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Abstract: Cognitive decline refers to a deterioration of intellectual and learning abilities and related
memory problems, and is often associated with behavioral alterations, which prevents sufferers from
carrying out the most common daily activities, such as maintaining normal productive interpersonal
relationships, communicating, and leading an autonomous life. Numerous studies have highlighted
the association between cognitive decline and autoimmune disorders, including rheumatoid arthritis
(RA). RA is a chronic, inflammatory, autoimmune disease that involves systems and organs other than
the bones and joints, with varying severity among patients. Here, we review the studies investigating
the link between cognitive decline and RA, focusing on the main molecular pathogenetic mechanisms
involved. The emerging body of data suggests that clinical, psychological, and biological factors may
contribute to the pathogenesis of cognitive decline in RA, including cardiovascular complications,
chronic pain, depression, inflammatory factors, changes in hormone levels, drug side effects, and
genetics. Further studies are warranted in order to fully clarify the basis underlying the association
between cognitive decline and RA and to find new possible diagnostic strategies and therapeutic
targets for RA patients.

Keywords: rheumatoid arthritis; cognitive decline; pathogenesis

1. Rheumatoid Arthritis (RA)

RA is a chronic, inflammatory, autoimmune disease that involves systems and or-
gans other than the bones and joints, with varying severity between patients [1]. RA is
characterized by symmetrical joint pain associated with morning stiffness (joints are af-
fected for >30 min), hyperplasia (swelling), and cartilage and bone destruction that causes
rheumatoid nodules under the skin (deformity) [2,3]. However, RA not only affects the
joints but is also associated with secondary amyloidosis, lymphomas, cardiovascular and
pulmonary disease, vasculitis, and psychological and skeletal disorders that may cause
permanent disability in many instances [2]. The presence of RA is relatively constant in the
global population, with a prevalence between 0.5% and 1.0% in the European and North
American populations [4]. Twice as many women are affected than men, and although it is
more common in people in their fifties, it can appear at any age [4].

A complex interaction between genotype and exposure to environmental factors
(cigarette smoking, air pollutants, and occupational dust) is likely to determine the onset
and development of RA [5]. Genetic studies have found an association of more than
100 polymorphisms with RA, mainly in the major histocompatibility complex (MHC) locus,
but also in genes encoding for cytokines/chemokines and their receptors, components of
intracellular signaling pathways, and costimulatory factors [6]. The implication of genetic
factors in the RA pathogenesis is demonstrated by a positive family history, which increases
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the risk of RA by about three to five times [4,7]. Along the same lines, a concordance rate
of 15% to 30% is observed among monozygotic twins, while only a 5% concordance can
be observed among dizygotic twins [1]. The characteristic chronic inflammation of the
joints suggests an autoimmune origin of the pathology [8]. Typical histological findings
are the symmetrical synovial proliferation, with the destruction of cartilage and bone
damage induced by the activation of self-reactive T and B lymphocytes, which produce
proinflammatory cytokines and autoantibodies [9] (Figure 1). Evidence obtained from
preclinical and clinical studies from animal models of RA and RA patients demonstrates
that CD4+ T cells belonging to the proinflammatory subgroups Th1 and Th17, together with
M1 macrophages, contribute to the development and maintenance of RA and counteract
the action of Th2 and Th3 anti-inflammatory cells and M2 macrophages [8].
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Figure 1. Pathogenic role of immune cells in rheumatoid arthritis (RA). The immune cells mainly involved in the patho-
genesis of RA are B cells, T cells, and macrophages. These cells are normally present in the synovial tissue. B cells release
proteins, such as rheumatoid factor (RF), protein antibodies (ACPAs), and proinflammatory cytokines, that support the
establishment of RA. B cells also mediate the activation of T lymphocytes through the expression of costimulatory molecules.
In RA, the main function of T lymphocytes is to activate macrophages. Activated T lymphocytes and macrophages release
proinflammatory molecules, such as cytokines and chemokines, which keep the osteoarticular tissue inflamed. This condi-
tion favors the activation of synoviocytes and osteoclasts, with consequent damage to the osteoarticular tissue and pannus
formation [1]. APCs: antigen-presenting cells, ROS: reactive oxygen species.

2. Diagnosis and Treatment of RA

RA is a symmetrical polyarthritis with a gradual and persistent chronic course that
primarily involves the joints of the hands and feet [4]. The key features of inflammatory
arthritis are the presence of early morning stiffness, joint swelling affecting more than
three joints, and tenderness across the metacarpo- and metatarso-phalangeal joints, as
evaluated by the “squeeze test.” Axial joint involvement is less common, with cervical spine
involvement occurring in 30–50% of cases, but rarely in isolation. Temporo-mandibular
and crico-arytenoid joints may also be affected [10]. However, the clinical presentation
and the course of the disease varies among patients, with some having very acute onset
polyarthritis [4].

