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Temporal networks are graphs where each edge is linked with a timestamp, denoting

when an interaction between two nodes happens. According to the most recently

proposed definitions of the problem, motif search in temporal networks consists in

finding and counting all connected temporal graphs Q (called motifs) occurring in a larger

temporal network T, such that matched target edges follow the same chronological order

imposed by edges in Q. In the last few years, several algorithms have been proposed

to solve motif search, but most of them are limited to very small or specific motifs due

to the computational complexity of the problem. In this paper, we present MODIT (MOtif

DIscovery in Temporal Networks), an algorithm for counting motifs of any size in temporal

networks, inspired by a very recent algorithm for subgraph isomorphism in temporal

networks, called TemporalRI. Experiments show that for big motifs (more than 3 nodes

and 3 edges) MODIT can efficiently retrieve them in reasonable time (up to few hours) in

many networks of medium and large size and outperforms state-of-the art algorithms.

Keywords: temporal networks, network motifs, motif search algorithms, motif counting, network analysis, data

mining

1. INTRODUCTION AND RELATED WORKS

Networks (also named graphs) are tools for the description and analysis of entities, called nodes,
that interact with each other by means of edges. There are many types of data that can be
represented by graphs, including computer networks, social networks, communication networks,
biological networks, and so on. A wide range of domains can be modeled and studied with static
networks but many complex systems are fully dynamic, indeed interactions between entities change
over time. Systems of this type can be modeled as temporal networks, in which edges between nodes
are associated with temporal information such as, for example, the duration of the interaction and
the instant in which the interaction begins. Annotations of edges with temporal data is important
to understand the formation and the evolution of such systems.

In literature, several definitions of temporal networks have been proposed (Holme and
Saramaki, 2012; Masuda and Lambiotte, 2020). In few works, these are also referenced as dynamic
(Carley et al., 2007), evolutionary (Aggarwal and Subbian, 2014) or time-varying (Casteigts et al.,
2011) networks. In this paper, we define temporal network as a multigraph (i.e a graph where two
nodesmay interact multiple times). Each edge is associated with an integer, called timestamp, which
denotes when two nodes interact.

In the last few years, there has been a growing interest in analyzing temporal networks and
studying their properties. Analysis of temporal networks includes network centrality (Lv et al.,
2019; Tsalouchidou et al., 2020), network clustering (Crawford and Milenkovic, 2018), community
detection (Rossetti and Cazabet, 2018), link prediction (Divakaran and Mohan, 2020), graph

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2021.806014
http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2021.806014&domain=pdf&date_stamp=2022-02-23
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles
https://creativecommons.org/licenses/by/4.0/
mailto:giovanni.micale@unict.it
mailto:alfredo.pulvirenti@unict.it
https://doi.org/10.3389/fdata.2021.806014
https://www.frontiersin.org/articles/10.3389/fdata.2021.806014/full


Grasso et al. MOtif Discovery in Temporal Network

mining (Sun et al., 2019), graph embedding (Torricelli et al.,
2020), network sampling (Rocha et al., 2017), random models
(Petit et al., 2018; Hiraoka et al., 2020; Singh and Cherifi, 2020),
and epidemic spreading (Tizzani et al., 2018; Williams et al.,
2019; Masuda and Holme, 2020). Extensive reviews of temporal
networks and their main features can be found in Holme and
Saramaki (2012, 2019), Masuda and Lambiotte (2020).

In this work, we focus on motif search in temporal
networks. Different definitions of temporal motifs have been
proposed so far (Kovanen et al., 2011; Hulovatyy et al.,
2015; Paranjape et al., 2017). Here, we follow the most
recent definition proposed by Paranjape et al. (2017), which
is becoming the most accepted one. A temporal motif is a
temporal network where edges denote a succession of events.
In addition to the original definition proposed by Paranjape
et al. (2017), simultaneous events, represented by edges with
equal timestamps, are allowed, provided that such edges do
not link the same pair of nodes. Temporal graphs Q1 and
Q2 of Figure 1 are two examples of motifs. Applications of
Temporal Motif Search include the creation of evolution rules
that govern the way the network changes over time (Berlingerio
et al., 2009; Ugander et al., 2013) allowing also to identify all
the time an edge participates to particular pattern in a time
window. A second application consists in the identification
of motifs in temporal network at different time resolution to
identify patterns at different time scale. Another application
consists in temporal network classification using a feature
representation based on the temporal motifs distribution (Tu
et al., 2018).

Given a time interval 1, we say that a motif Q 1-occurs in T,
iff: (i)Q is isomorphic (i.e., structurally equivalent) to a subgraph
S of T (called an occurrence of Q in T), (ii) edges in S follow the
same chronological order imposed by corresponding matched
edges inQ, (iii) all interactions in S are observed in a time interval
less than or equal to 1 (i.e., they are likely to be related each
other). In Figure 1, motif Q1 1-occurs (1 = 6 in the example)
in T, while Q2 does not.

For a given temporal graph T and time interval 1, motif
search aims at retrieving all motifs that 1-occurs in T. In
addition, for each such motif Q, we also count the number of
occurrences of Q in T. It has been shown that Temporal Motif
Search (TMS) problem is NP-complete, even for star topologies
(Liu et al., 2019). For this reason, motif search is usually restricted
to motifs with up to a certain number of nodes and edges. Given
1 = 10, Figure 2 shows all temporal motifs with up to 3 nodes
and 3 edges that 1-occur in a toy temporal graph, together with
the corresponding number of occurrences.

