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Abstract

The food recognition project (FoodRec) aims to define an automatic framework using
computer vision and deep learning techniques to recognize diverse foods from images.
The goal of food recognition is to extract and infer semantic information from the food
images and to classify different foods present in the image. The developed system
acquires images of the food eaten by the user or subject over time, which will then
be processed by food recognition algorithms to extract and infer semantic information
from the images containing food. The extracted information will be exploited to track
and monitor the dietary habits of people involved in a smoke-quitting protocol.

Food recognition is an active research area due to its wide range of potential real-world
applications. For example, it would allow people to track their food intake of what they
consume by simply taking a picture, to increase the awareness in their daily diet by
monitoring their food habits, the kind and amount of taken food, how much time the
user spends eating during the day, how many and what times the user has a meal,
analysis on user’s habits changes, bad habits and other inferences related to user’s
behavior. It can help a doctor to have a better opinion with respect to the patient’s
behavior, quitting treatment response, and hence his health needs.

This project involves several stages from image acquisition to recognition. In particu-
lar, the efforts are devoted to the development of new segmentation and recognition
algorithms to perform the food recognition task accurately. This PhD thesis presents
semantic food segmentation and recognition using deep learning techniques. The pro-
posed approaches have been developed in the context of the FoodRec project, which
aims to define an automatic framework for the monitoring of people’s health and
habits, during their smoke-quitting program. The aim is to extract and infer semantic
information from the food images to analyze diverse foods present in the image.

We introduce a new FoodRec-50 dataset with 50 food categories collected by the
iOS and Android smartphone applications, taken by 164 users during their smoking
cessation therapy. Data preprocessing, data annotations, and data augmentation with
different transformations are performed for further processing after the data has been
collected by the application. For food recognition, we propose a Deep Convolutional
Neural Network able to recognize food items of specific users and monitor their habits.
It consists of a food branch to learn visual representation for the input food items and
a user branch to take into account the specific user’s eating habits. Experimental re-
sults show that the proposed food recognition method outperforms the baseline model
results on the FoodRec-50 dataset. We also performed an ablation study, which demon-
strated that the proposed architecture is able to tune the prediction based on the users’
eating habits. For food segmentation, we propose a novel Convolutional Deconvolu-
tional Pyramid Network (CDPN) for food segmentation to understand the semantic



information of an image at a pixel-level. This network employs convolution and de-
convolution layers to build a feature pyramid and achieves high-level semantic feature
map representation. As a consequence, the novel semantic segmentation network gen-
erates a dense and precise segmentation map of the input food image. Furthermore,
the proposed method demonstrated significant improvements on two well-known pub-
lic benchmark food segmentation datasets. We propose another Food Convolutional
Deconvolutional Network (FCDN) for semantic segmentation to extract and infer se-
mantic information from the food images at a pixel-level to recognize different food
items present in an image. The proposed FCDN employs only learnable features up-
sampling using deconvolution layers to increase the spatial resolution of the feature
maps and to learn the complex patterns, while the proposed CDPN also uses inter-
polation for features upsampling along with the deconvolution layers. Our proposed
network demonstrated significant improvements in the results on the benchmark food
dataset as compared to the state-of-the-art methods. Additionally, we also conducted
a cross-data qualitative analysis of our proposed segmentation method to assess its
generalization capabilities on our FoodRec dataset.

The research outcomes of the food recognition include 2 journals and 3 conference
papers. This project is a research grant where I collaborated to develop food recogni-
tion algorithms. This research was sponsored by ECLAT srl, a spin-off of the University
of Catania, with the help of a grant from the Foundation for a Smoke-Free World Inc.,
a US nonprofit 501(c)(3) private foundation with a mission to end smoking in this gen-
eration. My contributions in this project include data preprocessing, data annotations,
and data augmentation for further processing after the data has been collected by the
application. Then, to study, develop, and evaluate algorithms using computer vision
and deep learning techniques to track and monitor the dietary habits of people.

The additional research work is collaborated with the Department of Drug and
Health Science, University of Catania. The aim of the work was to find a correlation
between well-defined and selected parameters such as the type of nanocarrier, the par-
ticle size and the surface charge, and the targeting efficiency indexes %DTE and %DTP.
We performed nose-to-brain drug delivery data cleaning, conversion, standardization,
and classification using state-of-the-art machine learning algorithms. We are working
to publish a journal from this work with the collaboration of the Department of Drug
and Health Science.
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Chapter 1

Introduction

1.1 Overview

Food recognition is an area of research that deals with the development of computer
vision systems that can automatically identify and classify food items in images and
videos. With the rise of digital cameras and smartphones, food images have become
ubiquitous on the internet, making food recognition an essential and practical prob-
lem for many applications such as calorie counting, food delivery, and recipe recogni-
tion. This technology aims to provide a more accurate, efficient, and automated way
to identify food items by analyzing food images and extracting relevant information.
This field of research is highly interdisciplinary, drawing on expertise from computer
vision, image processing, machine learning, deep learning, and nutrition science. This
research aims to explore the current state of the art in food recognition including tra-
ditional food recognition techniques, deep learning-based methods, and to develop
new algorithms and techniques that can improve the accuracy and robustness of food
recognition systems.

Traditional food recognition techniques rely on a combination of feature extraction
and classification techniques. These techniques are based on the idea to extract cer-
tain visual characteristics from food images such as color, texture, and shape, that can
be used to distinguish different food items. The process of food recognition typically
involves extracting these features from food images and then using them to train a
machine learning model that can classify new images. During feature extraction, dif-
ferent visual features such as color, shape, and texture are extracted (Anthimopoulos
et al., 2014). Color histograms (Kawano and Yanai, 2013) feature extraction technique
is used in food recognition that involves dividing an image into small regions and
extracting the color histogram of each region. Color histograms represent the distri-
bution of colors in an image and can be used to capture the color characteristics of
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food items. Feature extraction using texture (Hoashi et al., 2010) analysis involves ex-
tracting texture features from images, such as the distribution of intensity values and
the spatial distribution of texture patterns. Texture analysis can be used to capture the
texture characteristics of food items, such as the roughness of a surface or the presence
of patterns. Shape analysis (Phetphoung et al., 2014) is also a feature extraction tech-
nique used in food recognition that involves extracting shape features from images,
such as the size, shape, and position of objects. Shape analysis can be used to capture
the shape characteristics of food items, such as the presence of round or rectangular
shapes. To achieve an optimal feature extraction process, it is essential to extract infor-
mative visual data from food images. This data can be obtained through descriptors
that collect various basic features, such as color, texture, and shape. Examples of such
descriptors include histogram of oriented gradients (HOG) (Kawano and Yanai, 2014),
local binary patterns (LBP) (Chen et al., 2012), bag-of-features (BoF) (Hoashi et al.,
2010), scale-invariant feature transform (SIFT) (Anthimopoulos et al., 2014), and Gabor
filter (Pouladzadeh et al., 2015) which can be applied individually to capture image
features. Once the features have been extracted, they can be used to train a machine
learning model. There are many traditional machine learning techniques have been
applied for food recognition (Joutou and Yanai, 2009; Vivek et al., 2018; Kumar et al.,
2021; Jiménez-Carvelo et al., 2019; Munira Shifat et al., 2022; Giovany et al., 2017) and
popular machine learning algorithms have been used for food recognition, such as k-
Nearest Neighbors (KNN) (He et al., 2014; Hemamalini et al., 2022), Random Forests
(RF) (Bossard et al., 2014), Support Vector Machines (SVMs) (Bosch et al., 2011; Yang
et al., 2010; Sharma et al., 2022), and Multiple Kernel Learning (MKL) (Matsuda et al.,
2012; Hoashi et al., 2010). These algorithms can learn to recognize food items based on
the features that have been extracted from food images.

Then paradigm shift and change in perspective brought by deep learning (Stevens
et al., 2020) is shown in Figure 1.1, where we can observe two distinct approaches
for feature engineering in learning a model. On the left, a practitioner is manually
defining engineering features and then feeding them into a learning algorithm. The
effectiveness of this approach is heavily reliant on the quality of the features that the
practitioner engineers can achieve. In other words, the performance of the learning
algorithm will be limited by the practitioner’s ability to select informative features.
On the right side of the Figure 1.1, we see an alternative method where deep learning
algorithms automatically extract hierarchical features from raw data. This process in-
volves optimizing the performance of the algorithm on the task at hand without any
explicit feature engineering. The accuracy of this approach is heavily reliant on the
practitioner’s ability to drive the algorithm towards its objective. This involves select-
ing appropriate training data, tuning hyperparameters, and designing the architecture
of the model.
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Figure 1.1: The paradigm shift from machine learning to deep learning and change in
perspective brought by deep learning (Stevens et al., 2020)

Deep learning has emerged as a powerful tool for solving complex problems in
computer vision, including the food recognition. In recent years, deep learning-based
methods have achieved state-of-the-art performance for food image analysis on a wide
range of food recognition tasks, including food classification, food detection, and food
segmentation. Deep learning uses a built-in mechanism to automatically extract fea-
tures through a series of connected layers and a fully connected layer for final classi-
fication. It has gained popularity due to its exceptional performance and outstanding
classification abilities compared to traditional machine learning methods. Convolu-
tional neural network (CNN) (LeCun et al., 2015) is a prominent deep learning tech-
nique widely preferred in computer vision applications, particularly for classification
of large-scale image data. CNN has outperformed traditional methods by a large mar-
gin and is commonly used in food recognition (Rahmat and Kutty, 2021; Razali et al.,
2021; Zahisham et al., 2020; Hussain et al., 2019; Teng et al., 2019; Zhou et al., 2019; Ka-
gaya et al., 2014; Termritthikun et al., 2017; Pandey et al., 2017; Hassannejad et al., 2016)
and dietary assessment (Dalakleidi et al., 2022; Tahir and Loo, 2021a; Liu et al., 2017a,
2016; Christodoulidis et al., 2015; Kong and Tan, 2012) research. Food recognition is a
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Figure 1.2: Concept of transfer learning to reuse a model or knowledge for another
related task (Sarkar et al., 2018).

challenging task due to the large variability in food appearance. Deep learning mod-
els, such as convolutional neural networks (CNNs), have been shown to be effective
for food recognition. However, these models require a large amount of labeled data to
train. In many cases, collecting and annotating a large dataset of food images is not
feasible.

Transfer learning provides a solution to this problem by allowing the knowledge
learned by a model on a large dataset to be transferred to a new task with limited data.
Transfer learning is a powerful technique that allows a model trained on one task to
be adapted to another related task with minimal training data. The concept of transfer
learning is shown in Figure 1.2 to demonstrate how transfer learning enables reusing
existing knowledge for new related tasks (Sarkar et al., 2018). In recent years, transfer
learning has been widely used in computer vision tasks, including food recognition
(Tai et al., 2022; Rajesh et al., 2022; Murugaiyan et al., 2021; Merchant and Pande, 2019;
Yu et al., 2016; Pehlic et al., 2019; Basrur et al., 2022; Temdee and Uttama, 2017; Xie
et al., 2021; Tasci, 2020). The idea behind transfer learning is to leverage the knowledge
learned by a model on a large dataset and use it to improve the performance of a
model on a new task with limited data. The transfer learning to food recognition can
be applied using a pre-trained convolutional neural network, such as ResNet (He et al.,
2016), AlexNet (Krizhevsky et al., 2017), GoogLeNet (Szegedy et al., 2015), Inception
(Szegedy et al., 2016) and VGG net (Simonyan and Zisserman, 2014), etc., as a fixed
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Figure 1.3: Deep transfer based on feature extraction by removing the last fully con-
nected layer of the pretrained model and using the remaining layers to extract features
(Sarkar et al., 2018).

feature extractor or fine-tuning a pre-trained model. A pre-trained model as a fixed
feature extractor involves removing the last fully connected layer of the pre-trained
model and using the remaining layers to extract features from food images, as shown
in Figure 1.3. These features are then used to train a new classifier on the target dataset.
Another approach is to fine-tune a pre-trained model on a dataset of food images. This
involves training the last fully connected layer of the pre-trained model on the target
dataset while keeping the remaining layers fixed.

This thesis presents a system for semantic food recognition using computer vision
and deep learning techniques for health monitoring. The presented approaches have
been developed in the context of the FoodRec project (Battiato et al., 2021), which aims
to define an automatic framework for the monitoring of people’s health and habits dur-
ing their smoke-quitting program. The aim is to extract and infer semantic information
from the food images to analyze diverse foods present in the image. This project in-
volves several stages from image acquisition to recognition. In particular, the efforts are
devoted to the development of new segmentation and recognition algorithms to per-
form the food recognition task accurately. Further, we aim to estimate the quantities of
each food item detected within an image.
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1.2 Motivation

Food recognition technology is an exciting and rapidly growing field that has the po-
tential to revolutionize the way we interact with food. With the proliferation of digital
cameras and smartphones, food images have become ubiquitous on the internet, mak-
ing food recognition an important and practical problem for a wide range of applica-
tions, from calorie counting and dietary tracking to food delivery and recipe recogni-
tion. Food recognition technology has the power to make our lives easier, healthier,
and more enjoyable. Additionally, food recognition technology has the potential to
have a significant impact on public health and nutrition by providing more accurate
and automated ways to identify food items and track dietary intake. With the advance-
ment of computer vision and deep learning techniques, food recognition technology is
becoming more accurate and robust, making it a viable solution for many applications.

Food recognition technology is an active research field and has a wide range of
potential applications in many areas from culture (Giampiccoli and Kalis, 2012; Sajad-
manesh et al., 2017), food science (Killgore and Yurgelun-Todd, 2005; Ofli et al., 2017),
agriculture (Lu et al., 2017; Chatnuntawech et al., 2018), medicine to biology (Min et al.,
2019), etc., but not limited to. This thesis focuses on food recognition applications in
health monitoring during smoke-quitting process to monitor the dietary habits of peo-
ple with the potential applications as follows:

Track and Monitor the Dietary Habits of People

Food recognition technology is used to identify and classify food items in images taken
by individuals in order to track and monitor their dietary habits over time. This can
be done by using a smartphone app that utilizes food recognition technology to au-
tomatically identify and classify food items in images taken by the user. The app can
then store this information and provide the user with detailed information about their
dietary intake, including calorie and nutrient information, and make personalized rec-
ommendations based on their dietary habits. The technology can also be used in the
healthcare sector, for example, in hospitals, where it can be used to monitor the dietary
habits of patients, especially those with chronic diseases, and to track their progress
over time. Furthermore, it can be used in research studies that aim to understand the
dietary habits of different population groups and identify potential health risks.

Increase the Awareness in People Daily Diet

Food recognition technology can be used to help individuals become more aware of
what they are eating by tracking and analyzing their food intake over time using a
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smartphone application. By monitoring their food habits over time, individuals can
become more aware of the foods they eat, how much they eat, and how often they
eat them. This can help them to identify patterns in their eating habits that may be
contributing to weight gain or other health issues. It can also help them to identify
foods that they might want to eat more or less in order to achieve specific dietary
goals.

Kind and Amount of Taken Food

Food recognition technology can be used to identify and classify food items in images
taken by individuals and then use that information to determine the types and quantity
of food that they have consumed. This technology can be used to help individuals
to understand the nutritional value of the food they are consuming and monitor the
balance of their diet over time. This technology can be used to help people make
healthier food choices, identify consumption of certain nutrients or calories intake, and
monitor progress toward weight loss or other dietary goals. This technology can also be
used to monitor the food consumption of individuals with specific health conditions,
such as diabetes, and to make personalized recommendations based on their dietary
habits.

How Many and What Times the User has a Meal

Food recognition technology can be used to track and monitor the frequency and tim-
ing of meals consumed by an individual. A smartphone application can be used to
store the dietary information extracted from user meals and provide the user with de-
tailed information about the number of meals they have consumed and the times at
which they were consumed. This helps to track and monitor the frequency and timing
of meals consumed by an individual to understand their eating patterns and make
more informed decisions about when to eat and how often to eat.

Nutrition analysis, Calorie Counting and Dietary Tracking Apps

Food recognition technology can be used to identify the food items in images and
provide detailed nutrition information about the meal. Food recognition technology is
used to accurately identify food items in images taken by the user, allowing them to
keep track of their calorie and nutrient intake.

Food recognition technology can be used to identify the ingredients in a dish and
suggest recipes that include those ingredients. Food recognition technology can be
used to identify food items in images and track consumer preferences, allowing for

7



more targeted marketing and advertising strategies. Food recognition technology can
be used to identify the food items in images of meals, allowing for faster and more
accurate delivery and restaurant recommendations.

Food Recognition for Healthcare and Medications

Food recognition technology can be used for healthcare and medications to study the
effects of different diets on various health conditions. In a clinical setting, food recog-
nition technology can also be used to monitor a patient’s dietary intake, for example by
analyzing images of their meals to ensure compliance with a prescribed diet or to track
nutrient intake for patients with specific health conditions. One of the uses is the diag-
nosis of food allergies or sensitivities through analysis of blood and dietary habits. It
can also be used for monitoring nutrient levels in patients with chronic conditions such
as diabetes or heart disease, which can help in the development of personalized nu-
trition plans for patients based on their genetic and health history. Additionally, food
recognition technology can aid in the detection of harmful contaminants or pathogens
in food products, making the food supply safer. Furthermore, it can also help in the
implementation of dietary interventions for the management of specific medical con-
ditions such as inflammatory bowel disease or celiac disease, and it can track nutrient
intake for patients on specialized diets, such as a low-sodium or low-carb diet. It can
also identify potential drug-nutrient interactions to prevent adverse reactions in pa-
tients taking multiple medications. Finally, monitoring of food and nutrient intake in
clinical trials to assess the effectiveness of new drugs or therapies can also be achieved
with food recognition technology.

1.3 Problem statement

Studies have shown a strong correlation between dietary habits’ changes of individuals
and the smoking cessation process (Morabia et al., 1999). Abstinence from smoking is
associated with several negative effects, including the gain of weight, eating disorders,
mood changes, and irritability during the initial period of smoke quitting (Pisinger
and Jorgensen, 2007; MacLean et al., 2018). The objective of our FoodRec project is
to study, develop, and evaluate an automatic framework able to monitor the dietary
habits of people involved in a smoke-quitting protocol. The system will periodically
acquire images of the food consumed by the users, which will be analyzed by modern
food recognition algorithms able to extract and infer semantic information from food
images. Such information will be exploited to perform advanced inferences and to
make correlations between eating habits and smoke quitting process steps, providing
specific information to the clinicians about the response to the quitting protocol that is
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directly related to observable changes in eating habits. It can help a doctor to have a
better opinion with respect to the patient’s behavior, mood changes over time, quitting
treatment response, and hence his health needs.

