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Abstract. Cutaneous melanoma is an aggressive cancer with 
a poor prognosis for patients with advanced disease. The 
identification of several key molecular pathways implicated in 
the pathogenesis of melanoma has led to the development of 
novel therapies for this devastating disease. In melanoma, both 
the Ras/Raf/MEK/ERK (MAPK) and the PI3K/AKT (AKT) 
signalling pathways are constitutively activated through 
multiple mechanisms. Targeting various effectors of these 
pathways with pharmacologic inhibitors may inhibit mela-
noma cell growth and angiogenesis. Ongoing clinical trials 
provide hope to improve progression-free survival of patients 
with advanced melanoma. This review summarizes the most 
relevant studies focused on the specific action of these new 
molecular targeted agents. Mechanisms of resistance to 
therapy are also discussed.
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1. Introduction

Cutaneous melanoma, is a form of aggressive cancer that 
develops from melanocytes. It is most common in people 
between 30 and 60 years of age. The highest incidence rates 
occurs in white-skinned peoples living at low latitudes (1). 
Accordingly, the association between sun exposure and 
melanoma have been explored. An important risk factor for 
melanoma is UV irradiation upon sun exposure (2). Indication 
of a direct UV mutagenic effect in melanoma development 
remains controversial as the nucleotide exchange detected in 
the B-RAF gene (T/A) is not classically linked to UV muta-
genesis signature attributable to cytidine to thymidine (C→T) 
transitions. As suggested, it is possible that B-RAF mutations 
could arise from error prone replication of UV-damaged 
DNA (3). Melanoma is a heterogeneous disease that presents 
different genetic alterations and variety of histologic subtypes 
(4). B-RAF mutations were commonly detected in cutaneous 
melanomas arising from intermittent sun-exposed sites (5). 
Accordingly, we have, recently, identified a higher frequency 
of B-RAFV600E mutation in melanoma of the trunk from indoor 
workers compared to outdoor workers, suggesting that this 
mutation may be associated with an intermittent exposure to 
the sun, as usually the trunk is a sun-protected body site (6).

Melanomas exhibit mutations in the Ras/Raf/mitogen 
activated protein kinase (MAPK) pathway. Over 50% of mela-
nomas harbor activating mutations in B-RAF gene (B-RAFV600E) 
(7,8), known to play a key role in proliferation and survival of 
melanoma cells through activation of the MAPK pathway (9). 
Furthermore, this mutation causes constitutive activation of the 
kinase as well as insensitivity to negative feedback mechanism 
(10). B-RAFV600E, B-RAFV600K, B-RAFV600R and B-RAFV600D 
mutations were detected at the frequency from 6 to 3% (7). 
Knowledge on the deregulation of MAPK and P3K pathways 
in different cancer types, including melanoma, has led to the 
development of specific inhibitors of their key components 
(11‑14) (Fig. 1).

A list of current clinical trials for melanoma is available 
on the NCI Web site (http://www.cancer.gov/clinicaltrials). 
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For stage  IV (TNM) melanoma we found a total of 281 
ongoing clinical trials. Most of these studies are evaluating 
whether any benefits are observed after treatment with 
novel combination therapies or tailored therapies compared 
to standard treatments. In Table I the MAPK/AKT inhibi-
tors with their targets are summarized. The prognosis for 
melanoma patients at early stage of the disease is 90% 
survival by surgical treatment. In contrast, the prognosis for 
advanced melanoma is restricted due to the development of 
drug resistance after treatment with chemotherapeutic agents 
(15). This review is focused on the clinical application for 
the treatment of melanoma with MAPK and AKT inhibitors 
and other novel therapies. Mechanisms of resistance for each 
therapy are also discussed.

2. MAPK/MEK/ERK inhibitors

Sorafenib. Sorafenib (BAY43-9006, Nexavar, Bayer 
Pharmaceuticals Corp., West Haven, CT, USA) is a potent 
multi-kinase inhibitor that targets also the receptor tyrosine 
kinase-associated angiogenesis (VEGFR-2, VEGFR-3, 
PDGF-β) and tumor progression (c-KIT, FLT-3) (16,17). 
Sorafenib was initially developed as an inhibitor of the RAF 
serine/threonine kinases and administered orally in combina-
tion with carboplatin and taxol in patients with lung cancer 
(10).

