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Abstract: Mesenchymal stromal cells (MSCs) are a subset of heterogeneous, non-hematopoietic
fibroblast-like cells which play important roles in tissue repair, inflammation, and immune modu-
lation. MSCs residing in the bone marrow microenvironment (BMME) functionally interact with
hematopoietic stem progenitor cells regulating hematopoiesis. However, MSCs have also emerged
in recent years as key regulators of the tumor microenvironment. Indeed, they are now considered
active players in the pathophysiology of hematologic malignancies rather than passive bystanders in
the hematopoietic microenvironment. Once a malignant event occurs, the BMME acquires cellular,
molecular, and epigenetic abnormalities affecting tumor growth and progression. In this context,
MSC behavior is affected by signals coming from cancer cells. Furthermore, it has been shown that
stromal cells themselves play a major role in several hematological malignancies’ pathogenesis. This
bidirectional crosstalk creates a functional tumor niche unit wherein tumor cells acquire a selective
advantage over their normal counterparts and are protected from drug treatment. It is therefore
of critical importance to unveil the underlying mechanisms which activate a protumor phenotype
of MSCs for defining the unmasked vulnerabilities of hematological cancer cells which could be
pharmacologically exploited to disrupt tumor/MSC coupling. The present review focuses on the
current knowledge about MSC dysfunction mechanisms in the BMME of hematological cancers,
sustaining tumor growth, immune escape, and cancer progression.

Keywords: MSCs; tumor transformation; hematological cancers; senescence; inflammation

1. Introduction

Mesenchymal stromal cells (MSCs) are a critical component of the bone marrow
(BMME) microenvironment in which they provide newly formed osteoblasts and tightly
regulate the homeostasis of hematopoietic stem and progenitor cells (HSPCs) [1]. In this
context, MSCs are the major contributor of many key niche factors and maintain the
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dynamic balance between HSPC self-renewal, quiescence, proliferation, and differentia-
tion [2,3]. MSCs are located in sites of hematopoiesis, starting from embryonic develop-
mental stages [4]. Importantly, MSCs and their progeny, such as osteoblasts, chondrocytes,
and adipocytes, are structural components of both endosteal and perivascular niches [5].
Within these compartments, MSCs interact with both hematopoietic stem cells and more
differentiated hematopoietic progenitors, thus regulating their quiescence, proliferation,
and differentiation [6] (Figure 1).
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Figure 1. Schematic representation showing the dynamic activity of HSPCs and MSC when the
BMME is at homeostasis. The continuous interplay between HSCPs and stromal cells is essential
for ensuring normal hematopoiesis. In the hematological cancer scenario, this complex interplay is
deeply dysregulated, favoring the trafficking and infiltration of cancer cells into a protective BM niche.

Different MSC subtypes interact with HSPCs in specific regions of the niche [6]:
CD271+ MSCs are bone-lining cells sustaining long-term HSPCs in low-oxygen areas,
whereas CD146+ and CD271+CD146+ MSCs are located in BM sinusoids with activat-
ing and fast-proliferating HSPCs [7]. A plethora of supporting factors regulating HSPC
self-renewal and trafficking are provided by MSCs in the BM niche, such as C-X-C motif
chemokine 12 (CXCL12) and stem cells factor [8]. Notably, the alteration of HSPC and
BM-MSC interactions can alter normal hematopoiesis, causing hematological malignan-
cies [9–11].

MSC behavior is dynamically regulated both by intrinsic mechanisms and microen-
vironment factors, highlighting the high plasticity of these cells in adapting to tissue
homeostasis and regenerative needs [11]. In this context, the therapeutic use of MSCs
in the field of regenerative medicine relies on their ability to migrate to injured tissues
and to promote endogenous regeneration, sustaining the growth and differentiation of
stem resident cells [12,13]. In details, MSCs’ therapeutic potential for the treatment of
immunological diseases results from their ability to suppress or control intensive immune
activation by inhibiting immune cell proliferation and inducing immunosuppressive sub-
sets though the secretion of anti-inflammatory factors or direct cell-to-cell contact [13].
However, MSCs also take part in the development of hematological malignancies contribut-
ing to BMME malignant transformation and maintenance, finally promoting tumor cell
growth, survival, progression, and therapy resistance. Similar to HSPCs, the interactions
between cancer cells and BM-MSCs can determinate tumor cell dormancy or proliferation.
For example, leukemic stem cells (LSCs) co-localize with CXCL12-secreting MSCs in BM,
inducing their quiescence. Furthermore, the accumulation of senescent MSCs in the BM
niche might promote the progression from pre- to hematological malignancy [14,15]. The
senescence of MSCs is accompanied by several phenotypic changes, including enlarged
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cell morphology, decreased proliferative capacity, and impaired differentiation ability [16].
Evidence suggests that the presence of increased numbers of senescent MSCs is a character-
istic feature of several hematological cancers [17]. When the functional and regenerative
capacities of aging MSCs are diminished, they enter a replicative senescence stage which
promotes BM inflammation and the dysregulation of hematopoiesis [18] (Figure 1). It
is well known that senescent cells release pro-inflammatory factors, generally known as
the Senescence-Associated Secretory Phenotype (SASP) which contributes to the tumor
immunosuppressive microenvironment [19]. Furthermore, it has been shown that SASP
factors such as interleukin 6 (IL-6), C-X-C motif chemokine 8 (CXCL8) and growth differen-
tiation factor 15 (GDF15) can alter HSPC homeostasis in vitro [20]. In detail, IL-6 secreted
by aged BM-MSCs induces rapid HSPC expansion, thereby leading to the depletion of
the HSPC pool and an increased risk of genomic instability in these cells [14,21]. MSCs
are subject to genetic alterations and chromosomal aberrations contributing to age-and
disease-associated MSC dysfunctions [21]. Interestingly, it was demonstrated that these
alterations differed from the ones observed in the hematopoietic tumor cells of the same
patient, corroborating the idea that unstable MSCs might facilitate the expansion of ma-
lignant cells [22]. However, no recurring genetic mutations or cytogenetic aberrations
have been found in MSCs from the BMMEs of hematological cancers [22–24], revealing
that epigenetic modifications underlie the activation of their pro-tumor phenotype. In this
context, the cellular epigenetic architecture is modeled based on the environmental insults
and physiological changes to maintain MSC functions, including their self-renewal, differ-
entiation, and niche-modulation abilities [25]. Notably, dysfunctions of the MSC phenotype
also persist after their expansion ex vivo, suggesting a heritable epigenetic dysregulation
which persists despite the removal of the disease-associated BMME. In agreement, the
methylome of MSCs from hematological cancers was found to be distinct from healthy
stromal cells [26–29].

