexity

in turn of a more efficient search times on the average. Later, the Backward-Dawg-

Matching (BDM) algorithm [5] reached the optimal O(n logσ m/m) time complexity

on the average, as proved by Yao [6].

Both the KMP and the BDM algorithms are based on finite automata; in par-

ticular, they simulate a deterministic automaton for the language Σ⋆x and a deter-

ministic suffix automaton for the language of the suffixes of x, respectively. The

subsequent solutions to the problem introduced in the literature [7, 8, 9, 10] have

amply demonstrated how the efficiency of such solutions is strictly affected by the

encoding used for simulating the underlying automaton.

One of the side effects of the BDM algorithm lies indeed in the use of the de-

terministic variant of the suffix automaton since the workload required to manage

the individual transitions may be not negligible and, although its construction is

linear in the size of the string, the proportionality factor hidden in the asymptotic

notation is particularly high, making its construction prohibitive in the case of long

patterns [2].

An efficient technique which has been extensively used for the simulation of non-

deterministic automaton is bit parallelism [11]. It has been used, for instance, in

the design of the Shift-Or (SO) algorithm [11] and the Backward-Non-deterministic-

Dawg-Matching (BNDM) algorithm [12]. The first is based on the non-deterministic

simulation of the KMP automaton, while the second is a very fast variant of the

BDM algorithm, based on the bit-parallel simulation of the non-deterministic suffix

automaton.

Specifically, in the design of automata-based algorithms, bit-parallelism allows

to take advantage of the intrinsic parallelism of the bitwise operations inside a com-

puter word, potentially cutting down the number of operations required to simulate

the state transitions of the underlying automaton by a factor up to w, i.e. the num-

1. Introduction 4

ber of bits in a computer word. However, one bit per pattern symbol is required

for representing the states of the automaton, for a total of ⌈m/ω⌉ words. This im-

plies that, as long as a pattern fits in a computer word, bit-parallel algorithms are

extremely fast, otherwise their performances degrade considerably as ⌈m/ω⌉ grows.

A common approach to overcome this problem consists in constructing an au-

tomaton for a substring of the pattern fitting in a single computer word, to filter out

possible candidate occurrences of the pattern. When an occurrence of the selected

substring is found, a subsequent naive verification phase allows to establish whether

this belongs to an occurrence of the whole pattern. However, besides the costs of

the additional verification phase, a drawback of this approach is that, in the case of

the BNDM algorithm, the maximum possible shift length cannot exceed ω, which

could be much smaller than m.

The Long-BNDM [7] (LBNDM) and the BNDM with eXtended Shift [8] (BXS)

algorithms are two efficient solutions specifically designed for simulating the suffix

automaton using bit-parallelism in the case of long patterns. Specifically the LB-

NDM algorithm works by partitioning the pattern in ⌊m/k⌋ consecutive substrings,

each consisting in k = ⌊(m− 1)/ω⌋+ 1 characters. Similarly, the BXS algorithm

cuts the pattern into ⌈m/ω⌉ consecutive substrings of length w except for the right-

most piece which may be shorter. In both cases the substrings are superimposed

getting a superimposed pattern of length ω. The idea is to search using a filter

approach: first the superimposed pattern is searched in the text, then an addi-

tional verification phase is run when a candidate occurrence of the pattern has been

located.

Cantone et al. presented in [9] an alternative technique, still suitable for bit-

parallelism, to encode the non-deterministic suffix automaton of a given string in a

more compact way. Their encoding is based on factorization of strings in which

no character occurs more than once in any factor. It turns out that the non-

deterministic automaton can be encoded with k bits, where k is the size of the

factorization. As a consequence, the resulting algorithm, called Factorized-BNDM

1. Introduction 5

(FBNDM) tends to be faster in the case of sufficiently long patterns.

Although the several attempts to improve the bit-parallelism approach, such

limitation is intrinsic to the approach and the room for improvement is still high.

Due to the challenges in simulating exact structures, research on the topic has

recently focused more on weak recognition approaches [13, 14, 15, 8]. Weak factor

recognition is not a new idea in the string matching field. The Backward Oracle

Matching algorithm [16] (BOM) can be considered the pioneer of this approach.

It works in the same way as the BDM algorithm, but makes use of the Factor

Oracle of the reverse pattern, a structure which can be constructed and handled

using fewer resources than the suffix automaton, leading to performance that is in

practice superior to that achieved by the BDM algorithm (though the lack of any

theoretical proof about the optimal time bound on the average case [16]).

Following the same line, in [8], Durian, Peltola, Salmela and Tarhio presented

Q-gram Filtering (QF), a weak factor algorithm which uses hashing of q-grams

within the pattern to identify factors. The phase of each q-gram factor is stored

into a table as 1 ≪ (p mod q), where p is the position of the q-gram within the

pattern and q is the length of a q-gram. Successive q-grams read from the text must

not only have an entry in table, but also be aligned with the phase of all q-grams

which have been read previously. In practice, this is generally very fast.

In [10] Faro and Lecroq presented a very flexible solution based on the intu-

ition that a string where each character is repeated only once (SNR) admits a

non-deterministic suffix automaton which can be encoded with a simple integer.

The BSDM algorithm is based on the identification of the longest SNR contained

within the pattern and on the simulation of this simplified version of the automaton.

When this technique is combined with the use of condensed alphabets we are able

to efficiently simulate automata for very long patterns.

This research trend reached its peak with the Weak Factor Recognition algo-

rithm [15] (WFR), regarded as one of the most efficient state-of-the-art solutions.

Its weak recognition approach is based on indexing all the O(m2) subsequences of

1. Introduction 6

the pattern x to facilitate their search during the searching phase using a bloom filter

[17], a probabilistic data structure which implicitly represents a set of elements U

by setting a bit in a hash table for each element. In the case of a string matching

algorithm, this implies that the algorithm recognizes a superset of all factors x[i..j],

0 ≤ i, j < m, of the input string x. Despite the probabilistic nature of its recogni-

tion approach, the WFR algorithm and its variants perform very well in practice by

showing a sub-linear performance in practice.

Following the work done in the last decades on weak factor recognition, this thesis

aims at addressing the challenge in designing alternative, approximated encoding of

the suffix automaton enabling a more efficient simulation in practice. Specifically,

it focuses on designing possible encoding of the suffix automaton with the following

key properties:

1. P1 - search speed should not degrade as the size of the pattern m grows;

2. P2 - it should be possible to perform state transitions in a straightforward and

efficient way;

3. P3 - the amount of space required to store the encoding should not be a

function of the pattern size m;

4. P4 - the resulting solutions should be flexible enough to be adapted to other

non-standard string matching problems.

The contribution of thesis consists in several efficient online string matching

algorithms which have been modelled upon the aforementioned design goals, and

which are briefly introduced in the next section.

1.1.1 Main contributions

The research work presented in this thesis can be summarized with the introduction

of the following algorithms:

1. Introduction 7

• Pruned BNDM (PBNDM): a variant of the BNDM algorithm, which searches

for a sampled version of the input pattern whose bit-parallel automaton can

be represented with a reduced number of bits [18, 19]. Although still based on

bit-parallelism, the algorithm scales well on long patterns;

• Backward Range Automaton Matcher (BRAM): a weak yet efficient variant

of the non-deterministic suffix automaton of a string whose configuration can

be encoded in a very simple form and which is particularly suitable to be used

for solving a multitude of text-searching problems [20, 14].

• Unique Factor Matcher (UFM): an algorithm based on an approximated, non-

standard two-steps simulation of the suffix automaton [21, 19]. Multiple varia-

tions of the base algorithm are also presented, which different search and space

characteristics.

1.1.2 Outline

The rest of this thesis is organized as follows. Chapter 2 presents some prelimi-

nary notions and definitions which are useful to present the rest of the thesis. Later,

Chapter 3 starts with the presentation of the Pruned BNDM algorithm and evaluates

its behaviour. A similar structure can be found in Chapter 4 and 5, describing, re-

spectively, the Backward Range Automaton algorithm (and its adaptation to several

non-standard string matching problems) and the Unique Factor Matcher algorithm,

along with with a few variants of it. Finally, Chapter 6 draws final conclusions on

this thesis and elucidates possible future work. Additionally, appendix A further

extends the work of this thesis by presenting novel results on the longest common

cartestian substring problem which are unrelated to main topic of the thesis.

2
Preliminaries

This chapter gives the formal definition of the search problems which are discussed

along the rest of this thesis. It also establishes the basic notions and definitions

which are useful to understand the content of the upcoming chapters.

2.0.1 Notation

Given a finite alphabet Σ, we denote by Σm, with m ≥ 0, the set of all strings of

length m over Σ. We represent a string x ∈ Σm as an array x[0 . .m−1] of characters

of Σ and write |x| = m (for m = 0 we obtain the empty string ε). Thus, x[i] is the

(i + 1)-st character of x, for 0 ≤ i < m, and x[i . . j] is the substring of x contained

between its (i+ 1)-st and the (j + 1)-st characters, for 0 ≤ i ≤ j < m.

For any two strings x and x′, we say that x′ is a suffix of x if x′ = x[i . .m− 1],

for some 0 ≤ i < m, and write Suff (x) for the set of all suffixes of x. Similarly, x′ is

a prefix of x if x′ = x[0 . . i], for some 0 ≤ i < m, and write xi to indicate the prefix

of length i of x, i.e. xi = x[0..i − 1]. We write x · x′, or more simply xx′, for the

concatenation of x and x′, and xr for the reverse of the string x.

Given a string x ∈ Σm, we indicate with S(x) = (Q,Σ, δ, I, F) the non-deterministic

2. Preliminaries 9

suffix automaton with ϵ-transitions for the language Suff (x), whereQ = {I, q0, q1, . . . , qm}

is the set of automaton states, I is the initial state, F = {qm} is the set of final

states and the transition function δ : P(Q)× (Σ ∪ {ϵ}) −→P(Q), where P(Q) is

the power set of Q.

Specifically, for any Q′ ⊆ Q we have qi+1 ∈ δ(Q′, c) if qi ∈ Q′ and c = x[i], for

0 ≤ i < m. In addition we have δ({I}, ε) = Q, while δ(Q′, c) = ∅ in all other cases.

For simplicity, in what follows, we will use the notation δ(q, c) instead of δ({q}, c).

The valid configurations δ∗(w) which are reachable by the automaton S(x) on

input w ∈ Σ∗ and starting from the initial state I are defined recursively as follows

δ∗(w) :=

{︄
{q0, q1, ..., qm} if w = ϵ,⋃︁

q′∈δ∗(I,w′) δ(q
′, c) if w = w′c, for some c ∈ Σ, and w′ ∈ Σ∗.

Finally, we recall the notation of some bitwise infix operators on computer words,

namely the bitwise and“&”, the bitwise or“|”, the left shift“≪”operator (which

shifts to the left its first argument by a number of bits equal to its second argument),

and the unary bitwise not operator “∼”.

2.0.2 Factor based searching

All the algorithms introduced in this thesis, like almost any algorithm representing

the baseline for the comparisons conducted, inherit their search strategy from the

BDM algorithm. In the BDM algorithm, the text is processed from left to right

by sliding a window of size equal to pattern m. At each iteration, the algorithm

inspects the characters of the current text window one by one, from right to left, and

feeds each of them into the suffix automaton structure which has been constructed

on the reverse of input pattern xr at preprocessing time. The suffix automaton is

used to keep track of the longest suffix u of the current window which also appears

in the input pattern x. Backward scanning stops when either one of the following

conditions holds:

2. Preliminaries 10

• the window has been fully scanned: in this case an exact match of the input

pattern is reported, and the window is shifted by one to the right (Figure 2.1);

• assuming u was the longest factor of the pattern recognized, if the current

character c is such that factor cu doesn’t appear in x, then the window is

shifter in order to align the beginning of the window with the starting position

of factor u in the text (Figure 2.2).

u = x

Safe shift

Read text y backwards

Pattern x

Figure 2.1: A factor u is read backwards until a complete match of the pattern x
occurs: the window is advanced by one character.

u

c

Safe shift

Read text y backwards

Pattern x

Figure 2.2: A factor u is read backwards until a non-factor at c occurs: it is then
safe to shift the pattern past σ.

While the BDM algorithm relies on the suffix automaton of the reverse of the

pattern xr to filter each candidate occurrence, this approach can be easily extended

to the case of filtration based algorithm, which make use of a weaker structure to

recognize a broader language. This means that each occurrence of the pattern must

be additionally verified (using a naive comparison) before reporting its occurrence,

2. Preliminaries 11

and that the length of the computed shifts can be shorter, in some cases. If the

filtration method is accurate enough and its simulation efficient, then the impact of

the mentioned drawbacks can be considered not relevant.

2.0.3 Condensed Alphabets

Most of the algorithms presented in this paper are based on condensed alphabets, a

technique which have been extensively used in the string matching field to enlarge

the size of the input alphabet [13, 10]: in the case of filtration-based algorithms, this

usually results in longer shifts and improved search speed. It consists in combining

groups of q characters of the original alphabet, for a fixed value q. A hash function

Hash : Σq ← {0, . . . , 2α − 1}, is used for combining group of adjacent characters,

where α is a positive fixed constant. Thus a new condensed pattern xq of length

m − q + 1, over the alphabet {0, . . . , 2α − 1}, is obtained from x. Specifically we

have:

xq[i . . j] = Hash(x[i . . . i+q−1]) ·Hash(x[i+1 . . . i+q]) · · ·Hash(x[j . . . j+q−1]),

for 0 ≤ i, j ≤ m − q, where xq = xq[0 . .m − q]. Searching is thus implicitly∗

performed on xq rather than on the original string x.

The size 2α of the new condensed alphabet depends on the available memory

and on the size of the original alphabet Σ. An efficient method for computing a

condensed alphabet was introduced by Wu and Manber [22]. It computes the shift

value by using a shift-and-addition procedure and in particular

Hash(c1, c2, . . . , cq) =

(︄
q∑︂

i=1

(ci ≪ (sh · (q − i)))

)︄
mod 2α

where ci ∈ Σ for i = 1, . . . , q. The value of the shift sh depends on the values of α

and q. Since the vast majority of string matching algorithms have an O(|Σ|) space

complexity, practical choices of α doesn’t exceed 16: greater values would lead to

∗The q-gram representation of x and y is computed on the fly, since preprocessing the text
would be too expensive.

2. Preliminaries 12

prohibitive space costs. This also implies a maximum shift value of 16, meaning

that q must be chosen to be less than 16 too. Typically, best results in practice are

observed when 3 ≤ q ≤ 7 and sh = {1, 2} (see [13] for instance).

3
PBNDM: a sampled bit-parallel suffix

automata for large strings

This section presents a new algorithm for the online exact string matching problem

based on a suffix automaton constructed over an approximate version of the pattern

x, which we simply call pruned pattern, where some specifically selected characters

are replaced with don’t care symbols. It turns out that the pruned pattern admits

a succinct encoding of the bit-parallel suffix automaton which results in improved

search speed as the length of the pattern increases. While the algorithm is still based

on the bit-parallelism approach, it represents a starting point for the more efficient

algorithms introduced in the upcoming chapters.

3.1 The Pruned BNDM Algorithm

As we pointed out in Section 1.1, the efficiency of an algorithm simulating the non-

deterministic suffix automaton by bit-parallelism is influenced by the length of the

pattern and by the size of the resulting automaton:

• on the one hand the performance of solutions based on bit-parallelism degrade

3. PBNDM: a sampled bit-parallel suffix automata for large strings 14

as m grows despite the use of a condensed alphabet. This is due to the need

of representing the whole automaton using a single computer word of size w

or to divide the computation on m/w different words;

• on the other hand, automata constructed over longer patterns should lead to

larger shifts during the searching phase when a backward scan of the window

is performed.

Thus the need for efficient bit-parallel encoding able to keep as low as possible the

number of words involved in the encoding and able to preserve, at the same time,

the length of the pattern.

In the next section, we present a new algorithm for the online exact string match-

ing problem based on a suffix automaton constructed over an approximate version

of the pattern x, which we simply call pruned pattern, where some specifically se-

lected characters are replaced with don’t care symbols. We will then show how to

efficiently simulate the suffix automaton constructed over the pruned version of the

pattern using bit-parallelism.

3.1.1 The Pruned Version of a Pattern

Let x be a pattern of size m and let T be a text of size n, both strings over a

common alphabet Σ of size σ. In addition let c ∈ Σ be a character of the alphabet

occurring in x which we refer as the pivot character. A pruned version of x over

the pivot character c is a string xc obtained by preserving in x all the occurrences

of c, while the remaining positions are allowed to match any character belonging to

Σ \ {c}. In other words the pruned pattern xc is obtained from x by replacing any

character in Σ \ {c} by a don’t care symbol. More formally, for each c ∈ Σ, the

pruned string xc is a string of length m defined over the alphabet Σc = {c, ⋆} where,

for i = 0, 1, ..,m− 1, xc[i] is set to:

xc[i] =

{︃
c if x[i] = c
⋆ otherwise

3. PBNDM: a sampled bit-parallel suffix automata for large strings 15

Example 1. For instance, if we assume that x = abbacbbcac is a pattern of length

m = 10 over the alphabet Σ = {a, b, c} and that a is the pivot character, then we

have that xa = a ⋆ ⋆a ⋆ ⋆ ⋆ ⋆a⋆, where ⋆ is the don’t care symbol. Similarly we have

xb = ⋆bb ⋆ ⋆bb ⋆ ⋆⋆.

The string matching problem allowing for don’t care symbols is a well known

approximate variant of the exact matching problem [23, 24], also known as string

matching on indeterminate strings. It is also well known that the bit parallel simu-

lation of the suffix automaton of an indeterminate pattern can be easily constructed

by allowing states corresponding to don’t care characters to be activated by any

character in the alphabet [11]. However the resulting automaton has a number of

states equal to the number of characters in the pattern, inheriting the same problems

as any other solution based on this technique.

Here we show how the suffix automaton of a pruned pattern can be simulated

using a number of bits proportional to the occurrences of the pivot character, leading

to a filtration algorithm which may be particularly efficient for very long patterns.

Specifically, let ρ(c) be the absolute frequency of the pivot character c in x. Then

the pruned string xc of a string x can be encoded as a sequence, ⟨d0, d1, ..., dρ(c)⟩, of

length ρ(c)+1 over the alphabet Σx = {0, 1, 2, . . . ,m−1}, where each element of xc

represents the number of consecutive ⋆ symbols between two successive occurrences

of the pivot character c, or located at the two extremities of the string.

More formally, let ⟨p0, p1, . . . , pρ(c)−1⟩ be the sequence of all positions in x where

the pivot character occurs, with 0 ≤ p1, pρ(c)−1 < m and pi−1 < pi, for 0 < i < ρ(c).

Then we have, for 0 ≤ i ≤ ρ(c):

di =

⎧⎨⎩
p0 if i = 0
pi+1 − pi − 1 if 0 < i < ρ(c)
m− pρ(c)−1 − 1 if i = ρ(c)

We refer to such a representation of the pruned string xc as its implicit encoding

and we denote it as x̂c (see Figure 3.1). It trivially turns out that di < m for

0 ≤ i ≤ k. More precisely we have

3. PBNDM: a sampled bit-parallel suffix automata for large strings 16

x

m⏟ ⏞⏞ ⏟
****⏞ ⏟⏟ ⏞
d0

c ****⏞ ⏟⏟ ⏞
d1

c ****⏞ ⏟⏟ ⏞
d2

c ... c ****⏞ ⏟⏟ ⏞
dρ(c)

x̂

ρ(c)+1⏟ ⏞⏞ ⏟
d0 d1 d2 ... dρ(c)

Figure 3.1: The pruned version xc, for a given pattern x, over a generic character
c, and its implicit encoding. Here ρ(c) is the absolute frequency of the pivot char-
acter c in x. Then the pruned string xc of a string x is encoded as a sequence,
⟨d0, d1, ..., dρ(c)⟩, of length ρ(c)+1 over the alphabet Σx = {0, 1, 2, . . . ,m−1}, where
each element of xc represents the number of consecutive ⋆ symbols between two
successive occurrences of the pivot character c, or located at the two extremities of
the string.

Iq0q1q2q3q4q5q6
ananab ϵ

ϵ

ϵ

ϵ

ϵ

ϵ

ϵ

Figure 3.2: Suffix automaton for the reverse of the pattern string x = banana.

m = ρ(c) +

ρ(c)∑︂
i=0

di

Example 2. For instance, consider the pattern string x = banana, whose automaton

is depicted in Figure 3.2. Then we have xa = *a*a*a, xb = b*****, xn = **n*n*,

while x̂a = ⟨1, 1, 1, 0⟩, x̂b = ⟨0, 5⟩ and x̂n = ⟨2, 1, 1⟩.

In the next sections we describe the preprocessing and the searching phases of

our new algorithm, which we call Pruned BNDM (PBNDM) algorithm, and which

solves the exact string matching problem by making use of the suffix automaton of

3. PBNDM: a sampled bit-parallel suffix automata for large strings 17

the pruned pattern.

3.1.2 The Preprocessing Phase

During the preprocessing phase of the PBNDM algorithm, a character c occurring

in x is elected to be the pivot character. Since such choice is arbitrary, the pivot

character is selected as the character with maximum absolute frequency not exceed-

ing the word size w, if any. If such choice is not possible we truncate the pattern

at its longest prefix that contains at least one character with an absolute frequency

not exceeding the word size w. It is easy to observe that the selection of the pivot

character can be performed in O(m) time and O(|Σ|) space, by computing the fre-

quencies of all the characters appearing in x. Without loss in generality we can

assume that such pivot character can be selected on the pattern x.

Let x̂c = ⟨d0, d1, ..., dρ(c)⟩ be the implicit encoding of xc. It is a string of length

ρ(c) + 1 over the alphabet Σ̂ = {0, 1 . . . ,m− 1} of size m.

The bit-parallel representation of the suffix automaton of x̂r
c is computed by

means of an array B of m bit-vectors, each of size ρ(c) + 1, where the i-th bit of

B[d] is set as follows:

B[d][i] =

{︃
1 if (i = 0 and d ≥ d0) or (i > 0 and d = di),
0 otherwise,

for 0 ≤ i ≤ ρ(c) and 0 ≤ d < m.

A separate discussion should be made for the first transition made on the au-

tomaton. Since it is admitted that the first transition can start from any position

of the pattern it is necessary to allow that at the first transition each i-th state can

be activated by values lower than or equal to di. For this purpose an auxiliary set

of m bit-vectors is defined, called S, which is used for the simulation of the first

transition on the automaton.

More formally, for 0 ≤ i ≤ ρ(c) and 0 ≤ d < m, S[d][i] is defined as:

3. PBNDM: a sampled bit-parallel suffix automata for large strings 18

S[d][i] =

{︃
1 if (i = 0 and d ≥ d0) or (i > 0 and d ≤ di),
0 otherwise

For instance, let us consider the pruned pattern xn = **n*n* of the pattern

string x = banana of length m = 6. Remembering that x̂n = ⟨2, 1, 1⟩, then we have:

B[0] = 000 B[3] = 100 S[0] = 011 S[3] = 100
B[1] = 011 B[4] = 100 S[1] = 011 S[4] = 100
B[2] = 100 B[5] = 100 S[2] = 100 S[5] = 100

The pseudo-code of the preprocessing phase of the algorithm is shown in Fig-

ure 3.3. It makes use of two auxiliary procedures: SelectChar and Read. Proce-

dure SelectChar is responsible for selecting the pivot character; procedure Read

performs a scan of the string S starting at position j = i and proceeds from right

to left until a given position l ≤ j is reached or an occurrence of the pivot character

c is found. It returns the pair of integers (i− j, j).

The implicit encoding of xc is computed gradually, during the initialization of

table B through procedure Read, which computes the next element of the implicit

encoding of xc. Table S is then computed from table B in a single-pass for loop.

The time complexity of the preprocessing phase is O(m). Since di ≤ m, then the

space overhead to store B and S is O(m) words too. Apart from the tables encoding

the transitions of the suffix automaton, B and S, the preprocessing phase returns

two additional integers, d0 and dmax = max{di : 0 ≤ i ≤ ρ(c)}, which are used

during the searching phase.

3.1.3 The Searching Phase

The searching phase of the PBNDM algorithm is shown in Figure 3.4. It acts using

a filtering method: it first searches for all the occurrences of the pruned pattern xc

in the text and when an occurrence of xc is found, starting at position j of the text,

the algorithm naively checks for the whole occurrence of the pattern, i.e. it checks

if x = y[j..j +m− 1].

3. PBNDM: a sampled bit-parallel suffix automata for large strings 19

Read(S, i, l, c)
1. j ← i
2. while j ≥ l and S[j] ̸= c do
4. j ← j − 1
6. return (i− j, j)

Preprocess(x,m, c, k)
∆ Initialize bit-vectors B and S

1. for i← 0 to m do
2. B[i]← 0
3. S[i]← 0

∆ Compute B, d0 and dmax

4. s← 1
5. d0 ← −1
6. dmax ← −1
7. i← m− 1
8. while i ≥ 0 do
9. (d, i)← Read(x, i, 0, c)
10. B[d]← B[d] | s
11. s← s≪ 1
12. i← i− 1
13. if d0 = −1 then d0 ← d
14. dmax ← max(d, dmax)

∆ Compute the bit-vectors S
15. for i← m− 2 downto 0 do
16. S[i]← B[i] | S[i+ 1]

∆ Set first bits for d ≥ d0
17. for i← d0 to dmax do
18. B[i]← B[i] | 10k−1

19. S[i]← S[i] | 10k−1

20. return (B,S, d0, dmax)

Figure 3.3: The pseudo-codes of the auxiliary procedures used in the PBNDM algo-
rithm. Procedure Read performs a scan of the string S starting at position i and
proceeding from right to left until a given position l ≤ i is reached or an occurrence
of the pivot character c is found. Procedure Preprocess encodes the bit-parallel
representation of the suffix automaton of x̂r

c.

As in the original BNDM algorithm, a window w of length m is shifted over the

text, starting from the left end of the text and sliding from left to right. At each

iteration of the algorithm a position of the window w is attempted performing a

scanning of its characters proceeding from right to left and performing the transitions

over the automaton accordingly.

During the backward scanning, ŵc = ⟨w0, w1, ..., wl⟩ is computed on the fly by

3. PBNDM: a sampled bit-parallel suffix automata for large strings 20

PBNDM(x,m, y, n)
1. (c, k)← SelectChar(x,m)
2. (B,S, d0, dmax)← Preprocess(x,m, c, k)
3. j ← 0
4. while j ≤ n−m do
5. prfx← 0
6. D ← 1k

7. i← m− 1
8. l← Max(i− dmax, 0)
9. (w, i)← Read(x, i, l, c)
10. if w > dmax then
11. j ← j +m− d0
12. continue
13. D ← D & S[w]
14. if D & 1k−1 do
15. prfx← w + 1
16. if prfx = m then
17. if x = y[j..j +m− 1] then
18. output j
19. prfx← m− 1
20. D ← D ≪ 1
21. s← w + 1
22. while i ≥ 0 and D ̸= 0k do
23. i← i− 1
24. l← Max(i− dmax, 0)
25. (w, i)← Read(x, i, l, c)
26. D ← D &B[w]
27. if D & 1k−1 do
28. prfx← d0 + s
29. if prfx = m then
30. if x = y[j..j +m− 1] then
31. output j
32. prfx← m− 1
33. s← s+ w + 1
34. D ← D ≪ 1
35. j ← j +m− prfx

Figure 3.4: The pseudo-code of the Pruned-BNDM (PBNDM) algorithm.

procedure Read, and the automaton configurations si, represented as a bit-vector

D of ρ(c) + 1 bits, are updated accordingly.