The study of this inhibitor in xenograft models showed that 
sorafenib inhibited tumor cell proliferation and/or endothelial 
cell mediated tumor angiogenesis in several forms of human 
cancer (18). Sorafenib administered as monotherapy has a 
manageable side effect profile in phase I/II/III studies (19‑21) 
and the most common toxic effects are hand-foot skin reac-
tion (HFS), rash and diarrhoea (22). Sorafenib is effective in 
the treatment of a small percentage of melanomas that carry 
mutations G469E and D594G in B-RAF gene expressing consti-
tutively ERK1/2, low levels of MEK. However, it did not show 
significant benefit in melanoma patients harboring B-RAFV600E 
mutation (23). It was suggested that a receptor kinase upstream 
of Ras/Raf/MEK/ERK cascade may be targeted by sorafenib 
(24). This inhibitor may be administered in combination with 

an inhibitor of MEK in the treatment of more aggressive forms 
of melanoma. It may target the VEGF and other membrane 
receptors expressed in cancer cells, whereas the MEK 
inhibitor blocks the cascade which is abnormally activated by 
B-RAF (25). The sorafenib dose (400 mg b.i.d) is administered 
in combination with standard chemotherapy, such as dacarba-
zine, in patients with advanced melanoma because it has few 
side effects as a single agent, indeed the response rate was 21% 
with a median time from treatment initiation of 2.3 months 
(26). Although this combination does not cause toxic effects 
and shows antitumor activity, it is not applied in clinical prac-
tice because selective inhibitors of B-RAF are more effective 
in the treatment of malignant melanoma (27).

Vemurafenib. Vemurafenib (Zelboraf, Plexxikon/Roche) was 
approved first by the FDA in USA, in August 2011, for the treat-
ment of patients with metastatic melanoma with B-RAFV600E 
mutation and then in Europe (15). Vemurafenib (PLX4032) 
is a potent oral drug that inhibits the kinase domain of the 
most common mutation of B-RAF (B-RAFV600E), decreasing 
cell proliferation through the phosphorylation of ERK and 
cyclin D1 (28,29), but it does not have antitumor effects against 
cells with B-RAFWT (30,31).

The pharmacodynamic analysis reported that the activity 
of vemurafenib was characterized as exposure-dependent 
tumor response corresponding with percentage of inhibition of 
MEK and ERK phosphorylation. Additionally, the relationship 
between dose exposure and response suggests that melanoma 
regression was found to correlate with >90% inhibition of 
ERK phosphorylation (32).

Patients with advanced melanoma and B-RAF mutations 
showed in phase I and II clinical trials of vemurafenib an anti-
tumor response in more than 50% of the patients. A phase III 
study comparing vemurafenib with dacarbazine in previously 
untreated patients revealed an overall survival rate of 84% 
among patients treated with vemurafenib and 64% in the other 
group of patients. Vemurafenib was associated with a relative 
reduction of 63% in the risk of death and 74% in the risk of 
either death or disease progression, as compared with dacar-
bazine (30). The maximum tolerated dose is 960 mg twice 

Table I. MAPK/AKT inhibitors and their targets.

Drug	 Target	 Pathway

Sorafenib (BAY43-9006)	 B-RAF, C-RAF, VEGF-R, PDGF-R	 Ras/Raf/MEK/ERK
Vemurafenib (PLX-4032)	 B-RAF(V600E, V600K)

Dabrafenib (GSK 2118436)	 B-RAF(V600E, V600K)

Trametinib (GSK1120212)	 MEK1/2
Selumetinib (AZD6244)	 MEK1/2

BEZ235	 PI3K-mTOR	 PI3K/AKT/mTOR
GSK2126458	 PI3K-mTOR
BYL719	 PI3K
CCI-779 (Temsirolimus)	 mTORC1
RAD001 (Everolimus)	 mTORC1