The European League Against Rheumatism (EULAR) Disease Activity Score (DAS-28)
includes the evaluation of the number of affected joints, the level of acute inflammatory
markers, and the patient global well-being score [10]. RA is characterized by the presence of
rheumatoid factor (RF) and anti-citrullinated protein antibodies (ACPAs). Positive serology
for RF can be found in 60–80% of patients with established RA, but it is less frequently
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present in early RA (<50%). ACPAs have a specificity of 94–97% and a sensitivity of
62–72% in early RA. ACPAs can be detected early in the course of RA, often appearing
before RF, and may be observed before clinical manifestations of the disease. In ACPAs-
negative patients, other autoantibodies have been observed, including anti-carbamylated
proteins [11], anti-malondialdehyde acetaldehyde [12], anti BRAF [13], 14-3-3eta, anti-CarP,
anti-Sa [14], and anti PAD3/PAD4 [15] antibodies.

Non-steroidal anti-inflammatory drugs (NSAIDs), such as ibuprofen, naproxen, ke-
toprofen, piroxicam, diclofenac, and Celecoxib, are widely used as symptomatic thera-
pies [16]. Disease-modifying antirheumatic drugs (DMARDs) are a heterogeneous col-
lection of agents that represent the mainstay of treatment for RA [16]. DMARDs can be
classified as conventional synthetic DMARDs (csDMARDs, which include methotrexate,
sulfasalazine, leflunomide, and hydroxychloroquine), targeted synthetic DMARDs (tsD-
MARDs, which include tofacitinib and baricitinib), and biological DMARDs (bDMARDs,
such as adalimumab, tocilizumab, secukinumab, abatacept, and anakinra). Methotrexate
represents the first choice csDMARD. Leflunomide or sulfasalazine is used in the case
of contraindication to methotrexate. In patients not responding to treatment, or in the
presence of poor prognostic factors, it is recommended to add a bDMARD or tsDMARD.
Steroids, although effective in reducing pain and disease progression, are used temporarily
as an adjunctive treatment because of their side effects [17].

3. Cognitive Decline

Cognitive decline can be defined as a psychophysical condition that is characterized
by an alteration in the orientation, attention, problem-solving abilities, memory, and
executive functions [18]. Cognitive impairment may range from a subtle decline in a single
cognitive domain to impairment in multiple cognitive domains (mild cognitive impairment
(MCI)) to frank dementia, which is characterized by cognitive decline and the loss of
function. To diagnose MCI, the following parameters should be met: complaint of a decline
in cognitive function, impairment of one or more cognitive domains, and independent
function preserved, with no alteration in social and work skills [19].

Impaired episodic memory is typically seen in patients with MCI, who may later
progress to dementia. Alzheimer’s disease (AD) is the most common form of dementia
and accounts for 50–70% of dementia cases [20].

The growth of the aging population has been associated with an increased burden
from cognitive disorders. The prevalence of MCI ranges from 12% to 18% among the older
adults (≥65 years old) with an annual 10–15% conversion rate to AD [20].

Cognitive impairment can arise from many chronic diseases, such as hypertension,
dyslipidemia, vascular disease, diabetes, chronic obstructive lung disease, depression,
anxiety, autoimmune diseases, epilepsy, and drug dependency. Head injuries can lead to
impaired cognition. Furthermore, anti-depressants, anticonvulsants, and antipsychotics
are associated with cognitive decline. However, in most of these conditions, cognitive
disorders are treatable, particularly when they are detected early through monitoring.

For the diagnosis of cognitive decline, different standardized tests have been de-
veloped, including the Mini-Mental State Examination (MMSE), the Montreal Cognitive
Assessment (MoCA), the Trail-Making Test (TMT), the Victoria Stroop Test (VST), the
Wechsler Adult Intelligence Scale (WAIS), and the Benton Visual Retention Test (BVRT) [21].
The Beck Depression Inventory (BDI) and the State-Trait Anxiety Inventory (STAIT/S) are
used to assess the presence of depression and anxiety, which are commonly found in RA
patients [21].

4. RA and Cognitive Decline

An increased risk of cognitive decline has recently been associated with the presence
of rheumatic diseases [22,23]. It is hypothesized that the triggering cause could be rep-
resented by the systemic inflammation that is associated with a chronic rheumatological
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condition [22,23]. In particular, numerous studies have shown the presence of a cognitive
decline in RA patients [18].

To date, the molecular pathogenetic mechanisms that underlie the association of cog-
nitive decline and RA are not fully clarified. However, during the last few years, a growing
number of studies have investigated the link between these conditions, highlighting the
potential pathogenic role of several clinical, psychological, and biological factors (Figure 2).
These include cardiovascular complications and chronic pain, along with the involvement
of autoimmune and inflammatory factors, changes in hormone levels, drug side effects,
genetic factors, and psychiatric disorders [18,22,24–26].
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Among the psychiatric conditions, depression and anxiety are mostly associated with
RA patients [27]. Usually, the peak of onset of the disease occurs in individuals during
their professional and social life, thus compromising the social sphere [28,29]. It has been
observed that depression affects up to 66% of patients, anxiety affects 70% of patients, and
nearly 17% of RA patients have a major depressive disorder [30–33]. Depression is usually
associated with higher levels of pain and disability, resulting in a lower health-related
quality of life and increased mortality [34,35]. Moreover, RA disease activity has been
associated with cognitive decline [36,37].