If wl > dmax, then the prefix of xc of size d0 has been recognized, so the win-

dow is shifted without performing any transition. Otherwise, the first transition is

performed by setting D ← D & S[wl], so that all states si such that di ≥ wl are

kept active. Transition on any subsequent wi, for 0 < i ≤ l, is implemented as

3. PBNDM: a sampled bit-parallel suffix automata for large strings 21

D ← D & B[wi]. Moreover, by the definition of B and S, s0 is kept active during

the i-th transition if wi ≥ d0. When, after performing the i-th transition, state s0 is

active, then a prefix of xc of size d0 +
∑︁k

j=i+1wj has been recognized.

Apart from the case where xc is recognized, each attempt ends when either D

becomes zero or it is established that wi > dmax while proceeding in the backward

scan.

As the original BNDM algorithm, the PBNDM algorithm has a O(nm) worst

case time complexity and a O(σ +m) space complexity.

3.2 Experimental comparison

In this section, we compare the new algorithm against other suffix automaton based

solutions, focusing on those which make use of bit-parallelism for solving the problem

with long strings. In particular we included the following algorithms:

• BNDM: the Backward-Nondeterministic-DAWG-Matching algorithm [12];

• SBNDM: the Simplified BNDM algorithm [7];

• LBNDM: the Long BNDM algorithm [7];

• BSX: the BNDM algorithm [12] with Extended Shift [8];

• FBNDM: the Factorized variant [25] of the BNDM algorithm [12];

• PBNDM: our PBNDM algorithm, presented in Section 3.1;

All algorithms have been implemented in the C programming language and have

been tested using the Smart tool [26]. Experiments have been executed locally on

a computer running Linux Ubuntu 20.04.1 with an Intel Core i5 3.40 GHz processor

and 8GB RAM. Our tests have been run on a genome sequence, a protein sequence,

and an English text, each of size 10MB. Such sequences are provided by the Smart

research tool and are available online for download (additional details on the se-

quences can be found in Faro et al. [26]). In our implementations the value of the

3. PBNDM: a sampled bit-parallel suffix automata for large strings 22

Average shifts on a genome sequence
m 64 128 256 512 1024 2048 4096 8192 16384 32768 65536
BNDM 29 29 29 29 29 29 29 29 29 29 29
SBNDM 30 30 30 30 30 30 30 30 30 30 30
LBNDM 61 112 106 27 32 64 128 256 512 1024 2048
BXS 59 117 219 1 1 1 1 1 1 1 1
FBNDM 62 66 67 67 66 67 67 67 67 67 67
PBNDM 60 123 142 139 137 130 130 125 125 122 122
Gain -3% +5% -35% +107% +107% +94% +1% -51% -75% -88% -94%

Average shifts on a protein sequence
m 64 128 256 512 1024 2048 4096 8192 16384 32768 65536
BNDM 31 31 31 31 31 31 31 31 31 31 31
SBNDM 31 31 31 31 31 31 31 31 31 31 31
LBNDM 63 126 248 470 713 353 206 286 526 1027 2048
BXS 62 125 252 502 984 1710 1635 1 1 1 1
FBNDM 63 126 146 143 141 145 144 143 144 145 144
PBNDM 56 118 244 492 979 1928 3022 3015 2942 2910 2871
Gain -11% -6% -3% -2% -1% +13% +85% +954% +459% +183% +41%

Average shifts on a natural language sequence
m 64 128 256 512 1024 2048 4096 8192 16384 32768 65536
BNDM 30 30 30 30 30 30 30 30 30 30 30
SBNDM 31 31 31 31 31 31 31 31 31 31 31
LBNDM 63 126 247 471 824 1035 797 702 910 1467 2609
BXS 62 125 252 505 1010 2008 3910 7076 10410 11015 8533
FBNDM 63 127 156 157 156 156 156 155 156 156 157
PBNDM 58 122 245 493 982 1970 3940 7784 15438 30706 60803
Gain -7% -4% -2% -2% -3% -2% +1% +10% +48% +178% +613%

Table 3.1: Average shifts achieved by bit-parallel algorithms on a genome sequence
(on top), a protein sequence (in the middle) and natural language text (on bottom).
The gain rows report the percentage of deviation with respect to the first or second
best time.

word size∗ has been fixed to w = 32 and patterns of length m were randomly ex-

tracted from the sequences, with m ranging over the set of values {2i | 6 ≤ i ≤ 16}.

For each length, the mean over the running times of 500 runs (expressed in Gigabytes

per second) and the average shift advancements has been computed.

3.3 Chapter summary

In this chapter, we introduced PBNDM, a new algorithm based on a novel encoding

of the suffix automaton of a string, suitable for patterns exceeding the word size w.

The algorithm is based on a pruned version of the pattern whose automaton can

be encoded in an implicit form using few bits. Experimental results suggest that

∗The value of the word size has been chosen in order to better emphasize scaling problems of
the several bit-parallel algorithms.

3. PBNDM: a sampled bit-parallel suffix automata for large strings 23

Experimental results on a genome sequence
m 64 128 256 512 1024 2048 4096 8192 16384 32768 65536
BNDM 1.78 1.79 1.78 1.81 1.78 1.80 1.76 1.76 1.76 1.74 1.73
SBNDM 1.86 1.82 1.88 1.88 1.84 1.86 1.86 1.85 1.84 1.84 1.82
LBNDM 1.74 1.91 0.90 0.20 0.20 0.22 0.23 0.24 0.25 0.25 0.25
BXS 1.44 1.67 1.31 - - - - - - - -
FBNDM 2.21 2.29 2.28 2.26 2.29 2.27 2.28 2.25 2.26 2.22 2.21
PBNDM 1.26 1.83 1.92 1.90 1.89 1.86 1.88 1.83 1.78 1.82 1.82

Experimental results on a protein sequence
m 64 128 256 512 1024 2048 4096 8192 16384 32768 65536
BNDM 2.24 2.23 2.21 2.23 2.17 2.21 2.19 2.19 2.21 2.21 2.16
SBNDM 2.33 2.31 2.36 2.31 2.30 2.34 2.33 2.29 2.34 2.30 2.26
LBNDM 2.34 2.56 2.70 2.81 2.63 1.32 0.60 0.47 0.45 0.46 0.47
BXS 2.18 2.36 2.61 2.52 2.49 2.16 - - - - -
FBNDM 2.48 2.71 2.67 2.71 2.68 2.68 2.67 2.67 2.68 2.65 2.38
PBNDM 1.27 1.69 2.18 2.47 2.56 2.70 2.68 2.68 2.69 2.66 2.63

Experimental results on a natural language text
m 64 128 256 512 1024 2048 4096 8192 16384 32768 65536
BNDM 1.87 1.88 1.89 1.89 1.86 1.88 1.86 1.90 1.87 1.88 1.82
SBNDM 1.94 1.95 1.93 1.95 1.92 1.94 1.95 1.92 1.91 1.94 1.90
LBNDM 2.15 2.44 2.65 2.81 2.77 2.52 1.71 1.05 0.77 0.65 0.58
BXS 1.91 2.25 2.54 2.54 2.74 2.84 2.70 2.50 0.95 0.29 -
FBNDM 2.28 2.60 2.57 2.56 2.60 2.61 2.58 2.60 2.53 2.57 2.54
PBNDM 1.07 1.59 2.14 2.38 2.45 2.76 2.84 3.64 4.93 6.18 7.40

Table 3.2: Experimental results on a genome sequence (on top), a protein sequence
(in the middle) and a natural language text (on bottom). Searching speed is reported
in GB/s. Best results have been bold faced.

the new solution is competitive when compared for searching long strings against

existing bit-parallel algorithms. It is also worth noticing that, despite the algorithm

still suffers in the case of small alphabets due to the reduced length of the shifts, the

new encoding is flexible enough to be applied in all those solutions that make use

of such data structure, even in the case of non-standard and approximate pattern

matching.

4
The Range Automaton: An Efficient

Approach to Text-Searching

In this chapter we present the Range Automaton, a weak yet efficient variant of the

non-deterministic suffix automaton of a string whose configuration can be encoded

in a very simple form and which is particularly suitable to be used for solving a

multitude of text-searching problems. We will firstly model the approach in the case

of exact string matching and present an efficient algorithm, named Backward Range

Automaton Matcher, which turns out to be very fast in many practical cases. Later,

we will show how the Range Automaton can be adapted in an effective way also to

non-standard string matching problems such as swap matching and multiple string

matching and order preserving pattern matching. Experimental results suggest that

the new approach is flexible and effective for all three search problems addressed.

4.1 The Range Automaton

Let x be a string of length m over the alphabet Σ. The Range Automaton of a

pattern x is a weaker version of the non-deterministic Suffix Automaton of x in the

4. The Range Automaton: An Efficient Approach to Text-Searching 25

sense that, while using an encoding that can allow to keep track of the set of all

active states of the automaton, it adopts a weak transition approach, meaning that

also transitions not tagged with the current character may be activated.

Despite this weak transition approach, the Range Automaton has the interesting

feature of operating as an Oracle: the recognized language contains all the factors

of x and (possibly) other strings as well. This is the price to pay for an automaton

that can allow a simpler encoding and a more efficient simulation.

Before entering into the details of the description of the Range Automaton it is

advisable that some useful notions are introduced.

We define the position function, ρ : Σ −→P({0, 1, . . . ,m− 1}), as the function

which maps each character c ∈ Σ to the set of positions where c occurs in x. If c

doesn’t occur in x we agree to set ρ(c) = ∅. More formally, ρ(c) := {i | P [i] = c, 0 ≤

i < m}, for each c ∈ Σ. Particularly important for our discussion is the following

definition of a range-set.

Definition 1 (Range-Set). Given a string x of length m and a termination symbol

$ /∈ Σ, a range-set of x is a set of contiguous positions in the string x$. We use

the notation [i : j] to denote the range-set of positions in x from i to j, extremes

included. Formally [i : j] = {i, i+ 1, . . . , j}, where 0 ≤ i ≤ j ≤ m.

The symbol $ is concatenated at the end of x in order to extend its length of one

character and allow the value m to be included in any range-set.

We denote by Rm the set of all possible range-sets associated to a given string

on length m. Formally

Rm = {[i : j] | 0 ≤ i ≤ j ≤ m}.

We also define the range function, denoted by r : Σ −→ Rm, as the function

which maps each character c to the tightest set-range where the character c occurs

in the pattern. More formally, for c ∈ Σ, r(c) is defined as follows.

4. The Range Automaton: An Efficient Approach to Text-Searching 26

r(c) =

{︄
[min ρ(c) : max ρ(c)] if ρ(c) ̸= ∅
∅ otherwise.

Example 3. Given the pattern x = banana, we have that r(a) = [1 : 5] = {1, 2, 3, 4, 5},

r(b) = [0 : 0] = {0} and r(n) = [2 : 4] = {2, 3, 4}, while r(c) = ∅ for any other

character c not appearing in x.

Given a range-set R, we denote by R≪k the left shift operation on R by k posi-

tions. The result of such shift operation is a new range-set obtained by decreasing

each element of R by k. More formally, if R = [i : j], we have:

R≪k :=

⎧⎪⎨⎪⎩
∅ if R = ∅ or j < k,

{0, 1, . . . , j − k} if i < k and j ≥ k.

{i− k, . . . , j − k} if i ≥ k.

Example 4. Given a range-set R = [2 : 5] = {2, 3, 4, 5} of size 4, we have that

R≪ 1 = [1 : 4] = {1, 2, 3, 4} and R≪ 2 = [0 : 3] = {0, 1, 2, 3}. In addition we have

also R≪ 4 = [0 : 1] = {0, 1} and R≪ 6 = ∅.

We notice that a one-to-one correspondence can be defined between the states

of the suffix automaton S(x) and the positions within the string x$. Consequently

it is possible to map any range-set in R to a set of states in the suffix automaton.

Formally we can map any position i to the state qi, for 0 ≤ i ≤ m, and any range-set

[i : j] to the set of states {qi, qi+1, . . . , qj}, for 0 ≤ i ≤ j ≤ m.

We are now ready to define the Range Automaton used in our approach. Using

the correspondence between any range-set of the pattern x and the set of states

in the suffix automaton of x, in the following definition we will deal with the sets

of states as range-sets. In this context a configuration of the Range Automaton of

x is maintained as a single range-set, which identifies the set of all active states

of the automaton. In other words if [i : j] is the range-set which represents the

configuration of the Range Automaton, each state qk, with k ∈ [i : j], is an active

state.

4. The Range Automaton: An Efficient Approach to Text-Searching 27

Definition 2 (The Range Automaton). Given a string x ∈ Σm, we denote with

A(x) = (Q,Σ, γ, Ir, F) the non-deterministic range suffix automaton of x. It is

defined as follows:

• Q = [0 : m] = {0, 1, . . . ,m} is the set of states of the automaton;

• Ir = [0 : m] = Q is the set of initial states;

• γ : Rm × Σ −→ Rm is the transition function, where γ(R, c) is defined as

γ(R, c) = (R≪ 1) ∩ r(c), for any R ∈ Rm and c ∈ Σ;

• F = [0 : 0] = {0} is the set of final states.

The valid configurations γ∗(Ir,W) which are reachable by the Range Automaton

A(x) on input W ∈ Σ∗, with |W | = n, are defined recursively as follows

γ∗(Ir,W) =

{︃
[0 : m] if n = 0
γ(γ∗(Ir,W [0 . . n− 2]),W [n− 1]) if n > 0

The following technical lemma allows to characterize the Range Automaton∗ as

an oracle, proving that it recognizes (at least) all the factors of the pattern.

Lemma 1. Let x be a string of length m and let S(x) be the non-deterministic suffix

automaton with ϵ-transitions for the language Suff (x). In addition let A(x) be the

Range Automaton of x. We have that if qi ∈ δ∗(I,W), for a string W ∈ Σ∗, then

i ∈ γ∗(Ir,W).

Proof. Proof Let W be a string of length n. We proceed by induction on n.

For the base case, we have n = 0, i.e. W = ϵ. In this case δ∗(I,W) =

{q0, q1, . . . , qm} and γ∗(Ir,W) = [0 : m], so the lemma trivially holds.

∗Note that the definition of the Range Automaton turns out to be reversed with respect to the
definition of the suffix automaton, i.e. state i in the suffix automaton corresponds to state m − i
in the Range Automaton. This choice was made to make the definition of the Range Automaton
consistent with the description of the algorithm presented in Section 4.2, which scans each text
window starting from the last character.

4. The Range Automaton: An Efficient Approach to Text-Searching 28

Let now n > 0 and let us suppose that the lemma holds for every string of

length l ≤ n − 1. Since |W | = n > 0 we can write W = W ′c, with W ′ ∈ Σn−1.

By inductive hypothesis, if qi ∈ δ∗(I,W ′), then i ∈ γ∗(Ir,W
′). Since γ∗(Ir,W

′) is

a range, then [i′ : j′] ⊆ γ∗(Ir,W
′), where i′ and j′ are, respectively, the minimum

and the maximum of the set {i | qi ∈ δ∗(I,W ′)}. Remembering that δ∗(I,W) =⋃︁
q′∈δ∗(I,W ′) δ(q

′, c), we have that if qk ∈ δ∗(I,W) then, by the definition of δ the

following inequalities hold:

• max(0, i′ − 1) ≤ k ≤ max(0, j′ − 1),

• f ≤ k ≤ l, where [f : l] = r(c).

By the first inequality it follows that k ∈ ([i′ : j′] ≪ 1). Since for the second

inequality k ∈ r(c), then k ∈ ([i′ : j′]≪ 1) ∩ r(c). Moreover, we observe that, since

[i′ : j′] ⊆ γ∗(Ir,W
′), then ([i′ : j′] ≪ 1) ∩ r(c) ⊆ γ∗(Ir,W) holds. Thus, we can

conclude that k ∈ γ∗(Ir,W) too.

The following Corollary allows to characterize the range automaton as a useful

tool to search for a pattern in a text. It follows from Lemma 1.

Corollary 1. Let x be a pattern of length m and let y be a text of length n. In

addition let A(x) be the Range Automaton of x. If the prefix x[0 . . i] occurs in y at

position j, i.e. x[0 . . i] = y[j . . j + i], then 0 ∈ γ∗(I, (y[j . . j + i])r).

4.2 The Backward Range Automaton Matcher

In this section we describe the Backward Range Automaton Matcher (BRAM) de-

signed for the exact online string matching problem and discuss its time and space

complexity. In our presentation we will refer to the pseudo-code of the BRAM

algorithm depicted in Figure 4.1.

As before, let x be a pattern of length m and let y be a text of length n, both

strings defined over an alphabet Σ of size σ.

4. The Range Automaton: An Efficient Approach to Text-Searching 29

The preprocessing phase of the BRAM algorithm consists in the computations

of the function r(c), for each c ∈ Σ (lines 1-6) by means of two simple for loops,

taking time O(σ) and O(m), respectively. Thus, the preprocessing phase achieves

an overall O(m+ σ)-time and O(σ)-space complexity.

The searching phase of the algorithm proceeds along the same line of the BNDM

algorithm, where the configuration of the Range Automaton is maintained as a range

set R.

The algorithm works by sliding a window W of length m along the text starting

form the left end of the text and proceeding from left to right. At the end of each

attempt the window is shifted to the right by a given amount s > 0. This process

continues until the right end of the text is reached.

Suppose we are in any of the attempts of the search phase, assuming that

W = y[j . . j +m− 1]. At the beginning of the attempt the configuration of the

automaton is initialized to the set of initial states Ir. This is done by setting

R = [0 : m] = {0, 1, . . . ,m} (line 6). Thus all automaton states are active.

While proceeding in the backward scan of the window the configuration of the

automaton is updated accordingly. Specifically, after reading a character c, the

configuration of the automaton is updated by the following operation:

R← (R≪ 1) ∩ r(c),

which is always performed at the beginning of each iteration of the while cycle

at line 8.

The algorithm keeps track of the length of the prefixes recognized by the Range

Automaton during the backward scan by maintaining a variable x which is initialized

to 0 at the beginning of each attempt. By Lemma 1, a prefix of x is recognized

whenever 0 ∈ R. When this condition occurs, the algorithm updates the length of

the prefix just identified (line 12). This information will later be used to carry out

the correct advancement of the window along the text (line 17).

The backward scan proceeds until R becomes empty, a condition which occurs

4. The Range Automaton: An Efficient Approach to Text-Searching 30

when the substring y[j+m− i . . j+m− 1] is not recognized by the automaton and

no state in the automaton is active. In this case the window is advanced in order to

align the first character of x with the starting position of the last recognized prefix.

However, observe that R = ∅ can occur also when exactly m characters have

been scanned. If such condition occurs (line 10) then a candidate occurrence of the

pattern has been located and a naive check is performed to verify the occurrence of

the whole pattern starting from position j of the text.

Regarding the space and time complexity of the resulting algorithm it is straight-

forward to observe that the searching phase of the BRAM algorithm runs in O(mn)-

time and O(σ)-space.

Example 5. Let x = banana be a pattern of length 6 and assume W = anaban is

the current window of the text. Plainly we have r(a) = [1 : 5], r(b) = [0 : 0] and

r(n) = [2 : 4]. The following table shows the configurations of the Range Automaton

obtained during the backward scan of the string W .

Iteration Operation Range-Set Computation Configuration
iteration 0. initial state R0 = [0 : 5] [b a n a n a]

iteration 1. read n R1 = [0 : 4] ∩ [2 : 4] = [2 : 4] b a[n a n]a

iteration 2. read a R2 = [1 : 3] ∩ [1 : 5] = [1 : 3] b[a n a]n a

iteration 3. read b R3 = [0 : 2] ∩ [0 : 0] = [0 : 0] [b]a n a n a

iteration 4. R4 = ∅

4.2.1 Speeding-up Searching by Condensed Alphabets

For the sake of simplicity, algorithm 4.2 has been described assuming that characters

are processed one by one. However, practical implementations of the algorithm

strongly rely on the condensed alphabet expansion presented in Section 2.0.3.

Fig. 4.8, reported in Section 4.6, shows experimental evaluations to compare the

performances of the BRAM algorithm under various conditions and for different

values of the parameter q (we postpone the reader to Section 4.6 for a detailed

description of the experimental settings).

4. The Range Automaton: An Efficient Approach to Text-Searching 31

Preprocessing(x,m)
1. for each c ∈ Σ do
2. r(c)← ∅
3. for c ∈ x do
4. i← min ρ(c)
5. j ← max ρ(c)
6. r(c)← [i : j]
7. return r

Verify(x,m, y, j)
1. for i = 0 to m− 1 do
2. if x[i] ̸= y[j + i] then
3. return False
4. return True

BRAM(x,m, y, n)
1. r ← Preprocessing(x,m)
2. j ← 0
3. while j ≤ n−m do
4. p← 0
5. i← m
6. R← [0 : m]
7. do
8. R← (R≪ 1) ∩ r(y[j + i− 1])
9. i← i− 1
10. if (0 ∈ R) then
11. if (i > 0) then
12. p← m− i
13. else
14. if Verify(x,m, y, j) then
15. Output(j)
16. while (R ̸= ∅)
17. j ← j +m− p

Figure 4.1: The pseudocode of the BRAM algorithm and its auxiliary procedures.

From experimental evaluations shown in Fig. 4.8, it turns out that the perfor-

mances of the algorithm strongly depend on the values of m, q and σ. When the

size of the alphabet is small then larger values of the parameter q are more efficient.

4. The Range Automaton: An Efficient Approach to Text-Searching 32

Such difference is less sensible when the size of the alphabet gets larger. However it

turns out that the smaller is the length of the pattern the lower is the performance

of the algorithm. This behavior is more evident for larger values of the parameter

q. Thus, the choice of the parameter q should be directed to larger values when the

size of alphabet decreases or when the length of the pattern increases.

4.3 Extensions to Non-Standard Matching Problems

In this section we will show that our basic algorithm is flexible enough to be adapted

to some other non-conventional pattern matching problems with only minor modifi-

cations. Indeed, to derive each new solution, we will only modify the implementation

of the Preprocessing and Verify procedures, leaving unchanged the main struc-

ture of the BRAM algorithm.

Obviously, this generalization is not feasible for any text searching problem, but

the two examples that we report in this paper show that this is true for at least a

certain class of search problems. Adaptability to other problems not belonging to

this class should be assessed on a case-by-case basis. However, the classification of

such problems is not among the aims of this paper.

4.3.1 Extension to Swap matching

The string matching problem with swaps (swap matching problem, for short) is a

well-studied variant of the classic string matching problem, and was introduced for

the first time in 1995 as one of the open problems in non-standard string match-

ing [27]. Many solutions, mostly focused on the practical aspects of the problem,

have been presented in the last few years (see for instance [28, 29, 30, 31]).

The swap matching problem consists in finding all occurrences, up to character

swaps, of a pattern x of length m in a text y of length n, with x and y sequences of

characters drawn from a same finite alphabet Σ of size σ. More precisely, the pattern

is said to swap-match the text at a given location j if adjacent pattern characters

4. The Range Automaton: An Efficient Approach to Text-Searching 33

can be swapped, if necessary, so as to make it identical to the substring of the

text starting (or, equivalently, ending) at location j. All swaps are constrained to

be disjoint, i.e., each character can be involved in at most one swap. Moreover,

we make the agreement that identical adjacent characters are not allowed to be

swapped. Definitions 3 and 4 formally define the problem.

Definition 3. A swap permutation for a string x of length m is a permutation π :

{0, . . . ,m− 1} → {0, . . . ,m− 1} such that:

(a) if π(i) = j then π(j) = i

(characters at positions i and j are swapped);

(b) for all i, π(i) ∈ {i− 1, i, i+ 1}

(only adjacent characters can be swapped);

(c) if π(i) ̸= i then x[π(i)] ̸= x[i]

(identical characters can not be swapped).

For a given string x and a swap permutation π for x, we write π(x) to denote its

swapped version, namely π(x) = x[π(0)] · x[π(1)] · · ·x[π(m− 1)].

Definition 4. Given a text y of length n and a pattern y of length m, x is said

to swap-match (or to have a swapped occurrence) at location j ≥ m − 1 of y if

there exists a swap permutation π of x such that π(x) matches y at location j, i.e.,

π(x) = y[j −m+ 1 . . j].

Definition 4 immediately leads to the following implementation of the Verify

procedure shown in Figure 4.2, which is able to check if a pattern x performs a swap

match beginning at position j of the text y.

It simply checks, for each pattern position j, whether character x[j] matches

the corresponding text position y[i + j]. In the case of a mismatch, it additionally

checks if text characters y[i + j] and y[i + j + 1] are swapped with respect to the

corresponding pattern characters x[j] and x[j + 1] before returning a mismatch for

4. The Range Automaton: An Efficient Approach to Text-Searching 34

Verify(x,m, y, j)
1. i← 0
2. while (i < m) do
3. if (x[i] = y[j + i]) then i← i+ 1
4. else
5. if (i < m− 1 and
6. x[i] = y[j + i+ 1] and
7. x[i+ 1] = y[j + i])
8. then j ← j + 2
9. else return False
10. return True

Figure 4.2: The pseudo-code of Verify procedure adapted to swap matching.

the current alignment. It is straightforward to observe that such verification can be

done in O(m) time.

4.3.2 BRAM for Swap Matching

In order to adapt the approach based on the Range Automaton to the approximate

case of swap matching, we generate a superimposed pattern where each position

corresponds to the set of all the characters contained in any swap permutation of

the pattern at the same position. Specifically, given an input pattern x of length

m, we generate a superimposed pattern x̂ of length m where the element x̂[i], for

0 ≤ i < m, is a set of characters. A character c ∈ Σ is contained in the set x̂[i] if

there is a swap permutation π of x such that π(x)[i] = c. Since a character can only

be involved in a single swap and characters at the end of a string can only swap

with the internal characters, then the set at position i of the superimposed pattern

x̂ can be formally defined as follows:

x̂[i] =

⎧⎪⎪⎨⎪⎪⎩
{x[i]} if i = 0 and i = m− 1
{x[i], x[i+ 1]} if i = 0 and i < m− 1
{x[i− 1], x[i]} if i > 0 and i = m− 1
{x[i− 1], x[i], x[i+ 1]} if i > 0 and i < m− 1

4. The Range Automaton: An Efficient Approach to Text-Searching 35

Preprocessing(x,m)
1. for each c ∈ Σ do r(c)← ∅
2. for i← 0 to m− 1 do ρ(x[i])← ρ(x[i]) ∪ {i}
3. ρ(x[0])← ρ(x[0]) ∪ {1}
4. for i← 1 to m− 2 do
5. ρ(x[i])← ρ(x[i]) ∪ {i− 1, i+ 1}
6. ρ(x[m− 1])← ρ(x[m− 1]) ∪ {m− 2}
7. for each c ∈ Σ do
8. i← min ρ(c)
9. j ← max ρ(c)
10. r(c)← [i : j]
11. return r

Figure 4.3: The Preprocessing procedure of the BRAM algorithm adapted to the
swap matching problem.

We recall that equal adjacent characters cannot be involved in a swap, so if x̂[i] =

{x[i− 1], x[i], x[i+ 1]} and x[i] = x[i+ 1], its value reduces to x̂[i] = {x[i− 1], x[i]}.

