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I N TRODUCT ION

This thesis consists of two Parts, every one dedicated, in the framework of non-
equilibrium thermodynamics, to the study of the behaviour of fluid-saturated porous
media and of rigid bodies with an internal tensorial field influencing the thermal phe-
nomena, respectively. Furthermore, three Appendices are present, that clarify some
aspects of the arguments presented in the second, third, fourth and seventh Chapter.
Regarding the first Part, the description of phenomena accompanying flows of mass in
porous structures finds applications in several fields, such as materials sciences, medi-
cal sciences, biology and geology, miniaturized systems with porosity defects. Here,
we use thermodynamic approaches based on the non-equilibrium thermodynamics
(see [2], [4], [18], [19], [20], [23], [24], [26], [28], [30], [33], [34], [45]). The influence
of porous channels filled by fluid on the other fields occurring inside the media is
illustrated by the introduction of a structural permeability tensor à la Kubik, giving
a macroscopic characterization of a porous structure and coming from the use of vol-
ume and area averaging procedures. Models for porous media, with some applications,
were developed in [1], [5], [6], [7], [8], [9], [10], [36], [37], [43], [49]. Porous channels
modify the thermal conductivity. Understanding the influence of porous tubes on me-
chanical and transport properties in miniaturized systems is an interesting topic, be-
cause by experimental and theoretical studies it was found that the porous density has
a minor effect on the thermal conductivity for porous defects densities smaller than
a characteristic value dependent on the material and temperature but for higher val-
ues than this value, the thermal conductivity decreases, and this situation influences
the nanodevices performances. Nanostructures can present metallurgical defects (for
example porous channels, inclusions, cavities, microfissures, dislocations), that some-
times can self propagate because of some conditions and surrounding conditions that
are favourable. A relatively high temperature gradient could produce, for instance, a
migration of defects inside the system. In [7], [8], [10], [13], [14], [15], [16], [21], [22],
[29], [35], [36], [37], [38], [39] and [40] models, with some applications for media with
defects such as piezoelectric, elastic, semiconductor and superlattice structures, were
also formulated using the methods of non-equilibrium thermodynamics.
Regarding the second Part of this thesis, the deepening knowledge of mechanical, ther-
mal and transport properties in rigid bodies with an internal variable influencing ther-
mal phenomena is very interesting in several technological sectors, such as in material
sciences and nanotechnology. The results, obtained in this thesis, may have applica-
tions in describing nanostructures, where the rate of variation of the properties of the
system is faster than the time scale characterizing the relaxation of the fluxes towards
their respective local-equilibrium value. In these nanosystems, there are situations of
high-frequency waves propagation. Then, in extended thermodynamics it is essential

vi



I N T R O D U C T I O N vii

to incorporate the fluxes among the state variables. Furthermore, the volume element
size L of these nanosystems along some directions is so small that it becomes compara-
ble (or smaller than) the free mean path l of the heat carriers (L ≤ l, i.e. the Knudsen
number l

L is such that l
L ≥ 1). Other different approaches for porous structures satu-

rated by fluid flows are in [5], [10] and [43].
The organization of this thesis is the following. In the Chapter 1, using a model

for porous media filled by a fluid flow [36], in the anisotropic and linear case the
constitutive relations, the temperature and energy equations and the rate equations
for the porosity field, its flux, the fluid-concentration flux and the heat flux are derived
to close the system of equations describing the media under consideration (see [41]
and [42]).
In the Chapter 2 the case of porous media isotropic with respect to rotations and inver-
sions of frame axes is treated and symmetry properties of phenomenological tensors of
higher order than two (until six) are derived. In Appendix A special forms of isotropic
tensors up to six order are deduced (see [7]).
In Chapter 3 a simple model for solids with porous channels, filled by an incompress-
ible isotropic fluid and presenting erosion/deposition phenomena is given. The Darcy-
Brinkman-Stokes law is obtained, that represents a rate equation for the local mass
flux of the fluid, with a relaxation time in which this flux evolves towards its local-
equilibrium value. In Appendix B the objective representations of scalar, vectorial and
tensorial functions are presented, clarifying some equations deduced in this Chapter
(see [10]).
In Chapters 4, 5 and 6 applications of the theories developed in the first and second
Chapters are done. In particular, in Chapter 4 a study of a problem of propagation of
coupled porosity and fluid-concentration waves in isotropic porous media is worked
out, deducing the wave propagation velocities as functions of the wave number. Also
in this Chapter some expressions of isotropic tensors with special symmetries are de-
duced in Appendix A (see the article [8]). In Chapter 5 following a Boillat’s method-
ology for quasi-linear and hyperbolic systems of the first order, we obtain Bernoulli’s
equation governing the propagation of weak discontinuities in isotropic porous media
filled by a fluid (see the article [9]). In Chapter 6 a general method to construct ap-
proximate smooth solutions for nonlinear hyperbolic partial differential equations is
illustrated and applied in the case where interactions between the fluid-concentration
field, the porosity field and their fluxes in porous isotropic media are considered (see
the article [6]).
Finally, in Chapter 7 general constitutive equations of heat transport with second
sound and ballistic propagation in isotropic rigid heat conductors are given using non-
equilibrium thermodynamics with internal variables. The Appendix C is addressed to
a two-dimensional symmetric explicit representation of the conductivity matrix, that
appears in the expression of entropy production deduced in this Chapter (see [11]).



Part I

NON -EQU I L I BR IUM THERMODYNAM ICS OF POROUS
MED I A F I L L ED BY A F LU I D F LOW



1 A DESCR I PT ION OF AN I SOTROP IC
POROUS NANOCRYSTALS F I L L ED BY A
F LU I D F LOW

In the papers [36] and [37] a non conventional model for fluid-saturated porous crys-
tals was derived in the framework of non-equilibrium thermodynamics introducing in
the thermodynamic state vector, as internal variables describing the porous defects, a
structural permeability tensor à la Kubik, rij , its gradient, rij,k, and its flux, Vijk. In
this Chapter, a model is worked out for nanocrystals with porous channels filled by a
fluid flow. In the anisotropic and linear case, the constitutive relations for the stress
tensor, the entropy density, the chemical potentials for the fluid-concentration and the
porosity field, and the rate equations for rij , Vijk, the fluid-concentration and the heat
fluxes, representing disturbances propagating with finite velocity are derived. Also,
the closure of the system of equations describing the behaviour of these nanosystems
is discussed, containing the linearized temperature and internal energy equations. The
obtained results may have relevance in important advanced studies on nanostructures,
where their porous defects have a direct influence on mechanical and transport prop-
erties, in particular on thermal conductivity. Inside these nanomaterials there are sit-
uations of high-frequency waves propagation and the phenomena are fast. They find
applications in materials science, in particular in miniaturized systems with defects,
and other applied sciences as medical sciences, biology and geology.

In particular, in Sections 1.1 and 1.2, in the framework of rational extended irre-
versible thermodynamics with internal variables, a model is presented [36] for porous
media filled by a fluid flow, where the internal structure is described by a structural
permeability tensor, its gradient and its flux. The very thin porous tubes can self prop-
agate and influence mechanical properties and transport properties of these porous
media.
In Sections 1.3 and 1.4 the anisotropic and linear case is treated. The constitutive the-
ory is derived, developing the free energy around a particular thermodynamic equilib-
rium state, and the rate equations for the structural permeability tensor, its flux, the
heat flux and the fluid flux are worked out. According the extended thermodynamics
generalized Maxwell-Cattaneo-Vernotte and Fick-Nonnenmacher transport equations
for the heat and fluid fluxes, respectively, are derived, from which it is seen the influ-
ence of the defects on the transport properties of the medium.
In Section 1.5 a generalized telegraph heat equation, with finite velocity for the ther-
mal disturbances, is derived in the anisotropic case.
Finally, in Section 1.6 the closure of the system of equations describing the behaviour
of these media with defects is discussed.

1



1.1 a model for porous nanocrystals 2

The obtained results have a technological interest in the production of very minia-
turized systems (nanotechnology) and the study of high-frequency processes.

The studies presented in this Chapter are contained in the articles [41] and [42]:

L. Restuccia, L. Palese, M. T. Caccamo and A. Famà. A description of anisotropic
porous nanocrystals filled by a fluid flow in the framework of Extended Thermodynam-
ics with internal variables. The Publishing House Proceedings of the Romanian Academy,
Series A 21(2), pp. 123-130, 2020.

L. Restuccia, L. Palese, M. T. Caccamo and A. Famà. Heat equation for porous nanos-
tructures filled by a fluid flow. Atti della Accademia Peloritana dei Pericolanti 97(S2), pp.
A-16 1-16, 2019.

1.1 a model for porous nanocrystals

In this Section, we present a model for fluid-satured porous crystals, developed in
[36], in the framework of extended irreversible thermodynamics with internal vari-
ables, where, among the various descriptions of porous structures, that one based on
the consideration of a structural permeability tensor rij à la Kubik [25] is used, and the
tensor rij , its gradient and its flux are introduced in the thermodynamic state vector. A
representative elementary sphere volume Ω of a porous skeleton filled by a fluid flow is
considered, large enough to give a representation of its statistical properties and such
that Ω = Ωs +Ωp, being Ωs and Ωp the solid space and the pore space of Ω, respec-
tively. All pores are considered interconnected and having effective volume porosity
fv =

Ωp

Ω
constant. The sphere central section Γ (with normal vector µ) is introduced,

being Γ = Γ s+ Γ p, with Γ s and Γ p the solid area and the pore area of Γ , respectively. In
Fig. 1 the averaging scheme regarding a pore structure is given following Kubik [25].
All the microscopic quantities are described with respect to the ξi coordinates, while
the macroscopic quantities are described with respect to the xi coordinates (i = 1,2,3).

Figure 1: The averaging scheme of a porous structure, following [25].



1.1 a model for porous nanocrystals 3

Then, let α(ξ) be any scalar, spatial vector or second order tensor, describing a micro-
scopic property of the flux of some physical field, flowing through the channel porous
space Ωp, with respect to the ξ coordinates. We assume that such quantity is zero in
the solid space Ωs and on Γ s. In such a medium we introduce a so called structural
permeability tensor à la Kubik, responsible for the structure of a network of porous
channels, for any flux of some physical field αi (in [25] this tensor was introduced for
the velocity of the fluid particles) in the following way

ᾱi(x) = rij(x,µ)
∗
αj (x,µ). (1.1.1)

Equation (1.1.1) gives a linear mapping between the bulk-volume average quantity
ᾱ(x) and the channel porous area average

∗
α of the same quantity passing through the

pore area Γ p of sphere central section. The macroscopic quantities ᾱ(x) and
∗
α are

defined, respectively, by the following volume and area averaging procedures

ᾱ(x) =
1
Ω

∫
Ω̃

α(ξ)dΩ̃, ξ ∈Ωp,
∗
α(x) =

1
Γ p

∫
Γ̃

α(ξ)d Γ̃ , ξ ∈ Γ p. (1.1.2)

The tensor rij is symmetric and describes a structure of very thin porous channels
inside the medium under consideration [25].

To describe as the defects field evolves (see [36]), we introduce in the thermodynamic
state vector the structural permeability field rij , its gradient rij,k and its flux Vijk. We
assume that the mass of the fluid filling the porous channels inside the crystal and the
same crystal form a two-components mixture. We indicate by ρ1 the mass of the fluid
transported through the elastic porous solid of density ρ2. Furthermore, the fluid flow
is described by two variables: the concentration of the fluid

c =
ρ1

ρ
, (1.1.3)

and the flux of this fluid jci . Thus, we have the following expression

ρ = ρ1 + ρ2. (1.1.4)

For the mixture of continua as a whole and also for each constituent the following
continuity equations are satisfied

ρ̇+ ρvi,i = 0,
∂ρ1

∂t
+ (ρ1v1i),i = h1,

∂ρ2

∂t
+ (ρ2v2i),i = h2, (1.1.5)

where a superimposed dot denotes the material derivative, h1 and h2 are the source
terms, that in the following are not taken into consideration, v1i and v2i are the ve-
locities of the fluid particles and the particles of the elastic body, respectively. We
introduce the barycentric velocity and the fluid-concentration flux as follows

ρvi = ρ1v1i + ρ2v2i , jci = ρ1(v1i − vi). (1.1.6)
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From equation (1.1.3) we obtain

ċ =
ρ̇1ρ − ρ1ρ̇

ρ2 ,

and using equations (1.1.5)1, (1.1.5)2 and (1.1.6)2, we have

ρċ = ρ̇1 −
ρ1ρ̇

ρ
= ρ̇1 + ρ1vi,i

=
∂ρ1

∂t
+ viρ1,i + ρ1vi,i = −(ρ1v1i),i + viρ1,i + ρ1vi,i

= −[ρ1,i(v1i − vi) + ρ1(v1i,i − vi,i)] = −jci,i .

(1.1.7)

The thermal field is described by the temperature, its gradient and the heat flux qi .
The mechanical field is described by the symmetric total stress tensor τij , referred to
the whole system considered as a mixture, and by the small strain tensor εij , defined
by

εij =
1
2
(ui,j + uj,i), (1.1.8)

being u the displacement vector. The thermodynamic vector space is chosen as follows

C =
{
εij ,c,T ,rij , j

c
i ,qi ,Vijk,c,i ,T,i ,rij,k

}
, (1.1.9)

where, we have taken into account the gradients c,i ,T,i and rij,k, and have ignored the
viscous effects, so that ε̇ij is not in the set C .
The processes occurring inside the considered nanocrystals are governed by two sets
of laws, the first set deals with the classical balance equations:

the balance of mass in the form (obtained by (1.1.7))

ρċ+ jci,i = 0; (1.1.10)

the momentum balance
ρv̇i − τji,j − fi = 0, (1.1.11)

where fi denotes a body force;

the internal energy balance

ρė − τjivi,j + qi,i − ρh= 0, (1.1.12)

where e is the internal energy density, h is the energy source density (that in the fol-
lowing will be neglected) and vi,j is the gradient of the velocity of the body given by

vi,j = wij +
dεij
dt

, with wij =
1
2
(vi,j − vj,i), (1.1.13)

being wij the antisymmetric part of vi,j and
dεij
dt the symmetric part of vi,j defined by

dεij
dt

=
1
2
(vi,j + vj,i); (1.1.14)
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the second set of laws concerns the evolution equations of the structural permeability
field rij , its flux Vijk, the fluid flux jci and the heat flux qi . These rate equations are
constructed obeying the objectivity and frame-indifference principles (see [17], [31]
and [32]).

Thus, these rate equations are chosen having the form
∗
r ij + Vijk,k −Rij(C ) = 0, (1.1.15)
∗
V ijk −Vijk(C ) = 0, (1.1.16)
∗
qi −Qi(C ) = 0, (1.1.17)
∗
jci − J

c
i (C ) = 0, (1.1.18)

where the symbol (∗) denotes the Zaremba-Jaumann derivative defined for a vector, a
second rank tensor and a general rank tensor as follows

∗
ai = ȧi −wikak ,

∗
aij = ȧij −wikakj −wjkaik , (1.1.19)

∗
aij...m = ȧij...m −wipapj...m −wjpaip...m − . . .−wmpaij...p, (1.1.20)

where Rij(C ) is the source-like term which deals with the creation or annihilation
of porous channels, Vijk(C ) is the source term for the structural permeability field
flux, Qi(C ) is the heat flux source and Jci (C ) is the fluid-concentration flux source.
Rij , Vijk, Qi and Jci are constitutive functions of the independent variables. In the rate
equations (1.1.16)-(1.1.18) the flux terms of Vijk, qi and jci are not present, in order
to close the system of equations describing the media under consideration. Also, in

(1.1.15)-(1.1.18) we use for wij the expression wij = vi,j −
∂εij
∂t , to obtain relations in

linear approximation.

1.2 analysis of entropy production

In order to our considerations concern real physical processes occurring in the con-
sidered porous structure filled by a fluid flow, all the admissible solutions of the pro-
posed evolution equations should be restricted by the following entropy inequality

ρṠ +φi,i −
ρh

T
= σ (s) ≥ 0, (1.2.1)

where S is the entropy density,
ρh

T
is the external entropy production source, σ (s) is

the internal entropy production and φi is the entropy flux. In the sequel, for the sake
of simplicity, the source term h and the body force fi will be neglected. Furthermore,
the total mass density ρ is supposed constant. Let us consider the following set of con-
stitutive functions (dependent functions on the set (1.1.9) of independent variables)

Z =
{
τij ,e,Rij , Jci ,Qi ,Vijk,S,φi ,Π

c,Πr
ij ,Π

jc

i ,Πq
i ,Π

ν
ijk

}
(1.2.2)



1.2 analysis of entropy production 6

(with Πc the chemical potential of the fluid concentration field and Πr
ij a potential

related to the structural permeability field and Π
jc

i , Πq
i , Π

ν
ijk the generalized affinities

conjugated to the respective fluxes jci , qi and Vijk) having the general form

Z = Z̃ (C ), (1.2.3)

where both C and Z are evaluated at the same point and time. In [36] Liu’s theorem
[27], that considers all balance and evolution equations as mathematical constraints
for the general validity of the inequality (1.2.1), was applied, assuming that the density
mass ρ of the considered nanocrystals is constant.

The following results was obtained, introducing the free energy density F = e − T s:

the state laws (defining the constitutive functions via the partial derivatives of the
free energy with respect to the respective conjugate variables)

τij = ρ
∂F
∂εij

, S = −∂F
∂T

, (1.2.4)

Πc =
∂F
∂c

, Πr
ij = ρ

∂F
∂rij

, (1.2.5)

∂F
∂c,i

= 0,
∂F
∂T,i

= 0,
∂F
∂rij,k

= 0; (1.2.6)

the affinities

Π
jc

i = ρ
∂F
∂jci

, Π
q
i = ρ

∂F
∂qi

, Πν
ijk = ρ

∂F
∂Vijk

; (1.2.7)

the derivatives of the entropy flux

∂φk
∂εij

=
1
T
vkτij ,

∂φk
∂jci

= − 1
T
Πcδik,

∂φk
∂qi

=
1
T
δik,

∂φk
∂Vijl

= − 1
T
Πr
ijδkl , (1.2.8)

∂φk
∂c,i

= 0,
∂φk
∂T,i

= 0,
∂φk
∂rij,l

= 0, (1.2.9)

from which

the entropy flux

φk =
1
T
(qk −Πcjck −Π

r
ijVijk), (1.2.10)

(where the quantity kk = −
1
T
(Πcjck +Πr

ijVijk) represents the extra entropy flux);

the residual inequality

T
∂φi
∂c

c,i + T
∂φi
∂T

T,i + T
∂φi
∂rjk

rjk,i −Πr
ijRij −Π

jc

i J
c
i −Π

q
iQi −Π

ν
ijkVijk ≥ 0. (1.2.11)
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In order to prove relation (1.2.10), first we observe that from (1.2.9) we have
φk = φk(εij ,c,T ,rij , j

c
i ,qi ,Vijl); secondly, we suppose that the quantities Πc and Πr

ij do
not depend on the fluxes jci , qi and Vijl .
Integrating (1.2.8)1 with respect to εij and using the state law (1.2.4)1, we deduce

φk =
1
T
ρvkF+ϕ

1
k (c,T ,rij , j

c
i ,qi ,Vijl), (1.2.12)

where ϕ1
k is an arbitrary function of its arguments.

Deriving (1.2.12) with respect to jci and using (1.2.8)2, we have

∂ϕ1
k

∂jci
= − 1

T
ρvk

∂F
∂jci
− 1
T
Πcδik, (1.2.13)

from which
ϕ1
k = −

1
T
ρvkF −

1
T
Πcjck +ϕ

2
k (c,T ,rij ,qi ,Vijl), (1.2.14)

where ϕ2
k is an arbitrary function of its arguments.

Substituting (1.2.14) into (1.2.12), we deduce

φk = −
1
T
Πcjck +ϕ

2
k (c,T ,rij ,qi ,Vijl), (1.2.15)

Now we derive (1.2.15) with respect to qi and we use (1.2.8)3, so that we obtain

∂ϕ2
k

∂qi
=

1
T
δik, (1.2.16)

from which
ϕ2
k =

1
T
qk +ϕ

3
k (c,T ,rij ,Vijl), (1.2.17)

where ϕ3
k is an arbitrary function of its arguments.

Substituting (1.2.17) into (1.2.15), we deduce

φk = −
1
T
Πcjck +

1
T
qk +ϕ

3
k (c,T ,rij ,Vijl), (1.2.18)

Finally, deriving (1.2.18) with respect to Vijl and using relation (1.2.8)4, we obtain

∂ϕ3
k

∂Vijl
= − 1

T
Πr
ijδkl , (1.2.19)

that integrated with respect to Vijl give us

ϕ3
k = −

1
T
Πr
ijVijk +ϕ

4
k (c,T ,rij), (1.2.20)



1.3 constitutive relations and generalized affinities 8

where ϕ4
k is an arbitrary vector function of its arguments and, being an objective func-

tion, it must be zero because, following [44], [46], [47], [48], it cannot depends only on
scalar functions and second order tensor-value functions . Thus

ϕ3
k = −

1
T
Πr
ijVijk, (1.2.21)

that substituted into (1.2.18) give (1.2.10), according to the fact that the entropy flux,
from the physical point of view, does not depend on equilibrium variables, as T , c and
rij .

In [36] the expression (1.2.10) was obtained with the help of a new function

Kk = ρFvk − Tφk, (1.2.22)

concerning flux-like properties.
From expressions (1.2.4)1, (1.2.6), (1.2.8), (1.2.9) and (1.2.22) we have

∂Kk
∂εij

= 0,
∂Kk
∂jci

=Πcδik + vkΠ
jc

i ,
∂Kk
∂qi

= −δik + vkΠ
q
i , (1.2.23)

∂Kk
∂Vijl

=Πr
ijδkl + vkΠ

ν
ijl ,

∂Kk
∂c,i

= 0,
∂Kk
∂T,i

= 0,
∂Kk
∂rij,l

= 0. (1.2.24)

We observe thatKk, unlikeφk, is independent of εij so that the procedure of integration
is easier than that of φk. Following the same procedure of integration above, we obtain

Kk = −qk +Πcjck +Πr
ijVijk + ρFvk, (1.2.25)

and comparing this last relation with (1.2.22) we deduce the expression (1.2.10).
Furthermore, from equations (1.2.4)-(1.2.7), the free energy is the following function

F = F(εij ,c,T ,rij , j
c
i ,qi ,Vijk). (1.2.26)

1.3 constitutive relations and generalized affin-
ities

In this Section we derive in the anisotropic case and in the linear approximation the
constitutive theory for the system under consideration. We recall that the total mass
density ρ has been assumed to be constant. We apply the potential method and ex-
panding the free energy, given by (1.2.26), up the second-order approximation around
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a thermodynamic equilibrium state indicated by “0”, introducing the deviations of the
independent variables from this reference state, in particular

θ = T − T0, with
∣∣∣∣∣ θT0

∣∣∣∣∣� 1, ẽ = e − e0, with
∣∣∣∣∣ ẽe0

∣∣∣∣∣� 1, C = c − c0, with
∣∣∣∣∣ Cc0

∣∣∣∣∣� 1,

S = S − S0, with
∣∣∣∣∣ SS0

∣∣∣∣∣� 1, Rij = rij − r0ij , with

∣∣∣∣∣∣Rijr0ij

∣∣∣∣∣∣� 1,

(1.3.1)

assuming

(εij)0 = 0, (τij)0 = 0, (rij)0 = r0ij , (ui)0 = u0i , (vi)0 = v0i , (1.3.2)

and taking into account that

(Vijk)0 = 0, (qi)0 = 0, (jci )0 = 0,
(
Πr
ij

)
0
= 0, (Πc)0 = 0,(

Πν
ijk

)
0
= 0,

(
Π
jc

i

)
0
= 0,

(
Π
q
i

)
0
= 0,

(1.3.3)

we obtain

F = F0 − S0θ+
1

2ρ
cijlmεijεlm −

λθεij
ρ
θεij +

λrεijlm
ρ

εijRlm −
λcεij
ρ
Cεij −

1
2
cv
T0
θ2 +

λrθij
ρ
Rijθ

+
λθc

ρ
θC+

λrrijlm
2ρ

RijRlm+
λrcij
ρ
RijC+

λc

2ρ
C2 +

λννijklmn
2ρ

VijkVlmn+
λ
νjc

ijkl

ρ
Vijkjcl

+
λ
νq
ijkl

ρ
Vijkql +

1
2ρ
λ
qq
ij qiqj +

1
2ρ
λ
jcjc

ij j
c
i j
c
j +

1
ρ
λ
jcq
ij j

c
i qj ,

(1.3.4)

where

cijkl = ρ

(
∂2F

∂εij∂εkl

)
0

, λc = ρ

(
∂2F

∂c2

)
0
, cv = −T0

(
∂2F

∂T 2

)
0
, λj

cjc = ρ

(
∂2F
∂jci ∂j

c
k

)
0
,

λννijklmn = ρ

(
∂2F

∂Vijk∂Vlmn

)
0

, λ
νq
ijkl = ρ

(
∂2F

∂qi∂Vjkl

)
0

, λrrijkl = ρ

(
∂2F

∂rij∂rkl

)
0

,

λθεij = −ρ
(
∂2F
∂εij∂T

)
0

, λθc = ρ

(
∂2F
∂c∂T

)
0
, λrcij = ρ

(
∂2F
∂c∂rij

)
0

, λ
qq
ij = ρ

(
∂2F
∂qi∂qj

)
0

,

λcεij = −ρ
(
∂2F
∂εij∂c

)
0

, λ
jcq
ik = ρ

(
∂2F
∂jci ∂qk

)
0
, λrθij = ρ

(
∂2F
∂T ∂rij

)
0

,

λrεijkl = ρ

(
∂2F

∂εij∂rkl

)
0

, λ
νjc

ijkl = ρ

(
∂2F

∂jci ∂Vjkl

)
0

. (1.3.5)
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In (1.3.4) we have called the second partial derivatives of free energy with respect to
the considered independent variables using the name of the phenomenological coef-
ficients, measurable by experiments, coming from their physical interpretation. In
(1.3.4) cv denotes the specific heat, cijlm is the elastic tensor, λθεij are the thermoelas-
tic constants and the other phenomenological coefficients express simple and coupled
effects which can manifest among the fields themselves or the different fields acting
during interactions. Also, we have taken into consideration the physical dimensions of
the physical quantities and the invariance of F under time reversal, so that the terms
containing the fluxes at first order are null. Furthermore, the introduction of the mi-
nus sign comes from physical reasons and the constant phenomenological coefficients
satisfy the following symmetric relations (because they are defined in terms of second
derivatives of F and the tensors εij and rij are symmetric)

cijlm = clmij = cjilm = cijml = cjiml = cmlij = cmlji = clmji , (1.3.6)

λrεijlm = λrεlmji = λrεlmij = λrεjilm = λrεijml = λrεjiml = λrεmlji = λrεmlij , (1.3.7)

λrrijlm = λrrlmij = λrrijml = λrrjilm = λrrjiml = λrrlmji = λrrmlij = λrrmlji , (1.3.8)

λθεij = λθεji , λ
qq
ij = λ

qq
ji , λrcij = λrcji , λcεij = λcεji , λrθij = λrθji λ

jcjc

ij = λ
jcjc

ji , (1.3.9)

λννijklmn = λννlmnijk, λ
jcq
ij = λ

jcq
ji , λ

νq
ijkl = λ

νq
lijk, λ

νjc

ijkl = λ
νjc

lijk. (1.3.10)

Using equations (1.2.4), (1.2.5) and (1.2.7), we obtain, in the linear approximation, the
constitutive relations

τij = cijlmεlm −λθεij θ+λrεijlmRlm −λ
cε
ij C, (1.3.11)

S = S0 +
λθεij
ρ
εij +

cv
T0
θ −

λrθij
ρ
Rij −

λθc

ρ
C, (1.3.12)

Πr
ij = λrεijlmεlm+λrθij θ+λrrijlmRlm+λrcij C, (1.3.13)

Πc = −
λcεij
ρ
εij +

λθc

ρ
θ+

λrcij
ρ
Rij +

λc

ρ
C, (1.3.14)

and the generalized affinities

Πν
ijk = λννijklmnVlmn+λ

νq
ijklql +λ

νjc

ijklj
c
l , (1.3.15)

Π
q
i = λ

νq
ijklVjkl +λ

qq
ij qj +λ

qjc

ij j
c
j , (1.3.16)

Π
jc

i = λ
νjc

ijklVjkl +λ
jcq
ij qj +λ

jcjc

ij j
c
j . (1.3.17)

1.4 rate equations

The residual inequality (1.2.11) imposes some relations among the source termsRij ,
Vijk, Qi , J

c
i and the affinities Πr

ij , Π
jc

i , Πq
i and Πν

ijk, respectively. In this Section we
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work out the rate equations for the heat and fluid fluxes for the structural permeability
tensor and its flux. Here, in particular, expressing the source termsRij , Vijk, Qi and Jci
as linear polynomials with tensorial constant coefficients, in terms of the independent
variables and in the case where we may use the material derivative instead of Zaremba-
Jaumann we obtain

ṙij + Vijk,k = β1
ijklεkl + β

2
ijklrkl + β

3
ijkj

c
k + β

4
ijkqk + β

5
ijklmVklm+ β6

ijkc,k

+ β7
ijkT,k + β

8
ijklmrkl,m,

(1.4.1)

V̇ijk = ζ1
ijklj

c
l + ζ

2
ijklql + ζ

3
ijklmnVlmn+ ζ

4
ijklc,l + ζ

5
ijklT,l + ζ

6
ijklmnrlm,n, (1.4.2)

q̇i = α1
ijj

c
j +α

2
ijqj +α

3
ijklVjkl +α

4
ijc,j +α

5
ijT,j +α

6
ijklrjk,l , (1.4.3)

j̇ci = η1
ijj

c
j + η

2
ijqj + η

3
ijklVjkl + η

4
ijc,j + η

5
ijT,j + η

6
ijklrjk,l . (1.4.4)

Equations (1.4.1)-(1.4.4) describe propagation of disturbances with finite velocity, fol-
lowing the philosophy of extended thermodynamics, and contain coupled effects a-
mong the different fields. In these rate equations the fields qi , j

c
i , rij and Vijk present a

relaxation times.
In particular, in equation (1.4.1) the tensor field rij has the relaxation time tensor

τrijkl = −
(
β2
ijkl

)−1
and in equation (1.4.2) the tensor field Vijk has the relaxation time

tensor τνijklmn = −
(
ζ3
ijklmn

)−1
.

Furthermore, the rate equation (1.4.3) for the heat flux generalizes Maxwell-Vernotte-
Cattaneo relation for the thermal disturbances with finite velocity [3], [12] and denot-
ing by τqij a relaxation time tensor associated to the heat flux, it becomes

τ
q
ij q̇j = χ1

ijj
c
j − qi +χ

3
ijklVjkl +χ

4
ijc,j −χ5

ijT,j +χ
6
ijklrjk,l . (1.4.5)

In (1.4.5) we have used the following notations

χ1
ik = τ

q
ijα

1
jk, δik = −τ

q
ijα

2
jk, χ3

iklm = τ
q
ijα

3
jklm, (1.4.6)

χ4
ik = τ

q
ijα

4
jk, χ5

ik = −τ
q
ijα

5
jk, χ6

iklm = τ
q
ijα

6
jklm, (1.4.7)

where χ1
ij is the thermodiffusive kinetic tensor, χ4

ij is the thermodiffusive tensor and

χ5
ij is the heat conductivity tensor. In the case where the relaxation time tensor τqij has

the form τ
q
ij = τqδij , equation (1.4.5) becomes

τqq̇i + qi = χ1
ijj

c
j +χ

3
ijklVjkl +χ

4
ijc,j −χ5

ijT,j +χ
6
ijklrjk,l . (1.4.8)

When the coefficients χs (s = 1,3,4,6) are negligible, equation (1.4.5) takes the form

τ
q
ij q̇j + qi = −χ

5
ijT,j , (1.4.9)

that is the anisotropic Maxwell-Cattaneo-Vernotte equation.
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In the isotropic case, where χ5
ij = χδij and τqij = τqδij , from equation (1.4.9) we obtain

the well known Maxwell-Cattaneo equation [3], [12]

τqq̇j + qi = −χT,i . (1.4.10)

When the thermal propagation has infinite velocity, equation (1.4.9) takes the form of
anisotropic Fourier equation

qi = −χ5
ijT,j , (1.4.11)

having the following well known form in the isotropic case

qi = −χT,i , (1.4.12)

where χ is the thermal conductivity.
Finally, the rate equation (1.4.4) for the fluid flux generalizes the Fick-Nonnenmacher
law. When, we may use the material derivative, denoting by τ j

c

ij the relaxation time
tensor of the fluid-concentration flux, we obtain

τ
jc

ij j̇
c
j = −j

c
i + ξ

2
ijqj + ξ

3
ijklVjkl − ξ

4
ijc,j + ξ

5
ijT,j + ξ

6
ijklrjk,l , (1.4.13)

where

δik = −τ
jc

ij η
1
jk, ξ2

ik = τ
jc

ij η
2
jk, ξ3

iklm = τ
jc

ij η
3
jklm, (1.4.14)

ξ4
ik = −τ

jc

ij η
4
jk, ξ5

ik = τ
jc

ij η
5
jk, ξ6

iklm = τ
jc

ij η
6
jklm . (1.4.15)

The quantities ξ4
ik and ξ5

ik are the diffusion tensor and the thermodiffusive tensor, re-
spectively. In the case where the coefficients ξ2

ij , ξ
3
ijkl , ξ

5
ij and ξ6

ijkl are null equation
(1.4.13) becomes the anisotropic Fick-Nonnenmacher law.

When the relaxation time tensor τ j
c

ij takes the isotropic form τ
jc

ij = τ j
c
δij , equation

(1.4.13) becomes

τ j
c
j̇ci + j

c
i = ξ2

ijqj + ξ
3
ijklVjkl − ξ

4
ijc,j + ξ

5
ijT,j + ξ

6
ijklrjk,l . (1.4.16)

In the following we use the rate equations for the fields qi and jci in the form (1.4.8)
and (1.4.16), respectively.

We observe that the phenomenological tensors βs, s = 1, . . . ,8, and the tensor field
Vijk,k in equation (1.4.1) are symmetric in the indexes {i, j} because of the symmetry of
rij . Furthermore βs, s = 1,2,8, are also symmetric in the indexes {k, l} because they
are dummy with the indexes of the symmetric tensors εkl , rkl and rkl,m, respectively.
Hence, we have the following symmetries

βsijkl = βsjikl = βsijlk = βsjilk, (s = 1,2), β8
ijklm = β8

jiklm = β8
ijlkm = β8

jilkm, (1.4.17)

βrijk = βrjik, (r = 3,4,6,7), β5
ijklm = β5

jiklm, Vijk,k = Vjik,k. (1.4.18)

Similarly, from (1.4.2) we deduce

γ6
ijklmn = γ6

ijkmln, (1.4.19)

because of the symmetry rlm,n and from relations (1.4.8) and (1.4.16) we have

χ6
ijkl = χ6

ikjl , ξ6
ijkl = ξ6

ikjl . (1.4.20)
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1.5 linearised temperature equation and internal
energy equation

In this Section we work out the equation that describes the behaviour of the temper-
ature field T . Moreover we will show the linearised balance internal energy equation.
Introducing the free energy given by F = e−T S, considering the material derivative of
the free energy F

ρT Ṡ = ρė − ρSṪ − ρḞ, (1.5.1)

and taking into consideration the balance energy equation

ρė = τij ε̇ij − qi,i , (1.5.2)

(where the expression for the velocity gradient vi,j = ε̇ij+Ωij has been used), we obtain

ρT Ṡ = τij ε̇ij − qi,i − ρṪ S − ρḞ. (1.5.3)

From (1.5.3), calculating the material derivative of the free energy we have

ρT Ṡ = τij ε̇ij − qi,i − ρṪ S − ρ
∂F
∂εij

ε̇ij − ρ
∂F
∂T

Ṫ − ρ∂F
∂c
ċ+

− ρ ∂F
∂rij

ṙij − ρ
∂F
∂Vijk

V̇ijk − ρ
∂F
∂jci

j̇ci − ρ
∂F
∂qi

q̇i .
(1.5.4)

Finally, using the state laws (1.2.4), the definitions of the affinities (1.2.7), we have

ρT Ṡ = −qi,i −Πr
ij ṙij −Π

cċ −Πν
ijkV̇ijk −Π

jc

i j̇
c
i −Π

q
i q̇i . (1.5.5)

Linearising the equation (1.5.5) around the equilibrium state (1.3.1)-(1.3.3), we obtain

ρ(T0 +θ)(Ṡ0 + Ṡ) = −qi,i −Πr
ij [ṙ0ij + Ṙij ]−Π

c(ċ0 + Ċ)−Πν
ijkV̇ijk −Π

jc

i j̇
c
i −Π

q
i q̇i (1.5.6)

and then,
ρT0Ṡ = −qi,i . (1.5.7)

Moreover, from equation (1.5.7), we have also

τqρT0S̈ = −τqq̇i,i . (1.5.8)

In (1.5.6)-(1.5.8), the superimposed dot “ ˙ ” indicates the linearised time derivative
d
dt =

∂
∂t+v0 ·grad and the deviations of the fields from the thermodynamic equilibrium

state have been indicated by the same symbols of the fields themselves. From equations
(1.3.12), (1.5.7), and (1.4.8), linearised around the considered reference equilibrium
state, equation (1.5.8) takes the form

τqρT0

λθεijρ ε̈ij +
cv
T0
T̈ −

λrθij
ρ
r̈ij −λθcc̈

= −ρT0

λθεijρ ε̇ij +
cv
T0
Ṫ −

λrθij
ρ
ṙij −λθcċ


−χ1

ijj
c
j,i −χ

3
ijklVjkl,i −χ

4
ijc,ji +χ

5
ijT,ji −χ6

ijklrjk,li .

(1.5.9)
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Finally, introducing

γij =
T0

ρcv
λθεij , ϕ =

T0

cv
λθc, ηij =

T0

ρcv
λrθij , kij =

χ5
ij

ρcv
, (1.5.10)

ν1
ij =

χ1
ij

ρcv
, ν3

ijkl =
χ3
ijkl

cvρ
, ν4

ij =
χ4
ij

ρcv
, ν6

ijkl =
χ6
ijkl

cvρ
, (1.5.11)

and considering the case where we may replace the material derivative by the par-
tial time derivative, we obtain a generalized telegraph equation heat equation for
anisotropic porous nanostructures filled by fluid flow, leading to finite speeds of prop-
agation of thermal disturbances

τqT̈ + Ṫ = −γij(τqε̈ij + ε̇ij) +ϕ(τqc̈+ ċ) + ηij(τq r̈ij + ṙij) + kijT,ji − ν1
ijj

c
j,i

− ν3
ijklVjkl,i − ν

4
ijc,ji − ν6

ijklrjk,li .
(1.5.12)

Now, we linearise the first law of thermodynamics (1.5.2). From (1.5.7)1, taking into
account (1.3.1)2, using the relation (1.3.12), and considering the case where we may
replace the material derivative by the partial time derivative, we obtain

ρė − T0λ
θε
ij ε̇i,j − ρcvθ̇+ T0λ

rθ
ij Ṙij + T0λ

θcĊ = 0, (1.5.13)

i.e.
ρė = T0λ

θε
ij u̇i,j + ρcvṪ − T0λ

rθ
ij ṙij − T0λ

θcċ, (1.5.14)

where the second order term τijvi,j has been neglected.