Data from previous studies revealed that a cancer-associated fibroblast (CAF)-like
phenotype is activated in MSCs from patients with hematological cancers [30–32]. Indeed,
these cells express tumorigenic markers such as alpha smooth muscle actin (αSMA) and
fibroblast activation protein (FAP) as consequences of the soluble factors produced by
cancer cells [33–35]. In agreement, CAFs might derive from MSCs working as a subset
of “specialized” stromal cells [36,37]. Paunescu and colleagues previously showed that
MSCs and CAF have many similarities, including their phenotype, and the only differ-
ence is in the secreted cytokines [38]. In their study, CAFs were demonstrated to derive
from a specialization process which converts MSCs inside the tumor structure to better
serve cancer cells [38]. A mounting number of studies indicated that growth and survival
of leukemic clones is promoted by inflammation-driven changes in BM-MSCs [39]. In
particular, naïve MSCs are able to exert a bidirectional effect on tumor cells, favoring or
inhibiting their growth, while tumor-“educated” MSCs promote tumor progression in
relation to the inflammatory microenvironment [36]. Compared to healthy counterparts,
MSCs from the BM tumor milieu show a distinct transcriptional landscape characterized
by cellular stress and the upregulation of inflammatory molecules which sustain malig-
nant over healthy clonal hematopoietic cell expansion [23,40]. The pro-leukemic role of
MSCs can also be achieved indirectly by shaping the BMME’s immune infiltrate [41,42].
Indeed, the immunomodulatory effect of MSCs on innate and adaptive immunity is a major
mechanism through which these cells can affect tumor initiation and progression [43–46].
This feature depends on the type and intensity of inflammatory signals in the BMME. A
high inflammatory state causes MSCs to produce T cell suppression, while a low inflam-
matory state leads to MSC-induced T cell activation [47]. In hematological malignancies,
senescent MSCs release more inflammatory signals, feeding an inflammatory milieu able
to scramble the delicate balance of pathways involved in tissue-specific regeneration and
remodeling [48]. Although MSC immunomodulatory activity is primed by cytokines in
the BMME, it is also dependent on the stimulation of toll-like receptors (TLRs). In detail,
MSCs can be polarized into two distinct phenotypes similar to macrophages, resulting
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in a different immune-modulatory activity and secretome [49]. The TLR4-primed MSCs
exhibit a proinflammatory phenotype (MSC1), while the TLR3-primed MSCs activate a
more anti-inflammatory profile (MSC2). This concept of MSC polarization could explain
the apparently contradictory roles of MSCs in inflammation and immunomodulation [13].
Notably, the regulation of the functional profile of MSCs depends not only on the secretion
of soluble factors but also on the communication and contact of MSCs with neighboring
BM cells. MSCs can communicate with nearby cells through the secretion of soluble factors,
cell-to-cell contact, the release of extracellular vesicles (EVs), and, as evidenced more re-
cently, through tunneling nanotubes [50–53]. Evidence is arising that altered MSCs help
leukemic cell growth and prompt drug resistance by providing nutrients, cytokines, and
pro-survival signals and exchanging organelles [32,54,55]. Several recent studies have
identified stroma-derived metabolites such as lactate, glutamine, and acetate to feed the
tricarboxylic acid cycle (TCA) and lipid biosynthesis into hematopoietic cancer cells [56–58].
Of note, metabolism is adjusted during the development of drug resistance [58,59]. The
complexity of this scenario is increased by a metabolic heterogeneity and the dynamics of
the BMME, which are mainly dependent on differing access to oxygen and glucose and on
different cell populations co-existing in the BM milieu [60,61]. As a result, cancer and stro-
mal cells can compete and/or cooperate for nutrients. In recent years, the role of exosomes
as mediators between cancer cells and the tumor BMME has gained increasing attention.
For instance, leukemia-derived exosomes induced the downregulation of HSPC-supporting
factors in MSCs and reduced their capacity to support normal hematopoiesis [62]. Further-
more, while microvesicles (MVs) from healthy MSCs show anticancer action, MM-MSCs
release MVs enriched in VLA-4, which facilitates multiple myeloma (MM) cell uptake and
enhances the tumor cell phenotype and PC growth [63,64].

In this review, we highlight the role of MSCs in the tumor microenvironment of
hematological cancers, aiming to elucidate the mechanisms involved in the activation of
their pro-tumor phenotype contributing to tumor growth and progression.

