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We explore the physical consequences of a scenario when the standard Hermitian Nambu–Jona-Lasinio
(NJL) model spontaneously develops a non-Hermitian PT -symmetric ground state via dynamical
generation of an anti-Hermitian Yukawa coupling. We demonstrate the emergence of a noncompact
non-Hermitian (NH) symmetry group which characterizes the NH ground state. We show that the NH
group is spontaneously broken both in weak- and strong-coupling regimes. In the chiral limit at strong
coupling, the NH ground state develops inhomogeneity, which breaks the translational symmetry. At weak
coupling, the NH ground state is a spatially uniform state, which lies at the boundary between the PT -
symmetric and PT -broken phases. Outside the chiral limit, the minimal NJL model does not possess a
stable non-Hermitian ground state.
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I. INTRODUCTION

The Nambu–Jona-Lasinio (NJL) model [1] describes the
dynamics of interacting relativistic fermions. The model is
often employed as a viable low-energy effective theory of
quantum chromodynamics (QCD) because the NJL model,
similarly to QCD, exhibits both the dynamical mass gap
generation and the axial (chiral) symmetry breaking. The
model naturally describes basic chiral features of the QCD
ground state as well as particularities of the mesonic
spectrum, and captures effects of finite temperature and
baryonic density [2].
Similarly to QCD, the NJL model is described by a

Hermitian Lagrangian. The ground states of both theories
are naturally assumed to be Hermitian. In our definition,
the “Hermiticity” of the ground state means that elemen-
tary excitations over this ground state possess a Hermitian
dynamics and, therefore, are described by a Hermitian
model. In our paper, we attempt to describe a scenario,
when a Hermitian model may spontaneously, via a
dynamical mechanism, generate a non-Hermitian ground
state.
Non-Hermitian terms usually appear in open systems

when a physical system interacts an the external

environment. Due to the energy exchange with the envi-
ronment, some of those systems reside in an off-equilibrium
but steady regime. A well-balanced steady state may be
described by a Hamiltonian with real-valued eigenenergies.
This is the case of the class of parity-time (PT ) symmetric
systems, where the Hermiticity condition is traded by the
commutation of the Hamiltonian (and the eigenstates) with
the combined parity P and time reversal inversion T
operation [3]. This combined symmetry allows for an unitary
dynamical evolution and real spectrum. As it was empha-
sized in Ref. [4], the crucial feature of the PT symmetry lies
in the antilinearity of the time-reversal transformation T .
The antilinearity is more important for the self-consistent
description of stable quantum-mechanical and field-theo-
retical systems than the Hermiticity of the Hamiltonian itself.
Non-Hermitian physics has previously been addressed in

the contexts of interacting models of relativistic fermions.
For example, the inclusion of non-Hermitian PT -symmetric
interactions may support real energy spectra in fermionic
theories in 1þ 1 and 3þ 1 dimensions [5]. Anti-Hermitian
Yukawa interactions may lead to an anomalous radiative
mass-gap generation in a model of the right-handed sterile
neutrinos, while the energetics of the system forbids the
emergence of a dynamically generated mass [6,7]. Inclusion
of a particular PT - and chirally symmetric bilinear
non-Hermitian term contributes to the mass gap generation
in the NJL model and leads to a rich phase structure [8].
Our proposal differs from the already existing approaches.

Instead of incorporation of a non-Hermitian coupling to the
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original model, we consider the possibility that a perfectly
Hermitian model develops, via a dynamical mechanism, a
non-Hermitian ground state with a physically meaningful set
of features. In more detail, we look for a non-Hermitian
ground state which differs from the standard Hermitian
ground state in the structure of its nonperturbative vacuum
condensates. We explore the possibility that the vacuum
develops particular condensates that make the (quasi)particle
excitations non-Hermitian. In the context of the NJL model,
the fermion (quark) excitations over the non-Hermitian
ground state possess non-Hermitian masses, hence the name
“non-Hermitian vacuum”.
Non-Hermitian physics of relativistic fermions may appear

in fireballs of quark-gluon plasma (QGP) created in heavy-
ion collisions. A fireball of QGP is a relativistically expand-
ing out-of-equilibrium system. Although this system does not
reside in a steady regime, the fermionic interactions may
generate a non-Hermitian ground state in a steady-state non-
equilibrium regime, which is realized in between the early
moments of the plasma until the evolution of the QGP
approaches the chiral crossover and eventual hadronization.
The non-Hermitian description of the QGP in the expanding
non-equilibrium regime is supported by the widely acknowl-
edged fact that the equilibrium ground state of a generic
non-Hermitian Hamiltonian is often related to an out-
of-equilibrium ground state of an appropriate Hermitian
system [9]. In many cases, the Hermitian and non-
Hermitian Hamiltonians are indeed related to each other
by a (nonunitary) similarity transformations. In a coherence
with the above remarks, we notice that non-Hermitian Dirac
fermions allow for realization of the chiral magnetic effect
[10] in the thermal equilibrium regime [11], while the similar
effect is forbidden in the thermal equilibrium for the ordinary
Hermitian Dirac fermions [12–17]. The concept of non-
Hermitian quantum theory may also be extended to gauge-
gravity duality [18].
In condensed matter physics, the situation is similar. The

problem of symmetry-broken states in interacting many-
body systems with already incorporated non-Hermiticities
has been studied in several physical systems in the recent
years. The questions of interest include the effect of non-
Hermitian terms in topological superconductivity [19], how
the phenomenology attributed to Majorana states might
appear in the topologically trivial region due to coupling to
the environment [20], or the possibility of non-Hermitian
superfluidity with a complex-valued interaction constant
[21]. Also some problems known to reside in the strongly
coupling regime have been investigated when non-
Hermitian terms are considered. These are the case, for
example, of the Kondo effect [22], the out-of-equilibrium-
induced coupling between the Higgs mode and the Leggett
modes in driven superconductors [23], or the Kibble-Zurek
mechanism in non-Hermitian environments [24]. In all
these cases, the non-Hermitian elements are associated to
open systems coupled to the environment or when the

system are driven out of equilibrium. Only recently, the
possibility of a non-Hermitian superconducting ground
states out of an interacting Hermitian system has been
proposed [25]. The non-Hermitian albeit PT -symmetric
superconductivity displays a different phenomenology than
the Hermitian counterpart.
Before explaining the organization of the present manu-

script, we want to summarize the main results the reader
will find in the remaining paragraphs:

(i) It is possible to obtain NH ground state solutions
from an Hermitian NJL theory.

(ii) The axial symmetry breakdown pattern that charac-
terized the NJL model strongly changes as the NH
bosonized theory does not possesses this symmetry.
This statement implies strong changes in the way to
physically interpret the condensates.

(iii) We show that in the NH ground state, nonhomo-
geneous solutions are energetically preferable than
homogeneous ones.

These claims go beyond the behavior of the non-Hermitian
theory with respect to the PT symmetry.
The organization of this article is as follows: In Sec. II we

briefly review the phenomenology of a free model of non-
Hermitian Dirac fermions where the non-Hermiticity is
explicitly imposed at the Lagrangian level. The NJL model
and its standard Hermitian ground state are introduced in
Sec. III. The homogeneous non-Hermitian ground states
are discussed in Sec. IV while their inhomogeneities are
address within the Ginzburg-Landau approach in Sec. V.
An outlook on further development and our conclusions are
given in the last two sections. The Appendix contains
the presentation of the gradient expansion of the effective
non-Hermitian action with the nonhomogeneous terms
included.