Recently, several TMS algorithms have been introduced
(Kovanen et al., 2011; Hulovatyy et al., 2015; Paranjape et al.,
2017; Liu et al., 2019). However, the proposed solutions are
limited to very small motifs or specific topologies.

Temporal motifs have been introduced for the first time by
Kovanen et al. (2011). Authors define a motif as an ordered set of
edges such that: (i) the difference between the timestamps of two
consecutive edgesmust be less than or equal to a certain threshold
1 and (ii) if a node is part of a motif, then all its adjacent edges
have to be consecutive (consecutive edge restriction).

In Hulovatyy et al. (2015) the consecutive edge restriction
was relaxed and the authors considered only induced subgraphs,
called graphlets, in order to reduce the computational complexity
while obtaining approximate results.

Paranjape et al. (2017) describes a temporal motif as a
sequence of edges ordered by increasing timestamps. More
precisely, the authors define a k-node, l-edge, 1-temporal motif
as a sequence of l edges,M = (u1, v1, t1), (u2, v2, t2), . . . , (ul, vl, tl)
that are time-ordered within a 1 duration, i.e., t1 < t2 · · · < tl
and tl − t1 ≤ 1, such that the static graph induced by the
edges is connected and has k nodes. The authors present an
algorithm to efficiently calculate the frequencies of all possible
directed temporal motifs with 3 edges. For bigger motifs they use
a naive algorithm that first computes static matches, then filters
out occurrences which do not match the temporal constraints.

To tackle with the NP-completeness of TMS, approximate
solutions have been proposed too. Liu et al. (2019) propose a
general sampling framework to estimate motif counts. It consists
in partitioning time into intervals, finding exact counts of motifs
in each interval and weighting counts to get the final estimate,
using importance sampling.

In this paper, we present a new motif search algorithm,
called MODIT (MOtif DIscovery in Temporal networks).
The method is inspired by the temporal subgraph matching
algorithm TemporalRI (Locicero et al., 2021; Micale et al.,
2021). Our algorithm overcomes many of the limitations
imposed by other motif search methods. In fact, MODIT
is general and can search for motifs of any size. It has
no consecutive edge restriction and allows edges with equal
timestamps, provided that they do not link the same pair
of nodes.

The rest of the paper is organized as follows. In section
2, we give preliminary definitions about temporal networks
and temporal motif search, then we illustrate MODIT and
evaluate its computational complexity. In section 3, we assess
the performance of MODIT on a dataset of real networks and
compare it with the algorithm presented in Paranjape et al.
(2017). Finally, section 4 ends the paper.

2. METHODS

2.1. Preliminary Definitions
In this section, we formally define the concepts of temporal graph
and temporal motif, then we introduce the temporal motif search
problem.

2.1.1. Temporal Graph
A temporal graph (or network) G is a pair of sets (V ,E), where V
is the set of nodes and E ⊆ V×V×R is the set of edges. Each edge
is a triple (s, d, t) where s is the source node, d is the destination
node and t is the timestamp, denoting the moment or the time
interval in which the two nodes interact.

By definition, a temporal graph is a multigraph, because
there can be multiple edges between two nodes. However,
triplets in E are distinct, therefore such edges need to have
different timestamps. With e.source, e.dest, and e.time we
denote the source, the destination and the timestamp of
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FIGURE 1 | Example of motif 1-occurrence in a temporal graph T, given 1 = 6. Motif Q1 has exactly one 1-occurrence in T, which is the subgraph formed by nodes

and edges colored in red. Motif Q2, instead, does not 1-occur in T. In fact, the subgraph with blue nodes and blue edges is isomorphic to Q2 and respects the

chronological order imposed by Q2’s edges, but its edges are not observed within the time window 1.

FIGURE 2 | Example of application of the Temporal Motif Search (TMS) problem for a temporal graph T, given 1 = 10, k = 3, and l = 3. For each motif, the relative

number of 1-occurrences in T is reported.

edge e, respectively. A temporal graph G = (V ,E) is
undirected if ∀(s, d, t) ∈ E(G) we have (d, s, t) ∈ E(G),
otherwise it is directed. With Inc(v) we denote the set of all
edges that are incident to node v, i.e., having v as source
or destination.

2.1.2. Temporal Motif
Let Q = (V ,E) a connected temporal graph with l edges and
(t1, t2, . . . , tl) the sequence of Q’s edges timestamps in ascending
order. Q is a temporal motif iff: (i) t1 = 1, (ii) ti+1 − ti ≤ 1 ∀ 1 ≤

i ≤ l− 1.
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In other words, a temporal motifQ can be considered a sort of
standardized temporal graph, in which edge timestamps denote
an order in which events happen starting from the initial event
(i.e., event 1). Edges with equal timestamps (if any) inQ represent
simultaneous event. Examples of temporal motifs are the graphs
Q1 and Q2 depicted in Figure 1.

To establish if a temporal graph contains a temporal motif,
we need to introduce the concept of Temporal Subgraph
Isomorphism. We follow the definition reported in Micale et al.
(2021).

2.1.3. Temporal Subgraph Isomorphism
Given two temporal graphs Q = (VQ,EQ) and T = (VT ,ET),
called, respectively, query and target, and an integer 1, the
Temporal Subgraph Isomorphism (TSI) problem consists in
finding an injective function f :VQ → VT , called node mapping,
and an injective function g :EQ → ET , called edge mapping, such
that the following conditions hold:

1. ∀eQ = (u, v, tQ) ∈ EQ ∃ eT ∈ ET s.t. eT = g(eQ) =

(f (u), f (v), tT);
2. ∀eQ, e

′
Q ∈ EQ s.t. eQ.time ≤ e′Q.time ⇒ g(eQ).time ≤

g(e′Q).time;
3. ∀eQ, e

′
Q ∈ EQ |g(eQ).time− g(e′Q).time| ≤ 1.