2. Role of MSCs in Hematological Cancers
2.1. Role of MSCs in Myelodysplastic Syndromes

Myelodysplastic syndromes (MDSs) are generally referred as a heterogenous group
of clonal hematopoietic diseases characterized by ineffective hematopoiesis resulting in
peripheral blood cytopenia, potentially shifting to acute myeloid leukemia (AML) [65].
MDS patients display different degrees of cytopenia and dysplasia, therefore constituting
the basis for the Word health Organization’s MDS classification criteria [66]. To date, no
clinically effective treatment is available for preventing progression to AML. Half of patients
show cytogenetic alteration, while nearly 90% of them harbor at least one somatic mutation
affecting specific genes involved in the spliceosome, transcription factors, and epigenetics.
Despite clonal dominance, these mutations do not provide a determined advantage for
malignant cell growth, as suggested by their coexistence alongside normal HSPCs [67].
Therefore, MDS cells receive extrinsic support from the BMME which is important for
malignant cell cloning. Notably, support from the BM milieu is essential to maintain MDS
cells ex vivo. Concerning MSCs, MDS stromal cells are reprogramed to support uniquely
MDS clones at the expense of normal HSPCs [24]. MDS-MSCs are characterized by a slower
proliferation rate which is independent of cell cycle distribution and apoptotic events [68].
Cytogenetic aberrations have been difficult to characterize due to the lack of a specific
isolation protocol allowing for a comparison between different MSC subpopulations. This
goal was achieved when Aanei and colleagues published a robust, immunoselection-based
isolation protocol through two specific mesenchymal-associated markers, STRO-1 and
CD73 [69]. Therefore, MDS-MSC cytological characterization highlighted genomic gains
involving genes taking part in the cell–cell adhesion processes and tumor development.
In addition, MSCs isolated from patients harboring 5q-cytogenetic shared common traits,
including the overexpression of genomic regions such as 7p22.3, 19p13.3, and 19p13.11 [68].
Although a cytogenetic signature characterizing MDS-MSCs is still missing, it is widely
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reported that these cells display all the typical markers related to cell senescence [70]. In
this context, it has been reported that isolated MDS-MSCs display a profound change
in their cytoskeletal architecture, in turn showing an increased size, longer podia, and a
disordered distribution of F-actin [71,72]. Moreover, MDS-MSCs also display an increased
DNA damage level [71]. Coherently with this outcome, the hyperactivation of p53 signaling
cascade was detected in MDS-MSCs, therefore providing a further mechanism leading to
MSC senescence [72]. Despite efforts showing the essential role covered by the BMME
in MDS, the question asking which is the first cell population to impair basal crosstalk,
therefore triggering MDS pathogenesis, still stands. A partial answer was provided by a
study describing that in patients showing complete hematological remission, treatment
was able to restore MSC functionality comparable to healthy donors [73]. However, this
study had the intrinsic assumption that the treatment involves the HSC compartment as the
only target, excluding a direct effect on the MSC themselves. In this context, it was recently
demonstrated that the antileukemic activity of azacytidine depends, in part, on its direct
effect on the hematopoietic supportive capacity of MDS-MSCs, favoring the expansion
of healthy over malignant hematopoiesis [74]. These data highlight the crucial role of an
epigenetic treatment for dysfunctional MSCs. Other studies corroborate the hypothesis
involving crosstalk between the stromal and hematopoietic compartments as a driver of
MDS pathogenesis, in turn rearranging the surrounding microenvironment to support
the expansion of the malignant clone. Indeed, murine models depleted for Dicer or Sbds
gene expression exclusively in the stromal compartment have been shown to develop
an MDS-like phenotype characterized by ineffective hematopoiesis, marked dysplasia,
and leukemic progression despite having no mutation in their HSPCs [75]. Medyouf and
colleagues described a scenario in which MSCs are instructed by malignant HSCs to acquire
MDS-MSC-like properties, eventually promoting the progression of the malignant clone
over the healthy one [24]. This data introduced the “hematopoietic niche unit”, sustaining
MDS progression also via the establishment of an altered secretome profile in which
abundant levels of TNF-α, IFN-γ, IL-1α, IL-6, IL-17, and TGF-β have been detected [76].
These factors account for the establishment of an inflammatory BMME, in turn triggering
genetic and epigenetic modifications in BM-resident cell populations. Corroborating this,
MDS-MSCs show several differentially methylated genes associated to alterations of their
phenotype [77]. For instance, the HHIP (Hh-interacting protein) gene is hypermethylated
in MDS-MSCs [77]. Its downregulation, accompanied by the activation of the Hedgehog
pathway in stromal cells, sustains the survival of MDS cells. Recently, our group showed
the relevance of an epigenetic–inflammatory interplay in MDS-MSCs supported by the
macroH2A1/TLR4 axis, prompting a replicative senescent phenotype, hypermethylation,
and metabolic rewiring, which contribute to ineffective hematopoiesis [78]. In agreement,
cellular stress and the upregulation of inflammatory molecules with inhibitory effects on
normal hematopoiesis have been described in MDS-MSCs [79]. In particular, the activation
of NFkB signaling in MSCs from patients with lower-risk MDS (LR-MDS) attenuates normal
hematopoiesis in accordance with cytopenia observed in these patients [79]. Moreover, the
overexpression of the alarmins S100A8/9 in the stromal cell compartment has been shown
to activate NFkB and a genotoxic stress in HSPCs associated with leukemic evolution in
a subset of LR-MDS patients [75]. Supporting the crucial role played by the BM niche
in MDS evolution, it has been proposed that the overexpression of CXCL12, in synergy
with its receptor CXCR4, keeps myelodysplastic cells anchored inside the BM niche, in
turn providing them with protection and support [80]. In this scenario, an in vitro study
highlighted the overproduction of IL-6, an interleukin possibly linked to the mechanism
promoting MSC senescence and chronic inflammation [81]. The crosstalk between MDS
cells and MSCs is also orchestrated by a plethora of factors as part of the two populations’
secretome. By release of alarmins such as S100A9 and S100A8, tumor cells are able to
trigger the inflammasome of stromal cells, eventually resulting in a higher secretion of
pro-inflammatory cytokines [82]. Also, EVs secreted by MDS cells have been demonstrated
to reduce the hematopoietic supportive capacity of MSCs, inhibiting the osteolineage
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differentiation of MSCs [83]. This perturbation of bone metabolism enables MDS clones
to outcompete normal HSPCs (Figure 2a). In turn, MDS-MSCs have been described to
release EVs carrying miRNAs, such as miR10a and miR15a, which increase the viability
and clonogenicity of MDS cells [84]. Therefore, the multifaced aspects accounting for the
significance of MSCs need to be further dissected to provide more efficient strategies for
counteracting MDS progression.
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Figure 2. The role of MSCs in different hematological malignancies. The illustration shows how
dynamic interactions between malignant cells and MSCs, eventually inducing transcriptomic and
epigenetic alterations, affect the stromal secretome and multipotency. (a) In MDS, MSCs support the
malignant clone at the expense of healthy HSPCs sustaining inflammation and eventually affecting
normal hematopoiesis. (b) In AML, the interplay between cancer and stromal cells establishes a
metabolic coupling leading to immune escape, tumor growth and drug resistance. AML cells pro-
mote MSC adipogenic differentiation, enriching the BMME in fatty acids (FA), used by malignant
cells by their oxidation. (c) In myelofibrosis patients, MSCs drive BM fibrosis differentiating into
matrix-producing fibroblasts with increased osteogenic potential, eventually leading to ECM remod-
eling. (d) In CLL context, the metabolic coupling between stromal and cancer cells sustains their
antioxidant system maintenance, therefore enforcing the redox balance. (e) The metabolic coupling
involving malignant and stromal cells has an important role also in MM BMME, where they promote
immunosuppression and drug resistance by supporting MM cells oxidative metabolism. Moreover,
MSCs contribute to bone disease by prompting osteoclastogenesis over osteogenesis.