1.6 closure of system of governing equations

In this Section, to close the system of equations describing linear anisotropic porous
nanocrystals filled by a fluid flow, we linearize the balance equations (1.1.10), (1.1.11)
(where the constitutive equations (1.3.11) and (1.3.12) are inserted) and the rate equa-
tions (1.4.1), (1.4.2), (1.4.8) and (1.4.16) around the equilibrium state (defined by
(1.3.1)-(1.3.3)). Taking into account the linearised temperature equation (1.5.12) and
the linearised internal energy balance equation (1.5.14), the definitions εij =

1
2(ui,j +

uj,i) and vi = u̇i , indicating the deviations of the fields from the thermodynamic equi-
librium state by the same symbols of the fields themselves, and considering the case
where we may replace the material derivative by the partial time derivative, we obtain
the following closed system of 45 equations for 45 unknowns: 1 for c, 3 for ui , 6 for rij ,
27 for Vijk, 3 for qi , 3 for jci , 1 for T , 1 for e
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ρċ+ jci,i = 0, (1.6.1)

ρüi = cijlmul,mj −λθεij T,j +λ
rε
ijlmrlm,j −λcεij c,j , (1.6.2)

ṙij + Vijk,k =
1
2
β1
ijkl(uk,l + ul,k) + β

2
ijklrkl + β

3
ijkj

c
k + β

4
ijkqk + β

5
ijklmVklm

+ β6
ijkc,k + β

7
ijkT,k + β

8
ijklmrkl,m,

(1.6.3)

V̇ijk = γ1
ijklj

c
l + γ

2
ijklql + γ

3
ijklmnVlmn+ γ

4
ijklc,l + γ

5
ijklT,l + γ

6
ijklmnrlm,n, (1.6.4)

τqq̇i + qi = χ1
ijj

c
j +χ

3
ijklVjkl +χ

4
ijc,j −χ5

ijT,j +χ
6
ijklrjk,l , (1.6.5)

τ j
c
j̇ci + j

c
i = ξ2

ijqj + ξ
3
ijklVjkl − ξ

4
ijc,j + ξ

5
ijT,j + ξ

6
ijklrjk,l , (1.6.6)

τqT̈ + Ṫ = kijT,ij −γij(τqüi,j + u̇i,j) +ϕ(τqc̈+ ċ) + ηij(τq r̈ij + ṙij)− ν1
ijj

c
j,i

− ν3
ijklVjkl,i − ν

4
ijc,ji − ν6

ijklrjk,li ,
(1.6.7)

ρė = −T0λ
θε
ij u̇i,j − ρcvṪ + T0λ

rθ
ij ṙij + T0λ

θcċ. (1.6.8)

In equations (1.6.2) and (1.6.8) the symmetry of cijlm and λθεij have been used (see
(1.3.6) and (1.3.9)). In equation (1.6.7) the symmetry of γij have been used (see relation
(1.5.10)1). Also, the disturbances of the structural permeability field and its flux have
finite velocity and present a relaxation time. Furthermore, also in the case where we
do not take into consideration equation (1.6.8) for the internal energy, the system of
equations (1.6.1)-(1.6.7) is still closed.
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2 NON -EQU I L I BR IUM THERMODYNAM ICS
OF I SOTROP IC POROUS NANOCRYSTALS
F I L L ED BY A F LU I D F LOW

In the previous Chapter in the linear and anisotropic case, constitutive relations, rate
equations, temperature and energy equations were derived to describe the mechani-
cal, thermal and transport properties of fluid-saturated crystals with porous channels
defects, using a model developed by Professor L. Restuccia in the framework of non-
equilibrium thermodynamics. A structural permeability tensor à la Kubik, rij and
its flux Vijk were introduced as internal variables in the thermodynamic state vector.
Here, we work out in the isotropic and perfect isotropic linear cases the constitutive
functions for the stress tensor, the entropy density, the chemical potentials, and also
the rate equations for rij , Vijk, the fluid and the heat fluxes, describing disturbances
propagating with finite velocity and presenting a relaxation time. The porous defects
modify the thermal conductivity and when they have a density higher than a suit-
able characteristic value the thermal conductivity decreases. Furthermore, the closure
of the system of equations, describing the media under consideration and linearized
around a thermodynamic equilibrium state is obtained. The derived results may have
great relevance in biology, medical sciences and in several technological sectors, like
seismic engineering and nanotechnology (where high-frequency waves propagation is
present and the properties variation rate of the considered medium is faster than the
relaxation times of the fluxes towards their equilibrium values and the volume ele-
ment size L of the nanostructures along some directions is so small that it becomes
comparable (or smaller than) the free mean path l of the heat carriers).

In this Chapter, we use a thermodynamic theory (see [30], [32] and also [36], [37]),
developed in the framework of extended irreversible Thermodynamics, [1], [4], [13],
[14], [15], [19], [20], [22], [24], [26], [27], [39], with internal variables. More precisely,
in [30] and [32] for the media under consideration the basic equations were estab-
lished, the Liu’s theorem [23] was applied and the constitutive theory and the rate
equations for the fluxes and the porous field were constructed as objective functions
using Smith’s theorem [38]. In [36] and [37] constitutive relations, rate equations and
other results were derived for the same media in the anisotropic case. In this Chapter
we investigate the behaviour of isotropic and perfect isotropic porous structures, hav-
ing a particular spatial symmetry properties, using a mathematical theory for isotropic
cartesian tensors [5], [12]. The influence of porous channels on the other fields, occur-
ring inside the considered medium, is described by a stuctural permeability tensor à la
Kubik [21], giving a macroscopic characterization of the porous matrix. In [7], [9], [10],
[11], [16], [17], [25], [28], [29], [33], [34] and [35] models, with some applications, for
media with defects having the form of a network of very thin tubes, like porous chan-
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nels and dislocations, were formulated, using the same methods of non-equilibrium
thermodynamics in the case for instance of piezoelectric, elastic, semiconductor and
superlattice structures. Also in [2], [3], [8], [18] and [31] non-equilibrium tempera-
tures and heat equation were studied in media with internal variables and in the same
thermodynamic framework of non-equilibrium thermodynamics. A relatively high
temperature gradient could produce, for instance, a migration of defects inside the
system.

The Chapter is organised as follows. In Sections 2.1 and 2.2 the governing equations
of the model, describing the mechanical, thermal and transport properties of solid
structure with porous channels, saturated by fluid flow, derived in the framework of ex-
tended thermodynamics with internal variables, are worked out when the considered
media are isotropic under orthogonal transformations. In fact, the relations obtained
in Chapter 1 (the constitutive relations (1.3.11)-(1.3.14), the affinities (1.3.15)-(5.1.20)
and the closed system (1.6.1)-(1.6.8)) are quite complicated due to their anisotropic
nature. Therefore it may be useful to study a simpler case, i.e. the isotropic one where
the existence of spatial symmetry properties in the medium simplifies the form of the
constitutive equations, the affinities and the rate equations in such a way the Carte-
sian components of these equations do not depend on all the Cartesian components of
the independent variables of the vector space C , defined by (1.1.9). This statement is
called Curie symmetry principle [4]. There are two types of these symmetries:

• isotropy, namely symmetry with respect to all rotations of the frame of axes;

• perfect isotropy, namely symmetry with respect to all rotations and to inversions of the
frame of axes.

These two types of symmetries are treated in detail and the constitutive, rate, tem-
perature and energy equations are worked out in these two different cases. In partic-
ular, the generalized Maxwell-Cattaneo-Vernotte and Fick-Nonnenmacher rate equa-
tions for the heat and fluid fluxes and the rate equations for the porous field and its
flux are derived, showing the influence of porous defects on the transport properties
of the considered media. Finally, the closure of the whole system of equations, de-
scribing the behaviour of the isotropic and perfect isotropic porous structures under
consideration, is deduced. In Appendix A special forms for third, fourth, fifth and
sixth order isotropic tensors, having symmetry properties, coming from the symmetry
of the strain tensor εij and the structural permeability tensor rij , and also from the
used model, are derived. The expressions are cumbersome but are useful in computer
programming for physical phenomena simulations. The obtained results can be ap-
plied to simpler real cases, where it is possible to neglect the influence of some fields
occurring inside the examined media.

The studies presented in this Chapter are contained in the article [6]:

A. Famà and L. Restuccia. Non-Equilibrium thermodynamics framework for fluid flow
and porosity dynamics in porous isotropic media. Annals of the Academy of Romanian
Scientists, Series on Mathematics and its Applications 12(1-2/2020), pp. 198-225, 2020.
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2.1 isotropic porous media with respect to all
rotations of axes frame

In the following two Subsections we will study the form of the balance equations, the
constitutive relations, the rate equations, the temperature equation and the closure of
equations system, describing the behaviour of the porous media under consideration
having symmetry properties invariant with respect to all rotations of axes frame.
First, we examine the form of isotropic tensors of ranks up to six.

The tensors of ranks up to three take the form [12]

Li = 0, Lij = Lδij , Lijk = L ∈ijk, (2.1.1)

where ∈ijk is the Levi-Civita tensor and L is a scalar.
Tensors of order four Lijkl must have the form [12]

Lijkl = L1δijδkl + L2δikδjl + L3δilδjk, (2.1.2)

with Li (i = 1,2,3) scalars.
Tensors of order five Lijklm and of order six Lijklmn must have the form, respectively,

(see [5])

Lijklm = L1 ∈ijk δlm+ L2 ∈ijl δkm+ L3 ∈ijm δkl + L4 ∈ikl δjm+ L5 ∈ikm δlj + L6 ∈ilm δjk,
(2.1.3)

Lijklmn = L1δijδklδmn+ L2δijδkmδln+ L3δijδknδlm+ L4δikδjlδmn+ L5δikδjmδln

+ L6δikδjnδlm+ L7δilδjkδmn+ L8δilδjmδkn+ L9δilδjnδkm+ L10δimδjkδln

+ L11δimδjlδkn+ L12δimδjnδkl + L13δinδjkδlm+ L14δinδjlδkm+ L15δinδjmδkl ,
(2.1.4)

with Li (i = 1,2, . . . ,15) scalars.

2.1.1 Constitutive relations, generalized affinities and rate equations in the

isotropic case

Taking into account (2.1.1)-(2.1.4), in the case of an isotropic medium with respect
to all rotations of axes frame, the isotropic constitutive relations for τij , Π

r
ij , S and Πc,

derived from (1.3.11)-(1.3.14) with λθεij , λcεij , λrθij and λrcij having the form (2.1.1)2 and
cijlm, λrεijlm and λrrijlm taking the form (A.3.3) of Appendix A, because of their particular
symmetries, are:
for the stress tensor

τij = λδijεkk + 2µεij −λθεδijθ+λrε1 δijRkk +λ
rε
2 Rij −λ

cεδijC, (2.1.5)
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where λ and µ are the well known Lamé constants, that represent the two significant
independent components of cijlm, and λrε1 and λrε2 are the two significant independent
components of λrεijlm;
for the entropy density

S = S0 +
λθε

ρ
εii +

cv
T0
θ − λ

rθ

ρ
Rii −

λθc

ρ
C; (2.1.6)

for the potential of porous field

Πr
ij = λrε1 δijεkk +λ

rε
2 εij +λ

rθδijθ+λrr1 δijRkk +λ
rr
2 Rij −λ

rcδijC, (2.1.7)

where λrr1 and λrr2 are the two significant independent components of λrrijlm;
for the chemical potential of the mass flux

Πc = −λ
cε

ρ
εii +

λθc

ρ
θ+

λrc

ρ
Rii +

λc

ρ
C. (2.1.8)

Also, by virtue of (2.1.1)-(2.1.4), from (1.3.15)-(1.3.17), we deduce the expressions for
the isotropic generalized affinities, Πν

ijk, Π
q
i and Π

jc

i , where the tensors λqqij , λqj
c

ij and λj
cjc

ij

have the form (2.1.1)2, λνqijkl and λνj
c

ijkl keep the form (A.3.9) and the tensor λννijklmn of
order six assumes the form (A.4.3) of Appendix A, because of its special symmetry. In
particular, we have:

the generalized affinity conjugated to the flux Vijk

Πν
ijk = [λνν1 (δijδklδmn+ δinδjkδlm) +λ

νν
2 (δijδkmδln+ δikδjnδlm) +λ

νν
3 δijδknδlm

+λνν4 (δikδjlδmn+ δimδjkδnl) +λ
νν
5 δikδjmδln+λ

νν
6 δilδjkδmn+λ

νν
7 δilδjmδkn

+λνν8 δilδjnδkm+λνν9 δimδjlδkn+λ
νν
10 (δimδjnδkl + δinδjlδkm) +λ

νν
11δinδjmδkl ]Vlmn

+ [λ
νq
1 δikδjl +λ

νq
2 (δijδkl + δilδjk)]ql + [λ

νjc

1 δikδjl +λ
νjc

2 (δijδkl + δilδjk)]j
c
l ,
(2.1.9)

where λννs (s = 1, . . .11) are the 11 significant independent components of λννijklmn, λνq1 ,

λ
νq
2 the two significant independent components of λνqijlm and λνj

c

1 , λνj
c

2 the two signifi-

cant independent components of the tensor λνj
c

ijlm.
Equation (2.1.9) gives

Πν
ijk = λνν1

(
δijVkll + δjkVlli

)
+λνν2

(
δijVlkl + δikVllj

)
+λνν3 δijVllk +λνν4

(
δikVjll + δjkVlil

)
+λνν5 δikVljl +λνν6 δjkVill +λνν7 Vijk +λ

νν
8 Vikj +λ

νν
9 Vjik +λ

νν
10

(
Vkij + Vjki

)
+λνν11Vkji +λ

νq
1 δikqj +λ

νq
2

(
δijqk + δjkqi

)
+λ

νjc

1 δikj
c
j +λ

νjc

2

(
δijj

c
k + δjkj

c
i

)
;

(2.1.10)
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the generalized affinity conjugated to the heat flux qi

Π
q
i = λ

νq
1 Vkik +λ

νq
2 (Vikk + Vkki) +λqqqi +λqj

c
jci ; (2.1.11)

the generalized affinity conjugated to the mass flux jci

Π
jc

i = λ
νjc

1 Vkik +λ
νjc

2 (Vikk + Vkki) +λj
cqqi +λ

jcjcjci . (2.1.12)

The isotropic rate equations for the fluxes and the internal variable are derived from (1.4.1),
(1.4.2), (1.4.8) and (1.4.16).
In particular, for the structural permeability tensor rij , because of the tensors βsijk (s =
3,4,6,7) of order three vanish (see Section A.1 of Appendix A), the fourth order tensor
β1
ijkl and β2

ijkl have the form (A.3.3) of the Appendix A and the fifth order tensors

β5
ijklm and β8

ijklm assume the form (A.2.3) and (A.2.6), respectively, of the Appendix A,
we work out

ṙij + Vijk,k = [β1
1δijδkl + β

1
2(δikδjl + δilδjk)]εkl + [β2

1δijδkl + β
2
2(δikδjl + δilδjk)]rkl

+ [β5
1(∈ikl δjm+ ∈jkl δim) + β

5
2(∈ikm δlj+ ∈jkm δli) + β

5
3(∈ilm δjk+

+ ∈jlm δik)]Vklm+ β8(∈ikm δlj+ ∈jkm δli+ ∈ilm δjk+ ∈jlm δik)rkl,m,
(2.1.13)

in which β1
1 , β1

2 and β2
1 , β2

2 , are the two significant independent components of β1
ijkl and

β2
ijkl , respectively, β5

s (s = 1,2,3) are the three significant independent components of

β5
ijklm and β8 is the only one significant independent component of β8

ijklm, due to its
particular symmetry.
Equation (2.1.13) gives

ṙij + Vijk,k = β1
1δijεkk + β

1
2εij + β

2
1δijrkk + β

2
2rij + β

5
1(∈ikl Vklj+ ∈jkl Vkli)

+ β5
2(∈ikl Vkjl+ ∈jkl Vkil) + β

5
3(∈ilk Vjlk+ ∈jlk Vilk)

+ β8(∈ikm rkj,m+ ∈jkm rki,m+ ∈jlm ril,m);
(2.1.14)

for the flux Vijk of the structural permeability tensor rij , taking into account that the
fourth order tensors γrijkl (r = 1,2,4,5) and the sixth order tensor γ6

ijklmn have the form
(2.1.2) and (A.4.6), respectively, of the Appendix A, we have:

V̇ijk = (γ1
1δijδkl + γ

1
2δikδjl + γ

1
3δilδjk)j

c
l + (γ2

1δijδkl + γ
2
2δikδjl + γ

2
3δilδjk)ql

+ (γ3
1δijδklδmn+ γ

3
2δijδkmδln+ γ

3
3δijδknδlm+ γ3

4δikδjlδmn+ γ
3
5δikδjmδln

+ γ3
6δikδjnδlm+ γ3

7δilδjkδmn+ γ
3
8δilδjmδkn+ γ

3
9δilδjnδkm+ γ3

10δimδjkδln

+ γ3
11δimδjlδkn+ γ

3
12δimδjnδkl + γ

3
13δinδjkδlm+ γ3

14δinδjlδkm+ γ3
15δinδjmδkl)Vlmn

+ (γ4
1δijδkl + γ

4
2δikδjl + γ

4
3δilδjk)c,l + (γ5

1δijδkl + γ
5
2δikδjl + γ

5
3δilδjk)T,l

+ [γ6
1 (δklδmn+ δkmδln)δij + γ

6
2δijδknδlm+ γ6

3 (δjlδmn+ δjmδln)δik + γ
6
4δikδjnδlm

+ γ6
5 (δilδmn+ δimδln)δjk + γ

6
6 (δilδjm+ δimδjl)δkn+ γ

6
7 (δilδkm+ δimδkl)δjn

+ γ6
8δinδjkδlm+ γ6

9 (δjlδkm+ δjmδkl)δin]rlm,n,
(2.1.15)
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in which γ6
s (s = 1, . . .9) are the 9 significant independent components of γ6

ijklmn.
Equation (2.1.15) can be written as follows

V̇ijk = γ1
1δijj

c
k + γ

1
2δikj

c
j + γ

1
3δjkj

c
i + γ

2
1δijqk + γ

2
2δikqj + γ

2
3δjkqi + γ

3
1δijVkll + γ

3
2δijVlkl

+ γ3
3δijVllk + γ

3
4δikVjll + γ

3
5δikVljl + γ

3
6δikVllj + γ

3
7δjkVill + γ

3
8Vijk + γ

3
9Vikj

+ γ3
10δjkVlil + γ

3
11Vjik + γ

3
12Vkij + γ

3
13δjkVlli + γ

3
14Vjki + γ

3
15Vkji + γ

4
1δijc,k

+ γ4
2δikc,j + γ

4
3δjkc,i + γ

5
1δijT,k + γ

5
2δikT,j + γ

5
3δjkT,i + γ

6
1δijrkl,l + γ

6
2δijrll,k

+ γ6
3δikrjl,l + γ

6
4δikrll,j + γ

6
5δjkril,l + γ

6
6 rij,k + γ

6
7 rik,j + γ

6
8δjkrll,i + γ

6
9 rjk,i ;

(2.1.16)

for the heat flux qi , because the fourth order tensors χ3
ijkl and χ6

ijkl have the form (2.1.2)
and (A.3.12) of the Appendix A, we obtain the following expression

τqq̇i = χ1jci − qi +χ
3
1Vikk +χ

3
2Vkik +χ

3
3Vkki +χ

4c,i −χ5T,i +χ
6
1rik,k +χ

6
2rkk,i , (2.1.17)

with χ6
1 and χ6

2 the two significant independent components of χ6
ijkl .

In the case where the coefficients χ1, χ3
s (s = 1,2,3), χ4, χ6

1, and χ6
2 are negligible, equa-

tion (2.1.17) becomes the well-known Maxwell-Cattaneo-Vernotte equation τqq̇i+qi =
−χ5T,i , allowing finite speeds of thermal propagation and giving Fourier equation
qi = −χ5T,i , describing thermal disturbances with infinite velocity of propagation,
when the relaxation time τq goes to zero;
for the mass flux jci , taking into consideration that the fourth order tensors ξ3

ijkl and

ξ6
ijkl have the form (2.1.2) and (A.3.12), respectively, of the Appendix A, we obtain

τ j
c
j̇ci = −j

c
i +ξ

2qi +ξ
3
1Vikk+ξ

3
2Vkik+ξ

3
3Vkki +ξ

4c,i +ξ
5T,i +ξ

6
1 rik,k+ξ

6
2 rkk,i , (2.1.18)

in which ξ6
1 and ξ6

2 are the two significant independent components of ξ6
ijkl .

The isotropic generalized telegraph temperature equation is deduced from (1.5.12), when
the second order tensors kij , γij , ηij , ν

1
ij and ν2

ij have the form (2.1.1)2 and the fourth

order tensors ν3
ijkl and ν6

ijkl assume, respectively, the form (2.1.2) and (A.3.12) of Ap-
pendix A:

τqT̈ + Ṫ = kT,ii −γ(τqε̈ii + ε̇ii) +ϕ (τqc̈+ ċ) + η (τq r̈ii + ṙii)− ν1jci,i − ν
4c,ii

−
(
ν3

1Vijj,i + ν
3
2Vjij,i + ν

3
3Vjji,i

)
−
(
ν6

1rij,ji + ν
6
2rjj,ii

)
,

(2.1.19)

in which ν6
1 and ν6

2 are the two significant independent components of ν6
ijkl .

The evolution equations (2.1.14), (2.1.16), (2.1.17), (2.1.18) and (2.1.19) describe dis-
turbances with finite velocity and fast phenomena having relaxation times comparable
or higher than the relaxation times of the materials taken into account. Also, in these
equations there are terms taking into consideration non-local effects and relating these
rate equations to the inhomogeneities present in the system.
The isotropic linearized internal energy balance is worked out from (1.5.14), when the
second order tensors λθεij and λrθij have the form (2.1.1)2:

ρė = T0λ
θεu̇i,i + ρcvṪ − T0λ

rθ ṙii − T0λ
θcċ. (2.1.20)
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2.1.2 Closure of the governing system of equations in the isotropic case

In this Subsection, to close the system of equations describing linear isotropic porous
porous media filled by fluid flow, we linearize the balance equations (1.1.10), (1.1.11)
and the rate equations (2.1.14), (2.1.16), (2.1.17) and (2.1.18) around the equilibrium
state (1.3.1)-(1.3.3). Taking into account the constitutive relations (2.1.5) and (2.1.6),
the linearized temperature equation (2.1.19) and internal energy balance equation
(2.1.20), the definitions εij =

1
2(ui,j + uj,i) and vi = u̇i , indicating the deviations of

the fields from the thermodynamic equilibrium state by the same symbols of the fields
themselves, and considering the case where we may replace the material derivative by
the partial time derivative, we obtain the following closed system of 45 equations for
45 unknowns: 1 for c, 3 for ui , 6 for rij , 27 for Vijk, 3 for qi , 3 for jci , 1 for T and 1 for e

ρ
∂c
∂t

= −jci,i , (2.1.21)

ρ
∂2ui
∂t2

= (λ+ µ)uk,ki + µui,kk −λθεT,i +λ
rε
1 rkk,i +λ

rε
2 rik,k −λcεc,i , (2.1.22)

∂rij
∂t

= −Vijk,k + β
1
1δijuk,k +

1
2
β1

2(ui,j + uj,i) + β
2
1δijrkk + β

2
2rij

+ β5
1(∈ikl Vklj+ ∈jkl Vkli) + β

5
2(∈ikl Vkjl+ ∈jkl Vkil)

+ β5
3(∈ilk Vjlk+ ∈jlk Vilk) + β

8(∈ikm rkj,m+ ∈jkm rki,m+ ∈jlm ril,m),

(2.1.23)

∂Vijk
∂t

= γ1
1δijj

c
k + γ

1
2δikj

c
j + γ

1
3δjkj

c
i + γ

2
1δijqk + γ

2
2δikqj + γ

2
3δjkqi + γ

3
1δijVkll

+ γ3
2δijVlkl + γ

3
3δijVllk + γ

3
4δikVjll + γ

3
5δikVljl + γ

3
6δikVllj + γ

3
7δjkVill

+ γ3
8Vijk + γ

3
9Vikj + γ

3
10δjkVlil + γ

3
11Vjik + γ

3
12Vkij + γ

3
13δjkVlli

+ γ3
14Vjki + γ

3
15Vkji + γ

4
1δijc,k + γ

4
2δikc,j + γ

4
3δjkc,i + γ

5
1δijT,k

+ γ5
2δikT,j + γ

5
3δjkT,i + γ

6
1δijrkl,l + γ

6
2δijrll,k + γ

6
3δikrjl,l + γ

6
4δikrll,j

+ γ6
5δjkril,l + γ

6
6 rij,k + γ

6
7 rik,j + γ

6
8δjkrll,i + γ

6
9 rjk,i ,

(2.1.24)

τq
∂qi
∂t

+ qi = χ1jci +χ
3
1Vikk +χ

3
2Vkik +χ

3
3Vkki +χ

4c,i −χ5T,i +χ
6
1rik,k +χ

6
2rkk,i , (2.1.25)

τ j
c ∂jci
∂t

+ jci = ξ2qi + ξ
3
1Vikk + ξ

3
2Vkik + ξ

3
3Vkki + ξ

4c,i + ξ
5T,i + ξ

6
1 rik,k + ξ

6
2 rkk,i , (2.1.26)

τq
∂2T

∂t2
+
∂T
∂t

= kT,ii −γ
(
τq
∂2ui,i
∂t2

+
∂ui,i
∂t

)
+ϕ

(
τq
∂2c

∂t2
+
∂c
∂t

)
+ η

(
τq
∂2rii
∂t2

+
∂rii
∂t

)
− ν1jci,i − ν

4c,ii −
(
ν3

1Vijj,i + ν
3
2Vjij,i + ν

3
3Vjji,i

)
−
(
ν6

1rij,ji + ν
6
2rjj,ii

)
,

(2.1.27)

ρ
∂e
∂t

= T0λ
θε∂ui,i

∂t
+ ρcv

∂T
∂t
− T0λ

rθ∂rii
∂t
− T0λ

θc∂c
∂t

. (2.1.28)
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Notice that also in the case where we do not take into consideration equation (2.1.28)
for the internal energy, the system of equations (2.1.21)-(2.1.27) is still closed.

2.2 isotropic porous media with respect to all
rotations and inversions of axes frame (per-
fect isotropic case)

In this Section we consider perfect isotropic porous media having symmetry proper-
ties invariant with respect to all rotations and to inversions of the frame of axes.
In this case the tensors of odd order vanish [12], i.e.

Li = 0, Lijk = 0, Lijklm = 0, (2.2.1)

the tensors of even order are given by (2.1.1)2, (2.1.2) and (2.1.4) and take equal forms to
those valid in the isotropic case, coming from special symmetry properties (see Sections
A.3 and A.4 of the Appendix A).

2.2.1 Constitutive relations, generalized affinities, rate, temperature and en-

ergy equations in perfect isotropic case

Notice that all the tensors that appear in equations (1.3.11)-(1.3.17), (1.4.2), (1.4.8),
(1.4.16), (1.5.12) and (1.5.14) are of even order, so that the constitutive relations, the
generalized affinities, the rate equations for the porous field flux, the heat flux and the
mass flux, the temperature and energy equations remain unchanged, with respect the
isotropic case, and assume the form (2.1.5)-(2.1.8), (2.1.10)-(2.1.12), (2.1.16)-(2.1.18)
and (2.1.19), (2.1.20). Taking into account relations (2.2.1), the only different equation
in this case is the rate equation (1.4.1) for the internal variable rij , that takes the form

ṙij = −Vijk,k + β
1
1δijεkk + β

1
2εij + β

2
1δijrkk + β

2
2rij . (2.2.2)

2.2.2 Closure of the governing system of equations in the perfect isotropic

case

Linearizing the balance equations (1.1.10), (1.1.11) and the rate equations (2.2.2)
and (2.1.16)-(2.1.18) around the equilibrium state (1.3.1)-(1.3.3), taking into account
the constitutive relations (2.1.5) and (2.1.6), the linearized temperature and energy
equations (2.1.19) and (2.1.20), equations (2.1.21), (2.1.22), (2.1.24)-(2.1.28) remain
unchanged and relation (2.2.2) takes the form

∂rij
∂t

= −Vijk,k + β
1
1δijεkk + β

1
2εij + β

2
1δijrkk + β

2
2rij , (2.2.3)
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where we have considered the case in which the material derivative may be replaced
by the partial time derivative and the deviations of the fields from the thermodynamic
equilibrium state have been indicated by the fields themselves. Thus, in total we have
a closed set of 45 equations for the 45 unknowns c, ui , rij , Vijk, qi , jci , T and e. The
obtained results can be applied to real situations. The derived system of equations is
very complex but in simpler cases it is possible to find analytical or numerical solutions.
In particular, in [7] we have studied coupled harmonic porous defects and fluid flux
waves, calculating the dispersion relation and the propagation modes of these complex
waves.
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[8] A. Famà, L. Restuccia, and P. Ván. “Generalized ballistic-conductive heat trans-
port laws in three-dimensional isotropic materials”. In: Continuum Mechanics
and Thermodynamics (2020).

https://doi.org/10.1007/978-3-319-56934-5
https://doi.org/10.1478/AAPP.97S1A5
https://doi.org/10.1478/AAPP.97S1A5
https://doi.org/10.1142/S021988781640003X
https://doi.org/10.1142/S021988781640003X
http://ejde.math.txstate.edu


references 29
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3 A S IMPLE MODEL OF POROUS MED I A
W I TH ELAST I C DE FORMAT IONS AND
EROS ION OR DEPOS I T ION

This Chapter deals with a model for solids with porous channels filled by an incom-
pressible isotropic fluid. The Darcy-Brinkman-Stokes law is derived, that represents a
rate equation for the local mass flux of the fluid, presenting relaxation times in which
this flux evolves towards its local-equilibrium value, viscous effects and a permeabil-
ity tensor referring to a response of the system to an external agent, i.e. the fluid
flow produced by a pressure gradient. The erosion/deposition phenomena in an elas-
tic porous matrix are also studied and particular thermal porous metamaterials, that
have interesting functionality, like in fluid flow cloaking, are illustrated as application
of the obtained results. This derived model is completely in agreement with a the-
ory formulated in the framework of the rational irreversible thermodynamics, where
two internal variables are introduced (a symmetric structural porosity tensor and a
symmetric second order tensor influencing viscous phenomena, that is interpreted as
the symmetric part of the velocity gradient), when the results are considered in a first
approximation and some suitable assumptions are done. The constitutive theory is
worked out by using Liu’s [20] and Wang’s theorems [36], [37] and [38]. The obtained
theory has applications in several technological sectors, like physics of soil, pharma-
ceutics, physiology, etc. and contributes to the study of new porous metamaterials.

In this Chapter, besides considering the effects of elastic coupling of the fluid with
the porous solid matrix, we also consider erosive effects of the fluid flow on the solid
matrix or, inversely, deposition effects, which lead to ageing effects of the porous
medium. To this aim we focus our attention on a particular case sufficiently interesting
and simple to explicitly illustrate some practical applications of suitable constitutive
equations, that are derived in the present Chapter by the elaboration of an appropriate
thermodynamic model. The description of porous media with effects of erosion or de-
position are of great interest in the physics of soil, in pharmaceutics (controlled release
of medicals from solid matrices) and in physiology.

The organization of the Chapter is the following. In Section 3.1 an incompressible
isotropic fluid through the channels of a porous solid is considered. A porosity ten-
sor r, describing the geometrical anisotropic structure of porous tubes is introduced
as internal variable linked to a permeability tensor D, namely D = D(r). The balance
equations for a viscous fluid filling the porous skeleton, where the friction between the
walls of the porous channels and the fluid is taken into account, are considered. The
total fluid flow rate along rectilinear channels and along curved channels is studied
and the Darcy-Brinkman-Stokes law [17], [35] is worked out for the local mass flux
of the fluid J. In Section 3.2 the description of a fluid flow across a rigid porous ma-

32
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trix is described and a model for erosion of the channels due to the fluid flow along
them or solid deposition on their walls is carried out. Some didactic illustrations are
presented, like a Poiseuille flow in a cylindrical channel with rigid walls. Section 3.3
regards some practical applications to porous metamaterials, like fluid flow cloaking,
barriers for noise isolation and attenuation of seismic waves [39], lenses for ultrasonic
inspections [1], analysis of the mechanical response of solid foams [6], [7], [34] and ab-
sorbing protections against the noise pollution [19]. Sections 3.4, 3.5 and 3.6 deal with
a theoretical model for a fluid through the network of channels of a porous medium, in
the framework of rational irreversible thermodynamics with internal variables, where
in the thermodynamic state vector, besides the classical thermodynamic variables tem-
perature, T , its gradient, ∇T , and the small strain tensor, ε, two internal variables
are introduced: the structural porosity tensor r à la Kubik and the second order sym-
metric tensor m influencing viscous phenomena, so that the heat flux q and the stress
tensor τ are constitutive functions. We apply Liu’s theorem [20] where all balance and
evolution equations are considered as mathematical constraints for the general valid-
ity of the inequality and we derive the Lagrange multipliers, the laws of state and the
entropy flux. Using Wang’s theorems [36], [37], [38] (see also [33]) we represent the un-
known constitutive functions. The obtained theory is completely in accordance with
the model for porous media filled by fluid flow with erosion/deposition developed in
Sections 3.1 and 3.2, when the internal variable m is interpreted as the symmetric part
of the velocity gradient, the results are considered in a first approximation and some
suitable assumptions are done. Appendix B is dedicated to the objective representation
of scalar, symmetric tensor and vector functions.

The studies presented in this Chapter are contained in the article [5]:

A. Famà, L. Restuccia and D. Jou. A simple model of porous media with elastic defor-
mations and erosion or deposition. Zeitschrift für angewandte Mathematik und Physik
(ZAMP) 71(124), pp. 1-21, 2020.

3.1 a model for porous media

We consider an incompressible isotropic fluid through the network of channels of a
porous medium [17], [35]. The equation for the local mass flux of the fluid J = ρv is

τJ · J̇ + J = −1
η

D · ∇p+ η̃∆J, (3.1.1)

or in Cartesian components

τJik J̇k + Jk = −
1
η
Dikp,k + η̃Ji,kk. (3.1.2)

In (3.1.1) τJ is a relaxation-time tensor related to the inertia of the fluid in the pores
of the system, i.e. it expresses the typical times in which J will decay to zero after
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suddenly setting ∇p = 0, D = D(r) is the permeability tensor, linked to the structural
porosity tensor r ≡ (rij), p is the local pressure acting on the fluid, η is the viscosity
coefficient of the fluid, ∆ is the Laplacian operator and η̃ has dimensions of length
square and proportional to the viscosity of the fluid. The structural porosity tensor r
describes the anisotropic structure of a network of porous channels, of the medium.
The permeability tensor D and the structural porosity tensor r are deeply related to
each other, but they are conceptually different: the concept of permeability refers to
a response of the system to an external agent (namely, the fluid flow J produced by a
pressure gradient ∇p); since a pressure gradient in the x direction may produce a fluid
flow in the x, the y and z directions, and so on, the coefficient relating the flow and
the pressure gradient must be a tensor. On the other side, the concept of structural
porosity tensor refers to the geometrical structure of the ensemble of pore channels
inside the material (see Fig. 2), independently on whether some fluid is flowing or
staying inside them. The trace of r indicates the relative elementary total volume of
the pores, compared to the elementary total volume of the system. It may change
from point to point, for small reference volumes, in inhomogeneous systems. Equation

Figure 2: The permeability tensor relates the pressure gradient to the flow of fluid in the mate-
rial. In the figure a situation sketched, in which pressure gradient is imposed along
the y axis. As a result, the fluid flows Jx, Jy and Jz emerge from the porous material
through a plane perpendicular to the x axis, the y axis and the z axis, respectively.

(3.1.1) comes from the momentum balance equation for the fluid, having the form

ρv̇ = −∇ ·P + ρF, ρv̇i = −Pij,j + ρFi , (3.1.3)

with v the local velocity of the fluid, P the pressure tensor and ρF an external force.
This equation must be averaged over the channels in the volume being considered.
Here we will consider

P = pU − 2η(∇v)s, Pij = pδij − 2ηv(i,j), (3.1.4)

where (∇v)s ≡ (v(i,j)) is the symmetric part of ∇v, or in particular v(i,j) is given by the
time derivative of the small strain tensor εij ,

v(i,j) = ε̇ij =
1
2
(vi,j + vj,i), (3.1.5)
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p is the local pressure, U is the unit tensor and η the shear viscosity and

ρF = −α · v, ρFi = −αikvk. (3.1.6)

This term describes the friction between the walls of the porous channels and the fluid.
The tensor α describes the effect of the walls of the pores when the fluid flows through
them. For a Newtonian fluids in rectilinear channels this term is zero and the viscous
friction is obtained by integration of the viscous term in the Navier-Stokes equation,
namely

ρv̇ = −∇p+ η∆v, ρv̇i = −p,i + ηvi,kk. (3.1.7)

From this equation, in a rectilinear cylindrical channel of radius R and length L, and
assuming the non-slip boundary condition for the velocity on the walls, one obtains
for the total fluid flow rate Q along the channel the Poiseuille law

Q =
πR4

8η
∆p

L
, (3.1.8)

where
∆p

L
is the pressure gradient along the channel.

We observe that if we have N parallel and equal channels (see Fig. 3) (same length,
same radius R), the total flow rate along them will be

Figure 3: Total flux in parallel and equal channels.

Qtot =
∑
i

Qi =
NπR4

8η
∆p

L
. (3.1.9)

The average flow rate per unit of transversal area (let us say Ayz, if we consider the flow
along the x direction) will be

Javerage =
NπR4

8ηAyz

∆p

L
= −NπR

4

8ηAyz
∇p, (3.1.10)

where we have used ∇p = −∆pL .
Therefore, by comparing with (3.1.1) in steady state, the tensor D will be in this simple

case Dxx ≡
NπR4

8Ayz
(notice that the unit of measurement of permeability is length2). In
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the particular geometry of this simple example, the other components of the tensor D
will be zero.

If the channels have different radii Ri , (3.1.9) becomes

Qtot =

∑
i

NiπR
4
i

8η

 ∆pL , (3.1.11)

with Ni the number of pores with radius Ri , and therefore

J ≡

 1
Area

∑
i

NiπR
4
i

8

︸                 ︷︷                 ︸
Permeability

1
η

∆p

L
. (3.1.12)

Here it is seen that the tensor D depends on NiR
4
i , i.e. on the fourth moment of the

distribution function of the radii of the pores.
If we consider curved channels (see Fig. 4) the total flow rate through them will

have components not only in the direction of the pressure gradient, but also in other
directions, since for the curved channels

(
∆p
L

)
x

drives the flows Jx and Jy .

