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Simple Summary: There is accumulating evidence that gut microbiome dysbiosis is associated with
the etiopathogenesis of nonalcoholic fatty liver disease (NAFLD), from the onset of the disease to the
progressive stages of nonalcoholic steatohepatitis (NASH) and cirrhosis. Furthermore, probiotics,
prebiotics, and synbiotics have shown promise in restoring dysbiosis and lowering clinical indicators
of disease in a number of trials, both preclinical and clinical. Additionally, postbiotics and parabiotics
have recently garnered some attention. The purpose of this bibliometric analysis was to assess, using
the Dimensions database, recent publishing trends concerning the role of the gut microbiome, in
the progression of NAFLD into NASH and cirrhosis, and its connection with biotics (prebiotics,
probiotics, symbiotics, postbiotics, and parabiotics).

Abstract: There is growing evidence that gut microbiota dysbiosis is linked to the etiopathogenesis
of nonalcoholic fatty liver disease (NAFLD), from the initial stage of disease until the progressive
stage of nonalcoholic steatohepatitis (NASH) and the final stage of cirrhosis. Conversely, probiotics,
prebiotics, and synbiotics have shown promise in restoring dysbiosis and lowering clinical indicators
of disease in a number of both preclinical and clinical studies. Additionally, postbiotics and parabiotics
have recently garnered some attention. The purpose of this bibliometric analysis is to assess recent
publishing trends concerning the role of the gut microbiome in the progression of NAFLD, NASH and
cirrhosis and its connection with biotics. The free access version of the Dimensions scientific research
database was used to find publications in this field from 2002 to 2022. VOSviewer and Dimensions’
integrated tools were used to analyze current research trends. Research into the following topics
is expected to emerge in this field: (1) evaluation of risk factors which are correlated with the
progression of NAFLD, such as obesity and metabolic syndrome; (2) pathogenic mechanisms, such
as liver inflammation through toll-like receptors activation, or alteration of short-chain fatty acids
metabolisms, which contribute to NAFLD development and its progression in more severe forms,
such as cirrhosis; (3) therapy for cirrhosis through dysbiosis reduction, and research on hepatic
encephalopathy a common consequence of cirrhosis; (4) evaluation of diversity, and composition of
gut microbiome under NAFLD, and as it varies under NASH and cirrhosis by rRNA gene sequencing,
a tool which can also be used for the development of new probiotics and explore into the impact
of biotics on the gut microbiome; (5) treatments to reduce dysbiosis with new probiotics, such as
Akkermansia, or with fecal microbiome transplantation.

Keywords: gut microbiome; NAFLD; NASH; cirrhosis; bibliometric analysis; biotics; prebiotic;
probiotic; symbiotic; Dimensions database; VOSviewer

1. Introduction

Between 500 and 1000 different species of commensal bacteria, most of which are
anerobic, reside in the human intestinal tract, forming what is known as the “gut micro-
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biome” [1,2]. Dysbiosis of the gut microbiome has been linked to a variety of diseases,
including chronic inflammation [3], neurodegenerative and ocular diseases [4,5], and
chronic liver diseases [6–8]. Research has linked dysbiosis in the gut microbiome to the
etiology of nonalcoholic fatty liver disease (NAFLD), a disorder that is produced by the
deposition of fat within the liver cells even in the absence of alcohol usage, and its progres-
sion to nonalcoholic steatohepatitis (NASH), which is defined histologically by hepatocyte
injury, inflammation, and varying degrees of fibrosis, until the last stage of cirrhosis [6–9].
In addition, there is emerging evidence from both preclinical and clinical research showing
the disruption of the gut–liver axis (the communication and feedback loop between the
gastrointestinal and hepatic systems) which plays a major role in NAFLD pathogenesis and
its progression to NASH and cirrhosis, and that gut dysbiosis is a key factor in the devel-
opment of this dysfunction [10–13]. Alteration of the gut–liver axis is characterized by a
number of pathogenic mechanisms, including the weakening of the gut barrier and the rise
in intestinal permeability, which result in endotoxemia and inflammation, as well as alter-
ations in bile acid profile and metabolite levels produced by the gut microbiome [10,12,13].
Biotics, such as probiotics, prebiotics, and synbiotics, on the other hand, have shown
promise in restoring dysbiosis [14–16]. Probiotics are defined as “live bacteria that, when
administered in suitable proportions, provide health benefits to the host” [17]. Prebiotics
are a type of substrate that is beneficial to human health because they are used selectively
by host bacteria [17,18]. Synbiotics are formulated mixes of prebiotics and probiotics that
work together to maximize their health benefits [14]. Several preclinical and clinical stud-
ies have indicated a positive effect of probiotics, prebiotics, and synbiotics in reversing
gut dysbiosis and in clinical markers of the NAFLD disease and derived pathological
spectrum [15,19]. In animal models, probiotics effectively decreased NAFLD dysbiosis,
fatty acid synthesis, inflammation, and metabolic endotoxemia [20,21]. Insulin, glucose,
triglyceride, and cholesterol levels, as well as transaminase activity, have all been measured
and found to be affected by prebiotics, proving their impacts on carbohydrate and lipid
metabolisms [22,23]. In mouse and human investigations, prebiotics, such as oligofruc-
tose, fructo-oligosaccharides, and isomalto-oligosaccharides, lowered LPS and cytokine
levels, improved insulin resistance, decreased inflammatory and hepatic indicators, and
decreased steatohepatitis [24,25]. Multiple human studies utilizing synbiotics in patients
with NAFLD or NASH have demonstrated considerable improvements in hepatic steatosis
and fibrosis compared to placebo, but changes in blood indicators of inflammation or liver
injury remain heterogeneous [23,26,27]. Therefore, the use of these bioactive compounds
for the prevention of NAFLD, NASH, and cirrhosis or as a complementary strategy in its
treatment appears to be of significant interest, despite the lack of an approved pharmaco-
logical treatment for NAFLD/NASH. Other biotics, such as postbiotics and parabiotics,
have recently garnered some attention [28]. Postbiotics are the cell-free supernatants of
probiotics, which contain a wide variety of metabolic products, including enzymes, secreted
proteins, short-chain fatty acids, vitamins, secreted biosurfactants, amino acids, peptides,
and organic acids. Paraprobiotics, on the other hand, are the inactive microbial cells of
probiotics [28,29]. Although it has been established the beneficial effects of probiotics, their
broad application in the food and pharmaceutical industries has been hampered by techno-
logical obstacles, such as viability controls. Therefore, paraprobiotics and/or postbiotics,
which are macromolecules derived from probiotics but are not themselves living organisms,
are therefore gradually replacing viable probiotic bacteria as the focal point of attention [29].
There are now several pieces of evidence of the usefulness of paraprobiotic and postbiotics
in several diseases, including NAFLD and in delaying its progression to cirrhosis [30,31].