2.2. Role of MSCs in Acute Leukemia

Acute leukemias are rapidly progressing, malignant clonal disorders characterized
by the uncontrolled proliferation of immature and undifferentiated hematopoietic cells
and are associated with a poor prognosis and reduced overall survival. They are com-
monly divided, according to the malignant cells’ lineage, into acute myeloid or lymphoid
leukemia (AML or ALL). Blast cells have been known to modify the BMME and dis-
rupt non-malignant hematopoiesis [85,86]. The complex interactions within the tumor
BMME significantly influence leukemia survival, disease progression, and therapeutic
response, with hematopoietic stem cell transplantation often being the only curative option
for patients with refractory disease [87]. Several studies showed that the interaction of
leukemic cells with MSCs resulted in a functionally disrupted niche specifically supporting
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tumor cells over healthy HSPCs and therefore establishing a self-reinforcing unit for the
repopulation of leukemic cells [88]. In this context, blast cells might exploit physiological
mechanisms regulating hematopoiesis as a strategy for gaining competitive advantages [89].
It has been recently described, using mouse models of leukemia, that both ALL and AML
blasts express lymphotoxin α1β2 after colonizing the BM. Therefore, blasts trigger lympho-
toxin beta receptor (LTβR) signaling in MSCs, turning off IL7 production and preventing
non-malignant lymphopoiesis [89]. Among the changes in the cytokine profile of AML-
MSCs, the overproduction of CCL2 inhibits normal progenitors but not leukemic cells,
improving cancer survival [90]. Similarly, MSCs from T-ALL patients show a reduced
ability to support healthy HSCs, blocking their differentiation in HPCs without direct
leukemic MSC-induced damage [91]. This finding is consistent with the paradigm that
despite the exhaustion of HPCs in the leukemic milieu, HSCs remain functional upon
relocation into a non-leukemic BMME [91].