Example 6. Let x = “banana” be a string of length 6. The superimposed pattern is

the sequence of set of characters x̂ given by:

x̂ = ⟨{a, b}, {a, b, n}, {a, n}, {a, n}, {a, n}, {a, n}⟩

Then we extend the definition of the position function ρ to the case of a pattern

whose elements are sets of characters. Formally:

ρ(c) = {i : 0 ≤ i < m and c ∈ x̂[i]}. (4.1)

Such definition allows us to easily adapt the preprocessing phase of the BRAM

algorithm to the case of swap mathing.

The pseudocode of the Preprocessing procedure is shown in Figure 4.3. It is

straightforward to observe that the preprocessing phase can be executed in O(m)

time.

The search phase is developed in the same way to the original BRAM algo-

rithm. Suppose we are in any of the attempts of the search phase, assuming that

4. The Range Automaton: An Efficient Approach to Text-Searching 36

W = y[j . . j +m− 1]. At the beginning of the attempt the configuration of the au-

tomaton is initialized to the set of initial states Ir. This is done, as usual, by setting

R = [0 : m] = {0, 1, . . . ,m}. Thus at the beginning of each attempt all automaton

states are active. Suppose R is the configuration of the range automaton after hav-

ing read the suffix y[j+ q+1 . . j+m− 1], while proceeding in the backward scan of

the window. The configuration of the automaton is then updated on the character

y[j + q], by the following operation:

R← (R≪ 1) ∩ r(y[j + q])

If 0 ∈ R after the whole scan of the current window of the text we verify the

occurrence of any given pattern in § at position j of the text by running procedure

Verify(x,m, T, j). Since the verification procedure takes O(m) time the whole

searching phase achieves an O(mn) worst case time complexity.

Example 7. Let x = banana be a pattern of length 6 and assume again W = anaban

is the current window of the text. Plainly we have r(a) = [0 : 5], r(b) = [0 : 1] and

r(n) = [1 : 5]. The following table shows the configurations of the Range Automaton

obtained during the backward scan of the string W .

Iteration Operation Range-Set Computation Configuration
iteration 0. initial state R0 = [0 : 5] [0 1 2 3 4 5]

iteration 1. read n R1 = [0 : 4] ∩ [1 : 5] = [1 : 4] 0[1 2 3 4]5

iteration 2. read a R2 = [0 : 3] ∩ [0 : 5] = [0 : 3] [0 1 2 3]4 5

iteration 3. read b R3 = [0 : 2] ∩ [0 : 1] = [0 : 1] [0 1]2 3 4 5

iteration 4. read a R4 = [0 : 0] ∩ [0 : 5] = [0 : 0] [0]1 2 3 4 5

iteration 5. R5 = ∅

The algorithm described above can also be easily extended to the case of con-

densed alphabets (see Section 2.0.3), by applying the strategy already adopted by

Faro and Pavone [31] for the generalization of the Skip-Search algorithm, imple-

mented with q-grams, to the case of swap matching. We do not go into the imple-

mentation details of this extension but we refer the reader to the original paper. We

underline that the resulting algorithm still achieves an O(m)-space complexity and

an O(mn) worst case time complexity.

4. The Range Automaton: An Efficient Approach to Text-Searching 37

y = 8 11 10 16 15 20 13 17 14 18 20 18 25 17 24 25 26

x = 6 5 8 4 7

Figure 4.4: Example of a pattern x of length 5 over an integer alphabet with two
order preserving occurrences in a text y of length 17, at positions 3 and 10.

4.4 Extension to Order Preserving String Matching

The order-preserving pattern matching problem [32, 33, 34, 35, 36, 37] (OPPM in

short) is an approximate variant of the exact pattern matching problem which has

gained more and more attention in recent years. In this variant the characters of

x and y are drawn from an ordered alphabet Σ with a total order relation defined

on it. The task of the problem is to find all substrings of the text with the same

relative order as the pattern.

For instance the relative order of the sequence x = ⟨6, 5, 8, 4, 7⟩ is the sequence

⟨3, 1, 0, 4, 2⟩ since the element 6 has rank 3 in x, the element 5 as rank 1 in x, and so

on. Thus x occurs in the string y = ⟨8, 11, 10, 16, 15, 20, 13, 17, 14, 18, 20, 18, 25,

17, 20, 25, 26⟩ at position 3, since subsequence ⟨16, 15, 20, 13, 17⟩ shares with x the

same relative order. Another occurrence of x in y is at position 10 (see Fig. 4.4).

The OPPM problem finds applications, for example, to time series analysis like

share prices on stock markets, weather data or to musical melody matching of two

musical scores, where finding patterns affected by relative orders is more significant

than considering their absolute values.

Assuming that a total order relation “≤” is defined on the elements of the input

alphabet Σ, we say that two (non-null) sequences x, y over Σ are order-isomorphic

if the relative order of their elements is the same. More formally:

Definition 5 (Order-isomorphism). Two non-null sequences x, y of the same length,

4. The Range Automaton: An Efficient Approach to Text-Searching 38

over a totally ordered alphabet (Σ,≤), are said to be order-isomorphic, and we write

x ≈ y, if the following condition holds

x[i] ≤ x[j] ⇐⇒ y[i] ≤ y[j], for 0 ≤ i, j < |x| .

From a computational point of view, it is convenient to characterize the order of

a sequence by means of two functions: the rank and the equality functions.

Definition 6 (Rank function). Let x be a non-null sequence over a totally ordered

alphabet (Σ,≤). The rank function of x is the bijection from {0, 1, . . . , |x| − 1} onto

itself defined, for 0 ≤ i < |x|, by

rkx(i) =
⃓⃓
{k : x[k] < x[i] or (x[k] = x[i] and k < i)}

⃓⃓
.

Definition 7 (Equality function). Let x be a sequence of length m ≥ 2 over a totally

ordered alphabet (Σ,≤). The equality function of x is the binary map eqx : {0, 1, . . . ,m−

2} → {0, 1} where, for 0 ≤ i ≤ m− 2,

eqx(i) =

{︃
1 if x[rk−1x (i)] = x[rk−1x (i+ 1)]
0 otherwise.

Lemma 2. [37] Let x and y be two sequences of the same length m ≥ 2, over a totally

ordered alphabet. Then x ≈ y if and only if the following conditions hold:

(i) y[rk−1x (i)] ≤ y[rk−1x (i+ 1)], for 0 ≤ i < m− 1

(ii) y[rk−1x (i)] = y[rk−1x (i+ 1)] if and only if eqx(i) = 1, for 0 ≤ i < m− 1. ■

Thus in order to establish whether two given sequences of the same length m are

order-isomorphic, it is enough to compute their rank and equality functions. The

cost of the test is dominated by the cost O(m logm) of sorting the sequences.

Based on Lemma 2, the procedure Verify verifies correctly whether a sequence

y is order-isomorphic to a sequence x of the same length as y. It receives as input the

functions rkx and eqx and the sequence y, and returns true if x ≈ y, false otherwise.

A mismatch occurs when one of the three conditions of lines 2, 3, or 4 holds. Notice

that the time complexity of the procedure Verify is linear in the size of its input

sequence y.

4. The Range Automaton: An Efficient Approach to Text-Searching 39

Verify(y, j,m, inv-rk, eq)
1. for i← 0 to m− 2 do
2. if (y[j + inv-rk(i)] > y[j + inv-rk(i+ 1)]) then return false
3. if (y[j + inv-rk(i)] < y[j + inv-rk(i+ 1)] and eq(i) = 1) then return false
4. if (y[j + inv-rk(i)] = y[j + inv-rk(i+ 1)] and eq(i) = 0) then return false
5. return true

Figure 4.5: The auxiliary procedure which verifies whether the text window of length
m and starting at position j is order-isomorphic to a pattern having inverse rank
function inv-rk and equality function eq.

4.4.1 BRAM for Order Preserving String Matching

The new algorithm is based on the efficient filtration technique presented in [36] by

Faro et al.. Their method, called Neighborhood Ranking filtering approach, makes

use of information extracted from groups of q integers of the input string †, and

relies on the following definition of q-neighborhood:

Definition 8 (q-neighborhood). Given a string x of length m, we define the q-

neighborhood of the element x[i], with 0 ≤ i < m − q, as the sequence of q + 1

elements from position i to i+ q in x, i.e. the sequence ⟨x[i], x[i+ 1], . . . , x[i+ q]⟩.

Given a string x of length m, we can compute the relative position of the element

x[i] compared with the element x[j] by querying the inequality x[i] ≥ x[j]. For

brevity we will write in symbol βx(i, j) to indicate the boolean value resulting from

the above inequality. It is easy to observe that if βx(i, j) = 1 we have that rk−1x (i) ≥

rk−1x (j) (x[j] precedes x[i] in the ordering of the elements of x), otherwise rk−1x (i) <

rk−1x (j).

The neighborhood ranking (nr) approach associates each position i of the string

x (where 0 ≤ i < m − q) with the sequence of the relative positions between x[i]

and x[i + j], for j = 1, . . . , q. In other words, it computes the binary sequence

†In this context, the value of q represents a trade-off between the computational time required
for computing the q-grams for each window of the text and the computational time needed for
checking false positive candidate occurrences.

4. The Range Automaton: An Efficient Approach to Text-Searching 40

⟨βx(i, i+ 1), βx(i, i+ 2), . . . , βx(i, i+ q)⟩ of length q indicating the relative positions

of the element x[i] compared with other values in its q-neighborhood. Of course, the

relative position of β(i, i) is not included in the sequence, since it doesn’t give any

additional information.

Since there are 2q possible configurations of a binary sequence of length q the

string x is converted in a sequence χq
x of length m − q, where each element χq

x[i],

for 0 ≤ i < m − q, is a value such that 0 ≤ χq
x[i] < 2q. More formally we have the

following definition:

Definition 9 (q-NR sequence). Given a string x of length m and an integer q < m,

the q-nr sequence associated with x is a numeric sequence χq
x of length m− q over

the alphabet {0, . . . , 2q} where

χq
x[i] =

q∑︂
j=1

(︁
βx(i, i+ j)× 2q−j

)︁
, for all 0 ≤ i < m− q

Example 8. Let x = ⟨5, 6, 3, 8, 10, 7, 1, 9, 10, 8⟩ be a sequence of length 10. The

4-neighborhood of the element x[2] is the subsequence ⟨3, 8, 10, 7, 1⟩. Observe that

x[2] is greater than x[6] and less than all other values in its 4-neighborhood. Thus

the ranking sequence associated with the element of position 2 is ⟨0, 0, 0, 1⟩ which

translates in a nr value equal to 1. In a similar way we can observe that the nr

sequence associated with the element of position 3 is ⟨0, 1, 1, 0⟩ which translates in

a nr value equal to 6. The whole 4-nr sequence of length 6 associated to x is

χ4
x = ⟨4, 8, 1, 6, 15, 8⟩.

The preprocessing phase of the BRAM algorithm consists in the computations of

the inverse-rank function inv-rkx (Definition 6), the equality function eqx (Definition

7), and the range function r (Section 4.1). The rank function rkx, and its inverse

inv-rkx, can be computed (line 1) by using a stable sort algorithm in O(m logm)

time while the equality function eqx can be computed (line 2) in O(σ) time. The

range function r is computed (lines 3-10) by means of two simple for loops. The first

for loop of line 3 initializes r(c) to the empty set, for each 0 ≤ c < 2q. The second

4. The Range Automaton: An Efficient Approach to Text-Searching 41

Preprocessing(x,m, y, n)

1. inv-rkx ←Compute-Inverse-Rank-Function(x,m, q)
2. eqx ←Compute-Equality-Function(x,m, q)
3. for each c ∈ {0..2q − 1} do
4. r(c)← ∅
5. for i← 0 to m− q do
6. c← χq

x[i]
7. if (r(c) = ∅) then r(c)← [i : i]
8. else
9. [a : b]← r(c)
10. r(c)← [a : i]

Figure 4.6: The preprocessing of the BRAM algorithm for the OPPM problem.

for loop of line 5 iterates over the pattern x, computes on the fly the element χq
x[i],

for 0 ≤ i ≤ m− q, and updates the range set r(χq
x[i]) accordingly. The two for loops

take O(σ)-time and O(m)-time, respectively. Thus the preprocessing phase of the

BRAM algorithm, whose pseudocode is reported in Figure 4.6 achieves an overall

O(m logm+ σ)-time and O(σ)-space complexity.

The searching phase of the algorithm exactly works as in the case of exact string

matching, with the only difference that transitions are applied on χq
y[i]. Thus, it

still takes O(mn)-time and O(σ)-space.

4.5 Extension to Multiple String Matching

Themultiple string matching problem is the natural generalization of the exact string

matching problem to a set X of k different patterns‡. A trivial solution to such

problem consists in applying an exact string matching algorithm for locating each

‡We assume, with a simplification, that the patterns in X have all the same length m. However,
this simplification is not excessively limiting since we could easily transform the set X into a set
that has exactly this feature, considering only the prefixes of length m′ of all patterns, where m′

is the length of the shortest pattern in X. Whenever the occurrence of a pattern is identified, it is
always possible to check the presence of the cut suffix in the text. A more practical approach to
handle patterns of varying length can be found in [38].

4. The Range Automaton: An Efficient Approach to Text-Searching 42

pattern x ∈ X. If we use the well–known Knuth-Morris-Pratt algorithm [3], whose

time complexity is linear in the size of the text, the resulting algorithm achieves

an O(k(m + n)) worst case time complexity. However, it is well known that the

problem has a complexity in the worst case that is still linear on the size of the

text. The renowned algorithm by Aho and Corasick [39] achieves this result by

using a generalized automaton built on the set of k patterns. Its time complexity

is O(mk + n). An alternative construction of the Aho and Corasick automaton [40]

achieves O(km+n log |Σ|+occ), where occ is the total number of occurrences of the

set of patterns in the text.

The optimal average complexity of the problem is O(n logσ(km)/m) [41], a bound

which is achieved by the Set-Backward-DAWG-Matching (SBDM) algorithm [42, 5].

The SBDM algorithm builds an exact indexing structure for the reverse strings in

X, such as a factor automaton or a generalized suffix tree.

Hashing also provides a simple and efficient method for indexing suffixes of the

strings of x. It has been used first by Wu and Manber [43] to design an efficient

algorithm for multiple string matching with a sub-linear average complexity which

uses an index table for blocks of q characters.

Also the Shift-Or [11] and BNDM [12] algorithms, which are based on bit-

parallelism, can be easily extended to the multiple patterns case by deriving the

corresponding automata from the maximal trie of the set of patterns [43, 44]. The

resulting algorithms have a O(σ⌈m/w⌉)-space complexity and work in O(n⌈m/w⌉)

and O(n⌈m/w⌉m) worst-case searching time complexity, respectively. Another ef-

ficient solution is the MBNDM algorithm [45], which computes a superimposed

pattern from the patterns of the input set when using a condensed alphabet of q

characters, and performs filtering with the standard BNDM.

The use of SIMD instructions in the multiple string matching problem has been

explored only recently with the MPSSEF algorithm [46], which represents one of the

most efficient solutions currently available for the problem. It runs in O(nm) time

complexity and uses O(km+ 2α) additional space, where α indicates the size of the

4. The Range Automaton: An Efficient Approach to Text-Searching 43

packed word in bits.

4.5.1 BRAM for Multiple String Matching

Our solution for the multiple string matching problem makes again use of the su-

perimposition technique to filter the candidates occurrences, along the same lines of

what described in Section 4.3.1. Specifically, assume that X = {x0, x1, . . . , xk−1} is

the set of k patterns, each of length m. We define the superimposed pattern of the

k strings in X as the pattern x̂ obtained by merging the characters of each of the k

patterns at corresponding positions. More formally, for 0 ≤ i < m,

x̂[i] =
k−1⋃︂
j=0

{xj[i]}.

In other words, the i-th character of x̂ is the set of the i-th characters of all

x ∈ X. For simplicity, we will also write x̂ =
⋃︁k−1

j=0 xj.

Example 9. Let X = {banana, ananas, brands} be a set of 3 patterns of length 6.

The superimposed pattern is the sequence of sets of characters x̂ given by:

x̂ = ⟨{a, b}, {a, n, r}, {a, n}, {a, n}, {a, d, n}, {a, s}⟩

We make use of the definition of the extended position function ρ to a set of char-

acters as given in (4.1). Such definitions allow us to easily adapt the preprocessing

phase of the BRAM algorithm to multiple patterns. The pseudocode of the Pre-

processing and Verify procedures is shown in Figure 4.7. It is straightforward

to observe that the preprocessing phase can be executed in O(km) time.

The search phase remains once again unchanged with respect to that proposed in

the original BRAM algorithm. Thus R is the configuration of the Range Automaton

and 0 ∈ R after the whole scan of the current window of the text we verify the

occurrence of any given pattern in X at position j of the text by running procedure

Verify(x,m, y, j). Since the verification procedure takes O(km) time the overall

time complexity of the algorithm is O(mnk).

4. The Range Automaton: An Efficient Approach to Text-Searching 44

Preprocessing(x,m, k)
2. for each c ∈ Σ do
3. ρ(c)← ∅
2. for j ← 0 to k − 1 do
2. for i← 0 to m− 1 do
3. ρ(xj[i])← ρ(xj[i]) ∪ {i}
4. for c ∈ Σ do
5. i← min ρ(c)
6. j ← max ρ(c)
7. r(c)← [i : j]
8. return r

Verify(xi,m, k, y, j)
1. for r = 0 to k − 1 do
2. if xr = y[j . . j +m− 1] then
3. return True
4. return False

Figure 4.7: The Preprocessing and Verify procedures of the BRAM algorithm
adapted to the multiple string matching problem.

Example 10. Let X = {banana, ananas, brands} be a set of 3 pattern of length 6

and assume again W = anaban is the current window of the text. Plainly we have

r(a) = [0 : 5], r(b) = [0 : 0], r(d) = [4 : 4], r(n) = [1 : 4], r(r) = [1 : 1] and

r(s) = [5 : 5]. The following table shows the configurations of the Range Automaton

obtained during the backward scan of the string W .

Iteration Operation Range-Set Computation Configuration
iteration 0. initial state R0 = [0 : 5] [0 1 2 3 4 5]

iteration 1. read n R1 = [0 : 4] ∩ [1 : 4] = [1 : 4] 0[1 2 3 4]5

iteration 2. read a R2 = [0 : 3] ∩ [0 : 5] = [0 : 3] [0 1 2 3]4 5

iteration 3. read b R3 = [0 : 2] ∩ [0 : 0] = [0 : 0] [0]1 2 3 4 5

iteration 4. R4 = ∅

4.6 Experimental Comparison

We report in this section the results of an extensive experimentation of the BRAM

algorithm for each of the considered searching problems. All algorithms have been

4. The Range Automaton: An Efficient Approach to Text-Searching 45

implemented in the C programming language§ and have been tested using the Smart

tool [26]. All experiments have been executed locally on a computer running Linux

Ubuntu 20.04.1 with an Intel Core i5 3.40 GHz processor and 8GB RAM. Our tests

have been run on a genome sequence, a protein sequence, and an English text (each

of size 10MB). Such sequences are provided by the Smart research tool and are

available online for download.¶.

The following subsections analyze in detail, case by case, the results obtained by

comparing the solutions based on the new range automaton in the four scenarios

presented in this chapter: exact string matching, swap matching, order preserving

string matching and multiple string matching, respectively.

4.6.1 Exact string matching

For the online exact string matching problem, we mostly focused on those algorithms

which make use of the suffix automaton. Specifically, the following 10 algorithms

(implemented in 33 variants, depending on the values of their parameters) have been

compared: the BNDMq algorithm [12] implemented with q-grams, for 2 ≤ q ≤ 6;

the LBNDM algorithm [7]; the BSXq algorithm [8] implemented using q-grams,

with 2 ≤ q ≤ 4; the FBNDM algorithm [9] of the BNDM algorithm [12]; the BSDMq

algorithm [10] using q-grams characters, with 3 ≤ q ≤ 7; the BRAMq algorithm,

implemented using q-grams characters, with 3 ≤ q ≤ 7.

For completeness, we also evaluated some among the most efficient algorithms in

practice and specifically: the Maximal Average Shift algorithm and its variants [47]

(MAS, MAS4 and TMAS), specifically designed for genome sequences and short

patterns;‖ the Weak Factors Recognition (WFR) algorithm [48], implemented using

q-grams, with 3 ≤ q ≤ 7 and its variant (TWFR); the Exact Packed String Matching

§The source code of the new BRAM algorithm is available at the following link:
https://github.com/ostafen/range-automaton

¶Additional details on the sequences can be found in Faro et al. [26]
‖Search speed of MAS and its variants, MAS4 and TMAS, has been omitted starting from

m = 256, since the preprocessing time of such solutions become prohibitive as the length of the
pattern increases.

https://github.com/ostafen/range-automaton

4. The Range Automaton: An Efficient Approach to Text-Searching 46

102

103
2

4
6

8

0

2

4

mq

S
p
ee
d
(G

B
/
s)

Genome Sequence

102

103
2

4
6

8

2

mq

S
p
ee
d
(G

B
/s
)

Protein Sequence

102

103
2

4
6

8

2

3

mq

S
p
ee
d
(G

B
/s
)

English Text

Figure 4.8: Running times of the BRAM algorithm extended with condensed alpha-
bets using groups of q characters. We report searching speed of the algorithms for
different values of q. Experimental tests have been conducted on a genome sequence
and a protein sequence. Speed is reported in GB/s.

(EPSM) algorithm [49] based on SIMD instructions.∗∗

In the experimental evaluation, patterns of length m were randomly extracted

from the sequences, with m ranging over the set of values {2i | 5 ≤ i ≤ 16}. In all

cases, the mean over the search speed (expressed in Gigabytes per seconds) of 1000

runs has been reported. Table 4.1 summarises our evaluations. Each table is divided

∗∗We notice that the EPSM algorithm is designed for simply counting the number of matching
occurrences without reporting the corresponding positions.

4. The Range Automaton: An Efficient Approach to Text-Searching 47

Genome Sequence

Algo\m 25 26 27 28 29 210 211 212 213 214 215 216

BNDMq 3.05 3.07 3.01 2.96 3.05 3.01 3.03 2.96 2.94 3.00 2.94 2.94
LBNDM 1.56 1.78 2.00 0.94 0.19 0.20 0.23 0.25 0.25 0.25 0.25 0.26
BXSq 2.96 2.86 2.98 3.07 2.96 3.03 2.96 3.09 2.98 2.98 2.76 2.89
FBNDM 1.76 2.25 2.42 2.26 2.26 2.47 2.34 2.48 2.41 2.37 2.29 2.38
BSDMq 2.48 2.53 2.58 2.65 2.65 2.79 2.74 2.82 2.74 2.76 2.73 2.73
BRAMq 2.81 3.11 3.32 3.41 3.76 3.97 3.91 4.21 6.98 11.3 13.5 11.1

MAS 0.96 1.18 1.40 1.64 - - - - - - - -
MAS4 2.19 2.82 3.26 3.37 - - - - - - - -
TMAS 1.18 1.54 1.74 1.74 - - - - - - - -
EPSM 3.37 3.41 3.62 3.59 3.76 3.94 3.67 3.97 4.00 4.98 4.65 4.88
WFRq 3.05 3.26 3.39 3.59 3.81 3.84 3.94 4.10 6.78 9.57 6.60 2.38
TWFRq 2.49 2.63 3.21 3.30 3.76 3.81 4.00 4.07 6.78 9.39 6.69 2.48

Protein Sequence

Algo\m 25 26 27 28 29 210 211 212 213 214 215 216

BNDMq 2.42 2.42 2.41 2.43 2.44 2.38 2.41 2.39 2.41 2.39 2.56 2.56
LBNDM 1.76 2.01 2.14 2.31 2.41 2.20 1.11 0.49 0.39 0.39 0.40 0.39
BXSq 2.67 2.70 2.67 2.70 2.67 2.70 2.65 2.68 2.63 2.64 2.63 2.61
FBNDM 1.97 2.13 2.29 2.29 2.29 2.28 2.26 2.26 2.25 2.27 2.45 2.25
BSDMq 2.33 2.44 2.48 2.52 2.54 2.54 2.52 2.56 2.54 2.50 2.79 2.57
BRAMq 2.21 2.38 2.52 2.61 2.82 2.77 2.96 2.98 5.37 8.88 12.2 10.8

EPSM 2.48 2.56 2.65 2.81 2.86 2.87 2.87 2.91 3.01 3.49 4.07 3.79
WFRq 2.34 2.48 2.58 2.71 2.81 2.96 2.98 3.00 5.43 9.04 10.61 5.49
TWFRq 2.37 2.49 2.56 2.70 2.86 2.94 2.98 3.00 5.37 8.88 10.39 5.55

English Text

Algo\m 25 26 27 28 29 210 211 212 213 214 215 216

BNDMq 2.50 2.57 2.58 2.56 2.61 2.57 2.41 2.35 2.36 2.34 2.35 2.3
LBNDM 1.68 2.06 2.35 2.53 2.58 2.61 2.23 1.63 1.05 0.74 0.61 0.52
BXSq 2.57 2.65 2.6 2.58 2.58 2.57 2.6 2.58 2.58 2.53 2.50 2.44
FBNDM 1.93 2.16 2.42 2.44 2.43 2.43 2.20 2.18 2.21 2.15 2.20 2.17
BSDMq 2.60 2.67 2.74 2.73 2.77 2.77 2.54 2.60 2.58 2.60 2.65 2.65
BRAMq 2.45 2.70 2.81 2.94 3.05 3.15 3.01 3.05 5.49 9.21 12.5 11.3

EPSM 2.65 2.71 2.84 3.00 3.07 3.07 2.94 2.98 3.26 3.62 3.81 4.14
WFRq 2.50 2.65 2.74 2.82 3.00 2.89 3.00 3.03 5.25 8.00 7.40 3.81
TWFRq 2.64 2.71 2.76 2.91 3.03 3.11 2.94 3.00 5.25 8.00 7.40 3.81

Table 4.1: Experimental results obtained for exact string matching on a genome
sequence (at the top), a protein sequence (in the center) and an English text (in the
bottom). Searching speed is reported in GB/s. Best results have been bold faced.

into two blocks. The first block presents results of the most efficient automata

based algorithms while the second block concerns the search speed obtained by

other algorithms. Best results have been boldfaced both among automata-based

4. The Range Automaton: An Efficient Approach to Text-Searching 48

algorithms and among the entire set of algorithms.

Among the automata-based algorithms the new algorithm turns out to be the

best in many cases, obtaining increasingly higher performances as the length of the

pattern increases, showing considerable speed ups, especially in the case of long

patterns. In particular, other algorithms are superior only for m = 32, and, in

the case of protein sequences, up to m = 256. However, as m grows beyond 1024,

the BRAM algorithm becomes by far faster than the previous solutions, reaching a

search speed up to 4.6 times higher than the second best solution.

Extending the comparison also to non-automata-based solutions, it is interesting

to note how the BRAM algorithm scales better as the size of the pattern increases,

outperforming all the remaining algorithms starting from m = 1024, both in the

case of genome sequences and for texts in natural language. In the case of protein

sequences, bothWFRq andTWFRq turn out to be competitive up tom = 8192, but

fail to scale-up with respect to the new approach for larger values of m. Moreover,

we also notice how the BRAM algorithm is still very competitive also for patterns of

medium size, since the search speed never deviates too much from the best results.