Several studies have reported that the association between cognitive decline and RA
is more evident in patients of advanced age [38–41]. A debilitating condition leading to
cognitive decline is associated with the recorded increase in accelerated inflammatory
atherosclerosis with a consequent risk of stroke, especially in elderly RA patients with
long-standing illness [42]. However, cognitive decline has also been observed in young RA
patients, in particular during the early stages of the disease [43].

Other risk factors for cognitive decline in RA include cardiovascular risk and the use
of certain drugs, such as glucocorticoids [38]. However, there are some studies that found
no association between cardiovascular risk or medication intake and cognitive decline
in RA patients [36,44]. On the other hand, treatment with biological anti-tumor necrosis
factor (TNF) therapies in RA patients may be protective, showing a lower risk percentage
of developing cognitive decline [39].

In this review, we analyzed and explored the correlation between cognitive decline and
RA from a pathogenic point of view, focusing on the main molecular mechanisms involved.
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5. Clinical and Psychological Factors

Among the clinical and psychological factors that may be involved, the presence
of cardiovascular complications, chronic pain, and depression seems to be particularly
relevant in the onset and development of cognitive decline in RA patients.

5.1. Cardiovascular Complications

It is known that RA patients have a higher risk of cardiovascular diseases (e.g., stroke
and myocardial infarctions) [39]. The common molecular mechanisms that relate RA
and cardiovascular diseases are inflammatory mediators, post-translational modifications
of peptides and/or proteins and the consequent immunological response, changes in
lipoprotein levels, higher oxidative stress, and endothelial dysfunction [45]. Interestingly, it
has been suggested that the increased risk of cardiovascular diseases in RA patients could
be involved in cognitive decline via mechanisms associated with metabolic syndrome
and inflammatory proteins [18]. On the other hand, it is known that the risk of dementia
is higher in the presence of cerebrovascular dysfunctions and that cerebral small vessel
disorder may impair cognitive and cerebral functions, thus suggesting other possible links
between dementia and RA [39]. However, it has also been shown that there is no correlation
between cognitive function and carotid atherosclerotic changes in patients with RA, thus
suggesting the need for more studies in this field [36].

5.2. Chronic Pain

Previous studies have shown that cognitive functions may be affected by pain in RA
patients [46]. Although pain may be considered a useful signal of present or possible injury,
chronic pain could damage attention and memory and might impair the capability to work,
sleep, and carry out daily life activities, which usually worsens over time [46]. Even though
it is known that chronic pain negatively influences cognitive functions, such as memory,
attention, and mental flexibility, the exact mechanism underlying pain-related cognitive
impairment should be clarified [47]. In particular, it has been suggested that two possible
factors could be involved. On the one hand, this might be due to some overlaps between
the brain regions involved in cognition and pain modulation, such as the prefrontal cortex
and the anterior cingulate cortex [39,47]. On the other hand, this could largely derive from
hypervigilance to pain [39,47]. Indeed, patients focus their attention on coping with pain,
thus decreasing their cognitive task performance [47].

5.3. Depression

RA patients also have a higher prevalence of mood disorders than the general popula-
tion and, in particular, depression is the psychiatric condition most frequently associated
with RA [21,48]. Of note, cognitive decline could arise either along with depression or
independently from this factor [21]. It is known that depression may cause problems with
concentration and executive functions and that cognitive decline could be a feature of
depression [18]. The close relationship between peripheral and brain immune responses
suggests that immune-mediated inflammatory disorders and depression, which often coex-
ist, could share different pathophysiological mechanisms [49]. Indeed, it has been proposed
that proinflammatory mediators may negatively impact monoaminergic neurotransmission
and the maintenance of synaptic plasticity [49]. In addition, as we reviewed elsewhere,
increasing evidence indicates that the augmented levels of proinflammatory cytokines,
such as interleukin (IL)-6, IL-1β, TNF-α, and macrophage migration inhibitory factors that
are found in RA patients, may play a role in the induction of depression through multiple
biological mechanisms [49–52]. That proinflammatory cytokines may be implicated in the
pathogenesis of depression concurs with the observation that other immunoinflammatory
and autoimmune diseases associated with upregulated production of these cytokines, such
as psoriasis and multiple sclerosis, are associated with depression [53–56].

Note, however, that the polarization toward the upregulated production of proinflam-
matory cytokines may not entirely account for the induction of depression, as autoimmune
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diseases characterized by combined upregulated production of type 1 (proinflammatory)
and type 2 (anti-inflammatory) cytokines, such as systemic lupus erythematosus (SLE) [57],
are also associated with depression. In particular, in SLE patients, depression has been
shown to correlate with the levels of the anti-inflammatory cytokine IL-10 [58].

Hence, it is likely that the abnormal functioning of the immune system may dictate
the outcome of depression acting in concert with different genetic, environmental, and
pharmacological factors. Nonetheless, and of particular relevance for the topic of this
review, not only there is a consensus that the augmented production of proinflammatory
cytokines plays a role in the pathogenesis of depression in RA but it is also emerging that
their augmented levels may be used as a personalized parameter to predict the risk of
depression and aid the design of tailored therapeutic approaches. Along this line, it is of
interest that RA patients that received TNF-α inhibitors as a standard-of-care treatment for
RA also exhibited an improvement regarding their depression [59].