Hematopoietic insufficiency is the hallmark of AML, with cytopenia-related com-
plications such as bleeding and infections representing the major causes of death. In
AML-MSCs, the downregulation of FOXM1, a member of the fork-head transcription factor
family, impairs the hematopoietic MSCs’ support capacity [92]. Corroborating this, the
silencing of this protein in healthy stromal cells affects the growth of CD34+ progenitor
cells, mirroring the effects observed when using AML-derived MSCs [92]. Moreover, AML-
MSCs displayed alterations in the expression of key hematopoiesis-regulating factors such
as JAGGED1 and KITL, corroborating that hematopoietic insufficiency in AML patients
is at least in part mediated by the BMME [93]. More recent studies provided evidence
that when acute leukemia occurs, blast cells remodel the resident MSCs, establishing a
physical connection and mediating a reprogrammed transcriptome [94]. Of note, healthy
MSCs changed their gene expression profile after co-culture with AML blasts, displaying
the deregulation of genes matched with AML-MSCs [94]. This transcriptomic behavior,
characterized by inflammatory factors and cytokine production pathways, correlate to
AML, suggesting dynamic changes in MSCs occurring at leukemia onset as consequence
of an instructive role of leukemic cells [93,94]. As a result, “reprogrammed” MSCs reset
the niche crosstalk processes, selectively suppressing normal hematopoiesis and favoring
the clonal dominance of leukemic cells [95,96]. The heterogeneity of MSC subpopulations
exhibiting different BMMEs for leukemic cells contributes to the heterogeneous kinetics of
leukemia relapse. In this context, Kim and colleagues evaluated whether differences in BM
stromal cell partners at diagnosis can identify patients at a high risk of relapse [96]. They
found that the BMMEs of relapsed patients showed higher numbers of MSCs, osteoblasts,
and primitive nestin+ MSCs than AML patients who achieved complete remission (CR).
Early-relapsed patients have a greater primitive MSC content, while late-relapsed ones
exhibit more MSCs or osteoblasts than CR patients, corroborating a distinct BMME asso-
ciated with early or late relapse [96]. This evidence suggests that the leukemia-induced
remodeling of the BMME may be responsible for the heterogeneity of the AML clinical
course. MSC-lineage differentiated cells, including osteoblasts and adipocytes, are essential
components of the BMME contributing to hematopoiesis [97]. Increasing evidence suggests
that the differentiation ability of AML-MSCs is altered [98,99]; however, the results are
controversial. Indeed, a study reports that AML cells induce an osteoblast-rich niche in
the BM which, in turn, enhances AML expansion and favors disease relapse [100]. On
the contrary, alterations in MSC osteoblastic plasticity resulted in the selective promotion
of leukemic cells in murine models [9,101]. Moreover, other researchers reported that
leukemia-educated MSCs are highly prone to adipocyte differentiation [99]. These conflict-
ing results may be due to the heterogeneity of leukemia. For instance, the AML cells of
the AML-M4 subtype induce MSCs toward an adipogenic differentiation propensity [102].
Alterations in the osteogenic differentiation capacity of AML-MSCs were also confirmed
via specific methylation changes affecting genes regulating cell differentiation and skeletal
development [93].
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As MDS stromal cells, both AML and ALL-MSCs show accelerated cellular senescence,
contributing to their impairment in functions associated with HSPC support and stemness
properties [19,91]. MSCs exposed to leukemic blasts exhibit characteristics common to
MSCs subjected to a physiological aging process, including the overexpression of mark-
ers related to DNA damage and cell-cycle arrest [14]. Furthermore, leukemia-induced
oxidative stress works as driver of pro-tumoral senescence in stromal cells [103]. Targeting
senescent MSCs directly inhibits AML cell growth and improves the survival of mice
with leukemia, revealing the importance of a senescent milieu for the pathophysiology
of leukemia [103]. Heterochromatin disorganization is a driver of MSC senescence [104].
AML-MSCs downregulate chromatin remodeling complex CHD1 (modulating chromatin
condensation), the reduction of which is associated with a decrease in HSPCs’ supportive
capacity [105]. Using an integrative approach of multilevel molecular profiling combining
genome-wide expression and DNA methylation high-throughput platforms, AML-MSCs
were found to exhibit selective transcriptional alterations associated to epigenetic ones,
including adhesions molecules, endocytosis, and metabolic pathways [23]. In this context,
accumulating evidence shows complex metabolic coupling between leukemic cells and
MSCs which allows tumors to respond to variations in nutrient availability to maximize
cellular proliferation and acquire survival advantages [106]. In leukemia patients, can-
cer stem cells or chemoresistant cells rely on mitochondrial oxidative phosphorylation
(OXPHOS) [107,108]. MSCs directly provide the increased bioenergetic demand of AML
cells, increasing OXPHOS and GSH-related ROS-detoxifying tools which contribute to
AML growth and chemoresistance [109]. Of note, MSCs supply mitochondria to leukemia
cells [32,110–112], thus providing them with additional energy. In T-ALL, leukemic cells
transfer their damaged mitochondria to MSCs through cell adhesion mechanisms, reduc-
ing intracellular ROS and promoting chemotherapy-induced apoptosis resistance [113].
Recently, it was reported that AML-induced MSCs’ adipogenic differentiation propensity is
associated with a switch from glycolysis to OXPHOS [102]. In this context, AML blasts mod-
ulate the intracellular metabolism of adipocytes into a lipolytic state, resulting in the release
of fatty acids (FAs) into the BMME (Figure 2b) [114]. Ultimately, free FAs are transferred to
AML blasts, fueling a FA oxidation signature beneficial to the leukemia counterpart [114].
Indeed, blocking lipolysis or inhibiting CPT1A (carnitine palmitoyltransferase 1a), which is
essential for the transfer of FAs to the inner mitochondrial membrane and β-oxidation [115],
reduced AML mitochondrial activity and survival [114]. Like AML blasts, ALL cells induce
adipocytes to activate lipolysis to support their metabolism [116]. ALL blasts also release
EVs which activate a metabolic switch from PXPHOS to aerobic glycolysis in MSCs, leading
to increased lactate in the BMME which can be used by tumor cells [117].

2.3. Role of MSCs in Myeloproliferative Neoplasms

Myeloproliferative neoplasms (MPNs) are characterized by the clonal proliferation
of one or more hematopoietic cell lineages, predominantly in the BMME. MPNs mainly
include chronic myeloid leukemia (CML), polycythemia vera (PV), essential thrombo-
cythemia (ET), and primary myelofibrosis (PMF). CML is a BCR-ABL1 oncoprotein-positive
MPNs characterized by the Philadelphia (Ph) chromosome’s presence. Ph- MPNs include
PV, ET, and PMF, in which clonal proliferation is driven by somatically acquired driver
mutations in the JAK2, CALR, and MPL genes [118]. Nevertheless, Ph- MPNs show a
different clinical presentation and outcome [119]. PMF is defined by unique clinical features
such as BM fibrosis, osteosclerosis, neo-angiogenesis, and extramedullary hematopoiesis
which characterize the natural history of PMF patients, significantly affecting quality of
life and life expectancy [120]. Similar to MDS-MSCs, stromal cells from CML and higher-
fibrosis PMF patients display functional alterations, including low proliferative potential
and precocious senescence [121,122]. Changes in MSC behavior are strongly associated
with the dysfunction of T cells and the proliferation of Tregs in the CML microenviron-
ment [123]. Moreover, CML-MSCs directly orchestrate immunosuppression by also driving
the activation of myeloid cells in MDSCs [41]. The immune suppression of stromal cells can
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also be enhanced by CML-cell-secreted exosomes [124]. For instance, leukemic-derived exo-
some miR-130a/b has been demonstrated to promote the immunosuppressive properties of
stromal cells through inhibition of connexin-43 [42]. In CML patients, CXCL12-expressing
MSCs are crucial for maintaining quiescent leukemic stem cells, and they thus represent
a potential target for overcoming drug resistance [125]. Indeed, an analysis of gene ex-
pression profiles revealed that abnormal alterations observed in CML-MSCs compared
to their normal counterparts persisted in patients in deep molecular response after ther-
apy with tyrosine kinase inhibitors [126], corroborating their role in leukemia relapse and
drug resistance.