II. FREE NON-HERMITIAN FERMIONS

A possible consistent PT -invariant non-Hermitian
extension of the Lagrangian for a Dirac fermion [26–30]
has the following form:

Lψ ¼ ψ̄ði=∂ −m −m5γ
5Þψ ; ð1Þ

wherem is the mass of the fermion field ψ andm5 is a non-
Hermitian mass. Standard notations for the fermionic fields
will be employed throughout the article: ψ̄ ¼ ψ†γ0, and
=∂ ¼ γμ∂μ where γμ and γ5 are the Dirac matrices.
In the momentum space, the Hamiltonian of the system

(1) is given by the following operator,

Ĥ ¼ α · kþ βmþ βγ5m5; ð2Þ

where α ¼ γ0γ and β ¼ γ0 are the original Dirac notations.
Due to the presence of the last term, the Hamiltonian (2) is
not a Hermitian operator: Ĥ ≠ Ĥ† provided m5 ≠ 0.
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The Hamiltonian (2), however, commutes with the
product of parity P and time T inversions: ½PT ; Ĥ� ¼ 0,
thus implying that the theory respects the PT symmetry.
These discrete operations affect the coordinates as follows:
Pðt; xÞ ¼ ðt;−xÞ and T ðt; xÞ ¼ ð−t; xÞ. The parity inver-
sion P acts linearly on the fermionic fields:

P∶

(
ψðt; xÞ → γ0ψðt; xÞ;
ψ̄ðt; xÞ → ψ̄ðt; xÞγ0; ð3Þ

while the time inversion T is represented by an antilinear
operator:

T ∶

(
ψðt; xÞ → iγ1γ2ψ�ðt; xÞ;
ψ̄ðt; xÞ → ψ̄�ðt; xÞiγ1γ2: ð4Þ

Therefore, the Lagrangian (1) describes a PT symmetric
non-Hermitian theory of Dirac fermions.
The Lagrangian (1) gives the following classical equa-

tions of motion:

ði=∂ −m −m5γ
5Þψ ¼ 0; ð5Þ

ψ̄ði=⃖∂ þmþm5γ
5Þ ¼ 0: ð6Þ

The positive-frequency solutions of the Dirac equation,

ψðxÞ ¼ uðpÞe−ip·x; ð7Þ

are expressed via the spinor uðpÞ which satisfies the Dirac
equation in the momentum space:

ð=p −m −m5γ
5ÞuðpÞ ¼ 0; ð8Þ

pμ ¼ ðp0; pÞ is the four-momentum and p · x ¼ pμxμ is the
scalar product in the Minkowski space. The self-consis-
tency of Eq. (8) requires p2 ¼ M2 and determines the
energy spectrum (p0 ≡ Ep):

Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

q
; ð9Þ

where the mass of the fermionic excitation is

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −m2

5

q
: ð10Þ

The same statement applies also to the negative-energy
solutions. We always take jmj ≥ jm5j to insure that the
mass M is a real quantity. This range of parameters
correspond to the “PT -symmetric” phase. If the
Hermitian mass jmj is smaller than the non-Hermitian
mass jm5j, then the system resides in the “PT -broken”
phase which is characterized by paired complex branches
of fermionic energies that make the vacuum unstable. The

stability of the non-Hermitian theory in the PT symmetric
region is the direct consequence of PT symmetry of the
ground state solution of the Hamiltonian (2).
In the absence of both non-Hermitian m5 and Hermitian

m5 masses, the free fermionic theory (1) possesses the
global vector and global axial symmetries described by the
continuous transformations, respectively:

Uð1ÞV∶ ψ → eiωVψ ; ψ̄ → ψ̄e−iωV ; ð11aÞ

Uð1ÞA∶ ψ → eiγ
5ωAψ ; ψ̄ → ψ̄eiγ

5ωA ; ð11bÞ

with the coordinate-independent parameters ωV and ωA.
In the limit of the vanishing masses, m ¼ m5 ¼ 0, the

continuous symmetries (11) lead to the following vector
and pseudovector Noether currents, respectively:

jμV ¼ ψ̄γμψ ; ð12aÞ

jμA ¼ ψ̄γμγ5ψ ; ð12bÞ

which are conserved at the classical level.
However, if the masses m and m5 are nonzero, then the

currents (12) are no more conserved:

∂μj
μ
V ¼ −2im5ψ̄γ

5ψ ; ð13aÞ

∂μj
μ
A ¼ 2imψ̄γ5ψ : ð13bÞ

The Hermitian mass m breaks the axial Uð1ÞA symmetry
(11b) while the non-Hermitian mass m5 breaks the vector
Uð1ÞV symmetry (11a).
However, one can see from the nonconservation pattern

(13) that the model admits the following linear combination
of the currents (12):

JμV ¼ jμV þm5

m
jμA; ð14Þ

which is conserved at the classical level:

∂μJ
μ
V ¼ 0: ð15Þ

The definition (14) gives us the new conserved vector
current. We call the expression in Eq. (14) a current because
it follows a conservation law, Eq. (15).
The new axial current is orthogonal to the new vector

current (14):

JμA ¼ jμA −
m5

m
jμV: ð16Þ

This quantity is not conserved at the classical level:
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∂μJ
μ
A ¼ 2i

m2 −m2
5

m
ψ̄γ5ψ ; ð17Þ

similarly to the ordinary axial current.
A system with a finite density of the conserved charge J0V

may be controlled by the thermodynamically conjugated
chemical potential. Certain consequences of the finite-
density non-Hermitian fermions are discussed in
Ref. [11]. Below we proceed to the investigation of the
ground state of a Hermitian NJL model in which the non-
Hermitian theory (1) may arise as an effective theory in a
spontaneously formed non-Hermitian ground state.

III. HERMITIAN GROUND STATE IN
THE NJL MODEL

A. Nambu-Jona–Lasinio model

The NJL model provides a simplest description of
interacting fermions which features the axial (chiral)
symmetry breaking and the mass gap generation. We
consider the standard Hermitian NJL model described by
the following Lagrangian:

LNJL ¼ ψ̄ði=∂ −m0Þψ þ G
2
½ðψ̄ψÞ2 þ ðψ̄iγ5ψÞ2�; ð18Þ

which describes the single fermion species ψ with a bare
mass m0. The coupling constant G determines the strength
of the local four-fermion interaction. For a single-species
model that we consider in our manuscript, the terms axial
and chiral can be used interchangeably.
In the massless limit,m0 ¼ 0, the NJL Lagrangian (18) is

invariant under vector (11a) and axial (11b) global trans-
formations. The Uð1ÞV symmetry may be gauged via the
coupling of the fermions to the electromagnetic field. Since
in the physical world the vector (electric) current is always
conserved, the Uð1ÞV symmetry should never be broken in
realistic models. However, the Uð1ÞA may become broken
at the quantum level. In the single-species model that we
consider (18), the breaking of the chiral symmetry appears
spontaneously due to the four-fermion interaction as we
discuss below.1

In the presence of the fermionic mass,m0 ≠ 0, theUð1ÞV
symmetry (11a) is maintained, while the axial symmetry
(11b) gets explicitly broken. In QCD, however, the bare
mass (also called “current mass”) m0 is much smaller then
the dynamically generated fermionic mass. Therefore, the
effects of the axial mass are small and the axial symmetry
(11b) is said to be approximately correct. Below, we review
the derivation of the standard Hermitian ground states and
the dynamical mass gap generation in the NJL model (18).

Afterwards, we will proceed to the investigation of the non-
Hermitian mass gap generation in the same model.
In the scenario we are considering here, the non-

Hermiticity is broken dynamically within the Hermitian
model. For a different version of the NJL model, where the
non-Hermiticity is broken explicitly via a coupling of the
NJL Lagrangian (18) to a non-Hermitian background, we
refer the reader to Ref. [8].
Before proceeding further, it is necessary to comment on

the terminology that we use in our paper. Usually, one uses
the terms Hermitian/non-Hermitian in application to the
mass matrices to distinguish the Hermitian mass matrix,
mþ im5γ5 from its non-Hermitian counterpart, mþm5γ5.
Here we use this terminology to describe not only the
matrices but also the ground states. In order to justify the
terminology and clarify more the central idea of the paper,
let us consider the example of a spontaneously broken
theory in which masses of particles are acquired with the
Higgs mechanism: the expectation value of a (multi-
component) scalar particle determines a mass term for a
fermionic particle. Depending on the pattern of the sym-
metry breaking, the mass term in the spontaneously broken
ground state could be either Hermitian or non-Hermitian
hence the name of the ground state: on the Hermitian
ground state, the fermions have the Hermitian mass
matrices while in a non-Hermitian ground state there is
at least one fermion that possesses a non-Hermitian mass
matrix. The same considerations are also applicable to
bosonic fields.

B. Hermitian ground state in the NJL model

In the standard approach, the partition function of the
NJL model (18),

Z ¼
Z

DψDψ̄ exp

�
i
Z

d4xLNJLðψ̄ ;ψÞ
�
; ð19Þ

is partially bosonized by inserting the identities2

1 ¼
Z

Dσ exp

�
−

i
2G

Z
d4xðσ þ Gψ̄ψÞ2

�
; ð20aÞ

1 ¼
Z

Dϕ exp

�
−

i
2G

Z
d4xðϕþGψ̄iγ5ψÞ2

�
; ð20bÞ

under the integral over the fermionic fields in Eq. (19). The
fields σ and ϕ are real-valued quantities.
The prefactors in the exponents of Eq. (20) are chosen in

such a way that, after the substitution of Eqs. (20) to
Eq. (19),

1In the single-fermion model, the Uð1ÞA symmetry (11b) may
be called both axial and chiral. This terminological degeneracy is
lifted in the multispecies models.