4.6.2 Experimental Results on Swap Matching

For evaluating the swap matching variant of our BRAM algorithm, we compared a

set of 6 algorithms. According to [30] and [31] the first five algorithms in the list

are the most efficient solutions for this problem:

• Bpcs: the Bit Parallel Cross Sampling [28];

• Bpbcs: the Bit Parallel Backward Cross Sampling [29];

• Bpsra: the Bit Parallel Swap Reactive Automata [30];

• Bpsro: the Bit Parallel Swap Reactive Oracle [30];

• Skipq: the Skip Search algorithm for swap matching [31], using q-grams and

implemented with 1 ≤ q ≤ 5;

4. The Range Automaton: An Efficient Approach to Text-Searching 49

• Bramq: the Backward Range Automaton Matcher presented in Section 4.3.1,

implemented using 1 ≤ q ≤ 5.

We considered patterns of length m ranging in the set {2i | 0 ≤ i ≤ 12}. Fig-

ure 4.9 summarises the running times of our evaluations, including the speed-up (in

percentage) obtained by the BRAM algorithm against the best running time among

the previous solutions. Any positive values denote a performance improvement.

Running times representing best results have been bold-faced.

From experimental results, it turns out that the Skip Search algorithm and

the BRAM both emerge as winners, for small and large strings respectively, with

BRAM being specifically advantaged for genome sequences (where it achieves the

best results in 7/11 cases). Noticeably, the BRAM algorithm is always close to

the Skip Search algorithms also in those cases in which the latter is superior in

terms of absolute times, while it tends to be by far faster in all other cases, reaching

important speed-ups as m increases, up to 70% and 103% depending on the text

buffer. This makes our BRAM algorithm one of the most efficient solutions for the

swap matching problem.

4.6.3 Experimental Results on Order Preserving String Matching

In this section we present experimental results in order to evaluate the performance

of the algorithm presented in this paper. In [36] Faro and Kulekci applied the

q-neighborhood ranking approach to the SBNDM2 algorithm. However in our

experimental evaluation, we found it appropriate to also include the SKIP algorithm

[37], because it scales better as m grows (and thus, it is more competitive with

our BRAM algorithm). All of the algorithms have been implemented using the

q-neighborhood filtering approach, for increasing values of q = 4, 8, 12.

We evaluated our filter based solutions in terms of efficiency, reporting the av-

erage running times, in gigabytes per second (GB/s), and, when possible, also

the speed-up with respect to the second best solution. We tested our solutions

4. The Range Automaton: An Efficient Approach to Text-Searching 50

Genome Sequence

m bpcs bpbcs bpsra bpsro skipq bramq speed-up

4 0.54 0.31 0.31 0.7 0.51(4) 0.44(4) ∼
8 0.62 0.54 0.54 0.81 0.86(4) 0.84(4) ∼
16 0.62 0.85 0.85 0.83 1.01(4) 1.02(4) 1%

32 0.62 1.34 1.34 0.84 1.14(4) 1.27(4) 11%

64 0.61 1.31 1.31 0.82 1.31(4) 1.7(4) 30%

128 0.62 1.32 1.32 0.83 1.46(4) 2.03(4) 39%

256 0.62 1.32 1.32 0.83 1.52(4) 2.17(5) 43%

512 0.62 1.3 1.3 0.83 1.44(4) 1.95(5) 35%

1024 0.63 1.31 1.31 0.84 1.18(4) 1.35(5) 14%

2048 0.62 1.31 1.31 0.83 1.05(4) 0.77(5) ∼
4096 0.62 1.31 1.31 0.83 0.91(4) 0.51(5) ∼

Protein Sequence

m bpcs bpbcs bpsra bpsro skipq bramq speed-up

4 0.55 0.5 0.5 0.74 0.89(2) 0.82(2) ∼
8 0.55 0.72 0.72 0.73 1.43(4) 1.26(4) ∼
16 0.55 1.21 1.21 0.73 1.95(4) 1.84(4) ∼
32 0.55 1.74 1.74 0.73 2.26(4) 2.11(4) ∼
64 0.55 1.73 1.73 0.73 2.31(4) 2.21(4) ∼
128 0.55 1.72 1.72 0.74 2.36(4) 2.48(4) 5%

256 0.55 1.75 1.75 0.73 2.36(4) 2.68(4) 14%

512 0.55 1.71 1.71 0.73 2.19(4) 2.74(4) 25%

1024 0.55 1.76 1.76 0.74 2.07(4) 2.91(4) 40%

2048 0.55 1.72 1.72 0.73 1.8(4) 2.68(4) 48%

4096 0.54 1.74 1.74 0.74 1.43(4) 2.43(4) 70%

Natural Language Text

m bpcs bpbcs bpsra bpsro skipq bramq speed-up

4 0.55 0.44 0.44 0.72 0.95(2) 0.89(2) ∼
8 0.55 0.7 0.7 0.72 1.43(3) 1.26(3) ∼
16 0.55 1.1 1.1 0.74 1.96(4) 1.77(4) ∼
32 0.55 1.57 1.57 0.72 2.31(4) 2.13(4) ∼
64 0.55 1.55 1.55 0.73 2.41(4) 2.26(4) ∼
128 0.55 1.57 1.57 0.73 2.45(4) 2.49(4) 2%

256 0.55 1.57 1.57 0.71 2.35(4) 2.61(4) 11%

512 0.55 1.59 1.59 0.72 2.29(4) 2.77(4) 21%

1024 0.55 1.57 1.57 0.73 2.13(4) 3.01(4) 41%

2048 0.56 1.56 1.56 0.73 1.86(4) 3.07(4) 65%

4096 0.55 1.6 1.6 0.73 1.49(3) 3.03(4) 103%

Figure 4.9: Experimental results obtained by running 6 swap matching algorithms on
three text buffers. Experimental results have been conducted on three text buffers:
(on the top) a genome sequence, (in the middle) a protein sequence and (on the
bottom) a natural language text. Results are expressed in GB/s.

4. The Range Automaton: An Efficient Approach to Text-Searching 51

on sequences of short integer values only, where each element is an integer in the

range [0 . . . 256] (according to [36], considering long integers and floating point val-

ues doesn’t affect too much the results). All texts have 1 million of elements. In

particular we tested our algorithm on a Rand-δ sequence of random integer values

varying around a fixed mean equal to 100 with a variability of δ.

For each text in the set we randomly select 100 patterns extracted from the text

and compute the average running time over the 100 runs. All the algorithms have

been implemented using the C programming language and have been compiled a

computer running Linux Ubuntu 20.04.1 with an Intel Core i5 3.40 GHz processor

and 8GB RAM. During the compilation we used the -O3 optimization option. In

the following table running times are expressed in GB/s. Best results have been

underlined to be easily located.

Experimental results on Rand-δ numeric sequences have been conducted with

values of δ = 5, 20, and 40. Table 4.2 summarises our evaluations.

From experimental results, it turns out that the SBNMD2 algorithm is the most

appropriate for sequences of length m ≤ 16. However, it fails to scale for longer

sequences because of the intrinsic limitation due the bit-parallelism approach. As

the input size m increases, the SKIP and the BRAM algorithms both emerge as

winners, for medium and large strings respectively. Indeed, as the value ofm exceeds

64, the BRAM algorithm tends to be faster and faster, reaching important speed-

ups (up to 62% faster with respect to the second best time) depending on the text

buffer. Noticeably, our algorithm is the fastest for most of the time with respect to

the alternative solutions. This makes our BRAM algorithm one of the most effective

solutions for the order preserving matching problem.

4.6.4 Experimental Results on Multiple String Matching

In the case of multiple patterns, we compared the performances of the BRAM al-

gorithm against the following best algorithms known in literature for the multiple

string matching problem:

4. The Range Automaton: An Efficient Approach to Text-Searching 52

δ
=

5

m 8 16 32 64 128 256 512 1024 2048 4096

SBNDM24 3.91 3.41 3.49 3.18 3.21 3.19 3.20 3.17 3.17 3.20
SBNDM28 3.91 3.64 3.34 3.25 3.42 3.23 3.22 3.21 3.23 3.23
SBNDM212 3.94 4.28 4.36 4.16 4.15 4.15 4.13 4.15 4.19 4.16
SKIP4 - 2.63 4.98 6.18 6.88 7.51 7.75 8.72 9.77 10.17
SKIP8 0.99 2.89 3.84 4.52 5.09 5.49 5.68 5.81 6.34 6.88
SKIP12 - 2.60 4.83 6.18 6.98 7.63 7.88 8.57 9.39 10.39

BRAM4 1.03 1.76 2.45 2.21 1.65 1.48 1.30 1.13 0.93 0.67
BRAM8 0.53 2.16 3.79 5.61 7.51 9.39 10.85 11.10 7.75 2.36
BRAM12 - 1.46 3.64 6.03 8.42 10.17 11.36 13.20 14.80 16.84

Speed-Up - - - - - 1.20 1.33 1.44 1.54 1.51 1.62

δ
=

2
0

m 8 16 32 64 128 256 512 1024 2048 4096

SBNDM24 3.87 3.38 3.52 3.21 3.24 3.22 3.23 3.20 3.14 3.23
SBNDM28 3.87 3.60 3.37 3.28 3.45 3.26 3.19 3.24 3.20 3.26
SBNDM212 3.90 4.24 4.32 4.12 4.11 4.19 4.09 4.19 4.15 4.20
SKIP4 - 2.76 5.43 6.98 8.14 9.04 9.21 10.61 11.63 11.63
SKIP8 1.02 3.11 4.10 4.88 5.74 6.42 6.42 6.88 7.75 8.00
SKIP12 - 2.77 5.37 7.08 8.14 8.88 9.39 10.39 11.63 11.63

BRAM4 1.04 1.79 2.48 2.14 1.63 1.44 1.31 1.16 0.95 0.68
BRAM8 0.54 2.21 3.79 5.49 7.51 9.39 10.85 11.36 7.18 2.28
BRAM12 - 1.52 3.67 6.26 8.28 9.96 11.63 13.20 15.26 16.84

Speed-Up - - - - - 1.2 1.12 1.23 1.27 1.31 1.45

δ
=

4
0

m 8 16 32 64 128 256 512 1024 2048 4096

SBNDM24 3.85 3.46 3.44 3.13 3.16 3.24 3.25 3.22 3.12 3.15
SBNDM28 3.97 3.69 3.29 3.20 3.37 3.28 3.27 3.26 3.28 3.28
SBNDM212 3.88 4.22 4.43 4.10 4.21 4.09 4.19 4.09 4.25 4.10
SKIP4 - 2.81 5.25 6.98 8.28 8.88 9.21 10.39 11.36 12.52
SKIP12 - 2.77 5.55 7.51 8.14 9.04 9.39 10.39 11.63 12.52
SKIP8 1.03 3.15 4.17 4.83 5.74 6.34 6.78 7.08 7.29 8.00
SKIP12 - 2.77 5.55 7.51 8.14 9.04 9.39 10.39 11.63 12.52

BRAM4 1.10 1.82 2.52 2.20 1.70 1.52 1.33 1.18 0.98 0.72
BRAM8 0.55 2.18 3.73 5.68 7.75 9.77 10.85 11.36 7.29 2.10
BRAM12 - 1.47 3.79 6.26 8.57 9.96 11.36 13.20 14.80 16.84

Speed-Up - - - - 1.5 1.10 1.21 1.27 1.27 1.35

Table 4.2: Experimental results on a Rand−δ short integer sequence. Search speed
is reported in GB/s. Best results have been bold faced.

• MBNDM: the Multiple Backward DAWG Matching algorithm [45, 50];

• WM: the Wu-Manber algorithm, implemented with q-grams for 1 ≤ q ≤ 8

[20];

• BRAMq: the presented BRAM algorithm for multiple string matching, imple-

mented with q-grams for 1 ≤ q ≤ 8.

For completeness, we also included the MPSSEFα algorithm [46], where α referes

4. The Range Automaton: An Efficient Approach to Text-Searching 53

Genome Sequence
k
=

1
0
2 Algo\m 25 26 27 28 29 210

MBNDMq 1.14 1.14 1.14 1.13 1.12 1.11
WMq 1.10 1.36 1.46 1.55 1.64 1.71
BRAMq 1.54 1.52 1.95 2.07 2.00 1.69

MPSSEFα 1.64 2.04 2.15 2.27 2.29 2.12

k
=

1
0
3 Algo\m 25 26 27 28 29 210

MBNDMq 0.56 0.56 0.56 0.56 1.12 0.55
WMq 0.79 1.00 1.11 1.17 1.17 1.16
BRAMq 0.83 1.14 1.33 1.55 1.47 1.44

MPSSEFα 1.51 1.76 1.77 1.77 1.75 1.76

k
=

1
0
4 Algo\m 25 26 27 28 29 210

MBNDMq 0.01 0.01 0.01 0.01 0.01 0.01
WMq 0.01 0.01 0.01 0.01 0.01 0.01
BRAMq 0.06 0.08 0.08 0.09 0.08 0.09

MPSSEFα 0.17 0.17 0.14 0.13 0.11 0.10

Table 4.3: Running times, reported in GB/s, for k ∈ {102, 103, 104} on a genome
sequence. Best results over the first set of algorithms have been boldfaced.

to the number of packed characters and has been set to 32, 64 and 128. However,

since the MPSSEF algorithm is based on SIMD instructions, the comparison only

takes into account the first set of algorithms.

For each text buffer, experiments have been repeated by generating sets of 100,

1000 and 10000 patterns of fixed length m. In all cases the patterns were randomly

extracted from the text and the value of m was made ranging over the values 32, 64,

128, 256, 512, and 1024. Times are reported in Table 4.3, 4.4 and 4.5. The BRAM

algorithm performs very well both as the text buffer changes and as the number

of patterns increase, with slight fluctuations for small patterns which allow WM to

predominate in minor cases. As the pattern size increases, performance improves

less noticeably than the base algorithm, since the filter is affected by the number of

patterns, but in any case in a way superior to the remaining algorithms.

4. The Range Automaton: An Efficient Approach to Text-Searching 54

Protein Sequence
k
=

1
0
2 Algo\m 25 26 27 28 29 210

MBNDMq 1.51 1.44 1.52 1.53 1.50 1.48
WMq 1.28 1.50 1.56 1.65 1.70 1.76
BRAMq 1.23 1.52 1.74 1.77 2.00 2.13

MPSSEFα 1.63 2.04 2.19 2.28 2.36 2.11

k
=

1
0
3 Algo\m 25 26 27 28 29 210

MBNDMq 0.64 0.63 0.62 0.60 0.58 0.52
WMq 0.80 0.95 0.95 0.85 0.67 0.49
BRAMq 0.79 0.92 0.93 0.91 0.87 0.67

MPSSEFα 0.88 0.92 0.91 0.88 0.86 0.80

k
=

1
0
4 Algo\m 25 26 27 28 29 210

MBNDMq 0.24 0.24 0.22 0.19 0.16 0.11
WMq 0.23 0.21 0.18 0.13 0.09 0.05
BRAMq 0.21 0.19 0.24 0.19 0.18 0.14

MPSSEFα 0.17 0.16 0.15 0.13 0.11 0.09

Table 4.4: Running times, reported in GB/s, for k ∈ {102, 103, 104} on a protein
sequence. Best results over the first set of algorithms have been boldfaced.

English Text

k
=

1
0
2 Algo\m 25 26 27 28 29 210

MBNDMq 1.15 1.12 1.07 1.12 1.12 1.12
WMq 1.19 1.36 1.53 1.58 1.73 1.76
BRAMq 1.21 1.43 1.68 1.55 1.92 2.01

MPSSEFα 1.68 2.04 2.14 2.26 2.27 2.05

k
=

1
0
3 Algo\m 25 26 27 28 29 210

MBNDMq 0.29 0.29 0.28 0.28 0.27 0.27
WMq 0.37 0.46 0.51 0.52 0.46 0.36
BRAMq 0.32 0.43 0.55 0.54 0.58 0.49

MPSSEFα 0.58 0.59 0.60 0.60 0.57 0.53

k
=

1
0
4 Algo\m 25 26 27 28 29 210

MBNDMq 0.04 0.04 0.04 0.04 0.04 0.03
WMq 0.04 0.04 0.05 0.04 0.04 0.03
BRAMq 0.04 0.05 0.07 0.05 0.07 0.07

MPSSEFα 0.09 0.10 0.09 0.08 0.07 0.06

Table 4.5: Running times, reported in GB/s, for k ∈ {102, 103, 104} on a protein
sequence. Best results over the first set of algorithms have been boldfaced.

4.7 Chapter summary

In this chapter, we introduced the Range Automaton, a weak version of the non-

deterministic suffix automaton of a string whose configuration can be encoded as a

4. The Range Automaton: An Efficient Approach to Text-Searching 55

simple pair of integers. Such encoding turns out to be effective in order to overcome

the intrinsic space limitation of bit-parallel simulations of the suffix automaton. We

then introduced a new efficient string matching algorithm, named Backward Range

Automaton Matcher (BRAM), based on the Range Automaton of the pattern and

derived some extensions of it also to non-conventional string matching problems,

considering, in particular, the swap matching and the multiple pattern matching

problem. We conducted an extensive experimental evaluation from which it turns

out that our newly presented algorithm is very competitive when compared with the

most efficient algorithms known in literature, both in its exact and extended form.

The good performances obtained by the BRAM algorithm suggest that its en-

coding is simple and flexible and allows us to imagine that it can be easily adapted

also to other relevant text-processing problems we have not taken into consideration

in this work.

5
UFM: a Two-Step Simulation of the

Suffix Automaton

In this chapter, we present a new general approach to the exact string matching

problem based on a non-standard two-step simulation of the suffix automaton of

the pattern. We then introduce UFM, an exact string matching algorithm which

efficiently implements the new approach in practice and present several variations

and optimizations of it. Experimental results suggest that the new solutions are

competitive with the most effective algorithms available for the exact string matching

problem in practical cases, scaling much better when the length of the pattern

increases.

5.1 The Unique Factor Matcher

As we have already noticed the efficiency of a suffix automaton based algorithm

relies on the right trade-off between the encoding used to represent the underlying

automaton and the size of the automaton itself. Regarding the first point it turns out

that automata admitting simpler encoding are more efficient in practice. This is the

5. UFM: a Two-Step Simulation of the Suffix Automaton 57

case, for instance, of bit-parallel based solutions which limit the size of the automaton

to the machine word size in turn of an efficient representation, like LBNDM and

BXS. However, on the other hand, longer shifts are achieved when the size of the

underlying automaton is close to the length of the pattern. This is the case of the

FBNDM algorithm which trades a more complex representation in exchange for a

higher size of the automaton.

In this second part of the work we present a new algorithm, called Unique Factor

Matcher (UFM), which allows a compact representation of a suffix automaton while

managing to represent significantly longer patterns than what is currently done by

other solutions in the literature, greatly increasing the efficiency of the search in the

case of very long patterns.

Before going into the detail of the description of the UFM algorithm we present

in the following section a generic algorithm, called Backward-Two-Step-Matcher

(BTSM), for the online exact string matching problem based on a simplified and

efficient simulation of the suffix automaton of the reverse of the pattern which,

however, doesn’t require its whole construction. As we will see, the UFM algorithm

represents a specific implementation of the BTSM algorithm.

5.1.1 A Generic Backward-Two-Step-Matcher Algorithm

Let x be a pattern of length m over an alphabet Σ of size σ. Given the suffix

automaton S(x) = ⟨Q,Σ, δ, I, F ⟩ of x, we define the minimum transitions function

γ : Σ+ −→ {1, 2, ...,m} which associates any string w ∈ Σ∗ with the length of its

shortest prefix which must be read in order to reach a configuration containing at

most one state. More formally, for each string w ∈ Σ+, we have

γ(w) = min{1 ≤ ℓ ≤ m : |δ∗(wℓ)| ≤ 1}.

Note that such a prefix of w always exists, since l = m, in the worst case. Moreover,

by the definition of δ, it trivially follows that if ℓ = γ(w) then |δ∗(wµ)| ≤ 1 for any

5. UFM: a Two-Step Simulation of the Suffix Automaton 58

ℓ ≤ µ ≤ m.

In addition, we define the position function pos : Σ∗ −→ {−1, 0, 1, ...,m− 1} as

the function which maps any w ∈ Σ∗ to its unique starting position inside the pattern

x, if such position exists, or to −1 otherwise. Formally, we have

pos(w) =

{︄
m− i if δ∗(w) = {qi}, 0 < i ≤ m,

−1 otherwise.

Assume, for instance to match the pattern x = banana against the text window

w = anaban. Then, we have γ(w) = 3 and Pos(ban) = 0.

We are now ready to present the generic BTSM algorithm. The main underlying

idea is that the recognition process of a string w through the automaton S(xr) can

be simplified by dividing it in two separate steps: a first non-deterministic step

possibly followed by a deterministic step.

Specifically, as before, let x be a pattern of length m and let y be a text of length

n, both strings over a common alphabet Σ of size σ and let S(xr) = ⟨Q,Σ, δ, I, F ⟩

the suffix automaton for the the reverse of the pattern.

As in the case of the standard BDM algorithm, the searching phase of the BTSM

algorithm works by sliding a window w of length m along the text, starting from

the left end of the text and proceeding from left to right. At each iteration of the

algorithm a new window position is attempted. For each attempt the recognition

process of a string w through the automaton S(xr) is divided in the following two

steps:

• non-deterministic step: during the first step an integer value µ is computed,

depending on w, such that γ(wr) ≤ µ ≤ m and µ+1 transitions are followed all

at once by computing the position p = Pos(wr
µ) corresponding to the unique

active state q (if any) belonging to δ∗(wr
µ). If no active state q exists, i.e. if

p = −1, the window is advanced to the right by one position, if µ = m, by

m− µ positions otherwise.

5. UFM: a Two-Step Simulation of the Suffix Automaton 59

• deterministic step: If p ≥ 0, then the computation proceeds with the sub-

sequent transitions, which are simulated by comparing each character of the

pattern, starting from position p, with its counterpart in the text, until a mis-

match occurs or until p transitions have been performed. If a mismatch occurs

then the window is simply advanced by m − µ positions to the right. Other-

wise if p characters are read then a prefix of size k+µ of the pattern has been

recognized. If k + µ = m then the pattern itself has been recognized and a

match is reported, otherwise the window is shifted in order to align the first

character of x with the starting position of the recognized prefix.

Denoting by f(m) the computational effort related to the computation of µ and

p, the worst case time complexity of the BTSM algorithm is O((m+ f(m)) · n).

The approach described above represents a generic way to avoid managing mul-

tiple states while simulating a suffix automaton for a given string at the cost of

reducing the length of the shifts. Indeed, the only way to compute the exact shift

value s consists in recognizing each suffix of xr (i.e. each prefix of x), through the

use of a full suffix automaton. Performing µ + 1 transitions at once implies that

only suffixes of length µ′ ≥ µ can be recognized. However, provided that we can

determine a value of µ which is close to γ(wr) and that δ∗(wr
µ) can be computed

efficiently for any given text window w, overestimating the shifts values impacts less

the efficiency than simulating the full automaton.

5.1.2 A Practical Implementation: The UFM Algorithm

In this section we show how to turn the generic BTSM algorithm into a concrete

efficient string matching algorithm. Our approach for estimating a good approxima-

tion for γ(w) relies on the definition of unique characters, i.e. characters which occur

only once in the pattern. Although it can be rare for a given character c ∈ Σ to

occur only once, especially when m grows, we will show that, by convenient alphabet

transformations, it could become very likely to happen. The resulting algorithm is

5. UFM: a Two-Step Simulation of the Suffix Automaton 60

called Unique-Factor-Matcher (UFM).

As before, let x be a pattern of length m over an alphabet Σ. For each character

c ∈ Σ, we denote by fx(c) the number of occurrences of the character c inside x and

we say that c is a unique character of x if fx(c) = 1.

In addition, for each position of the pattern, we define the unique distance func-

tion d : {0, 1, ...,m−1} −→ {0, 1, ...,m−1} as the function which maps each position

i of the pattern to the distance with respect to the rightmost position j ≤ i such

that x[j] is a unique character in x, or to i itself if such position doesn’t exist. If such

a unique character does not occur in x we set by default d(i) = i. More formally,

for 0 ≤ i < m, we have

d(i) = min({i− j | 0 < j ≤ i ∧ fx(x[j]) = 1} ∪ {i}).

Starting from the previous definition, we define d̄(c) := max{d(i) | 0 ≤ i <

m ∧ x[i] = c} for each character c appearing in x, while we set d̄(c) = −1 if c

does not occur in x. For instance, assume x = pepsi is a string over the alphabet

Σ = {a, b, i, e, p, s}. Then, we have d̄(p) = 1, d̄(c) = 0, for any c ∈ {e, s, i} while

d̄(c) = −1 for c ∈ {a, b}.

The following two technical lemmas define how unique characters of the pattern

can be used to compute, for a given string w, a candidate value µ, such that γ(w) ≤

µ ≤ m. Roughly speaking we prove in Lemma 3 that |δ∗(w)| ≤ 1 for any string w

ending with a unique character. In addition we prove in Lemma 4 that if the second

transition of the suffix automaton of xr is performed on a character c ∈ Σ, then

performing d̄(c) + 1 transitions is enough to get (at most) a unique active state on

the automaton.

Lemma 3. Let x be a string of length m over Σ and let S(x) = ⟨Q,Σ, δ, I, F ⟩ be the

suffix automaton for x. Moreover, let c ∈ Σ such that fx(c) = 1. Then for each

Q′ ∈P(Q), |δ(Q′, c)| ≤ 1 holds.

5. UFM: a Two-Step Simulation of the Suffix Automaton 61

HashInsert(Ht, x, s, µ)
1. c← x[s+ µ− 1]
2. n← NewNode()
3. n.len← µ
4. n.start← s
5. n.next← Ht[c]
6. Ht[c]← n

HashGet(Ht, x, f, µ)
1. c← f [µ− 1]
2. n← Ht[c]
3. while n ̸= Nil do
4. s← n.start
5. if n.len = µ and x[s..s+ µ− 1] = f
6. then return n.start
7. n← n.next
8. return -1

Preprocessing(x,m)
1. for c ∈ Σ do
2. F (c)← 0
3. D(c)← −1
4. Ht(c)← Nil
5. for i← 0 to m− 1 do
6. c← x[i]
7. F (c)← F (c) + 1
8. last← −1
9. for i← 0 to m− 1 do
10. c← P [i]
11. if F (c) = 1 then
12. D(c) = 0
13. last = i
14. else if last ≥ 0
15. D(c)← Max(D(c), i− last)
16. else D(c)← i
17. for i← 0 to m− 1 do
18. c← x[i]
19. µ← D(c) + 1
20. if i+ 1 ≥ µ then
21. HashInsert(Ht, x, i+ 1− µ, µ)
22. return (D,Ht)

Figure 5.1: The pseudocode of auxiliary procedures used in the UFM algorithm.