Ipilimumab	 Anti-CTLA-4	 CTLA-4 receptor
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daily, showing positive tumor responses. Patients who had 
received previous treatment for melanoma with B-RAFV600E 
mutation showed a response rate of 53%, with a median dura-
tion of response of 6.7 months (33). In addition, vemurafenib 
causes acanthopapillomas, keratoacanthomas and cutaneous 
squamous cell carcinomas in the early treatment (34,35). 
Vemurafenib demonstrates an exceptional response in mela-
noma patients with B-RAFV600E mutation and its introduction 
represented a step forward in the treatment of this disease 
(36). Despite the encouraging results obtained, the duration 
of response is limited because tumors quickly develop resis-
tance via molecular alterations in other pathway components 
(37). Drug resistance is a common problem associated with 
treatment with chemotherapeutic agents. To evaluate the 
mechanisms of resistance is essential to understand the adapt-
ability of tumor cells and the multiple mechanisms that lead to 
drug resistance (14,38). Resistance mechanisms can be divided 
into MAPK-dependent and MAPK-independent pathways.

MAPK-dependent resistance mechanisms lead to reacti-
vation of ERK, changes in B-RAF, such as amplification of 
mutant B-RAF or truncations in the B-Raf protein through 
alternate splicing leading to increased dimerization and 
resultant kinase activity (39). In addition, resistance is caused 
by secondary mutations in the MAPK pathway immediately 
upstream at the level of N-RAS and downstream at the level of 
MEK, which render the kinase insensitive to the inhibitor (40).

MEK1/2 are phosphorylated and activated by B-RAF; 
mutation in MEK1 (P124L) was identified to be responsible 
for cellular resistance to PLX 4032 (41). The resistance to 
treatment occurs after an initial response (42). The potent anti-
tumor effect of vemurafenib is mediated through inhibition of 
the oncogenic MAPK signaling. Clinical trials are currently 
underway in the treatment of advanced melanoma to test the 
efficacy of vemurafenib with immunomodulatory agents, such 
as ipilimumab, and in combination with MEK inhibitors, such 
as GDC-0973 (43).

Dabrafenib. Dabrafenib (GSK2118436) is a reversible 
ATP-competitive inhibitor that selectively inhibits B-RAF. It 
is similar to vemurafenib concerning the mechanism of action, 
pharmacodynamics, timing of responses and development of 
resistance, but it presents a shorter half-life (44). Dabrafenib 
is efficient in about 50-70% of patients with B-RAFV600E or 
B-RAFV600K mutations (45,46).

A phase  I/II study of dabrafenib established a dose of 
150 mg twice daily and reported positive responses in about 
50% of the patients with advanced melanoma and a median 
progression-free survival of 6‑3  months (47). The most 
common cutaneous side effects were hyperkeratosis, papil-
lomas and palmar-plantar erythrodysaesthesia; other side 
effects were pyrexia, fatigue, headache and arthralgia, which 
together necessitated dose reductions (48).

Figure 1. Raf/MEK/ERK and PI3K/AKT pathways and mechanism of action of their inhibitors in melanoma.
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In a phase III study, comparing dabrafenib vs. dacarbazine, 
it has been demonstrated that the response rates were 53 vs. 
19% and PFS 5.3 vs. 2.7, although the trial allowed crossover 
and was not powered to detect an overall survival benefit 
(49,50). The low rate of survival benefit was partly due to the 
obligatory crossover to dabrafenib at progression in patients 
randomly assigned to dacarbazine (29).

MEK inhibitors. MEK proteins belong to a family of enzymes, 
that selectively phosphorylate serine/threonine and tyrosine 
residues within the activation loop of their specific MAP 
kinase substrates. MEK1 and MEK2 display a similar struc-
tural organization, are closely related and they participate in 
the Ras/Raf/MEK/ERK signal transduction cascade (51,52).

Several MEK inhibitors have been tested in clinical 
trials. Selumetinib (AZD6244), is an oral small molecule that 
inhibits MEK1/2 and has been tested clinically in a randomize 
phase II trial in patients with B-RAF mutated melanoma (53). 
In a phase III study, only trametinib (known as GSK1120212 
or JTP-74057), a selective oral inhibitor of MEK1 and 2, has 
been demonstrated to have impact on clinical efficacy (54,55). 
Trametenib causes a block of the protein MEK, and is corre-
lated with improved PFS in patients carrying B-RAFV600E/K 
mutations (56).