These observations could not only contribute to clarifying the increased prevalence of
depression among RA patients but could also shed new light on the possible biological
mechanisms involved in the link between depression, cognitive decline, and RA.

6. Biological Factors

The cognitive dysfunctions that are associated with RA are often regarded as a conse-
quence of functional disabilities, drug-related effects, and chronic pain. This is supported
by electroencephalography and brain MRI data that show increased responses to nocicep-
tion in RA patients as compared to healthy people [60,61]. However, although no global
differences in intracranial volume were observed between RA patients and healthy subjects,
a significant increase in the volume of basal ganglia was documented [62]. In particular,
Wartolowska et al. found that the caudate nucleus had the most significant increase, which
led to the conclusion that these structural changes may be due to pain processing rather
than a direct consequence of the disease. Despite this data, other studies have shown
both augmented and reduced gray matter structure volumes in patients suffering from
chronic pain, suggesting that several factors could be involved, such as neurodegeneration,
adaptive changes to the disease, pharmacological treatment, and changes in lifestyle [62].
Bekkelund and colleagues observed that only RA patients with a long-established disease
(>15 years) have a decrease in brain volume, which could be related to neurodegenerative
changes [63].

Regarding the biological factors, autoimmune and inflammatory factors, along with
changes in hormone levels, drug side effects and genetic factors seem to represent the links
between cognitive decline and RA (Figure 3).
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6.1. Autoimmune and Inflammatory Factors
6.1.1. Premature Immunosenescence

Petersen and colleagues studied the link between cognitive functions and peripheral
lymphocyte subsets in RA patients [64]. In comparison to controls, patients showed an
expansion of CD8+CD28− cells and a reduction of memory CD8+CD45RO+ T cells [64]. Of
note, CD8+CD28− and CD8+CD45RO+ T cells were associated with memory decline [64].
In light of these results, accelerated immunosenescence could be involved in the relation-
ship between memory dysfunction and RA [64].

6.1.2. Autoantibodies and Brain-Derived Proteins

Baptista et al. investigated the circulating levels of autoantibodies in order to evaluate
whether there was a link between these parameters and cognitive functions in RA patients
with active disease [25]. Interestingly, they found that cognitive performance was negatively
associated with the levels of the anti-myelin basic protein (MBP) IgG, the anti-myelin
oligodendrocyte glycoprotein (MOG) IgG, and S100 calcium-binding β (S100β) [25]. The
authors hypothesized that the augmented permeability of the blood–brain barrier (BBB)
might represent the trigger of the pathophysiological mechanisms of cognitive decline in
RA [25]. Indeed, antibodies and inflammatory mediators might be able to reach the cerebral
parenchyma, leading to an exaggerated release of neurotoxic factors, thus promoting
neuroinflammation, along with demyelination processes that are induced by anti-MOG
and anti-MBP antibodies [25]. Overall, these factors could negatively alter the number of
neurons and synapses, as well as information processing speed and neurogenesis, leading
to cognitive decline [25].

Considering that the central nervous system’s involvement in RA might derive from
BBB damage associated with chronic inflammation, Sag et al. examined the potential role
of BBB damage and evaluated the action of TNF blocker therapy on BBB function in RA
patients [65]. They found that S100β and glial fibrillary acidic protein (GFAP) levels were
significantly increased in patients compared to controls [65]. Interestingly, the group treated
with TNF blocker therapy showed significantly reduced levels of S100β and GFAP after
6 months from the start of the treatment [65]. The S100β levels increased in RA patients,
along with lesions in the deep white matter examined with cranial magnetic resonance
imaging (MRI) [65]. Overall, the authors suggested that the anti-TNF therapy in RA could
both reduce disease activity and joint erosions by inhibiting inflammation and block the
possible involvement of the central nervous system in BBB impairment [65].

Furthermore, Hamed et al. evaluated the serum levels of S100β and neuron-specific
enolase (NSE) in female RA patients [66]. Of note, they found that, compared to controls,
patients showed increased concentrations of S100β and that increased concentrations of
S100β were associated with worse cognitive performance and increased concentrations
of NSE [66]. These data are in line with previous studies suggesting that increased levels
of NSE may enhance neuroinflammatory processes, oxidative stress, and neuronal apop-
tosis [66]. These results highlight the potential diagnostic importance of the assessment
of the serum levels of certain specific brain-derived proteins, such as S100β and NSE, in
RA patients in order to identify the cognitive dysfunction that is associated with the brain
injury subsequent to inflammation [66].

6.1.3. Proinflammatory Cytokines

Chronic inflammation with high circulating levels of proinflammatory cytokines and
sustained brain cytokine production is considered to be the leading cause of cognitive
impairment [67,68]. In addition to cytokines, autoantibodies, including the RF [69,70] and
immune complexes, can also induce neuroinflammatory responses in the brain [71]. Indeed,
in a murine model, it was shown that immune complexes in the brain parenchyma elicited
inflammation, along with augmented microglial expressions of CD11b, CD68, and FcRII/III,
as well as consequent neuronal damage, in the absence of neutrophil recruitment [71].
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Importantly, these effects were dependent on the Fcγ receptors but not on the complement
system [71].