The first condition ensures that the edge mapping is consistent
with the node mapping. The second condition requires that the
chronological order between query edges is respected in the target
network. The third condition imposes that all matching target
edges are observed within a fixed time interval 1.

The TSI problem can have one or more solutions. In this case,
we say that Q 1-occurs in T. Given an edge mapping g between
Q and T, a 1-occurrence of Q in T is a temporal graph S formed
by edges g(q1), g(q2), . . . , g(qk) and all nodes that are sources or
destinations of at least one of these edges.

In Figure 1, given 1 = 6, query Q1 1-occurs in target T and
the corresponding occurrence is the subgraph of T highlighted in
red. Query Q2, instead, has no 1-occurrences in T. Indeed, there
is only one subgraph of T (highlighted in blue) that is isomorphic
to Q2 but violates the 1 constraint on edge timestamps.

Finally, we define the temporal motif search problem.

2.1.4. Temporal Motif Search
Given a temporal graph T = (VT ,ET) and three integers k, l
and1, the Temporal Motif Search (TMS) problem consists in: (i)
retrieving all temporalmotifs that1-occurs inT and have atmost
k nodes and l edges, (ii) counting the number of 1-occurrences
of such motifs.

An example of application of the TMS problem is shown in
Figure 2 where k = 3, l = 3 and 1 = 10.

2.2. The MODIT Algorithm
In what follows we introduce a new algorithm for solving the
TMS problem, called MODIT (MOtif DIscovery in Temporal
networks).

Given three parameters k, l, and 1, MODIT scans a temporal
graph T to retrieve all temporal motifs with at most k nodes

Algorithm 1 |MODIT(G, 1, k, l).

1 LetmotifMap be an empty hash map.
2 minedSubgraphs = ∅

3 for each e = (u, v, t) ∈ E(G) do
4 Let S be an empty graph.
5 V(S) = V(S) ∪ {v}
6 E(S) = E(S) ∪ {e}
7 minedSubgraphs = minedSubgraphs ∪ S
8 minTime = t
9 maxTime = 0
10 λ = +∞

11 Let timestampSet be an empty multiset
12 timestampSet = timestampSet ∪ {t}
13 UPDATEBOUNDS(timestampSet,1,minTime,maxTime, λ)
14 M = STANDARDIZETIMESTAMPS(S)
15 C = COMPUTECANONIZATION(M)
16 UPDATEOCCURRENCES(motifMap,C)
17 RECURSIVESEARCH(S, u,1, timestampSet,minTime,

maxTime, λ,
motifMap, k, l,minedSubgraphs)

18 RECURSIVESEARCH(S, v,1, timestampSet,minTime,
maxTime, λ,
motifMap, k, l,minedSubgraphs)

19 returnmotifMap

Algorithm 2 | UPDATEBOUNDS(timestampSet,1,minTime,
maxTime, λ).

1 maxTime = MAX(timestampSet)
2 λ = 1 −maxTime+minTime
3 return

and l edges which 1-occur in T and counts the number of
1-occurrences of each motif in T.

For each newly identified occurrence, the algorithm performs
the following steps:

1. Standardization of edge timestamps;
2. Construction of the canonical form and identification of the

corresponding temporal motif;
3. Update of the count of the number of motif occurrences.

The search starts from the smallest motif occurrences formed by
single edges. We call these edges seeds. Each of these occurrences
is then recursively extended by adding one edge at the time until
the specified maximum number of nodes and edges is reached.

MODIT can work on both undirected and directed graphs.
For ease of presentation, we illustrate the functioning of the
algorithm for undirected networks. However, all the procedures
presented here can be easily adapted to directed networks.

The pseudocode of MODIT is reported in Algorithm 1. All
motifs retrieved by the algorithm, together with the number of
their occurrences, are stored in a hash map motifMap, empty
at the beginning (line 1). Each motif in the map is uniquely
represented by a string, called canonical form. In addition, since
the same occurrence of a motif may be examined multiple
times, we also need to store all the distinct retrieved subgraph
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FIGURE 3 | Example of construction of the canonical form. Node a has the highest degree (2), so a is the first node of the ordering. Nodes b and c have the same

degree, so we need to examine the adjacency lists of b and c sorted by timestamp and destination node. The first edge in the sorted list of b has timestamp 1, while

the first edge in the sorted list of c has timestamp 2, so the second node of the ordering is b and the third one is c. Following such node ordering, the canonical form

of the graph in the figure is {(a, 1,b), (a, 2, c), (b, 1, a), (c, 2, a)}.

occurrences in a hash setminedSubgraphs (line 2). For each edge
e = (u, v, t) of the target graph, MODIT performs the following
steps. First, e and its nodes are embedded in a new occurrence
graph S, which is added to the set minedSubgraphs (lines 4–7).
The timestamp of the seed edge e is stored in a variableminTime,
which will be used throughout the search to avoid scanning some
subgraphs of T multiple times (line 8). Each edge that will be
added to the subgraph must have a timestamp greater than or
equal to minTime. To ensure that each subgraph obtained by
expanding S does not violate the 1 temporal constrain, MODIT
also uses three auxiliary variables: timestampSet, maxTime, and
λ (lines 9–12). Variable timestampSet is a multi-set containing
the timestamps of the currently examined subgraph S (at the
beginning just t). maxTime will store at each step the maximum
timestamp of edges in S. λ represents how much we can extend
the time window covered by edges in S (i.e., the difference
between the maximum and the minimum timestamps), without
exceeding 1. maxTime and λ are initialized and kept updated
during the search using Algorithm 2 (line 13).