Figure 4: Average flow rate in curved channels.

However, in a porous medium with narrow and curved bifurcating and labyrinthic
channels the situation is much more complicated. The velocity v has a different direc-
tion at every point of the medium, depending on the direction of the corresponding
channel (the local velocity v will be parallel to the tangent of the line representing the
narrow channel along which the fluid is flowing). In this case, the velocity v measured
will be the average velocity in the channels of the region being studied, and the force
on the walls will be phenomenologically described by (3.1.6) whereas the term in η∆v
will play a secondary role.

Then, making the average of (3.1.3) in a small porous region and writing J = ρ〈v〉,
with 〈v〉 the average velocity in the pores of the considered region, we will have

J̇ = −∇p − 1
ρ

α · J +
η

ρ
∆J, J̇i = −p,i −

1
ρ
αikJk +

η

ρ
Ji,kk. (3.1.13)
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In equation (3.1.13) we have taken into account that the fluid is incompressible (∇· J =
0).
Now we multiply both sides of equation (3.1.13) times the matrix ρα−1, the inverse of
α, and have

ρα−1 · J̇ + J = −1
η

(
ρηα−1

)
· ∇p+ ηα−1 ·∆J, ρα−1

ik J̇k + Ji = −
1
η

(
ρηα−1

ik

)
p,k + ηα

−1
ik Jk,ll .

(3.1.14)
The tensor ρηα−1 may be interpreted as the permeability tensor D appearing in the
well-known Darcy’s law, namely

J = −1
η

D · ∇p, Ji = −
1
η
Dikp,k. (3.1.15)

We rewrite equation (3.1.14)1 as

τJ · J̇ + J = −1
η

D · ∇p+ η̃ ·∆J,

where τJ = ρα−1 is the relaxation times tensor expressing the typical times in which J
will decay to 0 after suddenly setting ∇p = 0, and η̃ik = ηα−1

ik = 1
ρDik. This is precisely

equation (3.1.1), which is known as Darcy-Brinkman-Stokes law [17], [35], and in it
the term in η̃ ·∆J is considered a relatively minor correction describing the zones with
relatively wide and ordered channels inside the medium. Equations of the form (3.1.1),
containing the Laplacian of the flux, are also called Guyer-Krumhansl equation when
the variable is the heat flux q instead of the mass flow J and ∇T instead of ∇p [8], [9].

3.2 elastic porous matrix with erosion/deposition

Equation (3.1.1) is sufficient to describe the fluid flow across a rigid porous matrix.
We consider the structural porosity tensor r as an internal variable of the medium with
its own dynamics. In this dynamics we may consider two effects:

a) the deformability of the material of the matrix, assumed to be elastic, so that the
channels may dilate and contract;

b) a slow erosion of the channels because of the fluid flow along them, indeed we
consider that the material of the porous matrix is slightly soluble in the flowing
fluid.

Alternatively to erosion, we could consider the slow deposition of some material
carried by the fluid on the walls of the porous medium. This would be the case, for
instance, of cholesterol carried by the blood and slowly sticking to the walls and accu-
mulating on them. In this case, we could consider some organ of the body as a porous
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medium, in the sense that the network of capillaries in the organ may be very complex
and tortuous. Thus, incorporating the possibility of erosion or of deposition may be of
interest either in geological problems or in physiological problems.

In fact, the combination of erosion/deposition and of elasticity may be of interest as
a basis of an analysis of ultrasonic waves through porous media, including expansion-
compression of the channels. Indeed, one could consider the consequences of the ul-
trasound on the erosion or the deposition (by instance, as a means to clean a network
of channels of an unwanted deposition of material on their walls) and producing vi-
brations of the walls.

We assume for the evolution equation of the porosity tensor r an expression in the
form

τr : ṙ+ r = (p−p0)A+B · J +C : (J⊗ J), τrijkl ṙkl+ rij = (p−p0)Aij +BijkJk+CijklJkJl ,
(3.2.1)

where τr is a fourth order tensor, A ≡ (Aij), B ≡ (Bijk) and C ≡ (Cijkl) are second, third
and fourth order tensors related to the spatial structure of the porous medium, and p0
is a reference pressure. The term in τr ≡ (τrijkl) considers the inertia of the material of
the solid matrix. The term in A assumes that, if the local pressure of the fluid increases,
the channels are dilated and the porosity increases. The terms in B and C describe how
a fluid flow erodes the pores and makes them wider (or narrower, in the case of solid
deposition on the walls), increasing (or decreasing) the porosity r, which is the most
suitable form for describing the erosion/deposition phenomenon in the practice. From
the mathematical point of view, a positive B · J (increase of porosity) would describe
erosion, whereas a negative B · J would describe deposition of matter on the wall of
the channels (decrease of porosity). Something similar could be said about the term
C : (J ⊗ J). In the case where we may represent τrijkl by only one scalar τr , equation
(3.2.1) reads

τr ṙ + r = (p − p0)A+ B · J +C : (J ⊗ J), τr ṙij + rij = (p − p0)Aij +BijkJk +CijklJkJl .
(3.2.2)

Equation (3.2.2) can be written in the general form of a rate equation of the following
type

τr ṙ =R, (3.2.3)

withR the source term, given by two contributions:

R=R(i) +R(e), (3.2.4)

withR(i) an internal source andR(e) an external one.
We assume that

R(i) = −r + (p − p0)A, R(i)
ij = −rij + (p − p0)Aij , (3.2.5)

R(e) = B · J +C : (J ⊗ J), R(e)
ij = BijkJk +CijklJkJl . (3.2.6)
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The expression (3.2.5)1 has been obtained also taking into account relation (3.6.6) of
Section 3.6, where the internal source has been calculated using a theoretical model
and the tensor Aij has been interpreted as the small deformation tensor εij .

Here we have related R(i) to a term which modifies the geometry of the porous
matrix, but not its composition, whereas R(e) modifies composition by removing (or
accumulating) some material. When there is a fluid flow J through the system, and it
is producing some erosion of the walls, it is expected that the porosity r will increase,
i.e. the radius of the channels will slowly increase when the material of the walls is
removed by the flow. Since the trace of r yields the fractional volume of the pores, the
trace of ṙ yields the increase of porosity (in the case of erosion) and is related to the
mass (or volume) of the matrix removed per unit time by the fluid flow.

By assuming that erosion (or deposition) are so slow that r is close to the steady state
value (p − p0)A (i.e. r ≈ (p − p0)A) in (3.2.2), we will have

τr tr (ṙ) = tr (B · J) + tr (C : J ⊗ J) , τr ṙii = BiikJk +CiiklJkJl . (3.2.7)

In erosion, tr (ṙ) > 0. If B and C are assumed independent of J, it follows that C must be
a positive definite tensor (negative definite in the case of deposition) and that B must
be zero (otherwise, inverting the direction of J would change erosion into deposition
and reciprocally, but in general this is not so). The tensor C is expected to be related to
r. If it is C ≡ (−α̃rijδkl), relation (3.2.7)2 reads

τr ṙii = −α̃riiJkJk. (3.2.8)

Thus, the increase of porosity volume will be

τer ṙv = −α̃rv , (3.2.9)

where rv = rii is the porous volume density and τer = τr/J2 the characteristic time of
erosion (in which J2 = JkJk). This indicates that the erosion time τer will decrease as
J−2, and it will be infinite (no erosion) for J = 0.

This expression for the erosion time refers to mechanical erosion produced by a
relative motion between the fluid and the wall. Another possible diminution of the
material of the solid matrix would be present in the case that the material is soluble
in the fluid. In this case, the quantity of solid material would be reduced also in the
case that the fluid is at rest. However, if the fluid is truly at rest, this reduction would
have a limit when the fluid would become saturated; if, instead, the fluid is flowing
and the porous system has a finite size, saturation would not be achieved and the solid
material would be transported by the fluid away from the limits of the system.

3.2.1 Specific illustration: elastic effects

A simple model illustrating the physical meaning of the first term in (p − p0)A in
equations (3.2.1) and (3.2.2) may be a Poiseuille flow in a cylindrical channel of length
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Figure 5: Poiseuille flow in a cylindrical channel with rigid walls.

L and radius Rwith elastic walls (as in the vascular system in physiology) [17], [35]. In
Fig. 5 a Poiseuille flow in a cylindrical channel with rigid walls is illustrated In Fig. 6
a Poiseuille flow in a cylindrical channel with elastic walls is presented In this last

Figure 6: Poiseuille flow in a cylindrical channel with elastic walls.

illustration the dilatation of the wall is counteracted by the elasticity of the wall [17].

Figure 7: The dilatation of the wall is counteracted by the elasticity of the wall.

The pressure force in the radial direction per unit length of the channel is

dFpressure = (p − p0)2πRdx. (3.2.10)

On the other side, if the Young modulus of the wall is E, the elastic extra force opposing
the dilatation or the compression of the wall, in a small length dx of the channel will
be (see Fig. 8)

dFelastic = −E
R−R0

R0
δ2πRdx (3.2.11)
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(remember that dF/A= ∆l/l) and δ is the thickness of the walls (see Fig. 9).

Figure 8: An illustration of elastic force.

Figure 9: Thickness of the wall.

If ρ′ is the mass density of the wall, the transversal equation of motion of the wall as
expressed in terms of the changes of R will be

ρ′δ2πR
d2R

dt2
= −ER−R0

R0
δ2πRdx+ (p − p0)2πRdx. (3.2.12)

This is the equation for a forced oscillator, with p − p0 the forcing term. The linearised
form of (3.2.12) without forcing is

ρ′
d2R

dt2
= − E

R0
(R−R0). (3.2.13)

From here one may identify a frequency ω0, given by ω2
0 ≡

E
R0ρ′

, which is the character-
istic vibration frequency of the elastic walls. Including the forcing term, (3.2.12) may
be written as

ρ′δ
d2R

dt2
= −ER−R0

R0
δ+ (p − p0). (3.2.14)

Thus, an oscillating fluid flow in the channel (produced for instance by an oscillating
pressure difference between the two ends of the channels) having the frequencyω0 will
exhibit a resonance with the elastic oscillations of the channels. The dependence of the
frequencyω0 with the unperturbed value R0 of the radius indicates that if the channels
have different values of the radius R0 not all the channels will enter in resonance with
an oscillating flow of a given frequency, but only those having the suitable value of R0.
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3.3 porous metamaterials

Notice that Darcy’s law (3.1.15) in the steady state and neglecting the Laplacian term,
is J = −(D/η)∇p. Thus is analogous to Fourier’s law q = −λ · ∇T , with λ the thermal
conductivity tensor. This analogy makes that several of the recent progress in thermal
metamaterials [4], [25], [26], [32] may also be applied to porous metamaterials. Indeed,
two particularly interesting functionalities of the thermal metamaterials are thermal
cloaking and thermal concentration. In thermal cloak, it is intended to deviate the
heat flux along a suitable annular region in order that heat does not penetrate a given
region inside the annulus. This is done in such a way that the flow is not arriving at
the plane at T2 red is the same as it would arrive if the system between walls 1 and 2
were homogeneous instead of having annular region inside it.

Figure 10: An illustration of thermal cloaking and of fluid flow cloaking: in thermal cloaking,
the heat flow is deviated around the central region; in fluid cloaking, the fluid flow
is deviated around the central region.

In porous systems, such a technique could be useful to improve the protection of, for
instance, a cylindrical column, against the flow of water in the surrounding soil from a
plane at pressure p1 to a parallel plane at pressure p2. To achieve this, the permeability
tensor in the annular region should be given a particular form analogous to that of the
thermal conductivity tensor of cloaking metamaterials, namely [32]

Drr = D0

(
R2

R2 −R1

)2 (
r −R1

R2 −R1

)2

< D0 (3.3.1)

Dθθ = D0
R2

2

R2
2 −R

2
1

> D0, (3.3.2)

with D0 the isotropic permeability of the medium surrounding the annular region and
Drr and Dθθ are the rr and θθ components of D, with R2 and R1 the external and
internal radii of the annulus in Fig. 10.

The second functionality, namely, flow concentration (see Fig. 11), could be useful
instead to concentrate the flow of water in a porous region on a particular zone, for
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instance in a well to be filled with water flowing from pressure p1 to pressure p2. In this
case, the anisotropic permeability of the annular region should satisfy DrrDθθ = D2

0 .

Figure 11: An illustration of flow concentration.

In this way, progress in metamaterials could be used in porous media. In order that
the annular region has the required values of the permeability, one need organizing
the pores in some particular arrangements, usually not found in natural materials.

There are many practical applications regarding studies of porous metamaterials in
different technological sectors.

In [39], a study on the wave propagation in one-dimensional fluid-saturated porous
metamaterials described by Biot’s model and, supporting two longitudinal waves, is
developed. The material parameters of the pore fluid (among which the viscosity and
the porosity) have a strong influence on both complex band structures and frequency
response function curves. With an increase (decrease) in viscosity (porosity), the at-
tenuation in the passing bands is first improved and then reduced. The results are
relevant in controlling acoustic wave propagation, creating an noise isolation and to
reduce the vibrations due, for instance, to seismic waves. Then, practical applications
can be obtained in earthquake engineering, geophysics, hydrology, ect.

Recently, there is great interest in increasing the capabilities of ultrasonic imaging
(sonography) and a rapid emergence of a new class of lenses based on metamateri-
als (with periodic or aperiodic structure, as illustrated in [1]), offering extraordinary
possibilities to control electromagnetic or acoustic waves [1], and improving medical
diagnostic procedures, using high frequency mechanical acoustic waves and having
poor resolution.

In [34] numerical studies deal with the conductivity and Young’s modulus of porous
metamaterials, based on a Gibson-Ashby’s cells model, having the behaviour of cellu-
lar materials with high-porosity properties (porosity higher than 70%), i.e the so-called
solid foams. Gibson and Ashby (see [6], [7]) proposed that the mechanical properties
of solid foams can be described considering the porous material as a periodic assem-
bly of open cubic cells and studied the behaviour of polyurethane, polyethylene, and
aluminium foams (closed or open cells), establishing constitutive equations based on
the analysis of the mechanical response of an ideal structure of a foam.
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In [19] the fact that the protection against acoustic pollution can be obtained in
terms of sound absorption by means of porous materials, namely acoustic metafoam,
mineral wool, fiber glass and others, efficient by virtue of their air-solid microstruc-
ture, is discussed. In particular, a new approach consisting in a combination of tra-
ditional poroelastic materials with locally resonant units embedded inside the pores
is proposed, because even after optimisation of foams microstructural design, the low
frequency performance of these metamaterials is still arduous.

3.4 theoretical model, including temperature
variations

In this Section, in the framework of extended irreversible thermodynamics with in-
ternal variables [2], [3], [11], [12], [13], [14], [15], [18], [21], [27], we develop a model
for a fluid through the network of channels of a porous medium, taking into account
a previous formulation for porous media saturated by a fluid flow [28], [29] (see also
[30], [31] and Chapters 1 and 2). The thermal field is described by the temperature T ,
its gradient T,i and the heat flux qi . The mechanical field is described by the symmetric
stress tensor τij and by the small strain tensor εij =

1
2(ui,j + uj,i), being u the displace-

ment vector. The viscous effects are illustrated by an internal variable m, influencing
the viscous phenomena. A further internal variable, the symmetric structural porosity
tensor rij à la Kubik [16], describes the geometrical structure of the porous channels
saturated by fluid flow.

We assume that the mass of the fluid filling the porous channels, and the elastic
porous skeleton form a two-components mixture of density ρ̃ [28], [29]. We indicate by
ρ the mass of the fluid in the porous matrix of density ρ̂. Thus, we have the following
expression: ρ̃ = ρ+ ρ̂. For the mixture of continua as a whole and also for each con-
stituent the following continuity equations are satisfied: ˙̃ρ+ρ̃vi,i = 0, ∂ρ

∂t +(ρv1i),i = 0,
∂ρ̂
∂t + (ρv2i),i = 0, where a superimposed dot denotes the material derivative, v1i and
v2i are the velocities of the fluid particles and of the particles of the elastic porous
matrix, respectively, and vi is the barycentric velocity of the whole body defined by
ρ̃vi = ρv1i + ρ̂v2i .

In order to formulate a model for a porous medium with elastic deformations and
erosion or deposition, filled by fluid flow, we suppose that all two mass densities ρ̃ and
ρ̂ are constant and that the solid velocity is much smaller than the fluid one

v2i � v1i , (3.4.1)

so that by virtue of (3.4.1) we can do the two following approximations

ρ̃vi ' ρv1i , and then ρv1i ' ρvi , (3.4.2)

and, in the following, we take into account the solid matrix only considering its geo-
metric structure with elastic porous channels influencing the viscous fluid filling them.
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Also, we may assume the porous skeleton at rest but with the pores expanding or con-
tracting, depending on the local pressure of the fluid.
Then, in our treatment we focus our attention on the behaviour of the fluid and we
choose the following thermodynamic state vector

C = {T ,∇T ,ε,m,r}, (3.4.3)

where ∇T ≡ (T,i) is the temperature gradient, so that the heat flux q and the stress
tensor τij are constitutive functions, dependent on the variables of this set.

The processes occurring inside the considered media are governed by two sets of
laws. The first set deals with the classical balance equations:
The balance of mass, that in the considered case of fluid with mass density, represents
The incompressibility condition:

∇ · J = 0, Ji,i = 0, (3.4.4)

where J = ρv,
The momentum balance:

ρv̇ = −∇ ·P − α · v, ρv̇i = −Pij,j −αikvk, (3.4.5)

where P ≡ (Pij) is the stress tensor of the fluid and α · v denotes a body force.
The internal energy balance:

ρė = P : ∇v−∇ · q, ρė = Pjivi,j − qi,i , (3.4.6)

where e and q are the internal energy per unit mass and the heat flux in the fluid. The
second set of laws concerns the evolution equations of the internal variables: the struc-
tural porosity symmetric second-order tensor rij and the internal field m responsible
for the viscous effects, also represented by a symmetric second-order tensor. These
rate equations are constructed obeying the objectivity and frame-indifference princi-
ples (see [10], [23] and [24]) and are chosen having the form

∗
m =M(C), ∗

mij =Mij(C), (3.4.7)
∗
r =R,

∗
r ij =Rij , (3.4.8)

where the symbol (∗) denotes the Zaremba-Jaumann derivative, defined for a second
rank tensor aij :

∗
aij = ȧij−wikakj−wjkaik, withwij the antisymmetric part of the velocity

gradient of the body, M(C) is a source term for the variable m and R is a source-
like term, dealing with the porous channels, and preciselyR =R(i)(C) +R(e), with
R(i)(C) an internal source and R(e) the external one as stated in (3.2.4). In the rate
equations (3.4.7) and (3.4.8) the flux terms of mij and rij are not considered in order
to close the system of equations describing the media under consideration andM and
R(i) are constitutive functions, dependent on the variables of the set C.
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3.5 second-law restrictions

In order to the physical processes occurring in the considered medium are admis-
sible from the thermodynamic point of view, they have not contradict the second law
of thermodynamics. Thus, all the admissible solutions of the proposed balance and
evolution equations have to satisfy the following entropy inequality

ρṠ +φk,k ≥ 0, (3.5.1)

where S is the specific entropy per unit mass and φ is the flux of the entropy associated
with the fields of the set C (3.4.3).
Thus, the following set of constitutive functions, dependent variables, has to be de-
rived

W =
{
Pij ,e,Mij ,qi ,R(i)S,Πr

ij ,Π
m
ij

}
, with W = W̃ (C), (3.5.2)

where Πr
ij and Πm

ij are the potentials related to the porosity field and the other internal
variable m, influencing the viscous effects inside the medium. Both C and W are eval-
uated at the same point and time. Among the various methods to analyse the entropy
inequality (3.5.1) we choose that one based on Liu’s theorem [20], where all balance
and evolution equations are considered as mathematical constraints for the general
validity of the inequality (3.5.1).
Then, the system of equations (3.4.5)-(3.5.1) and the entropy inequality (3.5.1) can we
written, respectively, in the following matrix form

AX + B = 0, A∆ζXζ +B∆ = 0, (3.5.3)

γ ·X + β ≥ 0, γζXζ + β ≥ 0, (3.5.4)

where A is an suitable matrix and X, B, γ and β are suitable quantities (see below
(3.5.11)-(3.5.14)). Then, analysing the entropy inequality by Liu’s theorem, we have

γ ·X + β −Λ · (AX + B) ≥ 0, γζXζ + β −Λ∆(A∆ζXζ +B∆) ≥ 0, (3.5.5)

and this inequality is equivalent to

γ−ΛA = 0, γζ −Λ∆A∆ζ = 0 (3.5.6)

β −Λ ·B ≥ 0, β −Λ∆B∆ ≥ 0, (3.5.7)

where the so called Lagrange-Liu multipliers Λ∆, accounting for equations (3.4.5)-
(3.5.1) are defined by

Λ=
(
Λv
i ,Λe,Λm

pq,Λ
r
pq

)
. (3.5.8)
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Thus, the first requirement of Liu’s theorem, gives (3.5.5) in the form

ρ
∂S
∂t

+ ρvkS,k +φk,k −Λv
i

(
ρ
∂vi
∂t

+ ρvkvi,k + Pij,j +αikvk

)
−Λe

(
ρ
∂e
∂t

+ ρvke,k − Pjivi,j + qi,i
)
−Λm

pq

(
∂mpq
∂t

+ vkmpq,k −wpkmkq −wqkmpk −Mpq

)
−Λr

pq

(
∂rpq
∂t

+ vkrpq,k −wpkrkq −wqkrpk −Rpq
)
≥ 0. (3.5.9)

The entropy inequality is an objective law, then in (3.5.5) Λe is an objective scalar
function, Λv

i is an objective polar vectorial function, Λm
ij and Λr

ij are objective tensorial
functions of second order. Taking into account that the entropy function S, the stress
tensor Pij , the heat flux qi , the entropy flux φi , the internal energy e are constitutive
functions of the independent variables εij , T , T,i ,mij , rij , from (3.5.5)-(3.5.7) and (3.5.9)
we obtain the following quantities:
the matrix A having the form

A=



ρ 0 0 0 0 0 ρδikvl

......

0 ρ ∂e∂T ρ ∂e
∂T,i

ρ ∂e
∂εkl

ρ ∂e
∂mkl

ρ ∂e
∂rkl

−Pkl
......

0 0 0 δpkmlq+ δkqmpl 0 δpkδql −δpkmlq − δkqmpl
......

0 0 0 δpkrlq+ δkqrpl 0 δpkδql −δpkrlq − δkqrpl
......

...... −∂Pij∂T,k
−∂Pij∂εkl

− ∂Pij∂mkl
−∂Pij∂rkl...... ρvj

∂e
∂T,k

+
∂qj
∂T,k

ρvj
∂e
∂εkl

+
∂qj
∂εkl

ρvj
∂e
∂mkl

+
∂qj
∂mkl

ρvj
∂e
∂rkl

+
∂qj
∂rkl...... 0 vj(δpkmlq+ δkqmpl) 0 vjδpkδql

...... 0 vj(δpkrlq+ δkqrpl) 0 vjδpkδql



(3.5.10)

and the other quantities X, B, γ, β

X ≡ {Xζ}=
(
∂vi
∂t

,
∂T
∂t

,
∂T,i

∂t
,
∂εkl
∂t

,
∂mkl
∂t

,
∂rkl
∂t

,vk,l ,T,jk,εkl,j ,mkl,j ,rkl,j

)
, (3.5.11)

B ≡ {B∆}=
(
−
∂Pij
∂T,k

T,kj +αijvj ,ρvj

(
∂F
∂T

+ S + T
∂S
∂T

)
T,j +

∂qj
∂T

,−Mpq,−Rpq
)

, (3.5.12)
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γ ≡ {γζ}=
(
0,ρ

∂S
∂T

,ρ
∂S
∂T,i

,ρ
∂S
∂εkl

,ρ
∂S
∂mkl

,ρ
∂S
∂rkl

,0,ρvj
∂S
∂T,k

+
∂φj
∂T,k

,ρvj
∂S
∂εkl

+
∂φj
∂εkl

,

ρvj
∂S
∂mkl

+
∂φj
∂mkl

,ρvj
∂S
∂rkl

+
∂φj
∂rkl

)
,

(3.5.13)

β =

(
ρvj

∂S
∂T

+
∂φj
∂T

)
T,j , (3.5.14)

where we have used the relation e = F + T S, being F the Helmholtz free energy per
unit mass.

From (3.5.6) and (3.5.7), after some calculations, we obtain the following results

Λv
i = 0 (3.5.15)

ρ
∂S
∂T
−Λe

(
ρ
∂F
∂T

+ ρS + ρT
∂S
∂T

)
= 0 (3.5.16)

ρ
∂S
∂T,i
−Λe

(
ρ
∂F
∂T,i

+ ρS + ρT
∂S
∂T,i

)
= 0 (3.5.17)

ρ
∂S
∂εkl
−Λe

(
ρ
∂F
∂εkl

+ ρT
∂S
∂εkl

)
−Λm

pq

(
δpkmlq+ δkqmpl

)
−Λr

pq

(
δpkrlq+ δkqrpl

)
= 0

(3.5.18)

∂S
∂mkl

−Λe

(
ρ
∂F
∂mkl

+ ρT
∂S
∂mkl

)
−Λm

kl = 0 (3.5.19)

∂S
∂rkl
−Λe

(
ρ
∂F
∂rkl

+ ρT
∂S
∂rkl

)
−Λr

kl = 0 (3.5.20)

ΛePkl +Λm
pq

(
δpkmlq+ δkqmpl

)
+Λr

pq

(
δpkrlq+ δkqrpl

)
= 0 (3.5.21)

ρvj
∂S
∂T,k

+
∂φj
∂T,k

− ρvjΛe

(
∂F
∂T,k

+ T
∂S
∂T,k

)
−Λe

∂qj
∂T,k

= 0 (3.5.22)

ρvj
∂S
∂εkl

+
∂φj
∂εkl
− ρvjΛe

(
∂F
∂εkl

+ T
∂S
∂εkl

)
−Λe

∂qj
∂εkl

− vj
[
Λm
pq(δpkmlq+ δkqmpl) +Λr

pq(δpkrlq+ δkqrpl)
]
= 0

(3.5.23)

ρvj
∂S
∂mkl

+
∂φj
∂mkl

− ρvjΛe

(
∂F
∂mkl

+ T
∂S
∂mkl

)
−Λe

∂qj
∂mkl

− vjΛm
kl = 0 (3.5.24)

ρvj
∂S
∂rkl

+
∂φj
∂rkl
− ρvjΛe

(
∂F
∂rkl

+ T
∂S
∂rkl

)
−Λe

∂qj
∂rkl
− vjΛr

kl = 0, (3.5.25)

and the residual inequality in the form(
∂φj
∂T
− 1
T

∂qj
∂T

)
T,j −

1
T
Πm
pqMpq −

1
T
Πr
pqRpq ≥ 0. (3.5.26)
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From the above equations we obtain the Lagrange multipliers Λv
i ,Λe,Λm

pq,Λ
r
pq, the laws

of state (defining the variables in terms of the partial derivatives of the free energy
respect to own conjugate variables) and the entropy flux φi , respectively, in the form

Λv
i = 0, Λe =

1
T

, Λm
pq = −

1
T
Πm
pq, Λr

pq = −
1
T
Πr
pq, (3.5.27)

∂F
∂T,i

= 0, S = −∂F
∂T

, Pkl = ρ
∂F
∂εkl

, Πm
kl = ρ

∂F
∂mkl

, Πr
kl = ρ

∂F
∂rkl

(3.5.28)

φi =
1
T
qi . (3.5.29)

Regarding (3.5.27)2 see [22]. Furthermore, relations (3.5.28) establish that the free
energy F is a function only of the fields T , ε, m, r, i.e. F = F(T ,ε,m,r) and, then, also
the specific entropy S and the constitutive functions Pkl , Π

m
kl , Π

r
kl depend on the same

set of variables, i.e, S = S(T ,ε,m,r), Pkl = Pkl(T ,ε,m,r), Πm
kl = Πm

kl(T ,ε,m,r), Πr
kl =

Πr
kl(T ,ε,m,r). From the above results, also, we obtain that the tensors Πm

kl and Πm
kl are

symmetric, because of their definition in terms of the partial derivative of F respect to
own conjugate symmetric variable.

3.6 constitutive relations and rate equations

In this Section, in order to obtain a closed system of equations having the same
number of equations and unknown variables (independent and dependent), by the
help Wang’s [36], [37], [38] and Smith’s [33] theorems, that use isotropic polynomial
representations of proper functions obeying the objectivity and material indifference
principles, the constitutive theory and the source terms for the porosity fieldR(i)(C)
and the internal variableM(i)(C) are derived.

3.6.1 Objective representations of S, Pij ,Mij , R
(i)
ij and qi

In this Subsection we represent in a first approximation the objective functions S,
P, M, R(i) and q, following [33], [36], [37], [38]. Then, being the entropy S a scalar
objective function, S = S(T ,ε,m,r), Wang’s theorems establish that S can be expressed
as function built on appropriate invariants of the set {T ,ε,m,r} (see (B.1.5) of Appendix
B). If we assume that the internal variable m is the symmetric part of the velocity
gradient, i.e. m ≡ (∇v)s = ε̇, S may be written in a first approximation in the following
polynomial form

S = S1T + S2 trε+ S3 tr ε̇+ S4 trr, S = S1T + S2εkk + S
3ε̇kk + S

4rkk, (3.6.1)

with Sα = Sα(T ,ε, ε̇,r), α = 1, . . . ,4, objective scalar functions , and then depending
on suitable invariants, see (B.1.3) in Appendix B, where we identify m with ε̇.
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Being P = P(T ,ε,m,r) an objective second order symmetric tensor, following [33], [36],
[37] and [38] P can be expressed as function built on appropriate invariants of the set
{T ,ε,m,r} (see (B.2.4) of Appendix B). If we assume that the internal variable m is the
symmetric part of the velocity gradient, i.e. m ≡ (∇v)s = ε̇ (see equation (3.1.5)), P can
be written in a first approximation in the following polynomial form

P = P 1U + P 2ε+ P 3m+ P 4r, Pij = P 1δij + P
2εij + P

3mij + P
4rij , (3.6.2)

where P α = P α(T ,ε,m,r), α = 1, . . . ,4, are objective scalar functions, and then depend-
ing on suitable invariants (see (B.1.3) in Appendix B).

In the case where we may neglect in (3.6.2) the influence of the fields ε and r, and
we assume m ≡ ε̇ = (∇v)s, P 1 = p, P 3 = −2η, we obtain relation (3.1.4)1 of Section 3.1

P = P 1U + P 3ε̇ = pU − 2η(∇v)s, Pij = P 1δij + P
3ε̇ij = pδij − 2ηv(i,j). (3.6.3)

Thus, we have obtained a thermodynamic model for the media under consideration,
illustrating from the theoretical point view the form (3.1.4)1 of the pressure tensor P.
We can derive expressions analogous to (3.6.2) for the symmetric tensors Πm

kl and Πm
kl .

BeingM(T ,∇T ,ε,m,r) andR(i)(T ,∇T ,ε,m,r) objective second order symmetric ten-
sors (that depend also on the vector ∇T ), following [36], [37], [38] they can be ex-
pressed as functions built on appropriate invariants of the set {T ,ε,m,r} (see Appendix
B). Then, if we assume that the internal variable m is the symmetric part of the velocity
gradient, i.e. m ≡ (∇v)s = ε̇, M and R(i) may be written in a first approximation in
the following polynomial form (see (B.2.8) and (B.2.9) in Appendix B)

M=M1U +M2ε+M3ε̇+M4r, Mij =M1δij +M
2εij +M

3ε̇ij +M
4rij , (3.6.4)

and

R(i) = R1U +R2ε+R3ε̇+R4r, R(i)
ij = R1δij +R

2εij +R
3ε̇ij +R

4rij , (3.6.5)

where Mα(T ,∇T ,ε, ε̇,r) and Rα(T ,∇T ,ε, ε̇,r), α = 1, . . . ,4, are scalar objective func-
tions, and then depending on suitable invariants (see (B.2.10) in Appendix B, where
we have assumed m = ε̇). In the expression (3.6.5)1, supposing that we may disregard
the influence of the first field and the symmetric part of the velocity gradient and

R4 = − (τr)−1 , R2 = (p − p0), (3.6.6)

in the case where we may use the material derivative instead of Zaremba-Jaumann
derivative,R(i) assumes the form

R(i) = − (τr)−1 r + (p − p0)ε. (3.6.7)

Then, from relation (3.4.8), having the external sourceR(e) the form (3.2.6) andR(i)

the form (3.6.7), we derive

ṙ = − (τr)−1 r+(p−p0)ε+B·J+C : (J⊗J), ṙij = − (τr)
−1 rij+(p−p0)εij+BijkJk+CijklJkJl ,

(3.6.8)
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and then we obtain relation (3.2.2), when we indicate by the same symbols ε, B, C the
tensors ε̄, B̄, C̄, defined by

ε̄ = τrε, B̄ = τrB, C̄ = τrC. (3.6.9)

Thus, using the obtained thermodynamic model for the media under consideration,
we can illustrate from the theoretical point view the form the rate equation (3.2.2).

Finally, being q(T ,∇T ,ε,m,r) an objective vector-value function, following [33], [36],
[37] and [38] and it can be expressed as function built on appropriate invariants of the
set {T ,∇T ,ε,m,r} (see Appendix B). If we assume that the internal variable m is the
symmetric part of the velocity gradient, i.e. m ≡ (∇v)s = ε̇, q can be written in a first
approximation in the following polynomial form (see (B.3.4) in Appendix B)

q = q1∇T , qi = q1T,i , (3.6.10)

where q1 = q1(T ,∇T ,ε, ε̇,r), is an objective scalar function, and then depending on
suitable invariants (see (B.2.10) in Appendix B, where we have assumed m = ε̇).
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[15] E. Kröner. “Defects as Internal Variables. Lecture Notes for Course Internal Vari-
ables in Thermodynamics and Continuum Mechanics”. In: CISM Lecture Notes,
Udine, July 11-15 (1988).

[16] J. Kubik. “A macroscopic description of geometrical pore structure of porous
solids”. In: International Journal of Engineering Science 24.6 (1986), p. 971. doi:
10.1016/0020-7225(86)90029-7.

[17] G. Lamberti, I. Galdi, and A. A. Barba. “Controlled release from hydrogel-based
solid matrices. A model accounting for water up-take, swelling and erosion”. In:
International Journal of Pharmaceutics 407 (2011), pp. 78–86. doi: 10.1016/j.
ijpharm.2011.01.023.

[18] G. Lebon, J. Casas-Vázquez, and D. Jou. Understanding Non-Equilibrium Thermo-
dynamics: Foundations, Applications, Frontiers. Springer-Verlag, Berlin, 2008. doi:
10.1007/978-3-540-74252-4.
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4 PROPAGAT ION OF COUPLED POROS I TY
AND FLU I D -CONCENTRAT ION WAVES IN
I SOTROP IC POROUS MED I A

This Chapter deals with an application of a theory, previously formulated in 1 and
2 in the framework of rational extended irreversible thermodynamics, that describes
the thermal, mechanical and transport properties of a porous medium filled by a fluid.
Here, starting from the anisotropic rate equations for the porosity field, its flux, and
for the heat and fluid-concentration fluxes, the isotropic case is studied when the body
has symmetry properties invariant for all rotations and inversions of the frame axes
and, furthermore, the phenomenological tensors have special symmetry properties
coming from the used theoretic model. Then, the propagation in one direction of cou-
pled porosity and fluid-concentration waves is investigated. The dispersion relation is
carried out and the wave propagation velocities as functions of the wavenumber are
calculated and represented in a diagram for a given numerical set of the several coeffi-
cients characterizing the considered porous media. The achievements of this Chapter
can be applied in several science fields, like seismology, medical sciences, geology and
nanotechnology, where there are situations of propagation of high-frequency waves.
In particular, in this Chapter we apply a thermodynamic theory (see [18], [19], [21],
[22]), formulated in the framework of rational extended thermodynamics [1], [2], [8],
[9], [10], [11], [12], [13], [15], [16], [17], [24], with internal variables for the description
of the behaviour of porous media, to the study of a problem of propagation of coupled
porosity and fluid-concentration waves in isotropic media.
The studies of phenomena regarding porous structures saturated by a fluid have great
importance (see also [3], [6], [23]) and the obtained results can be used in several tech-
nological fields, like seismic waves, medical sciences, biology, geology and nanotech-
nology where the Knudsen number Kn = l/L ≥ 1 and there are high-frequency waves
propagation and the transport properties of these systems have a rate variation faster
than the time scale of the relaxation times of the fluxes to their equilibrium values.

The organization of this Chapter is the following. Section 4.1 is addressed to an
application of the presented theory to a problem of wave propagation in a porous
medium, supposed at rest, when only the porosity field, its flux, the fluid-concentration
field and its flux are taken into account. In particular, starting from the anisotropic
case (see [21], [22]) we derive in a special case a system of equations describing the
propagation of coupled porosity and fluid-concentration waves in a porous isotropic
medium, having symmetry properties invariant with respect to all rotations and inver-
sions of frame axes (see [4], [7]).
Precisely, using the system of equations (2.1.21), (2.1.22), (2.1.23)-(2.1.28) and (2.2.2),
valid for the perfect isotropic medium under consideration, we focus our attention on
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the fields related to the fluid-concentration c and its flux jci and on the porosity field rij
and its flux Vijk, neglecting the contributions of the other fields and we assume that the
porosity tensor rij has only a scalar component r and its flux Vijk has only a vectorial
component Vk.
Then, in Section 4.1 we construct, in the one-dimensional case, a simpler system of
equations, having a structure such that we can study the propagation of plane waves
of the exponential form Aeik(x−vt), that travel along the x-axis direction with amplitude
A and speed v. The dispersion relation is obtained and the values of the wave prop-
agation velocities are worked out as functions of the wavenumber k. The dispersion
curves are represented in a diagram for a given numerical set of the several coefficients
characterizing the considered porous media.
In Appendix A particular forms for fourth, and sixth order isotropic tensors having
special symmetry properties and the detailed derivation of the transport equations for
the porosity field and fluid-concentration flux are derived.
A similar propagation problem of coupled waves was studied by L. Restuccia in iso-
tropic n-type semiconductors (see [20]). The difference between both situations is that
in [20] the considered media were semiconductors with dislocation lines, described as
thin channels by an internal variable, the dislocation core tensor [14] (defined on the
basis of the structural permeability tensor à la Kubik), and the fluid-concentration flux
field was the flux of the concentration of electronic charge carriers.

The studies presented in this Chapter are contained in the article [5]:

A. Famà and L. Restuccia. Propagation of coupled porosity and fluid-concentration
waves in isotropic porous media. Electronic Journal of Differential Equations, pp. 1-16,
2020.