The term “bibliometric analysis” is used to describe a comprehensive and up-to-
date analysis of published works by examining variables, such as publication volume,
authorship, geographical focus, citation, and keyword density, over a certain time frame. It
gives researchers a detailed overview and updates on the field’s current state [32,33]. Recent
bibliometric studies using the Web of Sciences database [34] have examined emerging trends
and hotspots in the area of metabolic-dysfunction-associated fatty liver disease (MALD) [35]
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and the field of gut microbiota and MALD [36]. To further explore the role of the gut–liver
axis in NAFLD, Yang et al. [37] analyzed global publication patterns and research hotspots.
Different from the aforementioned studies, the purpose of our bibliometric analysis is to
specifically evaluate recent publishing trends from 2002 to 2022 concerning the relationships
between the gut microbiome, all stages of liver disease, from NAFLD to cirrhosis, and their
connections with biotics (prebiotics, probiotics, symbiotics, postbiotics, and parabiotics)
using the “Dimensions” database [38–40] in order to provide a comprehensive overview of
the field of study, keep academics up to date on the most recent research trends, and offer
crucial information that will be useful for exploring new research directions.

2. Materials and Methods

We performed a comprehensive literature search using the free access version Dimen-
sions database [38–40]. Dimensions is a global academic database with about 1.4 billion ci-
tations, datasets, patents, and policy papers from several million scholarly publications [38].
We used the appropriate keywords to identify relevant literature from 2002 to 2022 on the
connections between the gut microbiome, all phases of liver disease ranging from NAFLD
to cirrhosis, and biotics (prebiotics, probiotics, symbiotics, postbiotics, and parabiotics). To
prevent bias caused by continuous database modifications, the extraction and export of
documents should be completed within one day. The date of the retrieval was 25 January
2023. The research string used was the following: (((microbiome) OR (microbiota) OR
(dysbiosis) OR (flora) OR (microflora) OR (bacteria) OR (microorganism) OR (microbe))
AND ((gut) OR (intestine) OR (intestinal) OR (gastrointestine) OR (gastrointestinal) OR
(“gut liver axis”) OR (“gut-liver axis”) OR (gastro-intestine) OR (gastro-intestinal))) AND
((NAFLD) OR (“non-alcoholic fatty liver disease”) OR (“nonalcoholic fatty liver disease”)
OR (“non alcoholic fatty liver disease”) OR (NASH) OR (“non-alcoholic steatohepatitis”)
OR (“nonalcoholic steatohepatitis”) OR (“non alcoholic steatohepatitis”) OR (cirrhosis))
AND ((probiotic) OR (biotic) OR (prebiotic) OR (synbiotic) OR (paraprobiotic) OR (post-
biotic) OR (Lactobacillus) OR (Lactobacilli) OR (Bifidobacterium) OR (Streptococcus) OR
(Streptococci) OR (Lactococcus) OR (Lactococci) OR (Bifidobacteria) OR (Akkermansia)
OR (Saccharomyces) OR (Enterococcus) OR (Enterococci) OR (Bacillus) OR (Bacilli) OR
(Ruminococcus) OR (Ruminococci)). Data mining was performed in the title and abstract
and the publication type was “Article”.