The aim of the project is to achieve high semantic level inferences using computer
vision and deep learning techniques applied to food image recognition to make such
technology available to smoking cessation program patients through a smart and in-
tuitive smartphone application named FoodRec (Battiato et al., 2021). In particular,
efforts are required to the development of new segmentation and recognition algo-
rithms to perform the food recognition task accurately. We believe that more attention
is needed to improve the image recognition algorithms on real world food images and
let the system to learn from the user, his specific eating habits. This will allow to
build a reliable dietary monitoring system able to automatically infer the quality of the
patients’ diet, as well as habits changes.

1.4 Thesis contribution

The major contributions of this thesis are listed:

• We introduce a new FoodRec-50 dataset collected by 164 users during their smok-
ing cessation therapy to monitor their dietary habits using FoodRec (Battiato
et al., 2021) iOS and Android smartphone applications. Data is annotated manu-
ally by embedding the user ID with the image label as it is fed simultaneously to
the network. Data augmentation is applied to increase the food image variability
and to compensate the problem of some of the underrepresented food classes,
as they have a relatively imbalanced number of samples per class. So, different
transformation techniques have been applied, such as image rotation, random
crop, flip, etc.

• We propose a Deep Convolutional Neural Network (Hussain et al., 2022) able
to recognize food items of specific users and monitor their eating habits. Our
proposed study differs from the recognition that happens in the development of
general purposes food recognition systems as the proposed approach considers
the specific user as well to learn and monitor its eating habits. It is composed of a
food branch and a user branch. The food branch is learning visual representation
of the input food items like the traditional food recognition algorithm. On the
other hand, the user branch takes into account the specific user’s eating habits
by learning the user’s eating weight matrix. As we change the user bias input,
the result in the prediction is being changed according to the dietary habits of
that user. The proposed network with one-hot user vector is effective because
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it learns specific user eating habits with the food as compared to the traditional
food recognition systems with competitive results.

• We propose a novel Convolutional Deconvolutional Pyramid Network (CDPN)
(Hussain et al., 2023) for food segmentation to understand the semantic informa-
tion of an image at a pixel level. This network employs convolution and deconvo-
lution layers to build a feature pyramid and achieves high-level semantic feature
map representation. As a consequence, the novel semantic segmentation network
generates a dense and precise segmentation map of the input food image. Fur-
thermore, the proposed method demonstrated significant improvements on two
well-known public benchmark food segmentation datasets.

• We propose another Food Convolutional Deconvolutional Network (FCDN) for
semantic segmentation to extract and infer semantic information from the food
images at a pixel level to recognize different food items present in an image. The
proposed FCDN employs only learnable features upsampling using deconvolu-
tion layers to increase the spatial resolution of the feature maps and to learn the
complex patterns, while the proposed CDPN also uses interpolation for features
upsampling along with the deconvolution layers. Our proposed network demon-
strated significant improvements in the results on the benchmark food dataset as
compared to the state-of-the-art methods. In addition to evaluating the perfor-
mance of our proposed segmentation method on the MyFood dataset, we also
performed cross-data experiments to assess its generalization capabilities on our
FoodRec dataset. By conducting cross-data experiments on the FoodRec dataset,
we were able to determine that our method could effectively make accurate pre-
dictions in different contexts. This qualitative evaluation served as an important
complement to our evaluation on the FoodRec dataset, and helped to strengthen
our confidence in the effectiveness of our method.

• We provide a comprehensive overview of the literature regarding not only to food
recognition technology but also to computer vision, traditional machine learning,
and deep learning techniques used for food recognition and in general.

This thesis is based on the following research papers that were written during the
course of my Ph.D. program. Here is the list of published and accepted research
publications.

Journals

1. Mazhar Hussain, Alessandro Ortis, Riccardo Polosa, and Sebastiano Battiato.
”Semantic Food Segmentation using Convolutional Deconvolutional Pyramid
Network for Health Monitoring”.
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Accepted in International Journal of Computer Theory and Engineering IJCTE
Journal, 2022.

2. Mazhar Hussain, Alessandro Ortis, Riccardo Polosa, and Sebastiano Battiato.
”Deep FoodRec: Food Segmentation and Recognition using Deep Learning for
Health Monitoring”.

Preprint 2023.

Conferences

1. Sebastiano Battiato, Pasquale Caponnetto, Oliver Giudice, Mazhar Hussain, Roberto
Leotta, Alessandro Ortis, and Riccardo Polosa. ”Food Recognition for Dietary
Monitoring during Smoke Quitting.” (Battiato et al., 2021)

The paper (Battiato et al., 2021) won the Best Poster Award Certificate.

In Proceedings of the International Conference on Image Processing and Vision
Engineering (IMPROVE 2021), pp. 160-165. 2021.

DOI : 10.5220/0010492701600165

2. Mazhar Hussain, Alessandro Ortis, Riccardo Polosa, and Sebastiano Battiato.
”User-Biased Food Recognition for Health Monitoring.” (Hussain et al., 2022)

In Proceedings of the 21st International Conference on Image Analysis and Pro-
cessing (ICIAP 2022), pp. 98-108. Cham: Springer International Publishing, 2022.

DOI : 10.1007/978− 3− 031− 06433− 39

3. Mazhar Hussain, Alessandro Ortis, Riccardo Polosa, and Sebastiano Battiato.
”Semantic Food Segmentation for Health Monitoring”. (Hussain et al., 2023)

In Proceedings of the 15th International Conference on Machine Vision (ICMV
2022), pp. 106-113. SPIE, 2023.

DOI : 10.1117/12.2679721

1.5 Thesis Organization

In Chapter 2, we discuss related works and contributions to the field and explore the
current state-of-the-art in food recognition technology. Food recognition technology
is a rapidly growing field that leverages advancements in computer vision and deep
learning. Researchers and industry experts have been actively working on developing
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and improving food recognition technology, and there is a growing body of literature
on this topic.

Chapter 3 presents our ongoing project, which aims to study, develop, and eval-
uate an automatic framework able to track and monitor the dietary habits of people
involved in a smoke-quitting protocol. The system will periodically acquire images of
the food consumed by the users, which will be analyzed by modern food recognition
algorithms able to extract and infer semantic information from food images. The ex-
tracted information, together with other contextual data, will be exploited to perform
advanced inferences and to make correlations between eating habits and smoke quit-
ting process steps, providing specific information to the clinicians about the response
to the quitting protocol that is directly related to observable changes in eating habits.

Chapter 4 presents a user-biased food recognition system. The presented approach
has been developed in the context of the FoodRec project, which aims to define an
automatic framework for the monitoring of people’s health and habits during their
smoke quitting program. The goal of food recognition is to extract and infer semantic
information from the food images to classify diverse foods present in the image. We
propose a novel Deep Convolutional Neural Network able to recognize food items of
specific users and monitor their habits. It consists of a food branch to learn visual rep-
resentation for the input food items and a user branch to take into account the specific
user’s eating habits. Furthermore, we introduce a new FoodRec-50 dataset with 2000
images and 50 food categories collected by the iOS and Android smartphone appli-
cations, taken by 164 users during their smoking cessation therapy. The information
inferred from the users’ eating habits is then exploited to track and monitor the dietary
habits of people involved in a smoke-quitting protocol. Experimental results show that
the proposed food recognition method outperforms the baseline model results on the
FoodRec-50 dataset. We also performed an ablation study, which demonstrated that
the proposed architecture is able to tune the prediction based on the users’ eating
habits.

Chapter 5 presents semantic food segmentation to detect individual food items in
an image. The presented approach has been developed in the context of the FoodRec
project, which aims to study and develop an automatic framework to track and moni-
tor the dietary habits of people during their smoke quitting protocol. The goal of food
segmentation is to train a model that can look at the images of food items and infer
semantic information to recognize individual food items present in an image. In this
contribution, we propose a novel Convolutional Deconvolutional Pyramid Network
(CDPN) for food segmentation to understand the semantic information of an image
at a pixel level. This network employs convolution and deconvolution layers to build
a feature pyramid and achieves high-level semantic feature map representation. As
a consequence, the novel semantic segmentation network generates a dense and pre-
cise segmentation map of the input food image. Furthermore, the proposed method
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demonstrated significant improvements on two well-known public benchmark food
segmentation datasets.

Chapter 6 describes thesis conclusions and future works.

The appendix presents additional research work with the collaboration of the De-
partment of Drug and Health Science, University of Catania, done during my Ph.D.
but not directly related to this thesis. The aim of the work was to find a correlation
between well-defined and selected parameters such as the type of nanocarrier, the par-
ticle size and the surface charge, and the targeting efficiency indexes %DTE and %DTP.
The DTP is used by researchers to define the trigeminal and olfactory involvement in-
stead of the systemic pathway when a nanomedicine is intranasally administrated. In
addition, the possible influence of the molecular weight of the conveyed drug was also
considered in the correlation studies. We performed nose-to-brain drug delivery data
cleaning, data conversion, data standardization, and data classification using state-of-
the-art machine learning algorithms. We are working to publish a journal from this
work with the collaboration of the Department of Drug and Health Science.
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Chapter 2

Literature Review

Recently, computer vision and deep learning techniques have gained a lot of attention
due to the high level of performance in various research fields and applications, as well
as in food recognition technology. Computer vision research devoted to the analysis
of food images including previous works on food detection, classification, and seg-
mentation. In this section, we present the related research works in the field of food
recognition technology.

Allegra et al. (2020) presented a review on food recognition technology and its ap-
plications, particularly in the health sector for monitoring dietary and calories intake.
Several computer vision techniques have been explored for food understanding in the
areas such as automatic food detection and recognition for automatic harvesting, food
quality assessment for industrial purposes, dietary management, tracking food con-
sumption, classification, and retrieving food using publicly available datasets such as
Recipe1M+ (Marin et al., 2018), UPMC Food-101 (Wang et al., 2015), UNICT-FD889
(Farinella et al., 2015), FRIDa (Foroni et al., 2013), UPMC Food-101 (Wang et al., 2015),
ETHZ Food-101 (Bossard et al., 2014), UEC FOOD 100 (Matsuda and Yanai, 2012), etc.
However, achieving automatic food recognition in healthcare applications requires to
meet rigorous medical protocol standards and to collect annotated datasets that con-
tain information about the type of food, its quantity, location, and calories of each food
item in an image.

Min et al. (2019) covered food computing, which involves a range of tasks such as
acquisition, analysis, perception, recognition, retrieval, recommendation, and predic-
tion. The article examines how this field of study has been applied in various domains
such as health, culture, agriculture, medicine, and biology. The research explores dif-
ferent computer vision and machine learning techniques such as GoogLeNet (Szegedy
et al., 2015), Inception V3 (Szegedy et al., 2016), VGG (Simonyan and Zisserman, 2014),
and CaffeNet (Jia et al., 2014), which have been employed for various food recognition
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tasks including single-label, multi-label, sensor-based, food portion estimation, and
personalized food recognition. Additionally, it provides insights into the benchmark
food datasets used for experimentation and evaluation purposes.

Amugongo et al. (2023) reviewed mobile computer vision-based solutions for food
recognition, volume estimate, and calorific estimation. This systematic review also
assessed the level of explanation offered by these applications to help users under-
stand their classification and prediction results. According to their research, 90.9% of
applications do not distinguish between food and non-food items. In addition, only
one study offered a mobile computer vision-based nutritional intake application that
sought to explain the contributing features to classification (Tahir and Loo, 2021b). The
use of mobile computer vision-based applications in healthcare is gaining interest due
to their potential in managing chronic diseases like diabetes. These applications have
the capacity to promote healthy eating habits and mitigate the complications associated
with unhealthy food.

Min et al. (2023) proposed a novel deep learning architecture, called progressive
region enhancement network (PRENet), for food recognition. The network employs
progressive local feature learning and region feature enhancement techniques to ex-
tract discriminative features from food images. The progressive local feature learning
strategy learns complementary multi-scale finer local features by progressively train-
ing the network. On the other hand, the region feature enhancement technique uses
self-attention to capture richer context information at multiple scales to further im-
prove local feature representation. This paper also introduced a new Food2K dataset
that is larger than the ImageNet dataset (Yanai and Kawano, 2015). The proposed
PRENet (Min et al., 2023) architecture consists of two sub-networks, one for global and
the other for local feature extraction. The global features representation is useful for
recognizing food images belonging to different superclasses with clear visual differ-
ences. The PRENet uses global average pooling to extract global features after the last
convolution layer of the network. On the other hand, the local features representation
is useful for learning fine-grained features of food in different sub-classes under the
same superclass, where there is high inter-class similarity. To extract local features, the
paper employs a progressive training strategy that trains the network from low to high
stages, starting with a small receptive field and gradually increasing it to encompass a
larger field surrounding the local region. The local feature extraction process involves
convolutional blocks and a global maximum pooling layer. To further enhance the lo-
cal feature representation, the paper employs a self-attention mechanism that captures
the relationship between different local features by identifying the co-occurring food
features in the feature map. The local features are first extracted, then enhanced using
self-attention, and finally combined with the global feature representations.

Farinella et al. (2016) presented a survey of the studies in the context of food im-
age processing from the perspective of computer vision to the current state-of-the-art
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methods. This paper introduced a new UNICT-FD1200 dataset that consists of 4754
food images of 1200 distinct dishes acquired during real meals. The UNICT-FD1200
dataset has been annotated manually with eight categories. A new representation has
been proposed based on the perceptual concept of Anti-Textons that performs better
as compared to the existing representations in the context of food retrieval and classi-
fication.

Natesan et al. (2023) built a convolutional neural network to classify food prod-
ucts using deep learning principles. The efficacy of convolutional neural networks to
recognize food items is attributed to their ability to exclude distracting characteristics
present in the images. The proposed architecture has various layers to convert the
three-dimensional input into an output volume and to filter input to a higher level
of abstraction. Its implementation can aid individuals in identifying healthy and un-
healthy food items, potentially preventing disease. The study employed a combination
of image datasets obtained from social media, Kaggle, and Google.

Ciocca et al. (2016) designed an automatic framework for tray food analysis to find
the region of interest of the input image and then predict the food class for each re-
gion. To accomplish this task, a range of visual descriptors were employed, including
opponent Gabor features, chromaticity moments, color histogram, local color contrast,
Gabor features, complex wavelet features, and convolutional features. The food clas-
sification process was performed using two classifiers, namely the k nearest neighbor
(KNN) and support vector machine (SVM), which were applied to a novel LTC food
dataset.

Fakhrou et al. (2021) proposed a smartphone application that utilizes a deep con-
volutional neural network (CNN) model, trained for food and fruit recognition, to aid
children with visual impairments. This paper introduces a novel food dataset com-
prising both food dishes and fruit varieties to address the food classification problem.
Furthermore, the proposed approach leverages ensemble learning, combining multiple
deep CNN architectures on a customized food dataset, using the soft voting method to
aggregate the results of multiple models. The performance achieved by the ensemble
model in various food datasets validates its efficacy in addressing food classification
problems.

Sapna et al. (2023) developed a six-layer convolutional neural network architecture
to classify images and extract their characteristics. The study introduced a calorie esti-
mation system where users can upload pictures of food items, which are then analyzed
to determine the approximate number of calories. This system also provides users with
weekly updates on their calorie consumption and recommends the number of calories
they should consume to avoid obesity-related diseases such as heart attack and cancer.
To enable the system to recognize complex images, the study compiled a database of
food images that contains 20 categories, each with 500 images. With the help of this
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image-based calorie estimation system, users and healthcare professionals can identify
dietary patterns and food choices that can improve their health.

A semisupervised generative adversarial network (GAN) is used for food recogni-
tion (Mandal et al., 2018) using partially labeled data. Network architecture consists
of a generator and discriminator. The generator produces dataset fake samples, and
the discriminator learns the nature of the problem and further recognizes different
food items with partially labeled training data. The author claimed that outperformed
results on the ETH Food-101 datasets and Indian food dataset as compared to the
AlexNet, GoogleNet, and Ensemble Net.

The ResNet deep residual learning architecture (He et al., 2016) is proposed for im-
age recognition with powerful representational capability for learning discriminative
features from complex scenes. ResNet network architecture designed for the classi-
fication task, trained on the ImageNet dataset of natural scenes that consists of 1000
classes. Evaluation has been performed with the residual network with depths of 18-
layers, 34-layers, 50-layers, 101-layers, and 152-layers. The ResNeXt (Xie et al., 2017)
architecture is a combination of ResNet and InceptionNet. It is composed of a series of
residual blocks that have the same topology and follow a split-transform-merge struc-
ture within each block. This design introduces a novel dimension called cardinality,
which represents the size of the set of transformations used in the network. The ad-
dition of this cardinality dimension allows for greater model capacity and improves
the model’s performance on a variety of image classification tasks. and further Hu
et al. (2018) introduced a new architectural unit called the ”squeeze-and-excitation”
(SE) block. The SE block is comprised of two main operations: squeeze and excitation.
First, the squeeze operation aggregates channel-wise feature responses to produce a
channel descriptor. Then, the excitation operation models the channel descriptor to
produce a set of weights, which are multiplied by the original features to produce
the final output. The SE block is designed to improve the quality of representations
learned by the network, leading to better performance on a variety of tasks.

Subhi et al. (2019) provided a comprehensive overview of the state-of-the-art vision-
based approaches for food recognition and dietary assessment. The paper focused to
the importance of dietary assessment in healthcare and the details of vision-based ap-
proaches for automatic food recognition including food detection, food segmentation,
food classification, volume, and weight estimation. It also presents a comprehensive
review of the existing datasets and benchmarks for food recognition and dietary as-
sessment. It compares the performance of various state-of-the-art approaches on these
datasets.

Chopra and Purwar (2022) provided a comprehensive review of segmentation tech-
niques and their applicability to food image segmentation. There are several techniques
to segment data including threshold segmentation (Kawano and Yanai, 2015; Muthukr-
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ishnan and Radha, 2011; Bhargavi and Jyothi, 2014), clustering segmentation (Maione
et al., 2019; Kapoor and Singhal, 2017; Dehariya et al., 2010; e Silva et al., 2018), edge
detection segmentation (Pouladzadeh et al., 2014; He et al., 2015; Ganesan and Sajiv,
2017; Ansari et al., 2017), region growing segmentation (Dehais et al., 2016; Anthi-
mopoulos et al., 2013; Merzougui and El Allaoui, 2019), watershed segmentation (Liu
et al., 2017b; Kornilov and Safonov, 2018; Vincent and Soille, 1991), graph partitioning
segmentation (Moussawi et al., 2020), grab cut segmentation (Li et al., 2018) and also
semantic segmentation (Thoma, 2016; Sun and Wang, 2018; Zhang et al., 2018).