Next, the timestamps of the current subgraph S are
standardized, i.e they are modified in order to transform S into
a temporal motif M, in compliance with the definition provided
in section 2.1 (line 14). Standardization of timestamps aims
at identifying the motif M of which S is an occurrence and
works as follows. First, the list of edge timestamps in S (without
duplicates) is sorted in ascending order. Then, each edge of
S is assigned the rank of the corresponding timestamp in the
sorted list.

Standardization alone may produce distinct motifs that are
actually structurally equivalent and in which equivalent edges
have the same timestamps. To avoid this, a canonical form C
is extracted from M (line 15). The canonical form is a string
that uniquely represents a motif, so that two motifs that are
equivalent have exactly the same canonical forms. C is obtained
by concatenating motif edges based on a given order of motif
nodes. Nodes are first ordered according to their degree. Possible
ties are solved comparing their sorted adjacency lists, in which

edges are ordered by timestamp and, in case of ties, by destination
node. Following the calculated node ordering, sorted adjacency
lists of nodes are concatenated to yield the canonical form.
Figure 3 shows an example of computation of canonical form.
In the depicted motif, node a is the first node in the ordering,
since it has the maximum degree (2). Nodes b and c have both
degree 1. If the adjacency lists of b and c are sorted by timestamps,
b comes before c because the first edge in the sorted adjacency
list of b has timestamp 1, while the first edge in the sorted
adjacency list of c has timestamp 2. Following the node ordering
{a, b, c}, sorted adjacency lists of a, b and c are appended to
yield the final canonical form of the motif, i.e., the string C =

{(a, 1, b), (a, 2, c), (b, 1, a), (c, 2, a)}.
After constructing the canonical form, the number of

occurrences ofM is incremented inmotifMap (line 17).
Next, MODIT continues the search of new occurrences

by extending S edge by edge, starting from an anchor node.
This is done using the recursive procedure RECURSIVESEARCH

described in Algorithm 3 (lines 17-18). The first two calls to the
procedure will extend the seed using both endpoints as anchors.
In general, S will be extended by adding an edge which is not
already present in S and is incident to an anchor node already
present in S.

The structure of RECURSIVESEARCH procedure is very
similar to Algorithm 1. First, we check if the currently
examined subgraph has reached the maximum allowed number
of edges (lines 1-2). If so, the recursive algorithm stops,
otherwise the search goes on, considering all possible edges
e = (u, a, t) not already present in S and incident to
the anchor node a (line 3). For each such edge, MODIT
ensures that by adding e to S, the 1 temporal constrain
is not violated (line 4). Based on the current values of
minTime, maxTime and λ, we can add e to S without
violating the 1 constraint iff minTime ≤ t ≤ maxTime +

λ. We impose that t is no lower than minTime, i.e., the
timestamp of the seed edge, to reduce the number of redundant
candidates generated.
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Algorithm 3 | RECURSIVESEARCH(S, a, 1, timestampSet,
minTime,maxTime, λ,m, k, l,minedSubgraphs).

1 if |E(S)| ≥ l then
2 return
3 for each e = (u, a, t) ∈ Inc(v) ∧ e 6∈ E(S) do
4 if t ∈ [minTime,maxTime+ λ] then
5 if u 6∈ V(S) then
6 if |V(S)| ≤ (k− 1) then
7 V(S) = V(S) ∪ {u}
8 added = true
9 else
10 continue
11 E(S) = E(S) ∪ {e}
12 if S 6∈ minedSubgraphs then
13 timestampSet = timestampSet ∪ {t}
14 minedSubgraphs = minedSubgraphs ∪ S
15 UPDATEBOUNDS(timestampSet,1,minTime,

maxTime, λ)
16 M = STANDARDIZETIMESTAMPS(S)
17 C = COMPUTECANONIZATION(M)
18 UPDATEOCCURRENCES(m, canonicalForm)
19 RECURSIVESEARCH(S, u,1, timestampSet,minTime,

maxTime, λ,m, k, l,minedSubgraphs)
20 RECURSIVESEARCH(S, a,1, timestampSet,minTime,

maxTime, λ,m, k, l,minedSubgraphs)
21 timestampSet = timestampSet \ {e.t}
22 E(S) = E(S) \ {e}
23 if added = true then
24 V(S) = V(S) \ {u}
25 added = false
26 UPDATEBOUNDS(timestampSet,1,minTime,maxTime,

λ)
27 return

If e does not violate the 1 constraint, before adding it to S
(line 11), we do the following steps. First, we check if e does not
connect two nodes already present in S (line 5). If so, we verify if
the currently examined subgraph has not reached the maximum
allowed number of nodes (line 6). In this case, node u is added to
S (line 7). Otherwise, we proceed with the next edge (line 10).

Boolean conditions expressed in line 4 does not prevent
examining some subgraphs multiple times. Therefore, before
going on with the search, we need to check if S has not been
already examined before (line 12). This is done by simply
comparing the list of edge ids of S and each subgraph of the
minedSubgraphs set.