By thoroughly examining the retrieved publications, we verified the efficacy of our
search strategy. The information extracted from the Dimensions database was collected and
stored in CSV format. The free access version of Dimensions provides several features that
can be used in conjunction with the software VOSviewer (version 1.6.18) [41] to perform
the processing and map visualization of the following datasets (in order in the article):
publication trend, country productivity and cooperation, institution productivity and
cooperation, author productivity and cooperation, co-authorship analysis, citations analysis,
analysis of most cited journal and article, analysis of document co-citation reference, and
the co-occurrence map based on text data in the title and abstract fields.

3. Results
3.1. Publication Trends and Country Productivity/Cooperation

Based on the parameters of the search, 1015 articles covering the years 2002–2022 were
retrieved from the Dimensions database. Over the past decade, especially the last five years,
the number of publications in this sector has increased rapidly (Figure 1A), demonstrating
that the intricate linkage encompassed in the gut microbiome, all stages of liver disease
from NAFLD to cirrhosis, and biotics gained worldwide attention. Figure 1A displays the
publication trend through time, which may be divided into three “ages”: the period from
2002 to 2009, during which only 41 pieces of literature were published, the period from
2010 to 2016, during which 231 publications were made, and the thriving period beginning
in 2017, during which 741 publications (72.8%) were made. The number of citations in
this field has been soaring, since 2018 going from about 3000 citations up to about 11,000
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in 2022 (Figure 1B). Between 2002 and 2022, publications relating to the specified field of
research were disseminated in 59 different nations. Panels C and D of Figure 1 display
respectively the top 10 countries in terms of the total number of publications and the total
number of citations.
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Figure 1. The number of publications (A) and citations (B) between 2002 and 2022; the top 10 most
productive countries in terms of publications (C) and citations (D), in ascending order. All numbers
are derived from Dimensions on 25 January 2023.

The software VOSviewer was used to investigate cooperation across countries. Figure 2
depicts the 32 countries with the highest co-authorship productivity. The minimum number
of documents and citations is set to four. The co-authorship analysis of countries reveals the
collaboration between countries in this field as well as the level of collaboration. The larger
circles reflect the most productive countries in the field; the thickness and length of the links
between nodes represent the cooperative relationship between countries. The proximity
of the objects also indicates the degree of their connection. Colors represent the clustering
of the items. China, the USA, and Italy dominate the scientific scenario in this field both
in terms of the number of publications and in terms of the number of citations. There are
eight distinct clusters of cooperative relationships between nations, each distinguished by
a distinct color. The United States had the highest overall link strength with 192 documents
and a link strength of 125, followed by China with 307 documents and a total link strength
of 57. Spain came in third place with 52 documents and 50 total link strengths. The United
Kingdom, with 35 documents and a link strength of 43, is second, followed by Canada, with
33 documents and a link strength of 40, and Italy, with 74 documents and a link strength
of 39.
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country, the greater the number of articles bearing its authorship. Objects’ closeness also reflects the
degree of their connectedness.

3.2. Institution’s Productivity and Cooperation

The research on the role of the gut microbiome in the progression of NAFLD, NASH
and cirrhosis, and its connection with biotics was supported by 1118 institutions. The
top 10 institutions with the highest number of publications and citations are listed in
Figure 3. The most prolific organization for publication is Zhejiang University (China), with
31 documents. The second and third positions are occupied by the University of California
(San Diego, CA, USA) and Hunter Holmes Mcguire VA Medical Center (USA), with 20
and 18 publications, respectively. In the fourth position, we found several institutions
with 15 publications: George Mason University, Nara Medical University, Shanghai Jiao
Tong University, and Virginia Commonwealth University. The most cited institutions are,
in order, Zhejiang University with 2189 citations, Hunter Holmes Mcguire VA Medical
Center with 1968 citations, Wageningen University & Research (The Netherlands) with
1932 citations, and Wageningen University & Research with 1693 citations.
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Figure 3. List of the most productive institutions in terms of publications (A) and citations (B), in
ascending order. All numbers are derived from Dimensions on 25 January 2023.

The software VOSviewer was used to examine and map the cooperation between
institutions. Figure 4 depicts the larger aggregate of 69 institutions with active cooperation.
Each concentric circle on the map symbolizes an organization, and the thickness of the
linkages denotes the level of interaction between institutions. The size of the concentric
circle indicates the number of publications produced by each organization, while the
presence of link lines signifies active collaboration. The density of the connecting lines
represents the level of cooperation between institutions. The map reveals a network of
nine clusters distinguishable by different colors that help us understand how the various
institutions cooperate.
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3.3. Authors’ Productivity and Cooperation

Approximately 5663 authors contributed to the publication outputs between 2002 and
2022 (Table 1). The first prolific author is Bajaj, J. from Virginia Commonwealth University
(USA) with 25 publications; the second position is occupied by Gillevet, P.M. and Sikaroodi,
M., both from George Mason University (USA) with 15 publications. Su, K.T. from Hallym
University (Republic of Korea) and Li, L. from Zhejiang University (China) are both in
third place with 12 publications. The most cited authors of the top 20 are again Bajaj, J. with
2375 citations, Gillevet, P.M. and Sikaroodi, M. both with 1932 citations, and Hylemon, P.B.
from Virginia Commonwealth University (USA) with 1347 citations.