In the cerebrospinal fluid (CSF) of RA patients, IL-1β levels have been found to
be significantly increased when compared with controls. Interestingly, CSF IL-1β levels
were higher in comparison to the serum levels, indicating that RA is associated with
brain immune activation, despite the lack of other markers of systemic inflammation.
Concordantly, Lampa et al. observed a decrease in IL-1R antagonist (IL1Ra) in RA CSF. On
the other hand, no significant differences were found in CSF TNF-α levels between RA
patients and healthy controls, while a trend toward an increase was observed for IL-6 [72].

It has been suggested that cytokines, such as IL-1β and TNF-α, can modulate the ex-
citability of neurons, not only via interaction with their receptors but also via noncanonical
signaling pathways. In particular, IL-1β and TNF-α are able to modulate the main types of
voltage- and ligand-dependent membrane channels in brain cells (reviewed by [73]). At
the cellular level, IL-1β is able to inhibit the activity of glucose-sensitive neurons of the
lateral hypothalamus to promote the production of vasopressin in the hypothalamus, to
diminish the GABA-mediated inhibition of Purkinje cells in the cerebellum, to hinder the
glutamatergic transmission in the hippocampus, and to inhibit the N-type voltage-gated
Ca2+ channels. Moreover, IL-1β favors astrocyte and microglial proliferation, stimulates
angiogenesis in the brain, and increases blood vessel permeability (reviewed by [73]). On
the other hand, TNF-α is able to increase the expression of AMPA glutamate receptors
and to reduce the expression of GABA-A receptors in the hippocampus, consequently
controlling the plastic changes in the neural networks of this region (reviewed by [73]).
Moreover, TNF-α can enhance the outward K+ current in cortical neurons and reduce
glutamate-induced currents in hippocampal neurons via the NF-κB pathway (reviewed
by [73]).

These data support the notion that cytokines have a significant role in the modulation
of synaptic plasticity and could regulate memory formation and cognitive function. How-
ever, the effect of TNF-α in learning and memory could be age-dependent. Indeed, older
mice chronically overexpressing neuronal TNF-α display spatial memory impairments,
while no such deficits are observed in young (30-day-old) mice [74,75].

A negative role for IL-1β regarding learning and memory has been demonstrated in
rodent models of chronic elevated IL-1β levels in the brain. The chronic injection of IL-1β
into the lateral ventricles has been reported to induce spatial memory deficits in rats [76].
Moreover, chronic hippocampal overexpression of IL-1β in mice caused an increase in
glial inflammatory markers, increased the production of cytokines and chemokines in the
hippocampus, and lowered the levels of the Arc gene, which is associated with neuron
plasticity [77,78]. Accordingly, these mice showed decreased retention of spatial memory
and fear memory [77,78].

Furthermore, a detrimental effect of IL-6 on cognition has been described [79]. As
compared to wild-type (WT) mice, IL-6 knockout (KO) animals did not display working
memory impairment and lacked the expected LPS-induced increase in TNF-α and IL-1β in
the hippocampus [80], suggesting that IL-6 is required for the LPS-induced production of
TNF-α and IL-1β in the brain and the development of behavioral impairments. Further-
more, mice chronically expressing astrocytic IL-6 display a progressive age-related decline
in learning performance that correlates with presynaptic loss [81] and a decrease in cortical
and hippocampal neuronal calbindin [82].

Interestingly, Chou et al. found that RA patients receiving an anti-TNF treatment
(infliximab, etanercept, and adalimumab) had a reduced risk of developing AD as com-
pared to controls [83]. Contrarily, the risk of developing AD was not changed by treatment
with other DMARDs. More importantly, the impact of anti-TNF treatment on cognition
seems to occur before its anti-inflammatory effects become clinically apparent in the joints.
In a functional MRI (fMRI) study [84], upon anti-TNF-α therapy in patients with active
RA, brain activation was significantly decreased within 3 days after treatment, while the
disease activity score was significantly reduced only by day 28. Hence, the improvement
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in cognitive decline observed upon anti-TNF-α therapy may be a direct central effect and
may not be subsequent to the better management of pain in RA patients.

6.1.4. Lymphocyte Subsets, Chemokines, and Neurotrophic Factors

Petersen et al. evaluated the cognitive functions of RA patients with controlled and
active disease and investigated whether cognitive decline was associated with immune and
neurotrophic markers, such as lymphocyte subsets, cytokines, and neurotrophic factors,
in RA patients [85]. They found an overall cognitive impairment in RA patients and
the cognitive performance was worse in RA patients with active disease than in those
with controlled disease [85]. Moreover, in comparison to controls, RA patients showed
an expansion of some lymphocyte subsets, such as natural killer T cell (NKT) cells and
CD4+IL-17+ T cells, as well as a reduction of regulatory T cells [85]. Furthermore, RA
patients were characterized by an expansion of immature B cells (CD19+CD24+CD38+)
and plasma cells (CD19+CD27+CD38+) compared to controls, and low cognitive scores
were correlated with bigger proportions of immature B cells [85]. Furthermore, RA patients
revealed higher TNF-α, interleukin IL-2, IL-4, and IL-6 plasma levels, which was negatively
correlated with cognitive functions [85].