If S is new, we follow the same steps performed in
Algorithm 1. First, we include t in timestampSet and add S
to minedSubgraph (lines 13–14). We update temporal auxiliary
variables minTime, maxTime and λ (line 15). Then, edge
timestamps are standardized to obtain a temporal motif M (line
16). From M we extract the canonical form C (line 17) and
increase the number of its occurrences (line 18).

Next, Algorithm 3 is called recursively twice using the
endpoints of u as anchor nodes (lines 19–20). After returning

from the recursive calls, backtracking is performed (lines 21–
26). Backtracking implies: (i) removing from S the last added
edge e, (ii) removing from S the last added node, (iii) removing
the timestamp of e from timestampSet, (iv) updating auxiliary
variablesmaxTime and λ.

2.3. MODIT Complexity Analysis
In this subsection, we analyze the complexity of MODIT. The
search starts from the smallest motif occurrences formed by
single edges. Therefore, the for-loop inAlgorithm 1 is performed
|E(G)| times, whereG is the target graph. Inside the loop,MODIT
tries to expand each occurrence as long as possible. Lines 4–7 of
Algorithm 3 require constant time because they are applied to a
subgraph formed by only one edge.

Now let’s analyze the complexity of Algorithm 3. Let dmax

the maximum node degree of G. The for-loop in Algorithm 3
is performed, in the worst case, dmax times. Assuming 1 =

∞, all dmax edges are candidates to extend the motif. Lines 4–
14 of Algorithm 3 require a constant time. The complexity of
Algorithm 2 depends on the number of distinct timestamps
of the current motif. In the worst case there are l edges and
all timestamps are different. Identifying the minimum and
maximum requires an ordering of timestamps that has linear
complexity. The rest of the operations can be done in constant
time. So, the complexity of Algorithm 2 is O(l). However, in
practice, these operations are done faster because MODIT stores
timestamps in a data structure that is self-sorted as elements are
inserted/removed. Standardization of timestamps requires linear
time with respect to the number of edges. Since a motif can have
at most l edges, the complexity isO(l). The time required to build
the canonical form depends on the number of nodes and the
number of edges of the motif. Sorting the adjacency list of a node
requires, in the worst case, l operations. Since a motif can have
at most k nodes, sorting their adjacency lists requires at most
k · l operations. The ordering of nodes has linear complexity with
respect to the number of nodes, thus performs in the worst case,
k operations. Therefore, the number of operations required to
calculate the canonical form is at most k · l + k. Updating the
number of occurrences of a motif is done using a hash map, so it
takes constant time.

To derive the final complexity of Algorithm 3, we need
to evaluate the maximum depth of the recursion. Each call
to Algorithm 3 adds one edge at the time, so the maximum
recursion depth is l. Assuming no early backtracking, this implies
that the complexity of the recursive procedure isO

(

(l · k ·dmax)
l
)

.

So overall, the complexity of MODIT is O
(

|E(G)| · (l · k · dmax)
l
)

.

3. RESULTS

MODIT has been implemented in Java and tested on two datasets
of real temporal networks of different sizes, denoted as Dataset
1 and Dataset 2, respectively. Table 1 lists the main features of
the networks of the two datasets. For each graph we report the
number of nodes, the number of edges, the number of distinct
timestamps and the resolution, i.e., the minimum difference
between consecutive timestamps.
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TABLE 1 | Datasets of temporal networks used for the experiments.

Dataset Network Nodes Edges Timestamps Resolution

Dataset 1

SFHH-Conf 403 70,261 3,509 20

As-Topology 34,761 155,507 32,824 1

Contacts-Dublin 10,972 415,912 76,944 20

Enron-Email 86,978 1,134,990 213,218 1

Digg-Friends 279,374 1,729,983 1,644,369 1

Yahoo-Messages 100,001 3,157,315 898,174 1

Dataset 2

CollegeMsg 1,899 59,835 58,911 114,878

Email-Eu-core-temporal-Dept1 309 61,046 35,097 21,799

Email-Eu-core-temporal-Dept2 162 46,772 32,340 507

Email-Eu-core-temporal-Dept3 89 12,216 8,911 2,635

Email-Eu-core-temporal-Dept4 142 48,141 26,496 88

Email-Eu-core-temporal 986 332,334 207,880 2,797

For each network we indicate the number of nodes, the number of edges, the number of distinct timestamps and the resolution, i.e., the minimum difference between the timestamps

of two consecutive edges.

Dataset 1 is formed by six networks: SFHH-CONF,
AS-TOPOLOGY, CONTACTS-DUBLIN, ENRON-EMAIL,
DIGG-FRIENDS, and YAHOO-MESSAGES.

SFHH-CONF is a network that describes the interactions
between the 405 participants of the SFHH conference in Nice,
France (Génois and Barrat, 2018). AS-TOPOLOGY is a peer-
to-peer communication network between autonomous systems,
with data collected between February and March of 2010.
CONTACTS-DUBLIN is a contact network of attendees at the
Infectious SocioPatterns event held in the Science Gallery in
Dublin, Ireland (Isella et al., 2011). ENRON-EMAIL is a network of
e-mail exchanges of Enron corporation employees between 1999
and 2003 (Keila and Skillicorn, 2005). DIGG-FRIENDS describes
friendly bonds between users of Digg, a web news aggregator
used in America (Hogg and Lerman, 2012). It is based on data
collected in 1 month of 2009. YAHOO-MESSAGES represents the
exchange of e-mails between users of Yahoo-Mail in 1 month of
2010.