Cooperative relationships between authors can be more easily identified with the aid
of visual mapping (Figure 5), which provides clear information about existing partnerships;
authors from the top 100 researchers were used to create the visual map. The quantity of
documents published by each author is represented by the diameter of the concentric circle,
and the presence of connection lines denotes collaborative effort. Collaboration between
authors is shown by the density of the connecting lines. In total, there are 14 clusters
of different colors. In order, the largest clusters are cluster 1 (red color) and cluster 2
(green color). Cluster 1 is composed of several authors, including Bajaj, J.; Fagan, A.;
Fuchs, M.; Gavis, E.; Gillevet, P.M.; Heuman, D.; Hylemon, P.B.; Sikaroodi, M.; and White,
M.B. Moreover, cluster 1 shows direct cooperation with cluster 5 (blue color), which is
composed of several authors including Demir, M.; Lan, S.; Loomba, R.; Martin, A.; and
Scnabl, B.G. Cluster 2 is composed of several authors, including Alisi, A.; Del Chierico, F.;



Biology 2023, 12, 662 8 of 25

Gasparrini, A.; Nobili, V.; Picca, A.; Ponziani, F.R.; Putignani, L.; and Sterbini, F.P. As shown
in Figure 5, some authors prefer not to constitute co-authorship and instead constitute
individual clusters.

We also made a citation analysis of the authors, where the relatedness of the authors
is determined based on the number of times, they cite each other (Figure 6). A total of
5037 authors have been cited at least once, accounting for 88.9% of the total 5663 authors;
3547 authors have had at least 10 citations (62.3%), and 749 authors have been mentioned
at least 100 times (13.2%). The map analysis reveals the existence of n.6 clusters of citations
represented by a different color. Each cluster is composed of authors who cite most
frequently among themselves.

Table 1. The top 20 authors in order of publication numbers. All numbers are derived from Dimen-
sions on 25 January 2023.

Name Organization, Country Publications Citations Citations (Mean)

Jasmohan Singh Bajaj Virginia Commonwealth University,
United States 25 2375 95

Patrick Martin Gillevet George Mason University, United States 15 1932 128.8

Masoumeh Sikaroodi George Mason University, United States 15 1932 128.8

Ki Tae Suk Hallym University, Republic of Korea 12 260 21.67

Lanjuan Li Zhejiang University, China 12 635 52.92

Andrew C. Fagan Virginia Commonwealth University,
United States 11 153 13.91

Nathalie Maria Delzenne Université Catholique de Louvain, Belgium 11 702 63.82

Bernd G. Schnabl University of California, San Diego,
United States 10 385 38.5

Michael Fuchs Virginia Commonwealth University,
United States 10 877 87.7

Ludovico Montebianco
Abenavoli Magna Graecia University, Italy 9 332 36.89

Phillip B. Hylemon Virginia Commonwealth University,
United States 8 1347 168.38

María Victoria
García-Mediavilla

Centro de Investigación Biomédica en Red
de Enfermedades Hepáticas y

Digestivas, Spain
8 462 57.75

Carlos Guarner Hospital de Sant Pau, Spain 8 711 88.88

Hitoshi Yoshiji Nara Medical University, Japan 8 290 36.25

Esther Nistal University of Leon, Spain 8 462 57.75

Hideto Kawaratani Nara Medical University, Japan 8 291 36.38

Antonio Gasbarrini Catholic University of the Sacred
Heart, Italy 8 534 66.75

Lorenza Putignani Bambino Gesù Children’s Hospital, Italy 8 896 112

Hiroshi Fukui Nara Medical University, Japan 8 513 64.13

Sonia Sánchez-Campos
Centro de Investigación Biomédica en Red

de Enfermedades Hepáticas y
Digestivas, Spain

8 462 57.75
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represented by larger circles or larger font sizes had a higher proportion of citations. The map analysis
reveals the existence of six citation clusters, each represented by a different color. Each cluster is
made up of authors who cite each other the most frequently.

3.4. Analysis of the Most Cited Journals and Articles

Over the last 20 years, 422 journals have published a total of 1015 articles. Table 2 lists
the top 20 most productive journals in terms of publications and citations related to the gut
microbiome, all stages of liver disease from NAFLD to cirrhosis, and biotics. In the first three
positions, the most prolific journals in order of publications (in brackets is indicated the
publisher) are Nutrients (MDPI, Multidisciplinary Digital Publishing Institute), International
Journal of Molecular Sciences (MDPI), and World Journal of Gastroenterology (Baishideng
Publishing Group), while with regard to citations, in order we have Hepatology (John Wiley
& Sons on behalf of the American Association for the Study of Liver Diseases), Journal of
Hepatology (Elsevier), and World Journal of Gastroenterology (Baishideng Publishing Group).
The total number of articles published in the top 20 journals was 322, constituting 31.7%
of all documents retrieved. Hepatology has the highest number of citations among the
422 journals.