Neoplastic clone development in PMF is deeply influenced by alterations within the
BBME, highlighted by BM fibrosis, neo-angiogenesis, and osteosclerosis [127,128]. In this
context, it may be hypothesized that progressive stromal cell alterations during myelofi-
brosis evolution affect the disease course [120]. These cells display increased expression
and deposition of fibronectin correlating with fibrosis grades [129]. This outcome is fur-
ther enhanced by megakaryocytes (Mks) aberrantly proliferating and releasing several
growth factors mitogenic for MSCs/fibroblasts and endothelial cells, such as TGFβ1 [130].
Corroborating this, in MPN biopsies, MSCs localize with Mks, displaying an activated
fibronectin–secretory phenotype [131]. This interaction is crucial for the priming of stro-
mal cells in PMF. Compared to healthy or low-fibrosis-grade MSCs, stromal cells from
high-fibrosis-grade PMF patients show a higher capacity to support the differentiation
of Mks via fibronectin secretion [129], highlighting their key role in supporting the Mk
hyperproliferation observed in PMF BM biopsies [132]. In agreement with this, MSCs
isolated from the spleens of MF patients showed higher expression of fibronectin to sustain
extramedullary hematopoiesis and megakaryocytopoiesis [133]. In addition to this, other
inflammatory molecules generated by malignant clones contribute to the microenvironment
abnormalities of the myelofibrosis niche. For instance, lipocalain-2 (LCN2) primes MSCs
to differentiate into osteoblasts, prompting matrix protein deposition [134]. Moreover,
Mk-derived PDGF activates MSCs and, in particular, the expression of its receptor strongly
correlates with the intensity of the MCSs’ reaction and fibrosis grade [135]. We recently
demonstrated the involvement of IGFBP6 (insulin-like growth factor-binding protein 6)
in the activation of a CAF-like phenotype of stromal cells, controlling the fibrotic process
through the activation of the sonic hedgehog/TLR4 axis [136]. Using murine MPN models,
Schneider and colleagues demonstrated a critical role for Gli1+ MSCs in the pathogene-
sis of BM fibrosis [137]. After their activation, dependent on Mk-produced Cxcl4, these
cells are metabolically reprogrammed, particularly in fatty acids, and differentiate into
matrix-producing myofibroblasts. The authors also demonstrated that the genetic ablation
of Gli1+ MSCs abolished BM fibrosis, rescuing BM failure [137]. Of note, an increased num-
ber of MSCs can be detected in the blood of PMF patients, suggesting their involvement
in abnormal HSPC trafficking/homing leading to extramedullary hematopoiesis [138].
Analyzing the whole transcriptomic profile of MPN-MSCs, Martinaud and colleagues
revealed a specific pro-fibrotic and inflammatory signature in PMF-MSCs which is not
observed in TE or PV patients and is characterized by increased osteogenic potential and
the endogenous production of TGFB1 (Figure 2c) [139]. Leimkuhler et al. found that
MSCs transcriptionally downregulated niche support and decreased MSC multipotent
progenitor status but upregulated the Mk-derived TGFB1 pathway and extracellular matrix
proteins, specifically collagens [140]. MSCs from ET patients were also previously reported
to decrease hematopoietic supportive capacity and increase ECM remodeling, suggesting
an intrinsic defect of stromal cells already in pre-fibrotic MPNs [131].

2.4. Role of MSCs in in Chronic Lymphocytic Leukemia

Chronic lymphocytic leukemia (CLL) is a lymphoproliferative disorder characterized
by the relentless accumulation of monoclonal mature B-lymphocytes in the peripheral
blood, bone marrow, and lymphoid tissue [141]. A plethora of molecular prognostic factors
have been identified in CLL patients and among them, VLA-4, an exclusive member of
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the α4 integrin subfamily, represents a CLL-negative prognostic marker [142]. VLA-4
plays a prominent role in the homing of high-risk CLL cells within the BMME. Notably,
MSC-CXCL12 triggers the activation of VLA-4, therefore highlighting a crucial role played
by MSCs in CLL cell homing [143]. Furthermore, MSCs might also promote CLL B-cells
resting by increasing their CD38 and CD71 expression, therefore reflecting an activated
phenotype that could be related to disease progression [144].

In agreement with this, CLL cells highly rely on the abundance of supporting stimuli
generated by neighboring cells in the microenvironment, including MSCs. In agreement
with this, while CLL cells undergo rapid apoptosis when cultured alone, once cocultured
with stromal cells, they are easily propagated. This outcome is probably a consequence of
MSC-EVs, which have been recently reported to give to leukemic cells a survival advantage,
protecting them from spontaneous and drug-induced apoptosis [145]. In this scenario, CLL-
derived exosomes establish a feedback loop by activating a CAF-like phenotype in MSCs,
therefore improving the secretion of soluble factors promoting CLL cell survival [146].
Corroborating this scenario, CLL cells isolated from blood samples are non-dividing,
although their metabolism is still active [147]. In this context, Jitschin and colleagues
reported that CLL cells acquire an increased glucose dependency upon contact with stromal
cells [146], in turn promoting glucose uptake in CLL cells by decreasing mitochondrial
stress and apoptosis [148]. However, this outcome is still debated. As recently reported,
CLL cells co-cultured with MSCs enhance their mitochondrial metabolism, sustaining ATP
production along with a nucleotide pool without any change in their proliferation [149]. In
agreement with this, it has been reported that CLL cells rely on OXPHOS, and this metabolic
process has been associated with poor prognostic outcomes such as IGHV unmutated
disease, ZAP70 positivity, increased Rai stage, and higher β2 microglobulin [149]. Therefore,
as also described, is possible that leukemic cells modify MSCs’ metabolism to satisfy their
energy demand. Recently, it was reported that after contact with CLL cells, MSCs switch
their metabolism toward OXPHOS with consequent lower glucose usage, which might be
an advantage for CLL survival [148].