2Hereafter we omit inessential normalization factors in front of
the functional integrals.
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Z ¼
Z

DψDψ̄DσDϕ exp

�
i
Z

d4xLNJLðψ̄ ;ψ ; σ;ϕÞ
�
;

ð21Þ

the four-fermion interaction terms of Eq. (18) disappear:

LNJLðψ̄ ;ψ ; σ;ϕÞ ¼ ψ̄ ½i=∂ − σ − iγ5ϕÞ�ψ

−
ðσ −m0Þ2 þ ϕ2

2G
: ð22Þ

The partially-bosonized NJL Lagrangian (21) becomes a
bilinear expression in terms the original fermionic fields,
coupled, via the Yukawa interactions, with the scalar σ and
pseudoscalar ϕ auxiliary fields.3 In the expression (21) we
have shifted the σ–field, σ → σ −m0 for the sake of further
convenience.
The interpretation of the auxiliary fields σ and ϕ may be

deduced from the saddle-point equations of the partition
function (21):

hσi ¼ m0 þ Ghψ̄ψi; hϕi ¼ Ghψ̄ iγ5ψi: ð23Þ

The vacuum expectation value of the condensate σ plays a
role of the mass of the fermion field. At the saddle point, the
vacuum expectation values of the scalar and pseudoscalar
auxiliary fields acquire contributions proportional, corre-
spondingly, to the scalar and pseudoscalar condensates of
fermionic fields (23). The emergence of the scalar fermion
condensate (also called “chiral condensate”) hψ̄ψi leads to
two dynamical phenomena. First, the chiral condensate is not
invariant under the chiral transformations (11b) and therefore
it breaks the chiral symmetry. Second, the emergence of the
chiral condensate leads to the mass gap generation (23) as the
field σ plays a role of the fermion mass (22). The pseudo-
scalar condensate vanishes in the physical vacuum

hψ̄iγ5ψi ¼ 0; ð24Þ

implying, according to Eq. (23), that the mean value of the
field ϕ vanishes as well, hϕi ¼ 0.
The applicability of the saddle-point approximation

becomes justified for the NJL model with many fermion
flavors Nf. In the limit Nf → ∞, the saddle-point calcu-
lation becomes exact. The consistency of the physical
interpretation (23) is guaranteed by the fact that the
bilinears ψ̄ψ and ψ̄iγ5ψ , similarly to the auxiliary fields
σ and ϕ, are real-valued quantities for any spinor field ψ .
Below, we will treat the auxiliary fields σ and ϕ in the

mean-field approximation. For the sake of brevity, we will
use the same notations for the fields and their expectation
values, σ ¼ hσi and ϕ ¼ hϕi. In a leading order, we assume
that these fields are independent of the spacetime coordinates.

Later, we will consider physical excitations over this uniform
background.
The integration over the fermionic fields in the partition

function (22) leads to the following purely scalar repre-
sentation of the NJL model:

Z ¼
Z

DσDϕ exp

�
−

i
2G

Z
d4x½ðσ −m0Þ2 þ ϕ2�

þ ln det½i=∂ − ðσ þ iγ5ϕÞ�
�
: ð25Þ

In the completely bosonized representation of the NJL
model (25), the chiral invariance (11b) is translated to a
chiral (axial) rotation for the following combination of the
scalar and pseudoscalar fields:

σ þ iγ5ϕ → e−iγ5θðσ þ iγ5ϕÞe−iγ5θ ≡ σ̃ þ iγ5ϕ̃: ð26Þ

For coordinate–independent condensates σ and ϕ, the
fermionic determinant depends only on the combination
σ2 þ ϕ2 which is invariant under the chiral rotation (26).
It is convenient to use the rotation (26) to turn the

combination σ þ iγ5ϕ into the purely scalar field with the
absolute value jσ̃j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2 þ ϕ2

p
. Taking σ̃ a real positive

number (σ̃ > 0 and ϕ̃ ¼ 0) and renaming back σ̃ → σ, we
find that the fermionic sector of partially bosonized mean-
field NJL model corresponds to a theory of massive
fermions with an effective mass m ¼ σ and vanishing
pseudoscalar field ϕ ¼ 0 after the chiral rotation.
Using then the expression for the functional trace of an

operator Ô,

trÔ ¼
Z

d4x
Z

dk0
2π

Z
d3k
ð2πÞ3Ok0;k; ð27Þ

we get for the (chirally rotated) last term in Eq. (25) the
following expression:

ln detði=∂ − σÞ ¼ −i
Z

d4xV int
H ðσÞ; ð28Þ

with the potential for the field σ:

V int
H ðσÞ ¼ i

Z
dk0
2π

Z
d3k
ð2πÞ3 tr ln

=k − σ

Λ
: ð29Þ

Here =k≡ γμkμ and the (so far arbitrary) quantity of the
dimension of mass Λ is needed to maintain correct dimen-
sion. Hereafter we will ignore inessential additive constants
in the potentials and actions. The subscript “H” in Eq. (29)
reminds us that we are working with the Hermitian theory.
Although it is possible to continue the derivation in

Minkowski space-time, it is convenient to perform the
Wick rotation to the Euclidean momentum space:

3For the model with a single fermion, we reserve the letter ϕ
for the pseudoscalar instead of the standard notation π.
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k0 → ik4;
Z

dk0
2π

→ i
Z

dk4
2π

: ð30Þ

We arrive to the potential (29) given by the following
expression:

V int
H ðσÞ ¼ −2

Z
d4k
ð2πÞ4 ln

k2 þ σ2

Λ2
; ð31Þ

where d4k ¼ dk4d3k. Here we used the fact that under the
Wick rotation =k ¼ γ0k0 − γ · k → −γ4k4 − γ · k ¼ −=k, sup-
plemented by the standard chain of relations:Z

d4k
ð2πÞ4 tr ln

=k − σ

Λ
¼ 1

2

Z
d4k
ð2πÞ4 tr

�
ln
=kþ σ

Λ
þ ln

−=kþ σ

Λ

�

¼ 1

2

Z
d4k
ð2πÞ4 tr ln

k2 þ σ2

Λ2
0

¼ 2

Z
d4k
ð2πÞ4 ln

k2 þ σ2

Λ2
: ð32Þ

The effective potential for the scalar field σ is then

VHðσÞ ¼
ðσ −m0Þ2

2G
− 2

Z
d4k
ð2πÞ4 ln

k2 þ σ2

Λ2
: ð33Þ

The kinetic term for the σ field is absent in the mean-field
approach with the uniform σ background.
The ground state of the model is determined by the

minimization of the action with respect to the σ field. We
employ the four-momentum regularization scheme with a
hard ultraviolet cutoff. The regularized potential (33) is

VHðσÞ ¼
ðσ −m0Þ2

2G
−

1

4π2

Z
Λ

0

k3dk ln
k2 þ σ2

Λ2

¼ σ2

2G
þ Λ4v

�
σ2

Λ2

�
; ð34Þ

where the quantity Λ serves an ultraviolet cutoff which
plays a role of a physical parameter in this model and

vðxÞ ¼ −
1

16π2
½xþ x2 ln xþ ð1 − x2Þ lnðxþ 1Þ�: ð35Þ

The critical coupling,

Gc ¼ 4π2Λ−2 ≃ 39.48Λ−2; ð36Þ

defines two regimes of the theory. Consider first the case of
zero bare mass m0 ¼ 0. For a weak coupling G < Gc, the
potential VðσÞ takes its minimum at vanishing field σ ¼ 0
which defines a chirally symmetric vacuum. At strong
coupling G > Gc, the minimum of the potential is reached
at σ ≠ 0, the chiral symmetry gets broken and the fermions
acquire the mass M ¼ hσi ∼ Λ via the dynamical

mechanism. A small nonzero bare mass, m0 ≠ 0, shifts
the minimum σ to a nonzero value σ ∼m0 at weak coupling
G. However, the dynamical mass generation overwhelm the
bare mass,Λ ≫ m0, and the in the chirally broken phase, the
mass of the fermion is given by the dynamically gener-
ated mass.
Alternatively, one can determine the ground state by

solving a system of the mass-gap equations that correspond
to the extremization of the effective potential with respect
to the dynamical field: δVðσ;ϕÞ=δσ ¼ 0 and δVðσ;ϕÞ=
δϕ ¼ 0. Restoring the pseudoscalar field ϕ in the effective
potential (33), we obtain the following system of equations:

σ −m0 − 4G
Z

Λ d4k
ð2πÞ4

σ

k2 þ σ2 þ ϕ2
¼ 0; ð37aÞ

ϕ − 4G
Z

Λ d4k
ð2πÞ4

ϕ

k2 þ σ2 þ ϕ2
¼ 0; ð37bÞ

which has the same solution that we discussed above.
While both methods often give identical solutions, the
direct minimization of the effective potential allows to
verify that the ground state corresponds indeed to a globally
stable state given by the global minimum of the effective
potential.
It is convenient to consider the ground state of the model

from the perspective of the statistical sum. To this end, one
should perform the Wick rotation from the Minkowski
spacetime to the Euclidean space. The potential VH

determines the statistical factor, e−
R

d4xVHðσÞ, which pro-
vides us with statistical weight of the configuration σ.
Therefore, the global minimum of the potential V corre-
sponds to the ground state in statistical equilibrium. In the
mean-field approximation, the minimum is identified with
the mass gap equations (37).
The above statement does not apply to the cases when

the potential VH is complex. Therefore it does not apply to
the finite-density systems which suffer from the notorious
sign problem (although the sign problem is less severe and
treatable in the mean-field analytical approaches) and, for
example, to near-equilibrium states in uncompensated
background electric fields that suffer from instabilities.
Wewill see below that this statistical approach gives a sense
to the non-Hermitian analogue of the mean-field poten-
tial (34).
Our derivation assumes the validity of the mean-field

approach, which, in turn, relies on the applicability of the
saddle-point approximation in the path- or statistical-
integral. Strictly speaking, the saddle-point method works
when the Gaussian exponent is large so that the main
contribution to the path integral is given by the expansion
of the integrand over the field fluctuations around the
saddle point determined by Eq. (37). This approximation is
valid in the limit of a large number of fermions (a large-N
limit), but it is routinely applied to a single (or few) species
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of fermions because the results in both cases are close to
each other in practical cases [2]. To add rigor to the use of
the mean-field approach, it is enough to can consider a
system of N equivalent fermions which would put the
fermionic determinant in Eq. (25) to theNth power and take
the N → ∞ limit. To keep our notations concise, we will
continue to use a single fermion species keeping in mind
that a more justified many-fermion system would give
qualitatively the same results.

IV. NON-HERMITIAN GROUND STATE IN THE
NJL MODEL

A. Non-Hermitian bosonization

In what follows we exploit the possibility that the partial
bosonization, performed with the help of the standard
identities (20), is not the only possible choice that can
be employed for the bosonization.
In order to maintain the explicit Hermiticity of the

model, we required for the fields σ and ϕ to be real-valued
quantities. Below, we leave the condition of the Hermiticity
and consider the complex-valued bosonic fields.
To this end, we generalize the identities (19) using four,

instead of the two ones (20):

1 ¼
Z

Dσ1 exp

�
−

i
2Gσ1

Z
d4xðσ1 þ Gσ1ψ̄ψÞ2

�
; ð38aÞ

1 ¼
Z

Dσ2 exp

�
−

i
2Gσ2

Z
d4xðσ2 þ iGσ2ψ̄ψÞ2

�
;

ð38bÞ

1 ¼
Z

Dϕ1 exp

�
−

i
2Gϕ1

Z
d4xðϕ1 þ Gϕ1ψ̄iγ5ψÞ2

�
;

ð38cÞ

1 ¼
Z

Dϕ2 exp

�
−

i
2Gϕ2

Z
d4xðϕ2 −Gϕ2ψ̄γ5ψÞ2

�
:

ð38dÞ

These functional integrals should be understood in the
standard path-integral sense, namely, as a product of simple
integrals in every point of the spacetime. Each of the simple
Gaussian integrals that enter Eqs. (38) can be evaluated to a
finite value with any reasonable regularization. The inte-
gration result enters the path integration measure as an
inessential normalization constant.
Due to the local nature of the expressions in under the

exponents in Eq. (38), one can consider each of these
integrals as a product of elementary integrals at each point
x. For simplicity, we denote σaðxÞ or ϕaðxÞ as f and use the
notation h for any of the bilinear condensates, ψ̄ψ or ψ̄γ5ψ
that enter Eq. (38). To regularize the integral, we add
multiply each integrand by the factor e−ϵf

2

, where ϵ > 0 is a

regulator which will be taken to zero at the end of the
calculation. Then an elementary integral that enters the
expressions in the right-hand side of Eqs. (38a) and (38c)
can be written as follows:

Z
∞

−∞
df exp

�
−

i
2G

ðf þ hÞ2 − ϵf2
�

¼
Z

∞

−∞
df exp

�
−
�
ϵþ i

2G

�
f2 − ifh −

G2h2

2

�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πG

2ϵGþ i

r
exp

�
−ϵ

G2h2

1 − 2iGϵ

�
: ð39Þ

Lifting out the normalization, ϵ → 0, we find that for any
finite value of h (the condensate) and G (the coupling), the
integral converges, regardless of the sign of the couplingG,
to a condensate-independent value which is nothing by a
normalization constant. The same statement is true for the
integrals (38b) and (38d) with the substitution h → ih.
Inserting these identities into Eq. (19), we find that we

might cancel the four-fermion interaction terms of the NJL
Lagrangian (18) provided the parameters in Eq. (38) satisfy
the following conditions:

Gσ1 − Gσ2 ¼ G; Gϕ1 −Gϕ2 ¼ G: ð40Þ

Repeating all steps as in the Hermitian counterpart, we
get the new partially bosonized Lagrangian:

LNJL ¼ −
1

2

�ðσ1 −m0Þ2
Gσ1

þ σ22
Gσ2

þ ϕ2
1

Gϕ1
þ ϕ2

2

Gϕ2

�
þ ψ̄ ½i=∂ − ðσ1 þ iσ2Þ − iγ5ðϕ1 þ iϕ2Þ�ψ ; ð41Þ

in which we have redefined the field σ1 → σ1 −m0 for
convenience.
Let us consider the fermionic part of the NJL Lagrangian

(41). For the state σ2 ¼ 0 and ϕ2 ¼ 0, the theory reduces to
the standard Hermitian case considered earlier: the axial
freedom (26) may be used to remove the field ϕ1 and we
arrive to the bosonized mean-field theory, given by
Eqs. (34) and (35), with the condensate σ ≡ σ1.
In the rest of this section we assume, unless explicitly

stated otherwise, that the bosonic fields do not depend on
the coordinates. The case of the nonuniform background
with space-dependent fields will be considered in the next
section.
If the fields σ2 and ϕ2 are taken to be nonzero, then the

fermionic part of the Lagrangian (41) becomes non-
Hermitian. The excitations of a non-Hermitian theory
may possess a complex spectrum signaling instabilities.
The physical spectrum corresponds to the poles k0 ¼ �ωp

with the following one-particle energy:
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ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðσ1 þ iσ2Þ2 þ ðϕ1 þ iϕ2Þ2

q
: ð42Þ

We use the axial (chiral) rotation (26) applied to the
combination σ þ iγ5ϕ of now-complex fields σ ¼ σ1 þ iσ2
and ϕ ¼ ϕ1 þ iϕ2 to reduce an unphysical degree of
freedom. Given the fact that the unitarity of the chiral
transformation requires the parameter ωA of Eq. (26) to
be real, we may get rid of only one real-valued field. We
choose to remove, following the standard approach to the
NJL mode, the real component of the complex ϕ
field, ϕ1 ¼ 0.
Similarly to the case of the standard Hermitian theory,

we take σ1 ≠ 0. In this case, the stability of the ground state
of the theory requires σ2 ¼ 0. The requirements ϕ1 ¼ 0 and
σ2 ¼ 0 are enforced by taking the corresponding constants
to be zero, Gϕ1 → 0 and Gσ2 → 0, respectively. According
to the algebraic conditions (40), we are left with the two
linearly-dependent coupling constants Gσ1 ¼ G and Gϕ2 ¼
−G and two one-component fields σ1 ≡ σ and ϕ2 ≡ −ϕ5.
Here we have redefined the fields again for the sake of
convenience.
Using the new non-Hermitian bosonization, we arrive to

the following representation of the NJL model:

LNJL ¼ ϕ2
5 − ðσ −m0Þ2

2G
þ ψ̄ði=∂ − σ − γ5ϕ5Þψ : ð43Þ

We immediately recognize that the field ϕ5 plays the role of
the non-Hermitian fermionic mass m5 already discussed in
the context of the free theory (1) while the field σ appears in
the standard role of the usual Hermitian mass m. It is
important to mention here that the effective NH-NJL model
in Eq. (43) possesses the symmetries described in Sec. II
concerning PT , Uð1ÞV , and Uð1ÞA symmetries. These
symmetries will be maintained when integrating out the
fermionic field and obtaining a completely bosonized
version of the NH-NJL model.
The coupling between the fermions and the auxiliary

field ϕ5 in the partially bosonized NJL Lagrangian (43) has
the form of the anti-Hermitian Yukawa coupling that has
been studied recently [6,31] in the phenomenological
context of sterile neutrinos.
The energy spectrum of fermions in the partially boson-

ized NJL theory (43) is, now:

ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ σ2 − ϕ2

5

q
; ð44Þ

which is typical for the fermions which have both
Hermitian σ and non-Hermitian ϕ5 fermionic masses (10).
After integrating out the fermionic fields in the non-

Hermitian theory (43), we arrive to the effective potential
on the scalar and pseudoscalar non-Hermitian fields:

VNHðσ;ϕ5Þ ¼
ðσ −m0Þ2 − ϕ2

5

2G
þ Λ4v

�
σ2 − ϕ2

5

Λ2

�
; ð45Þ

where the function vðxÞ is given in Eq. (35).
One notices that the minimal realization of a scalar non-

Hermitian model involves two scalar fields, one of them is a
true scalar while another one is often chosen as a pseudo-
scalar [29,30,32]. This property is also maintained by the
effective bosonized theory (45). The form of the bosonized
effective model (45) is qualitatively different from the multi-
scalar model considered so far in the literature [33–35].
It it worth comparing the effective potential for the non-

Hermitian ground state (45) with the potential for the
Hermitian state (34). The Hermitian potential does not
show dissipatively unstable behavior for any value of the
mean field σ. The non-Hermitian potential in Eq. (45) is
stable, that is, it displays at least one minimum, provided
the PT symmetry is unbroken:

σ2 ≥ ϕ2
5: ð46Þ

These considerations could naively (and, incorrectly) imply
that there is no obvious effect of the non-Hermiticity on the
physical properties of the model. Indeed, we are free to
denote the field combination in Eq. (45) as

M2 ¼ σ2 − ϕ2
5 ≥ 0; ð47Þ

and to come back to the Hermitian model in terms of the
new field σ ≡M with the same fermionic spectrum
(44): ωp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
.

Contrary to the Hermitian bosonization of the NJL
model, there is no obvious interpretation of the real-valued
field ϕ5 in terms of a fermionic condensate. For example, a
variation of the action associated with the Lagrangian (43)
with respect to the field ϕ5 would not give us an anticipated
relation between the field ϕ5 and a fermionic bilinear at a
saddle-point of the effective theory because

hϕ5i ≠ Ghψ̄γ5ψi: ð48Þ

Indeed, the field ϕ5 at the left-hand side of Eq. (48) is a real-
valued quantity while the fermionic condensate at the right-
hand side of the same equation either vanishes or takes a
purely imaginary value.
In an attempt to interpret the field ϕ5 in line of the

fermionic condensate (48), one could consider a possibility
that the saddle point (48) is realized for a purely imaginary
field ϕ5. In this case, we could redefine the fieldϕ5 ¼ iϕ and
come back to the Hermitian theory, in which the mean field
ϕ may be removed further by the chiral rotation (26). This
approach could be sustainable if the minimum of the
potential at the purely imaginary ϕ5 is lower compared to
its minimum at the real ϕ5. We will explore this possibil-
ity below.
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Before finishing this section, we would like to comment
that we could have arrived to the same non-Hermitian
model (43) by employing only the first and the last of the
identities of the alternative set (38) instead of the original
identities (20). This would be a fully legitimate operation.
We could also naively use a nonunitary chiral rotation (26)
with a purely imaginary ωA and also come to the same
conclusion. The latter operation is, however, logically
forbidden because the transformation (11b) with a purely
imaginary ωA is not a symmetry of the original theory.

B. Non-Hermitian ground state in the chiral limit

The non-Hermitian ground state of the system is deter-
mined by the minimum of the non-Hermitian potential (45)
with respect to the fields σ and ϕ5. Indeed, the potential
determines the statistical weight of the mean-field configu-
ration similarly as it happens in the Hermitian case which
was discussed at the end of Sec. III. However, in the non-
Hermitian ground state, there is one obvious subtlety: the
potential VNH may take a complex value if thePT symmetry
is broken. Therefore, the statistical interpretation does not
apply to the PT -broken regime which should be unstable in
any case. Below, we concentrate on the PT symmetric
ground state.
We start this section by noticing that form0 ¼ 0, the NJL

potential in the bosonized mean-field representation (45)
possesses the emergent Uð1Þ symmetry group,

Uð1ÞNH∶
�

σ
ϕ5

�
→

�
coshωNH sinhωNH

sinhωNH coshωNH

��
σ
ϕ5

�
;

ð49Þ

which is parameterized by an arbitrary real-valued angle
ωNH ∈ R. The nonunitary transformation (49) corresponds
a noncompact Abelian group which keeps invariant the
combination of the scalar fields σ2 − ϕ2

5.
In presence of condensates of σ and/or ϕ5 fields, the

non-Hermitian symmetry (49) is broken spontaneously.
According to the standard lore, this breaking should lead to
new Goldstone bosons in the spectrum. The Goldstone
bosons in the context of non-Hermitian field theories have
been discussed in Refs. [35,36] for both Abelian and non-
Abelian theories. Here we firstly discuss the theory with
m0 ¼ 0, and in the next subsection we analyze the effects of
a nonzero current mass.
In Fig. 1(a) we show the mean-field potential (45) in the

chirally symmetric (G < Gc) phase. If we restrict ourselves
to the purely Hermitian case, ϕ5 ¼ 0, then the minimum of
the potential is reached at the symmetric vacuum σ ¼ 0
(marked by the small red sphere in the figure.) In the full
non-Hermitian plane, the minimum is reached exactly
at the border of the PT symmetric region, σ ¼ �ϕ5.
This vacuum state breaks the non-Hermitian symmetry
group (49).
Figure 1(b) shows the potential (45) in the chirally

broken (G > Gc) phase. The minimum of the potential,

FIG. 1. The mean-field potential (45) as the function of the uniform, coordinate-independent σ and ϕ condensates in the chirally
symmetric (G < Gc) and chirally broken (G > Gc) phases at zero (m0 ¼ 0) and nonzero (m0 ¼ 0.1Λ) bare masses m0. The critical
coupling Gc is given in Eq. (36) and V0 ¼ ðΛ=2πÞ4. The projection on the ðσ;ϕÞ plane illustrates the region where the PT symmetry is
unbroken. The density plot at the projection shows the values of the potential ranging from the low (the blue) to the high (the red) values.
The greenish cross-section shows the Hermitian region (ϕ5 ¼ 0) with the value of the potential highlighted by the green line and the
minimum of the effective potential marked by the red spheres. The blue line shows the degenerate minimum of the potential in the full
ðσ;ϕÞ plane.
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shown by the blue line, respects the non-Hermitian sym-
metry (49). The green line shows the profile of the potential
in the Hermiticity region ϕ5 ¼ 0 which is denoted by the
greenish plane. Both lines cross at the Hermitian minimum
of the potential: ðσ;ϕ5ÞH ¼ ðσmin; 0Þ. The Hermitian mini-
mum is related to all other non-Hermitian minima via a
noncompact transformation (49).
Thus, we conclude that in the case of m0 ¼ 0, the non-

Hermitian ground state with nonvanishing scalar Hermitian
field σ and the pseudoscalar non-Hermitian ϕ5 field can
well be realized in the Hermitian NJL model. The non-
Hermitian ground state breaks the noncompact non-
Hermitian group (49).