Table 2. List of the 20 most productive journals in terms of publications and citations, in descending
order. All numbers are derived from Dimensions on 25 January 2023.

Journal Documents Journal Citations

Nutrients 33 Hepatology 4552
International Journal of Molecular Sciences 29 Journal of Hepatology 2348

World Journal of Gastroenterology 27 World Journal of Gastroenterology 2279
Frontiers in Microbiology 20 Gut 2002

Food & Function 20 Scientific Reports 1437
Journal of Hepatology 20 Gastroenterology 1178

Scientific Reports 18 Alimentary Pharmacology & Therapeutics 894
Gut Microbes 17 Nutrients 799
Hepatology 15 AJP Gastrointestinal and Liver Physiology 756

Liver International 15 PLoS ONE 755
The Journal of Nutritional Biochemistry 13 Frontiers in Microbiology 728

World Journal of Hepatology 12 International Journal of Molecular Sciences 723
Molecular Nutrition & Food Research 12 The Journal of Nutritional Biochemistry 683

Gastroenterology 12 Clinical Gastroenterology and Hepatology 667
Frontiers in Cellular and Infection Microbiology 11 Liver International 599

PLoS ONE 10 Journal of Clinical Gastroenterology 598
Frontiers in Nutrition 10 Food & Function 530

Alimentary Pharmacology & Therapeutics 10 Molecular Nutrition & Food Research 454
AJP Gastrointestinal and Liver Physiology 10 Digestive Diseases and Sciences 450

Biomedicine & Pharmacotherapy 10 Gut Microbes 439

As shown in Figure 7, the analysis of trend publication of each of the 20 most pro-
ductive journals listed in Table 2 reveals that some journals have had a growing interest
in the field in the last 10 years and among these, in particular, are Nutrients, International
Journal of Molecular Sciences, Frontiers in Microbiology, Frontiers in Nutrition, and Frontiers in
Cellular and Infection Microbiology. As for the most cited journal Hepatology, interest in the
field remains constant over the years.

In Figure 8, the visual citation analysis shows the relationship in terms of citations
between journals with at least 10 publications and 200 citations. The relatedness of journals
is determined based on the number of times a journal cites another. The size of the
concentric circle and the text denote the number of articles produced by the journals.
The thickness of the connecting lines reflects the level of citation between journals. The
degree of coloring from dark purple to yellow varies according to the average number
of citations each journal achieved, with yellow accounting for the highest number. From
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the map, it can be seen that the journals that cite each other more frequently are the
following: Nutrients, Hepatology, International Journal of Molecular Sciences, World Journal of
Gastroenterology, Scientific Reports, and Journal of Hepatology.
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The number of citations Is an important indicator of the impact of an article in a
research area. The number of citations of these 1015 articles was counted and ranked, and
the top 20 papers divided into reviews and original articles are provided in Table 3. Among
review articles, the paper entitled “The gut microbiota and host health: a new clinical
frontier” had major citations [42]. While among original articles, the study of Bounsier J.
published in Hepatology is the most cited [43].

Table 3. The 20 most-cited publications, sorted in descending order by review articles and original
articles. All numbers are derived from Dimensions on 25 January 2023.

Reviews

Title Source Title PubYear Authors Times Cited Ref

The gut microbiota and host health: a
new clinical frontier Gut 2015 Marchesi, Julian R 1436 [42]

Bacterial translocation (BT)
in cirrhosis Hepatology 2005 Wiest, Reiner 569 [44]

The role of the gut microbiota
in NAFLD

Nature Reviews
Gastroenterology & Hepatology 2016 Leung,

Christopher 561 [45]

The gut-liver axis in liver disease:
pathophysiological basis for therapy Journal of Hepatology 2019 Albillos, Agustín 546 [12]

Mechanisms of action of probiotics Advances in Nutrition 2019 Plaza-Diaz, Julio 446 [46]

Diabetes, obesity and gut microbiota Best Practice & Research Clinical
Gastroenterology 2013 Everard,

Amandine 421 [47]
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Table 3. Cont.

The role of the gut microbiota in
nonalcoholic fatty liver disease

Nature Reviews
Gastroenterology & Hepatology 2010 Abu-Shanab,

Ahmed 377 [48]

Gut microbiota and
metabolic syndrome

World Journal of
Gastroenterology, 2014 Festi, Davide 349 [49]

Gut microbiome and liver diseases Gut 2016 Tilg, Herbert 322 [50]

Alcohol, liver disease and the
gut microbiota

Nature Reviews
Gastroenterology & Hepatology 2019 Bajaj, Jasmohan S 299 [51]

Original articles

Title Source Title PubYear Authors Times Cited Ref

The severity of nonalcoholic fatty
liver disease is associated with gut
dysbiosis and shift in the metabolic

function of the gut microbiota

Hepatology 2016 Boursier, Jérôme 807 [43]

The gut microbiome in atherosclerotic
cardiovascular disease Nature Communications 2017 Jie, Zhuye 784 [52]

Probiotics and antibodies to TNF
inhibit inflammatory activity and

improve nonalcoholic fatty
liver disease

Hepatology 2003 Li, Zhiping 747 [53]