Lu et al. (2020) proposed a system to effectively estimate nutrient intake by us-
ing RGB depth image pairs that are captured before and after meal consumption.
The goal is to reduce disease-related malnutrition among hospitalized patients. The
system incorporates a novel multi-task contextual network for food item segmenta-
tion, classification with few-shot learning-based algorithms (Snell et al., 2017) for food
recognition, and 3D food surface extraction. This allows for automatic estimation of
nutrient intake by sequentially segmenting, recognizing, and estimating the consumed
food volume for each meal. The paper also describes a new database containing food
images, recipes, and nutrient information collected from real hospital scenarios. The
experimental results show that the estimated nutrient intake is highly correlated with
ground truth values and outperforms existing techniques for nutrient intake assess-
ment. Maintaining good nutritional status is crucial for patients, and the healthcare
system, as malnutrition can lead to increased risk of hospital infections, higher mor-
tality and morbidity rates, longer hospital stays, and greater healthcare expenses. The
proposed artificial intelligence algorithms for food recognition rely on limited training
data, overcoming the challenge of sophisticated annotation requirements that limit the
quality and size of food image databases for nutrient intake assessment.

Freitas et al. (2020b) introduced a system for automatic monitoring of user diet
and nutritional intake by classifying and segmenting food presented in images. This
paper compares the performance of state-of-the-art algorithms for food recognition
using a dataset composed of nine classes of the most consumed Brazilian food types.
Additionally, the study proposes an integrated system into a mobile application that
automatically recognizes and estimates the nutrients in a meal to assist people in better
nutritional monitoring.

Joshua et al. (2023) developed a ”smart plate health to eat” system that assists
patients and users in identifying the type of food, its weight, and nutrient contents. The
research involves 50 food categories using the YOLOv5 (Jocher et al., 2021) algorithm
to evaluate food identification, weight measurement, and nutritional value with the
help of a Chenbo load cell weight sensor, weighing A/D module pressure sensor,
and camera module. By implementing the YOLOv5s approach and loadcell sensor
readings, the system can compute the quantity of food calories. The loadcell sensor’s
results indicated its capability to operate with high accuracy while providing accurate
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nutritional information.

Zhao et al. (2017) proposed a pyramid scene parsing (PSPNet)network for semantic
segmentation. It came first in the ImageNet scene parsing challenge 2016 on PASCAL
VOC 2012 benchmark and cityscapes benchmark datasets segmentation. It consists of
a pyramid pooling module to exploit the local and global context information. First, a
feature map is extracted from the last convolutional layer of the convolution neural net-
work that is fed to the pyramid pooling module in order to harvest different pooling
pyramids. Further, upsampling and concatenation layers are used for the final fea-
tures representation. Finally, the convolution layer is applied to obtain the pixel-wise
prediction.

Lin et al. (2017) developed a feature pyramid network for segmentation and object
detection. Feature pyramids play an important role in recognition tasks. An architec-
ture with skip connections is designed to extract high-level semantic feature maps that
involve a bottom-up pathway, which computes a feature hierarchy, and a top-down
pathway, which computes semantically stronger feature maps from higher pyramid
levels enhanced with features from the bottom-up pathway. Feature pyramid network
is used for land segmentation with Resnet encoder pre-trained on ImageNet dataset in
the bottom-up pathway by (Seferbekov et al., 2018).

Raju et al. (2023) presented a novel technique for food imaging that employs two
types of imaging sensors: color and thermal. They also offer a multi-modal four-
dimensional (RGB-T) image segmentation technique that use a k-means clustering al-
gorithm to locate areas of similar-looking food items in combinations of hot, cold, and
room temperature foods. Six combinations of two food items were captured using
both RGB and infrared sensors to collect data. The resulting RGB and thermal data
were combined to create an RGB-T image, and three sets of data were examined (RGB,
thermal, and RGB-T). A bootstrapped optimization of within-cluster sum of squares
was used to estimate the ideal number of clusters for each example. When compared
to the RGB-T data alone, the combined RGB-T data produced superior outcomes.

Pfisterer et al. (2019) developed an automatic semantic food segmentation method
using multi-scale encoder-decoder network architecture for food intake tracking and
estimation in long-term care homes. A deep convolutional neural network macroar-
chitecture has been proposed for pixel-level classification of food that consists of a
residual encoder and decoder microarchitecture and per-pixel food/no-food classifi-
cation layer. For the encoder, ResNet architecture trained on the ImageNet dataset is
used because of its discriminative feature learning ability. For the decoder, a pyramid
scene parsing network is chosen. The proposed method achieved comparable results
to semi-automatic graph cuts.

Ronneberger et al. (2015) introduced UNet architectures for semantic segmenta-
tion for biomedical image segmentation. It follows an encoder-decoder structure with

19



skip connections between corresponding layers of the encoder and decoder. The ar-
chitecture comprises a contracting path, which is similar as the conventional convolu-
tional network, and an expansive path that facilitates the upsampling of feature maps.
UNet++ (Zhou et al., 2018) is an extension of UNet that was proposed to further im-
prove biomedical image segmentation performance. UNet++ architecture is more pow-
erful than U-Net in which sub-networks encoder and decoder are connected through
a series of nested and dense skip pathways to perform the image segmentation.

Sharma et al. (2021) proposed GourmetNet, a network for food segmentation that
integrates spatial and channel attention using the waterfall atrous spatial pooling mod-
ule. The network is based on a segmentation approach (Peng and Ma, 2020)that uses
stride spatial pyramid pooling to obtain multi-scale semantic information and a dual
attention decoder with a channel attention branch and a spatial attention branch to
capture semantic feature map representation.

Mask RCNN (He et al., 2018) is an advanced version of faster RCNN (Ren et al.,
2015) introduced to generate segmentation masks for each detected object. It was de-
veloped by the Facebook research group to perform instance segmentation to identify
every instance of an object in an image and determining the pixels that correspond to
the specific classes within that image. While faster RCNN focuses on detecting object
bounding boxes, Mask RCNN extends this capability by including a separate object
mask prediction branch. By adding this mask prediction branch, Mask RCNN can
accurately outline the object’s shape and boundaries.

Harshitha et al. (2023) proposed a system using Otsu’s method to detect the contour
of each food item and estimate its calories using data trained with faster RCNN. To
detect the actual caloric quantity of a meal involves considering factors such as the
food item’s region, size, and weight. Utilizing deep learning algorithms, the object can
be identified, and the calories can be estimated based on object detection and volume
estimation methods. The proposed scheme involves three stages, including image
segmentation to determine the contour of each food item, image recognition utilizing
faster RCNN, and estimation of the food’s weight and caloric content.

Long et al. (2015) proposed a fully convolutional network (FCN) for image semantic
segmentation. FCN employs skip architecture to combine information from multiple
layers of the network from a deep, coarse layer with appearance information from
a shallow, fine layer to generate accurate segmentation results. In particular, several
state-of-the-art classification networks have been transformed into fully convolutional
networks, including AlexNet (Krizhevsky et al., 2017), GoogLeNet (Szegedy et al.,
2015), and VGG net (Simonyan and Zisserman, 2014) by leveraging their learned rep-
resentations to the segmentation task through fine-tuning.

Badrinarayanan et al. (2017) designed SegNet a convolutional neural network for
semantic image segmentation. It consists of an encoder network, a decoder network,

20



and a pixel-wise classification layer. The encoder network mirrors the topology of
VGG16’s 13 convolutional layers, while the decoder network upsamples low-resolution
encoder feature maps to full input resolution feature. The decoder performs non-linear
upsampling by using pooling indices computed during the corresponding encoder’s
max-pooling step.

Paszke et al. (2016) proposed a deep neural network created specifically for real-
time segmentation on embedded platforms. Its design is heavily influenced by In-
ception architecture (Szegedy et al., 2016) and optimized for efficient large-scale com-
putations to achieve better performance evaluation of the proposed architecture on
embedded systems.

Aslan et al. (2018) utilized DeepLabV2 (Chen et al., 2017) for semantic food seg-
mentation for two tasks related to food such as simultaneously performing food seg-
mentation and recognizing food types in food images and detecting food regions in
a given image by performing food and non-food segmentation. Chen et al. (2018)
proposed a more advanced variant DeepLabv3+ model that builds upon the existing
DeepLabv3 (Chen et al., 2014) by introducing a decoder module that enhances the seg-
mentation outcomes, particularly at object boundaries. To improve the performance of
the encoder-decoder network, the xception model is considered to use depthwise sep-
arable convolution for both the atrous spatial pyramid pooling and decoder modules
to refine the segmentation results.

Related studies described above present traditional food image recognition with-
out taking into account user habits. Our proposed study differs from the recognition
that happens in the development of general purpose food recognition systems as the
proposed approach considers the specific user that uploaded the food image to learn
and monitor its eating habits. Our proposed architecture (Hussain et al., 2022) consists
of two branches, the food branch and the user branch to extract concatenated feature
map from two branches to recognize the food items. The food branch is learning visual
representation of the input food items like the traditional food recognition algorithm.
On the other hand, the user branch takes into account the specific user’s eating habits
by learning the users eating weight matrix. The user branch takes one hot vector user
input and learns the users eating weight matrix. As we change the user bias input,
the result in the prediction is being changed according to the dietary habits of that
user. The proposed network with one-hot user vector is effective because it learns
specific user eating habits with the food as compared to the traditional food recogni-
tion systems with competitive results. To accomplish this task, we introduced a new
FoodRec-50 dataset with 50 food categories collected by FoodRec (Battiato et al., 2021)
smartphone applications, taken by 164 users during their smoking cessation therapy.
This dataset is specific to the users who are involved in the smoke-quitting process to
monitor their dietary habits. The dataset is produced to study the correlation between
eating information with smoking habits. In the future, such data will be used to find
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correlations with respect to the smoking activity of the subjects during the period of
observation. To collect the food data, the iOS and Android smartphone applications
are used. Users can upload a meal intake image by taking a picture of what they eat
and can assign labels to the food image what it contains. Furthermore, we proposed
architecture for semantic food segmentation able to produce a rich segmentation map
of the input food image that would further allow people to estimate the volume and,
hence, the quantities of each food item to the assessment of nutrient intake and dietary
analysis. A novel Convolutional Deconvolutional Pyramid Network (CDPN) (Hussain
et al., 2023) is proposed for food segmentation to understand the semantic information
of an image at a pixel level. This network employs convolution and deconvolution
layers to build a feature pyramid and achieves high-level semantic feature map rep-
resentation. As a consequence, the novel semantic segmentation network generates
a dense and precise segmentation map of the input food image. Furthermore, the
proposed method demonstrated significant improvements on two well-known public
benchmark food segmentation datasets. We proposed another Food Convolutional
Deconvolutional Network (FCDN) for semantic segmentation to extract and infer se-
mantic information from the food images at a pixel level to recognize different food
items present in an image. The proposed FCDN employs only learnable features up-
sampling using deconvolution layers to increase the spatial resolution of the feature
maps and to learn the complex patterns, while the proposed CDPN also uses inter-
polation for features upsampling along with the deconvolution layers. Our proposed
network demonstrated significant improvements in the results on the benchmark food
dataset as compared to the state-of-the-art methods. Additionally, we also conducted
a cross-data qualitative analysis of our proposed segmentation method to assess its
generalization capabilities on our FoodRec dataset.
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Chapter 3

FoodRec Project

FoodRec Project aims to study, develop, and evaluate an automatic framework able to
track and monitor the dietary habits of people involved in a smoke-quitting protocol.
The system will periodically acquire images of the food consumed by the users, which
will be analyzed by modern food recognition algorithms able to extract and infer se-
mantic information from food images. The extracted information, together with other
contextual data, will be exploited to perform advanced inferences and to make cor-
relations between eating habits and smoke quitting process steps, providing specific
information to the clinicians about the response to the quitting protocol that is directly
related to observable changes in eating habits.

Food recognition from digital images for the analysis of dietary habits has become
an important aspect in health monitoring applications in different domains. On the
other hand, food monitoring is a crucial part of human life since the health is strictly
affected by diet (Nishida et al., 2004). The impact of food in people’s lives led re-
search efforts to develop new methods for automatic food intake monitoring and food
logging (Kitamura et al., 2010). We present the state of the FoodRec project founded
by ECLAT, which objective is the study, development, and evaluation of state-of-the-
art digital technologies to define a framework able to track the dietary habits of an
observed person and make correlations with the smoking cessation process that the
subject is performing. The system will periodically acquire images of the food eaten
by the patient over time, that will then be processed by food recognition algorithms
able to detect and extract semantic information from the images containing food. The
extracted data will be exploited to infer the dietary habits, the kind and amount of
taken food, how much time the user spends eating during the day, how many and
what times the user has a meal, etc. Inferences performed on different days can be
compared and further processed to perform analysis on user’s habits changes and
other inferences related to user’s behaviour, such as increase of junk food intake and
mood changes over time. The recording and semantic organization of daily habits can
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help a doctor to have a better opinion with respect to the patient’s behaviour,quitting
treatment response, and hence his health needs. So far, many efforts have been spent in
the application of technology on smoke monitoring (Ortis et al., 2020) and food recog-
nition (Allegra et al., 2020), this project represents the first attempt of the application
of Artificial Intelligence (AI) and multidisciplinary competences for the definition of
a framework able to drive and support people who are trying to stop smoking, by
acting on multiple aspects simultaneously. The Food Recognition project (FoodRec) is
granted by the Foundation for a SmokeFree World (FSFW)

3.1 FoodRec - Research Plan

The project involves several phases, which are sketched by the chart shown in Figure
3.1. The diagram shows five main phases as follows:

• Initial procedures

• Preliminary investigation

• Research planning

• Software development

• Food recognition research

• Deploy

The first ones are related to preliminary studies and research, whereas the last
ones regard the development of algorithms and software toward the final deployment
of the obtained solutions. With respect to the diagram in Figure 3.1, we can group
the project’s phases into two main macro tasks, which are detailed in the following
paragraphs such as:

• State of the art evaluation

• Applied research and development
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Figure 3.1: FoodREC project’s phases.

3.1.1 State of the art Evaluation

After initial procedures (see Figure 3.1) have been completed, we focused on the pre-
liminary investigation of the tasks and research problems related to the project pur-
poses. This included the study of the state of the art related to food recognition and
dietary monitoring technologies. As a result, a report concerning the existing prod-
ucts and approaches in terms of algorithms and smartphone apps has been produced
and published in (Allegra et al., 2020), detailing the features and performances of each
evaluated solution. The results of the study in (Allegra et al., 2020), revealed that mod-
ern food recognition techniques can support the traditional self-reporting approaches
for eating diary, however, more efforts should be devoted to the definition of large-
scale labeled image datasets. The new dataset design should focus on the quality of
annotations related to the type of food, areas, quantities, and calories of each food
item depicted in an image. So far, state-of-the-art focused on specific tasks performed
in controlled conditions. The extreme variability of food appearance makes this task
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challenging. Especially for ingredients inference and, hence, for nutritional values es-
timation. The study concludes that food recognition for dietary monitoring is still
an in-progress technology and more efforts are needed to reach standards for reliable
medical protocols, such as smoke-quitting programmes.

3.1.2 Applied Research and Development

After the study of the state-of-the-art and consequent analysis and definition of current
limits and challenges, the research moved to the applied research and development
phase. This phase has a dual objective. One is related to the development of the tech-
nological aspects of the framework, and the other one is related to the development of
analysis algorithms. The iOS/Android FoodRec smartphone app for image acquisition
and analysis and dietary monitoring has been released. The mobile app FoodRec has
been designed with the objective of providing a smart and accessible system for the
daily eating habits monitoring of the users, with the definition of a dietary diary.

The innovation that characterizes the FoodRec app is the automatisms related to the
food analysis and associated inferences. Indeed, the user just uploads a picture on the
system, then all inferences are performed automatically, by means of Computer Vision
and Artificial Intelligence technologies. Figure 3.2 shows the main interface screens
of the FoodRec app. First, a meal over four possibilities is chosen (a), then the app
requires to state the mood associated to the meal (b), then the picture is taken (c) and
uploaded (d). The app automatically learns the daytimes associated to food intake, and
sends a notification to the user if the meal has not been inserted yet at the expected
time. After the image is uploaded to the server, the recognition algorithms are applied,
and the resulting inferences are shown in the app interface, as in the example shown
in Figure 3.3. At this step, the user can edit the results (if needed) and confirm the new
record for the eating diary. The information about user corrections are exploited for
the further improvements of the algorithms, as well as their specialization with respect
to the specific user habits.
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Figure 3.2: FoodRec example screens. Meal selection (a), mood associated to the meal
(b), picture upload, motivational sentence (d).

FoodRec developed features also include water intake and weight tracker. More-
over, the user can inspect the statistics related to his/her eating habits, including the
dominant food categories, ingredients, as well as temporal visualizations of specific
parameters (see Figure 3.4).

The analysis algorithms will comprise several steps, including image normalization,
registration, feature extraction, food detection, and classification. The research team is
currently evaluating new methods and techniques for the improve of the performances
of the food recognition algorithms exploited by the system. In particular, the efforts
are devoted to three main tasks:
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Figure 3.3: FoodRec interface showing the results of the food recognition system.

Food Segmentation: the aim of this task is the segmentation of the multiple food
items that are depicted in a meal picture. This will output the areas of the pixels
associated to each food item.

Food Classification: this classic task combined with the food segmentation output
will provide a semantic segmentation of the input image, which details at pixel level
the parts of the image related to specific food categories.

Volume Estimation: this task represents one of the most difficult aimed achieve-
ments. Indeed, the objective of this task is to estimate the volume of each food item.
This task results very challenging because it involves the estimation of 3D information
from monocular vision, at very small scale detail.
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Figure 3.4: FoodRec in-app statistics.

At this current stage, research methods related to the above-mentioned tasks have
been applied only on images available from the state-of-the-art in food recognition
and image segmentation. However, we plan to specialize such algorithms on the data
coming from the FoodRec app, which is specific with respect to our purposes. The pro-
posed system aims to recognize food items of specific users and monitor their habits.
This task significantly differs from the recognition of any food instance depicted by
a picture, such as happens in the development of general purposes food recognition
systems.

3.2 Expected Outcomes

Abstinence from smoking is associated with several negative effects, including irritabil-
ity, gain of weight, and eating disorders, especially in the first period of abstinence. All
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these effects are connected to each other. The output of the food recognition sys-
tem will provide indications about the user’s dietary habits and anomalies at different
times during the smoke-quitting progress. The evaluation strategy will leverage well-
known statistical methodologies for assessing correlations between the observed data
and known information about the smoking quitting treatment.