C. The instability associated to a nonzero m0

The presence of the massm0 in the potential (45) breaks,
mildly and explicitly, the non-Hermitian symmetry (49).
However, this small explicit symmetry breaking—which
would be nonharmful in the usual Hermitian theory, leads
to the instability of the non-Hermitian theory. This fact can
be observed both for the weakly coupled phase with
G < Gc, Fig. 1(c), and for strongly coupled phase
(G > Gc), Fig. 1(d).
The same conclusions may also be easily reached

analytically in the case of a large condensate, σ ≫ m0.
Then the vacuum solution follows two lines ϕ5 ≃�σ and
the effective potential (45) is a linear function of the
condensate:

Vðσ;ϕ5 ¼ �σÞ ≃ −
m0σ

G
þ const; ðat σ ≫ m0Þ ð50Þ

which may be made arbitrarily low. While we do not
investigate this issue in detail in the present study, we would
like to comment that this instability might be removed by
inhomogeneous condensates by bringing further terms to the
free energy that depend on space derivatives. The inhomo-
geneous ground state appears naturally in the interacting
fermionic systems such as the large–N Gross-Neveu model
(the NJL model in one spatial dimension) at finite temper-
ature and finite chemical potential. This ground state is
closely related to inhomogeneous superconductors in the
Larkin-Ovchinnikov-Fulde-Ferrell phase [37–39].
We conclude that the NJL does not possess a stable

vacuum in terms of uniform condensates in the presences of
a small explicit symmetry breaking given by small (in fact,
an infinitely small) mass m0 ≠ 0 if the non-Hermitian
condensate ϕ5 is allowed.

V. GINZBURG-LANDAU ANALYSIS

In this section we use a Ginzburg-Landau (GL) effective
potential to analyze the ground state of the model. In
previous sections we have focused on the possibility of NH
constant values of the condensates. However, we did not
provided any physical reason why this homogeneous state

should be the actual ground state of the theory. As
mentioned at the end of Sec. IV, a constant field solution
of the NH will be energetically unstable in the PT-broken
sector, and there is the possibility of nonhomogeneous
solutions of the mean field theory. The analysis of the GL
potential is the appropriate tool to investigate such
possibility.
This expansion is known to work well only in proximity

of a second-order phase transition: In doing this analysis,
we assume that the coupling constant is slightly larger the
critical coupling so that the condensate is not large.
We do not specify any concrete temperature or chemical

potential here, while we assume that the sixth order
coefficients (defined in the next paragraphs) are positive
to have a bounded-from-below effective potential. The
structure of the GL potential, in particular the relations
between the coefficients of the polynomials and derivative
terms, will be adapted from that of chiral symmetry breaking
of the NJL model [40]. The GL potential has to be consistent
with the symmetry of the model, in particular it should be
invariant under the global transformation in Eq. (49).
Besides, the GL potential, as a thermodynamic quantity,
does not depend on any specific choice of metric operator
that renders the theory consistent. In other words, after
integrating out fermions in Eq. (43) the resulting GL
potential will not depend on this quantity [41].
Up to the sixth order in the fields and fourth order in

derivatives, the GL potential for the model at hand has to
have the form

FNH ¼ α2
2
χ⃗ · χ⃗ þ α4

4
ðχ⃗ · χ⃗Þ2 þ α6

6
ðχ⃗ · χ⃗Þ3

þ β4
4
∇χ⃗:∇χ⃗ þ γ6

6
ðχ⃗:χ⃗Þð∇χ⃗:∇χ⃗Þ2 þ δ6

6
ðχ⃗ · ∇χ⃗Þ2

þ ε6
6
Δχ⃗:Δχ⃗; ð51Þ

where χ⃗ ¼ ðσ;ϕ5Þ is the vector in the space of fields
equipped with the hyperbolic metric: χ⃗:χ⃗ ¼ σ2 − ϕ2

5 and
∇χ⃗ · ∇χ⃗ ¼ ð∇σÞ2 − ð∇ϕ5Þ2. As mentioned earlier, stability
requires that the sixth order coefficients are posi-
tive: α6; β6; γ6; δ6; ε6 > 0.
The symmetry alone does not allow to fix the relations

between the coefficients of the expansion in Eq. (51). In
order to simplify the GL potential we use the known results
of the NJL model with chiral condensate: in fact, the GL
potential for the non-Hermitian model has to have the same
invariance under the chiral rotation of the simpler NJL
model, augmented with invariance under rotation Eq. (49)
and the latter can be implemented by the replacement
σ2 → σ2 − ϕ2

5 in the potential of the NJL model.
In the NJL model with a chiral condensate the free

energy density in the GL approximation is given by [40]
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FNJLðσðxÞÞ¼
α2
2
σ2ðxÞþα4

4
½σ4ðxÞþð∇σðxÞÞ2�

þα6
6

�
σ6ðxÞþ5σ2ðxÞ½∇σðxÞ�2þ1

2
½ΔσðxÞ�2

�
;

ð52Þ

The effective potential for the non-Hermitian ground state
can be obtained from Eq. (52) by the replacements

σ2 → χ⃗ · χ⃗; ð53Þ

ð∇σÞ2 → ∇χ⃗ · ∇χ⃗; ð54Þ

σ2ð∇σÞ2 → ðχ⃗ · χ⃗Þ∇χ⃗ · ∇χ⃗ or ðχ⃗ · ∇χ⃗Þ2; ð55Þ

ðΔσÞ2 → Δχ⃗ · Δχ⃗; ð56Þ

where χ⃗ ¼ ðσ;ϕ5Þ has been defined above. Notice that the
NJL invariant on the left-hand side of Eq. (55) leads to two
possible terms in the non-Hermitian model, namely those
with coefficients γ6 and δ6 in Eq. (51). We analyze the two
limiting possibilities here, namely γ6 ¼ 0 and δ6 ¼ 0,
noticing that in the former case we get a stable GL potential
while in the latter case the free energy is unbounded
from below.
Starting with δ6 ¼ 0, the GL free energy of the non-

Hermitian model reads

FNHðχ⃗ðxÞÞ ¼
α2
2
χ⃗:χ⃗ þ α4

4
½ðχ⃗:χ⃗Þ2 þ ∇χ⃗:∇χ⃗�

þ α6
6

�
ðχ⃗:χ⃗Þ3 þ 5ðχ⃗:χ⃗Þð∇χ⃗:∇χ⃗Þ2 þ 1

2
Δχ⃗:Δχ⃗

�
:

ð57Þ

It is now useful to introduce two new fields, ξ and θ, by
means of the following transformation

σ ¼ ξ cosh θ; ϕ5 ¼ ξ sinh θ: ð58Þ

Using the parametrization (58), we rewrite the free energy
(57) as follows:

FNHðξ;θÞ ¼
α2
2
ξ2 þ α4

4
ξ4 þ α6

6
ξ6 þ α4

4
½ð∇ξÞ2 − ξ2ð∇θÞ2�

þ 5α6
6

½ξ2ð∇ξÞ2 − ξ4ð∇θÞ2� þ α6
12

½Δξþ ξð∇θÞ2�2

−
α6
12

½2ð∇ξ ·∇θÞ þ ξΔθ�2; ð59Þ

where we used the identities:

χ⃗:χ⃗ ¼ ξ2; ð60Þ

∇χ⃗:∇χ⃗ ¼ð∇ξÞ2 − ξ2ð∇θÞ2; ð61Þ

Δχ⃗:Δχ⃗ ¼½Δξþ ξð∇θÞ2�2 − ½2ð∇ξ · ∇θÞ þ ξΔθ�2: ð62Þ

The free energy (59) is invariant under rigid shifts of
the hyperbolic field θ → θ þ θ0. This freedom corresponds
to the transformations of the global non-Hermitian group
(49). The corresponding non-Hermitian Nambu-Goldstone
boson is represented by the single “pion” field ϕ5, which, in
the linear order, is realized as the hyperbolic phase θwith the
kinetic-only action. Notice that the kinetic action enters the
free energy with the negative sign which is the expected
property in the non-Hermitian scalar gauge theories [29].
The negative sign in front of the kinetic term of the θ field is
the reason why the presence of the ξ ≠ 0 condensate breaks
the translational symmetry of the strongly-coupled phase.
We discuss this question below.
For α4 > 0, the terms proportional to ð∇ξÞ2 and ξ2ð∇θÞ2

in (59) respectively increase and decrease the free energy
for an inhomogeneous ground state: therefore, for α4 > 0 it
is likely that the lowest free energy is achieved by a ground
state of the form

ξ ¼ ξ0; θ ¼ θðxÞ; ð63Þ

where ξ0 is a constant. For simplicity, we limit ourselves
here to the following ansatz:

ξ ¼ ξ0; θ ¼ θ0 þ k · x; ð64Þ

where k is a constant wave vector and θ0 is an arbitrary
constant phase. The vacuum with a nonzero wave vector k
breaks the rotational symmetry of the ground state.
Using the ansatz (64) in Eq. (59) we get the free energy

of the ground state:

FNHjξ¼ξ0;θ¼kx ¼
α2
2
ξ20 þ

α4
4
ξ40 þ

α6
6
ξ60

−
�
α4
4
þ 5α6

6
ξ20

�
ξ20k

2 þ α6
12

ξ20k
4; ð65Þ

the above equation tells us that an inhomogeneous ground
state with a nonzero wave vector k ≠ 0 lowers the free
energy of the system.
The direction of k in the ground state will be chosen

spontaneously by the system as it does not affect the free
energy, while the magnitude of k, namely k0, minimizes
FNH. Explicitly, the length of the ground-state wave vector is

k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3α4 þ 10α6ξ

2
0

2α6

s
: ð66Þ

Using this expression for k0 in Eq. (65), we get the free
energy at the minimum:
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FNHjξ¼ξ0;k¼k0 ¼
α̃2
2
ξ20 þ

α̃4
4
ξ40 þ

α̃6
6
ξ60; ð67Þ

with

α̃2 ¼ α2 −
3α24
8α6

; ð68Þ

α̃4 ¼ α4 − 5α4; ð69Þ

α̃6 ¼ α6 −
25α6
2

: ð70Þ

The free energy difference between the states with inhomo-
geneous and homogeneous condensates is

ΔF ¼ −
3α24
16α6

ξ20 −
5α4
4

ξ40 −
25α6
12

ξ60: ð71Þ

Notice that the sixth order term in Eq. (71) is negative, which
makes the free energy unbounded from below. It is likely that
in this case a resummation of all orders in the condensate is
necessary. We thus conclude that the GL analysis alone is not
enough to determine completely the ground state, although
Eq. (71) seems to point in the direction of a free energy is
less favorable if the inhomogeneous ground state is taken.
Next we turn to the choice γ6 ¼ 0. In this case we replace

ξ2ð∇ξÞ2 − ξ4ð∇θÞ2 → ξ2ð∇ξÞ2 ð72Þ

in the third line of Eq. (59), and instead of Eq. (65) we
would have

FNHjξ¼ξ0;θ¼kx ¼
α2
2
ξ20 þ

α4
4
ξ40 þ

α6
6
ξ60

−
α4
4
ξ20k

2 þ α6
12

ξ20k
4; ð73Þ

this would give

k0 ¼
ffiffiffiffiffiffiffi
3α4
2α6

s
: ð74Þ

instead of Eq. (74), and

α̃2 ¼ α2 −
3α24
8α6

; ð75Þ

α̃4 ¼ α4; ð76Þ

α̃6 ¼ α6: ð77Þ

instead of Eqs. (68)–(70). In this case, the sign of the sixth
order term coincides with that of α6 which is assumed to be
positive, therefore the free energy is bounded from below

and the GL analysis can be completed by estimating the
loss in free energy due to the inhomogeneous condensate,

ΔF ¼ −
3α24
16α6

ξ20: ð78Þ

The numerical value of ΔF depends on the details of the
microscopic model; however, regardless of these details we
can conclude that the inhomogeneous condensation lowers
the free energy of the system.

VI. OUTLOOK

The generalization of our approach to a system with
Nf > 1 flavors (species) of fermions is rather straightfor-
ward. Similarly to the standard Hermitian NJL model [2],
the fermions of different flavors form N2

f − 1 pseudoscalar
fields ϕa

5 which couple with the Nf-multiplet of the
fermionic field Ψ ¼ ðψ1;…;ψNf

ÞT via the non-
Hermitian Yukawa coupling:

LNJL ¼ ϕ2
5 − ðσ −m0Þ2

2G
þ Ψ̄ði=∂ − σ1 − γ5λaϕa

5ÞΨ: ð79Þ

Here λa are the generators of the SUðN2
f − 1Þ flavor group

and σ is the scalar Hermitian field. The integration of over
the fermionic degrees of freedom Ψ produces the one
loop action with the pseudoscalar iso-vector field

ϕ5 ¼ ðϕ1
5;…ϕ

N2
f−1

5 ÞT . In the uniform vacuum, it is suffi-
cient to replace ϕ2

5 → ϕ2
5 in the effective action (45). The

effective bosonic action respects a noncompact symmetry
group Uð1; N2

f − 1Þ which generalizes the single-flavor
non-Hermitian group (49) to the multiflavor case. Notice
that while for a single-flavor fermion the non-Hermitian
symmetry breaking leads to the appearance of the non-
Hermitian mass gap given by the last term in Eq. (43), in the
multiflavor case the non-Hermitian ground state may be
traced to the emergence of the non-Hermitian Yukawa
interaction in the last term of the semibosonized
Lagrangian (79).
One of the problems that might require future attention

concerns the possible mitigation of the destabilizing effect
of a finite current mass m0 on the non-Hermitian ground
state of the system as has been noted briefly in Sec. IV C.
To elucidate this problem, let us follow the notation of
Sec. V and parametrize, similarly to Eq. (58), the fields
σ þm0 ¼ ξ cosh θ and ϕ5 ¼ ξ sinh θ. The partially boson-
ized theory gets now the following form:

L ¼ −
1

2G
ðξ2 þm2

0 − 2ξm0 cosh θÞ þ ψ̄ði=∂ − ξÞψ : ð80Þ

The first term in the effective theory gives us the tree-level
potential for the bosonic fields ξ and θ:
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V0ðξ; θÞ ¼ ξ2 þm2
0 − 2m0ξ cosh θ; ð81Þ

which is unbounded from below in the direction of the field
θ ifm0 ≠ 0. The problem is clearly absent in the chiral limit
at m0 ¼ 0.
The absence of a finite minimum of the tree-level

potential V0 at m0 ≠ 0 cannot be compensated by the
fermionic determinant because the determinant may only
add the one-loop term vðξ=ΛÞ to the potential (81). The
one-loop correction, computed in Eq. (35), gives a con-
tribution depending on ξ, and, consequently, it cannot lift
out the instability of the classical potential (81) in the
direction of the field θ. Therefore the quantum corrections
can not solve the problem of the absence of the ground state
in the minimal NJL model (18) in the presence of the
explicit chiral symmetry breaking, m0 ≠ 0.

VII. CONCLUSIONS

We elaborated the physical consequences of a scenario in
which the standard Hermitian Nambu–Jona-Lasinio model
spontaneously develops a non-Hermitian PT -symmetric
ground state. Our scenario challenges the standard
assumption that the ground state of a Hermitian theory
is a Hermitian state. The non-Hermitian ground state is
characterized by the presence of specific condensates that
make the quasiparticle excitations non-Hermitian. In the
context of the NJL model, the non-Hermitian ground state
develops a complex axial condensate which gives a non-
Hermitian contribution to the quark’s mass. We call this
vacuum ground state as a non-Hermitian ground state.
In the semi-bosonized model, the non-Hermitian ground

state is catalyzed by the presence of a dynamically
generated non-Hermitian Yukawa coupling. The unbroken
PT symmetry of the system guarantees that the spectrum is
real. In the exact chiral limit, i.e., in the absence of the
explicit chiral symmetry breaking in the NJL model, the
uniform non-Hermitian ground state has the same (finite)
free energy density as the usual Hermitian ground state.
The known Hermitian and new non-Hermitian ground

states are related to each other by a nonunitary, noncompact
global symmetry which is spontaneously broken both in
weak- and strong-coupling regimes of the model. In the
chiral limit at strong coupling, the non-Hermitian ground
state develops inhomogeneity, which breaks the transla-
tional symmetry of the state. At weak coupling, the ground
state is a spatially uniform state, which lies at the boundary
between the PT -symmetric and PT -broken phases.
Outside the chiral limit, at a nonzero current mass
m0 ≠ 0, the minimal NJL model does not possess a stable
ground state because the free energy of the state is
unbounded from below. The m0 ≠ 0 ground state may
perhaps be stabilized in nonminimal NJL models with
higher-order fermionic vertices.
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APPENDIX: GRADIENT EXPANSION IN THE
EFFECTIVE ACTION

The bosonized NJL model after integrating out fermions
gets the following form:

LNJL ¼ −
1

2G
ðσ2ðxÞ − ϕ2

5ðxÞÞ
þ iTr logðG−1

0 − ðσ þ γ5ϕ5ÞÞ; ðA1Þ

where G−1
0 ¼ i=∂. The trace operator, “Tr”, includes for the

matrix trace “tr” as well as an integral over spatial
coordinates.
Factorizing G−1