Intestinal microbiota in patients with
nonalcoholic fatty liver disease Hepatology 2013 Mouzaki,

Marialena 540 [54]

Modulation of the fecal bile acid
profile by gut microbiota in cirrhosis Journal of Hepatology 2013 Kakiyama,

Genta Ridlon 530 [55]

Fecal microbiome and volatile
organic compound metabolome in

obese humans with nonalcoholic fatty
liver disease

Clinical Gastroenterology
and Hepatology 2013 Raman, Maitreyi 495 [56]

Synbiotic modulation of gut flora:
Effect on minimal hepatic

encephalopathy in patients
with cirrhosis

Hepatology 2004 Liu, Qing 493 [57]

Gut microbiota profiling of pediatric
nonalcoholic fatty liver disease and

obese patients unveiled by
an integrated

meta-omics-based approach

Hepatology 2016 Del Chierico,
Federica 424 [58]

Colonic mucosal microbiome differs
from stool microbiome in cirrhosis
and hepatic encephalopathy and is

linked to cognition and inflammation

AJP Gastrointestinal and
Liver Physiology 2012 Bajaj, Jasmohan S 397 [59]

Dysbiosis gut microbiota associated
with inflammation and impaired

mucosal immune function in intestine
of humans with non-alcoholic fatty

liver disease

Scientific Reports 2015 Jiang, Weiwei 387 [60]

3.5. Analysis of Co-Citation References

Co-cited references are those that are cited by multiple articles from the retrieved list
from the Dimensions database. Table 4 displays the top 10 citations from 30,364 references
obtained from 1015 papers, ordered by citation frequency. The first-ranked reference was
a clinical study published by Hepatology in 2013. In this study, using 16S ribosomal RNA
pyrosequencing, Zou et al. investigated the composition of the gut bacterial communities



Biology 2023, 12, 662 14 of 25

of NASH patients and healthy children. They found that the increased abundance of
alcohol-producing bacteria in NASH microbiomes, the elevated blood–ethanol concentra-
tion in NASH patients, and the well-established role of alcohol metabolism in oxidative
stress and, consequently, liver inflammation suggest that alcohol-producing microbiota
play a role in the pathogenesis of NASH. They hypothesize that the different compositions
of the gut microbiota in NASH, obese individuals, and healthy controls may serve as a
therapeutic target or disease marker [61]. In 2006, Nature published a comparative study by
Turnbaugh et al., which was the second-ranked source. Changes in the relative abundance
of the two dominant bacterial divisions, Bacteroidetes and Firmicutes, affect the metabolic
potential of the mouse gut microbiota, according to metagenomic and biochemical analyses.
Their findings indicate that the obese microbiome is better able to extract energy from food.
This trait is also transmissible: colonization of germ-free mice with an “obese microbiota”
results in a significantly greater increase in total body fat than colonization with a “lean
microbiota” [62]. In the third-ranked reference, Bacteroides were found to be independently
associated with NASH, and Ruminococcus was found to be closely associated with signifi-
cant fibrosis in 57 patients with NAFLD [43]. Both the first and third articles emphasized
inter-kingdom signaling, which refers to the interaction between gut bacteria and the host
system, and suggested using gut microbiota as a clinical marker for diagnosing, grading,
and treating NAFLD. The second article emphasized the link between gut microbiome com-
position and obesity which is associated with an increased risk of developing NAFLD and
liver cancer progression [63,64]. The article of Mouzaki M et al., published by Hepatology
in 2013 [54], is in the 10th position in the top 10 most-cited references and also in the top
10 cited articles (Table 4). This article is a prospective, cross-sectional study designed to
discover variations in intestinal microbiota between persons with biopsy-proven NAFLD
(simple steatosis or nonalcoholic steatohepatitis) and healthy liver donors as controls. The
study demonstrated an inverse and BMI- and diet-independent correlation between the
occurrence of NASH and the proportion of Bacteroidetes in the stool, suggesting that the
intestinal microbiota may play a role in the development of NAFLD.

Table 4. The 10 most cited references, in descending order. All numbers are derived from Dimensions
on 25 January 2023.

Title First Author Citations Journal Year Ref

Characterization of gut microbiomes in nonalcoholic
steatohepatitis (NASH) patients: a connection between

endogenous alcohol and NASH
Zou, L. 207 Hepatology 2013 [61]

An obesity-associated gut microbiome with increased capacity for
energy harvest Turnbaugh, P.J. 143 Nature 2006 [62]

The severity of nonalcoholic fatty liver disease is associated with
gut dysbiosis and shift in the metabolic function of the

gut microbiota
Boursier, J. 135 Hepatology 2016 [43]

Increased intestinal permeability and tight junction alterations in
nonalcoholic fatty liver disease Miele, L. 129 Hepatology 2009 [65]

Altered profile of human gut microbiome is associated with
cirrhosis and its complications Bajaj, J.S. 115 Journal of

Hepatology 2013 [66]