Moreover, chemokines and the complement system have been found to be important
mediators that are involved in CNS homeostasis [86,87]. Garré et al. showed signifi-
cant impairments in dendritic spine formation and in learning abilities upon treatment
with polyinosinic:polycytidilic acid (poly I:C), and that activation of CX3CR1highLy6Clow

monocytes impaired motor learning and learning-related dendritic spine plasticity via
TNF-α-dependent mechanisms [88]. Moreover, Blank et al. showed that the production
of CXCL10 by brain endothelial and epithelial cells was associated with diminished hip-
pocampal plasticity, and that CXCR3−/− and CXCL10−/− mice retained better memory
and learning functions [89], supporting the notion that inflammatory factors could have a
role in cognitive decline.

Moreover, increased brain-derived neurotrophic factor (BDNF) levels and decreased
glial-cell-line-derived neurotrophic factor (GDNF) levels were found in RA patients when
compared to controls [85].

Overall, these data demonstrated a global cognitive decline in RA patients, which was
associated with disease activity and immune differences, thus suggesting that peripheral
immune imbalance, along with a proinflammatory milieu, could predict the cognitive
deficits in RA. Of note, although the presence of higher BDNF plasma levels could seem
unusual in patients with chronic inflammation, such as those with RA, it should be consid-
ered that the circulating BDNF might largely be derived from leukocytes in inflammatory
diseases [90]. Interestingly, it has been shown that BDNF is constitutively expressed by
peripheral blood mononuclear cells (PBMCs) and synovial cells [90]. Instead, GDNF, whose
decreased plasma levels were found to be associated with cognitive dysfunctions in RA
patients, is produced only in the central nervous system [90]. Therefore, decreased levels of
GDNF could be a better predictor of worse cognitive performance compared to BDNF [90].

On the other hand, Pedard et al. explored the role of the cerebral BDNF pathway in
a preclinical rat model of RA [91]. This study demonstrated that arthritis was negatively
associated with the cerebral BDNF/tropomyosin-related kinase B (TrkB) pathway both at
the endothelial and neuronal levels, without correlation with the severity of inflammatory
symptoms, but they were dependent on endothelial nitric oxide (NO) production [91]. In
particular, it is suggested that reduced BDNF production by the cerebral endothelium,
deriving from reduced endothelial NO synthesis, could explain the arthritis-associated
reduced activation of neuronal TrkB activation [91]. These results might shed new light on
clarifying the relationship between cognitive and endothelial dysfunctions, which are both
present in RA [91].
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6.1.5. Differential Protein Expression

Yang et al. investigated the differentially expressed proteins that might be possible
biomarkers for a differential diagnosis of MCI in RA patients [26]. The authors com-
pared plasma protein levels from RA patients with and without MCI and from healthy
controls [26]. Interestingly, 14 differentially expressed proteins, 6 upregulated and 8 down-
regulated, were identified in RA patients with MCI [26]. These dysregulated proteins are
implicated in numerous biological processes and pathways, such as immunity, inflamma-
tion, and coagulation [26]. In particular, sonic hedgehog (SHH) and serum paraoxonase
(TTR), which were respectively upregulated and downregulated in RA patients with
MCI, seem to be promising potential plasma biomarkers for the diagnosis of MCI in RA
patients [26].

Carter et al. investigated the levels of c-Fos expression in the hippocampus, which is a
brain region that is crucially involved in cognitive function, in a preclinical rodent model
of RA, namely, the adjuvant-induced arthritis Lewis rat model [92]. A persistent dose-
and subfield-dependent expression of c-Fos was found in the arthritis group, whereas a
transient expression was found in groups without arthritis [92]. The mechanisms that cause
c-Fos expression in the hippocampus were not identified in this study [92]. Nonetheless,
other studies have previously shown that immunization with different immunogens, such
as lipopolysaccharide or proinflammatory cytokines, including TNF-α or IL-1, may induce
a sustained c-Fos immunoreactivity in the hypothalamic, limbic, and autonomic brain
areas [92].

The reason for the persistent increase in c-Fos expression in the hippocampus of
adjuvant-induced arthritis rats is not yet fully understood [92]. It is known that c-Fos
accumulates when its C-terminus is phosphorylated in the presence of sustained ERK
activation, thus indicating that hippocampal pyramidal cells in adjuvant-induced arthritis
rats may show a chronic increase in ERK activity [92]. Moreover, the higher stability of
c-Fos by phosphorylation increases ERK phosphorylation at its C-terminus [92].

Changes in c-Fos subsequent to sustained ERK signaling in adjuvant-induced arthritis
might chronically modify pyramidal cell functional processes; thus, this might favor disease
progression and could modify behavior and cognitive functions in adjuvant-induced
arthritis [92].