Proof. Since c occurs only once in x, then c = x[i] for some 0 ≤ i < m. By the

definition of δ it follows that δ(Q′, c) is nonempty if and only if qi ∈ Q′. Specifically,

when qi ∈ Q′ we have δ(Q′, c) = {qi+1} and δ(Q′, c) = ∅ otherwise. In both cases

5. UFM: a Two-Step Simulation of the Suffix Automaton 62

UFM(x,m, y, n)
1. (D,Ht)← Preprocessing(P,m)
2. j ← m− 1
3. while j < n do
5. d← D(x[j])
6. if d < 0 then
7. j ← j +m
8. continue
9. µ← d+ 1
10. p← HashGet(Ht, y[j − µ..j], µ)
11. j ← j − µ
12. if µ = m then j ← j − 1
13. if p ≥ 0 then
14. k ← 0
15. while k < p and y[j − k] = x[p− k − 1] do
16. k ← k + 1
17. if k = p do
18. if k + µ = m then
19. output j
20. else
21. j ← j − k
22. j ← j +m

Figure 5.2: The pseudocode of the UFM algorithm.

|δ(Q′, c)| ≤ 1 holds.

Lemma 4. Let x,w be strings of length m, both over a common alphabet Σ, and let

S(xr) = ⟨Q,Σ, δ, I, F ⟩ the suffix automaton for xr. Then, d̄(w[0]) + 1 ≥ γ(w).

Proof. Let µ = d̄(w[0]) + 1 and let Q = |δ∗(wµ)|. Without loss of generality, we

can suppose that Q ̸= ∅. Then, there must exists at least one factor of the pattern

f = x[i..i + µ − 1], for some 0 ≤ i ≤ m − µ, such that f = wµ. Moreover, by the

definition of d̄, it follows that such a factor must unique inside x, and consequently

|δ∗(f)| = |δ∗(wµ)| ≤ 1 also holds, thus implying µ ≥ γ(w).

The preprocessing phase of the UFM algorithm is shown in Figure 5.1. It starts

by computing the frequency of each character of the alphabet, in order to find the

unique characters of the string x. Then, function d̄ is computed in the form of a

table D. We recall that, given a text window w of length m, µ = D(w[m− 1]) + 1

characters must be read in order to be sure that the suffix automaton for xr contains

5. UFM: a Two-Step Simulation of the Suffix Automaton 63

at most one state. When this happens, we need to efficienty recover the starting

position of the string w[m− µ..m− 1] inside x. In other words, we need an efficient

method to implement the position function Pos. To this purpose, a hash table Ht

can be used, storing the starting position of several unique factors of x. In particular,

for each position i of the pattern x, factor x[i − µ..i] of length µ = D(x[i]) + 1 is

inserted into the table, whenever i + 1 ≥ µ. Note that, character x[i] itself is used

as the hash code of factor x[i − µ..i]. In this way, each bucket Ht[c] of the table

contains exactly fx(c) elements, for each c ∈ Σ. The Preprocessing takes O(m)

space O(m) time to be performed.

The searching phase of the UFM algorithm is shown in Figure 5.2. It follows

the structure of the BTSM algorithm, specifically adapted to handle funtions D and

hash table Ht. In particular, a window w of length m is slided along the text y. For

each window, value d = D(w[m−1]) is retrieved. If d is nonnegative, then the suffix

of w of length µ = d + 1 is searched in the hash table, in order to get its starting

position in the pattern, otherwise the window is instantly shifted by m characters

to the right. The searching then proceeds as in the BTSM algorithm.

Regarding the complexity of the algorithm, we observe that a single entry of

table Ht could contain up to O(m) factors in the worst case, each of size equal to

k = O(m). This means that a single call to procedure HashGet at line 10 could

require up to O(km) = O(m2) to be performed, leading to an overall complexity of

O(m2n) in the worst case. Such a worst case occurs, for example, when searching

the pattern x = am within the text y = an, for any m < n.

Example 11. Assume again to match the pattern x = banana against the text window

w = anaban, where γ(wr) = 3 and Pos(banr) = Pos(nab) = 0. The first step of the

UFM algorithm begins by computing µ = d̄(n) + 1 = 3 (note that in this particular

case the estimation is exact, since γ(wr) = µ holds). At this point, the computation

of the position function is performed by looking up the suffix ban of w in the hash

table Ht. A prefix of x is correctly recognized in the second step without performing

5. UFM: a Two-Step Simulation of the Suffix Automaton 64

Genome

q/m 32 64 128 256 512 1, 024 2, 048 4, 096 8, 192 16, 384 32, 768 65, 536
1 0 0 0 0 0 0 0 0 0 0 0 0
2 4 1 0 0 0 0 0 0 0 0 0 0
4 25 44 66 77 62 28 6 1 0 0 0 0
6 25 53 99 165 234 264 232 155 74 23 4 0
8 24 55 114 223 410 686 986 1,153 1,090 817 492 229
10 22 54 117 240 476 914 1,660 2,775 4,009 4,742 4,528 3,477

Protein

q/m 32 64 128 256 512 1, 024 2, 048 4, 096 8, 192 16, 384 32, 768 65, 536
1 5 2 1 0 0 0 0 0 0 0 0 0
2 21 30 33 24 12 6 2 0 0 0 0 0
4 28 58 113 209 358 530 594 443 232 131 74 40
6 26 55 106 189 292 357 297 185 128 102 84 68
8 24 55 116 231 439 770 1,177 1,436 1,204 742 515 417
10 22 54 117 241 483 937 1,759 3,088 4,751 5,762 4,825 2,961

English Text

q/m 32 64 128 256 512 1, 024 2, 048 4, 096 8, 192 16, 384 32, 768 65, 536
1 8 8 8 6 6 5 5 4 4 3 2 1
2 22 32 40 42 39 34 31 29 29 27 25 21
4 27 54 95 164 256 377 502 604 654 649 607 565
6 26 55 106 192 325 508 701 824 798 684 581 503
8 24 55 113 221 411 743 1,278 2,006 2,813 3,362 3,340 2,877
10 22 54 115 232 453 855 1,582 2,891 5,051 8,039 11,237 13,306

Table 5.1: Average number of unique characters present in strings of increasing
size, for several values of q. For display purposes all numbers have been rounded
down. The three tables refer to random strings, extracted from a genome sequence,
a protein sequence and a English text.

any additional comparison, since Pos(nab) = 0 and the text window is advanced by

m− µ = 3 positions.

Table 5.1 present the average number of unique characters present in strings of

increasing size, for several values of q. The three tables refer to random strings,

extracted from a genome sequence, a protein sequence and an English text.

5.1.3 A Relaxed Variant of the UFM Algorithm

The main drawback of the UFM algorihtm consists in the necessity to look up

the position p corresponding to the suffix of length µ of the current text window

w through an hash table. Apart from the additional overhead from a practical

perspective, the use of the hash table is also responsible for the O(m2n) worst case

time complexity of the algorithm. In this section we present a useful strategy for

5. UFM: a Two-Step Simulation of the Suffix Automaton 65

removing this bottleneck in order to improve the performance of the algorithm in

practice.

Our strategy to accomplish this goal consists in relaxing the first step of the

simulation. The pseudo-code of the resulting relaxed variant of the algorithm, named

R-UFM (Relaxed Unique Factor Matcher), is shown in Figure 5.3.

As a matter of fact, what is really important during the first step is to quickly

locate a unique character c of the pattern x in order to delegate the next part of

the scan to the second step of the procedure. Then, after computing the value of

µ at line 9, we could simply scan the suffix w[m − µ..m − 1] until either a unique

character of the pattern or a character not appearing in x is found.

If a unique character c is found, then we retrieve its position p inside x through a

table (which can be implemented using a simple array); if a character not occuring

inside x is encountered, we simply advance the current window.

We say that this approach is relaxed because, after the first step, the condition

p = δ∗(w[m−µ..m− 1]r) could also be unsatisfied. Then each candidate occurrence

must be verified before reporting a match. However, since µ is expected to be very

small in practice, the number of false positives is negligible with respect to the

performance gain.

Indeed, the benefit of this strategy goes further than avoiding the hash table

lookup (which may involve many string comparisons), since a stopping criteria may

be actually met before the entire suffix w[m− µ..m− 1]r is scanned.

The R-UFM algorithm starts with a call to procedure R-Preprocessing, a

simplified version of the Preprocessing procedure used in the standard UFM

algorithm, which replaces the hash table Ht with a table P defined in the following

way:

P [c] =

⎧⎪⎨⎪⎩
−1 if fx(c) = 0

i | x[i] = c if fx(c) = 1

−2 if fx(c) > 1,

5. UFM: a Two-Step Simulation of the Suffix Automaton 66

R-UFM(x,m, y, n)
1. (D,P)← R-Preprocessing(P,m)
2. j ← m− 1
3. while j < n do
4. d← D(x[j])
5. if d < 0 then
6. j ← j +m
7. continue
8. µ← d+ 1, i← j − µ+ 1
9. while j > i and P [c] = −2 do
10. j ← j − 1
11. p← P [j]
12. if P [c] = −2 then j ← j − 1
13. if p ≥ 0 then
14. k ← 0
15. while k < p and y[j − k − 1] = x[p− k − 1] do
16. k ← k + 1
17. if k = p do
18. s← µ− (j − i)
19. if k + s = m and y[j..j + s] = x[p..p+ s] then
20. output j
21. else
22. j ← j − k
23. j ← j +m

Figure 5.3: The pseudocode of the R-UFM algorithm.

where we remember that fx(c) is the absolute frequency of character c inside x.

Intuitively, P simply maps each unique character c to its position inside the

pattern, also providing a way to distinguish between characters not appearing in x

(associate to −1) and characters occurring more than once in x (associated to −2).

Such a definition of the table P allows to implement the scan of our suffix-scan

approach with a very simple while loop (line 10), which executes until either the

entire suffix has been scanned (j > i) or the current character c occurs at least twice

inside x (P [c] = −2).

The overall structure of the algorithm remains the same, except for the additional

naive verification at line 20, which is required to verify that the scanned suffix is a

factor of x.

Example 12. Assume, as usual, to match the pattern x = banana against the text

window w = anaban, where γ(w) = 3 and Pos(ban) = 0. The preprocessing phase

5. UFM: a Two-Step Simulation of the Suffix Automaton 67

of the R-UFM algorithm sets P [a] = P [n] = −2 and P [b] = 0. Then, in the first

step at most µ = 3 iterations are performed, scanning w from right to left, starting

from the last character n. In this case, the while loop at line 9 halts before this

occurs, because character b is encountered. At this point, the second step is entirely

performed as in the standard UFM algorithm, and a prefix of size µ is recognized.

We note that a nice consequence of the new approach is that the worst case

complexity of the algorithm drops toO(mn), since the loop at line 10 can be executed

at most O(m) times.

5.1.4 Improving the space usage

In the previous section, we showed how to implement the first step of the simulation

in a more efficient manner without using an hash table. However, the necessity

to use multiple lookup tables during each pass of the searching phase still remains

a weak point of the algorithm. This conflicts, in particular, with an optimal use

of processor’s L1 cache, whose size typically ranges from 16 to 64 kilobytes. In

Table 5.1, we showed that the value of µ is expected to be very small in practice.

Since the unique characters are expected to be located at equal intervals inside the

pattern string x on the average, we can also expect that the value d̂ = maxi D[i],

with 0 < i ≤ σ, to be also small in practice. Thus, in order to further reduce the

space overhead of the UFM algorithm, we can estimate µ using the constant value

d̂+1. In this way, we save half the space during the searching phase, since table for

D is not allocated. In Section 5.2, we will show that not only this overestimation

doesn’t impact on performance significantly, but it also reveals to be most effective

in several situations.

5.2 Experimental Results

In this section, we report the results of an extensive experimental comparison of the

new presented algorithms against the most efficient solutions known in the literature

5. UFM: a Two-Step Simulation of the Suffix Automaton 68

for the online exact string matching problem, mostly focusing on those algorithms

which make use of the suffix automaton. Experimental evaluation is performed in

terms of search speed expressed as Gigabytes per second, excluding any preprocess-

ing time.

5.2.1 Experimental Setting

In our experimental tests the following 12 algorithms (implemented in 53 variants,

depending on the values of their parameters) have been compared:

• BNDMq: the Backward-Nondeterministic-DAWG-Matching algorithm [12] im-

plemented with q-grams, for 1 ≤ q ≤ 6;

• LBNDM: the Long-BNDM algorithm [7], specifically designed for searching

long patterns;

• BSXq: the Backward-Nondeterministic-DAWG-Matching algorithm [12] with

Extended Shift [8] implemented using q-grams, with 1 ≤ q ≤ 6;

• FBNDM: the Factorized variant [25, 9] of the BNDM algorithm [12];

• BSDMq: the Backward-SNR-DAWG-Matching algorithm [10] using condensed

alphabets with groups of q characters, with 1 ≤ q ≤ 7;

• WFRq: the Weak Factors Recognition algorithm [15, 48], implemented using

q-gram, with 3 ≤ q ≤ 7;

• TWFRq: the Tuned Weak Factors Recognition algorithm [48], implemented

using q-gram, with 3 ≤ q ≤ 7.

• EPSM: the Exact Packed String Matching algorithm [51, 52] based on SIMD

instructions;∗

∗We notice that the EPSM algorithm is designed for simply counting the number of matching
occurrences without reporting the corresponding positions.

5. UFM: a Two-Step Simulation of the Suffix Automaton 69

• PBNDM: the Pruned-BNDM algorithm, introduced in Section 3.1;

• UFMq: the UFM algorithm presented in Section 5.1 implemented with con-

densed alphabets, using groups of q characters, with 3 ≤ q ≤ 7.

• R-UFMq: the relaxed variant of the UFM algorithm presented in Section 5.1.3

implemented with condensed alphabets, using groups of q characters, with

3 ≤ q ≤ 7.

• R-UFM∗q: the relaxed variant of the UFM algorithm with fixed distance,

presented in Section 5.1.4 and implemented with condensed alphabets, using

groups of q characters, with 3 ≤ q ≤ 7.

All algorithms have been implemented in the C programming language † and

have been tested using the Smart tool [26]. All experiments have been executed

locally on a computer running Linux Ubuntu 20.04.1 with an Intel Core i5 3.40 GHz

processor and 8GB RAM.

Our tests have been run on a genome sequence, a protein sequence, and an En-

glish text (each of size 10MB). Such sequences are provided by the Smart research

tool and are available online for download (additional details on the sequences can

be found in Faro et al. [26]). In the experimental evaluation, patterns of length m

were randomly extracted from the searched sequences, with m ranging over the set

of values {2i | 5 ≤ i ≤ 16}. In all cases, the mean over the search speed (expressed

in Gigabytes per seconds) of 500 runs has been reported.

5.2.2 Evaluation

Table 5.2 summarises the results obtained in of our experimental evaluation. Each

table is divided into two blocks: the first block (at the top) presents results relative

to the most efficient algorithms known in the literature, mainly based on automata

†Source code is available at: https://github.com/ostafen/unique-factor-matcher

https://github.com/ostafen/unique-factor-matcher

5. UFM: a Two-Step Simulation of the Suffix Automaton 70

Genome Sequence

Algo\m 25 26 27 28 29 210 211 212 213 214 215 216

BNDMq 3.35 3.24 3.29 3.22 3.24 3.13 3.26 3.05 3.24 3.20 3.41 3.29
LBNDM 1.69 1.93 2.09 1.07 0.24 0.24 0.27 0.28 0.29 0.29 0.29 0.29
BXSq 3.08 3.24 3.20 3.08 3.24 3.15 3.02 3.26 3.07 3.20 3.26 3.22
FBNDM 1.69 2.49 2.53 2.37 2.40 2.46 2.50 2.48 2.38 2.57 2.57 2.69
BSDMq 2.50 2.70 2.76 2.80 2.76 2.82 2.76 2.83 2.80 2.82 2.90 2.96
EPSM 3.53 3.73 3.78 4.01 4.07 4.16 4.10 4.19 4.47 4.92 5.38 5.43
WFRq 3.05 3.64 3.53 3.69 3.99 4.16 4.22 4.28 7.51 11.72 7.71 2.50
TWFRq 2.54 2.69 2.82 2.94 3.24 3.33 3.51 3.78 6.98 10.10 8.62 2.55

PBNDM 1.23 1.26 1.83 1.92 1.90 1.89 1.86 1.88 1.83 1.78 1.82 1.82
UFMq 2.96 3.37 3.66 3.76 4.07 4.19 4.19 4.19 7.81 14.6 25.4 30.8
R-UFMq 2.96 3.47 3.66 3.73 3.93 4.19 4.25 4.41 8.14 14.6 26.6 30.8
R-UFM∗

q 2.94 3.49 3.73 3.85 4.10 4.19 4.13 4.44 8.25 14.6 25.4 30.8

Protein Sequence

Algo\m 25 26 27 28 29 210 211 212 213 214 215 216

BNDMq 2.51 2.55 2.49 2.55 2.49 2.50 2.53 2.57 2.48 2.53 2.50 2.49
LBNDM 1.98 2.25 2.44 2.57 2.68 2.49 1.26 0.59 0.48 0.46 0.46 0.47
BXSq 2.51 2.50 2.54 2.51 2.51 2.57 2.49 2.53 2.55 2.51 2.45 2.46
FBNDM 2.21 2.41 2.58 2.57 2.58 2.56 2.55 2.50 2.56 2.51 2.56 2.54
BSDMq 2.54 2.70 2.78 2.83 2.80 2.82 2.87 2.82 2.82 2.92 2.87 2.94
EPSM 2.80 2.82 2.90 3.07 3.13 3.20 3.24 3.24 3.47 3.78 4.22 4.73
WFRq 2.34 2.66 2.82 2.86 3.10 3.18 3.29 3.18 5.80 8.88 10.4 5.80
TWFRq 2.44 2.71 2.82 2.87 3.10 3.29 3.24 3.31 5.69 8.88 10.10 5.86

PBNDM 1.20 1.27 1.69 2.18 2.47 2.56 2.70 2.68 2.68 2.69 2.66 2.63
UFMq 2.26 2.68 2.86 2.79 3.12 3.24 3.31 3.31 6.23 10.8 18.9 26.6
R-UFMq 2.36 2.66 2.84 2.87 3.12 3.21 3.31 3.53 5.9 11.2 18.9 27.9
R-UFM∗

q 2.33 2.71 2.83 2.83 3.10 3.21 3.31 3.45 5.86 11.1 18.9 27.9

English Text

Algo\m 25 26 27 28 29 210 211 212 213 214 215 216

BNDMq 2.48 2.56 2.51 2.54 2.50 2.53 2.27 2.48 2.55 2.55 2.55 2.48
LBNDM 1.68 2.16 2.44 2.53 2.65 2.60 2.50 1.87 1.21 0.89 0.71 0.63
BXSq 2.46 2.49 2.55 2.55 2.51 2.48 2.53 2.53 2.50 2.47 2.48 2.49
FBNDM 1.96 2.21 2.50 2.47 2.50 2.46 2.44 2.48 2.44 2.50 2.46 2.43
BSDMq 2.57 2.74 2.80 2.74 2.82 2.78 2.87 2.76 2.90 2.89 2.93 3.02
EPSM 2.68 2.79 2.86 3.05 3.13 3.20 3.26 3.24 3.57 3.99 4.41 4.97
WFRq 2.33 2.60 2.74 2.93 3.04 3.08 3.41 3.24 5.80 8.49 8.14 4.16
TWFRq 2.43 2.70 2.76 2.84 3.07 3.20 3.22 3.27 5.80 8.88 8.03 4.28

PBNDM 1.05 1.07 1.59 2.14 2.38 2.45 2.76 2.84 3.64 4.93 6.18 7.40
UFMq 2.10 2.51 2.59 2.84 3.05 3.18 3.33 3.35 6.17 11.5 20.2 27.9
R-UFMq 2.17 2.60 2.64 2.83 3.12 3.29 3.37 3.35 6.10 11.7 19.5 29.3
R-UFM∗

q 2.14 2.56 2.63 2.83 3.12 3.24 3.37 3.31 6.17 11.2 20.2 27.9

Table 5.2: Experimental results obtained for searching on a genome sequence, a
protein sequence and an English text. Searching speed is reported in GB/s. The two
best results have been boldfaced (in addition, the best result has been underlined).

simulation, while the second block (at the bottom) presents the algorithms intro-

duced in this paper. Best results have been boldfaced for each value of m to ease

their localization.

5. UFM: a Two-Step Simulation of the Suffix Automaton 71

Many of the tested algorithms have been implemented using q-grams, for different

values of the parameter q (including most of our algorithms). For such algorithms

we report only the best performance obtained among the variants in order not to

burden the reading of the data.

Regarding patterns of small and medium size (m ≤ 28), the EPSM algorithm

achieves the best results, while the second best results are distributed between the

remaining non bit-parallel algorithms and specifically BSDM and WFR. We would

like to notice however that the EPSM algorithm is designed for simply counting

the number of matching occurrences without reporting the corresponding positions.

From this point of view, therefore, the comparison is slightly unfair and the BSDM

and WFR algorithms would be the best if the positions of the occurrences of the

pattern were required.

As the length of the pattern increases (m ≥ 28), most of the time, best results are

achieved by the UFM algorithm and its relaxed variants, with the WRF and TWFR

algorithms winning in some situations. However, as the length of the pattern exceeds

a certain threshold (m ≥ 211), the performances of the UFM family of algorithms

diverge rapidly from those observed for the rest of the algorithms and reach a search

speed up to 10 times higher than the second best solution.

Among the UFM family of algorithms, it is important to notice that the new

variants show equal or superior performances in practice, even if times never deviate

too much with respect to the standard UFM algorithm. This result is particularly

interesting, if we consider that the new variants also require less space, and have a

better worst case complexity.

Regarding the bit-parallel based solutions, we notice that in general they are

not competitive in practical cases against the remaining algorithms. However, it is

worth to notice that for this class of algorithms our PBNDM algorithm is the best

alternative for long strings (starting from m = 212), with the exception of genome

sequences, where the approach fails, with BNDMq being the best choice among

bit-parallel solutions.

5. UFM: a Two-Step Simulation of the Suffix Automaton 72

26 28 210 212 214 216
0

1

2

3

4

5

m

m
s

BNDMq

PBNDM
BSDMq

WFRq

UFMq

Figure 5.4: The running times (expressed in milliseconds) for several of the algo-
rithms considered in our experiments. The pattern size m, which ranges from 25 to
216, has been reported in logscale to ease readability.

Finally, in order to provide a visual view of our results, we also plotted the run-

ning times obtained for an english text (in milliseconds) for some of the algorithms

included in our setting in Figure 5.2.2. It immediately catches the eye how the UFM

algorithm is the only one to retain its sublinear behaviour until the end. Interest-

ingly, the PBNDM algorithm follows a similar trend (despite a worse performance

in terms of time), while all the remaining algorithms maintain a stable performance,

except for WFR, which even gets a performance drop after a certain point.

5.2.3 Chapter Summary

In this chapter, we presented a new family of algorithms, starting from the BSTM

generic algorithm, based on a novel, two-step simulation of the suffix automaton.

With the UFM algorithm and its relaxed variants, we provided concrete imple-

mentations of this approach, which not only turn out to be very competitive when

compared with the most efficient algorithms known in literature (and, under cer-

tain circumstances, the fastest in practice) but also show a sublinear behaviour in

5. UFM: a Two-Step Simulation of the Suffix Automaton 73

practice.

Future work include the possibility of finding alternative, more efficient strategies

for actually implementing the BSTM algorithm, and to adapt the method even to

other non standard string matching problems, such as the multiple pattern matching

problem.

6
Conclusions

In this thesis we presented a variety of algorithms for solving the exact string match-

ing problem and some of its variations. Each presented method has been extensively

compared against the most effective and relevant solutions, depending on the spe-

cific sub-problem. Experiments show that the introduced algorithms are competi-

tive in practice and can be easily adapted to variations of the exact string matching

problem, thus providing a worthwhile contribution to the field of pattern matching

algorithm.

The work presented still admits room for improvement, as outlined in detail in

each section of the thesis. Future research directions include further extensions of

the presented solutions to other non-standard string matching problems, fine tuning

of parameters and improved complexity analysis.

Appendices

A
On the Longest Common Cartesian

Substring Problem

A Cartesian tree is associated to a string of numbers and is structured as a heap

from which the original string can be recovered. Although Cartesian trees have

been introduced 40 years ago, the Cartesian tree matching problem appeared very

recently. It consists in finding all substrings of a given text which have the same

Cartesian tree as that of a given pattern. In this chapter, the problem of computing

the longest common Cartesian substrings of two strings will be addressed and three

methods for such problem will be presented. The first method is based on a classical

suffix tree construction and solves the problem in randomized linear time and linear

space, although the space overhead is quite prohibitive in the case of large strings.

The second solution is based on classical dynamic programming, while our third

solution is based on a constructive approach. Both of them run in quadratic worst

case time but are more space economical in practice. From experimental results, it

turns out that the second solution runs faster than the standard suffix tree solution

for short strings, while the third solution is more suitable for large strings, when

storing a full suffix tree becomes prohibitive.

A.1 Introduction

Cartesian trees have been introduced by Vuillemin [53]. They are associated to

strings of numbers and are structured as heaps from which original strings can be

A. On the Longest Common Cartesian Substring Problem 77

recovered by symmetrical traversal of the trees. It has been shown that they are

connected to Lyndon trees [54, 55], to Range Minimum Queries [56] or to parallel

suffix tree construction [57]. Recently new results on Cartesian pattern matching

appeared [58, 59, 60, 61]. Such problem consists in finding substrings of a text that

have the same Cartesian tree as a pattern. Recent studies concern finding periods

in Cartesian tree matching [62].

In this chapter we are interested in computing the longest common Cartesian sub-

strings (LCCS) of two strings which means common substrings of maximal length

that share the same Cartesian tree. This is useful, for example, to discover interest-

ing patterns and similarities in time series data of stock prices.

A usual linear time method for computing longest common substrings for clas-

sical strings consists of building the generalized suffix tree of the two strings and

the deepest internal nodes (in terms of string depth) having leaves for suffixes of

both strings identify longest common substrings. This method can be applied for

computing longest common Cartesian substrings of two strings. However the suffix

tree has to be built on the top of a particular representation of the two strings,

which uniquely maps each Cartesian tree to a string of integers, the parent-distance

representation, meaning that classical suffix tree construction algorithms cannot be

used.

In this chapter we propose two quadratic worst case time algorithms for com-

puting the longest Cartesian substrings of two strings that use only constant extra

space in addition to the two strings and their parent-distance representation or their

Cartesian trees. However, despite their quadratic worst case time complexity, from

our experimental results it turns out that for short strings and in most practical

settings our alternative based on dynamic programming is faster than the suffix tree

based method, while our constructive solution is faster in the case of large strings.

The chapter is organized as follows. Section A.2 presents the notations and defi-

nitions used throughout the rest of the article. Section A.3 presents the method for

constructing the Cartesian tree of a string. Section A.4 briefly presents the suffix

A. On the Longest Common Cartesian Substring Problem 78

tree based method for computing longest common Cartesian substrings. Section A.5

and Section A.6 describe our new alternative solutions. Section A.7 presents exper-

imental results. Section A.7.4 concludes the appendix.

A.2 Notations and Definitions

We assume that a string is a sequence of symbols drawn from an alphabet Σ, of size

σ, which can be seen as a set of numeric values. We also assume that a comparison

between any two symbols of the alphabet can be done in constant time.

We indicate the length of a string x with the symbol |x|. For a string x of length

m, x[i] represents the i-th symbol of x, for 1 ≤ i ≤ m, and x[i . . j] represents the

substring of x starting from position i and ending at position j, for 1 ≤ i ≤ j ≤ m.

We denote by xi = x[1 . . i] the prefix of x of length i and by xi = x[m−i+1 . .m] the

suffix of x of length i, with 1 ≤ i ≤ m. For simplicity, we will simply write xr
i instead

of (xi)
r to denote the substring of length r ending at position i, i.e. x[i − r + 1..i],

with 1 ≤ i ≤ m and 0 ≤ r ≤ i.