The gut microbiota as an environmental factor that regulates
fat storage Bäckhed, F. 113 PNAS USA 2004 [67]

Characterization of fecal microbial communities in patients with
liver cirrhosis Chen, Y. 110 Hepatology 2011 [68]

Metabolic endotoxemia initiates obesity and insulin resistance Cani, P.D. 109 Diabetes 2007 [69]

Alterations of the human gut microbiome in liver cirrhosis Qin, N. 108 Nature 2014 [70]

Intestinal microbiota in patients with nonalcoholic fatty
liver disease Mouzaki, M. 100 Hepatology 2013 [54]
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3.6. Dynamic Changes in Co-Occurrence Keywords: A Visualization Analysis

Co-occurrence analysis of keywords in the title and abstract of 1015 articles, retrieved
from the Dimensions database, was conducted to reveal the most important themes and
predict potential future trends. Only keywords with 25 or more occurrences were consid-
ered in the analysis. Items that are not related to others were not included. In the map,
the size of the node denotes the occurrence of the keyword. The proximity of two nodes
and the thickness of the line connecting them indicate the co-occurrence strength between
pairs of keywords. The nodes’ color represents keyword clusters, which frequently contain
co-occurring words and can be interpreted as broad research topics in the field. The size
of the frames in Figure 9 represents the frequency of terms in the title and abstract. The
largest collection of connected terms includes 170 terms organized into three clusters.

The cluster colored in blue includes, among the most frequent keywords, liver disease,
probiotic, obesity, pathogenesis, prebiotic, synbiotic, metabolic syndrome, and disorders.

In the cluster colored in green, we found, among the most frequent keywords, group,
diet, supplementation and also week, abundance, firmicute, liver inflammation, toll-like
receptor-4 (TLR4), and lipid metabolism.

The cluster colored in red includes, among the most frequent keywords, cirrhosis,
therapy, diagnosis, complication, and hepatic encephalopathy.

VOSviewer analysis can identify and visualize the shift of co-occurrence words
through the years. As shown in the overlay visualization in Figure 10, the analysis high-
lighted a shift between 2017 and 2020. We assist in a shift to the following keywords
(frames in red): rRNA gene sequencing, Akkermansia, SCFA (short-chain fatty acids), lipid
metabolism, and FMT (fecal microbiome transplantation). These results can assist re-
searchers in speculating about the future treatment for NAFLD, its severe forms, and the
progress of research on potential therapy with biotics.
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transplantation).