Previous studies showed that trametinib inhibits cell growth 
by the inhibition of pERK 1/2, inducing cell cycle arrest in 
cell lines with mutant B-RAF and RAS. This shows its potent 
antitumor activity when administered daily for 14 days (57‑59). 
In a phase III trial (METRIC), trametinib was compared with 
dacarbazine in patients with B-RAF mutations (60), observing 
an improvement in median survival of 81 vs. 67% and PFS of 
4.8 vs. 1.5 months, with an objective response rate about 25% 
(61). Administration of trametinib, as monotherapy, results in a 
low activity in patients previously treated with B-RAF inhibi-
tors. Resistance to B-RAF inhibitors may be also associated 
with resistance to MEK inhibitors. In patients treated with 
trametinib the most common toxic effects included skin rash, 
diarrhea, edema, hypertension and fatigue (62). Trametinib 
compared with chemotherapy showed a significant improve-
ment in progression-free and overall survival in patients with 
advanced and/or metastatic melanoma (60).

3. PI3K/AKT/mTOR inhibitors

PI3K/AKT/mTOR pathway is one of the most frequently 
dysregulated pathway in human cancer. The most frequent 
causes of changes in this pathway include mutation or 
increased gene copy numbers of PIK3CA or other PI3K 
isoforms, loss of expression of the pathway suppressors (for 
example, PTEN) or hyperactivation of RTKs through receptor 
overexpression or activating mutations (63‑66). Hot spot muta-
tions of the PIK3CA gene include E542K, E545K and H1047R. 
These mutations are oncogenic per se, as they can induce the 
generation of tumors in several preclinical models without 
other molecular aberrations (67‑69).

The PI3K/AKT/mTOR and RAS/RAF/MEK/ERK path-
ways interact at multiple points, resulting in cross-activation, 
cross-inhibition, pathway convergence and these observations 
have driven the development of small molecule inhibitors that 
target various nodes of both pathways (70).

Recent studies have revealed that PI3K signalling is dereg-
ulated in a high proportion of melanomas (11). Indeed, PTEN 
is deleted and the downstream AKT gene is amplified in about 
45% of melanomas. These alterations cause an overexpression 
of AKT3, an isoform of AKT (71). Increased phospho-AKT 
expression in melanoma is associated with tumor progression 
and shorter survival (72). The study of genomic alterations in 
primary melanomas showed that tumors with B-RAF muta-
tions had few copies of PTEN, suggesting that dual activation 
of the PI3K-AKT and MAPK pathways are important events 
in melanoma development (73).

The research on PI3K inhibitors is expanding in order to 
find more selective compounds, such as isoform-specific PI3K 
inhibitors (74). 

Advanced studies led to the development of inhibitors 
of PI3K which selectively target only the catalytic sites (75). 
The new PI3Ka isoform-specific inhibitors gave an effective 
response in cell lines that present PIK3CA mutations (76,77). 
In addition, one of these compounds, BYL719, has revealed that 
besides PIK3CA mutations, the presence of PI3KCA amplifica-
tion correlated with higher drug sensitivity, while B-RAF and 
PTEN mutations were correlated with resistance (74).

The PI3K inhibitors, GSK2126458 and BEZ235, were 
evaluated in  vitro in combination with MEK inhibitors, 
showing enhanced cell growth inhibition. Monotherapy 
with inhibitors of PI3K did not show advantage in clinical 
response, suggesting their use in combination with other 
drugs (78). The low efficacy of the monotherapy treatments is 
due to the interaction between the parallel PI3K/AKT/mTOR 
and RAS/RAF/MEK/ERK pathways and the resistance to 
therapy can be induced by overexpression or overactivation 
of PDGFR-β or IGF1R (25). To overcome the resistance 
mechanisms, dual inhibition of both pathways with combined 
therapy may be appropriate (14). PI3K and MEK inhibitor 
combinations are well tolerated and can be administered at 
therapeutic doses; however, additional studies are required to 
establish the precise tumor properties that will better respond 
to therapy (38). Rapamycin is a mTORC1 blocker of the first 
generation, while everolimus (RAD001) and temsirolimus 
(CCI779) are considered agents of second generation, which 
allosterically inhibit the mTOR complex (79,80); these agents 
do not have high specificity in targeting melanoma tumor 
cells (73).