3.3 Conclusion

At this stage, the initial procedures, preliminary investigation, and research planning
phases of the project (see Figure 3.1) have been completed. The other phases, except the
final deployment, are currently being carried out. Furthermore, the FoodRec app has
been tested and evaluated with a small controlled group of test users. The tests were
carried out for a period of about four months that began on 12 August 2020 and ended
on 02 December 2020, with the participation of 164 people aged between 19 and 60.
The Table 3.1 summarizes the mainly statistics and activities performed by the users in
the aforementioned tests. In particular, the Table 3.1 shows the number of interactions
there were among the users and the main features of FoodRec (i.e., the upload of
a meal’s photo or the update of the drunk water), instead the Table 3.2 reports the
distribution of the uploaded photos among the following categories: breakfast, lunch,
snack, and dinner. Once the tests have been ended, the users participated to a survey
panel, reporting the feedback with respect to the app usage, which will be exploited
to further improve the app features. The next step will be the evaluation on a larger
audience of users in real-case scenarios (i.e., not controlled users). Such ”on the wild”
evaluation will produce a large set of real-case images from real users of the system,
which will be exploited to develop novel algorithms and inference methods for the
specific purposes of the project.

Table 3.1: Usage frequencies

Usage Statistics Counts
Participants 164

Meals upload 1657
Drinks update 721
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Table 3.2: Meals type frequencies

Meal Type Counts
Breakfast 396

Lunch 553
Snack 305
Dinner 403

The developed dietary monitoring system could be extended to work with videos
recorded by a fixed camera system, considering a set of cameras recording the scene
from different fixed points of view. The collected data about the mood associated to
food images can be combined with approaches related to sentiment analysis based on
images (Ortis et al., 2020). Such approaches can be investigated in order to automat-
ically infer the mood of the user (e.g., depression, happiness, etc.) based on dietary
monitoring, avoiding to ask the user about his/her mood.
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Chapter 4

Food Recognition

We present a user-biased food recognition system. The presented approach has been
developed in the context of the FoodRec project, which aims to define an automatic
framework for the monitoring of people’s health and habits, during their smoke-
quitting program. The goal of food recognition is to extract and infer semantic in-
formation from the food images to classify diverse foods present in the image. We
propose a novel Deep Convolutional Neural Network able to recognize food items of
specific users and monitor their habits. It consists of a food branch to learn visual rep-
resentation for the input food items and a user branch to take into account the specific
user’s eating habits. Furthermore, we introduce a new FoodRec-50 dataset with 2000
images and 50 food categories collected by the iOS and Android smartphone appli-
cations, taken by 164 users during their smoking cessation therapy. The information
inferred from the users’ eating habits is then exploited to track and monitor the dietary
habits of people involved in a smoke-quitting protocol. Experimental results show that
the proposed food recognition method outperforms the baseline model 101 results on
the FoodRec-50 dataset. We also performed an ablation study, which demonstrated
that the proposed architecture is able to tune the prediction based on the users’ eating
habits.

Recognizing food from images is an extremely useful task for a variety of use cases.
For example, it would allow people to track their food intake of what they consume by
simply taking a picture, to increase awareness of their daily diet by monitoring their
eating habits, the kind and amount of taken food, how much time the user spends
eating during the day, how many and what times the user has a meal, analysis on
user’s habits changes, bad habits, and other inferences related to user’s behavior and
mood (Ortis et al., 2020). It can help a doctor to have a better opinion with respect
to the patient’s behaviour, in the applications on quitting treatment response, smok-
ing detection and quitting technologies (Ortis et al., 2020), dietary monitoring during
smoke quitting (Battiato et al., 2021) and smoking cessation system (Maguire et al.,
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2021). Food monitoring plays a vital role in human health that is directly affected by
diet (Nishida et al., 2004). Humans life is strictly affected by the food, this encourages
researchers to introduce new methods for food logging and automatic food dietary
monitoring (Kitamura et al., 2010), food retrieval and classification (Farinella et al.,
2016). We present a novel food recognition method that takes into account the specific
user to systematically analyze and infer his/her eating habits. The idea is to introduce
a bias related to the user in the food classification pipeline. In particular, inspired by
deep learning approaches applied on text representation learning (Le and Mikolov,
2014), the proposed architecture learns a user’s eating habits feature representation
space. We also collected a new FoodRec-50 dataset that will be used for evaluation of
the food recognition technology for dietary monitoring during smoke quitting.

The main steps involved in our food recognition pipeline are as follows:

1. Food data acquisition

2. Food data annotation

3. Data augmentation and normalization

4. Food recognition

In this chapter, we will further present in detail the proposed architecture that
consists of food branch and user branch, user data annotation to embed the user infor-
mation with image label, data augmentation for the classification task, different users
eating habits, and finally proposed FoodRec model results comparison with the base-
line 101 model. We have conducted the classification experiments on our FoodRec-50
data, as we have extracted 50 categories/ classes from our FoodRec Data collected by
the App. ResNet model for classification is fine-tuned on the 50 classes of our FoodRec-
50 data. The ResNet model will act as the baseline model for the classification task.
Experimental results show that the proposed FoodRec model performs better as com-
pared to the baseline results on the FoodRec data.

4.1 Food Data Acquisition

The objective is to build a new unique robust dataset useful for the food recognition
technologies development and evaluation stages. Our dataset is specific to the users
who are involved in the smoke-quitting process to monitor their dietary habits. The
dataset is produced to study the correlation between eating information with smoking
habits. In the future, such data will be used to find correlations with respect to the
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Figure 4.1: Food Data Acquisition using Smartphone app

smoking activity of the subjects during the period of observation. To collect the food
data, the iOS and Android smartphone apps are used, as shown in Figure 4.1. Users
can upload a meal intake image by taking a picture of what they eat and can assign
labels to the food image what it contains.

4.2 Food Data Annotation

Annotations are required during the supervised training of the network and also to
test the examples during the evaluation phase for the food recognition method. To
perform the experiments, we have first extracted food images for 50 classes from the
FoodRec data. However, some of the classes (beans, breadstick, carrot, chickpeas,
corn, popcorn, grape, peas, zucchini, etc.) have few images, so data augmentation is
performed to compensate the problem with underrepresented classes. Further, data is
annotated manually for training and evaluation of the model, which contains around
1100 images.

4.3 Proposed FoodRec Architecture

We proposed FoodRec architecture for data coming from the FoodRec app, which is
specific with respect to our purposes. The proposed system aims to recognize food
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Figure 4.2: Food recognition proposed architecture.

items of specific users and monitor their habits. This task significantly differs from the
recognition of any food instance depicted by a picture, such as happens in the devel-
opment of general purposes food recognition systems. Figure 4.2 shows the proposed
FoodRec architecture. In particular, a common multi-label food classifier is composed
by a Convolutional Neural Network, which defines a meaningful feature representa-
tion for the input images, based on the training task. Then, the representation is fed
to multiple logistic units (i.e., blue circles in the Figure), which are activated if the as-
sociated food item is present in the picture. The proposed architecture will take into
account the specific user that uploaded the picture. Indeed, since the proposed system
is aimed to systematically analyze and infer user habits, our objective is to add to the
food classification pipeline a bias related to the user. As a consequence, the individual
logistic activations will be fed with a feature that is obtained by concatenating the im-
age and user feature. The latter one, is represented by the weight matrix W in Figure
5, which will be learned from the users’ habits during the training stage.

Our proposed FoodRec Model consists of two branches, the food branch and the
user branch to extract concatenated feature map from two branches to recognize the
food items. The food branch is learning visual representation of the input food items
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like the traditional food recognition algorithm. On the other hand, the user branch
takes into account the specific user’s eating habits by learning the users eating weight
matrix. The user branch takes one hot vector user input and learns users eating weight
matrix. The food branch extracts feature map of the food image using ResNet101,
and further a fully connected layer is applied to get a feature vector. The user branch
extracts the feature vector from the user bias using a fully connected layer. Finally,
features from food branch and user branch are concatenated to further perform the
final prediction. User one-hot vector just selects the weights corresponding to the user
eating habits learned during the training with the food branch. As we change the user
bias input, the result in the prediction is being changed according to the dietary habits
of that user. The proposed network with one-hot user vector is effective because it
learns specific user eating habits with the food as compared to the traditional food
recognition systems with competitive results.

4.4 User Data Annotation

As previously, we have extracted data for 50 classes but with only food items anno-
tations. Proposed FoodRec architecture requires users’ annotation as well along with
the food items eaten by them to train and test the model. Hence, data is annotated
to embed the user information with image label so that we can feed the data simulta-
neously to the network. Now, FoodRec data image names contain user ID and image
label. The idea is to extract the user ID from the image name while reading the im-
ages so that we can implement the dataloader with the simultaneous user input and
corresponding image data for both branches for the experiments. Data loading is the
initial stage in constructing a deep learning pipeline or training a model. When the
data becomes more complicated, this task becomes more difficult. DataLoader class
in PyTorch provides a helpful solution to this challenge through its dataLoader class.
PyTorch’s DataLoader class is important for efficiently loading and iterating over ele-
ments in a dataset. It lets you determine how the data is loaded, including batch size,
shuffling, etc. Furthermore, it can be used to load data from a variety of sources, such
as images, text, and audio.

4.5 Data Augmentation

Data augmentation is a commonly used technique in many state-of-the-art deep learn-
ing and computer vision applications including image recognition, object detection,
and semantic segmentation. These methods are applied to increase the amount of
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training data available to deep neural networks, which helps enhance their perfor-
mance and avoid overfitting. However, obtaining sufficient data for training can be
challenging due to various reasons. For example, it could be hard to collect the re-
quired data due to restrictions and costs involved in this process. One of the reasons
that makes it difficult to create a sufficient dataset is to label the data with the ap-
propriate category after collecting the image data. For instance, image classification
requires to assign the correct class labels to each image. Therefore, labeling the data
is necessary for tasks such as image classification, object detection, and semantic seg-
mentation. This process is manual, and labeling the data can be very expensive. Data
augmentation is one way to overcome these limitations when you have not enough data
to feed to the deep neural network. The goal of image augmentation is to produce new
and diverse data samples from the existing data. Data augmentation is a technique
that is used to transform data in order to improve a deep learning model’s ability to
recognize different variations of an image. Consequently, this improves the amount
of information available to the model to learn the feature representation, which can
enhance its quality and performance.

We used Albumentations by (Buslaev et al., 2020) for the image data transforma-
tions. Albumentations provides pixel-level transformations and spatial-level transfor-
mations to augment the image data. Pixel-level transformation alters the input image
only, which includes Blur, GaussNoise, Equalize, HistogramMatching, InvertImg, Ran-
domBrightnessContrast, RandomShadow, Sharpen, ToGray, ImageCompression, etc.
Spatial-level transformation alters the input image with the corresponding mask or
bounding box as well, which includes CenterCrop, HorizontalFlip, PadIfNeeded, Ran-
domCrop, RandomRotate90, RandomSizedBBoxSafeCrop, ShiftScaleRotate, Affine, Re-
size, Transpose, etc.

Although, FoodRec data consists of 1100 food images for 50 classes but some of the
classes like beans, breadstick, carrot, chickpeas, corn, popcorn, grape, peas, zucchini,
etc. still have very few images. Here, we go with the data augmentation technique
to deal with the lack of data. We have selected the top 20 users with the highest
eating frequencies for all the food items. So, we have augmented the data for these
users to produce many altered and transformed versions of the same image. Image
augmentation increases the training data as we don’t have enough data with some
food categories containing less food images and makes a classifier more robust with a
wide variety of transformed images. Different transformations are applied to the data
as given below:

1. Image resize

2. Image random crop

3. Image horizontal and vertical flip
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4. Image Random rotate

5. Image Motion Blur

6. Image Optical Distortion

7. Image Gaussian Noise

8. Random Brightness and Contrast

9. CLAHE Adaptive Histogram Equalization

10. Hue and Saturation Value

Three images have been taken from each food category and augmented for the the
top 20 users with the highest eating frequencies for all the food items. For example,
figures 4.3 and 4.4 show three different juice augmentation. FoodRec data consists of
around 2000 images after data augmentation.

Figure 4.3: Juice Category Three Original Images Subjected to Transformation
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Figure 4.4: Three different juices original images with transformed images

4.6 Users and Their Eating Habits

At this stage, FoodRec data consists of 164 users eating different food items. Eating
habits only for users 87, 109, 55, 27, and 117 for each food item is listed below in
Table 4.1 with individual food items and their eating frequency for that user. These
users are chosen intelligently using the Euclidean Distance function to observe the
difference in decision-making. We defined an ”eating matrix” U x N, where U is the
number of users (164 rows) and N is the number of considered food items (50 columns).
Each row corresponds to the eating frequencies for each food item of a specific user.
Then, we computed the distance for each user to find two users (87, 109) with the
maximum distance between their eating vectors. Further, we calculated the sum of
eating frequencies for each user and selected one user (55) with average and two users
(27, 117) with the lowest sum of eating frequencies.
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Table 4.1: Users and their eating frequencies

Users Eating Frequencies Users Eating FrequenciesFood
Items User

109
User

87
User

55
User

27
User
117

Food
Items User

109
User

87
User

55
User

27
User
117

Almond 1 1 1 0 0 Green Tea 2 1 1 0 0
Apple 2 6 2 0 0 Jam 3 8 1 0 0
Arugula 3 1 4 0 0 Juice 3 1 2 0 0
Banana 1 3 1 0 0 Lentil 2 3 2 0 2
Bean 1 1 1 0 0 Meat 6 1 1 0 0
Biscuit 5 1 3 0 0 Milk 8 1 1 0 0
Blueberry 1 1 1 0 0 Mushroom 1 1 1 0 0
Bread 1 8 3 1 0 Orange 1 2 2 0 0
BreadStick 1 1 1 0 0 Pasta 6 1 3 1 0
Cake 2 3 2 0 0 Peas 1 3 1 0 0
Carrot 1 1 1 0 2 Pizza 5 2 2 0 1
Cereal 3 1 1 0 1 Popcorn 1 1 3 0 0
Cheese 2 2 2 0 0 Pork 2 1 1 1 0
Chicken 1 1 2 1 0 Potato 1 1 2 0 0
Chickpeas 1 1 2 0 0 Rice 2 2 1 0 0
Chips 2 1 1 0 0 Salad 1 2 1 0 0
Chocolate 1 2 2 1 0 Soup 2 1 1 0 0
Coffee 2 2 11 2 0 Spaghetti 2 2 1 0 0
Corn 1 1 1 2 0 Strawberry 1 1 1 0 0
Cracker 1 1 3 0 2 Tea 2 2 3 1 1
Croissant 2 1 1 0 0 Tomato 2 1 1 0 1
Doughnut 1 1 1 0 0 Tortellini 2 1 1 0 0
Egg 2 1 3 0 1 Vegetable 1 1 1 0 0
Fish 2 3 1 0 0 Yogurt 2 1 1 0 0
Grape 1 3 1 0 0 Zucchini 1 1 1 0 0

4.7 Experimental Results

Our proposed food recognition method results are compared with the baseline ResNet101
to evaluate the performance. Figures 4.6, 4.7, 4.8 and 4.9 show the results compari-
son. For example, Figure 4.6 contains a test food image with two food items, coffee
and biscuits. The baseline represents the ResNet model trained only with food im-
ages, and results are shown next to the test image in the figures. Then, the proposed
FoodRec Model results with five different users are shown in the Figure. The baseline
model consists of a pre-trained ResNet101 (He et al., 2016) model trained on ImageNet
that is fine-tuned to extract a 1024-dimensional features vector to perform the food
items classification. This model is trained using only the food images like the tradi-
tional classification algorithm without taking into account the user bias into the final
decision-making to classify the food items.
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Figure 4.5: User branch of the proposed network to learn specific user eating habits.

The proposed food recognition model consists of two branches, the food branch,
and the user branch to extract a 1024-dimensional concatenated feature map from these
branches to recognize the food items. The food branch extracts 1024-dimensional fea-
ture map of food image using ResNet101 architecture with transferred weights from
ImageNet dataset containing 1000 image categories, and further averaging pooling
layer, flatten layer, and fully connected layer are applied to get a 512-dimensional fea-
ture vector. The user branch extracts a 512-dimensional feature vector from the user
bias using a fully connected layer. Finally, the output 1024-dimensional feature vector
is obtained by concatenating the features extracted from both branches.

The user branch of the proposed network is learning 164 user eating weight vectors
with 512 features. So, the user weight matrix can be represented with 164 rows (one for
each user) and 512 columns. as shown in Figure 4.5. If you multiply a 1 x 164 one-hot
vector by a 164 x 512 matrix, it will just select the weight matrix row corresponding to
the user eating habits learned during the training with the food branch.

The proposed network with one-hot user vector is effective because it learns spe-
cific user eating habits with the food image features as compared to the traditional
food recognition systems. This approach is inspired by the document representation
approach known as doc2vec presented by Le et al. (Le and Mikolov, 2014). Indeed,
the model presented in (Le and Mikolov, 2014) implements a document representation
architecture in which the word/sentence features are affected by the document from
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which they have been extracted. In this way, the same word/sentence is represented
differently depending on the source document, which acts as a context for the encoded
words and is represented as a one-hot input vector. The document branch is combined
with another network branch devoted to represent single words, as we do combining
the branch representing the food image with the one representing the user will act as
a bias for the image representation.

The proposed and baseline networks are trained using the same settings. Networks
are trained using the Adam optimizer and the cross-entropy loss function. The learn-
ing rate is set to 0.001, the batch size is set to 32, and networks are trained for 200
epochs. The FoodRec-50 data consists of 164 users eating different food items. Eating
habits only for users 87, 109, 55, 27, and 117 for each food item are listed below in
Table 4.1 with an individual food item and its eating frequency for that user. These
users are chosen using the Euclidean Distance function to observe the difference in
decision-making. The distance between user eating frequencies tells how much one
user eating habits are different from the other. Therefore, the distances between user
eating frequencies have been used to select the users with different habits and perform
specific tests aimed to assess the efficacy of our approach and its capability to encode
the user eating habits. The effect can be observed in Figures 4.6 and 4.7 showing the
results. While the baseline method finds difficulties in the recognition of multiple food
items in cluttered scenarios, the proposed method shows better performances, espe-
cially for users that have high frequencies for the food items present in the test image.
We defined an ”eating matrix” U x N, where U is the number of users (164 rows) and
N is the number of considered food items (50 columns). Each row corresponds to
the eating frequencies for each food item of a specific user. Then, we computed the
distance for each user to find two users (87, 109) with a maximum distance between
their eating vectors. Further, we calculated the sum of eating frequencies for each user
and selected one user (55) with average and two users (27, 117) with the lowest sum of
eating frequencies.