Dataset 2 includes 6 temporal networks taken from the
SNAP dataset1. COLLEGEMSG consists of private messages sent
on an online social network at the University of California,
Irvine (Panzarasa et al., 2009). The network EMAIL-EU-
CORE-TEMPORAL was generated using email data from a
large European research institution. Only emails exchanged
between institution members were taken into account.
EMAIL-EU-CORE-TEMPORAL-DEPT1, EMAIL-EU-CORE-
TEMPORAL-DEPT2, EMAIL-EU-CORE-TEMPORAL-DEPT3 and
EMAIL-EU-CORE-TEMPORAL-DEPT4 are four sub-networks
including communications between members of four different
departments of the institution (Paranjape et al., 2017).

We first ranMODIT on each network of Dataset 1 for different
combinations of values of 1, k (maximum number of motif
nodes) and l (maximum number of motif edges). Then, we
compared MODIT to the algorithm proposed by Paranjape et al.
(2017), which is included in the SNAP platform for network

1https://snap.stanford.edu/data/index.html

analysis and uses the same definition of temporal motif. All other
methods were discarded because they use different definitions of
temporal motifs. This comparison was done on the networks of
Dataset 2.

All experiments were performed on an Intel Core i5-7500
processor with 16GB of RAM, 10 of which were used for the Java
Virtual Machine.

3.1. Experiments on Dataset 1
In this section, we illustrate the results of the experiments on
Dataset 1. We report in Tables 2–4 the results in terms of (i)
execution times, (ii) number of distinct motifs identified, (iii)
number of occurrences of the most frequent motif, and (iv)
average number of motif occurrences. The experiments were
performed for different combinations of values of 1, k and l. 1
was set to r, 2r, and 3r, where r is the resolution of the temporal
network. For k we used values 3, 4, and 5. l was varied as a
function of k and set to values k − 1, 2 · (k − 1) and 3 · (k − 1).
In some networks (in particular, in AS-TOPOLOGY and ENRON-
EMAIL) and for some configurations of the parameters, MODIT
went out of memory and was unable to finish the execution. In
these cases we did not report any running time. This is due to the
large number of distinct motifs present in the networks, which
leads to an excessive growth of the map of motif counts, together
with a large number of occurrences causing many recursive calls
of Algorithm 3. In fact, as k and l increase, the number of motif
topologies and the number of combinations of standardized
timestamps increases exponentially [e.g., SFHH-CONF network
in the following configurations: (1 = 3r, k = 3, l = 2), (1 = 3r,
k = 3, l = 4) and (1 = 3r, k = 3, l = 6)]. This is confirmed by
the high values of the number of occurrences of themost frequent
motif and the average number of motif occurrences found for
small values of k and l.

Interestingly, in some networks (e.g., ENRON-EMAIL, DIGG-
FRIENDS) we observe that keeping 1 and k fixed and varying l,
the number of distinct motifs, the number of occurrences of the
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TABLE 2 | Experiments on Dataset 1 with 1 = 3r and different combination of values of k and l.

Configuration Network Time (s) Mem (GB) n Max AVG

k = 3
l = 2

SFHH-Conf 3.06 <1 8 44,221 30,387

As-Topology 83.10 5 10 16,068,985 1,885,655

Contacts-Dublin 8.21 2 9 192,318 112,497

Enron-Email 202.57 8 10 40,484,380 4,050,215

Digg-Friends 48.16 2 9 259,097 37,211

Yahoo-messages 30.86 3 9 230,863 47,886

k = 3
l = 4

SFHH-Conf 11.56 1 67 44,221 10,554

As-Topology 2,185.33 9 159 16,068,985 12,6181

Contacts-Dublin 17.49 2 120 192,318 18,141

Enron-Email 1,527.17 8 30 40,484,380 1,350,257

Digg-Friends 54.96 2 32 259,097 10,738

Yahoo-messages 32.05 3 49 230,863 9,825

k = 3
l = 6

SFHH-Conf 12.63 1 97 44,221 8,032

As-Topology 2,197.95 7 614 16,068,985 32,710

Contacts-Dublin 19.10 2 224 192,318 10,259

Enron-Email 1,527.50 8 30 40,484,380 1,350,257

Digg-Friends 55.57 2 32 259,097 10,738

Yahoo-messages 34.52 3 55 230,863 7,863

k = 4
l = 3

SFHH-Conf 9.98 1 62 87,189 5,932

As-Topology - OOM - - -

Contacts-Dublin 21.16 2 74 192,318 41,959

Enron-Email - OOM - - -

Digg-Friends 52.78 2 54 259,097 8,811

Yahoo-messages 30.50 4 60 311,440 15,852

k = 4
l = 6

SFHH-Conf 191.19 4 3,097 87,189 5,932

As-Topology - OOM - - -

Contacts-Dublin 86.88 4 6,603 192,318 1,666

Enron-Email - OOM - - -

Digg-Friends 48.79 2 175 259,097 2,869

Yahoo-messages 31.99 4 320 311,440 2,986

k = 4
l = 9

SFHH-Conf 378.52 4 10,916 87,189 2,623

As-Topology - OOM - - -

Contacts-Dublin 118.13 4 38,389 192,318 357

Enron-Email - OOM - - -

Digg-Friends 52.34 2 175 259,097 2,869

Yahoo-messages 33.72 5 338 311,440 2,827

k = 5
l = 4

SFHH-Conf 96.65 4 446 31,228 31,228

As-Topology - OOM - - -

Contacts-Dublin 52.19 3 575 192,318 13,404

Enron-Email - OOM - - -

Digg-Friends 46.74 2 174 259,097 3,744

Yahoo-messages 38.87 5 241 466,671 6,970

k = 5
l = 8

SFHH-Conf - OOM - - -

As-Topology - OOM - - -

Contacts-Dublin 632.27 7 530,099 192,318 119

Enron-Email - OOM - - -

Digg-Friends 47.69 2 540 259,097 1,315

Yahoo-messages 38.87 5 1,229 466,671 1,376

k = 5
l = 12

SFHH-Conf - OOM - - -

As-Topology - OOM - - -

Contacts-Dublin - OOM - - -

Enron-Email - OOM - - -

Digg-Friends 47.55 3 540 259,097 1,315

Yahoo-messages 37.67 5 1,243 466,671 1,360

For each experiment we report: (i) running time, (ii) maximum memory approximately used (GB), (iii) number of distinct motifs identified, (iv) number of occurrences of the most frequent