4. Immunotherapy and ipilimumab

New therapeutic approaches involve the use of immuno-
therapy for the treatment of cancer. Immunotherapy is based 
on increasing the immune defenses to eliminate the cancer 
cells to gain chemotherapeutic effect, and aiming to arrest the 
cell cycle inducing apoptosis (81).

Immunotherapy may be used for tumors because they 
express tumor associated antigens (82,83); melanoma lesions 
often contain a high number of infiltrative T-cells specific to 
melanocyte tumor-associated antigens such as MART1, gp100 
and tyrosinase (84). An approach to eliminate the melanoma 
cells is to increase the natural function of these cytotoxic T 
lymphocytes (CTL) (85).

Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) 
is an immunoglobin-like molecule found primarily on CD4+ 
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or CD8+ T lymphocytes and high levels of CTLA-4 are also 
important in maintaining certain subsets of T-regulatory 
cells. CTLA-4 is an ̒ immune checkpointʼ that downregulates 
pathways of T-cell activation and prevents autoimmunity, for 
this purpose it has become an attractive target for immuno-
therapy (86).

The first immunotherapy to be approved by the Food and 
Drug Administration (FDA) for treatment of advanced mela-
noma was interleukin-2 (IL-2) but, like dacarbazine, response 
rates were low even at high-doses of treatment (87). Its use 
in clinical practice is limited by the severe toxic side-effects 
(88‑90).

Ipilimumab is a recombinant, human monoclonal antibody 
that binds to CTLA-4 and blocks the interaction of CTLA-4 
with its ligands, CD80 and CD86. This immunotherapeutic 
augments the antitumor T-cell response resulting in uncon-
trolled T-cell proliferation and for this reason is associated with 
a substantial risk of immune-related adverse reactions (91,92). 
Ipilimumab acts by an indirect mechanism through T-cell 
mediated antitumor immune responses. The most common 
severe immune-mediated adverse reactions are enterocolitis, 
hepatitis, dermatitis, neuropathy and endocrinopathy; these 
reactions can occur both during the treatment, or weeks or 
months after discontinuation of treatment (93,94).

Ipilimumab was approved, as monotherapy at 3 mg/kg, 
in the European Union in 2011 for pretreated adult patients 
with advanced (unresectable or metastatic) melanoma and 
in the United States for both first- and second-line treatment 
for advanced melanoma (95,96). In a clinical study, untreated 
patients with advanced melanoma received a higher dose of 
ipilimumab with or without dacarbazine or dacarbazine plus 
placebo. Patients treated with dacarbazine and ipilimumab 
showed a significant increase of the overall survival rate 
compared with those treated with dacarbazine plus placebo 
(29). The treatment with ipilimumab in advanced melanoma 
patients was also considered in concomitance with the experi-
mental vaccine glycoprotein 100 (gp100) (97). Patients with 
advanced melanoma stage III or IV were included in this study. 
Pre-treated patients were randomized for the administration of 
ipilimumab alone or in combination with gp100 or gp100 alone. 
It was shown that the combination with ipilimumab and gp100 
did not improve survival when compared with ipilimumab 
alone, suggesting that ipilimumab remains the treatment with 
most efficacy for advanced melanoma (98).

Besides ipilimumab, also nivolumab, a monoclonal anti-
body directed against the PD-1 receptor or its ligand (PD-L1) 
has been reported (97). PD-1 receptor acts as an inhibitory 
receptor of T cells similar to CTLA-4. In an initial phase I 
study of a monoclonal antibody binding the PD-1 receptor, in 
patients previously treated, tumor responses were recorded 
in 26 of 94 (28%) (99). Nivolumab has been administered 
as monotherapy; most recent data suggest that nivolumab 
and ipilimumab can be administered concomitantly with a 
manageable safety profile (100). Immunotherapy is becoming 
an important support to melanoma treatment (101).

5. Combination therapy

Resistance to therapeutic agents, both chemical or biological 
agents, remains the main problem in the management of the 

therapy in melanoma. Combination of B-RAF inhibitors with 
MEK inhibitors has been evaluated to improve the disease‑free 
survival. This combination reduces the skin toxicities and 
may also enhance the antitumoral effects by synergistically 
suppressing ERK pathways activity (102).