We also emphasize that, to improve readability, we will use either the notation

x[i − r + 1..i] or xr
i , depending on the context, to denote the substring of x with

length r ending at position i.

Given two strings x and y of length m and n, respectively, we indicate with

symbol lcp(x, y) the length of the longest prefix common to x and y.

Let x be a string of length m. The Cartesian tree Ct(x) of x is the binary tree

where:

• the root corresponds to the index i of the minimal element of x (if there are

several occurrences of the minimal element, the leftmost one is chosen);

• the left subtree of the root corresponds to the Cartesian tree of xi−1 = x[1 . . i− 1];

• the right subtree of the root corresponds to the Cartesian tree of xm−i = x[i+ 1 . .m].

A. On the Longest Common Cartesian Substring Problem 79

For simplicity in what follows we will use the symbol x[i] to refer to both the

i-th character of x and the node of Ct(x) whose key is i, depending on the context.

We will refer to the root of a Cartesian Tree T as root[T] and we assume that

such node can be always accessed in constant time. When T is empty, we agree, for

simplicity, that root[T] = Nil.

The following definition of the right path of a binary tree is particularly relevant

to this paper.

Definition 10 (Right path). The right path, rp(T), of a binary tree T is the sequence

of nodes encountered starting from the root of the tree and always going right.

The right path of a Cartesian tree of a string x, with length m, always ends with

the last character of the string, i.e. x[m]. We also refer to the rightmost node of

a Cartesian Tree T as rmn[T] and we also assume that such node can be always

accessed in constant time. We use the notation size[T] to indicate the number of

nodes stored in a Cartesian tree T , assuming also that this information is always

accessible in constant time.

In addition we indicate with symbol right[n] and left[n] the right and the left

child of a node n ∈ T , respectively. The symbol index[n] is used to indicate the

index i of the character in x such that x[i] = n.

In the following, we use for simplicity the notation rp(x) to indicate the right

path of the Cartesian Tree of a string x, i.e. rp(x) = rp(Ct(x)) and write len(rp(x))

to denote its length. Similarly we use rmn[x] to indicate rmn[Ct(x)].

A.3 Building a Cartesian Tree

The construction of the Cartesian tree of a string x of length m can be done by

means of an iterative procedure which iterates over the elements of x, proceeding

from left to right, and computes the Cartesian tree of xi+1 from the Cartesian tree

of xi, for 1 ≤ i < m.

A. On the Longest Common Cartesian Substring Problem 80

To better describe such approach we observe that the Cartesian tree of x[1]

consists of a single node, whileCt(xi+1) can be computed fromCt(xi) by identifying

the number of nodes that are on the right path of Ct(xi) but not on the right path

of Ct(xi+1).

Going deeper into the details, let rp(Ct(xi)) = ⟨x[j1], x[j2], . . . , x[jk]⟩ be the

right path of Ct(xi), with 1 ≤ k ≤ i and where x[j1] = root[Ct(xi)] and jk = i.

We can distinguish three cases, as depicted in Figure A.1:

1. if x[i+ 1] < x[j1], then x[i+ 1] becomes the new root of Ct(xi+1);

2. if x[ju] < x[i + 1] < x[ju+1], for some 1 ≤ u < k, then x[i + 1] is the smallest

value on the right of x[ju] and all elements in the substring x[ju + 1 . . i] are

greater than x[i + 1]. Then x[i + 1] is inserted as the right child of x[ju] and

the subtree rooted at x[ju+1] is made the left child of x[i+ 1].

3. if x[i+ 1] > x[jk], then x[i+ 1] is greater than the rightmost character in the

right path of xi, so that x[i+1] is added as the right child of x[jk] in Ct(xi+1).

The following lemma, which states the time complexity of the incremental con-

struction, is particularly relevant for the analysis of our third algorithm presented

in Section A.6.

Lemma 5 ([63]). Given a numeric string x, of length m, the Cartesian tree of x can

be computed in O(m)-time.

Proof. In order to analyse the time complexity for the computation of the Cartesian

tree of a string we refer to the algorithm whose pseudo-code, presented in Figure A.2,

was described in [63].

The for loop of line 3 is executed m−1 times. The while loop of line 4 consists of

scanning upward the right path of the tree. Each iteration of this loop decreases the

current length of the right path by one and the scanned node will not be scanned

again thus the overall number of iterations of the while loop over all the iterations

A. On the Longest Common Cartesian Substring Problem 81

(Case 1)

x[j1]

x[j2]

x[jk]

. .

. .

. .

x[i+1]

x[j1]

x[j2]

x[jk]

. .

. .

. .

(Case 2)

x[j1]

x[ju]

x[ju+1]

x[jk]

. .

. .

. .

. .

x[j1]

x[ju]

x[i+1]

x[ju+1]

x[jk]

. .

. .

. .

. .

(Case 3)

x[j1]

x[j2]

x[jk]

. .

. .

. .

x[j1]

x[j2]

x[jk]

x[i+1]. .

. .

. .

Figure A.1: The three cases occurring when computing Ct(xi+1) (to the right) from
Ct(xi) (to the left). (Case 1) x[i+1] is less than the current root of the tree and it
is added as the new root; (Case 2): we have x[ju] < x[i+ 1] < x[ju+1]; (Case 3): we
have x[i + 1] is greater than x[i]. In all cases x[i + 1] becomes the last node of the
right path of the tree. Nodes belonging to the right path are filled in gray.

of the for loop is bounded by m. All the other operations can be done in constant

time. Therefore the time complexity of the algorithm for building the Cartesian tree

of a string of length m is O(m).

Example 13. Let x = ⟨4, 22, 3, 5, 2, 23, 15, 1⟩ be a numeric sequence of length 8.

Figure A.3 shows the Cartesian trees computed by such incremental procedure.

For the sake of completeness we point out that the Cartesian tree of a string x

A. On the Longest Common Cartesian Substring Problem 82

Tree-Extend-Right(T, e)

1. p← New-Node()
2. Element(p)← e
3. q ← RMN [T]

4. while q ̸= Nil and e < Element(q) do
5. q ← Parent(q)
6. if q = Nil then
7. Left(p)← ROOT [T]
8. Parent(ROOT [T])← p

9. ROOT [T]← p
10. else
11. if Right(q) ̸= Nil
12. Parent(Right(q))← p
13. Left(p)← Right(q)
14. Right(q)← p

15. Parent(p)← q
16. RMN [T]← p
17. return T

Build-Cartesian-Tree(x,m)

1. T ← Empty-Tree()
2. RMN [T]← ROOT [T]
3. for i← 1 to m do
4. T ← Tree-Extend-Right(T, x[i])
5. return T

Figure A.2: The iterative procedure Build-Cartesian-Tree for building the
Cartesian tree of a string x of length m. A node of the Cartesian tree has 4 compo-
nents: Parent, Element, Left and Right, where Element refers to the integer
value of the new inserted element. The function New-Node() creates a new node
and initializes its 4 components to Nil.

can be also computed by iterating over the elements of x and proceeding from right

to left (instead of from left to right) by means of a symmetrical procedure.

For realizing the algorithm given in Figure A.2 the right path can be implemented

as a stack so that there is no need to have a link to its parent for each node of the

tree.

Instead of building the Cartesian tree for every position in the text to solve

Cartesian tree matching, Park et al. [58] introduced the following representation for

a Cartesian tree.

Definition 11 (Parent-distance representation). The parent-distance representation

of a string x[1 . .m] is a function PDx, which is defined as follows:

A. On the Longest Common Cartesian Substring Problem 83

Step 2

4

22

Step 3

3

4

22

Step 4

3

54

22

Step 5

2

3

54

22

Step 6

2

233

54

22

Step 7

2

15

23

3

54

22

Step 8

1

2

15

23

3

54

22

Figure A.3: Different steps of the construction of Ct(x) when x =
⟨4, 22, 3, 5, 2, 23, 15, 1⟩.

PDx(i) =

{︄
i−max1≤j<i{j | x[j] ≤ x[i]} if such j exists

0 otherwise.

Example 14. The following table gives the parent-distance representation for x =

⟨4, 22, 3, 5, 2, 23, 15, 1⟩.

i 1 2 3 4 5 6 7 8

x[i] 4 22 3 5 2 23 15 1

PDx(i) 0 1 0 1 0 1 2 0

Since the parent-distance representation has a one-to-one mapping to the Carte-

sian tree [58], it can replace the Cartesian tree without any loss of information. It

can be computed and stored in a table in linear time and space using the algorithm

given in Figure A.4 (see [58]).

A. On the Longest Common Cartesian Substring Problem 84

Compute-Parent-Distance(x,m)

1. St← Empty-Stack()
2. for i← 1 to m do
3. while St is not empty do
4. (value, index)← St.top
5. if value ≤ x[i] then
6. PDx[i]← i− index
7. break
8. St.pop
9. if St is empty then

10. PDx[i]← 0

11. St.push((x[i], i))
12. return PDx

Figure A.4: Computation of the parent-distance representation for a string x of
length m. While scanning the input string from left to right, characters are stored
in a stack. The main idea of the procedure is that if two characters x[i] and x[j] for
i < j satisfy x[i] > x[j], x[i] cannot be the parent of x[k] for any k > j. Therefore,
each value x[i] is kept in the stack only until, while scanning from left to right, no
such x[j] is found.

A.4 A Suffix Tree Based Approach

In this section, we present a randomized linear time algorithm for the computation

of the longest common Cartesian substrings of two strings, based on the suffix tree

data structure.

The Cartesian suffix tree of a string has to be built on the parent-distance rep-

resentation of the string. The parent-distance representation of a substring of x can

be easily computed as follows (see [58]):

PDx[i..j][k] =

{︄
0 if PDx[i+ k − 1] ≥ k

PDx[i+ k − 1] otherwise.

This can be used for getting all the suffixes of the parent-distance representation

for building its suffix tree. However classical linear time suffix tree construction

algorithms cannot be used because the distinct right context property should hold

in order to apply these algorithms, which means that the suffix link of every internal

node should point to an explicit node. In other words if lcp(x[i . .m], x[j . .m]) =

ℓ then lcp(x[i + 1 . .m], x[j + 1 . .m]) = ℓ − 1 for 1 ≤ i, j ≤ m. The Carte-

A. On the Longest Common Cartesian Substring Problem 85

sian suffix tree does not have the distinct right context property meaning that if

lcp(PDx[i . .m], PDx[j . .m]) = ℓ then lcp(PDx[i + 1 . .m], PDx[j + 1 . .m]) can be

greater than ℓ− 1.

Example 15. With x = ⟨4, 22, 3, 5, 2, 23, 15, 1⟩,

lcp(PDx[5..8],PDx[6..8]) = lcp(⟨0, 1, 2, 0⟩, ⟨0, 0, 0⟩) = 1

and

lcp(PDx[6..8],PDx[7..8]) = lcp(⟨0, 0, 0⟩, ⟨0, 0⟩) = 2.

A randomized construction algorithm, running in linear time with high proba-

bility, for the suffix tree with missing suffix links was first given in [64]. It can be

used for building Cartesian suffix trees. These Cartesian suffix trees can be used to

compute longest common Cartesian substrings of two strings x and y: for instance,

by building the generalized Cartesian suffix tree of PDx and PDy. Then the internal

nodes with the largest string depth having leaves corresponding to both PDx and

PDy identify longest common Cartesian substrings of x and y. This can be done

during a traversal of the tree. Thus longest common Cartesian substrings of two

strings can be computed in randomized linear time and in linear space. The space

overhead, in addition to the two strings and their parent-distance representation, is

constituted by the generalized suffix tree.

Theorem 1. Given two strings x and y of numbers of length m and n respectively,

the longest substrings of x and y having the same Cartesian tree can be computed in

randomized linear time and in space O(m+ n).

A.5 Computing the LCCS by Dynamic Programming

Let x and y be two strings of length m and n respectively. We are interested in

finding the longest substrings of x and y having the same Cartesian tree. We will

describe a solution based on dynamic programming. This solution also uses the

A. On the Longest Common Cartesian Substring Problem 86

indices 1 2 3 · · · k i− i′ + 1

i′ i− ℓ i
PDx[i′..i]

PDy[j′..j]

j′ j − ℓ j

PDx[i−ℓ..i]

PDy[j−ℓ..j]

indices 1 2 3 k − i+ ℓ+ i′ ℓ+ 1

Figure A.5: PDx[i′..i][k] = PDy[j′..j][k] < k − i+ ℓ

parent-distance representation. We will show that the longest suffixes of x[1 . . i] and

y[1 . . j] having the same Cartesian tree can easily be computed from the longest

suffixes of x[1 . . i − 1] and y[1 . . j − 1] having the same Cartesian tree. Let us first

state that if two substrings have the same parent-distance so have their suffixes.

Fact 2. If PDx[i′..i] = PDy[j′..j] then PDx[i−ℓ..i] = PDy[j−ℓ..j] for 0 < ℓ ≤ i− i′.

Proof. The statement trivially also holds for ℓ = i − i′. Let 0 < ℓ < i − i′ and

i− ℓ− i′ + 1 < k < i− i′, then only two cases have to be considered:

1. PDx[i′..i][k] = PDy[j′..j][k] < k−i+ℓ then PDx[i−ℓ..i][k−i+ℓ+i′] = PDx[i′..i][k] =

PDy[j′..j][k] = PDy[j−ℓ..j][k − i+ ℓ+ i′] (see Figure A.5) or

2. PDx[i′..i][k] = PDy[j′..j][k] ≥ k − i + ℓ then PDx[i−ℓ..i][k − i + ℓ + i′] = 0 =

PDy[j−ℓ..j][k − i+ ℓ+ i′] (see Figure A.6).

In both cases PDx[i−ℓ..i][p] = PDy[j−ℓ..j][p] for 1 ≤ p ≤ ℓ + 1 thus PDx[i−ℓ..i] =

PDy[j−ℓ..j].

We can now state the next lemma.

A. On the Longest Common Cartesian Substring Problem 87

indices 1 2 3 · · · k i− i′ + 1

i′ i− ℓ i
PDx[i′..i]

PDy[j′..j]

j′ j − ℓ j

PDx[i−ℓ..i]

PDy[j−ℓ..j]

indices 1 2 3 k − i+ ℓ+ i′ ℓ+ 1

0

0

Figure A.6: PDx[i′..i][k] = PDy[j′..j][k] ≥ k − i+ ℓ

Lemma 6. Let x[i′ . . i − 1] and y[j′ . . j − 1] be the longest suffixes of x[1 . . i − 1]

and y[1 . . j − 1] having the same Cartesian tree. Let ℓx = PDx[i′..i][i − i′ + 1],

ℓy = PDy[j′..j][j − j′ + 1] and ℓ = min{ℓx, ℓy}.

The longest suffixes of x[1 . . i] and y[1 . . j] having the same Cartesian tree are:

1. x[i′ . . i] and y[j′ . . j] if ℓx = ℓy;

2. x[i− ℓy + 1 . . i] and y[j − ℓy + 1 . . j] if ℓx ̸= ℓy and ℓx = 0;

3. x[i− ℓx + 1 . . i] and y[j − ℓx + 1 . . j] if ℓx ̸= ℓy and ℓy = 0;

4. x[i− ℓ+ 1 . . i] and y[j − ℓ+ 1 . . j] if ℓx ̸= ℓy and ℓx ̸= 0 and ℓy ̸= 0.

Proof. If x[i′ . . i−1] and y[j′ . . j−1] have the same Cartesian tree then PDx[i′..i−1] =

PDy[j′..j−1]. We will detail the 4 cases:

1. If ℓx = ℓy then PDx[i′..i] = PDy[j′..j] and thus x[i′ . . i] and y[j′ . . j] have the same

Cartesian tree. Thus x[i′ . . i] and y[j′ . . j] are the longest suffixes of x[1 . . i]

and y[1 . . j] having the same Cartesian tree. Longer suffixes with the same

Cartesian tree would contradict the maximality of the length of x[i′ . . i − 1]

and y[j′ . . j − 1].

A. On the Longest Common Cartesian Substring Problem 88

2. If ℓx ̸= ℓy and ℓx = 0 then PDy[k..j][j− k+1] = ℓy ̸= ℓx for j′ ≤ k ≤ j− ℓy and

PDy[j−ℓy+1..j][ℓy] = 0 = ℓx. Thus by Fact 2, x[i− ℓy+1 . . i] and y[j− ℓy+1 . . j]

are the longest suffixes of x[1 . . i] and y[1 . . j] having the same Cartesian tree.

3. Symmetric to 2.

4. If ℓx ̸= ℓy and ℓx ̸= 0 and ℓy ̸= 0 then PDx[k..i][i−k+1] ̸= PDy[k′..j][j−k′+1] for

i′ ≤ k ≤ i− ℓ and for j′ ≤ k′ ≤ j − ℓ and PDx[i−ℓ+1..i][ℓ] = 0 = PDy[j−ℓ+1..j][ℓ].

Thus by Fact 2, x[i− ℓ+ 1 . . i] and y[j − ℓ+ 1 . . j] are the longest suffixes of

x[1 . . i] and y[1 . . j] having the same Cartesian tree.

A diagonal d corresponds to a pair of factors x[i . . s] and y[j . . t] such that

1 ≤ i ≤ s ≤ m, 1 ≤ j ≤ t ≤ n, |x[i . . s]| = |y[j . . t]| and d = j − i. Since factors

of length 1 always constitute common Cartesian substrings between two strings, the

algorithm Compute-Longest-Cartesian-Substring given in Figure A.7 pro-

cesses diagonals from −m + 2 to n − 2. For each diagonal it uses 4 indices i, i′, j

and j′ to compare x[i′ . . i] and y[j′ . . j] starting with the first factors of length 2 of

the current diagonal. It updates indices i, i′, j and j′ according to Lemma 6. It

only computes the length ℓ of the longest common Cartesian substrings of x and y

but could easily be computed to report two positions i in x and j in y such that

x[i . . i + ℓ − 1] and y[j . . j + ℓ − 1] have the same Cartesian tree with the same

complexities.

Theorem 3. Given two strings x and y of numbers of length m and n respectively,

the longest substrings of x and y having the same Cartesian tree can be computed in

time O(mn) and in space O(m+ n).

Proof. Given x and y, the parent-distance representations PDx and PDy can be com-

puted in space and time O(m) and O(n) respectively. Then the results of Lemma 6

can be applied on any pair of ending positions of substrings of x and y. There are

A. On the Longest Common Cartesian Substring Problem 89

Compute-Longest-Cartesian-Substring(x,m)

1. PDx ← Compute-Parent-Distance(x,m)

2. PDx ← Compute-Parent-Distance(y, n)
3. maxlength← 1
4. for d← −m+ 2 to n− 2 do
5. (i, j)← (2, 2)
6. if d < 0 then
7. i← −d+ 2
8. else if d > 0
9. j ← d+ 2

10. (i′, j′)← (i− 1, j − 1)
11. while i ≤ m and j ≤ n do
12. (ℓx, ℓy)← (PDx[i′..i][i−i′+1], PDy[j′..j][j−j′+1])

13. if ℓx ̸= ℓy then
14. if ℓx = 0 then
15. ℓ = ℓy
16. else if ℓy = 0 then
17. ℓ = ℓx
18. else ℓ← min(ℓx, ℓy)

19. (i′, j′)← (i− ℓ+ 1, j − ℓ+ 1)
20. else
21. maxlength← max(maxlength, i− i′ + 1)

22. (i, j)← (i+ 1, j + 1)
23. return maxlength

Figure A.7: Computation of the length of the longest Cartesian substrings of x of
length m and y of length n.

O(mn) such pairs and the computation for one pair takes constant time if the re-

sult for the correct previous pair is available. The result follows by performing the

computation diagonal-wise i.e. by considering increasing values i and j such that

j − i = d for −m+ 1 ≤ d ≤ n− 1.

Example 16. x = ⟨70, 84, 63, 74, 86, 97⟩ and y = ⟨50, 83, 76, 39, 90, 67, 1, 6⟩. Then

PDx = ⟨0, 1, 0, 1, 1, 1⟩ and PDy = ⟨0, 1, 2, 0, 1, 2, 0, 1⟩. Let us look at starting posi-

tions i′ = 3 in x and j′ = 4 in y:

• PDx[3..3][1] = 0 and PDy[4..4][1] = 0

• PDx[3..4][2] = 1 and PDy[4..5][2] = 1

• PDx[3..5][3] = 1 and PDy[4..6][3] = 2 then i′ becomes 5 and j′ becomes 6

• PDx[5..6][2] = 1 and PDy[6..7][2] = 0 then i′ becomes 6 and j′ becomes 7

thus the longest Cartesian substring of x[3 . . 6] and y[4 . . 7] has length 2.

A. On the Longest Common Cartesian Substring Problem 90

A.6 A Constructive Approach for the LCCS Problem

In this section, we present a third approach for finding the longest common Cartesian

substrings of two equal length strings x and y. Such approach is based on the

explicit construction of the Cartesian trees associated with the longest common

Cartesian substrings of the two strings through the incremental approach presented

in Section A.3.

As before, let x and y be two strings of length m and n, respectively. We indicate

by Lcx(x, y) the length r of the longest suffixes of x and y which share the same

Cartesian tree, so that Ct(xr) = Ct(yr). Moreover, we denote by LcCs(x, y)

the length of the longest common Cartesian substring of the two strings x and y.

Specifically our solution is based on the following relation:

LcCs(x, y) = max{Lcx(xi, yj) | 1 ≤ i, j ≤ m}, (A.1)

Roughly speaking, we compute the length of the longest substring sharing the same

Cartesian tree, between x and y, as the maximum length of the longest suffixes

(sharing the same Cartesian tree) of any couple of prefixes xi and yj.

The main idea behind an efficient computation of such values is given in the

following two technical lemmas which define how to efficiently compute Lcx(xi, yj)

from Lcx(xi−1, yj−1).

Lemma 7. Let z and w be two strings of equal length m such that Ct(zm−1) =

Ct(wm−1). If len(rp(z)) = len(rp(w)) then we have that Ct(z) = Ct(w).

Proof. Let rp(z) = ⟨z[i1], z[i2], ..., z[ih1]⟩ and rp(w) = ⟨w[j1], w[j2], ..., w[jh2]⟩ be the

right paths ofCt(z) andCt(w), respectively, and let rp(zm−1) = ⟨z[l1], z[l2], ..., z[lh]⟩

and rp(wm−1) = ⟨w[g1], w[g2], ..., w[gh]⟩ be the right paths ofCt(zm−1) andCt(wm−1),

respectively, where 1 ≤ h ≤ m− 1 and 1 ≤ h1, h2 ≤ h+ 1 (see Figure A.8).

If len(rp(z)) = len(rp(w)) then we have that h1 = h2. This implies that ik = lk,

for 1 ≤ k ≤ h1 − 1 and jk = gk, for 1 ≤ k ≤ h2 − 1. Thus Ct(z) and Ct(w) only

A. On the Longest Common Cartesian Substring Problem 91

(Case h1 = h2)

z[i1]

z[ih1−1]

z[ih1]

z[lh1]

z[lh]

. .

. .

. .

. .

w[j1]

w[jh2−1]

w[jh2]

w[gh2]

w[gh]

. .

. .

. .

. .

(Case h1 < h2)

z[i1]

z[ih1−1]

z[ih1]

z[lh1]

z[lh2−1]

z[lh2]

z[lh]

. .

. .

. .

. .

. .

. .

w[j1]

w[jh1]

w[jh2−1]

w[jh2]

w[gh2]

w[gh]

. .

. .

. .

. .

. .

Figure A.8: The two Cartesian trees for z and w in the case of Lemma 7 and
Lemma 8, respectively. When h1 = h2 (Lemma 7), the two Cartesian trees are
equivalent. When h1 < h2 (Lemma 8), the subtree rooted at node w[jh2] corresponds
to the Cartesian tree for the longest suffixes of z and w having the same cartesian
tree. Nodes belonging to the right path are filled in gray.

z[ih1]

z[lh2−1]

z[lh2]

z[lh]

. .

. .

w[jh2−1]

w[jh2]

w[gh2]

w[gh]

. .

. .

Figure A.9: The Cartesian trees for Ct(zr+1) and Ct(wr+1) which are at the base
of the proof by contradiction of Lemma 8.

A. On the Longest Common Cartesian Substring Problem 92

differ from Ct(zm−1) and Ct(wm−1) for the subtrees rooted at nodes z[ih1] = z[m]

and w[jh2] = w[m].

Moreover, z[lh1] is the left child of z[m] in Ct(z) and w[gh2] is the left child of

w[m] in Ct(w). Since, by hypothesis, Ct(zm−1) = Ct(wm−1), then the Cartesian

trees rooted in z[lh1] and w[gh2] are equal. Hence, the subtrees rooted at z[ih1] and

w[jh2] are also equal, proving that Ct(z) = Ct(w).

Lemma 8. Let z and w be two strings of equal length m such that Ct(zm−1) =

Ct(wm−1). If len(rp(z)) ̸= len(rp(w)), then the length of the longest common

Cartesian substrings of z and w is given by the number of nodes in the subtree

rooted in the rightmost node of T ′, where

T ′ =

{︃
Ct(z) if len(rp(z)) > len(rp(w))
Ct(w) otherwise.

Proof. Let rp(z) = ⟨z[i1], z[i2], ..., z[ih1]⟩ and rp(w) = ⟨w[j1], w[j2], ..., w[jh2]⟩ be the

right paths of Ct(z) and Ct(w), and also let rp(zm−1) = ⟨z[l1], z[l2], ..., z[lh]⟩ and

rp(wm−1) = ⟨w[g1], w[g2], ..., w[gh]⟩ be the right paths of Ct(zm−1) and Ct(wm−1),

respectively, where 1 ≤ h ≤ m− 1 and 1 ≤ h1, h2 ≤ h+ 1.

If h1 ̸= h2, we can suppose without loss of generality that h1 < h2. Let T be the

Cartesian tree rooted at node w[jh2] = w[m] in Ct(w) and let r be the number of

nodes contained in such a tree (see Figure A.8).

Let us first show that T is the Cartesian tree corresponding to both the suffixes

of z and w of length r, i.e. T = Ct(zr) = Ct(wr). Since Ct(zm−1) = Ct(wm−1),

then Ct(zr−1m−1) and Ct(wr−1
m−1) are also equal and their roots are w[gh2] and z[lh2],

respectively.

Since h1 < h2, then z[ih1] = z[m] < z[lh2] must hold and, consequently, z[lh2] is

the left child of z[m] in Ct(zr). On the other hand, w[gh2] is the left child of w[m]

in Ct(wr). Since z[m] and w[m] are the rightmost nodes of Ct(zr) and Ct(wr),

their right subtrees are also equal, being empty, and hence T = Ct(zr) = Ct(wr).

To complete the proof, we show that no other r′ > r could exist such that

A. On the Longest Common Cartesian Substring Problem 93

Ct(zr
′
) = Ct(wr′), i.e. zr and wr are the longest suffixes of z and w having the

same Cartesian tree.

By contradiction, suppose that Ct(zr
′
) = Ct(wr′) for some r′ ≥ r + 1. Then,

Ct(zr+1) = Ct(wr+1) too, i.e. the suffixes of z and w of size r + 1 have the same

Cartesian tree.