As things stand, it might be speculated that MSCs in the CLL context have a cru-
cial role in supporting the malignant clone. In agreement with this, Dig and colleagues
demonstrated that the platelet-derived growth factor (PDGF) secreted by CLL cells acti-
vates its receptor PDGFR on the MSC membrane [150]. The PDGF/PDGFR interaction
enhances MSC proliferation, therefore enhancing the production of VEGF and promoting
the neovascularization known to be related to disease progression [151].

Moreover, MSCs uptake cystine by overexpressing the cystine transporter [152]. Upon
conversion to cysteine, it is released into microenvironment and internalized by leukemic
cells for glutathione synthesis and the maintenance of the redox balance (Figure 2d) [152].

2.5. Role of MSCs in in Multiple Myeloma

MM is a hematological disease characterized by the uncontrolled proliferation and
expansion of monoclonal plasma cells (PCs) in the BMME that leads to the overproduc-
tion of abnormal monoclonal protein and immunoglobulin free light chains. MM evolves
from an asymptomatic pre-malignant stage termed monoclonal gammopathy of undeter-
mined clinical significance (MGUS), eventually progressing to an intermediate but more
advanced pre-malignant stage defined as smoldering myeloma (SMM) and, finally, to overt
myeloma [153]. Although the initiation of the malignant transformation is based on genetic
and epigenetic alterations occurring in MM cells, the BMME plays a key role in mediating
survival, proliferation, drug resistance, and the progression of the disease [154]. In par-
ticular, the interactions of the malignant PCs with other cells in the BM niche, including
MSCs, adipocytes, endothelial cells, osteoclasts, osteoblasts, and immune cells, lead to a
host of problems including hypercalcemia, anemia, kidney failure, or bone lesions (i.e.,
the CRAB criteria) [155]. Specifically, mutual modulations of phenotype and functions
are observed between PCs and MSCs as a consequence of their bidirectional crosstalking.
Bone disease is one of the most prominent clinical symptoms in MM patients, affecting
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the 80% of MM patients, and seriously impacts the quality of life of patients [156]. As
MSCs are osteoblasts progenitors, MM-MSCs actively contribute to the pathogenesis of
myeloma bone disease. The adhesion of myeloma PCs to the stroma promotes the tumor
cell secretion of several proteins, such as DKK1, which prevents the differentiation of
MSCs into osteoblasts [157,158]. Importantly, MSCs not only contribute to bone disease
because of their reduced osteogenic potential but also because they ultimately promote
the activation of osteoclasts. Interacting with tumor cells, MSCs upregulate RANKL and
reduce its soluble receptor OPG, thus prompting osteoclastogenesis through the activation
of RANKL-RANK signaling in osteoclasts [159].

MM-MSCs exhibit a distinct gene expression profile when compared to MSCs from
healthy donors [40,160–162]. Particularly, Fernando and colleagues showed that the main
downregulated networks in MM-MSCs are related to cell cycle progression, immune
activation, and bone metabolism, which might contribute to MM physiopathology [162].
In addition, the expression of specific genes differentiate MGUS-, SMM-, and MM-MSCs,
and, interestingly, the gene expression profiles of MSCs from patients with PCs dyscrasias
have an independent prognostic impact on clinical outcome [161]. In detail, Schinke et al.
identified a prognostic MSC three-gene score, including collagen type IV alpha 1 (COL4A1),
natriuretic peptide receptor 3 (NPR3), and integrin beta like 1 (ITGBL1), which is able to
predict progression-free survival in MM patients and the progression of MGUS/SMM to
MM [161]. Of note, as MSCs from patients who underwent completed treatment show
a transcriptome essentially identical to that of patients at diagnosis, persistent printing
could maintain a niche prone to relapse [163]. Single-cell sequencing also confirmed that
current antitumor therapy fails to counteract MSC inflammation, highlighting their role
in disease persistence [164]. MM-MSCs have an early senescent profile characterized by
a greater cell size, increased β-galactosidase activity, a Senescence-Associated Secretory
Phenotype (SASP), and reduced proliferation due to the accumulation of cells in the
S phase [165,166]. This phenotypic change is primed by tumor PCs because healthy
MSCs showed a phenotype similar to MM-MSCs after exposure to tumor cells [167]. The
senescence of MM-MSCs also impairs their differentiation potential and enhances their
tumor-supporting capacity [165].

Interestingly, the mechanism behind the establishment of such a phenotype is still
unknown. Dicer1, an RNAse III endonuclease essential for miRNA biogenesis, has been
demonstrated to be one of the key promoters of cellular senescence in MSCs [11,165].
Specifically, the upregulation of Dicer1 in MM-MSCs reversed cellular senescence and
promoted cell differentiation [165]. More recently, Cao et al. provided evidence for a link
between MSC senescence and MM progression, investigating genes co-expressed by tumor
PCs and MM-MSCs [48]. The authors identified a set of signatures of fourteen genes linked
to MSC senescence which are essential in predicting MM progression [168].