The proposed FoodRec model results are compared with the baseline ResNet model.
Figures 4.6 and 4.7 show multi-label food classification results comparison. Food and
user concatenated representation fed to the logistics units containing the sigmoid func-
tion to produce the independent probabilities for specific food classes. In particular,
the output of each sigmoid is the probability that the input belongs to one specific food
item. In other words, each sigmoid outputs P(class = Banana|x), P(class = Bread|x),
etc. Therefore, the score shown in Figures 4.6 and 4.7 for the food types is the percent-
age of the sigmoid output probabilities for each food item.
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Figure 4.6: Results comparison of test image containing Coffee and Biscuits.

For example, Figure 4.6 contains a test food image with two food items coffee and
biscuits with multi-label predictions. The baseline represents the ResNet model trained
only with food images, and results are shown below the test image in the figures.
Then, the proposed FoodRec model results with five different users are shown next to
the test image in the figures. We can observe from Figure 4.6 that the baseline model
recognizes the coffee with a score 59.25 at the very first place, but biscuits with a score
16.39 occur at the 6th place in the prediction order. On the other hand, the proposed
FoodRec recognizes the same two food items with improved score and occur in the
top five predictions for all five users. For user 109, the top two predictions are biscuits
and coffee with scores 98.22 and 98.18, respectively. This happens because the user
with ID 109 has a relatively higher number of instances for these kinds of food in the
eating matrix. For user 117, although it did not drink coffee (C=0) or eat biscuits (B=0)
but the model recognizes these food items at 3rd and 5th places respectively because
the model learns both image and user features. Similarly, you can also observe the
difference between the FoodRec and the baseline models in Figure 4.7 with another
test food image.
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Figure 4.7: Results comparison of test image containing Apple and Juice.

The FoodRec model improves the score as well as learns the user’s dietary habits
because the model is learning weight matrix for the users. As we change the user bias
input, the result in the prediction is being changed according to the dietary habits for
that user, as you can observe in the given figures. So, adding a bias related to the
user to the food classification pipeline is effective to systematically analyze and infer
user’s habits. Users and their eating habits can be observed in Table 4.1. Moreover,
the proposed model improves the general food recognition task with respect to the
baseline model, as shown in Table 4.2.

Table 4.2: Results comparison

Method User-biased Top-5 Accuracy (%)
Baseline Model No 59.6

Proposed Model Yes 71.1
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Figure 4.8: Proposed FoodRec Model Results Comparison with Baseline Model
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Figure 4.9: Proposed FoodRec Model Results Comparison with Baseline Model
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4.8 Conclusion

We developed an automatic framework for food recognition using computer vision and
deep learning techniques that plays a significant role to the health and food intake of
people. The developed system acquires images of the food eaten by the user or subject
over time, which will then be processed by the proposed food recognition model to
extract and infer semantic information from the food images. We propose a novel
Deep Convolutional Neural Network able to recognize food items of specific users and
monitor their eating habits. It is composed of a food branch and a user branch. The
food branch employs Convolutional Neural Network for learning highly descriptive
feature representations of the food items. The user branch takes into account the
specific user’s eating habits by learning the users eating weight matrix. User one-
hot vector just selects the weight matrix row corresponding to the user’s eating habits
learned during the training with the food branch. As we change the user bias input, the
result in the prediction is being changed according to the dietary habits. The proposed
network with one-hot user vector is effective because it learns specific user eating
habits with the food image features as compared to the traditional food recognition
systems. Experiments show that the proposed user-biased food recognition is effective
and achieves higher results as compared to the baseline. The proposed model is hence
able to influence the prediction by encoding the user bias as a result it also improves
the task performance.
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Chapter 5

Food Segmentation

We present semantic food segmentation to detect individual food items in an image.
The proposed approach has been developed in the context of the FoodRec project,
which aims to study and develop an automatic framework to track and monitor the
dietary habits of people, during their smoke-quitting protocol. The goal of food seg-
mentation is to train a model that can look at the images of food items and infer
semantic information to recognize individual food items present in an image. In this
contribution, we propose a novel Convolutional Deconvolutional Pyramid Network
(CDPN) for food segmentation to understand the semantic information of an image
at a pixel level. This network employs convolution and deconvolution layers to build
a feature pyramid and achieves high-level semantic feature map representation. As
a consequence, the novel semantic segmentation network generates a dense and pre-
cise segmentation map of the input food image. Furthermore, the proposed method
demonstrated significant improvements on two well-known public benchmark food
segmentation datasets.

Food segmentation plays a key role in the context of food recognition technology
for dietary monitoring (Battiato et al., 2021) to predict and detect multiple food items
present in an image. The output of a food segmentation system is a set of image re-
gions associated to each detected food item to provide a semantic segmentation map
of the input image. This accurate segmentation of food regions can be used to estimate
the volume and, hence the quantities of each food item detected within an image. This
would allow people to estimate the assessment of calories and nutrients to track their
food intake of what they consume to increase awareness of their daily diet by mon-
itoring their eating habits, the type and amount of food, how often and what times
the user eats a meal, how much time he spends eating in a day, advanced inferences
performed can be compared to make correlations between eating habits and quitting
process steps, bad habits, user’s behavior and mood changes (Ortis et al., 2020) over
time. The semantic organization of daily habits can help a doctor to have a better
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opinion with respect to the patient’s behaviour and habits changes, in the applications
on quitting treatment response and health needs, smoke monitoring technology (Ortis
et al., 2020), dietary monitoring during smoking cessation and smoke quitting program
(Maguire et al., 2021). Food plays a crucial role in human life that is strongly affected
by diet (Nishida et al., 2004). Then, food recognition technology and its applications
especially in the health department (Allegra et al., 2020) for dietary and calorific mon-
itoring motivated computer vision specialists to develop new methods in the areas
such as food logging and automatic food dietary monitoring (Kitamura et al., 2010),
food retrieval and classification (Farinella et al., 2016), food recognition to monitor
users’ eating habits (Hussain et al., 2022), and segmentation for food understanding
and analysis. We present a novel Convolutional Deconvolutional Pyramid Network
for semantic food segmentation. Experiments are conducted on the tray food dataset
that reveals significant improvements in the results.

The food segmentation is performed on the benchmark food datasets such as My-
Food and TrayDataset. This enables to make comparisons and to measure the per-
formance of the proposed method with state-of-the-art food segmentation techniques.
The FoodRec dataset is useful for the segmentation but not annotated for the segmen-
tation task at this moment. In fact, cross-data experiments are conducted by training
the model on the MyFood dataset and testing on the FoodRec dataset to evaluate the
performance of our proposed segmentation method. Both MyFood and our FoodRec
datasets contain common food classes, such as apple, beans, egg, spaghetti, chicken,
rice, and salad. The qualitative results of our proposed method are evaluated on a
subset of our FoodRec dataset. By performing the cross-data experiments, we aimed
to simulate a scenario where the model is trained on a MyFood dataset and is tested to
perform segmentation on the MyFood dataset. The results of our experiments demon-
strate that our proposed method is capable of generalizing well to new and unseen
FoodRec dataset as well.

5.1 Proposed Convolutional Deconvolutional Pyramid Net-
work

The food segmentation aims to develop a model which is able to extract and infer
semantic information from the food images at pixel-level to recognize different food
items present in an image. This would further allow people to estimate the assess-
ment of calories to track their food intake and to increase awareness of daily diet by
monitoring their eating habits. In this context, a novel Convolutional Deconvolutional
Pyramid Network (CDPN) is proposed for image semantic segmentation, which takes
food image as input and outputs a segmentation map of the individual food items
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detected, as described in Fig.1. A pre-trained convolution neural network is used
to harvest meaningful feature representation. Then, a feature pyramid is built with
multi-scale feature maps representation. The proposed network employs convolution
and deconvolution layers to generate a feature pyramid and achieves high-level seman-
tic feature map representation. The deconvolution develops upsampling of the input
features using learnable parameters to produce generalized upsampling of the feature
representation. As a result, the proposed segmentation network generates a dense and
precise segmentation map of the input food image.

Initially, we applied deep ResNet architecture with pre-activations due to its capa-
bility for learning highly descriptive feature representation by downsampling spatial
resolution for complex scenes. The ResNet architecture with transferred weights from
the ImageNet dataset extracts two feature set representations from the input RGB food
image. More precisely, the proposed Convolutional Deconvolutional Pyramid Net-
work obtains two discriminative feature sets of 512 channels with a downsampled
spatial resolution (h/8, w/8), and 2048 channels with a downsampled spatial reso-
lution (h/32, w/32) from an input image (height(h), width(w)) using Resnet-101 as
the backbone network. The convolution coupled with upsampling layers is used to
the low-resolution spatial information to produce high-resolution semantically strong
segmentation map. Then, the convolution layer and deconvolution layer are employed
to each feature set obtained by the ResNet to generate four high-level feature maps
pyramid. The deconvolution layers densify the feature map with learned filters to out-
put upsampled and rich feature map representation. As a result, a feature pyramid is
produced with four multi-scale feature maps of sizes h/4 x w/4 x 256 channels, h/8
x w/8 x 256 channels, h/16 x w/16 x 256 channels, and h/32 x w/32 x 256 channels
by applying convolution layer with 1x1 kernel size and deconvolution layer with 2x2
kernel size on each feature set obtained by the ResNet. Feature maps of each level are
fused and concatenated through the convolution layer with 3x3 kernel size, group nor-
malization, ReLU, and upsampling layer to resize the feature map using interpolation.
Further, a deconvolutional layer is applied with 4x4 kernel size and output channels
equal to the number of food categories followed by a softmax layer for the food seg-
mentation pixel-wise predictions. The final output of the proposed CDPN network is
a segmentation map of the same size as the input image that represents the probability
of each pixel belongs to one of the food classes.
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Figure 5.1: The proposed Convolutional Deconvolutional Pyramid Network for se-
mantic food segmentation. This network takes food image as input and outputs a seg-
mentation map of the individual food items present in the image. In the architecture,
”Conv” represents the convolutional layer, ”DeConv” represents the deconvolutional
layer, and ”Up” represents an upsampling layer. All convolutional layers with 3x3
kernel size are followed by group normalization layers and ReLU activation layers.
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5.1.1 Performance Metrics

We used common performance metrics for segmentation to compare quantitative per-
formance of the proposed method with others. To evaluate the comparative perfor-
mance, we use intersection over union (IoU) which is a widely used metric in image
segmentation tasks to measure the quantitative performance. This metric measures the
degree of overlap between the target and predicted segmentation by comparing the
number of common pixels. The IoU in Equation 5.1 is calculated by dividing the num-
ber of common pixels (ground truth ∩ predicted) by the total number of pixels (ground
truth ∪ predicted) present in both masks. The intersection between ground truth and
predicted refers to the set of pixels that are present in both the ground truth mask and
the predicted mask. The union of the two masks is simply the set of pixels that are
present in either the predicted mask or the ground truth mask. A higher IoU value in-
dicates a better overlap between the target and predicted segmentation, meaning that
the segmentation algorithm has performed well in identifying the object of interest.
So, we evaluated the semantic food segmentation results using performance measures
such as intersection over union (IOU) in Equation 5.1 for each food category, mean
intersection over union (mIOU) in Equation 5.2 is calculated by taking the average of
the IoU scores across all classes to provide an overall measure of how well the seg-
mentation algorithm performs across all classes present in the dataset, and pixel-level
accuracy in Equation 5.3 that represents the percentage of correctly classified pixels
where TP, TN, FP, and FN represent true positives, true negatives, false positives, and
false negatives, respectively.

IoU =
target ∩ predicted
target ∪ predicted

(5.1)

mIoU =
1
n

n

∑
i=1

IoUi (5.2)

PixelAccuracy =
TP + TN

TP + TN + FP + FN
(5.3)

5.1.2 Datasets

Tray food dataset: TrayDataset (url) is a food segmentation dataset comprised of 43
food classes. This database contains a total of 1241 food images with 17 unique
trays where images are rotated, wrapped, and flipped versions of the unique trays.
The dataset is composed of distinctive food classes, e.g., bread, ham, custard, mar-
garine, pumpkin, zucchini, milk, baked fish, creamed potato, orange juice, soup, car-
rot, vanilla yogurt, cucumber, broccoli, beef, etc. TrayDataset database is a well-defined
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publicly available with all food images and their respective ground truth segmen-
tation masks on Kaggle at the following link: https://www.kaggle.com/datasets/

thezaza102/tray-food-segmentation.

MyFood dataset: MyFood dataset (Freitas et al., 2020a) is a well-defined publicly
available database for food image segmentation. This dataset consists of the most
consumed food types by the Brazilian population containing 1250 total images. The
dataset is composed of nine food classes such as spaghetti, apple, beans, boiled egg,
chicken breast, rice, salad, steak, and fried egg, with an average of 125 food images in
each class. For research and evaluation experiments, the dataset is divided into 60%
for training, 20% for validation, and 20% for testing. MyFood database is publicly
available with all food images and their respective segmentation masks on the Zenodo
website with training, validation, and testing folder structure. It can be downloaded at
the following link: http://doi.org/10.5281/zenodo.4041488.

5.1.3 Experimental Results

We thoroughly tested our proposed segmentation scheme using two publicly available
benchmark food segmentation datasets which are TrayDataset and MyFood dataset.
Further details are provided on these datasets. We extensively evaluated the perfor-
mance of our proposed method compared to the existing state-of-the-art approaches.

Evaluation on Tray food Dataset

Experiments are conducted using TrayDataset that consists of 43 distinctive food classes.
The proposed Convolutional Deconvolutional Pyramid Network (CDPN) results are
compared with other methods such as feature pyramid network (FPN) (Lin et al., 2017),
and encoder-decoder food network (EDFN) (Pfisterer et al., 2019) using intersection
over union and pixel accuracy. The EDFN (Pfisterer et al., 2019) architecture is used for
automatic semantic segmentation of tracking food and fluid Intake in long-term care
homes. It is a deep convolutional encoder-decoder architecture for food pixel-wise
segmentation. It employs ResNet architecture as an encoder to get 256 feature maps
of the input image and a pyramid scene parsing is used as decoder microarchitecture
to decode the feature maps from the encoder. FPN (Lin et al., 2017) is designed for
image segmentation and multi-scale object detection. This architecture is developed
to extract semantic feature maps that involve a bottom-up pathway which computes
a feature hierarchy, and a top-down pathway which computes stronger feature maps
from higher pyramid levels. The proposed CDPN, FPN, and EDFN are trained using
the same hyperparameters and settings for the comparative evaluation. All the net-
works are trained using the Adam optimizer and the standard Dice loss function. The
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learning rate is set to 0.0001. The batch size is set as 8 and networks are trained for 250
epochs. The networks are trained using ResNet-101 as the backbone network for the
evaluation experiments.

On the TrayDataset, the experimental results of our proposed CDPN are compared
with FPN and EDFN. The experimental results comparison of the networks using class-
wise intersection over union is shown in Table 5.1 where the top IOU is represented
in bold for each food category. Dataset also has the background class with IOU of
99.49% for the proposed CDPN, 99.28% for EDFN, and 98.52% for FPN. For most of
the food classes, our proposed CDPN approach achieved higher class-wise IOU results
as compared to others. The lowest IOU scores for the proposed CDPN, FPN, and
EDFN are 75.08% for the bakedfish class, 72% for the creamedpotato class, and 70%
for the jelly class, respectively. From the experimental results described in Table 5.1,
our proposed CDPN method achieved a competitive IOU score as compared to the
FPN and EDFN.

The visual representation is presented in Figure 5.2 of the original input image,
ground truth, and output segmentation maps of the proposed network and baseline
networks on TrayDataset. For example, consider the original input image (1) and its
output segmentation maps generated by models, EDFN confuses beefmexicanmeat-
balls with pumpkin. The proposed CDPN and FPN predict correctly. Now, consider
the original input image (2) and its output segmentation maps generated by models,
EDFN mispredicts the vanillayogurt region by confusing most of the part of it with zuc-
chini. The EDFN does not detect the margarine region as well. The FPN misclassifies
the vanillayogurt region by confusing it with margarine and zucchini. The proposed
CDPN detects vanillayogurt accurately but confuses margarine with vanillayogurt.
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Table 5.1: Clalss-wise Intersection Over Union (IOU) of food items. In the table, BeefTC
means BeefTomatoCasserole, ”BeefMM” means beefmexicanmeatballs, ”SpinachPR”
means SpinachandPumpkinRisotto.

Class-wise IOU (%) Class-wise IOU (%)Food
Items Proposed

CDPN EDFN FPN
Food
Items Proposed

CDPN EDFN FPN

Tray 96.49 83.95 89.28 Pumpkin 88.17 72.02 85.99
Cutlery 87.96 82.06 85.08 Celery 100.0 100.0 100.0
Bread 93.67 80.00 80.00 Sandwich 90.59 88.25 82.62
Straw 100.0 100.0 100.0 SideSalad 92.86 90.00 90.00
Custard 93.09 78.45 80.58 TartareSauce 85.00 85.00 85.00
Beef 100.0 100.0 100.0 JacketPotato 85.00 91.00 90.00
Roastlamb 85.00 85.00 85.00 CreamedPotato 89.51 72.00 72.00
BeefTC 83.74 75.35 98.34 Form 100.0 100.0 100.0
Ham 98.64 90.00 90.00 Margarine 80.00 78.00 90.00
Bean 90.00 90.00 90.00 Soup 97.71 83.61 92.45
Cucumber 90.00 90.00 86.79 Apple 100.0 100.0 100.0
Leaf 97.31 91.20 95.00 CannedFruit 82.85 90.00 90.00
Tomato 90.00 90.00 90.00 Milk 84.68 90.00 77.91
Boiledrice 81.37 80.00 80.00 VanillaYogurt 88.23 82.00 79.00
BeefMM 99.47 79.00 89.49 Jelly 88.80 70.00 73.95
SpinachPR 79.29 90.00 79.25 Meatball 100.0 100.0 100.0
BakedFish 75.08 85.00 85.00 LemonSponge 99.34 95.00 95.00
Gravy 89.83 86.78 94.42 Juice 100.0 100.0 100.0
Broccoli 100.0 100.0 100.0 AppleJuice 77.71 90.00 90.00
Carrot 100.0 100.0 100.0 OrangeJuice 94.28 90.00 76.00
Zucchini 93.82 75.50 88.11 Water 97.14 86.77 85.00
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Figure 5.2: Food segmentation results visualization of the proposed CDPN, FPN, and
EDFN on TrayDataset. (a) represents original images, (b) represents ground truths,
(c) represents the proposed CDPN output segmentation maps, (d) represents EDFN
output segmentation maps, and (f) represents FPN output segmentation maps.
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The results comparison of the proposed method CDPN with FPN and EDFN net-
works using mean intersection over union and global pixel level accuracy is presented
in Table 5.2. From the experimental results presented in Table 5.1, 5.2, and Figure
5.2, our proposed CDPN method achieved competitive results. These experimental
results show that the proposed Convolutional Deconvolutional Pyramid Network out-
performed both EDFN and FPN.