4.1 evolution equations for porosity and fluid-
concentration fields and their fluxes

In this Section we apply the theory presented in the Chapters 1 and 2 to a problem
of wave propagation for the porous defects and fluid mass fields and their fluxes in a
porous medium, supposed at rest, and we study, starting from the anisotropic case, an
isotropy situation, when the medium has symmetry properties invariant with respect
to all rotations and inversions of frame axes, i.e. is perfect isotropic. Let us consider the
system of equations (1.1.10), (1.4.1), (1.4.2) and (1.4.16). We neglect in (1.4.1), (1.4.2)
and (1.4.16) the influences of the thermal phenomena, i.e. the presence of the fields
qi and T,i . Furthermore, in equation (1.4.1) we disregard the influence of the small
deformations εij and of the porous defects rij field, in the rate equation (1.4.2) the
contribution of the fluid mass field jci and in the rate equation (1.4.16) the influence of
the porous defects field flux Vijk. Thus, we obtain



4.1 equations for porosity, fluid-concentration fields and fluxes 57

ρ
∂c
∂t

= −jck,k, (4.1.1)

∂rij
∂t

+ Vijk,k = β3
ijkj

c
k + β

5
ijklmVklm+ β6

ijkc,k + β
8
ijklmrkl,m, (4.1.2)

∂Vijk
∂t

= γ3
ijklmnVlmn+ γ

4
ijklc,l + γ

6
ijklmnrlm,n, (4.1.3)

τ j
c ∂jci
∂t

= −jci − ξ
4
ijc,j + ξ

6
ijklrjk,l . (4.1.4)

We remind that, because of the symmetry of rij , i.e. rij = rji , the phenomenological
coefficients β3

ijk, β
5
ijklm, β6

ijk and β8
ijklm, present in the rate equation (4.1.2), have the

symmetries (1.4.17)2 and (1.4.18)1,2. Furthermore, the tensors γ6
ijklmn and ξ6

ijkl have
the symmetries (1.4.19) and (1.4.20)2, respectively.
These symmetries relations reduce the number of the significant components of the
considered phenomenological tensors in these equations. The number of these signifi-
cant components has a further reduction if we establish some other assumption.

Being rij a second order tensor, we can introduce its deviator, r̃ij , and its scalar (or
spherical) part, r, in the following way

r̃ij = rij −
1
3
rδij , r =

1
3
rkk, (i, j,k = 1,2,3) , (4.1.5)

where Einstein convention for the dummy indices is used, and rij can be written in the
form

rij = r̃ij + rδij , with r̃kk = 0, (4.1.6)

where, being rij symmetric, also r̃ij is symmetric.
Furthermore, we consider the case in which Vijk can be written as the sum of three

symmetric contributions

Vijk = Vkδij + Viδjk + Vjδik. (4.1.7)

For the sake of simplicity in the following we will consider only the spherical part
rij = rδij of the porosity field and the contribution Vkδij of its flux, i. e.

rij = rδij , Vijk = Vkδij , (4.1.8)

where Vkδij is symmetric in the indexes {i, j}.
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Thus, by virtue of the assumptions (4.1.8), the rate equations (3.4.8)-(4.1.4) keep the
form

∂r
∂t
δij + Vk,kδij = β3

ijkj
c
k + β

5
ijklmVmδkl + β

6
ijkc,k + β

8
ijklmr,mδkl , (4.1.9)

∂Vk
∂t

δij = γ3
ijklmnVnδlm+ γ4

ijklc,l + γ
6
ijklmnr,nδlm, (4.1.10)

τ j
c ∂jci
∂t

= −jci − ξ
4
ijc,j + ξ

6
ijklr,lδjk. (4.1.11)

In (4.1.10) the following symmetries are valid

γ4
ijkl =γ

4
jikl , γ3

ijklmn = γ3
jiklmn = γ3

ijkmln = γ3
jikmln,

γ6
ijklmn = γ6

jiklmn = γ6
ijkmln = γ6

jikmln.
(4.1.12)

The properties (4.1.12)1 and (4.1.12)2 come from the symmetry of Vkδij and from the
fact that in γ3

ijklmn and in γ6
ijklmn the indexes {l,m} are dummy indexes with the indexes

of the tensors Vnδlm and r,nδlm, symmetric in {l,m}. In the last part of relation (4.1.12)3
the symmetry property (1.4.20)2 has been included.

Also, in (4.1.11) we have
ξ6
ijkl = ξ6

ikjl , (4.1.13)

because in ξ6
ijkl the indexes {j,k} are dummy indexes with the indexes of the tensor

r,lδjk, symmetric in {j,k}.

4.1.1 System of equations describing the propagation of coupled porosity and

fluid-concentration waves in an isotropic medium

As seen in Chapter 2, the existence of spatial symmetry properties in a material sys-
tem may simplify the form of the rate equations in such a way that the number of the
significant Cartesian components of the phenomenological tensors present in them
have a further reduction. Thus, in this Subsection we consider perfect isotropic sys-
tems for which we remind that the symmetry properties are invariant with respect to
all rotations and the inversion of the frame of axes (under orthogonal transformations)
and we will study a problem of propagation of the coupled waves of porous defects
and fluid concentration fields. In this case, the tensors of odd order vanish (see relation
(2.2.1)2), so that in equation (4.1.9) we have

β3
ijk = β5

ijklm = β6
ijk = β8

ijklm = 0; (4.1.14)

the tensors of order two keep the form (2.1.1)2, so that the phenomenological tensor ξ4
ij

in equation (4.1.10) takes the form

ξ4
ij = ξ4δij ; (4.1.15)
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the tensors of order four must have the form (2.1.2), therefore γ4
ijkl and ξ6

ijkl in equations
(4.1.10) and (4.1.11) have only three independent components; the tensors of order six
(see γ3

ijklmn and γ6
ijklmn present in (4.1.10)) assume the form (2.1.4).

Taking into account the isotropic forms (2.1.2), (2.1.4), (4.1.14) and (4.1.15) of the
phenomenological tensors and their symmetry properties (1.4.20)2 and (4.1.12) we
derive from (1.1.10), (4.1.9), (4.1.10) and (4.1.11) the following simplified system of
equations governing the evolution of porosity and fluid-concentration fields and their
fluxes

ρ
∂c
∂t

+ jck,k = 0, (4.1.16)

∂r
∂t

+ Vk,k = 0, (4.1.17)

τν
∂Vk
∂t

= −Vk −Dνr,k +ανc,k, (4.1.18)

τ j
c ∂jci
∂t

= −jci +αcr,i − ρDcc,i , (4.1.19)

where τν is the relaxation time of the field Vijk = Vkδij , given by relation (4.1.24)1,
Dν and Dc are the diffusion coefficients of porosity field and fluid-concentration flux,
respectively, given by the relations (4.1.25) and (4.1.28)2, αν and αc are coupling coef-
ficients given by relations (4.1.24)2 and (4.1.28)1, respectively, being

τν ≥ 0, τ j
c
≥ 0, Dν ≥ 0, Dc ≥ 0. (4.1.20)

To obtain equation (4.1.18), we use (4.1.8) and the special forms (A.3.3) and (A.4.15),
established in Appendix A, assumed by the fourth order tensor γ4

ijkl and the sixth order
tensors γrijklmn (r = 3,6), so that equation (4.1.3) takes the form

δij
∂Vk
∂t

=
{
γ3

1 (δklδmn+ δkmδln)δij + γ
3
2δijδknδlm+ γ3

3 [(δikδjl + δilδjk)δmn

+ (δikδjm+ δimδjk)δln] + γ
3
4 (δikδjn+ δinδjk)δlm+ γ3

5 (δilδjm+ δimδjl)δkn

+γ3
6 [(δilδjn+ δinδjl)δkm+ (δimδjn+ δinδjm)δkl ]

}
Vnδlm

+ [γ4
1δijδkl + γ

4
2 (δikδjl + δilδjk)]c,l +

{
γ6

1 (δklδmn+ δkmδln)δij + γ
6
2δijδknδlm

+ γ6
3 [(δikδjl + δilδjk)δmn+ (δikδjm+ δimδjk)δln] + γ

6
4 (δikδjn+ δinδjk)δlm

+ γ6
5 (δilδjm+ δimδjl)δkn+ γ

6
6 [(δilδjn+ δinδjl)δkm

+(δimδjn+ δinδjm)δkl ]
}
r,nδlm,

(4.1.21)

where γ3
s and γ6

s (s = 1, . . .6) are the 6 independent significant components of the
sixth order tensors γ3

ijklmn and γ6
ijklmn, respectively, and γ4

1 , γ4
2 are the 2 independent

significant components of the fourth order tensor γ4
ijkl .
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Then, from (4.1.21) we get

δij
∂Vk
∂t

=
[(

2γ3
1 + 3γ3

3 + 2γ3
5

)
Vk +

(
2γ6

1 + 3γ6
3 + 2γ6

5

)
r,k + γ

4
1c,k

]
δij

+
[(

3γ3
2 + 2γ3

4 + 2γ3
6

)
Vj +

(
3γ6

2 + 2γ6
4 + 2γ6

6

)
r,j + γ

4
2c,j

]
δik

+
[(

3γ3
2 + 2γ3

4 + 2γ3
6

)
Vi +

(
3γ6

2 + 2γ6
4 + 2γ6

6

)
r,i + γ

4
2c,i

]
δjk.

(4.1.22)

Thus, when i = j we have

∂Vk
∂t

=
(
2γ3

1 + 6γ3
2 + 3γ3

3 + 4γ3
4 + 2γ3

5 + 4γ3
6

)
Vk +

(
γ4

1 + 2γ4
2

)
c,k

+
(
2γ6

1 + 6γ6
2 + 3γ6

3 + 4γ6
4 + 2γ6

5 + 4γ6
6

)
r,k,

(4.1.23)

i.e. equation (4.1.18), τν ∂Vk∂t = −Vk −Dνr,k + ανc,k, when we introduce the following
definitions, coming from physical reasons

2γ3
1 + 6γ3

2 + 3γ3
3 + 4γ3

4 + 2γ3
5 + 4γ3

6 = − (τν)−1 , αν = τν
(
γ4

1 + 2γ4
2

)
, (4.1.24)

Dν = −τν
(
2γ6

1 + 6γ6
2 + 3γ6

3 + 4γ6
4 + 2γ6

5 + 4γ6
6

)
. (4.1.25)

To derive (4.1.19), we use equation (4.1.4), the assumption (4.1.8)1 and the special
form (4.1.15) and (A.3.12) of the tensors ξ4

ij and ξ6
ijkl (see Appendix A), so that we

obtain

τ j
c ∂jci
∂t

= −jci − ξ
4δijc,j + [ξ6

1δilδjk + ξ
6
2 (δijδkl + δikδjl)]r,lδjk, (4.1.26)

where ξ6
1 , ξ6

2 are the 2 significant independent components of the fourth tensor ξ6
ijkl

and ξ4 is the only one significant component of the second order tensor ξ4
ij . Then,

equation (4.1.26) keeps the form

τ j
c ∂jci
∂t

= −jci − ξ
4c,i + (3ξ6

1 + 2ξ6
2 )r,i , (4.1.27)

i.e. equation (4.1.19), τ j
c ∂jci
∂t = −jci + αcr,i − ρDcc,i , when we introduce the following

definitions

αc = 3ξ6
1 + 2ξ6

2 , Dc =
ξ4

ρ
. (4.1.28)

From equation (4.1.16), its derivative with respect to time and (4.1.19) we obtain

τ j
c ∂2c

∂t2
+
∂c
∂t

+ ᾱcr,ii −Dcc,ii = 0, (4.1.29)

where ᾱc =
αc
ρ

. In analogous way, from equation (4.1.17), its derivative with respect to

time and (4.1.18) we have

τν
∂2r

∂t2
+
∂r
∂t
−Dνr,ii +ανc,ii = 0. (4.1.30)
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The system of equations (4.1.29), (4.1.30) describes the coupled porosity and fluid-
concentration waves in a perfect isotropic medium. The aim of this Chapter is to find,
from the dispersion relation, the wave propagation velocities as functions of the wave-
number and to obtain some particular propagation mathematical conditions.

We confine our considerations to one-dimensional plane waves. We suppose that the
porous medium occupies the whole space and we consider the propagation of the cou-
pled waves along x direction. Thus, assuming that the solutions of the set of equations
(4.1.29) and (4.1.30) have the form

r(x, t) = r̂eik(x−vt), (4.1.31)

c(x, t) = ĉeik(x−vt), (4.1.32)

with r̂ and ĉ the amplitudes of the waves r(x, t) and c(x, t), k the wavenumber, v the
wave velocity, defined by v = ω/k [ms−1], with ω the angular frequency, ω = 2πf [s−1],
being f the wave frequency and k = 2π/λ [m−1], with λ the wavelength.

Thus, using the relations (4.1.31), (4.1.32) and their derivatives in (4.1.29)-(4.1.30)
we obtain the following system of equations(

Dck − τ j
c
kv2 − iv

)
ĉ − ᾱckr̂ = 0, (4.1.33)

ανk
2ĉ+

(
τνk2v2 −Dνk2 + ikv

)
r̂ = 0, (4.1.34)

that has non-trivial solutions only if its determinant vanishes, i.e.

D =

∣∣∣∣∣∣∣Dck − τ
jckv2 − iv −ᾱck

ανk
2 τνk2v2 −Dνk2 + ikv

∣∣∣∣∣∣∣= 0. (4.1.35)

Developing D we derive the following dispersion relation for the wave propagation ve-
locity v, concerning four possible modes:

τ j
c
τνk2v4 + ik

(
τ j

c
+ τν

)
v3 −

[(
Dcτ

ν +Dντ
jc
)
k2 + 1

]
v2

− ik (Dc+Dν)v+ k2 (DcDν − ᾱcαν) = 0.
(4.1.36)

From the real part of the dispersion relation (4.1.36), we obtain

τ j
c
τνk2v4 −

[(
Dcτ

ν +Dντ
jc
)
k2 + 1

]
v2 + k2 (DcDν − ᾱcαν) = 0, (4.1.37)

from which we have two possible modes

v(1) =

√
G1 +

√
G2

1 −G2, v(2) =

√
G1 −

√
G2

1 −G2, (4.1.38)

where

G1 =
Dcτ

ν +Dντ
jc

2τ jcτν
+

1
2τ jcτνk2

, being G1 > 0, (4.1.39)

G2 =
DcDν − ᾱcαν

τ jcτν
. (4.1.40)
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From the imaginary part of the dispersion relation (4.1.36), we derive

k
(
τ j

c
+ τν

)
v3 − k (Dc+Dν)v = 0, (4.1.41)

from which we obtain the other two values for v

v(3) = 0, v(4) =

√
Dc+Dν
τ jc + τν

, being
Dc+Dν
τ jc + τν

> 0. (4.1.42)

From (4.1.42)3 and (4.1.20) the velocity v(4) is always real, whereas the velocity v(1) is
real when

G2
1 −G2 ≥ 0, (4.1.43)

namely when[(
Dcτ

ν −Dντ j
c)2

+ 4τ j
c
τνᾱcαν

]
k4 + 2

(
Dcτ

ν +Dντ
jc
)
k2 + 1 ≥ 0, (4.1.44)

that is always true because sum of positive quantities, and then also the velocity v(1) is
always real.

From (4.1.42)3 the velocity v(2) is real when

G1 −
√
G2

1 −G2 ≥ 0, (4.1.45)

from which we obtain
G2 ≥ 0, (4.1.46)

and thus
DcDν ≥ ᾱcαν , (4.1.47)

Thus, in the assumption that (4.1.46) (or (4.1.47)) holds v(2) is real.
Notice that the velocities v(1) and v(2) are stable:

lim
k→+∞

v(1) =

√√√
Dcτν +Dντ j

c

2τ jcτν
+

√(
Dcτν +Dντ j

c

2τ jcτν

)2

−G2, (4.1.48)

lim
k→+∞

v(2) =

√√√
Dcτν +Dντ j

c

2τ jcτν
−

√(
Dcτν +Dντ j

c

2τ jcτν

)2

−G2; (4.1.49)

furthermore v(1) is a monotonically decreasing function of k because

dv(1)
dk

=
1

2

√
G1 +

√
G2

1 −G2

1+
G1√
G2

1 −G2

 dG1

dk
< 0, (4.1.50)

being
dG1

dk
= − k

τ jcτνk4
< 0, (4.1.51)
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and v(2) is a monotonically increasing function of k because

dv(2)
dk

=
1

2

√
G1 +

√
G2

1 −G2

1− G1√
G2

1 −G2

 dG1

dk
> 0, (4.1.52)

being condition G1√
G2

1−G2
> 1 true only if G2 > 0, that is (4.1.46). Thus, the velocities

v(1) and v(2) are continuous functions of k, monotonically decreasing and increasing
functions, respectively, and they have an horizontal asymptote definite by the right-
hand members of equations (4.1.48) and (4.1.49).

In Fig. 12 the wave propagation speeds v(1), v(2) and v(4) as functions of k are rep-
resented for a given numerical set of the several coefficients present in the examined
problem: Dc = 10−1 m2 s−1, Dν = 10−1 m2 s−1, τ j

c
= 10−2 s, τν = 10−3 s, αν = 10−2 s−1

and ᾱc = 10−1 m4 s−1, being αc = ᾱcρ, with ρ = 103 kgm−3 and αc = 10−2 kgms−1. In
this assumption the condition (4.1.47) is satisfied and thus the velocity v(4) is real.

Figure 12: Representation of the three wave propagation speeds v(1), v(2) and v(4) as functions
of k, for a given numerical set of several coefficients present in the studied problem.
The two horizontal lines are the horizontal asymptotes of the wave propagation
velocities v(1) and v(2), respectively.

The results presented in Fig. 12 show that for bigger values of k (for shorter wave
lengths λ) the propagation velocity v(1) decreases, while the propagation velocity v(2)
increases and the velocity v(4) remains constant.
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5 WEAK D I SCONT INU I TY WAVES IN
I SOTROP IC POROUS MED I A F I L L ED BY A
F LU I D F LOW

In this Chapter the propagation of weak discontinuity waves is investigated in an
isotropic, homogeneous and elastic porous body. To this aim we introduce a new vari-
able related to the surface across which the solutions or/and some of their derivatives
undergo a jump. Following a Boillat’s methodology for quasi-linear and hyperbolic
systems of the first order, we obtain Bernoulli’s equation governing the propagation of
weak discontinuities and the critical time is obtained and discussed.
The theoretical interest in non-linear waves was manifest as early as the years ’50 and
’60 of the last century and a lot of applications to various branches of physics were
worked out [1], [2], [3], [4], [8], [9], [14], [15], [16], [17], [18], [19], [20], [21]. The phys-
ical behaviour of a large number of media is described by nonlinear hyperbolic PDEs.
Following A. Jeffrey in [15], the solution hypersurfaces of systems of PDEs are referred
to as waves because they may be interpreted as representing propagating wavefronts.
When physical problems are associated with such interpretation the solution on the
side of the wavefront towards which propagation takes place may then regarded as be-
ing the undisturbed solution ahead of the wavefront, whilst the solution on the other
side may be regarded as a propagating disturbance wave which is entering a region
occupied by the undisturbed solution.

Some of the solutions present various types of discontinuities, some others not. In
the first case, as some surface is crossed, the solution or/and its derivatives undergo a
jump. In this case it is said that the solution presents a shock, or it is a shock wave or
that we are in presence of a discontinuity waves (jumps of the first order derivatives)
[1], [3], [15], [18]. In the second case, instead of the jump we have smooth solutions of
the non linear hyperbolic PDEs that present a steep variation in the normal direction
to the associated wavefront and called asymptotic waves (see [5], [6], [7], [11], [12],
[13], [22]). Both these types of solutions are called nonlinear waves because they satisfy
nonlinear hyperbolic PDEs and they are investigated because the closed-form solutions
of nonlinear PDEs are rare. Thus, the solutions are looked for in approximated forms
where a new variable is present related to the surface across which the solutions or/and
some of their derivatives undergo a jump.

In this Chapter the propagation of weak discontinuities in a homogeneous, elastic
and isotropic porous medium filled by a fluid flow is studied. In particular, in Section
5.1, a system of non-linear PDEs describing the porosity and the fluid-concentration
fields and their fluxes are considered and we introduce a new variable related to the
surface across which the solutions or/and some of their derivatives undergo a jump.
Assuming one-dimensional propagation, following the methodology established by

66
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Boillat in [1] for quasi-linear and hyperbolic systems of the first order, we write the
evolution law of the discontinuities in a constant state and we obtain Bernoulli’s equa-
tion governing the propagation of weak discontinuities.

The studies presented in this Chapter are contained in the article [10]:

A. Famà and L. Restuccia. Weak discontinuity waves in isotropic nanostructures with
porous defects filled by a fluid flow. Submitted to Electronic Journal of Differential Equa-
tions, 2020.

5.1 weak discontinuity waves in a model for fluid
concentration and porosity fields and their
fluxes

In this Section we investigate the weak discontinuity waves of the following PDEs
system

ρ
∂c
∂t

+ jck,k = 0, (5.1.1)

∂r
∂t

+ Vk,k = 0, (5.1.2)

τν
∂Vk
∂t

= −Vk −Dνr,k +αν(c)c,k, (5.1.3)

τ j
c ∂jci
∂t

= −jci +αc(ν)r,i − ρDcc,i , (5.1.4)

(see (4.1.16)-(4.1.18)) where we have supposed that αc = αc(r), αν = αν(c) are cou-
pling functions reflecting some new cross-kinetic effects during concentration-porous
interactions. We also remind that τν and τ j

c
are the relaxation time of the fields Vijk

and jci , respectively and Dc, Dν are the diffusion coefficients on concentration and
porous field, respectively.
First of all, we observe that the above mentioned system of equations can be written in
the following matrix form:

Aα(U)Uα = B(U) (α = 0,1,2,3). (5.1.5)

where x0 = t (time), x1,x2,x3 are the space coordinates, Uα =
∂U
∂xα

, U is the vector of

the unknown function (which depends on xα):

U = (c, jc1, jc2, jc3,r,V1,V2,V3)
T , (5.1.6)

the vector B is defined by

B = (0,−jc1,−jc2,−jc3,0,−V1,−V2,−V3)
T , (5.1.7)
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and finally Aα (α = 0, . . . ,3) are the following 8× 8 square matrices

A0 =



ρ 0 0 0 0 0 0 0
0 τ j

c
0 0 0 0 0 0

0 0 τ j
c

0 0 0 0 0
0 0 0 τ j

c
0 0 0 0

0 0 0 0 1 0 0 0
0 0 0 0 0 τν 0 0
0 0 0 0 0 0 τν 0
0 0 0 0 0 0 0 τν


, A1 =



0 1 0 0 0 0 0 0
ρDc 0 0 0 −αc 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
−αν 0 0 0 Dν 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


, (5.1.8)

A2 =



0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
ρDc 0 0 0 −αc 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
−αν 0 0 0 Dν 0 0 0

0 0 0 0 0 0 0 0


, A3 =



0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
ρDc 0 0 0 −αc 0 0 0

0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−αν 0 0 0 Dν 0 0 0


. (5.1.9)

In (5.1.6) and (5.1.7) the symbol (...)T means that U and B are column vectors.
Since Aα = Aα(U), the PDEs system (5.1.5) is a quasi-linear system.

We suppose that the system admits a known solution in the uniform unperturbed state
U0 that satisfy the following condition

Aα(U0)U0
α = B(U0), (α = 0,1,2,3). (5.1.10)

Moreover, we admit that the system (5.1.5) describes a perturbation propagating into
a state characterized by the vector U0 and ϕ(xα) = 0 is the surface, called wavefront,
that separates the region perturbed, ϕ(xα) = 0+, by the unperturbed, ϕ(xα) = 0− and
moves in the Euclidean space E3+1 (when the time flows).
We remind that the wavefront

ϕ(xα) = 0 (5.1.11)

is still an unknown function. In order to determine it, we recall that along the wave-

front we have
dϕ

dt
= 0, implying

∂ϕ

∂t
+ v · gradϕ = 0, (5.1.12)

or, equivalently,
∂ϕ/∂t
|gradϕ|

+ v ·
gradϕ
|gradϕ|

= 0, (5.1.13)

with (grad)i =
∂

∂xi
.
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Obviously,
gradϕ
|gradϕ|

= n, (5.1.14)

that is the normal unit vector to the surface ϕ, such that the previous equality reads

∂ϕ/∂t
|gradϕ|

+ v · n = 0. (5.1.15)

Introduce the notation

λ= −
∂ϕ/∂t
|gradϕ|

, (5.1.16)

so that
λ(U,n) = v · n, (5.1.17)

where λ is called the velocity normal to the progressive wave.
We suppose that the function U(xα) is piecewise continuous and presents a disconti-
nuity across the surface ϕ(xα) = 0, i.e. the first derivatives of U present a jump across
the front wave ϕ(xα) = 0 (the first derivations are continue in the one and the other
part of the wave front but they tend to two different limits).
Introducing the function ϕ = ϕ(xα) as new variable, continuous together with its first
and second derivatives, the derivative with respect to xα is written

Uα = Uϕ ϕα, (5.1.18)

where Uϕ =
∂U
∂ϕ

and ϕα =
∂ϕ

∂xα
.

Moreover, we introduce the symbol denoting the jump

[ ] = lim
ϕ→0+

( )− lim
ϕ→0−

( ), (5.1.19)

given by the difference between the value of a quantity in the unperturbed state and
the perturbed state calculated on the surface ϕ(xα) = 0 and, consequently, denoting
with Π the jump of the normal derivative Uϕ, we have:

[U] = 0, Π=
[
Uϕ

]
= lim

ϕ→0+
(Uϕ)− lim

ϕ→0−
(Uϕ). (5.1.20)

From equations (5.1.5), (5.1.10) and (5.1.18) we have the following relations:

Aα(U)Uϕϕα = B(U) and Aα(U0)U0
ϕϕα = B(U0). (5.1.21)

Subtracting equation (5.1.21)2 from equation (5.1.21)1 and by computing on the sur-
face ϕ(xα) = 0, where U = U0 and Aα(U0) = Aα(U), we get

(Aα)0ϕα
[
Uϕ

]
= 0, i.e. (Aα)0ϕαΠ= 0, (5.1.22)
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where (Aα)0ϕα represents a 8 × 8 matrix and equation (5.1.22)2 is a homogeneous
system in the 8 components of Π.
Introducing the quantities λ and n, defined in equations (5.1.14) and (5.1.16), the sys-
tem (5.1.22)2 takes the form (

Aini −λA0
)
Π= 0. (5.1.23)

In order to have a solution different from the zero solution it must be

det
∥∥∥An −λA0

∥∥∥= 0. (5.1.24)

with An = Aini . Equation (5.1.23) shows that Π can be taken proportional to the
right-eigenvector r of An, corresponding to some eigenvalue λ. In the case where the
eigenvalue λ has multiplicity 1, Π has the form

Π= π(x, t)r. (5.1.25)

Consequently, in order to determine Π we must determine the function π = π(xα).
Since A0 is a non-singular matrix, the system (5.1.5) can be written in the form

U t + (A0)−1AiUi = (A0)−1B(U), (i = 1,2,3), (5.1.26)

where

(A0)−1 =



1
ρ 0 0 0 0 0 0 0
0 1

τj
c 0 0 0 0 0 0

0 0 1
τj
c 0 0 0 0 0

0 0 0 1
τj
c 0 0 0 0

0 0 0 0 1 0 0 0
0 0 0 0 0 1

τν 0 0
0 0 0 0 0 0 1

τν 0
0 0 0 0 0 0 0 1

τν


, (5.1.27)

is the inverse matrix of A0.
In the follows we continue to call Ai the matrices (A0)−1Ai , and B the vector (A0)−1B,
so the system assumes the following form

Ut + AiUi = B(U), (i = 1,2,3), (5.1.28)

From equation (5.1.24) we have the following eigenvalues problem

det‖An −λI‖= 0, (5.1.29)

with An = Aini (i = 1,2,3).
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5.1.1 Wave front and first approximation of U

Following the general theory [1] we introduce the quantity

Ψ (xα,ϕα) = ϕt + |gradϕ|λ(U(xα),n), (5.1.30)

that, by virtue of the relations (5.1.14) and (5.1.16), becomes zero on the wavefront
having velocity λ= λ0, i.e.

Ψ (xα,ϕα) = ϕt + |gradϕ|λ0 = Ψ 0 = 0. (5.1.31)

To solve the above partial differential equation are introduced the characteristic rays,
called characteristic curves of the system (5.1.5), given by the following differential
equations

dxα

dσ
=
∂Ψ 0

∂ϕα
, (5.1.32)

dϕα
dσ

= −∂Ψ
0

∂xα
, (5.1.33)

where σ is the time along the characteristic rays. From equation (5.1.33), considering

the propagation in a uniform state U0, we have
∂Ψ 0

∂xα
= 0 and, consequently, ϕα are

constants along the characteristic rays.
Furthermore, equation (5.1.32) gives the components of a speed, called radial velocity

Λ and defined by

Λi(U,n) =
∂Ψ
∂ϕi

= λni +
∂λ
∂ni
−
(
n · ∂λ
∂n

)
ni , (i = 1,2,3). (5.1.34)

From equation (5.1.34) we have
Λini = λ, (5.1.35)

i.e. the velocity of propagation of the wavefront λ is the component of radial velocity
Λ along the normal to the wavefront. By integration of equation (5.1.32) one obtains

x0 = t = σ , (5.1.36)

xi(t) = xi0 +Λ0
i t, (i = 1,2,3), (5.1.37)

with
xi0 = xi |t=0 and Λ0

i =Λi(U
0,n0), (i = 1,2,3). (5.1.38)

If we denote by ϕ0 the given initial surface, we have ϕ|t=0 = ϕ0(xi0) and n0 represents
the unit normal vector to the wavefront at the point xi0 defined by

n0 =

(
gradϕ
|gradϕ|

)
t=0

=
grad0ϕ0∣∣∣grad0ϕ0

∣∣∣ , (5.1.39)
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where

(grad0)i ≡
∂

∂xi0
, (i = 1,2,3). (5.1.40)

Thus, x = x|t=0 +Λ0t and since the Jacobian J of the transformation x→ x|t=0 is non-
vanishing, i.e.

J = det

∣∣∣∣∣∣∂Λ0
k

∂xi0
t+ δik

∣∣∣∣∣∣ , 0, (i,k = 1,2,3), (5.1.41)

xi0 can be deduced from (5.1.36) and (5.1.37), and ϕ takes the following form

ϕ(t,xi) = ϕ0(xi −Λ0
i t). (5.1.42)

Taking into account the initial conditions, we can deduce the phase ϕ(x, t) of the con-
sidered wave.

Then, developing by the Taylor’s formula the vector U in a neighbourhood of the
wavefront ϕ(xα) = 0 we have

U = (U)ϕ=0+ +

(
∂U
∂ϕ

)
ϕ=0+

+O(ϕ2), (5.1.43)

U0 =
(
U0

)
ϕ=0−

+

(
∂U0

∂ϕ

)
ϕ=0−

+O(ϕ2). (5.1.44)

Operating the difference between (5.1.43) and (5.1.44) we obtain

U = U0 +ϕΠ+O(ϕ2), (5.1.45)

where O(ϕ2) is the Landau’s notation and represents infinitesimals of higher order
respect to ϕ. In (5.1.45), following [1], the amplitude of discontinuity π satisfies
Bernoulli’s equation having the form(

l0 · r0
)[dπ
dt

+ (∇Ψ · r)0π2 +
d
dt

ln
√
J π

]
+ F0π = 0, (5.1.46)

in which we have to take into account equation (5.1.37) (so that π = π(t,xi0)) and where

(∇Ψ · r)0 = |gradϕ| (∇λ · r)0 , F0 = − (∇(l ·B) · r)0 , (5.1.47)

∇ ≡
(
∂
∂c

,
∂
∂jc1

,
∂
∂jc2

,
∂
∂jc3

,
∂
∂r

,
∂
∂V1

,
∂
∂V2

,
∂
∂V3

)
, (5.1.48)

and r0 is the right eigenvector corresponding to the eigenvalue λ0. Equations (5.1.25),
(5.1.32), (5.1.33) and (5.1.46) determine the discontinuity. We remind that the quantity
l0 · r0 is always different from zero by virtue of the hyperbolicity of the system [9].
In [1] it was seen that is possible to solve the equation (5.1.46) with the position

π =
h(t)
√
J Φ(t)

, (5.1.49)
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where

h(t) = exp
[
−
∫ t

0

F0

(l · r)0
dt

]
, Φ(t) = 1+

∫ t

0

(∇Ψ · r)0√
J(τ)

h(τ)dτ , (5.1.50)

with
h(0) = π(0). (5.1.51)

From (5.1.49) follows that if there exists a time tc where J(tc) = 0 or Φ(tc) = 0, then
π→∞, and this correspond to a shock wave [1].

5.1.2 One-dimensional case

Now, we consider the one-dimensional case. Assuming that the propagation of weak
discontinuity waves, regarding the fields of fluid-concentration and its flux and the
porosity and its flux, is along the x axis, the involved quantities depend on x1, denoted
by x, x2 = x3 = 0, the system (4.1.16)-(4.1.18) takes the following form:

∂c
∂t

+
1
ρ

∂jc1
∂x

= 0, (5.1.52)

∂jc1
∂t
− αc
τ jc

∂r
∂x

+
ρDc
τ jc

∂c
∂x

= −
jc1
τ jc

, (5.1.53)

∂jc2
∂t

= −
jc2
τ jc

, (5.1.54)

∂jc3
∂t

= −
jc3
τ jc

, (5.1.55)

∂r
∂t

+
∂V1

∂x
= 0, (5.1.56)

∂V1

∂t
+
Dν
τν

∂r
∂x
− αν
τν
∂c
∂x

= −V1

τν
, (5.1.57)

∂V2

∂t
= −V2

τν
, (5.1.58)

∂V3

∂t
= −V3

τν
. (5.1.59)

where we remind that we supposed αc = αc(r) and αν = αν(c). From the above system
we have

jc2(x, t) = f2(x)e
− t

τj
c , jc3(x, t) = f3(x)e

− t

τj
c , (5.1.60)

V2(x, t) = g2(x)e
− t
τν , V3(x, t) = g3(x)e

− t
τν . (5.1.61)

with f1(x), f2(x), g1(x) and g2(x) arbitrary functions of the real argument x. Then, we
consider the following reduced system

Ut + A(U)Ux = B(U), (5.1.62)
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where

U = (c, jc1,r,V1)
T , (5.1.63)

B =

(
0,−

jc1
τ jc

,0,−V1

τν
,
)T

, (5.1.64)

and

A =


0 1

ρ 0 0
ρDc
τj
c 0 − αc

τj
c 0

0 0 0 1
−αντν 0 Dν

τν 0

 . (5.1.65)

In our one dimensional case, in equation (5.1.23), being n = (n1,0,0) = (1,0,0), we
have An(U) = A. We remark that in this particular case, since n0 is constant, Λ0

k do
not depends on xi0, so from (5.1.41) we deduce J = 1.

5.1.3 Eigenvalues and eigenvectors of the matrix A

The matrix A admits the following simple eigenvalues:

λ
(±)
1 = ±

√
ρDντ j

c
+ ρDcτν −G

2ρτ jcτν
, (5.1.66)

λ
(±)
2 = ±

√
ρDντ j

c
+ ρDcτν +G

2ρτ jcτν
, (5.1.67)

where

G =

√(
ρDντ j

c − ρDcτν
)2
+ 4ραcαντ j

cτν . (5.1.68)

The radicand of the quantity G is positive, so G is real; moreover the eigenvalues λ(±)1
are real when the condition ρDντ j

c
+ ρDcτ

ν −G ≥ 0 is valid (i.e. αcαν ≤ ρDcDν). The

eigenvalues λ(±)2 are always real.

The left eigenvectors l(±)1 , l(±)2 , and the right eigenvectors r(±)1 , r(±)2 corresponding, to

eigenvalues λ(±)1 , λ(±)2 , have the form

l(±)1 =

λ(±)1 R
2αcτν

,
R

2ραcτν
,λ(±)1 ,1

 , l(±)2 =

λ(±)2 S
2αcτν

,
S

2ραcτν
,λ(±)2 ,1

 , (5.1.69)

r(±)1 =

2αc(τ j
c
)2λ

(±)
1

C
,−αcτ

νP
τ jcC

,
λ
(±)
1 τνS
C

,1


T

, (5.1.70)

r(±)2 =

2αc(τ j
c
)2λ

(±)
2

L
,−αcτ

νQ
τ jcL

,
λ
(±)
2 τνR
L

,1


T

, (5.1.71)
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with

R= ρDντ
jc − ρDcτν +G, S = ρDντ

jc − ρDcτν −G, (5.1.72)

P = ρDντ
jc + ρDcτ

ν −G, Q= ρDντ
jc + ρDcτ

ν +G, (5.1.73)

C = Dν (ρDcτ
ν +G)− ρD2

ντ
jc − 2αcαντ

ν , L= Dν (ρDcτ
ν −G)− ρD2

ντ
jc − 2αcαντ

ν .
(5.1.74)

We have l(+)
1 · r(−)1 = 0, l(+)

1 · r(±)2 = 0, l(−)1 · r(+)
1 = 0, l(−)1 · r(±)2 = 0, l(+)

2 · r(±)1 = 0,

l(+)
2 · r(−)2 = 0, l(−)2 · r(±)1 = 0 and l(−)2 · r(+)

2 = 0, in accordance with the general the-
ory. The quantities C, L are supposed different than zero and this lead to the condi-

tion αcαν , ρDcDν . We observe also that G , 0 (so λ(±)1 , λ
(±)
2 ) because the relation(

ρDντ
jc − ρDcτν

)2
, −4ραcαντ j

c
τν is always verified. In fact the left-hand member is

positive whereas the right-hand member is negative. The members are equal only if
they are both null but the right-hand member is different from zero by hypothesis. In
the hypothesis above the eigenvalues of the matrix A are real and the left and right
eigenvectors are linearly independent, so that the system of PDEs (5.1.62) is hyper-

bolic. The discontinuity waves which are propagating with the velocity given by λ(±)1

and λ(±)2 are not exceptional waves in the sense of Lax-Boillat [1] , when

∇λ(±)1 · r
(±)
1 = ∓ τν

2GC

[
2ρα2

c τ
ν ∂αν
∂c

+ανS
∂αc
∂r

]
, 0, (5.1.75)

∇λ(±)2 · r
(±)
2 = ± τν

2GL

[
2ρα2

c τ
ν ∂αν
∂c

+ανR
∂αc
∂r

]
, 0, (5.1.76)

with

∇ ≡
(
∂
∂c

,
∂
∂jc1

,
∂
∂r

,
∂
∂V1

,
)

, (5.1.77)

∇λ(±)1 =

∓ αc

2Gλ(±)1

∂αν
∂c

,0,∓ αν

2Gλ(±)1

∂αc
∂r

,0

 , (5.1.78)

∇λ(±)2 =

± αc

2Gλ(±)2

∂αν
∂c

,0,± αν

2Gλ(±)2

∂αc
∂r

,0

 . (5.1.79)

The scalar product between eigenvectors left and right referred to the same eigen-
value satisfy the following relations (whose value is different than zero for the sup-
posed hyperbolicity of the system)

l(±)1 · r(±)1 = 1+
P (R+ 2G)

2ρτ jcC
, (5.1.80)

l(±)2 · r(±)2 = 1+
Q(3ρDντ j

c − 3ρDcτν −G)
2ρτ jcL

. (5.1.81)
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In the follows we fix our attention on λ = λ
(+)
2 , which corresponds to a progressive

fast wave travelling to the right. Analogous results are valid for the waves propagating
with the other velocities.