motif, and (v) average number of motif occurrences. In the cases where no running time is reported, MODIT went out of memory (OOM) due to the high number of motifs present in the

network.
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TABLE 3 | Experiments on Dataset 1 with 1 = 3r and different combination of values of k and l.

Configuration Network Time (s) Mem (GB) n Max AVG

k = 3
l = 2

SFHH-Conf 3.91 <1 9 84,265 45,239

As-Topology 80.61 6 10 16,068,985 1,988,007

Contacts-Dublin 10.89 2 9 352,016 184,917

Enron-Email 193.68 8 10 40,484,380 4,050,941

Digg-Friends 54.84 2 9 540,758 69,030

Yahoo-messages 33.02 3 10 389,792 59,811

k = 3
l = 4

SFHH-Conf 23.65 2 155 109,003 16,673

As-Topology 2,191.53 9 202 16,068,985 106,737

Contacts-Dublin 43.74 3 193 352,016 33,024

Enron-Email 1,702.50 8 46 40,484,380 88,0880

Digg-Friends 49.16 2 32 540,758 19,798

Yahoo-messages 30.12 3 52 389,792 11,550

k = 3
l = 6

SFHH-Conf 49.99 3 488 109,003 9,248

As-Topology 2,203.59 7 842 16,068,985 25,650

Contacts-Dublin 69.95 3 1,035 352,016 8,690

Enron-Email 1,719.70 8 56 40,484,380 723,600

Digg-Friends 59.08 2 32 540,758 19,798

Yahoo-messages 31.65 4 58 389,792 10,355

k = 4
l = 3

SFHH-Conf 23.00 2 79 282,531 50,403

As-Topology - OOM - - -

Contacts-Dublin 42.01 3 82 352,016 88,450

Enron-Email - OOM - - -

Digg-Friends 62.87 3 54 540,758 18,847

Yahoo-messages 39.92 5 64 508,964 24,395

k = 4
l = 6

SFHH-Conf - OOM - - -

As-Topology - OOM - - -

Contacts-Dublin 894.01 7 13,421 352,016 5,487

Enron-Email - OOM - - -

Digg-Friends 54.39 2 183 540,758 5,920

Yahoo-messages 36.72 4 399 508,964 3,933

k = 4
l = 9

SFHH-Conf - OOM - - -

As-Topology - OOM - - -

Contacts-Dublin - OOM - - -

Enron-Email - OOM - - -

Digg-Friends 62.12 3 183 540,758 5,920

Yahoo-messages 43.18 5 429 508,964 3,658

k = 5
l = 4

SFHH-Conf 340.22 6 633 1,607,533 90,145

As-Topology - OOM - - -

Contacts-Dublin 165.53 4 672 352,016 39,229

Enron-Email - OOM - - -

Digg-Friends 60.97 3 186 540,758 9,015

Yahoo-messages 49.68 5 266 445,230 11,524

k = 5
l = 8

SFHH-Conf - OOM - - -

As-Topology - OOM - - -

Contacts-Dublin - OOM - - -

Enron-Email - OOM - - -

Digg-Friends 64.95 3 612 540,758 3,195

Yahoo-messages 52.23 5 1,958 775,230 1,578

k = 5
l = 12

SFHH-Conf - OOM - - -

As-Topology - OOM - - -

Contacts-Dublin - OOM - - -

Enron-Email - OOM - - -

Digg-Friends 75.33 4 612 540,758 3,195

Yahoo-messages 55.36 5 2,016 775,230 1,533

For each experiment we report: (i) running time, (ii) maximum memory approximately used (GB), (iii) number of distinct motifs identified, (iv) number of occurrences of the most frequent

motif, and (v) average number of motif occurrences. In the cases where no running time is reported, MODIT went out of memory (OOM) due to the high number of motifs present in the

network.

Frontiers in Big Data | www.frontiersin.org 9 February 2022 | Volume 4 | Article 806014

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Grasso et al. MOtif Discovery in Temporal Network

TABLE 4 | Experiments on Dataset 1 with 1 = 3r and different combination of values of k and l.