Table 5.2: The proposed CDPN results comparison with EDFN and FPN

Method Backbone Mean IOU(%) Pixel Accuracy (%)
Proposed CDPN ResNet-101 91.77 98.90

FPN (Lin et al., 2017) ResNet-101 89.30 98.49
EDFN (Pfisterer et al., 2019) ResNet-101 88.02 97.93

Split the image into pixel-level segments

We divided the original image into individual food pixel-level segments by setting the
background to black on the basis of the segmented image map for further food analysis
such as food annotation, classification, volume estimation, etc. In this process, the pix-
els from each segmented food item in the network-detected segmented image map are
utilized to extract the corresponding pixels from the original image, and any residual
pixels are set to zero. Finally, we obtained individual food segments of the original im-
age with a black background for each food segment detected in the segmented image
map. Figure 5.3 displays the original image of TrayFood together with its segmented
image map and each food segment that was extracted from the original image based
on the segmented image map at the pixel level.
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Figure 5.3: Individual food pixel-level segments of the original image for each food
segment detected in the segmented image map. Each food segment was extracted
from the original image based on the segmented image map.
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Evaluation on MyFood Dataset

On the MyFood (Freitas et al., 2020a) dataset, we compared our approach with Seg-
net (Badrinarayanan et al., 2017), Mask R-CNN (He et al., 2018), FCN (Long et al.,
2015), UNet++ (Zhou et al., 2018), Enet (Paszke et al., 2016), and DeepLabV3+ (Chen
et al., 2018). The Segnet (Badrinarayanan et al., 2017) is a deep convolutional encoder-
decoder architecture for semantic pixel-wise segmentation. The encoder architecture
is topologically identical to the 13 convolutional layers of the VGG16 architecture. To
perform non-linear upsampling, the decoder utilizes pooling indices computed during
the max-pooling step of the encoder. The mask R-CNN (He et al., 2018) architecture is
an end-to-end convolutional neural network introduced by the Facebook AI research
group with an accurate detection effect when it comes to targeting object instance seg-
mentation. The mask R-CNN (He et al., 2018) is the extended improvement of Faster
R-CNN with an object mask prediction branch in parallel with the existing bounding
box detection branch. FCN (Long et al., 2015) is a fully convolutional network for
segmentation with skip architecture that combines layers of the feature hierarchy to
produce refined segmentation. The classification networks GoogLeNet, VGG net, and
AlexNet are extended to fully convolutional networks by transferring their learning
for the segmentation. The UNet++ (Zhou et al., 2018) is the extension of U-Net archi-
tecture in which sub-networks encoder and decoder are connected through a series of
nested and dense skip pathways. It was proposed for biomedical image segmentation
that is more powerful as compared to the U-Net. Enet (Paszke et al., 2016) is a deep
neural network for real-time segmentation performance on embedded platforms. It is
heavily inspired by the ResNet and Inception architectures with the aim to perform
large-scale computations efficiently. The DeepLabV3+ (Chen et al., 2018) is the ex-
tended version of DeepLabv3 developed for semantic segmentation with the concept
of atrous separable convolution. It employs an encoder-decoder structure with atrous
convolution comprised of a deep convolution and a clockwise convolution. The en-
coder is used to rich the contextual information, and the effective decoder is used to
refine the segmentation results.
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Table 5.3: The proposed CDPN results comparison with EDFN and FPN

Method Optimizer Learning Rate Decay Batch Size
Proposed CDPN Adam 1E-4 1E-5 8

UNet++ Adam 1E-4 1E-5 8
Enet Adam 5E-4 - 10

DeepLabV3+ SGD 1E-2 - 32
Mask R-CNN SGD 1E-3 1E-4 2

FCN SGD 1E-2 - 32
Segnet SGD 1E-2 - 32

Figure 5.4: The proposed CDPN method and UNet++ class-wise intersection over
union (IOU) results comparison on the MyFood segmentation dataset.

The hyperparameters used are given in Table 5.3 where all the networks are trained
for 100 epochs for the comparative evaluation. The parameters for Segnet, Mask R-
CNN, FCN, Enet, and DeepLabV3+ are described in the research (Freitas et al., 2020b)
using the MyFood segmentation dataset. The proposed CDPN and UNet++ are trained
using the same hyperparameters with the Adam optimizer, the standard Dice loss
function, the learning rate is set to 0.0001, and the batch size is set as 8. The parameters
used for training the proposed CDPN and other methods are listed in Table 5.3 for
experiments evaluation on the MyFood dataset.
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Figure 5.5: Class-wise intersection over union (IOU) on MyFood dataset. This figure
is adopted from the research (Freitas et al., 2020b) that shows the comparison of the
class-wise results for Segnet, Mask R-CNN, FCN, Enet, and DeepLabV3+.

The experimental results comparison of the networks is shown in Figure 5.4 and
Figure 5.5 using class-wise intersection over union. The results achieved by the pro-
posed CDPN and UNet++ are presented in Figure 5.4 . For the class-wise IOU com-
parative evaluation with the proposed CDPN and UNet++, the results (Freitas et al.,
2020b) are shown in 5.5, which shows IOU for Segnet, Mask R-CNN, FCN, Enet, and
DeepLabV3+. Dataset also has the background class with IOU of 0.90 for the proposed
CDPN, and 0.92 for UNet++. Our proposed CDPN approach provided a competitive
class-wise intersection over union score in comparison with other methods. According
to Figure 5.4 and Figure 5.5, the chicken breast class had the lowest IOU score, with
the proposed CDPN obtaining the highest IOU score of 0.62, UNet++ having an IOU
score of 0.58, and Segnet, Mask R-CNN, FCN, Enet, and DeepLabV3+ having an IOU
score less than 0.50. However, the proposed CDPN, Unet++, FCN, and Mask R-CNN
produced results with comparatively high class-wise IOU scores.

The segmentation results on the MyFood dataset are presented in Figure 5.6 with
the visual representation of the input image and output segmentation maps of the pro-
posed CDPN, Segnet, Mask R-CNN, FCN, UNet++, Enet, and DeepLabV3+. In the
case of a single food in an image, we can notice that most methods performed well
to produce the output segmentation maps of the input image. On the other hand, the
proposed CDPN, UNet++, and FCN results are comparable when multiple food items
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Figure 5.6: Food segmentation results visualization of the proposed CDPN approach
with other methods on the MyFood dataset. For instance, the input image (1) is an ap-
ple, and its output segmentation maps generated by each network are presented here.
We added the output segmentation maps of proposed CDPN and UNet++ together
with the visualization of food image segmentation results described in research (Fre-
itas et al., 2020b) for comparative evaluation with Segnet, Mask R-CNN, FCN, Enet,
and DeepLabV3+.

are present in an image. In both cases, the proposed CDPN achieved better segmen-
tation results compared to the Segnet, Mask R-CNN, FCN, Enet, and DeepLabV3+ as
shown for input image (2) in Figure 5.6. However, UNet++ produced better results
than the proposed CDPN method.

On the MyFood dataset, the segmentation results of our proposed CDPN method
are outstanding compared to the state-of-the-art approaches. The UNet++ obtained
higher results with 0.79 mean IOU, but there was very little marginal difference in
mean IOU when compared to our proposed CDPN with 0.77 mean IOU. From the
detailed experimental analysis presented in Figures 5.4, 5.5, 5.6, and Table 5.4, our
proposed CDPN approach provided competitive results. These experimental results
show that the proposed CDPN outperformed other approaches such as Segnet, Mask
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R-CNN, FCN, Enet, and DeepLabV3+ on the MyFood segmentation dataset.

Table 5.4: The proposed CDPN method results in comparison with other methods on
the MyFood dataset.

Method Backbone IOU
UNet++ (Zhou et al., 2018) ResNet-101 0.79 (0.11)

Proposed CDPN ResNet-101 0.77 (0.09)
Mask R-CNN (He et al., 2018) ResNet-101 0.70 (0.2)

FCN (Long et al., 2015) VGG16 0.70 (0.2)
Segnet (Badrinarayanan et al., 2017) - 0.52 (0.2)

Enet (Paszke et al., 2016) - 0.51 (0.3)
DeepLabV3+ (Chen et al., 2018) MobileNet 0.50 (0.3)

5.2 Food Convolutional Deconvolutional Network (FCDN)

We propose another food segmentation architecture to understand the semantic in-
formation of an image at a pixel level. The proposed FCDN employs only learnable
features upsampling using deconvolution as compared to the CDPN. The segmenta-
tion output is a set of image regions, and accurate segmentation of food regions can
be used to estimate the quantities of each food item detected within an image. This
would enable people to estimate calories and nutrient intake in order to track their
food intake and become more aware of their daily diet. We propose a Food Convo-
lutional Deconvolutional Network (FCDN) for semantic segmentation to extract and
infer semantic information from the food images at a pixel level to recognize different
food items present in an image. The proposed FCDN employs only learnable fea-
tures upsampling using deconvolution layers to increase the spatial resolution of the
feature maps and to learn the complex patterns, while the proposed CDPN also uses
interpolation for features upsampling along with the deconvolution layers.

The proposed FCDN network employs encoder-decoder architecture for pixel-wise
segmentation. The encoder utilizes ResNet architecture with transferred weights from
the ImageNet to capture highly descriptive feature representations from the input RGB
image. The novelty of the proposed network lies in the way the decoder architecture
upsamples and densifies lower-resolution input features from the encoder to high-
resolution feature maps using learnable filters. In particular, the decoder employs
convolution and deconvolution layers to build multi-scale feature maps representation
and to further produce rich and concise segmentation map of the input image.

The performance of our proposed segmentation approach was evaluated through
experiments conducted on the MyFood dataset. The results of our experiments indicate
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noteworthy enhancements in the outcomes achieved, as compared to previous method-
ologies. In addition to evaluating the performance of our method on the MyFood
dataset, we also performed cross-data experiments to assess its generalization capabil-
ities on our FoodRec dataset. By conducting cross-data experiments on the FoodRec
dataset, we were able to determine that our method could effectively make accurate
predictions in different contexts. This qualitative evaluation served as an important
complement to our evaluation on the FoodRec dataset, and helped to strengthen our
confidence in the effectiveness of our method.

Proposed Segmentation Architecture

We develop a food segmentation model capable of extracting and inferring semantic
information from food images at a pixel level to accurately recognize and identify
the various types of food items present within an image. In this context, a novel
Food Convolutional Deconvolutional Network (FCDN) is proposed for image semantic
segmentation to analyse food images and to generate a precise segmentation map of
individual food items, as illustrated in Figure 5.7. The proposed network is an encoder-
decoder architecture for semantic food segmentation.

The encoder consists of a Convolutional Neural Network that harvests meaningful
feature map representation from an input image. As the encoder processes the im-
age, it gradually increases the number of channels in each step, adding more depth
to the feature maps. Additionally, the encoder downsamples the image’s spatial res-
olution to produce high-level information by reducing image height and width. We
used the transfer learning concept for the encoder part and exploited the pre-trained
encoder with the transfer knowledge from the ImageNet dataset. The decoder archi-
tecture consists of convolution layers coupled with upsampling layers to produce a
high-resolution segmentation feature map representation from the low-resolution fea-
ture map of the encoder. To create the segmentation map, the decoder applies upsam-
pling layers that gradually increase the resolution of the feature maps. The decoder
also applies convolutional layers to reduce the number of channels in the feature maps
and outputs a segmentation map, which is the region of pixels of the same size as the
input image.
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Figure 5.7: Our proposed Food Convolutional Deconvolutional Network architecture
for pixel-wise food segmentation. The network takes food image as input to extract and
infer semantic information from it and outputs a segmentation map of the individual
food items present in the image. The ”Conv” represents the convolutional layer, and
”DeConv” represents the deconvolutional layer. All convolutional layers with a kernel
size of 3x3 are followed by group normalization and ReLU activation layers.
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To effectively capture highly descriptive feature representations for complex food
images, we employed the deep ResNet architecture with pre-activations as an encoder.
By leveraging the power of transfer learning, we utilized ResNet architecture with pre-
trained weights from the ImageNet dataset to extract feature representation from the
input RGB food image. The ResNet-101 architecture which is a variant of the ResNet
architecture was chosen as the backbone network due to its capability in learning rel-
evant feature representation. In particular, we obtain a highly descriptive feature set
of 2048 channels from the input image with a downsampled spatial resolution (h/32,
w/32) using Resnet-101 as the backbone network. Our proposed decoder architec-
ture employs the convolution layer and deconvolution layer to feature map obtained
by the ResNet to generate two high-level feature maps. The use of convolution and
deconvolution layers enables us to capture important features at different scales and
resolutions. By employing these layers, we are able to generate two distinct multi-scale
feature maps. The first feature map has a size of h/16 x w/16 x 512 channels, which
is obtained by applying the deconvolution layer with a 2x2 kernel size. The deconvo-
lution densifies the input features using learnable parameters to produce generalized
upsampling of the feature representation. The second feature map has a size of h/32
x w/32 x 512 channels which is produced by applying a convolution layer with a 1x1
kernel size. Next, a series of convolutional layers with a kernel size of 3x3 and decon-
volution layers with a kernel size of 2x2 are employed. Each convolutional layer in this
sequence is followed by a group normalization and ReLU activation function, which
help to improve the performance. After the upsampling of the feature maps from each
level, the resulting feature maps are fused and concatenated. As a result, we obtain
two feature maps of the same size w/4 x h/4 x 256 after they have been upsampled
and then merged to produce a high-dimensional representation. The Dropout layer is
then applied to avoid overfitting and improve the generalization performance of the
model. Finally, the feature maps are passed through a deconvolutional layer with a
kernel size of 4x4 and output channels equal to the number of food categories fol-
lowed by a Softmax activation function to produce the final segmentation map. The
output segmentation map has the same spatial dimensions as the input image where
each pixel is assigned a class label corresponding to the region of the image that it
belongs to.

5.2.1 Experimental Results

We present the results of our proposed segmentation approach on a publicly avail-
able benchmark food segmentation dataset. In addition, we also provide a qualitative
analysis of the results by visually comparing the segmentation outputs of our model
with the existing methods. We also perform cross-data experiments on our FoodRec
data to evaluate the qualitative performance of our method. We thoroughly tested to
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demonstrate the performance of our proposed method compared to the state-of-the-art
approaches.

Experiments Evaluation on MyFood Dataset

We conducted a comprehensive evaluation to assess the performance of our proposed
approach by comparing it with state-of-the-art methods such as UNet++ (Zhou et al.,
2018), Mask R-CNN (He et al., 2018), FCN (Long et al., 2015), Segnet (Badrinarayanan
et al., 2017), Enet (Paszke et al., 2016), and DeepLabV3+ (Chen et al., 2018) on MyFood
dataset (Freitas et al., 2020a). The hyperparameters were carefully selected to achieve
optimal performance and are presented in Table 5.5. To facilitate comparative eval-
uation, all networks were trained for 100 epochs. The parameters used for training
DeepLabV3+, FCN, Enet, Mask R-CNN, and Segnet were described in research (Fre-
itas et al., 2020b) using the MyFood segmentation dataset. The proposed FCDN and
UNet++ (Zhou et al., 2018) were trained using the same hyperparameters, which in-
cluded the use of the Adam optimizer, the standard Dice loss function, a learning rate
of 0.0001 which is decayed to 0.00001 after 30 epochs, and a batch size of 8. For the
experiments conducted on the MyFood dataset, the hyperparameters used for training
the proposed FCDN and other methods can be found in Table 5.5. It is worth noting
that the selection of appropriate hyperparameters is essential for achieving optimal
performance in deep learning-based image segmentation tasks, and our study empha-
sizes this critical aspect by providing detailed information on the hyperparameters
employed in our experiments.

Table 5.5: Hyperparameters employed in training each segmentation network on My-
Food Dataset.

Method Optimizer Learning Rate Decay Batch Size
Proposed FCDN Adam 1E-4 1E-5 8

UNet++ Adam 1E-4 1E-5 8
Enet Adam 5E-4 - 10

DeepLabV3+ SGD 1E-2 - 32
Mask R-CNN SGD 1E-3 1E-4 2

FCN SGD 1E-2 - 32
Segnet SGD 1E-2 - 32

The performance of different image segmentation models has been evaluated on
the MyFood dataset using the intersection over union (IoU) metric to measure the sim-
ilarity between the predicted segmentation and the ground truth segmentation. In this
study, we compared and evaluated the performance using IoU score of our proposed
method with different state-of-the-art segmentation models, including UNet++ (Zhou
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et al., 2018), Mask R-CNN (He et al., 2018), FCN (Long et al., 2015), Segnet (Badri-
narayanan et al., 2017), Enet (Paszke et al., 2016), and DeepLabV3+ (Chen et al., 2018).
Our results as described in Table 5.6 indicate that UNet++ and the proposed model
achieved the highest IoU scores as compared to the other methods. The UNet++
achieved the highest mean IoU score of 0.79 (standard deviation of 0.11), followed
closely by the proposed model with a mean IoU score of 0.78 (standard deviation of
0.09). Mask R-CNN and FCN both achieved mean IOU scores of 0.70 (standard devia-
tion of 0.2), which is relatively high but not as accurate as the top-performing models.
Segnet and Enet, on the other hand, exhibited mean IoU scores of 0.52 (standard de-
viation of 0.2) and 0.51 (standard deviation of 0.3), respectively. Finally, DeepLabV3+
achieved a mean IoU score of 0.50 (standard deviation of 0.3), which is the lowest
among all evaluated models. Overall, our results demonstrate that the proposed model
achieved competitive segmentation results and outperform several existing segmenta-
tion methods.

Table 5.6: The proposed FCDN method results in comparison with other methods on
the MyFood dataset.