5.1.4 Determination of the approximated solution of the PDEs system

Now, we consider an uniform unperturbed state in which U0, solution of the system
(5.1.62), has the form

U0 = (c0,0,r0,0), (5.1.82)

with c0 and r0 constants. In U0 we have(
λ
(+)
2

)0
=

√
ρDντ j

c
+ ρDcτν +G0

2ρτ jcτν
, (5.1.83)

(
l(+)
2

)0
=


(
λ
(+)
2

)0
S0

2α0
c τν

,
S0

2ρα0
c τν

,
(
λ
(+)
2

)0
,1

 , (5.1.84)

(
r(+)

2

)0
=


2α0

c (τ
jc)2

(
λ
(+)
2

)0

L0 ,−α
0
c τ

νQ0

τ jcL0
,

(
λ
(+)
2

)0
τνR0

L0 ,1

 , (5.1.85)

(
l(+)
2 · r(+)

2

)0
= 1+

Q0(3ρDντ j
c − 3ρDcτν −G0)

2ρτ jcL0
, (5.1.86)

and (
∇λ(+)

2 · r(+)
2

)0
=

τν

2G0L0

2ρ(α0
c )

2τν
(
∂αν
∂c

)0

+α0
νR0

(
∂αc
∂r

)0 , (5.1.87)

where the symbols “ 0 ” indicate that the quantities are calculated in U0. The radial
velocity along the characteristic rays is

Λ0(U0,n0) =
(
λ
(+)
2

)0
n0 =

((
λ
(+)
2

)0
,0,0

)
. (5.1.88)

and the characteristic rays are

dt
dσ

= 1,
dxi
dσ

=
∂Ψ 0

∂ϕα
=

(
λ
(+)
2

)0
,

dϕα
dσ

= 0. (5.1.89)

By integration of (5.1.89) one obtain

x0 = σ = t, x(t) = (x)0 +
(
λ
(+)
2

)0
t, (5.1.90)
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and the wave front in explicit form is

ϕ(x, t) = ϕ0
(
x −

(
λ
(+)
2

)0
t

)
. (5.1.91)

The amplitude π satisfies the following equation (see equation (5.1.46) with J = 1):(
l(+)
2 · r(+)

2

)0
[
dπ
dt

+
∣∣∣ϕ0
x

∣∣∣ (∇λ(+)
2 · r(+)

2

)0
π2

]
+ F0 π = 0, (5.1.92)

where

F0 = −
[
∇
(
l(+)
2 ·B

)
· r(+)

2

]0
. (5.1.93)

Thanks to the hyperbolicity of the system, we have
(
l(+)
2 · r(+)

2

)0
, 0, i.e. αcαν , ρDcDν .

Taking into account that

l(+)
2 ·B = −

jc1S
2ραcτ j

cτν
− V1

τν
, (5.1.94)

∇
(
l(+)
2 ·B

)
=

(
jc1
G
∂αν
∂c

, − S
2ραcτ j

cτν
,

jc1
2ρα2

c τ j
cτν

(
2ραcαντ j

c
τν

G
+S

)
∂αc
∂r

, − 1
τν

)
,

(5.1.95)

in U0, we obtain[
∇
(
l(+)
2 ·B

)]0
= jc1G0

(
∂αν
∂c

)0

,− S0

2ρα0
c τ j

cτν
,

jc1

2ρ
(
α0
c

)2
τ jcτν

(
2ρα0

cα
0
ντ

jcτν

G0 +S0
)(
∂αc
∂r

)0

,− 1
τν

 ,

(5.1.96)

and

F0 = −
2α0

c (τ
jc)2jc1

(
λ
(+)
2

)0

G0L0

(
∂αν
∂c

)0

−
jc1R0

(
λ
(+)
2

)0

2ρL0
(
α0
c

)2
τ jc

(
2ρα0

cα
0
ντ

jcτν

G0 +S0
)(
∂αc
∂r

)0

− Q0S0

2ρ(τ jc)2L0
+

1
τν

.

(5.1.97)

We solve equation (5.1.92) with the position π =
h(t)

Φ(t)
(see equation (5.1.49) with J =

1). By (5.1.50)1, with the initial condition (5.1.51), we obtain

h(t) = π0 exp

− F0(
l(+)
2 · r(+)

2

)0 t

 , (5.1.98)
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where π0 = π(0).
Substituting equation (5.1.98) into (5.1.50)2 (with J = 1) we have

Φ(t) = 1− π
0

H0

∣∣∣ϕ0
x

∣∣∣ (∇λ(+)
2 · r(+)

2

)0
(e−H

0t − 1), (5.1.99)

where H0 =
F0(

l(+)
2 · r(+)

2

)0 , that is supposed different than zero.

From equations (5.1.98) and (5.1.99) we can write the amplitude π:

π(t) =
π0H0e−H

0t

H0 −π0
∣∣∣ϕ0
x

∣∣∣ (∇λ(+)
2 · r(+)

2

)0
(e−H0t − 1)

. (5.1.100)

We observe that the amplitude π(t) is a limited function:

lim
t→∞

π(t) =


− H0

|ϕ0
x |
(
∇λ(+)

2 ·r(+)
2

)0 , if H0 < 0,

0, if H0 > 0.
(5.1.101)

In the case where there exists a critical time tc in which Φ(tc) = 0, i.e.

tc =
1
H0 ln


π0

∣∣∣ϕ0
x

∣∣∣ (∇λ(+)
2 · r(+)

2

)0

H0 +π0
∣∣∣ϕ0
x

∣∣∣ (∇λ(+)
2 · r(+)

2

)0

 , (5.1.102)

this correspond to a shock wave [1]. Of course in equation (5.1.102) the function tc
exists if

1
H0 ln


π0

∣∣∣ϕ0
x

∣∣∣ (∇λ(+)
2 · r(+)

2

)0

H0 +π0
∣∣∣ϕ0
x

∣∣∣ (∇λ(+)
2 · r(+)

2

)0

 > 0 and
π0

∣∣∣ϕ0
x

∣∣∣ (∇λ(+)
2 · r(+)

2

)0

H0 +π0
∣∣∣ϕ0
x

∣∣∣ (∇λ(+)
2 · r(+)

2

)0 > 0.

(5.1.103)
If (5.1.103) is not verified, there is not a shock wave.

Finally, by virtue of relations (5.1.25), (5.1.45), (5.1.82), (5.1.85), (5.1.91) and
(5.1.100) we can write the explicit form of the first approximation of the solution U of
the system (5.1.62):

(c, jc1,r,V1)
T = (c0,0,r0,0)T + Γ 0


2α0

c (τ
n)2

(
λ
(+)
2

)0

L0 ,−α
0
c τ

νQ0

τ jcL0
,

(
λ
(+)
2

)0
τνR0

L0 ,1


T

,

(5.1.104)
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with

Γ 0 =

ϕ0
(
x −

(
λ
(+)
2

)0
t

)
π0H0e−H

0t

H0 −π0
∣∣∣ϕ0
x

∣∣∣ (∇λ(+)
2 · r(+)

2

)0
(e−H0t − 1)

. (5.1.105)

From (5.1.104) we obtain the first approximation of the fields responsible of the mono-
dimensional concentration-porous propagation discontinuity waves

c(x, t) = c0 +

2ϕ0
(
x −

(
λ
(+)
2

)0
t

)
π0H0α0

c (τ
n)2

(
λ
(+)
2

)0
e−H

0t

L0

[
H0 −π0

∣∣∣ϕ0
x

∣∣∣ (∇λ(+)
2 · r(+)

2

)0
(e−H0t − 1)

] , (5.1.106)

jc1(x, t) = −
ϕ0

(
x −

(
λ
(+)
2

)0
t

)
π0H0α0

c τ
νQ0e−H

0t

τ jcL0

[
H0 −π0

∣∣∣ϕ0
x

∣∣∣ (∇λ(+)
2 · r(+)

2

)0
(e−H0t − 1)

] , (5.1.107)

r(x, t) = r0 +

(
λ
(+)
2

)0
ϕ0

(
x −

(
λ
(+)
2

)0
t

)
π0H0τνR0e−H

0t

L0

[
H0 −π0

∣∣∣ϕ0
x

∣∣∣ (∇λ(+)
2 · r(+)

2

)0
(e−H0t − 1)

] , (5.1.108)

V1(x, t) =
ϕ0

(
x −

(
λ
(+)
2

)0
t

)
π0H0e−H

0t

H0 −π0
∣∣∣ϕ0
x

∣∣∣ (∇λ(+)
2 · r(+)

2

)0
(e−H0t − 1)

. (5.1.109)

To these obtained relations, we have to add also the results (5.1.60) and (5.1.61).
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Appliquées (1968).

https://doi.org/10.1007/BF02411808
https://doi.org/10.1016/0165-2125(79)90017-9
https://doi.org/10.1016/0165-2125(79)90017-9


references 80

[5] V. Ciancio and L. Restuccia. “Asymptotic waves in anelastic media without mem-
ory (Maxwell media)”. In: Physica 131 A (1985), pp. 251–262. doi: 10.1016/
0378-4371(85)90090-1.

[6] V. Ciancio and L. Restuccia. “Nonlinear dissipative waves in viscoanelastic me-
dia”. In: Physica 132 A (1985), pp. 309–320. doi: 10.1016/0378-4371(85)90033-
0.

[7] V. Ciancio and L. Restuccia. “The generalized Burgers equation in viscoanelastic
media with memory”. In: Physica 142 A (1987), pp. 309–320. doi: 10.1016/0378-
4371(87)90027-6.

[8] A. Donato. Lecture notes of the course on “Nonlinear wave propagation” held by A.
Donato during Academic Year 1979-1980, attended by one of us (L.R.) Tech. rep.
University of Messina, Dept. of Mathematics, 1980.

[9] A. Donato and A. M. Greco. Metodi qualitativi per onde non lineari. Quaderni del
C. N. R., Gruppo Nazionale di Fisica Matematica, 11th Scuola Estiva di Fisica
Matematica, Ravello, September 8-20, 1986.
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6 ASYMPTOT IC WAVES IN POROUS
I SOTROP IC MED I A F I L L ED BY A F LU I D
F LOW

This Chapter is dedicated to the application of a general method devised to con-
struct approximate smooth solutions to the nonlinear hyperbolic partial differential
equations describing the interaction among the fluid-concentration and the porosity
fields and their fluxes in homogeneous, isotropic porous nanostructures with porous
defects filled by a fluid flow.

These approximated solutions are called asymptotic waves (see [12], [13], [14], [17]).
In this case, instead of the jump there is a steep variation and to obtain these solutions
we use a perturbative method derived by Boillat [1], [2], and generalized by Fusco in
[10], following also [3], [15] and [18].

In particular, in Section 6.1, in the one dimensional case, one of these approximated
solutions is analysed and its propagation into a uniform unperturbed state is studied,
the expression of the velocity along the characteristic rays and the equation of the
wave front are determined. Finally, it is seen that the transport equation for the first
perturbation term of the asymptotic solution, using a suitable transformation, can be
reduced to an equation valid along the characteristic rays.
Applications of the mathematical theory of asymptotic waves were carried out in the
context of rheological media by L. Restuccia (see for instance [4], [6], [8]).

The studies presented in this Chapter are contained in the article [9]:

A. Famà and L. Restuccia. Asymptotic waves in isotropic nanostructures with porous
defects filled by a fluid flow. Submitted to Annals of the Academy of Romanian Scientists,
Series on Mathematics and its Applications, 2020.

6.1 asymptotic waves in a model for fluid concen-
tration and porosity fields and their fluxes

In this Section we find one solution of PDEs system, consisting of equations (5.1.52),
(5.1.53), (5.1.56) and (5.1.57), having the matrix form (5.1.62)

Ut + A(U)Ux = B(U),

with U, B and A given by (5.1.63)-(5.1.65), written in terms of a formal power series
(at second order). Also we deduce the conditions for the propagation of the asymptotic
wave, corresponding to the first approximation of the considered solution.
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6.1.1 Asymptotic wave propagation into a uniform unperturbed state

In this Subsection we study in the one-dimensional case the asymptotic wave prop-
agation into a uniform unperturbed state, we derive the approximated solution U, the
equation of its wave front and the expression of its velocity along the characteristic
rays. To this aim we consider a known uniform unperturbed state defined in (5.1.82):

U0 = (c0,0,r0,0),

in which the system (5.1.62) is hyperbolic.
We suppose (see [1], [2], [10], [15]) that the solution U can be developed in the follow-
ing asymptotic form around the state U0, i.e. we look for the solution of the equations
as an asymptotic series of powers of a small parameter, ε, namely with respect to the

asymptotic sequence
{
1,εa+1,εa+2, . . .

}
or

{
1,ε

1
p ,ε

2
p , . . .

}
, as ε → 0. In particular we

consider p = 1 and ε = ω−1 (see also [5], [7], [8]), such that U(xα,ξ) is written as an
asymptotic power series of the small parameter ω−1 around the initial unperturbed
state U0(xα), i.e. with respect to the asymptotic sequence 1,ω−1,ω−2, . . ., as ω−1 → 0,
where U i (i = 1,2, . . .) are functions of xα and ξ,

U = U0 +
1
ω

U1(xα,ξ) +
1
ω2 U2(xα,ξ) +O

( 1
ω3

)
(α = 0,1), (6.1.1)

where
ξ = ωϕ(xα). (6.1.2)

In (6.1.1) and (6.1.2), that are valid also when α = 0,1,2,3, ξ is asymptotically fixed,
i.e. ξ = Ord(1) as ω−1→ 0, ω is a very large real parameter and ϕ(xα) is the unknown
wavefront [11], [15] which is to be determined as well as the vector fields U1 and U2

(for the sake of simplicity we will determine only U1). From (6.1.1) we see that the
following relations are valid:

A(U) = A0 +
1
ω
(∇A)0U1 +O

( 1
ω2

)
, (6.1.3)

∂U
∂xα

=
∂U1

∂ξ

∂ϕ

∂xα
+

1
ω

(
∂U1

∂xα
+
∂U2

∂ξ

∂ϕ

∂xα

)
+O

( 1
ω2

)
(α = 0,1), (6.1.4)

B(U) =
1
ω
(∇B)0U1 +O

( 1
ω2

)
, (6.1.5)

where ∇ = ∂
∂U and the superscript “ 0 ” denotes that the quantities are calculated in

U0 (observe that B0 = 0). Using relations (6.1.3)-(6.1.5), the system (5.1.62) reads(
A0∂ϕ

∂x
+ I

∂ϕ

∂t

)
∂U1

∂ξ

+
1
ω

[(
A0∂ϕ

∂x
+ I

∂ϕ

∂t

)
∂U2

∂ξ
+
∂U1

∂t
+ A0∂U1

∂x
+ (∇A)0U1∂U1

∂ξ

∂ϕ

∂x
− (∇B)0U1

]
= 0.

(6.1.6)



6.1 asymptotic waves in isotropic porous structures 84

in which the terms of order greater than
1
ω

are been neglected. From equation (6.1.6)

we deduce that

(
A0∂ϕ

∂x
+ I

∂ϕ

∂t

)
∂U1

∂ξ
= 0, (6.1.7)(

A0∂ϕ

∂x
+ I

∂ϕ

∂t

)
∂U2

∂ξ
+
∂U1

∂t
+ A0∂U1

∂x
+ (∇A)0U1∂U1

∂ξ

∂ϕ

∂x
= (∇B)0U1. (6.1.8)

Equation (6.1.7) represents a 4 × 4 system in the unknown ∂U1

∂ξ ; it admits non trivial
solutions if and only if

det
(
A0∂ϕ

∂x
+ I

∂ϕ

∂t

)
= 0, (6.1.9)

so ϕ(x, t) is a characteristic surface in the sense of the discontinuity waves theory [1]
(see (5.1.11)-(5.1.17)). Now, if we introduce the following quantities (see (5.1.14) and
(5.1.16)) :

λ= −
∂ϕ/∂t
|gradϕ|

, n =
gradϕ
|gradϕ|

,

where λ is the velocity normal to the progressive waves and n is the unit vector normal
to the wave front (in this one-dimensional case n = (1,0,0)), then, equation (6.1.7)
takes the form

(A0 −λI)
∂U1

∂ξ
= 0, (6.1.10)

and shows that λ is a eigenvalue of A0 and ∂U1

∂ξ can be taken proportional to the right-
eigenvector r of A0, corresponding to λ

∂U1

∂ξ
= v1(xα,ξ)r(U0) (α = 0,1), (6.1.11)

where v1 is an arbitrary scalar function supposed integrable with respect to ξ. Anal-
ogous expressions are valid in the three-dimensional case. The method to obtain the
approximate smooth solutions is valid only for waves propagating with a velocity λ
such that ∇λ · r , 0, i.e. with a velocity that does not satisfy the Lax-Boillat exception-
ality condition [16]. By integrating equation (6.1.11), one obtains

U1(xα,ξ) = u1(xα,ξ)r(U0) + v1(xα) (α = 0,1), (6.1.12)

where u1 =
∫
v1(xα,ξ)dξ is still an arbitrary function and v1 is an arbitrary scalar

function of integration which can be taken as zero, without loss of generality (see [2],
[6], [10]). It may be observed that in (6.1.12) u1 gives rise to the phenomenon of the
distortion of the signals and this term governs the first-order perturbation obeying a
non-linear partial differential equation (the growth equation).
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We can introduce, as in Subsection 5.1.1, the quantity (5.1.30)

Ψ (U,ϕα) = ϕt + |gradϕ|λ(U,n) (α = 0,1),

and we derive the same results (5.1.31)-(5.1.42). The eigenvalues and eigenvectors are
given by (5.1.66), (5.1.67) and (5.1.69)-(5.1.71), respectively.

In the next Subsection we will focus our attention on the eigenvalue λ(+)
2 , for which

relations (5.1.88)-(5.1.91) are valid, and from (5.1.91) and (6.1.2) we derive

ξ(t,x) = ωϕ0
(
x −

(
λ
(+)
2

)0
t

)
. (6.1.13)

6.1.2 The growth equation for the first perturbation term

The arbitrariness of u1 is used to satisfy the condition (6.1.8) following the general
theory (see [2]), in the case in which U0 is constant, and taking into account (5.1.37) it
results that the following transport equation for u1(t,ξ) can be obtained

∂u1

∂t
+ (∇Ψ · r)0u1∂u

1

∂ξ
+

1
ϑ
∂ϑ
∂t
u1 = ν0u1. (6.1.14)

In (6.1.14) the superscript “ 0 ” indicates that the quantities are calculated in U0 and
we remind that

ϑ =
√
J , (∇Ψ · r)0 =

∣∣∣gradϕ0
∣∣∣ (∇λ · r)0 ,

and moreover ν0 is defined as follows

ν0 =
l0 · [(∇B)r]0

(l · r)0 . (6.1.15)

Now, we investigate the vector field U1 related to the eigenvector r(+)
2 and the eigen-

value λ(+)
2 . From equation (6.1.12) (in which ν1 = 0) it has the form

U1(xα,ξ) = u1(xα,ξ)r(+)
2 (U0), (6.1.16)

where u1 is scalar function to be determined, that satisfy the partial differential equa-
tion (6.1.14).

In our one-dimensional case we have ϑ = 1 and from relation (5.1.87) we can write(
∇Ψ · r(+)

2

)0
=

∣∣∣ϕ0
x

∣∣∣ τν

2G0L0

2ρ(α0
c )

2τν
(
∂αν
∂c

)0

+α0
νR0

(
∂αc
∂r

)0 , (6.1.17)

and, the coefficient ν0 defined by (6.1.15) related to l(+)
2 and r(+)

2 , becomes

ν0 =

[
l(+)
2 · (∇B) r(+)

2

]0

(
l(+)
2 · r(+)

2

)0 =
τνS0Q0 − 2ρ

(
τ j

c
)2
L0

2ρτν
(
τ jc

)2
L0 + τντ jcQ0(3ρDντ j

c − 3ρDcτν −G0)
, (6.1.18)
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where (see relations (5.1.64), (5.1.84) and (5.1.85))[
l(+)
2 · (∇B)r(+)

2

]0
=

S0Q0

2ρ
(
τ jc

)2
L0
− 1
τν

, (6.1.19)

and (see (5.1.86)) (
l(+)
2 · r(+)

2

)0
= 1+

Q0(3ρDντ j
c − 3ρDcτν −G0)

2ρτ jcL0
. (6.1.20)

Then, in this case the function u1 satisfies the following equation

∂u1

∂t
+

(
∇Ψ · r(+)

2

)0
u1 ∂u

1

∂ξ
= ν0u1. (6.1.21)

In [2] and [10] it is seen that from the general equation (6.1.14) (so also equation
(6.1.21)) it is possible to derive an equation valid along the characteristic rays, whose
solution is well known and is obtained using the following transformation of variables

u2 = u1eν2 , ν2 =

∫ t

0
ν0(s)ds, τ2 =

∫ t

0

(
∇Ψ · r(+)

2

)0
eν2 ds, (6.1.22)

equation (6.1.21) reduces to the well known non viscous Burger equation

∂u2

∂τ2
+ u2

∂u2

∂ξ
= 0, (6.1.23)

whose solution, corresponding to the initial value ū2, is implicitly given by

u2 = ū2 (t,x,ξ −u2τ2) , (6.1.24)

so the implicit solution of (6.1.21) is

u1 = ū2 (t,x,ξ −u2τ2)e
ν2 . (6.1.25)

In conclusion, if we consider (for the sake of simplicity) in (6.1.1) only the terms up

to the first order, the asymptotic wave related to the eigenvalue λ(+)
2 has the form

U = U0 +
1
ω
ū2 (x

α,ξ −u2τ2)e
ν2

(
r(+)

2

)0
. (6.1.26)
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Part II

NON -EQU I L I BR IUM THERMODYNAM ICS OF R IG I D
BOD I ES W I TH AN INTERNAL TENSOR I A L F I E LD

IN F LUENC ING THE THERMAL PHENOMENA



7 GENERAL I Z ED BALL I ST I C -CONDUCT I V E
HEAT TRANSPORT LAWS IN THREE -
D IMENS IONAL I SOTROP IC MATER I A LS

There are several generalisations of classical Fourier law conduction that can also
model second-sound phenomena (heat waves) and ballistic propagation. These theo-
ries are more and more important in nanostructures and are subjects of various chal-
lenging physical, mathematical and numerical researches. For example nonlocal ef-
fects and the role of effective temperature is investigated in [40], [42], [43], [44], [45],
particular special functions were constructed and exact solutions were calculated for
both the hyperbolic and Guyer-Krumhansl heat conduction [58], [59], [60], [61], a-
dapted numerical methods were developed in [14], [26], the role of internal variables
in complex media modelling were investigated in [5], [6], [33], the particularities of
heat conduction in nanomaterials is discovered in [4], [20], [56]. These investigations
are often related to various concepts of non-equilibrium temperature, too.

Second sound, the wavelike propagation of heat, is due to the inertia of internal en-
ergy. This property can be modelled by an additional non-equilibrium thermodynamic
state variable. A straightforward choice for this additional vectorial state variable is
the heat flux [10], [24]. This choice leads to theories of Extended Thermodynamics
(ET). There one requires a compatibility with kinetic theory [7], [12], [18], [25], [39],
[49], and the structure of the continuum theory will be compatible with the equations
derived by moment series expansion of the Boltzmann equation, considering also a
Callaway collision integral with two relaxation times. This compatibility with kinetic
theory is a necessity for any phenomenology: a universal macroscopic approach must
be valid in case of various micro- and mesostructures, in particular, it must be compat-
ible with the theory of rarefied gases.

The key of universality is to introduce only general physical and mathematical re-
quirements and a minimal number of assumptions regarding the structure of the ma-
terial. In particular, one must use and exploit the second law of thermodynamics and
introduce a proper functional characterisation of the deviation from local equilibrium.
All these can be accomplished most conveniently with the help of internal variables.

One can achieve the compatibility with kinetic theory if the variables have the same
tensorial order than the corresponding moments; therefore, their tensorial order is in-
creasing with every new variable. However, the evolution equations of these fields
are direct consequences of the second law, and one can get them solving the inequal-
ity of the entropy production. This way, for heat transport one obtains the Maxwell-
Cattaneo-Vernotte equation as well as the Guyer-Krumhansl one with a single vectorial
internal variable [50], [53]. With an additional tensorial variable, a more general the-
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ory can be derived, that correctly describes ballistic propagation and the propagation
of heat with the speed of sound, too [15].

Non-Equilibrium Thermodynamics with Internal Variables (NET-IV) can reproduce
NaF experiments quantitatively, including the correct ballistic propagation speed [16],
[17]. Nevertheless, the universality of the derivation indicates a broader range of valid-
ity, beyond rarefied real or phonon gases. This broadened range of validity is a predic-
tion: e.g. one can expect non-Fourier heat transport in heterogeneous materials, too.
Really, Guyer-Krumhansl type heat transport has been observed in diverse systems,
in various heterogeneous materials with heat pulse experiments at room temperature
[3], [55]. Internal variables are powerful for modelling concepts in other continuum
theories, like rheology [46], [57], semiconductor crystals with dislocations [13], porous
nanocrystals filled by fluid flow [33], [34], [35], [36], and also in the GENERIC frame-
work [30]. Naturally, the relation of NET-IV with theories of ET, and kinetic theory, is
not straightforward and its performance is analysed considering the complete theory,
not only heat transport [37], [38], [41].

Up to now, the solutions and analyses of wave-like and ballistic propagation are
mostly restricted to one spatial dimension. This approach is problematic from the
point of view of experimental observations, especially considering the NaF experi-
ments [11], [21]. In the classical experiments, the setup is not one-dimensional, but
this fact is not considered in the usual modelling calculations [16], [17]. The related
ET theory inherits the dimensional reduction from the particular collision integrals,
e.g. the deviatoric and spherical contributions in the evolution equation of the heat
flux have the same coefficient in the usual form of the Guyer-Krumhansl equation [25],
and this is preserved in nonlinear theories, too [39].

In this Chapter we give the complete three-dimensional form of the equations of a
theory of heat transport in isotropic materials, with a second order tensorial internal
variable Q, including the possible Onsager reciprocity relations and second law re-
quirements for the transport coefficients. The cases, where Q has odd parity and even
parity, are developed separately. Since higher-order effects are taken into account, and,
since we are considering the full three-dimensional problem, the explicit expressions
we provide in the Appendix C are cumbersome. However, they are expected to be
useful in computer programming and simulations.

The Chapter is organised as follows. In the Section 7.1 the theoretical framework
is outlined and the basic balances and constitutive equations are given in a linear
anisotropic form for the media under consideration. In Sections 7.2 and 7.3 the isotrop-
ic form of the equations are first treated in general. Then Onsager reciprocity relations
are imposed as additional requirements, the entropy production is derived, the condi-
tions of its positive definiteness are discussed and the generalized ballistic-conductive
heat transport laws in three-dimensional isotropic materials are worked out. In Sec-
tion 7.4 the general evolution equations for the heat flux, q, and for Q are derived. The
same for Q with odd and even parities together with the one dimensional case is given
in Sections 7.5 and 7.6. The general one dimensional form is more general than in
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[15], while the obtained special cases of Jeffrey type, Maxwell-Cattaneo-Vernotte and
Fourier heat equations are the same. A detailed matrix form of the conductivity matrix
is given in the Appendix C, when Q has odd parity, and the differences with respect
to the case where Q has even parity, are discussed, including the transformation of the
sixth-order tensor to a form suitable for the calculation of the positive definiteness of
the coefficients.

The studies presented in this Chapter are contained in the article [9]:

A. Famà, L. Restuccia and P. Ván. Generalized ballistic-conductive heat transport laws
in three-dimensional isotropic materials. Continuum Mechanics and Thermodynamics,
2020.

7.1 basic equations of heat transport coupled
with a tensorial internal variable

We consider the balance equations of a rigid heat conductor, i.e. the balance of
internal energy and the balance of entropy

ρė+ qi,i = 0, (7.1.1)

ρṡ+ Ji,i = σ (s). (7.1.2)

Here ρ is the density, e the specific internal energy, qi the current density of the inter-
nal energy, the heat flux, s the specific entropy, and Ji denotes the entropy flux. The
σ s entropy production rate plays a central and constructive role in the theory. i, j,k
are spatial indices related to Descartes coordinates, but they can also be considered as
abstract spatial indices of vectors and tensors in the sense that they do not refer to par-
ticular coordinates [32]; however, it is convenient in case of higher than second-order
tensors. A comma in lower indices is for spatial derivation, and upper dot denotes the
substantial time derivative (e.g. ė = ∂te+ vie,i , where ∂t is the partial time derivative).
In case of rigid conductors at rest, the relative velocity of the continuum is zero; there-
fore, the substantial time derivative is equal to the partial time derivative. Regarding
the general usage of abstract indices in classical nonrelativistic continuum theories see,
e.g. in [48], [52].

We introduce an additional internal variable Qij (a second-order tensor) which will
incorporate higher-order effects in heat transport. Its physical meaning is not neces-
sary a priori. However, in order that the reader may set some intuitive feeling of it, it
is worth saying that Qij may be interpreted as the flux of the heat flux (see Ref. [12],
[39]) in solids, as the pressure tensor in fluids (see Ref. [12], [17]), or as the gradient of
the heat flux, but here we leave open its meaning since it could also have a structural
information about the particular material. We assume that Qij contributes to the en-
tropy and the entropy flux. The entropy flux must be zero if qi and Qij are zero, that
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is in local thermodynamic equilibrium in the absence of heat flux. Therefore its most
general form can be given as

Ji = bijqj +BijkQjk, (7.1.3)

where the bij and Bijk constitutive functions are the Nyı́ri multipliers, that conve-
niently represent the deviation from the local equilibrium form of the entropy flux,
like their quadratic form in the entropy density [27]. This can be expressed also in an
additive form, as the K vector of Müller, [23], if Ki = (bij − δij/T )qj +BijkQjk.

Expanding the entropy function s(e,qi ,Qij) up to second-order approximation a-
round a local equilibrium state, we obtain

s(e,qi ,Qij) = s(eq)(e)− 1
2ρ
mijqiqj −

1
2ρ
MijklQijQkl . (7.1.4)

The coefficients mij and Mijkl have the following symmetries

mij =mji , Mijkl =Mklij .

Note that (7.1.3) and (7.1.4) are valid for anisotropic systems too. For isotropic sys-
tems mij and Mijkl in (7.1.4) would reduce to a scalar and the three scalar components
conjugate to the three scalar invariants of tensor Qij , respectively. Thermodynamic
stability requires that the inductivity tensors, mij , Mijkl (see in [10, 19]), are positive
definite and we assume that they are constant. The entropy production σ (s), formed
by combining (7.1.2), (7.1.3) and (7.1.4), is

ρṡ+ Ji,i = σ (s)

= ρ
ds(eq)

de
ė − 1

2
mij q̇iqj −

1
2
mijqi q̇j −

1
2
MijklQ̇ijQkl

− 1
2
MijklQijQ̇kl + bij,iqj + bijqj,i +Bijk,iQjk +BijkQjk,i

=
(
bij −

1
T
δij

)
qj,i +

(
bji,j −mij q̇j

)
qi +

(
Bkij,k −MijklQ̇kl

)
Qij +BijkQjk,i ≥ 0.

(7.1.5)

Inequality (7.1.5) expresses the second law of thermodynamics. Following the pro-
cedures of non-equilibrium thermodynamics we obtain the following general three-
dimensional anisotropic linear relations between the thermodynamic fluxes bij − 1

T δij ,
bji,j −mij q̇j , Bijk, Bkij,k −MijklQ̇kl and forces qi , qj,i , Qij , Qjk,i

bji,j −mij q̇j = L
(1)
ij qj + L

(1,2)
ijk qj,k + L

(1,3)
ijk Qjk + L

(1,4)
ijkl Qjk,l (7.1.6)

bij −
1
T
δij = L

(2,1)
ijk qk + L

(2)
ijklqk,l + L

(2,3)
ijkl Qkl + L

(2,4)
ijklmQkl,m (7.1.7)

Bkij,k −MijklQ̇kl = L
(3,1)
ijk qk + L

(3,2)
ijkl qk,l + L

(3)
ijklQkl + L

(3,4)
ijklmQkl,m (7.1.8)

Bijk = L
(4,1)
ijkl ql + L

(4,2)
ijklmql,m+ L

(4,3)
ijklmQlm+ L

(4)
ijklmnQlm,n. (7.1.9)

Here the conductivity tensors, L(α,β) and L(γ), are restricted by material symmetries
and by the second law. Furthermore reciprocity relations are also to be considered, as
we do in Section 7.2.
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7.2 onsager reciprocity relations

There are two different justifications of Onsager reciprocity. These are the assump-
tions regarding microscopic and macroscopic reversibility [22]. The concept of micro-
scopic reversibility goes back to Onsager, [28], [29], and assumes a known microstruc-
ture, based on the reversal of microscopic velocities. The principle of macroscopic
reversibility assumes a particular parity of the physical quantities regarding time rever-
sal, which is originated in the consistency of the balances, and constitutive equations
with a time reversal operation [31], [57]. Then the physical quantities with even parity
are called α- and with odd parity as β-type variables. For example density, entropy, en-
ergy and all thermostatic state variables are of α-type, the velocity, heat flux, entropy
flux are β-type, as one can see from the balances because time derivative changes the
parity of the fields (e.g. the time derivative of an α-type variable becomes β-type), but
the gradient does not. It is generally assumed, that if the thermodynamic forces are
of the same type, then the conductivity tensor is symmetric and when they are of the
opposite, then the conductivity tensor becomes antisymmetric.

Several theoretical and experimental results support, that internal variable related
thermodynamic fluxes and forces do not have definite parities, and both symmetric
and antisymmetric parts of the conductivity tensors can be observed [1], [2], [54]. This
is understandable because nothing is assumed about the microscopic structure of the
material nor on the physical meaning ofQij in NET-IV [51]. Therefore the microscopic
reversibility conditions of Onsager cannot be applied, and concept of macroscopic re-
versibility is not violated, if we assume that the internal variable, Qij , does not have
parity. In the following, we start with the general case, without Onsagerian reciprocity
and without any assumption on the parity of the Qij . Then we investigate the parities
separately with symmetric and antisymmetric conductivity tensors. Let us remark,
that comparison with Extended Thermodynamics identifies Qij as a pressure tensor or
as a flux of the heat flux [41]. In this case, it must have an even character, also because
the entropy flux Ji and the heat flux qi are β-type, odd quantities.

7.2.1 Onsager reciprocity relations

In this Subsection we suppose that the fieldQij (so alsoQij,k) is odd or even functions

under time reversal. Then
(
Bkij,k −MijklQ̇kl

)
and Bijk have an opposite parity, they

are both even or both odd functions under time reversal. From this assumptions we
obtain the following mathematical requirements (Onsager reciprocity relations) for
the symmetric part of the conductivity tensor:

L
(1)
ik = L

(1)
ki , L

(1,2)
ijk = L

(2,1)
jki , (7.2.1)

L
(1,3)
ijk = ±L(3,1)

jki , L
(1,4)
ijkl = L

(4,1)
jkli , (7.2.2)
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L
(2)
ijkl = L

(2)
klij , L

(2,3)
ijkl = ±L(3,2)

klij , (7.2.3)

L
(2,4)
ijklm = ±L(4,2)

klmij , L
(3)
ijkl = L

(3)
klij , (7.2.4)

L
(3,4)
ijklm = L

(4,3)
klmij , L

(4)
ijklmn = L

(4)
lmnijk. (7.2.5)

With the positive sign if Qij is β-type and with a negative one if it is α-type quantity.
The sign is changes only if the parity of the respective thermodynamic forces changes,
too. Therefore the the L(γ) tensors, that is the diagonal hypertensors in (7.1.6)-(7.1.9)
do not change sign.

7.3 general isotropic case without assumption
on the parity of Q i j

In the general isotropic case, in which the symmetry properties of the body under
consideration are invariant with respect to all rotations and to inversion of the frame of
axes, but in which Onsager reciprocity relations are not yet imposed, we have [8]

mij =mδij , (7.3.1)

Mijkl =M1δijδkl +M2δikδjl +M3δilδjk, (7.3.2)

L
(1)
ij ≡ L

(1)
ij = L(1)δij , (7.3.3)

L
(1,4)
ijkl ≡ L

(1,4)
ijkl = L

(1,4)
1 δijδkl + L

(1,4)
2 δikδjl + L

(1,4)
3 δilδjk, (7.3.4)

L
(2)
ijkl ≡ L

(2)
ijkl = L

(2)
1 δijδkl + L

(2)
2 δikδjl + L

(2)
3 δilδjk, (7.3.5)

L
(2,3)
ijkl ≡ L

(2,3)
ijkl = L

(2,3)
1 δijδkl + L

(2,3)
2 δikδjl + L

(2,3)
3 δilδjk, (7.3.6)

L
(3,2)
ijkl ≡ L

(3,2)
ijkl = L

(3,2)
1 δijδkl + L

(3,2)
2 δikδjl + L

(3,2)
3 δilδjk, (7.3.7)

L
(3)
ijkl ≡ L

(3)
ijkl = L

(3)
1 δijδkl + L

(3)
2 δikδjl + L

(3)
3 δilδjk, (7.3.8)

L
(4,1)
ijkl ≡ L

(4,1)
ijkl = L

(4,1)
1 δijδkl + L

(4,1)
2 δikδjl + L

(4,1)
3 δilδjk, (7.3.9)

L
(4)
ijklmn ≡ L

(4)
ijklmn = L

(4)
1 δijδklδmn+ L

(4)
2 δijδkmδln+ L

(4)
3 δijδknδlm

+ L
(4)
4 δikδjlδmn+ L

(4)
5 δikδjmδln+ L

(4)
6 δikδjnδlm

+ L
(4)
7 δilδjkδmn+ L

(4)
8 δimδjkδln+ L

(4)
9 δinδjkδlm

+ L
(4)
10 δilδjmδkn+ L

(4)
11 δimδjlδkn+ L

(4)
12 δinδjlδkm

+ L
(4)
13 δinδjmδkl ++L

(4)
14 δimδjnδkl + L

(4)
15 δilδjnδkm.