Consider now Ct(wr+1). It can be obtained by adding T as the right subtree

of the node w[jh2−1], since w[jh2−1] is the parent of w[jh2] in Ct(w), and thus

w[jh2−1] ≤ w[jh2]. Moreover, since Ct(wr+1) = Ct(zr+1), it should be possible to

obtain Ct(zr+1) by making T the right subtree of node z[lh2−1], thus by making

z[ih1] its right child. However, since h1 < h2, we know that at least z[lh2−1] is

contained on the left subtree of node z[ih1] in Ct(z) (Fig. A.8), meaning that z[ih1] <

z[lh2−1]. This implies that z[lh2−1] must be the left child of z[ih1] = z[m] in Ct(zr+1)

(Fig. A.9), directly leading to Ct(zr+1) ̸= Ct(wr+1), which is a contradiction.

Thus, we can conclude that zr and wr are the longest suffixes of z and w having

the same Cartesian tree.

Given two strings x and y of length n and m, Lemma 7 and Lemma 8 provide us

a systematic method to compute the longest substrings of x and y having the same

Cartesian tree. The algorithm is shown in detail in Figure A.11. It consists of the

two procedures Constructive-Cartesian-Substring and LcCs-Scan.

Procedure LcCs-Scan takes as input two strings, x and y of length m and n,

respectively, and computes Lcx(xi, yi), for 1 ≤ i ≤ min(m,n), by performing a

linear scan of the two strings, from left to right.

Specifically the i-th iteration of the main for loop of line 4 computes the value

r = Lcx(xi, yi). This is done by building the two Cartesian trees Txi
= Ct(xr

i) and

Tyi = Ct(yri), built on the longest common suffixes of xi and yi sharing the same

Cartesian tree.

The procedure begins by creating the two empty trees, Tx0 and Ty0 , corresponding

to the empty prefixes of x and y. Then the i-th iteration of the for loop, for 1 ≤ i ≤

A. On the Longest Common Cartesian Substring Problem 94

min(n,m), extends the Cartesian trees Txi−1
and Tyi−1

by adding the two characters

x[i] and y[i], respectively, by means of a call to procedure Tree-Extend-Right

described in Section A.3.

After the two trees have been extended, procedure Longest-Common-Suffix

computes the Cartesian trees Txi
and Tyi for the longest common suffixes of xi and

yi according to Lemma 7 and Lemma 8.

The pseudo-code of procedure Longest-Common-Suffix is shown in Figure

A.10. Assuming that the size of the left child of the rightmost node of a tree can

be accessed in constant time, in order for procedure Longest-Common-Suffix

to run in constant time, each update on Tx and Ty must also take constant time.

Specifically, this is required when, after extending each tree with a new element, the

two resulting trees are no longer the same.

Thus suppose that just before calling procedure Longest-Common-Suffix we

have len(rp(Tx)) < len(rp(Ty)). Then, in order to compute the length of the longest

suffixes having the same Cartesian tree, i.e. the new size[Ty], the number of nodes

contained in the left subtree of the rightmost node of Ty, y[m], must be known.

An efficient method to achieve this goal is to keep an extra field for each node,

telling the number of nodes stored in its left subtree. Such a field, can be easily

updated during the incremental construction. Specifically to update Tx and Ty in

order to match the Cartesian trees for xr
i and yri , where r is the total number of nodes

contained in the subtree rooted at node y[m], it is enough to set the number of left

nodes for node x[m] to r, without performing any additional operation modifying

the structure of the tree∗.

Procedure Constructive-Cartesian-Substring simply calls LcCs-Scan

for each of the m + n values (1, j), for 1 ≤ j ≤ n, and (i, 1), for 2 ≤ i ≤ m,

according to equation (A.1).

The correctness of the resulting algorithm is stated in the following Lemma 9

∗We notice that we could also get rid of storing the left subtree of each node, since only the
total number of nodes it contains is actually relevant for the computation.

A. On the Longest Common Cartesian Substring Problem 95

Longest-Common-Suffix(Tx, Ty)

1. if len(rp(Tx) = len(rp(Ty))

2. return (Tx, Ty , Size[Tx])

3. m← Size[Tx]

4. if len(rp(Tx) > len(rp(Ty)) then

5. Root[Tx]← x[m]
6. i← Index[Right[x[m]]]

7. Root[Ty]← y[m]

8. Left[y[m]]← y[i]
9. else

10. Root[Ty]← y[m]

11. i← Index[Right[y[m]]]
12. Root[Tx]← x[m]

13. Left[x[m]]← x[i]
14. return (Tx, Ty ,Size[Tx])

Figure A.10: The pseudo-code of the procedure Longest-Common-Suffix, which
updates either the structure of Tx or Ty (lines 4-8 and 10-12) in order to match the
longest suffix of the strings x and y having the same Cartesian tree.

LcCs-Scan(x, y,m, n, lcs)

1. Tx0 ← Empty-Tree()

2. Ty0 ← Empty-Tree()
3. r ← 0
4. for i← 1 to min(m,n) do
5. Exi ← Tree-Extend-Right(Txi−1 , x[i])

6. Eyi ← Tree-Extend-Right(Tyi−1 , y[i])

7. (Txi , Tyi , r)← Longest-Common-Suffix(Exi , Eyi)
8. if r > lcs then
9. lcs← r

10. return lcs

Constructive-Cartesian-Substring(x, y,m, n)
1. lcs← 1
2. for j ← 1 to n do

3. lcs← LcCs-Scan(x, yn−j+1,m, n− j + 1, lcs)
4. for i← 2 to m do

5. lcs← LcCs-Scan(xm−i+1, y,m− i+ 1, n, lcs)
6. return lcs

Figure A.11: The pseudo-code of the algorithm Constructive-Cartesian-
Substring for the computation of the longest Cartesian substrings of two strings
x and y, of length m and n respectively, and its auxiliary procedure LcCs-Scan.

and Lemma 10.

Lemma 9. At the end of the i-th iteration of procedure LcCs-Scan, Txi
= Ct(xr

i)

and Tyi = Ct(yri) hold, where r is the length of the longest common suffix of xi and

A. On the Longest Common Cartesian Substring Problem 96

yi having the same Cartesian tree.

Proof. We proceed by induction on i ≥ 0. For i = 0, the lemma trivially holds, since

Tx1 = Ct(x[1]) and Ty1 = Ct(y[1]). Let now i > 1. For inductive hypothesis at the

end of iteration i− 1, Txi−1
and Tyi−1

correspond to the longest suffixes of xi−1 and

yi−1 having the same Cartesian tree. Thus, by Lemma 7 and Lemma 8 at the end

of the i-th iteration, Txi
= Ct(xr

i) and Tyi = Ct(yri) hold, where r is the length of

the longest suffixes of xi and yi having the same Cartesian tree.

Lemma 10. Procedure Constructive-Cartesian-Substring correctly computes

the longest common Cartesian substrings of two strings x and y.

Proof. Let x and y be two strings of length m and n, respectively, and let x[i1..i2]

and y[j1..j2] be the longest common Cartesian substrings of x and y, where 1 ≤ i1 ≤

i2 ≤ m and 1 ≤ j1 ≤ j2 ≤ n.

Assume now that j1 ≥ i1 (the case where i1 > j1 can be easily derived). Thus

j1 = i1 + s and j2 = i2 + s, for some 0 ≤ s ≤ n− i1. Let us consider the call to the

procedure LcCs-Scan(x, y[s..n],m, n− s+1, lcs). Then, after i = i2− 1 iterations

of the for loop in line 4, i = i2 and i+ s = i2 + s = j2.

By Lemma 9, at the end of the i-th iteration of the for loop at line 4, Txi
=

Ct(x[i1..i2]) and Tyi = y[j1..j2], and, consequently, the length of the longest common

Cartesian substrings is computed in line 8.

Regarding the space and time complexity of our new presented algorithm, we

observe that each iteration of the for loop of line 4 in procedure LcCs-Scan per-

forms two incremental insertions, each relative to a different Cartesian tree. As

stated in Section A.3, by using the incremental construction, the Cartesian tree for

a string x of length m can be computed in O(m) time: thus each call to procedure

Tree-Extend-Right takes O(1) amortized time. Since the remaining operations

performed in a single iteration of the loop, including the call to procedure Longest-

Common-Suffix, require constant time, then each iteration of the for loop of line

A. On the Longest Common Cartesian Substring Problem 97

4 in procedure LcCs-Scan takes O(1) amortized time, which results in an overall

cost of O(min(n,m)) for the entire procedure LcCs-Scan. The additional space

required to store Tx and Ty is instead O(m+ n).

Finally, by observing that LcCs-Scan is executed O(m + n) times, we con-

clude that procedure Constructive-Cartesian-Substring correctly computes

the longest common Cartesian substrings of two strings x and y of length m and n,

respectively, in O(mn)-time and O(m+ n)-space.

A.6.1 A Backward Approach Over the Constructive Solution

In this section, we introduce an efficient heuristic which aims at speeding-up the

execution of the constructive based algorithm presented in Section A.6. The idea

is to perform, under suitable condition, a jump to the right while scanning the two

strings, followed by a backward scan of the strings, in order to avoid reading many

characters. As it turns out from our experimental results presented in Section A.7,

the new algorithm completely outperforms the original one, and in particular, for

large strings, it is also faster than the dynamic programming based algorithm pre-

sented in Section A.5.

Suppose that at the beginning of a generic iteration i of the for loop at line 4

of procedure LcCs-Scan, Txi
and Tyi correspond to the longest suffixes xr

i and yri

having the same Cartesian tree, where r is the length of such suffixes. Assume that

lcs is the length of the longest common Cartesian substring which has been found

up to iteration i.

In order to improve the current value for the length of the longest common Carte-

sian substrings, at least t = lcs−r+1 additional elements should be scanned without

falling back into a mismatch (this last case is handled by procedure Longest-

Common-Suffix by applying Lemma 8).

The new algorithm is based on the alternation of two separate steps. The algo-

rithm begins with the following Step 1:

A. On the Longest Common Cartesian Substring Problem 98

lcs− r + 1

i
x

y
j

full scan left

continue right

i
x

y
j

partial scan left

lcs− r + 1

i
x

y
j

Figure A.12: The three steps which may occur during the execution of algorithm
Jumping-LcCs-Scan. Step 1: an incremental construction is performed from left
to right until a mismatch is detected among Txi

and Tyi . Then a jump to the right of
t = lcs+ r− 1 positions is performed. Step 2.1: a full scan is performed proceeding
from right to left without any mismatch and the value of lcs is incremented by one.
We then continue scanning right with Step 1. Step 2.2: We fall in a mismatch before
reaching the length lcs. Then we jump right again and continue with Step 2.

• Step 1: incremental construction is performed from left to right until the

hypothesis of Lemma 8 occurs, i.e. a mismatch is detected among Txi
and Tyi

(see Figure A.12, on the top).

At the end of Step 1, after Txi
and Tyi are made equal again by a call to Longest-

Common-Suffix, we jump right by t = lcs − r + 1 elements. Starting from these

elements, Step 2 begins, which, starting from scratch, performs an incremental con-

struction of the trees Txi+t
and Tyi+t

proceeding from right to left while the two

Cartesian trees match. Two further steps may arise at this point.

• Step 2.1: incremental construction proceeds from right to left without any

A. On the Longest Common Cartesian Substring Problem 99

mismatch occurring before elements x[i + t − lcs − 1] and y[i + t − lcs − 1]

are reached. In this case the value of lcs has been successfully incremented by

one. We then continue with Case 1 again (see Figure A.12, in the middle).

• Step 2.2: while proceeding from right to left a mismatch occurs between Txi+t

and Tyi+t
before elements x[i+ t− lcs− 1] and y[i+ t− lcs− 1] are reached.

This means that we are not able to increment the value of lcs by continue

scanning the strings from right to left. Thus we return at the end of Case 1,

when a new jump is performed, and continue with Case 2 again (see Figure

A.12, on the bottom).

Figure A.13 shows the pseudo-code of procedure Jumping-LcCs-Scan described

above. The fact that jumps are performed while scanning elements from left to right

results in a drastic speed improvement of the original constructive algorithm. The

only drawback of this approach is that, when step 2.1 occurs, the first l elements are

processed twice. However, in the next section, we will give experimental evidence

that, in practice, step 2.1 doesn’t have a significant performance impact.

A.7 Experimental Results

In this section we present an extensive experimental evaluation in order to compare,

in terms of running times, our alternative LcCs algorithms against the standard

Suffix Tree based solution.

The four algorithms presented above have been implemented in C programming

language†. The experiments were performed on a computer running Linux Ubuntu

20.04.1 with an Intel Core i5 3.40 GHz processor and 8GB RAM.

All algorithms are assumed to compute the length of the longest common Carte-

sian substring of two input strings, x and y, of length m and n, respectively. We

assume without loss of generality that m < n.

Specifically, our experimental environment is formed by the following algorithms:

†Source code is available at the following link https://github.com/ostafen/lccs

https://github.com/ostafen/lccs

A. On the Longest Common Cartesian Substring Problem 100

Jumping-LcCs-Scan(x, y,m, n, lcs)

1. Tx0 ← Empty-Tree()

2. Ty0 ← Empty-Tree()
3. r ← 0

4. r′ ← −1
5. i← lcs+ 1
6. while i ≤ min(m,n) do

7. while r ≤ lcs and r > r′ do
8. r′ ← r
9. Exi ← Tree-Extend-Right(Txi , x[i− r])

10. Eyi ← Tree-Extend-Right(Tyi , y[i− r])

11. (Txi , Tyi , r)← Longest-Common-Suffix(Exi , Eyi)
12. if r > lcs then
13. while i < min(m,n) and r > r′ do
14. i← i+ 1
15. lcs← r

16. r′ ← r
17. Exi ← Tree-Extend-Right(Txi−1 , x[i])

18. Eyi ← Tree-Extend-Right(Tyi−1 , y[i])

19. (Txi , Tyi , r)← Longest-Common-Suffix(Exi , Eyi)
20. i← i+ lcs− r + 1
21. return lcs

Figure A.13: The pseudo-code of procedure Jumping-LcCs-Scan. At each step,
the algorithm tries to improve the length of the current longest Cartesian substring,
by alternating both leftmost and rightmost construction of the Cartesian trees. Un-
der some suitable conditions, when a mismatch of the two trees occurs, forwards
jumps are performed.

• St: the generalized suffix-tree based algorithm presented in Section A.4;

• Dp: the algorithm of Section A.5, based on parent-distance representation and

dynamic programming;

• Ic and Bic: the left to right incremental construction algorithm and its back-

ward variant, respectively, presented in Section A.6.

A.7.1 Implementation Details

In our solution based on generalized suffix-trees (St) the implementation with miss-

ing suffix links from [64] has been used without back propagation and with a simple

hashing function. Although our implementation is not linear in the worst case we

argue that for short strings it is faster than the randomized linear method which

is quite intricate and could lead to an increase in running times for short strings.

A. On the Longest Common Cartesian Substring Problem 101

The method for finding the longest Cartesian substring between two strings, based

on Suffix Trees, is then the following: the parent distance representations PDx and

PDy are computed. Then we construct PDyx = PDy$1PDx$2 where $1 and $2 are

terminators that do not occur in PDx and PDy. Then the suffix tree of PDyx is

build for the part corresponding of the longest string y. For the remaining part the

suffix tree is scanned to determine the fork where to insert the tail of the current

suffix. The string depth of this fork is used to compute the length of the longest

common Cartesian substring. The tail is not inserted since it is not necessary for

our purposes and will only lead to a loss of time.

For our dynamic programming solution (Dp), long diagonals (with min{m,n}

elements) are processed first. Shortest diagonals corresponding to prefixes and suf-

fixes of y are processed in a second time. During the computation of a diagonal,

when the length of the remaining part of the diagonal is too short and will not

possibly contribute to a longest common Cartesian substring, we processed to the

next diagonals.

Regarding our methods based on incremental construction (Ic and Bic), we

choose to implement a Cartesian tree as an array of fixed size equal to max(m,n).

In order to avoid reallocation, the array corresponding to a Cartesian tree is managed

as a circular buffer, so that old array locations are gradually overwritten. Moreover,

procedure Longest-Common-Suffix have been efficiently implemented according

to the implementation notes discussed in Section A.6.

A.7.2 Results on Random and Real Data

We conducted experiments both on random and real data. Concerning random

data, we built random strings of integers, each drawn with uniform distribution from

the set {0, 1, ..., σ − 1}, with σ = 10, 102, 103, 104. Real data sequences have been

randomly drawn from the well-known Seoul Temperatures dataset provided by the

KMA National Climate Data Center (https://data.kma.go.kr/resources/html/

https://data.kma.go.kr/resources/html/en/aowdp.html

A. On the Longest Common Cartesian Substring Problem 102

σ/k 1 2 3 4 5 6 7 8 9 10

10 0.34 0.17 0.07 0.03 0.01 0.42 · 10−1 0.18 · 10−2 0.7 · 10−3 0.24 · 10−3 0.84 · 10−4

102 0.35 0.17 0.07 0.02 0.01 0.39 · 10−2 0.13 · 10−2 0.43 · 10−3 0.16 · 10−3 0.72 · 10−4

103 0.34 0.17 0.07 0.03 0.01 0.42 · 10−2 0.15 · 10−2 0.59 · 10−3 0.26 · 10−3 0.11 · 10−3

104 0.35 0.17 0.07 0.02 0.01 0.42 · 10−2 0.14 · 10−2 0.56 · 10−3 0.21 · 10−4 0.80 · 10−4

Table A.1: Relative frequency of common Cartesian substring of length k among
the number of k-mers of two random generated strings of integers x and y. Each
row refers to a specific value of σ.

1 5 10 15 20 25
0

0.1

0.2

0.3

k

Figure A.14: Histogram showing the relative frequency (on the y-axis) of common
Cartesian substring of length k (on the x-axis) among the number of k-mers of two
strings of integers x and y, randomly extracted from the Seoul Temperature dataset.

https://data.kma.go.kr/resources/html/en/aowdp.html
https://data.kma.go.kr/resources/html/en/aowdp.html

A. On the Longest Common Cartesian Substring Problem 103
σ
=

1
0
4

σ
=

1
0
3

σ
=

1
0
2

σ
=

1
0

Algo/m

St

Dp

Ic

Bic

St

Dp

Ic

Bic

St

Dp

Ic

Bic

St

Dp

Ic

Bic

n = 16

2 4 8 16

6.97 4.27 5.26 6.29

1.34 0.83 1.09 1.93

1.02 0.89 2.08 4.87

1.09 1.00 2.19 4.47

3.90 4.16 5.02 6.19

0.76 0.83 1.08 1.93

0.58 0.90 2.01 4.84

0.62 0.99 2.15 4.37

3.88 4.14 4.95 6.22

0.73 0.87 1.13 1.98

0.57 0.87 2.03 4.82

0.62 0.98 2.13 4.37

3.93 4.15 4.97 6.54

0.72 0.82 1.09 2.00

0.58 0.92 2.03 5.01

0.60 0.97 2.16 4.54

n = 32

4 8 16 32

7.73 8.27 9.98 12.1

0.96 1.25 2.45 6.29

0.94 2.11 6.23 19.4

1.08 2.26 5.43 13.2

7.65 8.60 10.0 12.0

1.02 1.31 2.55 6.64

1.00 2.24 6.25 19.4

1.13 2.41 5.53 13.2

7.34 8.23 9.81 11.5

1.00 1.27 2.51 6.40

1.01 2.12 6.01 18.9

1.09 2.31 5.24 12.9

7.20 8.09 9.49 11.7

0.91 1.24 2.41 6.41

0.92 2.05 5.93 18.8

1.07 2.18 5.14 13.0

n = 64

8 16 32 64

14.5 16.3 19.1 23.7

1.40 2.56 7.16 22.9

2.11 5.97 21.3 77.8

2.28 5.21 13.5 39.1

15.51 17.1 19.8 23.6

1.52 2.82 7.97 24.7

2.33 6.43 22.5 78.0

2.45 5.65 14.5 39.4

14.66 17.6 20.8 25.3

1.41 2.85 8.36 26.3

2.12 6.47 23.4 81.7

2.31 5.66 15.0 41.2

15.3 17.3 20.0 24.7

1.55 2.78 8.12 26.0

2.32 6.40 22.6 81.2

2.43 5.71 14.5 40.9

Table A.2: Running times of LcCs algorithms on random data and for n = 16, 32
and 64. Times are expressed in milliseconds.

en/aowdp.html), collecting temperature data from 1907 to 2019. In the dataset,

the percentage of duplicated strings is around 5%, for strings of length k ≤ 3,

0.07− 0.014% for 4 ≤ k ≤ 6, and rapidly tends to 0 for k ≥ 7.

In both cases, we set n to increasing powers of two in the range [24..212] and, for

each value of n, we use 4 values of m: n/8, n/4, n/2 and n, respectively.

For a better understanding of the data-sets we report in Table A.1 and Figure

A.14, respectively, the histograms of the relative frequency (on the y-axis) of each

length k (on the x-axis) for all common Cartesian substrings which are present inside

two strings of integers x and y, for the Random dataset and the Seoul Temperature

dataset.

Table A.2, Table A.3 and Table A.4 show the running times of the four algorithms

in tabular form, in the case of random data. In the two tables the range of possible

values for n have been divided into three sub-ranges, [24..26], [27..29] and [210..212],

respectively. Each table is organized into multiple sub-tables, one for each value of

n, with columns representing increasing values of m, and this structure is replicated

for each of the possible values of σ.

https://data.kma.go.kr/resources/html/en/aowdp.html
https://data.kma.go.kr/resources/html/en/aowdp.html
https://data.kma.go.kr/resources/html/en/aowdp.html

A. On the Longest Common Cartesian Substring Problem 104

σ
=

1
0
4

σ
=

1
0
3

σ
=

1
0
2

σ
=

1
0

Algo/m

St

Dp

Ic

Bic

St

Dp

Ic

Bic

St

Dp

Ic

Bic

St

Dp

Ic

Bic

n = 128

16 32 64 128

2.95 3.28 4.00 4.72

0.31 0.79 2.77 9.38

0.63 2.23 8.91 33.13

0.57 1.42 4.17 12.44

2.87 3.16 3.77 4.67

0.30 0.80 2.79 9.83

0.60 2.15 8.43 32.32

0.54 1.39 4.02 12.31

2.84 3.24 3.85 5.00

0.31 0.83 2.90 10.42

0.61 2.21 8.71 34.13

0.55 1.43 4.16 13.14

3.01 3.35 3.84 4.98

0.32 0.85 2.89 10.45

0.64 2.27 8.69 34.37

0.57 1.47 4.14 13.18

n = 256

32 64 128 256

5.95 7.19 7.93 9.90

0.87 2.88 10.83 40.10

2.27 9.06 36.22 141

1.48 4.28 13.01 42.74

6.10 6.91 8.13 10.42

0.94 3.06 11.54 42.51

2.30 8.98 36.43 142

1.52 4.30 13.32 43.93

6.32 7.25 8.04 10.13

0.95 3.13 11.41 42.84

2.34 9.07 35.92 142

15.5 4.36 13.10 43.92

6.19 7.00 8.04 10.46

0.95 3.08 11.70 42.62

2.35 9.01 36.53 142

1.56 4.34 13.32 43.61

n = 512

64 128 256 512

4.47 4.94 5.67 6.89

3.30 11.18 43.92 164.9

8.84 34.51 141.0 557.8

4.49 13.29 43.97 49.7

4.50 4.90 5.79 7.25

3.37 11.80 46.33 174.0

8.49 34.68 141.5 566.1

4.38 13.62 44.98 155.8

4.49 4.97 5.71 6.84

3.46 12.23 47.73 175.4

8.70 35.44 144.3 564.4

4.47 14.06 46.05 154.3

4.50 4.96 5.58 6.90

3.52 11.93 46.96 174.2

8.77 34.45 142.5 562.3

4.52 13.56 45.66 154.9

Table A.3: Running times of LCCS algorithms on random data and for n = 128, 256
and 512. Times are expressed in centiseconds.

σ
=

1
0
4

σ
=

1
0
3

σ
=

1
0
2

σ
=

1
0

Algo/m

St

Dp

Ic

Bic

St

Dp

Ic

Bic

St

Dp

Ic

Bic

St

Dp

Ic

Bic

n = 1024

128 256 512 1024

0.09 0.10 0.11 0.14

0.12 0.45 1.80 6.75

0.36 1.48 6.00 23.65

0.13 0.43 1.49 5.14

0.09 0.10 0.12 0.15

0.12 0.46 1.87 6.95

0.34 1.46 5.95 23.42

0.13 0.43 1.50 5.23

0.09 0.10 0.12 0.15

0.13 0.47 1.87 6.98

0.37 1.47 5.93 23.39

0.14 0.44 1.50 5.20

0.09 0.11 0.13 0.15

0.12 0.46 1.83 6.82

0.36 1.44 5.79 22.85

0.13 0.43 1.47 5.14

n = 2048

256 512 1024 2048

0.20 0.22 0.25 0.30

0.45 1.78 7.29 27.13

1.46 5.91 24.21 94.66

0.43 1.46 5.23 18.36

0.19 0.21 0.24 0.31

0.48 1.86 7.34 28.00

1.46 5.89 23.37 93.89

0.44 1.49 5.17 18.65

0.20 0.21 0.25 0.30

0.48 1.88 7.42 27.99

1.45 5.91 23.48 93.37

0.44 1.50 5.18 18.52

0.19 0.21 0.25 0.31

0.46 1.83 7.36 28.04

1.41 5.76 23.29 93.47

0.43 1.46 5.17 18.54

n = 4096

512 1024 2048 4096

0.41 0.45 0.48 0.61

1.78 7.08 28.35 108.66

5.83 23.43 94.10 378.52

1.45 5.08 18.24 66.21

0.39 0.43 0.49 0.62

1.83 7.37 29.27 109.98

5.75 23.39 92.86 368.09

1.46 5.18 18.31 66.12

0.39 0.43 0.49 0.62

1.82 7.24 29.05 109.73

5.69 22.87 91.88 365.72

1.44 5.06 18.24 65.65

0.39 0.43 0.49 0.62

1.81 7.21 28.93 109.79

5.65 22.76 91.43 365.57

1.43 5.04 18.08 65.68

Table A.4: Running times of LCCS algorithms on random data and for n =
1024, 2048 and 4096. Times are expressed in seconds.

A. On the Longest Common Cartesian Substring Problem 105

Algo/m

St

Dp

Ic

Bic

n = 16

2 4 8 16

3.27 3.45 3.94 4.67

0.73 0.79 1.10 1.58

0.63 1.12 2.13 3.78

0.72 1.29 2.35 3.78

n = 32

4 8 16 32

5.82 6.51 7.34 8.76

0.94 1.41 2.49 4.51

1.31 3.50 6.84 13.40

1.59 3.71 6.21 9.95

n = 64

8 16 32 64

11.29 12.16 13.74 16.92

1.75 3.90 8.75 17.61

5.23 12.59 26.43 55.19

5.49 10.41 16.80 28.22

Algo/m

St

Dp

Ic

Bic

n = 128

16 32 64 128

21.87 23.65 27.28 33.06

6.20 15.86 35.90 72.56

22.91 51.58 111.95 238.75

17.93 29.49 49.25 85.94

n = 256

32 64 128 256

45.01 49.81 54.68 67.73

29.31 74.18 154.42 302.56

102.76 239.65 495.27 1055.59

54.06 94.83 155.92 274.41

n = 512

32 64 128 256

88.51 95.15 108.43 129.72

132.01 294.66 608.61 1184.35

454.13 1000.18 2118.29 4390.09

162.75 277.97 497.55 899.94

Algo/m

St

Dp

Ic

Bic

n = 1024

16 32 64 128

0.18 0.19 0.23 0.29

0.60 1.26 2.57 4.96

2.04 4.31 9.09 18.50

0.52 0.92 1.73 3.28

n = 2048

32 64 128 256

0.39 0.42 0.46 0.55

2.57 5.26 10.38 19.83

8.87 18.31 37.04 74.13

1.75 3.28 6.19 11.92

n = 4096

32 64 128 256

0.77 0.85 0.92 1.15

10.29 21.16 41.40 79.25

35.65 73.95 148.47 298.25

6.15 11.99 23.16 43.65

Table A.5: Running times of LcCs algorithms on Seoul Temperature data for n ∈
[24..212]. Times are expressed in milliseconds for n ∈ [24..29] and in seconds for
n ∈ [210..212].