In patients who have developed resistance to vemurafenib, 
the combination of dabrafenib and trametinib showed 76% of 
clinical response compared with that obtained with the treat-
ment of dabrafenib as single agent (54%) (41).

In a phase I/II trial, the combination of dabrafenib and 
trametinib was effective in patients with B-RAFV600E mutated 
metastatic melanoma and numerous clinical trials are in prog-
ress to test other combinations of B-RAF and MEK inhibitors 
(103,104). In a phase I study the effectiveness of vemurafenib 
was tested in combination with an inhibitor of MEK showing 
a tumor reduction in melanoma patients, while in a phase III 
trial vemurafenib alone was compared with vemurafenib in 
combination with MEK inhibitor (36). Several clinical studies 
are still evaluating the combination of PI3K and MEK inhibi-
tors in a variety of cancers. This combined therapy may be 
able to overcome the resistance mechanisms leading to apop-
tosis. These combinations appear well tolerated and can be 
administered as therapeutic doses (80).

The approval of ipilimumab represents a further treatment 
option for melanoma patients. The National Comprehensive 
Cancer Network (NCCN) now lists ipilimumab and vemu-
rafenib among the small number of preferred systemic 
regimens for treating advanced and metastatic melanoma (105). 
The combination of vemurafenib with immunotherapy could 
overcome the resistance mechanisms because immunotherapy 
drugs have low response rates but relatively long durations of 
response in a large subset of responding patients, by contrast, 
B-RAF inhibitors have high initial response rates but rarely 
produce long-term durable responses (95,106). Ipilimumab 
targets the tumors indirectly by activation of the immune 
system therefore it is likely to be efficacious in melanoma 
patients with and without the B-RAFV600E mutation (100).

Some clinical trials have shown that MAPK pathway 
inhibition with a selective inhibitor of B-RAFV600E increase 
expression of melanoma-derived antigens by the tumor and 
increased the recognition of melanoma cells by antigen-specific 
T cells and, selective inhibition did not have deleterious effects 
on T cell proliferation or function (100,107).

B-RAF inhibitor treatment led to increased number of 
tumor infiltrating lymphocytes in tumor biopsies obtained 
10‑14 days after treatment initiation. This increase was associ-
ated with a reduction in tumor size and an increase in necrosis 
in on-treatment biopsies (108,109).

These results suggested that at least a subset of patients 
might be able to receive treatment with curative intent with 
interleukin-2 or ipilimumab without compromising their 
ability to benefit from B-RAF inhibitor treatment if they fail 
to achieve a durable response (106).

Studies that combine B-RAF inhibitors with immuno-
therapy are in progress and offer opportunities to further 
improve outcomes for patients with advanced B-RAF V600E 
mutant melanoma.

Finally, the effects of the new nitric oxide (NO) donating 
compound (S,R)-3-phenyl-4,5-dihydro-5-isoxazole acetic 
acid-nitric oxide (GIT-27NO) on the A375 human mela-
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noma cell line were investigated by our group. The capacity 
of GIT-27NO to induce p53-mediated apoptosis in A375 
melanoma cells suggests that GIT-27NO may have a potential 
therapeutic use in the clinical setting (110,111).

6. Conclusion

Cancer research is converging on understanding the roles of 
signal transduction pathways in drug resistance and sensitivity. 
Targeting various effectors of these pathways with pharmaco-
logic inhibitors may arrest melanoma cell proliferation. This 
review pays attention on the clinical application of both Raf/
MEK/ERK and PI3K/AKT/mTOR pathway inhibitors as novel 
treatment strategy for melanoma. Furthermore, we described 
how alterations of molecular pathways, involved in melanoma 
development, interact with each other resulting in response to 
therapy and/or chemoresistance. The use of MAPK and AKT 
inhibitors for the treatment of melanoma indicates that the 
response rate of these new molecular targeted agents is higher 
compared to the standard chemotherapy. However, additional 
studies are needed to better define the mechanisms of resis-
tance to these novel biological therapies.
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