(7.3.10)

The coefficients appearing in the entropy (7.1.4) are (7.3.1) and (7.3.2).
Furthermore, in the isotropic case (where the symmetry properties of the considered

body are invariant only with respect to all rotations of the frame of axes) the third
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order tensors keep the form Lijk = L ∈ijk and the fifth order tensors take the form
Lijklm = A1 ∈ijk δlm+A2 ∈ijl δkm+A3 ∈ijm δkl +A4 ∈ikl δjm+A5 ∈ikm δlj +A6 ∈ilm δjk,
where ∈ijk denotes the Levi Civita tensor and the quantities L and Ai , i = 1, . . . ,6, are
the independent components of the tensors Lijk and Lijklmn, that vanish when there is
also the invariance of the properties with respect to the inversion of the axes. Thus, we
obtain

L
(1,2)
ijk = L

(1,3)
ijk = L

(2,1)
ijk = L

(3,1)
ijk = 0, (7.3.11)

L
(2,4)
ijklm = L

(3,4)
ijklm = L

(4,2)
ijklm = L

(4,3)
ijklm = 0. (7.3.12)

From relations (7.3.1)-(7.3.12), the phenomenological equations (7.1.6)-(7.1.9) in the
isotropic case read

mq̇i − bji,j = −L(1)qi −L
(1,4)
1 Qik,k −L

(1,4)
2 Qki,k −L

(1,4)
3 Qkk,i , (7.3.13)

bij −
1
T
δij = L

(2)
1 δijqk,k + L

(2)
2 qi,j + L

(2)
3 qj,i + L

(2,3)
1 δijQkk

+ L
(2,3)
2 Qij + L

(2,3)
3 Qji ,

(7.3.14)

Bkij,k =M1δijQ̇kk +M2Q̇ij +M3Q̇ji + L
(3,2)
1 δijqk,k + L

(3,2)
2 qi,j

+ L
(3,2)
3 qj,i + L

(3)
1 δijQkk + L

(3)
2 Qij + L

(3)
3 Qji ,

(7.3.15)

Bijk = L
(4,1)
1 δijqk + L

(4,1)
2 δikqj + L

(4,1)
3 δjkqi

+ δij

(
L
(4)
1 Qkl,l + L

(4)
2 Qlk,l + L

(4)
3 Qll,k

)
+ δik

(
L
(4)
4 Qjl,l + L

(4)
5 Qlj,l + L

(4)
6 Qll,j

)
+ δjk

(
L
(4)
7 Qil,l + L

(4)
8 Qli,l + L

(4)
9 Qll,i

)
+ L

(4)
10 Qij,k + L

(4)
11 Qji,k + L

(4)
12 Qjk,i + L

(4)
13 Qkj,i

+ L
(4)
14 Qki,j + L

(4)
15 Qik,j .

(7.3.16)

In the general isotropy case the number of material coefficients of equations (7.3.13)-
(7.3.16) are 38: 4 static (m and Mi) and 34 independent conductivity parameters (L(ε,µ)

and L(δ)).

7.3.1 Onsager symmetry

Now, we tentatively require Onsager reciprocity relations (7.2.1)-(7.2.5), as addi-
tional restrictions on the coefficients, and explore which further reduction this implies

on the number of independent conductivity parameters Then, from (7.2.2)2 L
(1,4)
ijkl =

L(4,1)
jkli , and being

L(4,1)
jkli = L

(4,1)
1 δjkδli + L

(4,1)
2 δjlδki + L

(4,1)
3 δjiδkl , (7.3.17)
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we obtain
L
(1,4)
1 = ±L(4,1)

3 , L
(1,4)
2 = ±L(4,1)

2 , L
(1,4)
3 = ±L(4,1)

1 . (7.3.18)

Furthermore, for each isotropic four tensor Lijkl we have the following symmetry
relation

Lijkl = Lklij , (7.3.19)

because of

Lijkl = T1δijδkl + T2δikδjl + T1δilδjk = T1δklδij + T2δkiδlj + T3δkjδli = Lklij , (7.3.20)

where T1, T2 and T3 indicate the independent components of Lijkl . Taking into ac-
count the property (7.3.19), Onsager relations (7.2.3)1 and (7.2.4)2 are verified in the

isotropic case and from (7.2.3)2 we derive L(2,3)
ijkl = L(3,2)

klij = L(3,2)
ijkl , from which we have

L
(2,3)
i = ±L(3,2)

i (i = 1,2,3). (7.3.21)

Then, from (7.3.10) we obtain

L(4)lmnijk = L
(4)
1 δlmδniδjk + L

(4)
2 δlmδnjδik + L

(4)
3 δlmδnkδij + L

(4)
4 δlnδmiδjk

+ L
(4)
5 δlnδmjδik + L

(4)
6 δlnδmkδij + L

(4)
7 δmnδliδjk + L

(4)
8 δmnδljδik

+ L
(4)
9 δmnδlkδij + L

(4)
10 δliδmjδnk + L

(4)
11 δljδmiδnk + L

(4)
12 δlkδmiδnj

+ L
(4)
13 δlkδmjδni + L

(4)
14 δljδmkδin+ L

(4)
15 δliδmkδnj .

(7.3.22)

Adding (7.3.10) and (7.3.22), using Onsager relation (7.2.5)2 and dividing by 2, we
have

L(4)ijklmn = C
(4)
1 (δijδklδmn+ δinδjkδlm) +C

(4)
2 (δijδkmδln+ δikδjnδlm)

+C
(4)
3 δijδknδlm+C

(4)
4 (δikδjlδmn+ δimδjkδnl) +C

(4)
5 δikδjmδln

+C
(4)
6 δilδjkδmn+C

(4)
7 δilδjmδkn+C

(4)
8 δilδjnδkm+C

(4)
9 δimδjlδkn

+C
(4)
10 (δimδjnδkl + δinδjlδkm) +C

(4)
11 δinδjmδkl ,

(7.3.23)

where

C
(4)
1 =

L
(4)
1 + L

(4)
9

2
, C

(4)
2 =

L
(4)
2 + L

(4)
6

2
, C

(4)
3 = L

(4)
3 , (7.3.24)

C
(4)
4 =

L
(4)
4 + L

(4)
8

2
, C

(4)
5 = L

(4)
5 , C

(4)
6 = L

(4)
7 , C

(4)
7 = L

(4)
10 , (7.3.25)

C
(4)
8 = L

(4)
15 , C

(4)
9 = L

(4)
11 , C

(4)
10 =

L
(4)
12 + L

(4)
14

2
, C

(4)
11 = L

(4)
13 . (7.3.26)

Thus, from relation L(4)ijklmn = L
(4)
lmnijk the significant components of the isotropic ten-

sorLijklmn reduce from 15 to 11. Therefore, in case that Onsager reciprocity is imposed,
from relations (7.3.18), (7.3.21) and (7.3.23) the number of conductivity parameters
are reduced altogether from 34 to 24.
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7.3.2 Entropy production

In the general isotropic case, with the aid of relations (7.3.13)-(7.3.16), (7.3.1)-(7.3.9),
(7.3.11) and (7.3.12), entropy production (7.1.5) can be written as

σ (s) = L(1)ik qiqk +L
(2)
ijklqj,iqk,l +L

(3)
ijklQijQkl +L

(4)
ijklmnQjk,iQlm,n+

+
(
L(1,4)
ijkl +L(4,1)

ljki

)
qiQjk,l +

(
L(2,3)
ijkl +L(3,2)

klji

)
qj,iQkl ≥ 0.

(7.3.27)

In the case where the internal variable Qij has odd parity, using Onsager relations and
(7.3.21) and (7.3.23), expression (7.3.27) takes the form

σ (s) = L(1)ik qiqk +L
(2)
ijklqj,iqk,l +L

(3)
ijklQijQkl +L

(4)
ijklmnQjk,iQlm,n

+
(
L(1,4)
ijkl ±L

(1,4)
iljk

)
qiQjk,l +

(
L(2,3)
ijkl ±L

(2,3)
klji

)
qj,iQkl ≥ 0,

(7.3.28)

or in extended form

σ (s) = L(1)δikqiqk +
(
L
(2)
1 δjiδkl + L

(2)
2 δjkδil + L

(2)
3 δjlδik

)
qi,jqk,l

+
(
L
(3)
1 δijδkl + L

(3)
2 δikδjl + L

(3)
3 δilδjk

)
QijQkl

+
[
C
(4)
1 (δpiδjlδmn+ δpnδijδlm) +C

(4)
2 (δpiδjmδln+ δpjδinδlm)

+C
(4)
3 δpiδjnδlm+C

(4)
4 (δpjδilδmn+ δpmδijδnl) +C

(4)
5 δpjδimδln

+C
(4)
6 δplδijδmn+C

(4)
7 δplδimδjn+C

(4)
8 δplδinδjm+C

(4)
9 δpmδilδjn

+ C
(4)
10 (δpmδinδjl + δpnδilδjm) +C

(4)
11 δpnδimδjl

]
Qij,pQlm,n

+
(
L
(1,4)
1 δilδmn+ L

(1,4)
2 δimδln+ L

(1,4)
3 δinδlm

)
qiQlm,n

±
(
L
(1,4)
1 δkpδij + L

(1,4)
2 δkiδpj + L

(1,4)
3 δkjδpi

)
Qij,pqk

+
(
L
(2,3)
1 δjiδkl + L

(2,3)
2 δjkδil + L

(2,3)
3 δjlδik

)
qi,jQkl

±
(
L
(2,3)
1 δijδkl + L

(2,3)
2 δikδjl + L

(2,3)
3 δilδjk

)
Qijqk,l ≥ 0.

(7.3.29)

From (7.3.29) it is seen that the entropy production is a non-negative bilinear form in
the components of the heat flux and its gradient, and in the components of the internal
variable and its gradient (see in Appendix C its matrix representation σ (s) = XαLαβXβ ,
with Xα, Xβ and Lαβ suitable matrices).

The following inequalities can be obtained for the components of the phenomeno-
logical tensors, resulting from the fact that all the elements of the main diagonal of the
symbolic matrix {Lαβ} associated to the bilinear form (7.3.29) must be non-negative,
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representing a condition (only necessary) for the semi-definiteness of the matrix {Lαβ}
(see Appendix C)

L(1) ≥ 0, L
(2)
3 ≥ 0, L

(3)
2 ≥ 0, (7.3.30)

L
(2)
1 + L

(2)
2 + L

(2)
3 ≥ 0, L

(3)
1 + L

(3)
2 + L

(3)
3 ≥ 0, (7.3.31)

2C(4)
1 + 2C(4)

2 +C
(4)
3 + 2C(4)

4 +C
(4)
5 +C

(4)
6 +C

(4)
7 +C

(4)
8

+C
(4)
9 + 2C(4)

10 +C
(4)
11 ≥ 0,

(7.3.32)

C
(4)
2 +C

(4)
8 +C

(4)
10 ≥ 0, C

(4)
4 +C

(4)
9 +C

(4)
10 ≥ 0, (7.3.33)

C
(4)
10 ≥ 0, C

(4)
1 +C

(4)
10 +C

(4)
11 ≥ 0. (7.3.34)

Relations (7.3.32)-(7.3.34), come from the non-negativity of the elements of the main

diagonal of the sub-matrix L(4)pijlmn.
Moreover, other relations can be obtained from the non-negativity of the major mi-

nors Pr (r = 1, . . . ,48) of {Lαβ}, coming from Sylvester’s criterion, that represents a
necessary and sufficient condition for the semi-definiteness of the matrix {Lαβ}. For
instance, the calculation of the major minors up to sixth-order gives the relations
(7.3.30)1, (7.3.30)2 and (7.3.31)1.
The non-negativity of the seventh-order major minor of {Lαβ}

P7 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

L(1) 0 0 0 0 0 0
0 L(1) 0 0 0 0 0
0 0 L(1) 0 0 0 0
0 0 0 L(2) 0 0 0

0 0 0 0 L
(2)
3 0 L

(2)
2

0 0 0 0 0 L
(2)
3 0

0 0 0 0 L
(2)
2 0 L

(2)
3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (7.3.35)

with L(2) ≡ L(2)1 + L
(2)
2 + L

(2)
3 , gives the new relation

L
(2)
2 +

(
L
(2)
3

)2
≥ 0, (7.3.36)

and so on. In the Appendix C we give a two-dimensional form of the conductivity ma-
trix {Lαβ}, in terms of which the calculation of the conditions of positive definiteness
is straightforward.
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7.4 rate equations for q i and Q i j in the general
case without assumption on the parity of Q i j

Changing indexes i and j in (7.3.14), deriving it with respect to xj and substituting
it into (7.3.13), we deduce

mq̇i + L
(1)qi =

(
L
(2)
1 + L

(2)
2

)
qk,ki + L

(2)
3 qi,kk +

(
L
(2,3)
1 −L(1,4)

3

)
Qkk,i

+
(
L
(2,3)
3 −L(1,4)

1

)
Qik,k +

(
L
(2,3)
2 −L(1,4)

2

)
Qki,k +

( 1
T

)
,i
.

(7.4.1)

where

m > 0, L(1) > 0, L
(2)
1 + L

(2)
2 > 0, L

(2)
3 > 0. (7.4.2)

Equation (7.4.1) can be written as follows

τq̇i + qi = −λT,i + l1qi,kk + l2qk,ki + l12Qkk,i + l13Qik,k + l14Qki,k , (7.4.3)

where

τ =
m

L(1)
, λ=

1

L(1)T 2
, l1 =

L
(2)
3

L(1)
, l2 =

L
(2)
1 + L

(2)
2

L(1)
, (7.4.4)

l12 =
L
(2,3)
1 −L(1,4)

3

L(1)
, l13 =

L
(2,3)
3 −L(1,4)

1

L(1)
, l14 =

L
(2,3)
2 −L(1,4)

2

L(1)
, (7.4.5)

being τ the relaxation time of the heat flux (that, then, has a finite velocity of propaga-
tion), λ the heat conductivity and li have dimension of square length.

In analogous way, if we change i → k, j → i, k → j in equation (7.3.16), deriving it
with respect to xk and inserting it into (7.3.15), we have

M1δijQ̇kk +M2Q̇ij +M3Q̇ji + L
(3)
1 δijQkk + L

(3)
2 Qij + L

(3)
3 Qji

=
(
L
(4,1)
3 −L(3,2)

1

)
δijqk,k +

(
L
(4,1)
2 −L(3,2)

2

)
qi,j +

(
L
(4,1)
1 −L(3,2)

3

)
qj,i

+
(
L
(4)
3 + L

(4)
6

)
Qkk,ij + L

(4)
12 Qij,kk + L

(4)
13 Qji,kk +

(
L
(4)
1 + L

(4)
15

)
Qjk,ik

+
(
L
(4)
2 + L

(4)
11

)
Qkj,ik +

(
L
(4)
4 + L

(4)
14

)
Qik,jk +

(
L
(4)
5 + L

(4)
10

)
Qki,jk

+ δij

[(
L
(4)
7 + L

(4)
8

)
Qkl,lk + L

(4)
9 Qll,kk

]
,

(7.4.6)

i.e.

τ1δijQ̇kk + τ2Q̇ij + τ3Q̇ji + δijQkk + l
3
2Qij + l

3
3Qji = l21δijqk,k + l31qi,j

+ l41qj,i + L1Qkk,ij + L2Qij,kk + L3Qji,kk + L4Qjk,ik + L5Qkj,ik

+ L6Qik,jk + L7Qki,jk + δij (L8Qkl,kl + L9Qll,kk) ,

(7.4.7)
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where

τ1 =
M1

L
(3)
1

, τ2 =
M2

L
(3)
1

, τ3 =
M3

L
(3)
1

, l32 =
L
(3)
2

L
(3)
1

, l33 =
L
(3)
3

L
(3)
1

, (7.4.8)

l21 =
L
(4,1)
3 −L(3,2)

1

L
(3)
1

, l31 =
L
(4,1)
2 −L(3,2)

2

L
(3)
1

, l41 =
L
(4,1)
1 −L(3,2)

3

L
(3)
1

, (7.4.9)

L1 =
L
(4)
3 + L

(4)
6

L
(3)
1

, L2 =
L
(4)
12

L
(3)
1

, L3 =
L
(4)
13

L
(3)
1

, (7.4.10)

L4 =
L
(4)
1 + L

(4)
15

L
(3)
1

, L5 =
L
(4)
2 + L

(4)
11

L
(3)
1

, L6 =
L
(4)
4 + L

(4)
14

L
(3)
1

, (7.4.11)

L7 =
L
(4)
5 + L

(4)
10

L
(3)
1

, L8 =
L
(4)
7 + L

(4)
8

L
(3)
1

, L9 =
L
(4)
9

L
(3)
1

(7.4.12)

and τ1, τ2 and τ3 have time dimension.
In the rate equations (7.4.3) and (7.4.7) 24 independent coefficients appear. These

equations are the full three-dimensional versions of the one-dimensional equations
(12)-(13) in [15]. They represent the generalized ballistic-conductive heat transport laws
in three-dimensional isotropic materials. Equation (7.4.7) can be rewritten by means
three rate equations, splitting the second-order tensor Qij into its orthogonal compo-
nents, i.e.

Qij =Qδij +Q〈ij〉+Q[ij], (7.4.13)

where

Q =
1
3
Qkk (scalar part of Qij), (7.4.14)

Q〈ij〉 =
1
2
(Qij +Qji)−Qδij (deviator of the symmetric part of Qij), (7.4.15)

Q[ij] =
1
2
(Qij −Qji) (skew-symmetric part of Qij). (7.4.16)

From equation (7.4.7) we derive the rate equations for Q, Q〈ij〉 and Q[ij].
The rate equation for Q is (i = j)

3(3τ1 + τ2 + τ3)Q̇+ 3(3+ l32 + l
3
3)Q = (3l21 + l31 + l41)qk,k

+ 3(L1 + L2 + L3 + 3L9)Q,kk + (L4 + L5 + L6 + L7 + 3L8)Qkl,kl ,
(7.4.17)

i.e.
τ0Q̇+Q = l0qk,k + L

0
1Q,kk + L

0
2Qkl,kl , (7.4.18)
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where

τ0 =
3τ1 + τ2 + τ3

3+ l32 + l
3
3

, l0 =
3l21 + l31 + l41

3(3+ l32 + l
3
3)

, (7.4.19)

L0
1 =

L1 + L2 + L3 + 3L9

3+ l32 + l
3
3

, L0
2 =

L4 + L5 + L6 + L7 + 3L8

3(3+ l32 + l
3
3)

, (7.4.20)

being τ0 the relaxation time of Q;
the rate equation for Q〈ij〉 is

∧
τQ̇〈ij〉+Q〈ij〉 =

∧
l q〈i,j〉+

∧
L1Qkk,〈ij〉+

∧
L2Q〈ij〉,kk +

∧
L3Qk〈i,j〉k +

∧
L4Q〈ik,kj〉 , (7.4.21)

where

∧
τ =

τ2 + τ3

l32 + l
3
3

,
∧
l =

l31 + l41

l32 + l
3
3

,
∧
L1 =

L1

l32 + l
3
3

, (7.4.22)

∧
L2 =

L2 + L3

l32 + l
3
3

,
∧
L3 =

L5 + L7

l32 + l
3
3

,
∧
L4 =

L4 + L6

l32 + l
3
3

, (7.4.23)

being
∧
τ the relaxation time of Q〈ij〉;

finally the rate equation for Q[ij] is

∨
τQ̇[ij] +Q[ij] =

∨
l q[i,j] +

∨
L1Q[ij],kk +

∨
L2Qk[i,j]k +

∨
L3Q[ik,kj] , (7.4.24)

where

∨
τ =

τ2 − τ3

l32 − l
3
3

,
∨
l =

l31 − l41

l32 − l
3
3

,
∨
L1 =

L2 −L3

l32 − l
3
3

, (7.4.25)

∨
L2 =

L7 −L5

l32 − l
3
3

,
∨
L3 =

L6 −L4

l32 − l
3
3

, (7.4.26)

being
∨
τ the relaxation time of Q[ij].

7.5 the rate equations for q i and Q i j with onsager
reciprocity in the case where Q i j has odd par-
ity

In Section 7.4 we have obtained the rate equations for qi and Qij and for the scalar
part, the deviator of the symmetric part and the skew-symmetric part of Qij (see
(7.4.3), (7.4.7) or (7.4.3) and (7.4.18), (7.4.21), (7.4.24), respectively) without assum-
ing reciprocity relations, but only isotropy. In this Section we derive the heat trans-
port laws in three-dimensional isotropic materials (7.4.7), (7.4.18), (7.4.21), (7.4.24) in
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the form (7.5.9), (7.5.10), (7.5.12) and (7.5.14), by using Onsager reciprocity relations
(7.3.18)-(7.3.23), that reduce the number of coefficients in these rate equations from
24 to 21 (when compared to the general isotropic case). The phenomenological equa-
tions (7.3.13) and (7.3.14) remain unchanged (thus also the rate equation (7.4.3)), but
equations (7.3.15) and (7.3.16) assume the following form

Bkij,k =M1δijQ̇kk +M2Q̇ij +M3Q̇ji + L
(2,3)
1 δijqk,k + L

(2,3)
2 qi,j

+ L
(2,3)
3 qj,i + L

(3)
1 δijQkk + L

(3)
2 Qij + L

(3)
3 Qji ,

(7.5.1)

Bijk = L
(1,4)
3 δijqk + L

(1,4)
2 δikqj + L

(1,4)
1 δjkqi

+ δij

(
C
(4)
1 Qkl,l +C

(4)
2 Qlk,l +C

(4)
3 Qll,k

)
+ δik

(
C
(4)
4 Qjl,l +C

(4)
5 Qlj,l +C

(4)
2 Qll,j

)
+ δjk

(
C
(4)
6 Qil,l +C

(4)
4 Qli,l +C

(4)
1 Qll,i

)
+C

(4)
7 Qij,k +C

(4)
8 Qik,j +C

(4)
10 Qjk,i +C

(4)
11 Qkj,i

+C
(4)
9 Qji,k +C

(4)
10 Qki,j ,

(7.5.2)

where, with respect to (7.3.15) and (7.3.16) the coefficients L(3,2)
i have been replaced

by L(2,3)
i (i = 1,2,3), and the coefficients L(4,1)

i by L(1,4)
i (i = 1,2,3).

By virtue of (7.5.1) and (7.5.2), (changing i → k, j → i, k → j in equation (7.5.2),
deriving it with respect to xk, inserting it into (7.5.1) and multiplying the obtained

equation by 1/L(3)1 ) we obtain

τ1δijQ̇kk + τ2Q̇ij + τ3Q̇ji + δijQkk + l
3
2Qij + l

3
3Qji = l21δijqk,k + l31qi,j

+ l41qj,i +C1Qkk,ij +C2Qij,kk +C3Qji,kk +C4Qjk,ik +C5Qkj,ik

+C6Qik,jk +C7Qki,jk + δij (C8Qkl,kl +C9Qll,kk) ,

(7.5.3)

where

C1 =
C
(4)
2 +C

(4)
3

L
(3)
1

, C2 =
C
(4)
10

L
(3)
1

, C3 =
C
(4)
11

L
(3)
1

, (7.5.4)

C4 =
C
(4)
1 +C

(4)
10

L
(3)
1

, C5 =
C
(4)
2 +C

(4)
8

L
(3)
1

, C6 =
C
(4)
4 +C

(4)
9

L
(3)
1

, (7.5.5)

C7 =
C
(4)
5 +C

(4)
7

L
(3)
1

, C8 =
C
(4)
4 +C

(4)
6

L
(3)
1

, C9 =
C
(4)
1

L
(3)
1

. (7.5.6)

The rate equation (7.5.3) is the same as (7.4.7), but with Li replaced by Ci (i = 1 . . .9).
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We remark that the coefficients l21, l31 and l41 in (7.5.3) transform according to On-
sager relations (7.3.18) and (7.3.21), so that we have

l21 =
(
L
(1,4)
1 −L(2,3)

1

)
/L(3)1 , l31 =

(
L
(1,4)
2 −L(2,3)

2

)
/L(3)1 , l41 =

(
L
(1,4)
3 −L(2,3)

3

)
/L(3)1 .

(7.5.7)
By virtue of (7.5.7) and (7.5.4)2, (7.5.5)1 and (7.5.6)3, the further conditions for the
coefficients are worked out:

l31 = −L(1)l14/L(3)1 , l41 = −L(1)(l12 + l13)/L
(3)
1 − l21, C9 = C4 −C2. (7.5.8)

Thus, using relations (7.5.8), the rate equation (7.5.3) for Qij takes the form

τ1δijQ̇kk + τ2Q̇ij + τ3Q̇ji + δijQkk + l
3
2Qij + l

3
3Qji = l21δijqk,k −L(1)l14/L(3)1 qi,j

−
[
L(1)(l12 + l13)/L

(3)
1 + l21

]
qj,i +C1Qkk,ij +C2Qij,kk +C3Qji,kk +C4Qjk,ik

+C5Qkj,ik +C6Qik,jk +C7Qki,jk + δij [C8Qkl,kl + (C4 −C2)Qll,kk ] .

(7.5.9)

As in (7.4.13), we split the second-order tensor Qij in its orthogonal components Q,
Q〈ij〉 and Q[ij], its scalar part, the deviator of its symmetric part, its skew-symmetric
part (see (7.4.14)-(7.4.16)) that, having Qij odd parity, have also odd parity. In the
following we work out the rate equations for Q, Q〈ij〉 and Q[ij].

Thus, from equation (7.5.9) we derive:

the rate equation for Q (obtained when i = j)

τ0Q̇+Q = c0qk,k +C
0
1Q,kk +C

0
2Qkl,kl , (7.5.10)

where τ0 is given by (7.4.19)1 and

c0 =
2L(3)1 l21 −L(1)(l12 + l13 + l14)

3L(3)1 (3+ l32 + l
3
3)

, C0
1 =

C1−2C2 +C3 + 3C4

3+ l32 + l
3
3

,

C0
2 =

C4 +C5 +C6 +C7 + 3C8

3(3+ l32 + l
3
3)

;

(7.5.11)

the rate equation for Q〈ij〉

∧
τQ̇〈ij〉+Q〈ij〉 =

∧
cq〈i,j〉+

∧
C1Qkk,〈ij〉+

∧
C2Q〈ij〉,kk +

∧
C3Qk〈i,j〉k +

∧
C4Q〈ik,kj〉 , (7.5.12)

where
∧
τ is given by (7.4.22)1 and

∧
c = −

L
(3)
1 l21 + L

(1)(l12 + l13 + l14)

L
(3)
1 (l32 + l

3
3)

,
∧
C1 =

C1

l32 + l
3
3

,
∧
C2 =

C2 +C3

l32 + l
3
3

,

∧
C3 =

C5 +C7

l32 + l
3
3

,
∧
C4 =

C4 +C6

l32 + l
3
3

;

(7.5.13)
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the rate equation for Q[ij]

∨
τQ̇[ij] +Q[ij] =

∨
cq[i,j] +

∨
C1Q[ij],kk +

∨
C2Qk[i,j]k +

∨
C3Q[ik,kj] , (7.5.14)

where
∨
τ is given by (7.4.25)1 and

∨
c =

L
(3)
1 l21 + L

(1)(l12 + l13 − l14)

L
(3)
1 (l32 − l

3
3)

,
∨
C1 =

C2 −C3

l32 − l
3
3

,
∨
C2 =

C7 −C5

l32 − l
3
3

,
∨
C3 =

C6 −C4

l32 − l
3
3

.

(7.5.15)

7.5.1 One-dimensional heat transport in the case where Qij has odd parity

In this Subsection we focus on the one-dimensional case, in order to appreciate how
the generalization from one dimension to three dimensions analysed in this Chapter is
far from trivial. In the one-dimensional case we have that the components of B and Q
reduce to

B ≡ B111 and Q =Q11, and q = (q,0,0), Q =


Q 0 0
0 0 0
0 0 0

 , b =


b 0 0
0 0 0
0 0 0

 .

(7.5.16)
The system of equations (7.3.13)-(7.3.16) (in which we use the Onsager relations as-
suming that Qij has odd parity) becomes

mq̇ − b,x = −L(1)q −L(1,4)Q,x, (7.5.17)

b − 1
T

= L(2)q,x+ L
(2,3)Q, (7.5.18)

MQ̇ −B,x = −L(2,3)q,x −L(3)Q, (7.5.19)

B= L(1,4)q+C(4)Q,x, (7.5.20)

where m > 0, M > 0 (see [15]) and

L(1,4) = L
(1,4)
1 + L

(1,4)
2 + L

(1,4)
3 , L(2) = L

(2)
1 + L

(2)
2 + L

(2)
3 , (7.5.21)

L(2,3) = L
(2,3)
1 + L

(2,3)
2 + L

(2,3)
3 , M =M1 +M2 +M3, (7.5.22)

L(3) = L
(3)
1 + L

(3)
2 + L

(3)
3 , (7.5.23)

C(4) = 2C(4)
1 + 2C(4)

2 +C
(4)
3 + 2C(4)

4 +C
(4)
5 +C

(4)
6 +C

(4)
7 +C

(4)
8 +

+C
(4)
9 + 2C(4)

10 +C
(4)
11 ,

(7.5.24)

with (·),x indicating the derivative of (·) with respect to x. We observe that the sys-
tem of equations (7.5.17)-(7.5.20) obtained here is more general of equations (7)-(10)
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deduced in [15], because of the presence of the phenomenological constant L(1,4) in
(7.5.17) and (7.5.20) and the fact that the coefficients L(1,4), L(2), L(2,3), M, L(3), C(4)

have been obtained from a three-dimensional approach.
In this case, the entropy production (7.3.29) assumes the form

σ (s) = L(1)q2+L(2)(q,x)
2+L(3)Q2+C(4)(Q,x)

2+2L(1,4)qQ,x+2L(2,3)q,xQ ≥ 0, (7.5.25)

with C(4) = L111111 (see matrix (C.0.12) of the Appendix C), or in symbolic matrix
notation

σ (s) =
(
q q,x Q Q,x

)


L(1) 0 0 L(1,4)

0 L(2) L(2,3) 0

0 L(2,3) L(3) 0

L(1,4) 0 0 C(4)

︸                              ︷︷                              ︸
A


q

q,x

Q

Q,x


≥ 0. (7.5.26)

Because the bilinear form (7.5.25) must be non-negative, the matrixA (that is symmet-
ric) associated to this form is non-negative semi-definite, so that the elements of its
main diagonal and its major minors must be non-negative

L(1) ≥ 0, L(2) ≥ 0, L(3) ≥ 0, C(4) ≥ 0, (7.5.27)

L(2)L(3) −
(
L(2,3)

)2
≥ 0, L(1)C(4) −

(
L(1,4)

)2
≥ 0. (7.5.28)

Using (7.5.18) and (7.5.20), equations (7.5.17) and (7.5.19) become

mq,t + L
(1)q −L(2)q,xx =

( 1
T

)
,x
−DQ,x, (7.5.29)

MQ,t + L
(3)Q −C(4)Q,xx = Dq,x, (7.5.30)

where D = L(1,4) −L(2,3).
In the following we introduce the relaxation time of the internal variable Q, called τJ :

τJ =
M

L(3)
. (7.5.31)

Furthermore, we have supposed the body is at rest, so that material derivative coin-
cides with the partial time derivative (·),t.

Equations (7.5.29) and (7.5.30) are analogous to equations (12) and (13) of [15].
For L(2) = C(4) = 0, these equations coincide with those provided in [12] or [39] by
assuming Qij as the flux of the heat flux.
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In the following we will derive heat transport equations analogous but more general
of that obtained in [15], where the finite speed of thermal disturbances and the ballistic
and diffusive motion of phonons (heat carriers) are taken into account. Instead, in
Fourier equation the velocity of heat propagation is infinite. Differentiating equation
(7.5.29) with respect to time, equation (7.5.30) with respect to the spatial variable x
and using equation (7.5.29) and its second spatial derivative, we can eliminate Q and
work out the following generalized ballistic-conductive heat transport law

mMq,tt +
(
ML(1) +mL(3)

)
q,t −

(
mC(4) +ML(2)

)
q,xxt +C

(4)L(2)q,xxxx

−
(
L(1)C(4) +H

)
q,xx+ L

(3)L(1)q =M
( 1
T

)
,xt

+ L(3)
( 1
T

)
,x
−C(4)

( 1
T

)
,xxx

,
(7.5.32)

where
H = L(3)L(2) −D2. (7.5.33)

Equation (7.5.32) has been obtained via several differentiations of the linear governing
equations (7.5.29) and (7.5.30). Hence, equation (7.5.32) is not equivalent to the system
of equations (7.5.29) and (7.5.30). In fact (7.5.32) has a larger set of solutions, coming
from the larger number of necessary initial conditions.
Thus, we derive

ττJq,tt + τ
qq,t + q −αq,xxt + βq,xxxx −γq,xx = ν

( 1
T

)
,xt
−λT,x − ζ

( 1
T

)
,xxx

, (7.5.34)

where

τq = τ + τJ , ν =
M

L(1)L(3)
, (7.5.35)

γ =
L(1)C(4) +H

L(1)L(3)
, β =

C(4)L(2)

L(1)L(3)
, α =

mC(4) +ML(2)

L(1)L(3)
, ζ =

C(4)

L(1)L(3)
, (7.5.36)

H is defined by (7.5.33) and λ is given by (7.4.4)2.
In (7.5.34) wee see that relaxation time τq = τ + τJ is given by two contributions: the
first comes from the relaxation time of the heat flux (see (7.4.4)1) and the second comes
from the relaxation time of the internal variable (see (7.5.31)).

7.5.2 Special cases of heat transport equation in the assumption that Qij has

odd parity

From (7.5.32), it is possible to derive as particular case some special equations which
have been often analysed in the literature on heat transport.

ballistic-conductive equation. In the case where C(4) = L(2) = 0, the heat
equation (7.5.32) becomes

mMq,tt +
(
ML(1) +mL(3)

)
q,t −D2q,xx+ L

(3)L(1)q =M
( 1
T

)
,xt

+ L(3)
( 1
T

)
,x

. (7.5.37)
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Thus, we can write

ττJq,tt + τ
qq,t + q − ηq,xx = ν

( 1
T

)
,xt
−λT,x, (7.5.38)

where

η =
D2

L(1)L(3)
. (7.5.39)

guyer-krumhansl equation. In the case where C(4) =M = 0, the heat equation
(7.5.32) becomes

mL(3)q,t −Hq,xx+ L
(3)L(1)q = L(3)

( 1
T

)
,x

, (7.5.40)

then, we work out
τq,t − l2q,xx+ q = −λT,x, (7.5.41)

with
l2 =

H

L(1)L(3)
, (7.5.42)

where l, having the dimension of a length which may be interpreted as an average,
mean free path of the heat carriers (phonons) i.e. the average length between successive
collision amongst them. We observe that only in Guyer-Krumhansl heat equation the
coefficient multiplying the field q,xx has the physical meaning of l2.

cahn-hilliard type equation. In the case where C(4) = M = m = 0, the heat
equation (7.5.32) becomes

L(3)L(1)q −Hq,xx = L(3)
( 1
T

)
,x

, (7.5.43)

from which we obtain
q − l2q,xx = −λT,x. (7.5.44)

jeffreys type equation (or double-lag model [47]). In the case where
C(4) = L(2) =m= D = 0 (then, H = 0), the heat equation (7.5.32) becomes

ML(1)q,t + L
(3)L(1)q =M

( 1
T

)
,xt

+ L(3)
( 1
T

)
,x

, (7.5.45)

thus we derive:
τJq,t + q = ν

( 1
T

)
,xt
−λT,x. (7.5.46)

We note that in the Jeffreys type heat equation τJ is the relaxation time of q.
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maxwell-cattaneo-vernotte equation. In the case where C(4) = M = L(2) =
D = 0 (then, H = 0), the heat equation (7.5.32) becomes

mq,t + L
(1)q =

( 1
T

)
,x

, (7.5.47)

from which we have:
τq,t + q = −λT,x. (7.5.48)

fourier equation. In the case where C(4) =M = L(2) = D =m= 0 (then, H = 0),
the heat equation (7.5.32) becomes

L(1)q =
( 1
T

)
,x

, (7.5.49)

i.e.
q = −λT,x. (7.5.50)

What is specially worth in this Subsection is not only the ability to obtain many
situations studied up to now, but specially the fact that the coefficients appearing in the
one-dimensional case are complicated combinations of the independent coefficients
appearing in the three-dimensional case. Thus, measurements in one dimension are
not sufficient to give information in the general three-dimensional situation, which is
the only one able to exhibit the basic meaning of each coefficient. We emphasize that
Jeffrey type, Maxwell-Cattaneo-Vernotte and Fourier equations are the same as in [15].

7.6 rate equations for q i and Q i j in the isotropic
case where Q i j has even parity

In Section 7.4 we have obtained the rate equations (7.4.3) and (7.4.7) for the heat
flux qi and the internal variable Qij , respectively, in the general isotropic case without
assumptions regarding the parity of the internal variable Qij (qi is odd and Qij can
be of odd or even type) and than we have not discussed Onsager reciprocity relations.
In Section 7.5 we have shown how these rate equations transform supposing the odd
parity of Qij . In this Section we treat the case where Qij has even parity and it is very
easy to see that the rate equation (7.4.3) remains unchanged (as in the odd parity case).
Instead, the rate equation (7.4.7) (that takes the form (7.5.9) when we assume the even
parity of Qij) transforms in

τ1δijQ̇kk + τ2Q̇ij + τ3Q̇ji + δijQkk + l
3
2Qij + l

3
3Qji = l21δijqk,k + L

(1)l14/L(3)1 qi,j

+
[
L(1)(l12 + l13)/L

(3)
1 − l21

]
qj,i +C1Qkk,ij +C2Qij,kk +C3Qji,kk +C4Qjk,ik

+C5Qkj,ik +C6Qik,jk +C7Qki,jk + δij [C8Qkl,kl + (C4 −C2)Qll,kk ] ,

(7.6.1)
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where the quantities l21, l31 and l41 take the following form

l21 =
L
(2,3)
1 −L(1,4)

1

L
(3)
1

, l31 =
L
(2,3)
2 −L(1,4)

2

L
(3)
1

, l41 =
L
(2,3)
3 −L(1,4)

3

L
(3)
1

, (7.6.2)

in which Onsager symmetry relations (7.3.18) and (7.3.21) have been applied, with
negative sign. The other coefficients continue to have the same definitions given in
Section 7.4, but the coefficients of qi,j and qj,i have different signs with respect to those
in (7.5.9). Furthermore, in this considered case relations (7.5.8)1,2 become

l31 = L(1)l14/L(3)1 , l41 = L(1)(l12 + l13)/L
(3)
1 − l21. (7.6.3)

Finally, the rate equations for the orthogonal components Q, Q〈ij〉 and Q[ij], that are
still of even type, remain formally unchanged from the equations (7.5.10), (7.5.12), and
(7.5.14), valid whenQij is of odd type. But we have to emphasize that the quantities c0,
∧
c and

∨
c (defined by (7.5.11)1, (7.5.13)1 and (7.5.15)1, respectively) take the following

different form

c0 =
2L(3)1 l21 + L

(1)(l12 + l13 + l14)

3L(3)1 (3+ l32 + l
3
3)

,
∧
c =

L(1)(l12 + l13 + l14)−L
(3)
1 l21

L
(3)
1 (l32 + l

3
3)

, (7.6.4)

∨
c =

L
(3)
1 l21 −L(1)(l12 + l13 + l14)

L
(3)
1 (l32 − l

3
3)

. (7.6.5)

7.6.1 One-dimensional isotropic heat transport in the assumption thatQij has

even parity

Taking into account expressions (7.5.16), using the Onsager relations (7.2.1)-(7.2.5)
in the case where the internal variable Qij has an even parity, the system of equations
(7.3.13)-(7.3.16) takes the form

mq̇ − b,x = −L(1)q −L(1,4)Q,x, (7.6.6)

b − 1
T

= L(2)q,x+ L
(2,3)Q, (7.6.7)

MQ̇ −B,x = L(2,3)q,x −L(3)Q, (7.6.8)

B= −L(1,4)q+C(4)Q,x, (7.6.9)

where only equations (7.6.8) and (7.6.9) are different from (7.5.19) and (7.5.20) be-
cause of the signs of the first terms in their right-hand sides. As consequence of this
difference we have that the entropy production (7.5.25) takes the new reduced form

σ (s) = L(1)q2 + L(2)(q,x)
2 + L(3)Q2 +C(4)(Q,x)

2, (7.6.10)
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so that the associated matrix A (that is diagonal and thus symmetric) takes the follow-
ing diagonal form

A=



L(1) 0 0 0

0 L(2) 0 0

0 0 L(3) 0

0 0 0 C(4)


, (7.6.11)

so that only relations (7.5.27) are still true.
Furthermore, using (7.6.7) and (7.6.9), equations (7.6.6) and (7.6.8) become

mq,t + L
(1)q −L(2)q,xx =

( 1
T

)
,x
−DQ,x, (7.6.12)

MQ,t + L
(3)Q −C(4)Q,xx = −Dq,x, (7.6.13)

where D = L(1,4) −L(2,3). Relation (7.6.12) is equal to (7.5.29), while (7.6.13) has oppo-
site sign in its right-hand side with respect to (7.5.30) (D continues to have the same
value).
Finally, deriving equation (7.6.12) with respect to time, equation (7.6.13) with respect
to the spatial variable x and using equation (7.6.12) and its second spatial derivative,
we can eliminate Q and work out the same the heat transport equation (7.5.32) (and
than (7.5.34)) where the only difference consist in the fact that the quantity H defined
by (7.5.33) takes the new form

H = L(3)L(2) +D2. (7.6.14)

Thus, H is always positive in the case of even parity of Qij .