Experiments on real data are shown in Table A.5.

In all cases, the two best results have been boldfaced (in addition, the best result

has been underlined).

Each algorithm shows a similar behaviour both on random and real data. From

the results, it clearly turns out that the quadratic solutions are faster than St in

the case of sufficiently short string (n ∈ [24..26]). In particular, Dp achieves the best

performance up to n = 27, while Ic and Bic compete for the second best result.

As n increases or when m gets very close to n, the difference in speed between the

quadratic algorithms and the linear solution is gradually lowered, with St becoming

faster starting from n = 256, and Bic achieving the second best result (starting

from n = 512).

It is also worth to notice that, as the values of n and m increase, specifically for

n ≥ 29, the running times of the Bic algorithm undergo a milder surge with respect

to the remaining quadratic solutions, thanks to its jump-based heuristic.

Table A.6 shows the space consumption of the proposed solutions for strings of

increasing length, where m = n. With a space requirement that exceeds of about

A. On the Longest Common Cartesian Substring Problem 106

Algo/m

St

Dp

Ic

Bic

2 4 8 16 32 64 128 256 512 1024 2048 4096

1.20 1.97 3.50 6.56 12.69 24.94 49.44 98.44 196.44 392.44 784.44 1568.44

0.05 0.09 0.19 0.38 0.75 1.50 3.00 6.00 12.00 24.00 48.00 96.00

0.05 0.09 0.19 0.38 0.75 1.50 3.00 6.00 12.00 24.00 48.00 96.00

0.06 0.12 0.25 0.50 1.00 2.00 4.00 8.00 16.00 32.00 64.00 128.00

Table A.6: Space consumption expressed in kilobytes of the presented solutions for
strings of equal size (i.e. m = n).

12-20 times the remaining solutions, the St algorithm is certainly the most space

demanding. All the other algorithms show a similar behaviour in terms of space,

with Dp and Ic being the cheapest alternatives. We also notice that Dp and Ic

take exactly the same space, while Bic is more space demanding than Ic. This is

due to the fact that the Bic algorithm performs the incremental construction of the

Cartesian trees both from left to right and from right to left, and thus additional

information with respect to Ic are needed.

To conclude, our experimental analysis suggests that no algorithm is suitable

for every possible scenario; however, two algorithms stand out naturally from our

experiments, depending on the length of the strings considered. In particular, Dp is

clearly the best choice for strings of small size (m,n ≤ 64), even if all the quadratic

algorithms show good performances in such case, while St is superior in every other

case.

Finally, we also signal the Bic algorithm as a good alternative to the St al-

gorithm for large strings, since its running time tends to degrade less noticeably

with respect to other quadratic solutions as the length of the input increases, while

maintaining the space requirements low.

A.7.3 Results on Real Data

In the experimental results shown in this section we use real data from the first wave

COVID-19 pandemic occurred starting from March 2020.‡ Specifically we extracted

the numbers of cases and numbers of deaths for the 15 most infected countries at

‡We downloaded data from https://opendata.ecdc.europa.eu/covid19/

casedistribution/csv on 27th April 2020

https://opendata.ecdc.europa.eu/covid19/casedistribution/csv
https://opendata.ecdc.europa.eu/covid19/casedistribution/csv

A. On the Longest Common Cartesian Substring Problem 107

♯ Country Cases Deaths
1 China 102 98
2 France 62 53
3 Germany 62 49
4 Iran 68 68
5 Italy 66 65
6 Korea 72 67
7 Spain 63 54
8 Turkey 45 40
9 UK 105 98
10 USA 67 58
11 Russia 47 32
12 Brazil 54 41
13 Canada 63 42
14 Belgium 57 47
15 Netherlands 60 50

Table A.7: Country number of cases and deaths from the first wave COVID-19
pandemic occurred from 1st March 2020 to 27th April 2020

that time. Data were given in reverse chronological order. We trimmed the data for

the tailing runs of 0s and 1s at the end.

Table A.7 reports the number of daily cases and deaths for fifteen different coun-

tries. For each pair of countries, we computed the length of the longest common

Cartesian substrings.

Figure A.15 (on top) shows the results for the number of cases. These results

have been computed in:

• 3.843 µs for the St algorithm

• 3.678 µs for the Dp algorithm

• 11.996 µs for the Ic algorithm

• 5.861 µs for the Bic algorithm

Similarly Figure A.15 (on bottom) shows the results for the number of deaths.

These results have been computed in:

• 3.629 µs for the St algorithm

A. On the Longest Common Cartesian Substring Problem 108

N
u
m
b
e
r
o
f
C
O
V
ID

-1
9
c
a
se

s

2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 11 8 11 11 10 10 13 9 13 14 9 9 10 11

2 9 12 11 8 9 16 11 11 10 9 11 7 12

3 8 11 8 11 9 11 9 8 12 8 8 11

4 11 10 9 12 8 14 12 8 9 8 10

5 9 10 10 13 11 11 10 12 9 10

6 9 7 9 8 8 8 9 7 8

7 9 10 9 9 9 9 11 11

8 9 12 15 8 9 7 12

9 10 10 9 14 12 11

10 14 9 10 9 10

11 9 9 8 10

12 11 10 8

13 9 8

14 9

N
u
m
b
e
r
o
f
C
O
V
ID

-1
9
d
e
a
t
h
s

2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 9 8 14 7 10 10 10 10 8 10 8 9 13 10

2 10 10 9 7 7 10 7 9 9 9 9 12 14

3 9 9 8 11 9 11 10 8 7 8 10 7

4 8 9 10 13 11 9 9 8 9 10 8

5 8 8 7 10 14 10 11 10 8 11

6 8 7 9 7 9 8 7 8 8

7 10 8 9 9 10 9 9 8

8 7 9 10 7 7 11 8

9 8 9 10 10 9 9

10 8 11 8 11 9

11 9 8 10 9

12 7 7 9

13 9 10

14 8

Figure A.15: Length of the longest common Cartesian substring between countries
for the number of cases (on top) and the number of deaths (on bottom) of the
COVID-19.

• 2.892 µs for the Dp algorithm

• 9.507 µs for the Ic algorithm

• 5.073 µs for the Bic algorithm

Again, these results show that for such short strings our Dp alternative solution

is faster than the suffix tree based method.

In our real data experiments, Dp is faster than the suffix tree solution in 38 cases

out of 50 cases; when it is faster, Dp is 3.81 times faster on average (up to 8.43 times

A. On the Longest Common Cartesian Substring Problem 109

for the maximum), and when it is slower, it is 1.3 times slower on average than the

suffix tree solution (up to 1.82 for the maximum).

A.7.4 Conclusions

In this chapter we presented a classical suffix tree based solution for computing the

longest Cartesian substrings between two strings. This solution is based on the

parent-distance representations of the two strings and runs in randomized linear

time and linear extra-space in addition to the two strings and their parent-distance

representation. Then we proposed two alternative solutions, based on dynamic pro-

gramming and incremental Cartesian tree construction, that run in quadratic time

in the worst case and in multiplicative constant extra-space in addition to the two

strings and their parent-distance representation. Moreover, we introduced a jump-

based heuristic which improves the performance of our constructive approach, espe-

cially for large strings. We presented experiments, both on random and real data,

showing the effectiveness of our dynamic programming and constructive solutions for

strings of short and large size, respectively. Further works would include the search

for the longest approximate common Cartesian substrings between two strings but

the notion of approximation in this context has to be defined.

Bibliography

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to

Algorithms, 3rd Edition. MIT Press, 2009.

[2] S. Faro and T. Lecroq, “The exact online string matching problem: A review

of the most recent results,”ACM Comput. Surv., vol. 45, no. 2, pp. 13:1–13:42,

2013.

[3] D. E. Knuth, J. H. M. Jr., and V. R. Pratt, “Fast pattern matching in strings,”

SIAM J. Comput., vol. 6, no. 2, pp. 323–350, 1977.

[4] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,” Commun.

ACM, vol. 20, no. 10, 1977.

[5] M. Crochemore and W. Rytter, Text Algorithms. Oxford University Press, 1994.

[6] A. C. Yao, “The complexity of pattern matching for a random string,” tech.

rep., Stanford, CA, USA, 1977.

[7] H. Peltola and J. Tarhio, “Alternative algorithms for bit-parallel string match-

ing,” in String Processing and Information Retrieval, 10th International Sym-

posium, SPIRE 2003, vol. 2857 of LNCS, pp. 80–94, Springer, 2003.

[8] B. Durian, H. Peltola, L. Salmela, and J. Tarhio, “Bit-parallel search algorithms

for long patterns,” in Experimental Algorithms, 9th International Symposium,

SEA 2010, vol. 6049 of LNCS, pp. 129–140, Springer, 2010.

[9] D. Cantone, S. Faro, and E. Giaquinta, “A compact representation of nondeter-

ministic (suffix) automata for the bit-parallel approach,” Inf. Comput., vol. 213,

pp. 3–12, 2012.

Bibliography 109

[10] S. Faro and T. Lecroq, “A fast suffix automata based algorithm for exact online

string matching,” in Implementation and Application of Automata - 17th In-

ternational Conference, CIAA 2012, vol. 7381 of LNCS, pp. 149–158, Springer,

2012.

[11] R. A. Baeza-Yates and G. H. Gonnet, “A new approach to text searching,”

Commun. ACM, vol. 35, no. 10, pp. 74–82, 1992.

[12] G. Navarro and M. Raffinot, “A bit-parallel approach to suffix automata: Fast

extended string matching,” in Combinatorial Pattern Matching, 9th Annual

Symposium, CPM 98, Proceedings (M. Farach-Colton, ed.), vol. 1448 of LNCS,

pp. 14–33, Springer, 1998.

[13] S. Faro, “A very fast string matching algorithm based on condensed alpha-

bets,” in Algorithmic Aspects in Information and Management - 11th Interna-

tional Conference, AAIM 2016, Bergamo, Italy, July 18-20, 2016, Proceedings

(R. Dondi, G. Fertin, and G. Mauri, eds.), vol. 9778 of Lecture Notes in Com-

puter Science, pp. 65–76, Springer, 2016.

[14] S. Faro and S. Scafiti, “A weak approach to suffix automata simulation for exact

and approximate string matching,” Theor. Comput. Sci., vol. 933, pp. 88–103,

2022.

[15] D. Cantone, S. Faro, and A. Pavone, “Speeding up string matching by weak

factor recognition,” in Proceedings of the Prague Stringology Conference 2017,

Prague, Czech Republic, August 28-30, 2017 (J. Holub and J. Zdárek, eds.),

pp. 42–50, Department of Theoretical Computer Science, Faculty of Information

Technology, Czech Technical University in Prague, 2017.

[16] C. Allauzen, M. Crochemore, and M. Raffinot, “Factor oracle: A new struc-

ture for pattern matching,” in SOFSEM ’99, Theory and Practice of Infor-

matics, 26th Conference on Current Trends in Theory and Practice of Infor-

Bibliography 110

matics, Milovy, Czech Republic, November 27 - December 4, 1999, Proceedings

(J. Pavelka, G. Tel, and M. Bartosek, eds.), vol. 1725 of Lecture Notes in Com-

puter Science, pp. 295–310, Springer, 1999.

[17] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,”

Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[18] S. Faro and S. Scafiti, “Pruned BNDM: extending the bit-parallel suffix au-

tomata to large strings,” in Proceedings of the 22nd Italian Conference on The-

oretical Computer Science, Bologna, Italy, September 13-15, 2021 (C. S. Coen

and I. Salvo, eds.), vol. 3072 of CEUR Workshop Proceedings, pp. 328–340,

CEUR-WS.org, 2021.

[19] S. Faro and S. Scafiti, “Compact suffix automata representations for searching

long patterns,”Theor. Comput. Sci., vol. 940, no. Part, pp. 254–268, 2023.

[20] S. Faro and S. Scafiti, “The range automaton: An efficient approach to

text-searching,” in Combinatorics on Words - 13th International Conference,

WORDS 2021, Rouen, France, September 13-17, 2021, Proceedings (T. Lecroq

and S. Puzynina, eds.), vol. 12847 of Lecture Notes in Computer Science, pp. 91–

103, Springer, 2021.

[21] S. Faro and S. Scafiti, “Efficient string matching based on a two-step simulation

of the suffix automaton,” in Implementation and Application of Automata -

25th International Conference, CIAA 2021, Virtual Event, July 19-22, 2021,

Proceedings (S. Maneth, ed.), vol. 12803 of Lecture Notes in Computer Science,

pp. 165–177, Springer, 2021.

[22] N. Uratani and M. Takeda, “A fast string-searching algorithm for multiple pat-

terns,” Inf. Process. Manag., vol. 29, no. 6, pp. 775–792, 1993.

Bibliography 111

[23] M. J. Fischer and M. S. Paterson, “String matching and other products,” in

Complexity of Computation (SYAM-AMS Proceedings 7) (R. Karp, ed.), vol. 7,

(USA), pp. 113,125, Massachusetts Institute of Technology, 1974.

[24] R. Y. Pinter, “Efficient string matching with don’t-care patterns,” in Com-

binatorial Algorithms on Words (A. Apostolico and Z. Galil, eds.), (Berlin,

Heidelberg), pp. 11–29, Springer Berlin Heidelberg, 1985.

[25] D. Cantone, S. Faro, and E. Giaquinta, “A compact representation of nonde-

terministic (suffix) automata for the bit-parallel approach,” in Combinatorial

Pattern Matching, CPM 2010, Proceedings, vol. 6129 of LNCS, pp. 288–298,

Springer, 2010.

[26] S. Faro, T. Lecroq, S. Borzi, S. D. Mauro, and A. Maggio, “The string matching

algorithms research tool,” in Proceedings of the Prague Stringology Conference,

2016 (J. Holub and J. Zdárek, eds.), pp. 99–111, 2016.

[27] S. Muthukrishnan, “New results and open problems related to non-standard

stringology,” in Combinatorial Pattern Matching, 6th Annual Symposium, CPM

95, Espoo, Finland, July 5-7, 1995, Proceedings (Z. Galil and E. Ukkonen, eds.),

vol. 937 of Lecture Notes in Computer Science, pp. 298–317, Springer, 1995.

[28] D. Cantone and S. Faro, “Pattern matching with swaps for short patterns

in linear time,” in SOFSEM 2009: Theory and Practice of Computer Sci-

ence, 35th Conference on Current Trends in Theory and Practice of Computer

Science, Spindleruv Mlýn, Czech Republic, January 24-30, 2009. Proceedings

(M. Nielsen, A. Kucera, P. B. Miltersen, C. Palamidessi, P. Tuma, and F. D.

Valencia, eds.), vol. 5404 of Lecture Notes in Computer Science, pp. 255–266,

Springer, 2009.

[29] M. Campanelli, D. Cantone, and S. Faro, “A new algorithm for efficient pat-

tern matching with swaps,” in Combinatorial Algorithms, 20th International

Bibliography 112

Workshop, IWOCA 2009, Hradec nad Moravićı, Czech Republic, June 28-July

2, 2009, Revised Selected Papers (J. Fiala, J. Kratochv́ıl, and M. Miller, eds.),

vol. 5874 of Lecture Notes in Computer Science, pp. 230–241, Springer, 2009.

[30] S. Faro, “Swap matching in strings by simulating reactive automata,” in Pro-

ceedings of the Prague Stringology Conference 2013, Prague, Czech Republic,

September 2-4, 2013 (J. Holub and J. Zdárek, eds.), pp. 7–20, Department of

Theoretical Computer Science, Faculty of Information Technology, Czech Tech-

nical University in Prague, 2013.

[31] S. Faro and A. Pavone, “An efficient skip-search approach to swap matching,”

Comput. J., vol. 61, no. 9, pp. 1351–1360, 2018.

[32] M. Kubica, T. Kulczynski, J. Radoszewski, W. Rytter, and T. Walen, “A linear

time algorithm for consecutive permutation pattern matching,” Inf. Process.

Lett., vol. 113, no. 12, pp. 430–433, 2013.

[33] J. Kim, P. Eades, R. Fleischer, S. Hong, C. S. Iliopoulos, K. Park, S. J. Puglisi,

and T. Tokuyama, “Order-preserving matching,”Theor. Comput. Sci., vol. 525,

pp. 68–79, 2014.

[34] D. Cantone, S. Faro, and M. O. Külekci, “An efficient skip-search approach to

the order-preserving pattern matching problem,” in Proceedings of the Prague

Stringology Conference 2015, Prague, Czech Republic, August 24-26, 2015

(J. Holub and J. Zdárek, eds.), pp. 22–35, Department of Theoretical Com-

puter Science, Faculty of Information Technology, Czech Technical University

in Prague, 2015.

[35] S. Faro and M. O. Külekci, “Efficient algorithms for the order preserving pattern

matching problem,” in Algorithmic Aspects in Information and Management -

11th International Conference, AAIM 2016, Bergamo, Italy, July 18-20, 2016,

Bibliography 113

Proceedings (R. Dondi, G. Fertin, and G. Mauri, eds.), vol. 9778 of Lecture

Notes in Computer Science, pp. 185–196, Springer, 2016.

[36] S. Faro and M. O. Külekci, “Efficient algorithms for the order preserving pattern

matching problem,” in Algorithmic Aspects in Information and Management -

11th International Conference, AAIM 2016, Bergamo, Italy, July 18-20, 2016,

Proceedings (R. Dondi, G. Fertin, and G. Mauri, eds.), vol. 9778 of Lecture

Notes in Computer Science, pp. 185–196, Springer, 2016.

[37] D. Cantone, S. Faro, and M. O. Külekci, “The order-preserving pattern match-

ing problem in practice,”Discret. Appl. Math., vol. 274, pp. 11–25, 2020.

[38] J. Fischer, T. Gagie, P. Gawrychowski, and T. Kociumaka, “Approximating

LZ77 via small-space multiple-pattern matching,” CoRR, vol. abs/1504.06647,

2015.

[39] A. V. Aho and M. J. Corasick, “Efficient string matching: An aid to biblio-

graphic search,”Commun. ACM, vol. 18, no. 6, pp. 333–340, 1975.

[40] S. Dori and G. M. Landau, “Construction of aho corasick automaton in linear

time for integer alphabets,” Inf. Process. Lett., vol. 98, no. 2, pp. 66–72, 2006.

[41] G. Navarro and K. Fredriksson, “Average complexity of exact and approximate

multiple string matching,”Theor. Comput. Sci., vol. 321, no. 2-3, pp. 283–290,

2004.

[42] G. Navarro and M. Raffinot, Flexible pattern matching in strings - practical on-

line search algorithms for texts and biological sequences. Cambridge University

Press, 2002.

[43] S. Wu and U. Manber, “Fast text searching allowing errors,” Commun. ACM,

vol. 35, no. 10, pp. 83–91, 1992.

Bibliography 114

[44] G. Navarro and M. Raffinot, “Fast and flexible string matching by combining

bit-parallelism and suffix automata,” ACM J. Exp. Algorithmics, vol. 5, p. 4,

2000.

[45] E. Rivals, L. Salmela, P. Kiiskinen, P. Kalsi, and J. Tarhio, “mpscan: Fast

localisation of multiple reads in genomes,” in Algorithms in Bioinformatics, 9th

International Workshop, WABI 2009, Philadelphia, PA, USA, September 12-

13, 2009. Proceedings (S. Salzberg and T. J. Warnow, eds.), vol. 5724 of Lecture

Notes in Computer Science, pp. 246–260, Springer, 2009.

[46] S. Faro and M. O. Külekci, “Fast multiple string matching using streaming

SIMD extensions technology,” in String Processing and Information Retrieval -

19th International Symposium, SPIRE 2012, Cartagena de Indias, Colombia,

October 21-25, 2012. Proceedings (L. Calderón-Benavides, C. N. González-Caro,

E. Chávez, and N. Ziviani, eds.), vol. 7608 of Lecture Notes in Computer Sci-

ence, pp. 217–228, Springer, 2012.

[47] C. Ryu, T. Lecroq, and K. Park, “Fast string matching for DNA sequences,”

Theor. Comput. Sci., vol. 812, pp. 137–148, 2020.

[48] D. Cantone, S. Faro, and A. Pavone, “Linear and efficient string matching algo-

rithms based on weak factor recognition,” ACM J. Exp. Algorithmics, vol. 24,

no. 1, pp. 1.8:1–1.8:20, 2019.

[49] S. Faro and M. O. Külekci, “Fast and flexible packed string matching,” J. Dis-

crete Algorithms, vol. 28, pp. 61–72, 2014.

[50] L. Salmela, J. Tarhio, and J. Kytöjoki, “Multipattern string matching with

q-grams,”ACM J. Exp. Algorithmics, vol. 11, 2006.

[51] S. Faro and M. O. Külekci, “Fast packed string matching for short patterns,”

in Proceedings of the 15th Meeting on Algorithm Engineering and Experiments,

Bibliography 115

ALENEX 2013, New Orleans, Louisiana, USA, January 7, 2013 (P. Sanders

and N. Zeh, eds.), pp. 113–121, SIAM, 2013.

[52] S. Faro and M. O. Külekci, “Fast and flexible packed string matching,” J. Dis-

crete Algorithms, vol. 28, pp. 61–72, 2014.

[53] J. Vuillemin, “A unifying look at data structures,” Commun. ACM, vol. 23,

no. 4, pp. 229–239, 1980.

[54] C. Hohlweg and C. Reutenauer, “Lyndon words, permutations and trees,”

Theor. Comput. Sci., vol. 307, no. 1, pp. 173–178, 2003.

[55] M. Crochemore and L. M. S. Russo, “Cartesian and Lyndon trees,” Theor.

Comput. Sci., vol. 806, pp. 1–9, 2020.

[56] E. D. Demaine, G. M. Landau, and O. Weimann, “On Cartesian trees and

Range Minimum Queries,”Algorithmica, vol. 68, no. 3, pp. 610–625, 2014.

[57] J. Shun and G. E. Blelloch, “A simple parallel Cartesian tree algorithm and its

application to parallel suffix tree construction,”ACM Trans. Parallel Comput.,

vol. 1, no. 1, pp. 8:1–8:20, 2014.

[58] S. G. Park, A. Amir, G. M. Landau, and K. Park, “Cartesian tree matching

and indexing,” in 30th Annual Symposium on Combinatorial Pattern Matching,

CPM 2019, June 18-20, 2019, Pisa, Italy. (N. Pisanti and S. P. Pissis, eds.),

vol. 128 of LIPIcs, pp. 16:1–16:14, Schloss Dagstuhl - Leibniz-Zentrum fuer

Informatik, 2019.

[59] S. Song, C. Ryu, S. Faro, T. Lecroq, and K. Park, “Fast Cartesian tree match-

ing,” in String Processing and Information Retrieval - 26th International Sym-

posium, SPIRE 2019, Segovia, Spain, October 7-9, 2019, Proceedings (N. R.

Brisaboa and S. J. Puglisi, eds.), vol. 11811 of Lecture Notes in Computer Sci-

ence, pp. 124–137, Springer, 2019.

Bibliography 116

[60] G. Gu, S. Song, S. Faro, T. Lecroq, and K. Park, “Fast multiple pattern Carte-

sian tree matching,” in WALCOM: Algorithms and Computation - 14th Inter-

national Conference, WALCOM 2020, Singapore, March 31 - April 2, 2020,

Proceedings (M. S. Rahman, K. Sadakane, and W. Sung, eds.), vol. 12049 of

Lecture Notes in Computer Science, pp. 107–119, Springer, 2020.

[61] P. Gawrychowski, S. Ghazawi, and G. M. Landau, “On indeterminate strings

matching,” in 31st Annual Symposium on Combinatorial Pattern Match-

ing, CPM 2020, June 17-19, 2020, Copenhagen, Denmark (I. L. Gørtz and

O. Weimann, eds.), vol. 161 of LIPIcs, pp. 14:1–14:14, Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 2020.

[62] M. Bataa, S. G. Park, A. Amir, G. M. Landau, and K. Park, “Finding periods

in Cartesian tree matching,” in Combinatorial Algorithms - 30th International

Workshop, IWOCA 2019, Pisa, Italy, July 23-25, 2019, Proceedings (C. J. Col-

bourn, R. Grossi, and N. Pisanti, eds.), vol. 11638 of Lecture Notes in Computer

Science, pp. 70–84, Springer, 2019.

[63] H. N. Gabow, J. L. Bentley, and R. E. Tarjan, “Scaling and related techniques

for geometry problems,” in Proceedings of the 16th Annual ACM Symposium on

Theory of Computing, April 30 - May 2, 1984, Washington, DC, USA (R. A.

DeMillo, ed.), pp. 135–143, ACM, 1984.

[64] R. Cole and R. Hariharan, “Faster suffix tree construction with missing suffix

links,” SIAM J. Comput., vol. 33, no. 1, pp. 26–42, 2003.

	Index
	Introduction
	Motivation
	Main contributions
	Outline

	Preliminaries
	Notation
	Factor based searching
	Condensed Alphabets

	PBNDM: a sampled bit-parallel suffix automata for large strings
	The Pruned BNDM Algorithm
	The Pruned Version of a Pattern
	The Preprocessing Phase
	The Searching Phase

	Experimental comparison
	Chapter summary

	The Range Automaton: An Efficient Approach to Text-Searching
	The Range Automaton
	The Backward Range Automaton Matcher
	Speeding-up Searching by Condensed Alphabets

	Extensions to Non-Standard Matching Problems
	Extension to Swap matching
	BRAM for Swap Matching

	Extension to Order Preserving String Matching
	BRAM for Order Preserving String Matching

	Extension to Multiple String Matching
	BRAM for Multiple String Matching

	Experimental Comparison
	Exact string matching
	Experimental Results on Swap Matching
	Experimental Results on Order Preserving String Matching
	Experimental Results on Multiple String Matching

	Chapter summary

	UFM: a Two-Step Simulation of the Suffix Automaton
	The Unique Factor Matcher
	A Generic Backward-Two-Step-Matcher Algorithm
	A Practical Implementation: The UFM Algorithm
	A Relaxed Variant of the UFM Algorithm
	Improving the space usage

	Experimental Results
	Experimental Setting
	Evaluation
	Chapter Summary

	Conclusions
	Appendices
	On the Longest Common Cartesian Substring Problem
	Introduction
	Notations and Definitions
	Building a Cartesian Tree
	A Suffix Tree Based Approach
	Computing the LCCS by Dynamic Programming
	A Constructive Approach for the LCCS Problem
	A Backward Approach Over the Constructive Solution

	Experimental Results
	Implementation Details
	Results on Random and Real Data
	Results on Real Data
	Conclusions

	Bibliography