Method Backbone Inersection over Union (IoU
UNet++ (Zhou et al., 2018) ResNet-101 0.79 (0.11)

Proposed FCDN ResNet-101 0.78 (0.09)
Mask R-CNN (He et al., 2018) ResNet-101 0.70 (0.2)

FCN (Long et al., 2015) VGG16 0.70 (0.2)
Segnet (Badrinarayanan et al., 2017) - 0.52 (0.2)

Enet (Paszke et al., 2016) - 0.51 (0.3)
DeepLabV3+ (Chen et al., 2018) MobileNet 0.50 (0.3)

In Figure 5.8, we present the IoU scores for each class, which provide insights into
the models’ performance in detecting foods of different classes. The analysis of the IoU
scores for each class provides valuable insights into the strengths and weaknesses of
different segmentation models. The results suggest that while some classes are easier
to detect than others, the proposed FCDN, UNet++, FCN, and Mask RCNN models
demonstrate higher performance for most classes for semantic segmentation in the
given dataset. The results indicate that the apple class yielded the highest IoU scores
where all the models produced IoU scores more or equal to 0.8, suggesting that it is
the easiest class to detect. In contrast, the chicken breast class achieved the lowest
IoU scores among all the classes suggesting that it is the most challenging class to
detect accurately. The proposed FCDN method achieved the highest intersection over
union (IoU) score of 0.64 for the chicken breast class, outperforming all other evaluated
models. The UNet++ model achieved an IoU score of 0.58 for the chicken breast class,
which was the second-best performance among the models. On the other hand, the
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Mask R-CNN, FCN, DeepLabV3+, Segnet, and Enet models achieved IoU scores less
than 0.50 for the chicken breast class, indicating comparatively lower performance.

Figure 5.8: The proposed FCDN method class-wise intersection over union (IoU) re-
sults comparison with other methods on the MyFood segmentation dataset. The x-axis
represents the food classes in the dataset, and the y-axis shows the intersection over
union (IoU) score obtained by each network for the food classes

In addition to the food classes, the dataset used in this study also includes a back-
ground class. The intersection over union (IoU) scores for the background class was
evaluated for the proposed method and the UNet++ model. The results indicate that
the proposed method achieved an IoU score of 0.91 for the background class, while
UNet++ achieved an IoU score of 0.92. The class-wise evaluation results described
in Figure 5.8 show that our proposed FCDN approach provided a competitive class-
wise intersection over union score when compared to other state-of-the-art methods
for segmentation.

We present the qualitative results of the proposed method with other state-of-the-
art methods for comparative analysis of the food segmentation. Figure 5.9 provides
visualizations of the segmentation outputs of the proposed method with other meth-
ods for five sample images from the MyFood dataset. The visual representation of
the input image, ground truth mask, and output segmentation maps of the proposed
FCDN, UNet++, FCN, Segnet, Enet, DeepLabV3+, and Mask R-CNN are presented.
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Figure 5.9: Visualization of qualitative segmentation results of the proposed FCDN
approach with other methods on the MyFood dataset. For example, the input image
3 represents beans and its output segmentation maps generated by each network are
presented. Qualitative results of FCN, Segnet, Enet, DeepLabV3+, and Mask R-CNN
are also described in (Freitas et al., 2020b).

As an example, consider the first input image which depicts an apple and its output
segmentation maps generated by each network. As observed from Figure 5.9, most
methods performed better to generate the output segmentation map when there is only
one food item present in the image. However, when the image contains multiple food
items, the proposed FCDN and Unet++ performed well segmentation as compared to
others. Moreover, the proposed FCDN method has produced better output segmen-
tation maps as compared to FCN, Segnet, Enet, DeepLabV3+, and Mask R-CNN for
both single and multiple food items present in the image. For example, consider the
second input image shown in Figure 5.9 which depicts multiple food items and its
output segmentation maps generated by each network.

Based on the quantitative and qualitative results presented in Table 5.6, Figures
5.8 and 5.9, we conclude that our proposed approach achieved comparatively bet-
ter results, with a mean IoU of 0.78 on MyFood dataset. These experimental results
demonstrate that the proposed method outperforms state-of-the-art methods including
FCN, Segnet, Enet, DeepLabV3+, and Mask R-CNN on MyFood (Freitas et al., 2020a)
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segmentation dataset. However, UNet++ produced higher results than our proposed
method with a marginal difference in the mean IoU score.

Qualitative Evaluation on FoodRec Dataset

We finally conducted cross-data experiments to evaluate the performance of our pro-
posed FCDN segmentation method. The qualitative results of our proposed method
are evaluated on a subset of our FoodRec dataset. To test the generalization capabilities
of our method, we trained our model on the MyFood dataset (Freitas et al., 2020a) ,
and evaluated its qualitative performance on our FoodRec dataset described in chapter
4 with food classes presented in Table 4.1. Both MyFood and our FoodRec datasets
contain common food classes, such as apple, beans, egg, spaghetti, chicken, rice, and
salad. The cross-data experiments enabled us to assess how well our proposed method
could perform on new and unseen data with different context collected from the 164
real users during their smoking cessation therapy using smartphone application. By
performing the cross-data experiments, we aimed to simulate a scenario where the
model is trained on a limited dataset and is expected to perform well on a larger and
more diverse dataset. Further, we extracted the detected region of the input food items
in an image using the output segmentation map of that image. This can be used for
food classification, assessment of quantities of each food item, food volume estima-
tion, food annotation, and calories estimation. To obtain detected food segments, we
utilize the output segmentation map to identify the location of each food segment. In
this step, the pixels in the output segmentation map are used to extract the matching
pixels from the original image. We then use this information to extract the corre-
sponding regions from the original image while replacing the remaining parts with a
black background. Figure 5.10 presents the qualitative results where the food region
has been extracted from the original image based on the output segmentation map.
For instance, input image 4 represents rice, its output segmentation map generated by
the proposed approach, and extracted food region from the input image based on the
segmentation map. These results of our experiments demonstrate that our proposed
method is capable of generalizing well to new and unseen FoodRec data.
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Figure 5.10: Visualization of qualitative segmentation results of the proposed FCDN
approach on FoodRec dataset. For example, input image 2 represents spaghetti, its
output segmentation map generated by the proposed approach, and extracted food
region from the input image based on the segmentation map.
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5.3 Discussion and Comparison between CDPN and FCDN
methods

The proposed Food Convolutional Deconvolutional Network (FCDN) for semantic
segmentation to extract and infer semantic information from the food images at a
pixel level is the extended version of Convolutional Deconvolutional Pyramid Network
(CDPN) as we are trying to improve it. The proposed FCDN employs only learnable
features upsampling using deconvolution layers to increase the spatial resolution of the
feature maps and to learn the complex patterns while proposed Convolutional Decon-
volutional Pyramid Network (CDPN) also uses interpolation for features upsampling
along with the deconvolution layers.

The proposed CDPN obtains two discriminative feature sets of 512 channels with
a downsampled spatial resolution (h/8, w/8), and 2048 channels with a downsam-
pled spatial resolution (h/32, w/32) from an input image (height(h), width(w)) using
Resnet-101 as the backbone network. In FCDN, a descriptive feature set of 2048 chan-
nels from the input image with a downsampled spatial resolution (h/32, w/32) is
obtained using Resnet-101 as the backbone network. Then, these features are further
upsampled using only deconvolutional layer instead of bilinear interpolation as com-
pared to the CDPN to generate the final output segmentation map. Deconvolution is
achieved using ConvTranspose2d that is a learnable upsampling technique that uses
transposed convolutional layers to increase the spatial resolution of the feature maps.
It has the advantage of being able to learn complex patterns and features specific to
the given task, however, it is computationally expensive. Bilinear interpolation is a
non-learnable upsampling technique that is based on a weighted average of the near-
est neighboring pixels in the input image. It is simple and computationally efficient,
and can be used as a baseline for comparison with more complex methods. However,
it may not capture complex patterns and features in the input image, and can result in
blurry output. In conclusion, if the goal is to achieve high accuracy and capture com-
plex patterns in the upsampling process, ConvTranspose2d is a better choice. If the
goal is to achieve a balance between computational efficiency and reasonable quality,
bilinear interpolation is a more suitable option. Ultimately, the choice of upsampling
technique should be made based on the specific needs and requirements of the task
at hand. The comparison of the results of both techniques, together with those from
the state of the art is already explained in in Table 5.4, Table 5.6, Figure 5.5, Figure 5.6,
Figure 5.8 and Figure 5.9.
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5.4 Conclusion

Food Image analysis has become an increasingly important task in recent years, with
the growing interest in healthy eating and nutrition. With the proliferation of smart-
phones and digital cameras, food images have become ubiquitous on the internet,
making food recognition technology an important and practical problem to have more
accurate ways to identify food items and track dietary intake. The ability to automati-
cally recognize food items from images has a wide range of potential applications. For
example, it would allow people o easily track their food intake and monitor their daily
diet by simply taking a picture of their meals, to increase awareness of their daily diet
by monitoring their eating habits, kind and amount of taken food, how much time the
user spends eating during the day, how many and what times the user has a meal,
analysis on user’s habits changes, bad habits, and other inferences related to user’s be-
havior and mood changes over time. It can help a doctor to have a better opinion with
respect to the patient’s behaviour and habits changes, in the applications on quitting
treatment response, smoke monitoring technology, dietary monitoring during smoke
quitting, user evaluation on smoking detection and quitting, and smoking cessation
system. Food monitoring plays a vital role in human health that is directly affected by
diet. Humans life is strictly affected by the food, this encourages computer vision and
deep learning researchers to introduce new methods for food logging and automatic
food dietary monitoring, food retrieval and classification, food recognition to monitor
users’ eating habits that can help individuals make healthier food choices and moni-
tor their dietary intake over time, and food segmentation to understand and analyse
food images at pixel level. Moreover, food recognition technology has the potential to
significantly improve the health and well-being of individuals by providing them with
valuable insights into their eating behaviors. By tracking their food intake, people can
better understand their dietary patterns and make informed decisions to improve their
overall health and quality of life.

Semantic segmentation is an important task in the field of computer vision and
getting a lot of attention due to deep learning techniques providing a high-level of
accuracy for image analysis. The aim is to develop an automatic framework for food
image analysis using deep learning to track and monitor the health and food intake of
people. The developed system acquires images of the food eaten by the user or subject
over time which will then be processed by the proposed food recognition model to
extract and infer semantic information from the food images. We proposed a new ap-
proach in the context of our FoodRec project towards the challenging task of semantic
food segmentation in order to develop a system capable of producing state-of-the-art
results. We proposed a Convolutional Deconvolutional Pyramid Network for food seg-
mentation to infer semantic information from the food images at the pixel level and to
recognize individual food items in the image. The network employs convolution and
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deconvolution layers to build a feature pyramid that generates a semantically strong
and rich segmentation map of the input food image. Moreover, the detailed results
were demonstrated on two benchmark food datasets for food segmentation perfor-
mance evaluation and comparison of the proposed CDPN with the existing methods.
Our proposed approach produced comparatively higher results with 91.77% mean IOU
On TrayDataset and 77% mean IOU on MyFood dataset. Our proposed CDPN method
achieved very competitive results as compared to the state-of-the-art approaches.

We propose another Food Convolutional Deconvolutional Network (FCDN) for se-
mantic segmentation to extract and infer semantic information from the food images
at a pixel level to recognize different food items present in an image. The proposed
FCDN employs only learnable features upsampling using deconvolution layers to in-
crease the spatial resolution of the feature maps and to learn the complex patterns
while proposed CDPN also uses interpolation for features upsampling along with the
deconvolution layers. Our proposed network demonstrated significant improvements
in the results on the benchmark food dataset as compared to the state-of-the-art meth-
ods. Additionally, we also conducted a cross-data qualitative analysis of our proposed
segmentation method to assess its generalization capabilities on our FoodRec dataset.
By conducting cross-data experiments on the FoodRec dataset, we were able to deter-
mine that our method could effectively make accurate predictions in different contexts.
This qualitative evaluation served as an important complement to our evaluation on
the FoodRec dataset, and helped to strengthen our confidence in the effectiveness of
our method.

In the future, we plan to deploy our algorithms to smartphone application to track
and monitor the food intake of people participating in a smoking cessation program
where they can upload food images of what they eat for dietary monitoring. Because, a
significant correlation between smoking cessation and diet exists, resulting in adverse
effects such as reduced appetite, weight loss, and other related outcomes. Our research
would further allow people to estimate the volume and hence the quantities of each
food item, nutrient intake assessment, and calorie estimation for health monitoring to
raise awareness of their diet. We plan to extend our food segmentation research to a
such applications to track the food intake of the people by simply taking a picture of
what they consume to increase awareness of their daily diet. We believe that this work
will contribute to the advancement of food analysis for health monitoring, and further
applied to other related problems.
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Chapter 6

Thesis Conclusions and Future Works

Food recognition is a dynamic interdisciplinary field focused on employing compu-
tational methodologies to acquire and analyze diverse food-related data from various
sources. With the increasing availability of extensive datasets related to food, a range of
computational techniques specialized in food recognition, spanning disciplines such as
computer vision and machine learning, are either being widely adopted or swiftly de-
veloped to drive progress in the realm of food recognition. Given its interdisciplinary
nature, food recognition holds relevance across numerous domains, including health,
culture, agriculture, medicine, and biology. Food is not only vital for human survival
but also deeply ingrained in the human journey. Research on food holds the potential
to facilitate diverse applications, including shaping behavior, enhancing health, and
unraveling culinary traditions. The proliferation of social networks, mobile connectiv-
ity, and the Internet of Things has resulted in the widespread sharing and recording
of food-related content, resulting in an abundance of extensive food data. This data
carries significant insights into food and its broader societal implications to cope with
key human-centric challenges.

The food recognition project (FoodRec) aims to define an automatic framework us-
ing computer vision and deep learning techniques to recognize diverse foods from
the images. The goal of food recognition is to extract and infer semantic information
from the food images and to classify different foods present in the image. The de-
veloped system acquires images of the food eaten by the user or subject over time,
which will then be processed by food recognition algorithms to extract and infer se-
mantic information from the images containing food. In this context, we propose a
novel user-biased Deep Convolutional Neural Network able to recognize food items of
specific users and monitor their habits. It consists of a food branch to learn visual rep-
resentation for the input food items and a user branch to take into account the specific
user’s eating habits. The proposed method is learning visual features of food items as
traditional classification methods, in addition to learning the user who eats that food
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item. The proposed method predicts the food item even if the user does not eat, but
if the user eats that food item, then the model predicts with greater accuracy. The
user branch in the classification architecture is aimed to improve the classification of
difficult images and also to increase the confidence of the model. The proposed user-
biased model is better compared to the traditional method as it predicts the food item
even if the user does not eat, but if the user has that food item in his habit, then the
model predicts with improved accuracy. Furthermore, we introduce a new FoodRec-50
dataset with 2000 images and 50 food categories collected by the iOS and Android
smartphone applications, taken by 164 users during their smoking cessation therapy.
Data preprocessing, data annotations, and data augmentation with different transfor-
mations are performed for further processing after the data has been collected by the
application.

In the future, we aim to include more users habits and increase in food dataset
categories. Our proposed user-biased food recognition method will perform even bet-
ter with the increase in users’ eating frequencies. During the current phase of our
investigation, our dataset comprises a modest collection of instances with notably low
occurrence rates of food items for individual users. This is reflective of the initial
stages where individual consumption patterns are yet to be fully captured due to the
limited data available. However, the trajectory of our research anticipates a noteworthy
evolution. As the dataset becomes mature with time, a comprehensive archive of user-
specific consumption data will be amassed, encompassing a diverse spectrum of food
items ingested by each individual. This temporal evolution of the dataset constitutes
a pivotal catalyst in fostering the performance and efficacy of our model. Hence, with
the influx of abundant training data for each food item consumed by specific users,
the model performance will be outstanding as it will learn the user-specific habits with
more training data for each food item for the specific user.

For food segmentation, we propose a novel Convolutional Deconvolutional Pyra-
mid Network (CDPN) for food segmentation to understand the semantic information
of an image at a pixel level. This network employs convolution and deconvolution
layers to build a feature pyramid and achieves high-level semantic feature map rep-
resentation. As a consequence, the novel semantic segmentation network generates a
dense and precise segmentation map of the input food image. We propose another
Food Convolutional Deconvolutional Network (FCDN) for semantic segmentation to
extract and infer semantic information from the food images and to recognize different
food items present in an image. The proposed FCDN employs only learnable features
upsampling using deconvolution layers to increase the spatial resolution of the feature
maps and to learn the complex patterns, while the proposed CDPN also uses inter-
polation for features upsampling along with the deconvolution layers. Our proposed
networks demonstrated significant improvements in the results on the benchmark food
dataset as compared to the state-of-the-art methods.
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The proposed FCDN for semantic segmentation is the extended version of CDPN to
extract and infer semantic information from the food images at a pixel level. The pro-
posed FCDN employs only learnable features upsampling using deconvolution layers
to increase the spatial resolution of the feature maps and to learn the complex pat-
terns, while the proposed Convolutional Deconvolutional Pyramid Network (CDPN)
also uses interpolation for features upsampling along with the deconvolution layers.
Deconvolution is achieved using ConvTranspose2d, that is a learnable upsampling
technique that uses transposed convolutional layers to increase the spatial resolution
of the feature maps. It has the advantage of being able to learn complex patterns and
features specific to the given task, however, it is computationally expensive. Bilinear
interpolation is a non-learnable upsampling technique that is based on a weighted
average of the nearest neighboring pixels in the input image. It is simple and compu-
tationally efficient and can be used as a baseline for comparison with more complex
methods. However, it may not capture complex patterns and features in the input
image and can result in blurry output. In conclusion, if the goal is to achieve high
accuracy and capture complex patterns in the upsampling process, ConvTranspose2d
is a better choice. If the goal is to achieve a balance between computational efficiency
and reasonable quality, bilinear interpolation is a more suitable option. Ultimately,
the choice of upsampling technique should be made based on the specific needs and
requirements of the task at hand.

The food segmentation is performed on the benchmark food datasets such as My-
Food and TryDataset. This enables to make comparisons and to measure the per-
formance of the proposed method with state-of-the-art food segmentation techniques.
The FoodRec dataset is useful for the segmentation but not annotated for the segmen-
tation task at this moment. In fact, cross-data experiments are conducted by training
the model on the MyFood dataset and testing on the FoodRec dataset to evaluate the
performance of our proposed segmentation method. Both MyFood and our FoodRec
datasets contain common food classes, such as apple, beans, egg, spaghetti, chicken,
rice, and salad. The qualitative results of our proposed method are evaluated on a
subset of our FoodRec dataset. So, In addition to evaluating the performance of our
proposed segmentation method on the MyFood dataset, we also performed cross-data
experiments to assess its generalization capabilities on our FoodRec dataset. By con-
ducting cross-data experiments on the FoodRec dataset, we were able to determine
that our method could effectively make accurate predictions in different contexts. This
qualitative evaluation served as an important complement to our evaluation on the
FoodRec dataset and helped to strengthen our confidence in the effectiveness of our
method. By performing the cross-data experiments, we aimed to simulate a scenario
where the model is trained on a MyFood dataset and is tested to perform segmentation
on the MyFood dataset. The results of our experiments demonstrate that our proposed
method is capable of generalizing well to new and unseen FoodRec dataset as well.
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In the future, we aim to estimate the weight (i.e., quantities) of each food item
detected within an image. This task results very challenging because it involves the es-
timation of 3D information at very small scale detail. Precisely determining the weight
of food items constitutes a pivotal element within the realms of clinical assessments
and research investigations centered on dietary patterns. The weight is estimated to
calculate the food nutrient content after the food image has been segmented and rec-
ognized. Broadly, there are two primary methodologies to assess the weight of food
items. The first approach involves estimating the volume of the food and subsequently
utilizing density information specific to that particular food category to infer its weight
(Kelkar et al., 2011). A food specific shape template method to reconstruct a 3D model
of the food item is implemented to estimate the food volume. On the other hand, the
second method entails a direct estimation of the food’s weight by considering its area
in conjunction with training data.