7.6.2 Special cases of heat transport equation in the assumption that Qij has

even parity

Applying the procedures used in Subsection 7.5.2 to obtain from (7.5.32) (and also
(7.5.34)) special cases, we derive the following results:

a) The Ballistic-Conductive heat transport equations (7.5.37) and (7.5.38), being C(4) =
L(2) = 0 and H = L(3)L(2) +D2, take the following form

mMq,tt +
(
ML(1) +mL(3)

)
q,t +D

2q,xx+ L
(3)L(1)q =M

( 1
T

)
,xt

+ L(3)
( 1
T

)
,x

, (7.6.15)

ττJq,tt + τ
qq,t + q+ ηq,xx = ν

( 1
T

)
,xt
−λT,x, (7.6.16)

different from (7.5.37) and (7.5.38) because of the plus sign beforeD2 and η. In (7.6.15)
and (7.6.16) the definitions (7.4.4)1,2, (7.5.31), (7.5.35) and (7.5.39) and are still valid;
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b) Guyer-Krumhansl heat transport equations, being C(4) =M = 0, have the expressions
same as (7.5.40) and (7.5.41), but with H (see (7.5.42)) replaced by (7.6.14);

c) Cahn-Hilliard type heat transport equations (7.5.43) and (7.5.44), being C(4) = M =
m= 0, remain unchanged, but with H replaced by (7.6.14);

d) Jeffreys type, Maxwell-Cattaneo-Vernotte, Fourier heat transport equations (where H is
not present), remain unchanged.
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conclusions regarding the first and second part
of this thesis

This Section is dedicated to summarize and discuss the results obtained in the Chap-
ters of the present thesis.

In Chapter 1, a model for porous nanocrystals filled by a fluid flow proposed in
the paper [10], in the framework of rational extended irreversible thermodynamics
with internal variables, was used to study the thermal, mechanical and transport prop-
erties of these materials. It was assumed that the medium under consideration has
mass density constant, the body force and heat source distribution are negligible and
the structural permeability tensor, its gradient, its flux, the heat flux and the fluid
flow are independent variables besides the small strain tensor, the concentration of
the fluid and its gradient, the temperature and its gradient. In the linear case, the
constitutive equations and the affinities were deduced by the potential method. The
rate equations for dissipative fluxes and for the structural permeability tensor, formu-
lated as ansatzes in the form of balance equations describing time-dependent tenso-
rial fields, were worked out and it is seen that porous channels in nanocrystals influ-
ence mechanical and transport properties. In particular, the generalized equations
Maxwell-Vernotte-Cattaneo and Fick-Nonnenmacher were obtained. Furthermore, in
the anisotropic case a generalized telegraph heat equation, with finite velocity for the
thermal disturbances, was derived that may have applications in describing the ther-
mal behaviour of the considered nanostructures, where the phenomena are fast and
the rate of variation of the properties of the system is faster than the time scale char-
acterizing the relaxation fluxes towards their respective local-equilibrium value. The
closure of governing equations system was also discussed. The obtained results have
applications in nanotechnology and other fields of applied sciences.

In Chapter 2 we have obtained a description of isotropic and perfect isotropic porous
media filled by a fluid flow, in the framework of rational extended irreversible thermo-
dynamics with internal variables, where the structural permeability tensor rij with its
gradient rij,k and its flux Vijk were introduced as internal variables in the thermody-
namic state vector. Here, the results, obtained in the Chapter 1 for anisotropic porous
media, were specialized when the considered media have symmetry properties invari-
ant under orthogonal transformations of the axes frame. It was assumed that the mass
density is constant, the body force and heat source are negligible and the constitutive
equations, the generalized affinities, the rate equations for dissipative fluxes, present-
ing a relaxation time, and the closure of system of equations describing the behaviour
of the considered media were worked out in the isotropic and perfect isotropic cases. It
was seen that porous channels influence mechanical, thermal and transport properties
of these media. In particular, when the density of porous defects is higher than its char-
acteristic value the thermal conductivity decreases. The generalized Maxwell-Vernotte-
Cattaneo, Fick-Nonnenmacher and telegraph temperature equations were obtained as
particular cases. The study of fluid-saturated porous media have a great interest in
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applied sciences, like geology, hydrology, pharmaceutics and nanotechnology, where
there are situations of propagation of high-frequency waves.

In Chapter 3 a theory was formulated to describe an incompressible fluid through
the channels (rectilinear/curved) of a porous structure. The Darcy-Brinkman-Stokes
law was worked out and the erosive/deposition effects of the fluid in a solid matrix
were studied and an application of the obtained results to the fluid flow cloaking was
illustrated. Practical importance of porous metamaterials in different fields as to miti-
gate earthquake phenomena, to contrast noise pollution, to analyse particular mechan-
ical properties and to increase ultrasonic imaging, was commented. In the framework
of rational thermodynamics a theoretical model was developed completely in accor-
dance with the theory for porous media filled by fluid flow with erosion/deposition,
developed in Sections 3.1 and 3.2, when the internal variable influencing the viscous
phenomena is interpreted as the symmetric part of the velocity gradient and the re-
sults are considered in a first approximation. The constitutive functions were worked
out using Liu’s theorem and Wang’s representations for objective functions for scalar,
symmetric tensor and vector functions. The derived theory has a great interest in
geophysics, pharmaceutics, physiology, earthquake engineering, hydrology and other
fields.

In Chapter 4 the theoretical approach was used, developed in previous Chapters
in the framework of rational extended irreversible thermodynamics. It was supposed
that the media with porous channels filled by a fluid can be studied as a mixture of
two components. An internal variable, the structural permeability tensor rij , its gradi-
ent rij,k and its flux Vijk were introduced in the thermodynamic state vector besides the
other classical variables to describe the mechanical, porous and transport properties of
these media. Here, the rate equations for the porosity field, its flux, the heat and fluid-
concentration fluxes, previously obtained in the anisotropic case, were considered in
a special case for perfect isotropic media having symmetry properties invariant under
orthogonal transformations. It was assumed that the mass density of the mixture of
the porous skeleton and the fluid is constant and the body force, the heat source and
the external entropy production source were negligible. The obtained results were
applied to the study of the propagation in one direction x of coupled porosity and
fluid-concentration waves when the body is supposed occupying the whole space. The
dispersion relation was carried out and three possible propagation modes were found,
with particular propagation mathematical conditions. The wave propagation veloci-
ties as functions of the wavenumber k were represented for a given numerical set of
the several coefficients characterizing in an example the porous media under consider-
ation. The study of propagation of these coupled waves has several application fields,
such as hydrology, biology, nanotechnology, physiology and seismic waves.

In Chapter 5 we have presented the equations describing porous media considering
only the porosity and fluid-concentration fields, and we have derived a quasi-linear
hyperbolic PDEs system. Since a thermodynamical model has an added value if pos-
sible solutions of the derived theory are found, and because the closed-form solutions
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of nonlinear PDEs are rare, we have investigated the propagation of weak discontinu-
ities, as approximated solutions. To this aim we have introduced a new variable related
to the surface across which the solutions or/and some of their derivatives undergo a
jump, and following a Boillat’s methodology for quasi-linear and hyperbolic systems
of the first order, we obtained Bernoulli’s equation governing the propagation of the
amplitude of one of these approximated solutions in the one-dimensional case. Solv-
ing this equation, the explicit form of the first approximation of the solution U of the
system has been obtained.

In Chapter 6 we have presented the system of non-linear hyperbolic PDEs describing
isotropic porous media of the previous Chapter but we have looked for the solution in
a different form, precisely in the form of an asymptotic sequence of powers of some
small parameter, which is related to the thickness of internal layers, across which the
solutions or/and some of their derivatives varies steeply. To find possible solutions, the
theory has an added value. Furthermore the choice to find solutions in power series is
also justified from the fact that the achievement of a closed-form solution of nonlinear
PDEs is rare. The one-dimensional case has been treated, obtaining the propagation of
on of these solutions in a first approximation.

In Chapter 7, ballistic-conductive heat transport in rigid isotropic materials with an
internal variable Qij , influencing thermal phenomena, has been treated in the frame-
work of non-equilibrium thermodynamics with internal variables (NET-IV). Onsager
reciprocity has also been considered (in both particular cases in which Qij have been
assumed to be odd or even with respect to macrocopic time reversal) and the conse-
quences were derived. For the sake of fast applicability the explicit expressions for the
components of the conductive matrix are given in the Appendix C in the two cases.1

The approach NET-IV is general and universal. It characterises the deviation from lo-
cal equilibrium both in the entropy density and in the entropy flux in the simplest pos-
sible functional forms. The entropy density depends on the internal variables quadrat-
ically, in order to preserve the concavity, that is thermodynamic stability. The entropy
flux depends on the internal variables linearly therefore it disappears when they are
zero. As long as these two physical conditions and the entropy inequality are valid,
the derived consequences are also valid. The generality of the assumptions ensures
the universality of the final evolution equations. It was considered a strictly linear
theory, when the m and M tensors and the conductivity tensors, L(α,β) and L(γ), are
constant.

The conditions of positive definiteness of the corresponding conductivity matrix can
be calculated directly with the help of computer algebra programs. Though the ex-
pressions are very cumbersome, it should be noted that every coefficient appearing
in them corresponds in principle to an observable phenomenon. Instead, the much
simpler one-dimensional case may grasp essential qualitative features, but its coeffi-
cients are a combination of three-dimensional coefficients giving a deeper and more

1 Remarkable, that for nonlinear, or quasilinear conductivity tensors one can get more restrictions (see
[5] and [6]).
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complete description. We have obtained a complete set of equations for generalized
ballistic-conductive heat transport in three-dimensional isotropic rigid conductors for
the variables T , qi and Qij . These are the balance of internal energy (7.1.1) with the
caloric equation of state s′eq(e) = 1/T and the balance type constitutive equations
(7.4.3), (7.4.7) (or (7.4.3), (7.4.18), (7.4.21), (7.4.24)) in the general isotropic case, and
(7.4.3), (7.5.9) (or (7.4.3), (7.5.10), (7.5.12), (7.5.14)) with Onsagerian reciprocity as
additional constraints.

There are two different aspects of ballistic heat transport in continua. From the point
of view of kinetic theory it is the propagation of phonons without collisions with the
lattice. Then phonons are reflected only at the boundaries of the medium. This micro-
scopic understanding is the foundation of the so-called ballistic-diffusive integrodif-
ferential model of Chen [2], [3], [13], [14], [15], where kinetic theory and macroscopic
considerations are mixed, the distribution function f is split into two parts, one for
ballistic phonons and the other referred to diffusive phonons. Also, internal energy
and heat flux are decomposed into ballistic and diffusive components. This approach
leads to two independent continuum representations. First, it is a particular boundary
condition for continuum theories that can also be introduced by second-sound mod-
els, like Guyer-Krunhansl equation [1]. On the other hand, for ballistic phonons, the
speed of propagation is equal to the speed of ’first’ sound, the speed of elastic waves in
the medium. The speed of propagation is independent of the boundary conditions in a
continuum approach, and this is the meaning of the ballistic terminology in our theory,
following Rational Extended Thermodynamics (RET) [4], [9]. It is also remarkable that
Chen’s model is equivalent to an extended continuum heat transport theory, where the
coexistence of two kinds of heat carriers (ballistic and diffusive phonons) is assumed
as it was shown by Lebon et al. [7], [8] and investigated in [16].

Theories of Extended Thermodynamics (ET) assume that the constitutive equations
are local, and the rate equations are written in a hierarchical series of balances, where
the dissipative fluxes appear as densities in the consecutive balance. These assump-
tions are consequences of the definition of the macroscopic fields as moments of the
single-particle phase space probability density and the Boltzmann equation. In our
case, with internal variables, this structure is the consequence of the second law and
can be observed on the left-hand side of (7.1.6) and (7.1.8). Then essential aspects of
ET are well represented. On the other hand, NET-IV has many material coefficients
that are missing in ET, in particular in Rational Extended Thermodynamics, where
only the two relaxation times of the Callaway collision integral represent the material
properties. This property of RET is attractive, but the price is not only that the va-
lidity of the theory is connected to the particularities of the microscopic model, but
also that the speed of the ballistic propagation, the speed of elastic waves, can be ob-
tained exactly only by considering the complete moment series, or practically by using
dozens of evolution equations (with consecutively increasing tensorial orders) [9]. The
low number of material coefficients leads to many evolution equations in modelling
ballistic propagation of heat.
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Giving the three-dimensional structure of ET and NET-IV for heat transport in case
of isotropic materials opens the field to build and solve realistic models of two- and
three-dimensional experimental setups, where the two theories lead to different pre-
dictions. To appreciate some of the original aspects of this Chapter, let us eventually
comment the equations (7.3.14) and (7.3.16) for bij and Bijk and their consequences on
the entropy flux. It is well known in the literature [11], [12], that one of the expression
of the entropy flux is

Ji =
1
T
qi +

l2

λT 2qi,jqj , (7.6.17)

Note then that the constitutive equation for the entropy flux (7.1.3), when bij and
Bijk are given by (7.3.14) and (7.3.16), lead to a richer expression than (7.6.17), namely

Ji =
1
T
qi + L

(2)
1 qiqk,k + L

(2)
2 qi,jqj + L

(2)
3 qjqj,i + L

(2,3)
1 qiQkk + L

(2,3)
2 Qijqj + L

(2,3)
3 qjQji

+ f (L
(4,1)
i ,L(4)i ,qi ,Qij,k).

(7.6.18)

Thus, in our analysis the extended entropy flux was more general than (7.6.17), and
played an important role in the thermodynamic consistency of couplings with the heat
flux qi and tensorial internal variables as Qij .
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A PART I CULAR CASES OF I SOTROP IC
AND PERFECT I SOTROP IC TENSORS

In the following Appendix we will consider isotropic tensors of odd order (third
and fifth), and isotropic and perfect isotropic tensors of even order (fourth and sixth),
having special symmetry properties. We emphasize that the perfect isotropic tensors
of odd order (first, third and fifth) are null (see (2.2.1)). Also the isotropic tensors of
first order are null (see (2.1.1)1). The results related to the tensors of odd order are
valid only in the isotropic case, when these tensors are invariant in form with respect
to all rotations of axes frame (see Section 2.1), while the results related to the tensors
of even order are valid both in the isotropic case and in the perfect isotropic case, when
these tensors are invariant in form with respect to all rotations and inversions of axes
frame, (see Sections 2.1 and 2.2).

a.1 special form for isotropic tensors of order
three

In the case where a third order isotropic tensor Lijk has the symmetry

Lijk = Ljik, (A.1.1)

(valid for the third order tensors βsijk (s = 3,4,6,7) in the rate equation (1.4.1)), we
have Lijk = 0.
In fact, from relation (2.1.1)3 we can write

Ljik = L ∈jik= −L ∈ijk, (A.1.2)

and equating this last relation with (2.1.1)3 we immediately deduce L= 0.

a.2 special form for isotropic tensors of order
five

In the following we study the form of isotropic tensors of order five having special
symmetries.

123
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a.2.1 Case where a fifth order isotropic tensor Lijklm has one particular sym-

metry

In the case when
Lijklm = Ljiklm, (A.2.1)

(valid for the tensor β5
ijklm in equation (1.4.1)) we show that the number of the significant

independent components of this tensor reduces from 6 to 3.
In fact, from (2.1.3) we have

Ljiklm = −L1 ∈ijk δlm −L2 ∈ijl δkm −L3 ∈ijm δkl + L4 ∈jkl δim+ L5 ∈jkm δli + L6 ∈jlm δik.
(A.2.2)

Equating (2.1.3) and (A.2.2) we obtain

Lijklm = A1(∈ikl δjm+ ∈jkl δim) +A2(∈ikm δlj+ ∈jkm δli) +A3(∈ilm δjk+ ∈jlm δik),
(A.2.3)

where A1 = L4, A2 = L5 and A3 = L6.

a.2.2 Case where a fifth order isotropic tensor Lijklm presents two symmetries

In the case when
Lijklm = Ljiklm, Lijklm = Lijlkm, (A.2.4)

(valid for the tensor β8
ijklm in equation (1.4.1)) we show that the significant independent

component of this tensor is only one.
In fact, from (A.2.3) we have

Lijlkm = −A1(∈ikl δjm+ ∈jkl δim) +A2(∈ilm δkj+ ∈jlm δki) +A3(∈ikm δjl+ ∈jkm δil).
(A.2.5)

Equating (A.2.3) and (A.2.5) we finally work out

Lijlkm = L(∈ikm δlj+ ∈jkm δli+ ∈ilm δjk+ ∈jlm δik), (A.2.6)

where L ≡ A2 = A3.

a.3 special form for fourth order isotropic and
perfect isotropic tensors

In this Section we will treat special symmetry properties of a fourth order tensor Lijkl
and we will demonstrate that Lijkl can be expressed only by two significant independent
components that will be called A1 and A2.
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a.3.1 Case where a fourth order isotropic tensor Lijkl has one particular type

of symmetry

In the case when
Lijkl = Ljikl , (A.3.1)

(valid for tensors β1
ijkl and β2

ijkl in equation (1.4.1) and the tensor γ4
ijkl in equation

(4.1.10)), from relation (2.1.2) we have

Ljikl = L1δjiδkl + L2δjkδil + L3δjlδik. (A.3.2)

Adding equations (2.1.2) and (A.3.2), using Lijkl = Ljikl and multiplying by 1/2, we
obtain

Lijkl = A1δijδkl +A2(δikδjl + δilδjk), (A.3.3)

where A1 = L1 and A2 = (L2 + L3)/2.

a.3.2 Case where a fourth order isotropic tensor Lijkl has three symmetries

In the case when

Lijkl = Ljikl , Lijkl = Lijlk, Lijkl = Lklij , (A.3.4)

that are equivalent to the following chain of equalities

Lijlm = Ljilm = Lijml = Ljiml = Llmij = Lmlij = Lmlji = Llmji , (A.3.5)

(valid for the tensors cijkl , λ
rε
ijkl and λrrijkl present in equations (1.3.11) and (1.3.13)),

from (A.3.3) (that includes the symmetry (A.3.4)1) we can see that also the symmetry
(A.3.4)2 is true, as well as (A.3.4)3, because

Lklij = A1δklδij +A2(δkiδlj + δkjδil) = Lijkl . (A.3.6)

The other symmetries in (A.3.5) are also satisfied. Thus, we use for the tensors cijkl ,
λrεijkl and λrrijkl expression (A.3.3) again.

a.3.3 Case where a fourth order isotropic tensor Lijkl has one particular sym-

metry of another type

In the case when
Lijkl = Llijk, (A.3.7)

(valid for the coefficients λνqijkl and λ
νjc

ijkl in equations (1.3.15)-(1.3.17)) from relation
(2.1.2) we deduce

Llijk = L1δliδjk + L2δljδik + L3δlkδij . (A.3.8)
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Using the same procedure seen in Subsection A.3.2, we obtain

Lijkl = A1δikδjl +A2(δijδkl + δilδjk), (A.3.9)

where A1 = L2 and A2 = (L1 + L3)/2.
It is useful to emphasize that the same result (A.3.9) is obtained if the symmetries

Lijkl = Lilkj and/or Lijkl = Lkjil are valid. These results are not used.

a.3.4 Case where a fourth order isotropic tensor Lijkl has the symmetry Lijkl =

Likjl

In the case when
Lijkl = Likjl , (A.3.10)

(valid for the tensors χ6
ijkl in equation (1.4.8) and ξ6

ijkl in equation (1.4.16)), from rela-
tion (2.1.2) we have

Likjl = L1δikδjl + L2δijδkl + L3δilδkj . (A.3.11)

Using the same procedure seen in Subsection A.3.2, we obtain

Lijkl = A1δilδjk +A2(δijδkl + δikδjl), (A.3.12)

with A1 = L3 and A2 = (L1 + L2)/2.

a.3.5 Case where a fourth order isotropic tensor Lijkl has two symmetries

In the case when
Lijkl = Likjl , Lijkl = Lljki , (A.3.13)

that are equivalent to the following chain of equalities

Lijkl = Likjl = Lljki = Llkji , (A.3.14)

(valid for the tensor ν6
ijkl in the temperature equation (1.5.12)), from (A.3.12) (that in-

cludes the symmetry (A.3.13)1) we can see that also the symmetry (A.3.13)2 is satisfied,
so that we use for the tensor ν6

ijkl expression (A.3.12) again.

a.4 special form for isotropic and perfect isotropic
tensors of order six

In this Section we will treat special symmetry properties of a sixth order tensor
Lijklmn and we will demonstrate that the number of its significant independent com-
ponents is reduced.
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a.4.1 Case where a sixth order isotropic tensor Lijklmn has one particular sym-

metry

In the case when
Lijklmn = Llmnijk, (A.4.1)

(valid for the tensor λννijklmn in equation (1.3.15)) we show that the number of the signif-
icant independent components of this tensor reduce from 15 to 11.
In fact, writing relation (2.1.4) in the case of Llmnijk (i.e. by exchanging indexes {i, j,k}
with indexes {l,m,n}), we obtain

Llmnijk = L1δlmδniδjk + L2δlmδnjδik + L3δlmδnkδij + L4δlnδmiδjk + L5δlnδmjδik

+ L6δlnδmkδij + L7δliδmnδjk + L8δliδmjδnk + L9δliδmkδnj + L10δljδmnδik

+ L11δljδmiδnk + L12δljδmkδni + L13δlkδmnδij + L14δlkδmiδnj + L15δlkδmjδni .
(A.4.2)

Adding relation (A.4.2) to (2.1.4) and multiplying by 1/2, we work out

Lijklmn = A1(δijδklδmn+ δinδjkδlm) +A2(δijδkmδln+ δikδjnδlm) +A3δijδknδlm

+A4(δikδjlδmn+ δimδjkδnl) +A5δikδjmδln+A6δilδjkδmn+A7δilδjmδkn

+A8δilδjnδkm+A9δimδjlδkn+A10(δimδjnδkl + δinδjlδkm) +A11δinδjmδkl ,
(A.4.3)

with A1 = (L1 + L13)/2, A2 = (L2 + L6)/2, A3 = L3, A4 = (L4 + L10)/2, A5 = L5,
A6 = L7, A7 = L8, A8 = L9, A9 = L11, A10 = (L12 + L14)/2, A11 = L15.

a.4.2 Case where a sixth order isotropic tensor Lijklmn has one particular sym-

metry of another type

In the case when
Lijklmn = Lijkmln, (A.4.4)

(valid for the tensor γ6
ijklmn in equation (1.4.16)) we show that the number of the signif-

icant independent components of this tensor reduce from 15 to 9.
In fact, writing relation (2.1.4) in the case of Lijkmln (i.e. by exchanging index l with
index m), we have

Lijkmln = L1δijδkmδln+ L2δijδklδmn+ L3δijδknδml + L4δikδjmδln+ L5δikδjlδmn

+ L6δikδjnδml + L7δimδjkδln+ L8δimδjlδkn+ L9δimδjnδkl + L10δilδjkδmn

+ L11δilδjmδkn+ L12δilδjnδkm+ L13δinδjkδml + L14δinδjmδkl + L15δinδjlδkm.
(A.4.5)
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Adding this relation to (2.1.4), using (A.4.4) and multiplying by 1/2, we have

Lijklmn = A1(δklδmn+ δkmδln)δij +A2δijδknδlm+A3(δjlδmn+ δjmδln)δik +A4δikδjnδlm

+A5(δilδmn+ δimδln)δjk +A6(δilδjm+ δimδjl)δkn+A7(δilδkm+ δimδkl)δjn

+A8δinδjkδlm+A9(δjlδkm+ δjmδkl)δin,
(A.4.6)

where A1 = (L1 + L2)/2, A2 = L3, A3 = (L4 + L5)/2, A4 = L6, A5 = (L7 + L10)/2,
A6 = (L8 + L11)/2, A7 = (L9 + L12)/2, A8 = L13, A9 = (L14 + L15)/2.

a.4.3 Case where a sixth order isotropic tensor Lijklmn has two particular sym-

metries

In the case where a sixth order perfect isotropic tensor Lijklmn has the two symme-
tries

Lijklmn = Ljiklmn, Lijklmn = Lijkmln, (A.4.7)

equivalent to
Lijklmn = Ljiklmn = Lijkmln = Lijkmln, (A.4.8)

(valid for the tensors γ3
ijklmn and γ6

ijklmn in equation (4.1.3)) we show that the number of
significant independent components of this tensors reduce from 15 to 6.
In fact, writing relation (2.1.4) in the case of Ljiklmn (i.e. changing the index i with j),
we have

Ljiklmn = L1δjiδklδmn+ L2δjiδkmδln+ L3δjiδknδlm+ L4δjkδilδmn+ L5δjkδimδln

+ L6δjkδinδlm+ L7δjlδikδmn+ L8δjlδimδkn+ L9δjlδinδkm+ L10δjmδikδln

+ L11δjmδilδkn+ L12δjmδinδkl + L13δjnδikδlm+ L14δjnδilδkm+ L15δjnδimδkl .
(A.4.9)

Matching expressions (A.4.9) and (2.1.4), by virtue of (A.4.7), we obtain

Lijklmn = B1δijδklδmn+B2δijδkmδln+B3δijδknδlm+B4(δikδjl + δilδjk)δmn

+B5(δikδjm+ δimδjk)δln+B6(δikδjn+ δinδjk)δlm+B7(δilδjm+ δimδjl)δkn

+B8(δilδjn+ δinδjl)δkm+B9(δimδjn+ δinδjm)δkl ;
(A.4.10)

with

B1 = L1; B2 = L2; B3 = L3; B4 = L4 = L7; B5 = L5 = L10;

B6 = L6 = L13; B7 = L8 = L11; B8 = L9 = L14; B9 = L12 = L15.
(A.4.11)
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Writing relation (2.1.4) in the case of Lijkmln (i.e. changing the index l withm), we have

Lijkmln = L1δijδkmδln+ L2δijδklδmn+ L3δijδknδml + L4δikδjmδln+ L5δikδjlδmn

+ L6δikδjnδml + L7δimδjkδln+ L8δimδjlδkn+ L9δimδjnδkl + L10δilδjkδmn

+ L11δilδjmδkn+ L12δilδjnδkm+ L13δinδjkδml + L14δinδjmδkl + L15δinδjlδkm.
(A.4.12)

Matching relations (A.4.12) and (2.1.4) and using (A.4.8), we obtain

Lijklmn = C1(δklδmn+ δkmδln)δij +C2δijδknδlm+C3(δjlδmn+ δjmδln)δik +C4δikδjnδlm

+C5(δilδmn+ δimδln)δjk +C6(δilδjm+ δimδjl)δkn+C7(δilδkm+ δimδkl)δjn

+C8δinδjkδlm+C9(δjlδkm+ δjmδkl)δin,
(A.4.13)

with

C1 = L1 = L2; C2 = L3; C3 = L4 = L5; C4 = L6; C5 = L7 = L10;

C6 = L8 = L11; C7 = L9 = L12; C8 = L13; C9 = L14 = L15.
(A.4.14)

From the match of relations (A.4.10) and (A.4.13), we obtain the special form of a sixth
order perfect isotropic tensor having the symmetries (A.4.7)

Lijklmn = D1(δklδmn+ δkmδln)δij +D2δijδknδlm+D3[(δikδjl + δilδjk)δmn+

+ (δikδjm+ δimδjk)δln] +D4(δikδjn+ δinδjk)δlm+D5(δilδjm+ δimδjl)δkn

+D6[(δilδjn+ δinδjl)δkm+ (δimδjn+ δinδjm)δkl ],
(A.4.15)

with

D1 = B1 = B2 = C1 = L1 = L2; D2 = B3 = C2 = L3;

D3 = B4 = B5 = C3 = C5 = L4 = L5 = L7 = L10;

D4 = B6 = C4 = C8 = L6 = L13; D5 = B7 = C6 = L8 = L11;

D6 = B8 = B9 = C7 = C9 = L9 = L12 = L14 = L15.

(A.4.16)

where we have used expressions (A.4.11) and (A.4.14).



B OBJECT I V E REPRESENTAT ION OF
FUNCT IONS

b.1 objective representation of scalar functions

Following [2], [3] and [4] a scalar objective function f , that depends onm scalar func-
tion, namely a1, a2,. . . ,am and l second-order symmetric tensors, namely A1, A2,. . . ,Al ,
is represented as function of the following quantities, called invariants

as, tr Ai , tr A2
i , tr A3

i , tr(AiAj), tr(A2
i Aj), tr(A2

i A2
j ), tr(AiAjAk), (B.1.1)

with s = 1, . . . ,m, i, j,k = 1, . . . , l and i , j , k.
Thus, we have

f = f
(
as, tr Ai , tr A2

i , tr A3
i , tr(AiAj), tr(A2

i Aj), tr(A2
i A2

j ), tr(AiAjAk)
)
, (B.1.2)

If we consider the scalar constitutive function S = S(T ,ε,m,r) of our theoretical model
we have m= 1, with a1 ≡ T , and l = 3, with A1 ≡ ε, A2 ≡m, A3 ≡ r.
Then, we have s = 1, i, j,k = 1,2,3 and i , j , k and the invariants for the entropy S
are

T , trε, trm, trr, trε2, trm2, trr2, trε3, trm3, trr3, tr(εm),

tr(εr), tr(mr), tr(ε2m), tr(ε2r), tr(m2ε), tr(m2r), tr(r2ε), tr(r2m),

tr(ε2m2), tr(ε2r2), tr(m2r2), tr(εmr),
(B.1.3)

or in Cartesian components

T , εii , mii , rii , εijεji , mijmji , rijrji , εijεjkεki , mijmjkmki , rijrjkrki ,

εijmji , εijrji , mijrji , εijεjkmki , εijεjkrki , mijmjkεki , mijmjkrki , rijrjkεki ,

rijrjkmki , εijεjkmklmli , εijεjkrklrli , mijmjkrklrli , εijmjkrki .
(B.1.4)

Being ε, m and r symmetric tensors, it is also possible to write, for instance, εijεji =
εijεij , mijrji =mijrij .
Assuming for S a polynomial form, S may be expressed in the form

S = S1T + S2 trε+ S3 trm+ S4 trr + S5 trε2 + S6 trm2 + S7 trr2 + S8 trε3 + S9 trm3

+ S10 trr3 + S11 tr(εm) + S12 tr(εr) + S13 tr(mr) + S14 tr(ε2m) + S15 tr(ε2r)

+ S16 tr(m2ε) + S17 tr(m2r) + S18 tr(r2ε) + S19 tr(r2m) + S20 tr(ε2m2)

+ S21 tr(ε2r2) + S22 tr(m2r2) + S23 tr(εmr),
(B.1.5)
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with Sα = Sα(T ,ε,m,r), α = 1, . . . ,23 objective scalar functions, and then depending
on the invariants (B.1.3). The expression (3.6.1) is a first approximated form of (B.1.5),
being m = ε̇.

b.2 objective representation of symmetric tensor
functions

In this Section we consider two situations: a) a first case where a second order sym-
metric objective tensor depends on scalar functions and second order symmetric ten-
sors; b) a second case where a second order symmetric objective tensor depends on
scalar functions, second order symmetric tensors and polar vectors.

case a). Following [1], [2], [3] and [4] a second order symmetric tensor H, that
depends on m scalar functions, namely a1, a2,. . . ,am (in the case of the pressure tensor
P, m = 1 and a1 ≡ T ), and l second-order symmetric tensors, namely A1, A2,. . . , Al

(in our case l = 3 and A1 ≡ ε, A2 ≡ m, A3 ≡ r), is expressed as polynomial form
constructed on the following invariants

U, Ai , A2
i , AiAj + AjAi , A2

i Aj + AjA
2
i , A2

i A2
j + A2

j A2
i , (B.2.1)

with i, j = 1, . . . , l and i , j, i.e.

H =
r∑

α=1

HαHα, (B.2.2)

where Hα = Hα(a1,a2, . . . ,am, A1, A2, . . . , Al), α = 1, . . . ,r, are objective scalar functions
(depending on the invariants (B.1.1)) and Hα are built on the set of invariants of the
list (B.2.1).
Thus, for P = P(T ,ε,m,r) they are

U, ε, m, r, ε2, m2, r2, εm+mε, εr + rε, mr + rm,

ε2m+mε2, ε2r + rε2, m2r + rm2, m2ε+ εm2, r2m+mr2,

r2ε+ εr2, ε2m2 +m2ε2, ε2r2 + r2ε2, m2r2 + r2m2,

(B.2.3)

where, for instance ε2m+mε2 ≡ (εikεklmlj +mikεklεlj), ε2m2 +m2ε2 ≡ (εikεklmlpmpj +
mikmklεlpεpj). Thus, according to (B.2.2) the general form of P is

P = P 1U + P 2ε+ P 3m+ P 4r + P 5ε2 + P 6m2 + P 7r2 + P 8(εm+mε) + P 9(εr + rε.

+ P 10(mr + rm) + P 11(ε2m+mε2) ++P 12(ε2r + rε2) + P 13(m2r + rm2)

+ P 14(m2ε+ εm2) + P 15(r2m+mr2) + P 16(r2ε+ εr2) + P 17(ε2m2 +m2ε2)

+ P 18(ε2r2 + r2ε2) + P 19(m2r2 + r2m2),
(B.2.4)
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where P α = P α(T ,ε,m,r), α = 1, . . . ,19, are objective scalar functions (and than de-
pending on the invariants (B.1.3)). The expression (3.6.2) is a first approximated form
of (B.2.4), with m = ε̇.

case b). Following [1], [2], [3] and [4] in the case where the second-order symmetric
tensor H depends also on a vector w (as in the case ofM andR(i), with w ≡ ∇T ), it is
expressed as polynomial of the form (B.2.2), with Hα the following invariants

U, Ai , A2
i , AiAj + AjAi , A2

i Aj + AjA
2
i , A2

i A2
j + A2

j A2
i ,

w⊗w, w⊗ (Aiw) + (Aiw)⊗w, w⊗ (A2
i w) + (A2

i w)⊗w
(B.2.5)

and the objective scalar functions Hα(a1,a2, . . . ,am, A1, A2, . . . , Al ,w) depending on the
invariants

as, tr Ai , tr A2
i , tr A3

i , tr(AiAj), tr(A2
i Aj), tr(A2

i A2
j ), tr(AiAjAk),

w ·w, w · (Aiw), w · (A2
i w), (Aiw) · (Ajw),

(B.2.6)

with s = 1, . . . ,m, i, j = 1, . . . , l and i , j.
In the case of M and R(i) we have m = 1 and a1 ≡ T , l = 3 and A1 ≡ ε, A2 ≡ m,

A3 ≡ r, and w ≡ ∇T . Then, the second order symmetric tensorsM(T ,∇T ,ε,m,r) and
R(i)(T ,∇T ,ε,m,r) are built on the following invariants

U, ε, m, r, ε2, m2, r2, εm+mε, εr + rε, mr + rm,

ε2m+mε2, ε2r + rε2, m2r + rm2, m2ε+ εm2, r2m+mr2,

r2ε+ εr2, ε2m2 +m2ε2, ε2r2 + r2ε2, m2r2 + r2m2,

∇T ⊗∇T , ∇T ⊗ (ε∇T ) + (ε∇T )⊗∇T , ∇T ⊗ (m∇T ) + (m∇T )⊗∇T ,

∇T ⊗ (r∇T ) + (r∇T )⊗∇T , ∇T ⊗ (ε2∇T ) + (ε2∇T )⊗∇T ,

∇T ⊗ (m2∇T ) + (m2∇T )⊗∇T , ∇T ⊗ (r2∇T ) + (r2∇T )⊗∇T .,

(B.2.7)

where, for instance, ∇T ⊗∇T ≡ (T,iT,j), ∇T ⊗(ε∇T )+(ε∇T )⊗∇T ≡ (T,iεjkT,k+εikT,kT,j)
and ∇T ⊗ (ε2∇T ) + (ε2∇T )⊗∇T ≡ (T,iεjlεlkT,k + εilεlkT,kT,j).
Thus, we have forM andR(i), according to (B.2.2), the following expressions

M=M1U +M2ε+M3m+M4r +M5ε2 +M6m2 +M7r2 +M8(εm+mε)

+M9(εr + rε) +M10(mr + rm) +M11(ε2m+mε2) ++M12(ε2r + rε2)

+M13(m2r + rm2) +M14(m2ε+ εm2) +M15(r2m+mr2) +M16(r2ε+ εr2)

+M17(ε2m2 +m2ε2) +M18(ε2r2 + r2ε2) +M19(m2r2 + r2m2) +M20(∇T ⊗∇T )
+M21[∇T ⊗ (ε∇T ) + (ε∇T )⊗∇T ] +M22[∇T ⊗ (m∇T ) + (m∇T )⊗∇T ]
+M23[∇T ⊗ (r∇T ) + (r∇T )⊗∇T ] +M24[∇T ⊗ (ε2∇T ) + (ε2∇T )⊗∇T ]
+M25[∇T ⊗ (m2∇T ) + (m2∇T )⊗∇T ] +M26[∇T ⊗ (r2∇T ) + (r2∇T )⊗∇T ],

(B.2.8)
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and

R(i) = R1U +R2ε+R3m+R4r +R5ε2 +R6m2 +R7r2 +R8(εm+mε) +R9(εr + rε)

+R10(mr + rm) +R11(ε2m+mε2) ++R12(ε2r + rε2) +R13(m2r + rm2)

+R14(m2ε+ εm2) +R15(r2m+mr2) +R16(r2ε+ εr2) +R17(ε2m2 +m2ε2)

+R18(ε2r2 + r2ε2) +R19(m2r2 + r2m2) +R20(∇T ⊗∇T )
+R21[∇T ⊗ (ε∇T ) + (ε∇T )⊗∇T ] +R22[∇T ⊗ (m∇T ) + (m∇T )⊗∇T ]
+R23[∇T ⊗ (r∇T ) + (r∇T )⊗∇T ] +R24[∇T ⊗ (ε2∇T ) + (ε2∇T )⊗∇T ]
+R25[∇T ⊗ (m2∇T ) + (m2∇T )⊗∇T ] +R26[∇T ⊗ (r2∇T ) + (r2∇T )⊗∇T ],

(B.2.9)

where Mα(T ,∇T ,ε,m,r) and Rα(T ,∇T ,ε,m,r), α = 1, . . . ,26, are scalar objective func-
tions, that depend on the following invariants

T , trε, trm, trr, trε2, trm2, trr2, trε3, trm3, trr3, tr(εm),

tr(εr), tr(mr), tr(ε2m), tr(ε2r), tr(m2ε), tr(m2r), tr(r2ε), tr(r2m),

tr(ε2m2), tr(ε2r2), tr(m2r2), tr(εmr),

∇T · ∇T , ∇T · (ε∇T ), ∇T · (m∇T ), ∇T · (r∇T ), ∇T · (ε2∇T ), ∇T · (m2∇T ),
∇T · (r2∇T ), (ε∇T ) · (m∇T ), (ε∇T ) · (r∇T ), (m∇T ) · (r∇T ).