Overall, these results suggest that the chronic expression of c-Fos in the hippocampus
of the adjuvant-induced arthritis rats might influence several cell functions, such as synap-
togenesis, electrical activity, and neurotransmitters, and that sustained genomic alterations
in RA could be involved in different processes associated with RA, including cognitive
decline [92].

6.1.6. Rho/ROCK/NF-κB Pathway

Considering the increasing prevalence of cognitive impairment in RA patients and
the increasing lines of evidence about the role of inflammation in arthritis-induced cog-
nitive deficits, Zhu et al. investigated the effects of Salidroside (Sal, p-hydroxyphenethyl-
b-D-glucoside), which is an effective extracted ingredient of Rhodiola rosea L with anti-
inflammatory properties, on the arthritis-induced cognitive dysfunction in a preclinical
rat model of collagen-induced arthritis [93]. The results of this study showed that Sal
exerted a protective action on arthritis-induced cognitive dysfunction through the inhi-
bition of proinflammatory cytokines (TNF-α, IL-6, and IL-1β) and the regulation of the
Rho/ROCK/NF-κB pathway [93]. Systemic proinflammatory cytokines may pass through
the damaged BBB and reach the central nervous system, thus stimulating neurodegen-
erative processes [93]. Moreover, according to previous studies, the Rho/ROCK/NF-κB
pathway may be implicated in cognitive impairment [93]. The Rho/ROCK pathway is
usually involved in the production of proinflammatory factors [93]. Even though the exact
cellular processes of Rho signaling in the central nervous system have yet to be clarified, it
is known that changes in Rho signaling derived from mutations cause anomalous neuronal
connectivity and cognitive deficits in humans [93]. Furthermore, small G proteins of the
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Rho family are involved in different biological processes and in the regulation of several sig-
naling pathways that are correlated with inflammation, including the NF-κB pathway [93].
Of note, Rho proteins may regulate cell adhesion via transmembrane proteins, such as
cadherins and integrins [93]. In particular, cadherins are involved in synaptic plastic-
ity, thus suggesting that Rho proteins could be implicated in the regulation of synapse
formation and plasticity [93]. It is known that synapses provide the structural basis that reg-
ulates higher brain functions, including learning and memory, and that damaged synaptic
plasticity and neurotransmission due to inflammation may alter cognitive functions [93].

Overall, these results highlight the role of inflammation in affecting brain functions
and suggest the involvement of the Rho/ROCK/NF-κB signaling and its potential as a
possible novel molecular target [93].

6.2. Changes in Hormonal Levels

Kozora et al. found that RA patients with mild levels of disease activity showed sig-
nificantly decreased plasma levels of dehydroepiandrosterone sulfate (DHEA-S) compared
to controls and that reduced plasma levels of DHEA-S were marginally associated with
reduced scores on measures of attention [94]. Interestingly, previous studies have shown
an association between dehydroepiandrosterone (DHEA) and DHEA-S and cognitive func-
tions, both in animal models and in humans [94]. Moreover, it is known that metabolites of
DHEA may play an important role in immune regulation [94]. However, further studies
are needed in order to clarify the mediators of these cognitive differences and to further
confirm these data [94]. Overall, the results of this study shed light on the potential value
of hormones as predictors of cognitive function in RA patients [94].

6.3. Drug Side Effects

It has been shown that some drugs that are commonly used to treat RA, includ-
ing methotrexate and corticosteroids, could be associated with cognitive dysfunction in
RA [18,22]. However, the question seems to be controversial and the possible mechanisms
involved are not clear. Indeed, it is known that the anti-inflammatory action of methotrex-
ate and corticosteroids may exert positive effects on cognitive functions [22]. Nonetheless,
methotrexate could be associated with cognitive decline, confusion, and mood changes,
whereas corticosteroids could influence memory and hippocampal function [18,22]. More-
over, cognitive decline has been associated with current or long-term steroid use in RA
patients, probably due to its vascular side effects [24]. On the other hand, other studies have
shown that there is no significant correlation between cognitive decline and glucocorticoid
use for RA [44,90].

6.4. Genetic Factors

Jones et al. explored whether genetics could be related to cognitive and psychiatric
phenotypes in children and adolescents before the clinical onset of RA [95]. The authors
identified a polygenic risk score for RA, which was associated with decreased scores
on some measures of cognition, such as total IQ, performance IQ, and verbal IQ, along
with significantly higher associations with hyperactive and inattentive symptoms [95].
Moreover, trends toward negative associations with working memory (p = 0.058) and
verbal learning (p = 0.174) were also found. The results of this study highlight the presence
of a relationship between genetic risk for RA and neural phenotypes, thus indicating that
cognitive decline in RA is not just a result of disease-related processes or drug effects, but it
depends on more complex interactions that also involve genetic susceptibility and immune
factors [95].