In the future, we plan to deploy our algorithms to smartphone applications to track
and monitor the food intake of people participating in a smoking cessation program
where they can upload food images of what they eat for dietary monitoring. Because a
significant correlation between smoking cessation and diet exists, resulting in adverse
effects such as reduced appetite, weight loss, and other related outcomes. Our research
would further allow people to estimate the volume and, hence, the quantities of each
food item, nutrient intake assessment, and calorie estimation for health monitoring to
raise awareness of their diet. Food recognition technology can be used to identify the
food items in images and provide detailed nutrition information about the meal. Food
recognition technology is used to accurately identify food items in images taken by the
user, allowing them to keep track of their calorie and nutrient intake. Food recognition
technology can be used to identify the ingredients in a dish and suggest recipes that
include those ingredients. Food recognition technology can be used to identify food
items in images and track consumer preferences, allowing for more targeted marketing
and advertising strategies. Food recognition technology can be used to identify the
food items in images of meals, allowing for faster and more accurate delivery and
restaurant recommendations. We plan to extend our food recognition research to such
applications to track the food intake of people by simply taking a picture of what
they consume to increase awareness of their daily diet. We believe that this work
will contribute to the advancement of food analysis for health monitoring and further
applied to other related problems.

The developed dietary monitoring system could be extended to work with videos
recorded by a fixed camera system, considering a set of cameras recording the scene
from different fixed points of view. The collected data about the mood associated to
food images can be combined with approaches related to sentiment analysis based on
images (Ortis et al., 2020). Such approaches can be investigated in order to automat-
ically infer the mood of the user (e.g., depression, happiness, etc.) based on dietary
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monitoring, avoiding to ask the user about his/her mood.

Food recognition holds the potential for a multitude of promising applications
within various specialized domains. One prominent instance is its capacity to fos-
ter diverse applications within the realm of smart homes, encompassing areas like the
smart kitchen and personalized nutrition tracking. Within smart-home ecosystems,
food recognition methodologies can gather invaluable insights into users’ preferences,
nutritional intake, and health metrics, leveraging techniques such as food recognition
and comprehension of cooking videos. Illustratively, prior research as evidenced by
(Kojima et al., 2015) has leveraged textual information to enhance audio-visual scene
understanding for culinary support robots. Anticipating the future trajectory, the evo-
lution of smart kitchen robots necessitates augmented functionality, more sophisticated
multimodal interactions, and enriched dialogue capabilities. Here, the synergy among
food recognition, recipe recommendation, and food-related text processing is envi-
sioned to be instrumental in realizing these ambitious objectives.

As the field of food recognition continues its trajectory of development, its influence
and application are poised to transcend traditional boundaries, empowering a diverse
array of specialized sectors to harness its capabilities for enhanced efficiency, safety,
and user experience.
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Appendix: Nose to Brain Drug Delivery
Data Classification

(Note: In this section, we present additional research work with the collaboration of
the Department of Drug and Health Science, University of Catania, done during the
Ph.D. but not directly related to this thesis.)

Today efforts are being made to exploit nanomedicine to directly target the brain
through intranasal administration, which utilizes the olfactory neurons and trigemi-
nal nerves (maxillary and ophthalmic branches) and reducing systemic involvement.
Using devices that facilitate drug delivery to the olfactory region and the brain is criti-
cal. Conducting this type of research involves assessing the efficacy of intranasal drug
administration in comparison to other routes of delivery and identifying the neural
pathways involved if the researcher claims direct access to the brain. The efficiency
evaluation should encompass quantitative analysis of drug levels in brain tissue and
blood as well as behavioral studies in animal models. By carefully evaluating drug
delivery methods and identifying the pathways that facilitate brain access, researchers
can develop more effective methods.

After demonstrating the efficacy of intranasal administration, it is important to
determine whether the drug has reached the brain directly or has been absorbed sys-
temically. Nanoparticles can serve as vectors to transport drugs through axonal nerves
to the brain, where they are released. Alternatively, drugs can be released in the nose,
where they take the pathway that leads directly to the brain through the olfactory or
trigeminal nerves (Ahmad et al., 2017). The fate of drugs or drug-loaded nanocarriers
in the brain depends on the chemical and physical characteristics of the nanomedicine
under study.

Two important indices, namely %DTE and %DTP that allow for an assessment of
the effectiveness of a formulation in reaching the brain via direct access pathways, such
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as the olfactory or trigeminal pathways, following intranasal administration. These pa-
rameters are integral for obtaining a comprehensive understanding of the formulation
data, which enables a quantitative evaluation of whether the drug has utilized the
direct nose-to-brain pathways to reach the brain.

%DTE refers to drug targeting efficiency. This targeting index is defined differently
by researchers. According to Pokharkar (Pokharkar et al., 2020) ”%DTE represents the
time average partitioning ratio of the drug”, between the blood and the brain. Accord-
ing to Kozlovskaya (Kozlovskaya et al., 2014) ”%DTE indicates the relative exposure of
the brain to the drug following intranasal administration vs. systemic administration”.
It’s the partitioning ratio between brain tissue and plasma through the IN route vs. the
IV route (Mao et al., 2019). The percentage of medication that enters the brain after
intranasal delivery following the direct channels (trigeminal and/or olfactory neural
pathways) is referred to as the nose-to-brain direct transport percentage (%DTP). High
DTP levels suggest a high percentage of direct transport from the nose to the brain.

The aim of this study was to find a correlation between well-defined and selected
parameters such as the particle size, the surface charge zeta potential, the type of
nanocarrier, and the targeting efficiency indexes %DTE and %DTP. When a nanomedicine
is administered intranasally, researchers employ the DTP to characterize trigeminal and
olfactory participation rather than the systemic pathway. Furthermore, the correlation
studies took into consideration the possible impact of the molecular weight of the con-
veyed drug.

This research study aimed to provide a comprehensive analysis of the literature
data on PubMed regarding scientific research on nanomedicine for Nose-to-brain drug
delivery in the last ten years, from 2010 to February 2021. The selected research papers
were studied to gain insights into the developments in this field over the last decade.
To ensure accurate analysis of the data, a database was constructed, taking great care
to allow for the creation of mathematical models. A bibliographic research was con-
ducted on ”nanomedicine and nose-to-brain drug delivery” to gather relevant data.
The ultimate goal was to evaluate the progress made in this field of research over the
past decade. The selection criteria for the articles were carefully chosen to include only
those of actual interest to the project’s objectives. After collecting the relevant arti-
cles, a quantitative analysis was conducted, paying particular attention to identifying
the AUC values necessary for calculating the targeting indexes, such as AUC brain
and AUC blood relative to nasal and systemic administration. If the examined arti-
cles did not report the DTE and DTP targeting indexes, they were calculated using the
AUC values. To ensure data homogeneity, any values of these parameters that were
already calculated in the selected articles were recalculated and reported in this work
by rounding to the second decimal number and neglecting the standard deviation.
Therefore, some values may be slightly different from those reported in the original
research articles. Overall, this study provides a detailed analysis of the literature data
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on nanomedicine for nose-to-brain drug delivery in the last decade, allowing for the
evaluation of progress made in this field of research and the creation of a database that
can be used for further analysis.

7.1 Research Methodology

This study involves several phases, which are the following:

• Data Collection

• Data Cleanup

• Data Conversion

• Data Standardization

• Data Classification

7.1.1 Data Collection

In order to identify scientific literature reporting studies on nose-to-brain drug deliv-
ery, a search was conducted in the PubMed database using specific keywords. The
search date was February 18, 2021, and this date is referred to as “the search date” in
this thesis. During the bibliographic research process, several criteria were established
to screen the publications. The selected articles were those that met the following cri-
teria: 1) publication date no earlier than January 2010, 2) reporting of particle size
and zeta potential, 3) in vivo and/or in vitro studies are conducted in each article, 4)
biodistribution studies of the drug conducted via both intranasal and intravenous or
oral routes, and 5) reporting of the AUC values for both the brain and blood concentra-
tion versus time curve of the drug for both the intranasal and parenteral routes. Only
the research papers that fulfilled these criteria were included in the data analysis.

Once the relevant articles were collected, a quantitative analysis was performed.
Special attention was given to identifying the AUC values necessary for calculating
the targeting indexes. AUC values for both the brain and blood were reported in the
tables or graphics of each article for both nasal and systemic administration. If these
values were not reported in the articles, they were calculated using the DTE and DTP
targeting indexes. In order to ensure homogeneity of the collected data, any previously
calculated values of these parameters in the selected articles were recalculated and
reported in this study, with standard deviation neglected and rounded to the second
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decimal place. As a result, some values may differ slightly from those reported in the
original research articles.

To conduct a thorough analysis of the data, we started to work on the construc-
tion of a database that would facilitate the creation of mathematical models. Before
proceeding with the IT analysis, we conducted extensive groundwork to gather the
necessary data. Specifically, we undertook a comprehensive bibliographic search on
”Nanomedicine and nose-to-brain drug delivery” to evaluate the latest advancements
in this field over the past decade. Our search criteria enabled us to select only the most
relevant articles for the project. We then used the data gathered from these selected
articles to construct the ”NANOSE” database, which was further refined to create a
second database called ”NANOSE2B” for computer-based study. The collected data
contains several attributes that include pharmacological category, particle size, zeta
potential, molecular mass of the active ingredient, name of the active ingredient, type
of nanocarrier used, DTE, and DTP. With this rich data, we can develop a compre-
hensive understanding of the various aspects of nanomedicine and nose-to-brain drug
delivery, thereby enabling us to assess the progress made in this field over the past
decade.

7.1.2 Data Cleanup

Data cleanup activity has been performed to make it useful for the analysis. A data
cleanup activity was first carried out starting from the initial database. All the data
collected should be used in the analysis, each row was corrected in order to refer to
a single value. Since particle size and zeta potential columns values are in range, we
extracted both extreme and mean values for particle size and zeta potential to perform
the further experiments. Missing values are adjusted by taking mean based on the
same type/subtype or pharmacological categories.

7.1.3 Data Conversion

It was necessary to perform a conversion from categorical to numerical data for some
columns. Data conversion from categorical values to numerical is needed for data anal-
ysis and training a model because most machine learning algorithms and models are
designed to work with numerical data. Categorical data, on the other hand, represents
discrete values and cannot be used directly in most machine learning algorithms. The
following columns or attributes are converted from categorical to numerical pharma-
cological categories, active agent, and type/subtype.
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7.1.4 Data Standardization

In order to perform a correct data analysis, the standardization process must be carried
out. During this phase, the aim is to illustrate the study about the analysis, properly
treating and modeling the data. Standardization is a process of data transformation
consisting of a change of scale, in order to be able to directly compare the data between
each other. In this way, we define a new range where these values will be inserted. The
z-scoring strategy for data standardization is applied to perform a correct data analysis.
The z-scoring standardization reports the data in a new range where the mean of the
data is equal to 0 and the standard deviation is equal to 1.

The standardization equation 7.1 is used to transform a given variable to a standard
normal distribution. The equation is as follows:

z =
x− µ

σ
(7.1)

Where z is the standardized value, x is the original value of the variable, µ is the
mean of the data, and σ is the standard deviation of the data. The equation shows that
to standardize a variable, you need to subtract the mean from the variable and then
divide the result by the standard deviation. The resulting value z will have a mean of
0 and a standard deviation of 1, making it easier to compare with other standardized
variables.

7.1.5 Data Classification

Classification experiments have been conducted using different state-of-the-art ma-
chine learning algorithms such as Support Vector Machine (SVC), NuSVC, Random-
ForestClassifier, ExtraTreesClassifier, BaggingClassifier, DecisionTreeClassifier, Gradi-
entBoostingClassifier, RidgeClassifierCV, LinearDiscriminantAnalysis, BernoulliNB, Ad-
aBoostClassifier, LinearSVC, GaussianProcessClassifier, KNeighborsClassifier, Gaus-
sianNB, PassiveAggressiveClassifier, and SGDClassifier.
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Figure 7.1: 10-fold accuracy Comparison using particle size and zeta potential mean
values.

Results using particle size and zeta potential Mean Values

The Figure 7.1 presents the results of different machine learning algorithms on the
dataset using 10-fold cross-validation. The mean accuracy and standard deviation
of accuracy across the 10 folds are reported for each algorithm. The results suggest
that NuSVC, ExtraTreesClassifier, and KNeighborsClassifier are the top-performing
algorithms, while SGDClassifier performs the lowest. We have also reported results
for all the classifiers using 20% data as test split using only two attributes particle size
and zeta potential mean values as shown in Figure 7.2.
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Figure 7.2: Results for all the classifiers using 20% data as test split using only two
attributes particle size and zeta potential mean values.
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We have reported classification results using particle size and zeta potential mean/middle
values where type of DTE/DTP is the target attribute. In this experiment, 10-fold mean
accuracy is obtained for all the classifiers using only two attributes particle size and
zeta potential mean values. The comparison of different algorithms is given in the
table with 10-fold accuracy mean and standard deviation.

Among all the algorithms, NuSVC has the highest mean accuracy of 0.74, followed
by ExtraTreesClassifier with 0.70 and KNeighborsClassifier with 0.68 mean accuracy.
On the other hand, SGDClassifier has the lowest mean accuracy of 0.45. Box plot
comparison for 10-fold is shown in the Figure 7.3.

Figure 7.3: Box plot 10-fold comparison using particle size and zeta potential mean
values.

Results using particle size and zeta potential Extreme Values

We have performed classification results using particle size and zeta potential extreme
values where type of DTE/DTP is the target attribute. In this experiment, 10-fold
mean accuracy is obtained for all the classifiers using only two attributes particle size
and zeta potential extreme values. The comparison of different algorithms is given in
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the Figure 7.4 with 10-fold accuracy mean and standard deviation. The table shows
the performance of different machine learning algorithms in terms of their 10-fold
accuracy mean and standard deviation. Among the algorithms listed, NuSVC and
RandomForestClassifier have the highest accuracy mean of 0.70 and 0.69, respectively,
while the SGDClassifier has the lowest mean accuracy of 0.45. We have also reported
results for all the classifiers using 20% data as test split using only two attributes par-
ticle size and zeta potential mean values, as shown in Figure 7.5. Box plot comparison
for 10-fold is shown in Figure 7.6.

Figure 7.4: 10-fold accuracy comparison using particle size and zeta potential extreme
values.
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Figure 7.5: Results for all the classifiers using 20% data as test split using only two
attributes particle size and zeta potential extreme values.
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Figure 7.6: Box plot 10-fold comparison using particle size and zeta potential extreme
values.

7.1.6 Results Evaluation

Objective: To understand if specific ranges of zeta potential and/or particle size are
correlated with good predictions.

1. Zeta Potential

We have created a histogram for the classifier’s success percentage in a specific range
of zeta potential where the x-axis shows the classifiers and the y-axis shows the per-
centage of each classifier success in each bin range as shown in Figure 7.7. The data
is divided into 5 bins, where the first bin starting from minimum value and last bin
ending with maximum value of zeta potential as you can see the bins in Figure 7.8.
For example, the first bin range is (-47.5, -25.5] and this bin contains n=9 instances or
elements in that range. Then, plot is created only for the percentage of true values for
each classifier in that range. True value means the classifier gets the right target result
using zeta potential values. For example, if the zeta potential value is -47.5 and target
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for type of DTE/DTP is NCvsDRUG SOLUTION, then the classifier gets success only
if the result is NCvsDRUG SOLUTION.

Figure 7.7: Classifier success percentage using zeta potential attribute.

If we observe the graph, the ranges A and E (blue and red bins in the plot) have
good percentage results, but these ranges contain a limited number of elements (9 and
8 respectively), making this statement not generalizable from a statistical point of view.
Regarding the remaining ranges, in general, good results are associated with range B
(orange bins), followed by C and D. In some cases, elements in C have comparable
results with those in B such as for the nuSVC, Bagging, Gaussian Process or SVC
classifiers.

Figure 7.8: Zeta potential bin ranges and their number of elements.
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2. Particle Size

We have plotted the classifier success percentage as shown in Figure 7.9 in a specific
range of particle size where the data is divided into 5 bins, as you can see the bins in
Table 7.10. .

Figure 7.9: Classifier success percentage using particle size attribute.

As done previously, although results associated with ranges D and E are perfect
(i.e., 100%), since the number of elements in this range is limited to only 3 examples
each, we can’t state any statistically evident statement. The same applies to range C,
which has a slightly higher number of elements (10) and good success classification
percentages between 70% and 90%. For the remaining ranges, we can observe that all
classifiers have a better success rate with elements in range A with respect to inputs
from range B. In particular, success rates associated to range A span from about 55%
to 75%, whereas results associated to range B are in the range 35% - 55%.
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Figure 7.10: Particle size bin ranges and their number of elements.

7.2 Conclusion

We performed nose-to-brain drug delivery data preprocessing, and data classification
using state-of-the-art machine learning algorithms. To collect the dataset required for
the analysis, a comprehensive search was performed on the PubMed database to iden-
tify research articles on ”nanomedicine and nose-to-brain drug delivery,” which were
published between January 2010 and February 2021. The search criteria were carefully
defined to ensure the selection of relevant articles. Particular attention was given to the
presence of biodistribution studies, as this information was essential for the calcula-
tion of the targeting indices %DTE and %DTP. After the data collection, we performed
data prepossessing such as data cleaning, data conversion, and data standardization
to correctly analyze and process the data for training the machine learning models.
Further, classification experiments have been conducted using different state-of-the-art
machine learning algorithms using particle size and zeta potential mean values and
extreme values. Results show that NuSVC achieved the highest 10-fold mean accuracy
as compared to other classifiers. We also reported the results to understand if specific
ranges of zeta potential and/or particle size are correlated with good predictions.
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