(B.2.10)

where, for instance, ∇T · (ε2∇T ) ≡ (T,iεilεlkT,k). Notice that the invariants of the first
three lines of (B.2.10) are those of (B.1.3). Relations (3.6.4) and (3.6.5) are a first ap-
proximation of (B.2.8) and (B.2.9), respectively, being m = ε̇.

b.3 objective representation of vector functions

Following [1], [2], [3] and [4] a vector function g, that depends on m scalar function,
namely a1, a2,. . . ,am, (in the case of the heat flux q, m = 1 and a1 ≡ T ), and l second-
order symmetric tensors, namely A1, A2,. . . ,Al (in our case l = 3 and A1 ≡ ε, A2 ≡ m,
A3 ≡ r) and on a vector w (in our case w ≡ ∇T ), is expressed as polynomial of the
invariants

w, Aiw, A2
i w, AiAjw, AjAiw, (B.3.1)

with i, j = 1, . . . , l and i , j, having the form

g =
n∑

β=1

gβgβ , (B.3.2)

where gβ = gβ(a1,a2, . . . ,am, A1, A2, . . . , Al ,w), β = 1, . . . ,n, are objective scalar func-
tions (and than depending on the invariants (B.2.10)) and gβ are building on the set of
the invariants of the list (B.3.1).
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Thus, the invariants of the vector-value function q(T ,∇T ,ε,m,r) are

∇T , ε∇T , m∇T , r∇T , ε2∇T , m2∇T , r2∇T , εm∇T , εr∇T , mr∇T ,

mε∇T , rε∇T , rm∇T ,
(B.3.3)

and, according to (B.3.2) (with n= 13), q has the form

q = q1∇T + q2ε∇T + q3m∇T + q4r∇T + q5ε2∇T + q6m2∇T + q7r2∇T + q8εm∇T
+ q9εr∇T + q10mr∇T + q11mε∇T + q12rε∇T + q13rm∇T ,

(B.3.4)

where qβ = qβ(T ,∇T ,ε,m,r), β = 1, . . . ,13, are objective scalar functions, that depend
on the invariants (B.2.10). Relation (3.6.10), q = q1∇T , is a first approximated form of
(B.3.4), with m = ε̇.
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C MATR I X REPRESENTAT ION

Here, we give a two-dimensional symmetric explicit representation of the conduc-
tivity matrix {Lαβ} that appears in the entropy production (7.3.28) of Chapter 7. This
form is useful when the conditions of positive definiteness have to be calculated.
Though the explicit writing is cumbersome, it is especially useful when an abstract
notation is not sufficient, but explicit calculations must be done, or when a computer
program for solving equations or carrying out numerical simulations must be imple-
mented.

Representation of the conductivity matrix {Lαβ} in the case where the internal

variable Q has odd parity

Entropy production (7.3.28) of Subsection 7.3.2, can be written in the symbolic ma-
trix notation

XαLαβXβ ≥ 0 (α,β = 1, . . . ,48), (C.0.1)

where

{Xα}= {qi ; qi,j ; Qij ; Qij,p}=
= {q1 ; q2 ; q3 ; q1,1 ; q1,2 ; q1,3 ; q2,1 ; q2,2 ; q2,3 ; q3,1 ; q3,2 ; q3,3 ;

Q11,1 ; Q11,2 ; Q11,3 ; Q12,1 ; Q12,2 ; Q12,3 ; Q13,1 ; Q13,2 ; Q13,3 ;

Q21,1 ; Q21,2 ; Q21,3 ; Q22,1 ; Q22,2 ; Q22,3 ; Q23,1 ; Q23,2 ; Q23,3 ;

Q31,1 ; Q31,2 ; Q31,3 ; Q32,1 ; Q32,2 ; Q32,3 ; Q33,1 ; Q33,2 ; Q33,3},

(C.0.2)

{Xβ}= {qk ; qk,l ; Qkl ; Qlm,n}T . (C.0.3)

For Lαβ we introduce the following notation

{Lαβ}=



3×3

L(1)ik
3×9
0

3×9
0

3×27

L(1,4)
ilmn

9×3
0

9×9

L(2)jikl

9×9

L(2,3)
jikl

9×27
0

9×3
0

9×9

L(3,2)
ijkl

9×9

L(3)ijkl
9×27

0

27×3

L(4,1)
kpij

27×9
0

27×9
0

27×27

L(4)pijlmn


(α,β = 1, . . . ,48), (C.0.4)
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in which
n×m
0 is the symbolic null matrix of dimension n×m. This matrix is symmetric

by virtue of Onsager relations (7.2.2)2 and (7.2.3)2.
In the following we write the sub-matrices that appear in (C.0.4)

L(1)ik =


L(1) 0 0

0 L(1) 0
0 0 L(1)

 , (C.0.5)

L(2)jikl =



L(2)1111 L
(2)
1112 L

(2)
1113 L

(2)
1121 L

(2)
1122 L

(2)
1123 L

(2)
1131 L

(2)
1132 L

(2)
1133

L(2)2111 L
(2)
2112 L

(2)
2113 L

(2)
2121 L

(2)
2122 L

(2)
2123 L

(2)
2131 L

(2)
2132 L

(2)
2133

L(2)3111 L
(2)
3112 L

(2)
3113 L

(2)
3121 L

(2)
3122 L

(2)
3123 L

(2)
3131 L

(2)
3132 L

(2)
3133

L(2)1211 L
(2)
1212 L

(2)
1213 L

(2)
1221 L

(2)
1222 L

(2)
1223 L

(2)
1231 L

(2)
1232 L

(2)
1233

L(2)2211 L
(2)
2212 L

(2)
2213 L

(2)
2221 L

(2)
2222 L

(2)
2223 L

(2)
2231 L

(2)
2232 L

(2)
2233

L(2)3211 L
(2)
3212 L

(2)
3213 L

(2)
3221 L

(2)
3222 L

(2)
3223 L

(2)
3231 L

(2)
3232 L

(2)
3233

L(2)1311 L
(2)
1312 L

(2)
1313 L

(2)
1321 L

(2)
1322 L

(2)
1323 L

(2)
1331 L

(2)
1332 L

(2)
1333

L(2)2311 L
(2)
2312 L

(2)
2313 L

(2)
2321 L

(2)
2322 L

(2)
2323 L

(2)
2331 L

(2)
2332 L

(2)
2333

L(2)3311 L
(2)
3312 L

(2)
3313 L

(2)
3321 L

(2)
3322 L

(2)
3323 L

(2)
3331 L

(2)
3332 L

(2)
3333



=

=



L(2) 0 0 0 L
(2)
1 0 0 0 L

(2)
1

0 L
(2)
3 0 L

(2)
2 0 0 0 0 0

0 0 L
(2)
3 0 0 0 L

(2)
2 0 0

0 L
(2)
2 0 L

(2)
3 0 0 0 0 0

L
(2)
1 0 0 0 L(2) 0 0 0 L

(2)
1

0 0 0 0 0 L
(2)
3 0 L

(2)
2 0

0 0 L
(2)
2 0 0 0 L

(2)
3 0 0

0 0 0 0 0 L
(2)
2 0 L

(2)
3 0

L
(2)
1 0 0 0 L

(2)
1 0 0 0 L(2)



,

(C.0.6)

where L(2) ≡ L(2)1 + L
(2)
2 + L

(2)
3 .
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L(1,4)
ilmn =



L(1,4)
1111 L

(1,4)
2111 L

(1,4)
3111

L(1,4)
1112 L

(1,4)
2112 L

(1,4)
3112

L(1,4)
1113 L

(1,4)
2113 L

(1,4)
3113

L(1,4)
1121 L

(1,4)
2121 L

(1,4)
3121

L(1,4)
1122 L

(1,4)
2122 L

(1,4)
3122

L(1,4)
1123 L

(1,4)
2123 L

(1,4)
3123

L(1,4)
1131 L

(1,4)
2131 L

(1,4)
3131

L(1,4)
1132 L

(1,4)
2132 L

(1,4)
3132

L(1,4)
1133 L

(1,4)
2133 L

(1,4)
3133

L(1,4)
1211 L

(1,4)
2211 L

(1,4)
3211

L(1,4)
1212 L

(1,4)
2212 L

(1,4)
3212

L(1,4)
1213 L

(1,4)
2213 L

(1,4)
3213

L(1,4)
1221 L

(1,4)
2221 L

(1,4)
3221

L(1,4)
1222 L

(1,4)
2222 L

(1,4)
3222

L(1,4)
1223 L

(1,4)
2223 L

(1,4)
3223

L(1,4)
1231 L

(1,4)
2231 L

(1,4)
3231

L(1,4)
1232 L

(1,4)
2232 L

(1,4)
3232

L(1,4)
1233 L

(1,4)
2233 L

(1,4)
3233

L(1,4)
1311 L

(1,4)
2311 L

(1,4)
3311

L(1,4)
1312 L

(1,4)
2312 L

(1,4)
3312

L(1,4)
1313 L

(1,4)
2313 L

(1,4)
3313

L(1,4)
1321 L

(1,4)
2321 L

(1,4)
3321

L(1,4)
1322 L

(1,4)
2322 L

(1,4)
3322

L(1,4)
1323 L

(1,4)
2323 L

(1,4)
3323

L(1,4)
1331 L

(1,4)
2331 L

(1,4)
3331

L(1,4)
1332 L

(1,4)
2332 L

(1,4)
3332

L(1,4)
1333 L

(1,4)
2333 L

(1,4)
3333



T

=



L(1,4) 0 0

0 L
(1,4)
3 0

0 0 L
(1,4)
3

0 L
(1,4)
2 0

L
(1,4)
1 0 0

0 0 0

0 0 L
(1,4)
2

0 0 0

L
(1,4)
1 0 0

0 L
(1,4)
1 0

L
(1,4)
2 0 0

0 0 0

L
(1,4)
3 0 0

0 L(1,4) 0

0 0 L
(1,4)
3

0 0 0

0 0 L
(1,4)
2

0 L
(1,4)
1 0

0 0 L
(1,4)
1

0 0 0

L
(1,4)
2 0 0

0 0 0

0 0 L
(1,4)
1

0 L
(1,4)
2 0

L
(1,4)
3 0 0

0 L
(1,4)
3 0

0 0 L(1,4)



T

, (C.0.7)
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where L(1,4) ≡ L(1,4)
1 + L

(1,4)
2 + L

(1,4)
3 .

L(2,3)
jikl =



L(2,3)
1111 L

(2,3)
1112 L

(2,3)
1113 L

(2,3)
1121 L

(2,3)
1122 L

(2,3)
1123 L

(2,3)
1131 L

(2,3)
1132 L

(2,3)
1133

L(2,3)
2111 L

(2,3)
2112 L

(2,3)
2113 L

(2,3)
2121 L

(2,3)
2122 L

(2,3)
2123 L

(2,3)
2131 L

(2,3)
2132 L

(2,3)
2133

L(2,3)
3111 L

(2,3)
3112 L

(2,3)
3113 L

(2,3)
3121 L

(2,3)
3122 L

(2,3)
3123 L

(2,3)
3131 L

(2,3)
3132 L

(2,3)
3133

L(2,3)
1211 L

(2,3)
1212 L

(2,3)
1213 L

(2,3)
1221 L

(2,3)
1222 L

(2,3)
1223 L

(2,3)
1231 L

(2,3)
1232 L

(2,3)
1233

L(2,3)
2211 L

(2,3)
2212 L

(2,3)
2213 L

(2,3)
2221 L

(2,3)
2222 L

(2,3)
2223 L

(2,3)
2231 L

(2,3)
2232 L

(2,3)
2233

L(2,3)
3211 L

(2,3)
3212 L

(2,3)
3213 L

(2,3)
3221 L

(2,3)
3222 L

(2,3)
3223 L

(2,3)
3231 L

(2,3)
3232 L

(2,3)
3233

L(2,3)
1311 L

(2,3)
1312 L

(2,3)
1313 L

(2,3)
1321 L

(2,3)
1322 L

(2,3)
1323 L

(2,3)
1331 L

(2,3)
1332 L

(2,3)
1333

L(2,3)
2311 L

(2,3)
2312 L

(2,3)
2313 L

(2,3)
2321 L

(2,3)
2322 L

(2,3)
2323 L

(2,3)
2331 L

(2,3)
2332 L

(2,3)
2333

L(2,3)
3311 L

(2,3)
3312 L

(2,3)
3313 L

(2,3)
3321 L

(2,3)
3322 L

(2,3)
3323 L

(2,3)
3331 L

(2,3)
3332 L

(2,3)
3333



=

=



L(2,3) 0 0 0 L
(2,3)
1 0 0 0 L

(2,3)
1

0 L
(2,3)
3 0 L

(2,3)
2 0 0 0 0 0

0 0 L
(2,3)
3 0 0 0 L

(2,3)
2 0 0

0 L
(2,3)
2 0 L

(2,3)
3 0 0 0 0 0

L
(2,3)
1 0 0 0 L(2,3) 0 0 0 L

(2,3)
1

0 0 0 0 0 L
(2,3)
3 0 L

(2,3)
2 0

0 0 L
(2,3)
2 0 0 0 L

(2,3)
3 0 0

0 0 0 0 0 L
(2,3)
2 0 L

(2,3)
3 0

L
(2,3)
1 0 0 0 L

(2,3)
1 0 0 0 L(2,3)



,

(C.0.8)

where L(2,3) ≡ L(2,3)
1 + L

(2,3)
2 + L

(2,3)
3 .
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L(3)ijkl =



L(3)1111 L
(3)
1112 L

(3)
1113 L

(3)
1121 L

(3)
1122 L

(3)
1123 L

(3)
1131 L

(3)
1132 L

(3)
1133

L(3)1211 L
(3)
1212 L

(3)
1213 L

(3)
1221 L

(3)
1222 L

(3)
1223 L

(3)
1231 L

(3)
1232 L

(3)
1233

L(3)1311 L
(3)
1312 L

(3)
1313 L

(3)
1321 L

(3)
1322 L

(3)
1323 L

(3)
1331 L

(3)
1332 L

(3)
1333

L(3)2111 L
(3)
2112 L

(3)
2113 L

(3)
2121 L

(3)
2122 L

(3)
2123 L

(3)
2131 L

(3)
2132 L

(3)
2133

L(3)2211 L
(3)
2212 L

(3)
2213 L

(3)
2221 L

(3)
2222 L

(3)
2223 L

(3)
2231 L

(3)
2232 L

(3)
2233

L(3)2311 L
(3)
2312 L

(3)
2313 L

(3)
2321 L

(3)
2322 L

(3)
2323 L

(3)
2331 L

(3)
2332 L

(3)
2333

L(3)3111 L
(3)
3112 L

(3)
3113 L

(3)
3121 L

(3)
3122 L

(3)
3123 L

(3)
3131 L

(3)
3132 L

(3)
3133

L(3)3211 L
(3)
3212 L

(3)
3213 L

(3)
3221 L

(3)
3222 L

(3)
3223 L

(3)
3231 L

(3)
3232 L

(3)
3233

L(3)3311 L
(3)
3312 L

(3)
3313 L

(3)
3321 L

(3)
3322 L

(3)
3323 L

(3)
3331 L

(3)
3332 L

(3)
3333



=

=



L(3) 0 0 0 L
(3)
1 0 0 0 L

(3)
1

0 L
(3)
2 0 L

(3)
3 0 0 0 0 0

0 0 L
(3)
2 0 0 0 L

(3)
3 0 0

0 L
(3)
3 0 L

(3)
2 0 0 0 0 0

L
(3)
1 0 0 0 L(3) 0 0 0 L

(3)
1

0 0 0 0 0 L
(3)
2 0 L

(3)
3 0

0 0 L
(3)
3 0 0 0 L

(3)
2 0 0

0 0 0 0 0 L
(3)
3 0 L

(3)
2 0

L
(3)
1 0 0 0 L

(3)
1 0 0 0 L(3)



,

(C.0.9)

where L(3) ≡ L(3)1 + L
(3)
2 + L

(3)
3 .
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L(3,2)
ijkl =



L(2,3)
1111 L

(2,3)
1112 L

(2,3)
1113 L

(2,3)
1121 L

(2,3)
1122 L

(2,3)
1123 L

(2,3)
1131 L

(2,3)
1132 L

(2,3)
1133

L(2,3)
1211 L

(2,3)
1212 L

(2,3)
1213 L

(2,3)
1221 L

(2,3)
1222 L

(2,3)
1223 L

(2,3)
1231 L

(2,3)
1232 L

(2,3)
1233

L(2,3)
1311 L

(2,3)
1312 L

(2,3)
1313 L

(2,3)
1321 L

(2,3)
1322 L

(2,3)
1323 L

(2,3)
1331 L

(2,3)
1332 L

(2,3)
1333

L(2,3)
2111 L

(2,3)
2112 L

(2,3)
2113 L

(2,3)
2121 L

(2,3)
2122 L

(2,3)
2123 L

(2,3)
2131 L

(2,3)
2132 L

(2,3)
2133

L(2,3)
2211 L

(2,3)
2212 L

(2,3)
2213 L

(2,3)
2221 L

(2,3)
2222 L

(2,3)
2223 L

(2,3)
2231 L

(2,3)
2232 L

(2,3)
2233

L(2,3)
2311 L

(2,3)
2312 L

(2,3)
2313 L

(2,3)
2321 L

(2,3)
2322 L

(2,3)
2323 L

(2,3)
2331 L

(2,3)
2332 L

(2,3)
2333

L(2,3)
3111 L

(2,3)
3112 L

(2,3)
3113 L

(2,3)
3121 L

(2,3)
3122 L

(2,3)
3123 L

(2,3)
3131 L

(2,3)
3132 L

(2,3)
3133

L(2,3)
3211 L

(2,3)
3212 L

(2,3)
3213 L

(2,3)
3221 L

(2,3)
3222 L

(2,3)
3223 L

(2,3)
3231 L

(2,3)
3232 L

(2,3)
3233

L(2,3)
3311 L

(2,3)
3312 L

(2,3)
3313 L

(2,3)
3321 L

(2,3)
3322 L

(2,3)
3323 L

(2,3)
3331 L

(2,3)
3332 L

(2,3)
3333



=

=



L(2,3) 0 0 0 L
(2,3)
1 0 0 0 L

(2,3)
1

0 L
(2,3)
2 0 L

(2,3)
3 0 0 0 0 0

0 0 L
(2,3)
2 0 0 0 L

(2,3)
3 0 0

0 L
(2,3)
3 0 L

(2,3)
2 0 0 0 0 0

L
(2,3)
1 0 0 0 L(2,3) 0 0 0 L

(2,3)
1

0 0 0 0 0 L
(2,3)
2 0 L

(2,3)
3 0

0 0 L
(2,3)
3 0 0 0 L

(2,3)
2 0 0

0 0 0 0 0 L
(2,3)
3 0 L

(2,3)
2 0

L
(2,3)
1 0 0 0 L

(2,3)
1 0 0 0 L(2,3)



,

(C.0.10)

where we have used the Onsager relations (7.2.3)2.
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L(4,1)
kpij =



L(1,4)
1111 L

(1,4)
2111 L

(1,4)
3111

L(1,4)
1211 L

(1,4)
2211 L

(1,4)
3211

L(1,4)
1311 L

(1,4)
2311 L

(1,4)
3311

L(1,4)
1112 L

(1,4)
2112 L

(1,4)
3112

L(1,4)
1212 L

(1,4)
2212 L

(1,4)
3212

L(1,4)
1312 L

(1,4)
2312 L

(1,4)
3312

L(1,4)
1113 L

(1,4)
2113 L

(1,4)
3113

L(1,4)
1213 L

(1,4)
2213 L

(1,4)
3213

L(1,4)
1313 L

(1,4)
2313 L

(1,4)
3313

L(1,4)
1121 L

(1,4)
2121 L

(1,4)
3121

L(1,4)
1221 L

(1,4)
2221 L

(1,4)
3221

L(1,4)
1321 L

(1,4)
2321 L

(1,4)
3321

L(1,4)
1122 L

(1,4)
2122 L

(1,4)
3122

L(1,4)
1222 L

(1,4)
2222 L

(1,4)
3222

L(1,4)
1322 L

(1,4)
2322 L

(1,4)
3322

L(1,4)
1123 L

(1,4)
2123 L

(1,4)
3123

L(1,4)
1223 L

(1,4)
2223 L

(1,4)
3223

L(1,4)
1323 L

(1,4)
2323 L

(1,4)
3323

L(1,4)
1131 L

(1,4)
2131 L

(1,4)
3131

L(1,4)
1231 L

(1,4)
2231 L

(1,4)
3231

L(1,4)
1331 L

(1,4)
2331 L

(1,4)
3331

L(1,4)
1132 L

(1,4)
2132 L

(1,4)
3132

L(1,4)
1232 L

(1,4)
2232 L

(1,4)
3232

L(1,4)
1332 L

(1,4)
2332 L

(1,4)
3332

L(1,4)
1133 L

(1,4)
2133 L

(1,4)
3133

L(1,4)
1233 L

(1,4)
2233 L

(1,4)
3233

L(1,4)
1333 L

(1,4)
2333 L

(1,4)
3333



=



L(1,4) 0 0

0 L
(1,4)
1 0

0 0 L
(1,4)
1

0 L
(1,4)
3 0

L
(1,4)
2 0 0

0 0 0

0 0 L
(1,4)
3

0 0 0

L
(1,4)
2 0 0

0 L
(1,4)
2 0

L
(1,4)
3 0 0

0 0 0

L
(1,4)
1 0 0

0 L(1,4) 0

0 0 L
(1,4)
1

0 0 0

0 0 L
(1,4)
3

0 L
(1,4)
2 0

0 0 L
(1,4)
2

0 0 0

L
(1,4)
3 0 0

0 0 0

0 0 L
(1,4)
2

0 L
(1,4)
3 0

L
(1,4)
1 0 0

0 L
(1,4)
1 0

0 0 L(1,4)



, (C.0.11)

where L(1,4) ≡ L(1,4)
1 + L

(1,4)
2 + L

(1,4)
3 and we have used the Onsager relations (7.2.2)2.



m
atr

ix
r
epr

esen
tatio

n
1
4
2

L(4)pijlmn =



L(4)111111 L
(4)
111112 L

(4)
111113 L

(4)
111121 L

(4)
111122 L

(4)
111123 L

(4)
111131 L

(4)
111132 L

(4)
111133 L

(4)
111211 L

(4)
111212 L

(4)
111213 L

(4)
111221 L

(4)
111222 L

(4)
111223 L

(4)
111231 L

(4)
111232 L

(4)
111233 L

(4)
111311 L

(4)
111312 L

(4)
111313 L

(4)
111321 L

(4)
111322 L

(4)
111323 L

(4)
111331 L

(4)
111332 L

(4)
111333

L(4)211111 L
(4)
211112 L

(4)
211113 L

(4)
211121 L

(4)
211122 L

(4)
211123 L

(4)
211131 L

(4)
211132 L

(4)
211133 L

(4)
211211 L

(4)
211212 L

(4)
211213 L

(4)
211221 L

(4)
211222 L

(4)
211223 L

(4)
211231 L

(4)
211232 L

(4)
211233 L

(4)
211311 L

(4)
211312 L

(4)
211313 L

(4)
211321 L

(4)
211322 L

(4)
211323 L

(4)
211331 L

(4)
211332 L

(4)
211333

L(4)311111 L
(4)
311112 L

(4)
311113 L

(4)
311121 L

(4)
311122 L

(4)
311123 L

(4)
311131 L

(4)
311132 L

(4)
311133 L

(4)
311211 L

(4)
311212 L

(4)
311213 L

(4)
311221 L

(4)
311222 L

(4)
311223 L

(4)
311231 L

(4)
311232 L

(4)
311233 L

(4)
311311 L

(4)
311312 L

(4)
311313 L

(4)
311321 L

(4)
311322 L

(4)
311323 L

(4)
311331 L

(4)
311332 L

(4)
311333

L(4)112111 L
(4)
112112 L

(4)
112113 L

(4)
112121 L

(4)
112122 L

(4)
112123 L

(4)
112131 L

(4)
112132 L

(4)
112133 L

(4)
112211 L

(4)
112212 L

(4)
112213 L

(4)
112221 L

(4)
112222 L

(4)
112223 L

(4)
112231 L

(4)
112232 L

(4)
112233 L

(4)
112311 L

(4)
112312 L

(4)
112313 L

(4)
112321 L

(4)
112322 L

(4)
112323 L

(4)
112331 L

(4)
112332 L

(4)
112333

L(4)212111 L
(4)
212112 L

(4)
212113 L

(4)
212121 L

(4)
212122 L

(4)
212123 L

(4)
212131 L

(4)
212132 L

(4)
212133 L

(4)
212211 L

(4)
212212 L

(4)
212213 L

(4)
212221 L

(4)
212222 L

(4)
212223 L

(4)
212231 L

(4)
212232 L

(4)
212233 L

(4)
212311 L

(4)
212312 L

(4)
212313 L

(4)
212321 L

(4)
212322 L

(4)
212323 L

(4)
212331 L

(4)
212332 L

(4)
212333

L(4)312111 L
(4)
312112 L

(4)
312113 L

(4)
312121 L

(4)
312122 L

(4)
312123 L

(4)
312131 L

(4)
312132 L

(4)
312133 L

(4)
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C(4) 0 0 0 Λ1 0 0 0 Λ1 0 Λ2 0 Λ3 0 0 0 0 0 0 0 Λ2 0 0 0 Λ3 0 0

0 Λ4 0 Λ5 0 0 0 0 0 Λ6 0 0 0 Λ1 0 0 0 C
(4)
6 0 0 0 0 0 C

(4)
4 0 C

(4)
1 0

0 0 Λ4 0 0 0 Λ5 0 0 0 0 0 0 0 C
(4)
1 0 C

(4)
4 0 Λ6 0 0 0 C

(4)
6 0 0 0 Λ1

0 Λ7 0 Λ8 0 0 0 0 0 Λ4 0 0 0 Λ3 0 0 0 C
(4)
1 0 0 0 0 0 C

(4)
2 0 C

(4)
3 0

Λ2 0 0 0 Λ5 0 0 0 C
(4)
4 0 Λ9 0 Λ8 0 0 0 0 0 0 0 C

(4)
5 0 0 0 C

(4)
2 0 0

0 0 0 0 0 C
(4)
10 0 C

(4)
9 0 0 0 C

(4)
11 0 0 0 C

(4)
10 0 0 0 C

(4)
7 0 C

(4)
8 0 0 0 0 0

0 0 Λ7 0 0 0 Λ8 0 0 0 0 0 0 0 C
(4)
3 0 C

(4)
2 0 Λ4 0 0 0 C

(4)
1 0 0 0 Λ3

0 0 0 0 0 C
(4)
9 0 C

(4)
10 0 0 0 C

(4)
7 0 0 0 C

(4)
8 0 0 0 C

(4)
11 0 C

(4)
10 0 0 0 0 0

Λ2 0 0 0 C
(4)
4 0 0 0 Λ5 0 C

(4)
5 0 C

(4)
2 0 0 0 0 0 0 0 Λ9 0 0 0 Λ8 0 0

0 Λ8 0 Λ9 0 0 0 0 0 Λ5 0 0 0 Λ2 0 0 0 C
(4)
4 0 0 0 0 0 C

(4)
5 0 C

(4)
2 0

Λ3 0 0 0 Λ4 0 0 0 C
(4)
1 0 Λ8 0 Λ7 0 0 0 0 0 0 0 C

(4)
2 0 0 0 C

(4)
3 0 0

0 0 0 0 0 C
(4)
11 0 C

(4)
10 0 0 0 C

(4)
10 0 0 0 C

(4)
9 0 0 0 C

(4)
8 0 C

(4)
7 0 0 0 0 0

Λ1 0 0 0 Λ6 0 0 0 C
(4)
6 0 Λ5 0 Λ4 0 0 0 0 0 0 0 C

(4)
4 0 0 0 C

(4)
1 0 0

0 Λ3 0 Λ2 0 0 0 0 0 Λ1 0 0 0 C(4) 0 0 0 Λ1 0 0 0 0 0 Λ2 0 Λ3 0

0 0 C
(4)
1 0 0 0 C

(4)
4 0 0 0 0 0 0 0 Λ4 0 Λ5 0 C

(4)
6 0 0 0 Λ6 0 0 0 Λ1

0 0 0 0 0 C
(4)
7 0 C

(4)
8 0 0 0 C

(4)
9 0 0 0 C

(4)
10 0 0 0 C

(4)
10 0 C

(4)
11 0 0 0 0 0

0 0 C
(4)
3 0 0 0 C

(4)
2 0 0 0 0 0 0 0 Λ7 0 Λ8 0 C

(4)
1 0 0 0 Λ4 0 0 0 Λ3

0 C
(4)
2 0 C

(4)
5 0 0 0 0 0 C

(4)
4 0 0 0 Λ2 0 0 0 Λ5 0 0 0 0 0 Λ9 0 Λ8 0
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8 0 0 0 C
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7 0 0 0 C

(4)
10 0 C
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9 0 0 0 0 0

Λ3 0 0 0 C
(4)
1 0 0 0 Λ4 0 C

(4)
2 0 C

(4)
3 0 0 0 0 0 0 0 Λ8 0 0 0 Λ7 0 0

0 0 0 0 0 C
(4)
8 0 C

(4)
7 0 0 0 C

(4)
10 0 0 0 C

(4)
11 0 0 0 C

(4)
9 0 C

(4)
10 0 0 0 0 0

0 0 C
(4)
2 0 0 0 C

(4)
5 0 0 0 0 0 0 0 Λ8 0 Λ9 0 C

(4)
4 0 0 0 Λ5 0 0 0 Λ2

0 C
(4)
3 0 C

(4)
2 0 0 0 0 0 C

(4)
1 0 0 0 Λ3 0 0 0 Λ4 0 0 0 0 0 Λ8 0 Λ7 0

Λ1 0 0 0 C
(4)
6 0 0 0 Λ6 0 C

(4)
4 0 C

(4)
1 0 0 0 0 0 0 0 Λ5 0 0 0 Λ4 0 0

0 C
(4)
1 0 C

(4)
4 0 0 0 0 0 C

(4)
6 0 0 0 Λ1 0 0 0 Λ6 0 0 0 0 0 Λ5 0 Λ4 0

0 0 Λ3 0 0 0 Λ2 0 0 0 0 0 0 0 Λ3 0 Λ2 0 Λ1 0 0 0 Λ1 0 0 0 C(4)



, (C.0.12)
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where

C(4) = 2C(4)
1 + 2C(4)

2 +C
(4)
3 + 2C(4)

4 +C
(4)
5 +C

(4)
6 +C

(4)
7 +C

(4)
8 +C

(4)
9 + 2C(4)

10 +C
(4)
11 ,

Λ1 = C
(4)
1 +C

(4)
4 +C

(4)
6 , Λ2 = C

(4)
2 +C

(4)
4 +C

(4)
5 , Λ3 = C

(4)
1 +C

(4)
2 +C

(4)
3 ,

Λ4 = C
(4)
1 +C

(4)
10 +C

(4)
11 , Λ5 = C

(4)
4 +C

(4)
9 +C

(4)
10 , Λ6 = C

(4)
6 +C

(4)
7 +C

(4)
8 ,

Λ7 = C
(4)
3 +C

(4)
7 +C

(4)
9 , Λ8 = C

(4)
2 +C

(4)
8 +C

(4)
10 , Λ9 = C

(4)
5 +C

(4)
7 +C

(4)
11 .

Representation of the conductivity matrix {Lαβ} in the case where Q has even

parity

When the internal variable Q has even parity the expressions (C.0.1)-(C.0.4) and
the results (C.0.5)-(C.0.9) and (C.0.12) of this Appendix remain unchanged. The phe-

nomenological tensors L(3,2)
ijkl and L(4,1)

kpij are defined in the same way, but in the last
terms of (C.0.10) and (C.0.11) before their matrix representation a minus sign appears
because of in the calculations we take into account Onsager symmetry relations (7.2.2)2
(7.2.3)2. Thus, we have obtained that in the case where Q has odd parity the matrix
{Lαβ} is symmetric, but in the case where Q has even parity the matrix {Lαβ} is not
symmetric because of Onsager relations (7.2.2)2 and (7.2.3)2.


	Introduction
	 Non-Equilibrium Thermodynamics of porous media filled by a fluid flow
	1 A description of anisotropic porous nanocrystals filled by a fluid flow
	1.1 A model for porous nanocrystals
	1.2 Analysis of entropy production
	1.3 Constitutive relations and generalized affinities
	1.4 Rate equations
	1.5 Linearised temperature equation and internal energy equation
	1.6 Closure of system of governing equations
	Bibliography of the Introduction and the first Chapter

	2 Non-Equilibrium thermodynamics of isotropic porous nanocrystals filled by a fluid flow
	2.1 Isotropic porous media with respect to all rotations of axes frame
	2.1.1 Constitutive relations, generalized affinities and rate equations in the isotropic case
	2.1.2 Closure of the governing system of equations in the isotropic case

	2.2 Perfect isotropic porous media
	2.2.1 Constitutive relations, generalized affinities, rate, temperature and energy equations in perfect isotropic case
	2.2.2 Closure of the governing system of equations in the perfect isotropic case

	Bibliography of the second Chapter

	3 A simple model of porous media with elastic deformations and erosion or deposition
	3.1 A model for porous media
	3.2 Elastic porous matrix with erosion/deposition
	3.2.1 Specific illustration: elastic effects

	3.3 Porous metamaterials
	3.4 Theoretical model, including temperature  variations
	3.5 Second-law restrictions
	3.6 Constitutive relations and rate equations
	3.6.1 Objective representations of S, Pij, Mij, R(i)ij and qi

	Bibliography of the third Chapter

	4 Propagation of coupled porosity and fluid-concentration waves in isotropic porous media
	4.1 Equations for porosity, fluid-concentration fields and fluxes
	4.1.1 Propagation of coupled porosity and fluid-concentration waves

	Bibliography of the fourth Chapter

	5 Weak discontinuity waves in isotropic porous media filled by a fluid flow
	5.1 Weak discontinuity waves in isotropic porous structures
	5.1.1 Wave front and first approximation of U
	5.1.2 One-dimensional case
	5.1.3 Eigenvalues and eigenvectors of the matrix A
	5.1.4 Determination of the approximated solution of the PDEs system

	Bibliography of the fifth Chapter

	6 Asymptotic waves in porous isotropic media filled by a fluid flow
	6.1 Asymptotic waves in isotropic porous structures
	6.1.1 Asymptotic wave propagation into a uniform unperturbed state
	6.1.2 The growth equation for the first perturbation term

	Bibliography of the sixth Chapter


	 Non-Equilibrium Thermodynamics of rigid bodies with an internal tensorial field influencing the thermal phenomena
	7 Generalized ballistic-conductive heat transport laws in three- dimensional isotropic materials
	7.1 Basic equations of heat transport
	7.2 Onsager reciprocity relations
	7.2.1 Onsager reciprocity relations

	7.3 General isotropic case without assumption on the parity of Qij
	7.3.1 Onsager symmetry
	7.3.2 Entropy production

	7.4 Rate equations for q and Q without assumption on the parity of Q
	7.5 The rate equations with Onsager reciprocity when Q has odd parity
	7.5.1 One-dimensional heat transport in the case where Qij has odd parity
	7.5.2 Special cases of heat transport equation in the assumption that Qij has odd parity

	7.6 Rate equations in the isotropic case where Q has even parity
	7.6.1 One-dimensional isotropic heat transport in the assumption that Qij has even parity
	7.6.2 Special cases of heat transport equation in the assumption that Qij has even parity

	Bibliography of the seventh Chapter
	Conclusions regarding the first and second Part of this thesis
	Bibliography of the conclusions

	A Particular cases of isotropic and perfect isotropic tensors
	A.1 Special form for isotropic tensors of order three
	A.2 Special form for isotropic tensors of order five
	A.2.1 Case where a fifth order isotropic tensor Lijklm has one particular symmetry
	A.2.2 Case where a fifth order isotropic tensor Lijklm presents two symmetries

	A.3 Special form for fourth order isotropic and perfect isotropic tensors
	A.3.1 Case where a fourth order isotropic tensor Lijkl has one particular type of symmetry
	A.3.2 Case where a fourth order isotropic tensor Lijkl has three symmetries
	A.3.3 Case where a fourth order isotropic tensor Lijkl has one particular symmetry of another type
	A.3.4 Case where a fourth order isotropic tensor Lijkl has the symmetry Lijkl=Likjl
	A.3.5 Case where a fourth order isotropic tensor Lijkl has two symmetries

	A.4 Special form for isotropic and perfect isotropic tensors of order six
	A.4.1 Case where a sixth order isotropic tensor Lijklmn has one particular symmetry
	A.4.2 Case where a sixth order isotropic tensor Lijklmn has one particular symmetry of another type
	A.4.3 Case where a sixth order isotropic tensor Lijklmn has two particular symmetries


	B Objective representation of functions
	B.1 Objective representation of scalar functions
	B.2 Objective representation of symmetric tensor functions
	B.3 Objective representation of vector functions
	Bibliography of the Appendix B

	C Matrix representation