7. Conclusions

To date, numerous studies have highlighted the association between cognitive decline
and RA and have investigated the underlying potential mechanisms. In this review, we
examined the link between cognitive decline and RA from a pathogenic point of view, fo-
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cusing on the main molecular mechanisms involved. Although the molecular pathogenetic
mechanisms underlying the association of these conditions are not still fully clarified, the
emerging results from the preclinical and clinical studies in this field suggest that different
clinical, psychological, and biological variables may contribute to the pathogenesis of
cognitive decline in RA. Regarding the clinical and psychological variables involved, the
presence of cardiovascular complications, chronic pain, and depression seem to be partic-
ularly relevant. Among the biological variables, several autoimmune and inflammatory
factors, along with changes in hormone levels, drug side effects, and genetic risk, appear
to be involved. Overall, inflammation seems to be the main actor in this scenario. Inter-
estingly, premature immunosenescence, autoantibodies, and brain-derived proteins, as
well as alterations in signaling pathways, lymphocyte subsets, cytokines, and neurotrophic
factors, might be contributing mechanisms.

Regarding the potential diagnostic and prognostic strategies and the identification of
molecular targets for cognitive decline in RA, the emerging results from the reviewed stud-
ies suggest different possibilities. These include the potential diagnostic importance of the
assessment of the serum levels of certain specific brain-derived proteins, such as S100β and
NSE, in order to identify the cognitive dysfunction that is associated with brain injury [66];
the decreased levels of GDNF as a predictor of worse cognitive performance [90]; the
evaluation of SHH and TTR as potential plasma biomarkers for the diagnosis of MCI [26];
the Rho/ROCK/NF-κB signaling as a novel molecular target [93]; the determination of
hormones as predictors of cognitive function [94].

Since inflammation, which characterizes RA, could be considered the most important
molecular pathogenetic mechanism involved in the cognitive decline associated with
RA, the use of different anti-inflammatory drugs in RA patients might acquire added
value. Indeed, the anti-inflammatory drugs, most of which are commonly used in RA
treatment, could exert a therapeutic action not only on the progression of RA but also on
the development of cognitive decline in RA patients. Therefore, the possibility to evaluate
novel pharmacological classes in order to select the most effective ones, and eventually
finding out new possible synergistic co-treatments, could be evaluated. However, it
should be noted that certain drugs, such as methotrexate and corticosteroids, might have a
controversial role in this field. Indeed, despite their anti-inflammatory action, which may
exert positive effects on cognitive functions, certain studies have suggested that these drugs
might be associated with cognitive dysfunction in RA [18,22]. However, other studies on
this topic, in particular on glucocorticoids, have found no correlation [44,90].

Among the anti-inflammatory therapies, the anti-TNF-α therapies seem to be partic-
ularly promising. Interestingly, it has recently been shown that RA patients treated with
TNF-α-inhibiting biological therapies showed a 50% decreased risk of developing cognitive
decline, where this may be due to the fact that TNF-α is involved in the physiopathology
of dementia, as well as in that of RA [39].

Along this line of research, a recent clinical trial (NCT04378621) aimed to examine
how RA influences the brain structures in RA patients and whether anti-inflammatory
treatments targeting TNF-α or JAK signaling, as compared to the physical training of
hands, exert a positive effect on neuropsychiatric symptoms, including cognitive decline,
and on morphological changes in the brain derived from the disease. The TNF-α inhibitors
considered for this study were Etanercept, Infliximab, Adalimumab, Certolizumab pegol,
and Golimumab, whereas the JAK inhibitors were Baricitinib and Tofacitinib.

Understanding the molecular basis underlying the link between cognitive decline
and RA is of fundamental importance to find out new possible diagnostic, prognostic, and
therapeutic strategies; this can be done by focusing on the discovery of novel potential
biomarkers, therapeutic targets, and treatments for RA patients. Of note, targeting immune
pathways could be a potentially valuable therapeutic approach. Considering the strong
interaction between mental and physical dysfunctions, a multidisciplinary approach that
aims to target all the variables involved seems to be promising. Further studies are highly
warranted in order to fully clarify the association between cognitive decline and RA.
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ACPAs anti-citrullinated peptide antibodies
AD Alzheimer’s disease
BBB blood–brain barrier
BDI Beck Depression Inventory
bDMARDs biological DMARDs
BDNF brain-derived neurotrophic factor
BVRT Benton Visual Retention Test
csDMARDs conventional synthetic DMARDs
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GDNF glial-cell-line-derived neurotrophic factor
GFAP glial fibrillary acidic protein
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MCI mild cognitive impairment
MHC major histocompatibility complex
MMSE Mini-Mental State Examination
MoCA Montreal Cognitive Assessment
MOG myelin oligodendrocyte glycoprotein
MRI magnetic resonance imaging
NKT natural killer T cell
NO nitric oxide
NSAIDs non-steroidal anti-inflammatory drugs
PBMCs peripheral blood mononuclear cells
poly I:C polyinosinic:polycytidilic acid
RA rheumatoid arthritis
RF rheumatoid factor
S100β S100 calcium-binding β

Sal salidroside
SHH sonic hedgehog
SLE systemic lupus erythematosus
STAIT/STNF State-Trait Anxiety InventoryTumor necrosis factor
TMT Trail-Making Test
TrkB tropomyosin-related kinase B
tsDMARDs targeted synthetic DMARDs
TTR serum paraoxonase
VST Victoria Stroop Test
WAIS Wechsler Adult Intelligence Scale
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