Immunosuppression is a common feature of MM associated with disease evolu-
tion [169]. Concerning this, our group previously demonstrated that MM-MSCs promote
the immunosuppressive abilities of surrounding myeloid cells by promoting the expansion
of granulocyte-like myeloid-derived suppressor cells (G-MDSCs) [170] and immunosup-
pressive neutrophils [46,171], leading to cancer cell immune evasion. As the immunological
dysfunction of MSCs was observed already in SMM stromal cells but not in MGUS ones,
the activation of an MSC-induced immunosuppressive microenvironment might contribute
to the transition from MGUS to MM as an evolutionary advantage acquired during the
multistep development of MM. Of note, MSCs from relapsed patients have an increased
immunosuppressive ability compared to those from patients in remission [163]. The sup-
port of malignant clone proliferation by MM-MSCs is mediated by the stromal activation of
the PD1/PDL-1 axis, disrupting T cell immune response [171,172]. Similarly, MM-MSCs
are able to induce NK cell exhaustion via the activation of CD155/TIGT signaling [173].
Furthermore, the tumorigenic behavior of MM-MSCs is directly mediated by tumor PCs
through the activation of a TLR4-primed inflammatory phenotype [46,171]. Using a single-
cell transcriptomic approach, De Jong et al. identified specific inflammatory MSCs in the



Biomolecules 2023, 13, 1701 12 of 22

MM milieu [164]. As successful antimyeloma therapy is unable to revert MSC inflamma-
tory status, not even in patients in which they are undetectable via flow cytometry [174],
inflammatory-primed MSCs could be also epigenetically reprogrammed, also maintain-
ing their dysfunction in the absence of tumor cells. In agreement, epigenetic alterations
in stromal cells were recently associated with the impairment of bone formation in MM
patients [27]. Furthermore, members of the Homeobox family, known as key drivers of
osteogenic differentiation, are epigenetically and transcriptionally deregulated in MM-
MSCs [27]. Of note, epigenetic alterations in the stromal compartment already occur in the
asymptomatic phases of myeloma, and most of these changes are specific to each stage [27].
This phenomenon could be associated to the expansion of MSC subpopulations which
promote tumor progression, just as in MM cells [175].

The activation of an immunosuppressive and pro-inflammatory phenotype has been
associated with a metabolic rewiring of MSCs toward a more glycolytic metabolism which
is, in turn, required to sustain the secretion of immunosuppressive factors (Figure 2e) [176].
In agreement, we recently showed that MM-MSCs are more glycolytic than their normal
counterparts [55]. Their relative independence from the mitochondrial metabolism im-
pacts MM cell energy, making MM-MSCs inclined to transfer more mitochondria to tumor
cells [55]. The uptake of functional mitochondria from MM-MSCs occurs through several
mechanisms, including tunneling nanotubes, CD38 [177], and EVs, as well as cell-to-cell
contact and the CXCL12/CXCR4 axis [55]. This mitochondrial trafficking supports the ox-
idative metabolism of tumor PCs, favoring cancer growth and drug resistance [55,178–181].

3. Concluding Remarks and Future Perspectives

MSCs are key components of the BMME, in which they exert multiple functions for
supporting the hematopoietic niche, tissue homeostasis, and immune system modulation.
The interest in dissecting the role of MSCs in hematopoietic malignancies has vastly grown
in recent years. As we discussed above, the BM milieu’s leukemic transformation causes
profound modifications in the MSC phenotype, including their morphology and functions
with the acquisition of the SASP, which strongly contributes to the development of a
proinflammatory microenvironment. Evidence suggests that the SASP-related secretome of
MSCs might contribute to the progression from benign states to malignancies [15]. Indeed,
the progression of hematological cancers toward a more aggressive phenotype does not
solely rely on intrinsic leukemic cell factors but is independently impacted by the biology
of the surrounding microenvironment, including MSCs (Figure 2).

Reprogrammed stromal cells provide a nurturing niche that sustains tumor growth,
clonal evolution, and drug resistance. Although it has been reported that MSCs from AML
patients at the time of disease remission recover healthy activities [94], the inheritance of
epigenetic alterations associated with MSC imprinting could lead to an autonomous status
of stromal cells from neoplastic clone. In the “absence/decrease” of/in clonal cells after
targeted therapies, the persistence of this pathologic inflamed phenotype of MSCs might
be a key component partially explaining disease relapse [182]. Moreover, the importance of
the BMME is highlighted by the prolonged time to stabilize engraftment after autologous
HSPC transplantation. In this case, the prerequisite for transplant success is the rebuilding
of the interplay between the BMME and HSPCs.

For this reason, targeting the BM niche might represent a valuable novel strategy
counteracting blood malignancy. Among the emerging targets, the CXCL12/CXCR4 axis
disrupts leukemic cell adhesion to MSCs, mobilizing tumor cells into circulation and in-
creasing drug-induced apoptosis [183–185]. In our own previous research, the inhibition of
this axis also affected tumor/MSC metabolic coupling, inhibiting mitochondria traffick-
ing [55]. In this context, the importance of the metabolic interplay between stromal and
leukemic cells for promoting disease establishment and progression is becoming increas-
ingly clear. Mitochondrial transfer supports leukemic cell bioenergetics and antioxidant
defenses, sparing them from the high energetic cost of mitochondrial biogenesis. To un-
derstand which metabolic vulnerabilities can be targeted in the leukemic BMME might
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open new avenues for improving cancer therapy. Recently, niche–calcium homeostasis
has been found to be involved in the reprogramming of MSCs into a leukemic niche [94].
Compounds blocking the inward movement of calcium modify the transcriptomic and
secretome profile of AML-MSCs, restoring healthy functions [94]. Furthermore, the current
focus has also been on age-related changes in MSCs which characterize the development of
hematological cancers. For this reason, pharmacological approaches to eliminate senescent
cells have been investigated [186]. Concerning MSCs, targeting senescent MSCs has been
demonstrated as a possible strategy to recover the hematopoietic supportive capacity of
stromal cells, improving the metabolic fitness of HSPCs [187]. Therefore, the utility of
senolytic agents as a potential intervention in the context of hematological cancer might be
a promising new strategy to both inhibit the pro-tumorigenic effects of inflamed MSCs and
improve their hematopoietic supportive capacity.

In the framework of the BMME, the complex interplay between leukemic cells and
MSCs include dynamic cell–cell interactions and organizations, the release of soluble factors
and EVs, and immunoregulatory properties which hide unrecognized leukemogenic events
with innovative treatment opportunities. Therefore, extended investigations into the
relationships occurring in the leukemic niche may revolutionize treatment strategies to
disadvantage cancer cells using niche-directed therapies.
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