0 and expanding the logarithm in the
above expression gives us:

LNJL ¼ −
1

2G
ðσ2ðxÞ − ϕ2

5ðxÞÞ þ Tr½G−1
0 �

− i
X∞
n¼1

1

n
Tr½G0ðσ þ γ5ϕ5Þ�n: ðA2Þ

Let us consider the case n ¼ 2:

Γn¼2 ¼
i
2

Z
dxdx0trðG0ðx; x0Þðσðx0Þ þ γ5ϕ5ðx0ÞÞ

×G0ðx0; xÞðσðxÞ þ γ5ϕ5ðxÞÞÞ

¼ i
2

Z
dxdx0tr½G0ðx; x0ÞG0ðx0; xÞ�ðσðx0ÞσðxÞ

− ϕ5ðx0Þϕ5ðxÞÞ: ðA3Þ

In order to perform the derivative expansion, it is
mandatory to go to momentum representation, where the
functional Γn¼2 reads as follows:

Γn¼2 ¼
Z

dDq
ð2πÞDΠ2ðqÞðσð−qÞσðqÞ − ϕ5ð−qÞϕ5ðqÞÞ;

ðA4Þ
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where

Π2ðqÞ ¼
i
2

Z
dDk
ð2πÞD tr½G0ðkÞG0ðk − qÞ�; ðA5Þ

and G0ðkÞ ¼ 1=γaka. With this, we can do the following:

tr½G0ðkÞG0ðk − qÞ�

≃ tr½G0ðkÞG0ðkÞ� þ tr
h
G0ðkÞG0ðkÞ

∂G−1
0

∂qa G0ðkÞ
i
qa

þ tr
h
G0ðkÞG0ðkÞ

∂G−1
0

∂ka G0ðkÞ
∂G−1

0

∂kb G0ðkÞ
i
qaqb; ðA6Þ

where we have used the fact that G−1
0 is a linear polynomial

in the momenta. We plug the above expansion,
G0 ¼ γaka=k2, and ∂G−1

0 =∂ka ¼ γa into Eq. (A5). This
trick corresponds to the derivative expansion of the
effective action Γn¼2. It is easy to see that the second term
in (A6) will be odd in the integration momentum, so it will
not contribute to this expansion.
Now we can make the connection with the GL expansion

with local terms as all the integrals are formally done at
q ¼ 0. Then we have just to care of performing divergent
integrals in the infrared (connection to nonrenormalizable
theories). Also, we need the following traces in D ¼ 4

(q2 ¼ q · q ¼ qμqμ):

tr½γaγb� ¼ 4ηab; ðA7Þ

Iabcd ¼ tr½γaγbγcγd� ¼ 4ðηabηcd − ηacηbd þ ηadηbcÞ; ðA8Þ

Fabcdef ¼ tr½γaγbγcγdγeγf�
¼ ηabIcdef − ηacIbdef þ ηadIbcef − ηaeIbcdf

þ ηafIbcde: ðA9Þ

After a bit of algebra, we find

tr½G0ðkÞG0ðk − qÞ� ¼ 4
1

k2
þ 8

ðk · qÞ2
ðk2Þ3 − 4

q2

ðk2Þ2 : ðA10Þ

Next, we rotate the integral in (A5) to the Euclidean space
(there appears an extra −i factor):

Π2ðqÞ¼
4

2

Z
d4k
ð2πÞ4

1

k2
þ8

2

Z
d4k
ð2πÞ4

ðk ·qÞ2
k6

−
4

2

q2

k4
: ðA11Þ

Performing the angular integration in four dimensions, and
putting both UV and IR cutoffs (Λ and l respectively), we
finally obtain:

Π2ðqÞ ¼
Λ2

8π2
−

q2

8π2
log

�
Λ
l

�
: ðA12Þ

From here we can read off α2 and α4 coefficients:

S0þ2 ¼
Z

dx
1

2

�
−
1

G
þ Λ2

4π2

�
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

α2

ðσ2 − ϕ2
5Þ

−
1

2

1

4π2
log

�
Λ
l

�
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

α4

ðð∇σÞ2 − ð∇ϕ2
5ÞÞ ðA13Þ

Let us consider the n ¼ 4 contribution to the effective
action (this time with the right sign), Γn¼4:

Γ4 ¼ −
i
4

Z
Π4

i¼1dxitr½ðσðx1Þ

− γ5ϕ5ðx1ÞÞG0ðx1 − x2Þðσðx2Þ
− γ5ϕ5ðx2ÞÞG0ðx2 − x3Þ · ·ðσðx3Þ
− γ5ϕ5ðx3ÞÞG0ðx3 − x4Þðσðx4Þ
− γ5ϕ5ðx4ÞÞG0ðx4 − x1Þ�: ðA14Þ

Out of the 16 terms in the expression (A14) only 8 will
contribute to the expression, as they have an even number
of γ5 matrices in the product of propagators. Taking into
account that the γ5 matrices anticommute with the Dirac
matrices γμ, the effective action Γ4 can be written as

Γ4 ¼ −
i
4

Z
Π4

i¼1dxitr½G0ðx1 − x2ÞG0ðx2 − x3ÞG0ðx3 − x4ÞG0ðx4 − x1Þ�·

· ðσðx1Þσðx2Þσðx3Þσðx4Þ − σðx1Þσðx2Þϕ5ðx3Þϕ5ðx4Þ þ σðx1Þϕ5ðx2Þσðx3Þϕ5ðx4Þ
− σðx1Þϕ5ðx2Þϕ5ðx3Þσðx4Þ þ ϕ5ðx1Þσðx2Þϕ5ðx3Þσðx4Þ − ϕ5ðx1Þσðx2Þσðx3Þϕ5ðx4Þ
− ϕ5ðx1Þϕ5ðx2Þσðx3Þσðx4Þ þ ϕ5ðx1Þϕ5ðx2Þϕ5ðx3Þϕ5ðx4ÞÞ: ðA15Þ

It will be convenient to write the expression (A15) in momentum space. To avoid too long expressions, we will write up the

first term in Eq. (A15) (ðdqÞ≡ dDq
ð2πÞD):
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Γð1Þ
4 ¼ 1

4

Z
ðdqÞðdpÞðdrÞΠ4ðq; p; rÞσðqÞσðpÞσðrÞσð−q − p − rÞ; ðA16Þ

with

Π4ðq; p; rÞ ¼ −i
Z

ðdkÞtr½G0ðkÞG0ðk − pÞG0ðk − p − rÞG0ðkþ qÞ�; ðA17Þ

being the fourth order susceptibility. The remaining terms in Eq. (A15) are similar, just substituting the corresponding σ
fields by ϕ5 fields.
One can make the connection with the Ginzburg-Landau effective theory by approximating the functionΠ4ðq; p; rÞ by its

value at q ¼ p ¼ r ¼ 0, Π4ð0; 0; 0Þ≡ α4, and then go back to real space. Again, using the term with four σ fields we get:

Γð1Þ
4 ¼ α4

4

Z
ðdqÞðdpÞðdrÞσðqÞσðpÞσðrÞσð−q − p − rÞ

¼ α4
4

Z
ðdpÞðdqÞðdrÞ

Z
Π4

i¼1e
ix1qeix2peix3reix4ð−p−q−rÞσðx1Þσðx2Þσðx3Þσðx4Þ

¼ α4
4

Z
Π4

i¼1dxiδðx1 − x4Þδðx2 − x4Þδðx3 − x4Þσðx1Þσðx2Þσðx3Þσðx4Þ

¼ α4
4

Z
dxσ4ðxÞ: ðA18Þ

Doing the same for the rest of the terms, and collecting all them in (A15) under this approximation, we have

Γ4 ¼
α4
4

Z
dxðσ4ðxÞ − σ2ðxÞϕ2

5ðxÞ þ σ2ðxÞϕ2
5ðxÞ − σ2ðxÞϕ2

5ðxÞ þ σ2ðxÞϕ2
5ðxÞ

− σ2ðxÞϕ2
5ðxÞ − σ2ðxÞϕ2

5ðxÞ þ ϕ4
5ðxÞÞ ¼

α4
4

Z
dxðσ2ðxÞ − ϕ2

5ðxÞÞ2

¼ α4
4

Z
dxðχ⃗ · χ⃗Þ2: ðA19Þ

This expression coincides with the free energy FNHðχ⃗Þ of Eq. (51) when the latter is written in terms of χ⃗. Also, the
expression (A17) is the starting point to start the derivative expansion to get the terms proportional to α6.
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