Configuration Network Time (s) Mem (GB) n Max AVG

k = 3
l = 2

SFHH-Conf 3.76 <1 9 124,450 62,716

As-Topology 84.85 6 10 16,068,985 2,056,209

Contacts-Dublin 12.94 2 9 497,191 253,808

Enron-Email 192.64 8 10 40,484,380 4,051,491

Digg-Friends 47.80 3 9 791,420 97,274

Yahoo-messages 33.82 4 10 510,303 73,198

k = 3
l = 4

SFHH-Conf 53.57 1 198 222,458 32,430

As-Topology 2,277.25 8 209 16,068,985 108,927

Contacts-Dublin 85.07 3 203 497,191 67,993

Enron-Email 1,716.09 8 54 40,484,380 750,629

Digg-Friends 58.37 2 33 791,420 26,977

Yahoo-messages 32.04 4 55 510,303 13,368

k = 3
l = 6

SFHH-Conf 213.16 4 1,044 222,458 19,003

As-Topology 2,282.17 7 1,026 16,068,985 22,251

Contacts-Dublin 235.862 4 1,652 497,191 17,978

Enron-Email 1,752.45 8 95 40,484,380 426,725

Digg-Friends 59.23 3 33 791,420 26,977

Yahoo-messages 33.52 4 61 510,303 12,053

k = 4
l = 3

SFHH-Conf 38.82 3 82 578,085 90,761

As-Topology - OOM - - -

Contacts-Dublin 70.91 4 82 634,058 156,582

Enron-Email - OOM - - -

Digg-Friends 67.76 3 56 791,420 29,108

Yahoo-messages 43.18 5 64 890,576 33,600

k = 4
l = 6

SFHH-Conf - OOM - - -

As-Topology - OOM - - -

Contacts-Dublin - OOM - - -

Enron-Email - OOM - - -

Digg-Friends 56.39 3 201 791,420 8,659

Yahoo-messages 40.62 5 430 890,576 5.030

k = 4
l = 9

SFHH-Conf - OOM - - -

As-Topology - OOM - - -

Contacts-Dublin - OOM - - -

Enron-Email - OOM - - -

Digg-Friends 58.64 3 201 791,420 8,659

Yahoo-messages 50.21 2 460 890,576 4,702

k = 5
l = 4

SFHH-Conf 1,001.28 7 677 4,526,786 217,632

As-Topology - OOM - - -

Contacts-Dublin 391.67 6 682 806,886 90,608

Enron-Email - OOM - - -

Digg-Friends 77.35 4 203 791,420 15,624

Yahoo-messages 63.14 5 276 1,346,934 14,226

k = 5
l = 8

SFHH-Conf - OOM - - -

As-Topology - OOM - - -

Contacts-Dublin - OOM - - -

Enron-Email - OOM - - -

Digg-Friends 83.79 4 737 791,420 5,228

Yahoo-messages 64.45 5 2,258 1,346,934 2,125

k = 5
l = 12

SFHH-Conf - OOM - - -

As-Topology - OOM - - -

Contacts-Dublin - OOM - - -

Enron-Email - OOM - - -

Digg-Friends 83.96 4 737 791,420 5,228

Yahoo-messages 71.64 5 2,325 1,346,934 2,064

For each experiment we report: (i) running time, (ii) maximum memory approximately used (GB), (iii) number of distinct motifs identified, (iv) number of occurrences of the most frequent

motif, and (v) average number of motif occurrences. In the cases where no running time is reported, MODIT went out of memory (OOM) due to the high number of motifs present in the

network.
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TABLE 5 | Comparison between MODIT and Paranjape’s algorithm.

Network 1 Paranjape et al. MODIT

CollegeMsg 350,000 0.18 1,148.96

Email-Eu-core-temporal-Dept1 70,000 0.11 81.01

Email-Eu-core-temporal-Dept2 70,000 0.09 56.71

Email-Eu-core-temporal-Dept3 70,000 0.04 3.47

Email-Eu-core-temporal-Dept4 70,000 0.08 46.45

Email-Eu-core-temporal 70,000 0.66 281.32

For each network, we indicate the value of 1 used and the running time (in seconds) of

both algorithms. MODIT was run with k = 3 and l = 3 because Paranjape’s algorithm can

only handle motifs with 2 or 3 nodes and 3 edges.

most frequent motif and average number of occurrences remain
the same.

3.2. Comparison With Paranjape’s
Algorithm
Finally we compared MODIT with the algorithm proposed by
Paranjape et al. (2017) on the networks of Dataset 2.

For the comparison, we set k = 3 and l = 3 because
Paranjape’s algorithm can handle only motifs with 2 or 3 nodes
and 3 edges.

Results are reported in Table 5 and show that Paranjape’s
algorithm is much faster than MODIT. This gap is mainly due to
the fact that Paranjape’s method uses a series of efficient dynamic
programming algorithms, which are specifically designed to
count specific classes of motifs, i.e., motifs with 3 edges. On the
other hand, MODIT is general and designed to find motifs of any
size and any type. Furthermore, Paranjape’s algorithm searches
only motifs having exactly the specified number of nodes and
edges. On the other hand, MODIT looks for all motifs having at
most the number of nodes and edges specified by the user.

4. CONCLUSIONS

In this paper, we presented MODIT (MOtif DIscovery in
Temporal Networks), an algorithm for counting motifs of

any size in temporal networks, inspired by a very recent
algorithm for subgraph isomorphism in temporal networks,

called TemporalRI. Given the three parameters k, l, and 1,
MODIT scans the whole temporal graph to search for all
subgraphs having at most k nodes and l edges and in which the
difference between themaximum and theminimum timestamp is
no greater than 1. We ran MODIT on a dataset of real temporal
networks of medium and large size by varying 1, the maximum
number of nodes and edges. We also compared MODIT with the
algorithm proposed by Paranjape et al. (2017) using a different
dataset of temporal networks downloaded from SNAP.

For the future, we plan to:

1. Introduce measures of statistical significance of motifs similar
to the ones already devised for static graphs (i.e., the z-score);

2. Make MODIT iterative, in order to reduce the overhead
introduced by recursion, and optimize the search strategy;

3. Implement MODIT on a SPARK framework, to manage very
large networks.
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