4. Discussion

Different from previous bibliometric studies which analyze, by utilizing the Web of
Sciences database, the emerging trends and hotspots in the field of metabolic-dysfunction-
associated fatty liver disease (MALD) [35], the field of gut microbiota and MALD [36],
and the role of the gut–liver axis in NAFLD [37], we have analyzed a selection of articles
specifically concerning the relationships between the gut microbiome, all stages of liver
disease, from NAFLD to cirrhosis, and their connections with biotics (prebiotics, probiotics,
symbiotics, postbiotics, and probiotics). Moreover, we have examined data extracted from
the free access version of the Dimensions database [38,39]. In our bibliometric analysis
study, we found 1015 articles in the searched field from 2002 to 2022. The overall publication
number has increased considerably in the five years. As shown in Figure 1A, we can divide
the publication trend over years into three “ages”: the period from 2002 to 2009 when
only 41 (4.0%) pieces of literature were published, the period from 2010 to 2016 with
231 publications (22.7%), and the flourishing period from 2017 with 741 publications
(72.8%). The citation curve trend is comparable to that of publications for the period
2002–2022 (Figure 1B). China and the USA played leading roles in the field with about 49%
of total publications, with China in the first place (Figure 1C). This is followed by Italy
and Japan, which account for 7.3% and 6.5% of total publications, respectively. When the
average number of citations per article is considered (Figure 1D), the USA holds the first
place for citations, followed by China. The USA and China had a percentage of 52.8 out
of a total of 43,093 citations for the period 2002–2022. Italy also holds a good number of
citations (6828) representing 15.8% of the total. The USA has the best relationships with
other countries in terms of cooperation (Figure 2), followed by China and Spain. The
relationship between China and the USA was the closest, followed by that between the
USA and Italy, Germany, and Spain. These demonstrated the United States’ important
role in academic activity worldwide. There is a strong correlation between the density of
producing institutions and the indicator of national output in this area, which measures
the volume of publications and citations in this sector. As shown in Figure 3, four of
the top ten prolific institutions are from the USA, while two are from China, also with
regard to citations. Visual analysis of cooperation (Figure 4) identified a larger aggregate
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of 69 institutions with active collaboration, composed of nine clusters. Uncovering the
underlying mechanisms will require collaboration among several organizations. Research
in this area is complicated by the vast diversity of the gut microbiome and the mechanisms
relating the function of the gut microbiome in the development of NAFLD into NASH and
cirrhosis and its connection with biotics. The USA had 7 of the 20 most prolific authors,
which explains its position among the top 10 fruitful countries. In addition, authors from
Spain (4 authors), Italy (3 authors), and Japan (3 authors) are in the top 20 (Table 1). The
cooperation analysis reveals that several authors of the same institution and/or country
form collaboration workgroups (Figure 5). Bajaj, J. of Virginia Commonwealth University
(USA) has the most works published (25), followed closely by Gillevet, P.M. and Sikaroodi,
M. of George Mason University (USA) (each with 15). In third place, with 12 publications
each, are researchers Su, K.T. of Hallym University (Republic of Korea) and Li, L. of
Zhejiang University (China). When looking at the top 20 cited writers, the ones with
the most citations are, once again, Bajaj, J. (2375), Gillevet, P.M. (1932), Sikaroodi, M.
(1932), Suk, K.T. (1347), and Hylemon, P.B. (USA, 1347). These authors published the
most on the relationship between the gut microbiome and NAFLD and its advanced
pathological forms, as well as biotics. Although, as stated above, both the source of the
data and the research topics are different from some major previous bibliometric papers,
data on publication trends and productivity/cooperation of nations are comparable to
the results of these previous publications [35–37]. The journal with the most publications
was Nutrients (33), followed by the International Journal of Molecular Sciences (29), the World
Journal of Gastroenterology (27), Frontiers in Microbiology (20), Food & Function (20), and
the Journal of Hepatology (20). The two most prolific journals, Nutrients and International
Journal of Molecular Sciences, publish articles on a broad range of topics, such as diet-
related disorders, metabolic syndrome, nutritional supplements, molecular microbiology,
molecular metabolism, molecular pathology, diagnostics and therapeutics, bioactives, and
nutraceuticals. Hepatology had the greatest number of citations (4555), followed by the
Journal of Hepatology (2348), the World Journal of Gastroenterology (2279), Gut (2002), Scientific
Reports (1439), and Gastroenterology (1179). Hepatology and the Journal of Hepatology, two
of the most cited journals, publish articles on all areas of liver structure, function, and
illness. Of the above-mentioned journals, only a few have exhibited a notable growth
pattern during the past 10 years (Figure 7). Nutrients, International Journal of Molecular
Sciences, Hepatology, Journal of Hepatology, and also World Journal of Gastroenterology and
Scientific Reports are the journals that cite each other more frequently, demonstrating their
prominence in the field (Figure 8). Dysbiosis of the gut microbiome plays a significant role
in food supply and balance [1,71], but it also contributes to the pathogenic processes of
several diseases [72–74]. There is mounting evidence from both preclinical and clinical
research indicating that disturbance of the gut–liver axis plays a central role in NAFLD
etiology and its advanced stages, and that gut dysbiosis is a key factor in the development
of this dysfunction [12,13]. Therefore, research on the role of the gut microbiome in the
course of NAFLD disease and the use of biotics to reduce dysbiosis fits well within the scope
of the journals listed above. The first most cited review article was authored by Marchesi
and published by the journal Gut in 2015 [42] (Table 3). The paper focused on the potential
of manipulating the gut microbiota in metabolic syndrome and obesity-related disease,
liver disease, inflammatory bowel disease, and colorectal cancer, with an examination of the
most recent and relevant evidence relating to antibiotics, probiotics, prebiotics, polyphenols,
and fecal microbiota transplantation. The article has inspired research in the field, which
has been an exponential increase since 2016. Instead the study by Bounsier et al. [43]
(Table 3) published in Hepatology is the most-cited original paper. The authors examined
the relationship between gut dysbiosis and severity of NAFLD lesions in a well-defined
adult NAFLD cohort. They discovered that the severity of NAFLD is connected with gut
dysbiosis and a change in the metabolic function of the gut microbiota. In addition, they
identified Bacteroides as being independently associated with NASH and Ruminococcus with
severe fibrosis.
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Table 4 lists the top 10 references from 30,364 retrieved from 1015 publications. The
top-ranked reference was a clinical trial published in Hepatology by Zhu et al. [61]. In
this article, thorough epidemiological information on NASH is offered to highlight its
significance. The author proposed that the unique composition of the gut microbiome
between NASH and healthy controls could serve as an intervention target or a disease
marker. Table 4′s highest cited references may be the most widely accepted studies in the
field because of the significant contributions they made in elucidating the link between gut
microbiome in the progression of NAFLD, into NASH and cirrhosis, and its connection
with biotics.

Beyond the data relative to productivity cooperation between countries, institutes,
and authors or the relevance of journals and most cited studies, one of the most interesting
aspects of a bibliometric analysis is related to emerging topics. Using co-occurrence word
analysis, we can visualize the most important themes and predict potential future trends.

The terms obesity and metabolic syndrome/disorders (Figure 9) appear among frequent
keywords in clusters colored in blue. There is evidence linking dysbiosis in the gut micro-
biome to metabolic illnesses such as obesity and chronic liver diseases [72,73]. The risk of
developing NAFLD increases in tandem with the body mass index [63,75,76]. Dysbiosis
due to obesity contributes to the development of NAFLD [77]. The prevalence of obesity
continues to rise, making it a serious threat to public health in Western cultures [78,79].
Sedentary lifestyles and excessive food intake generate a nutritional imbalance, which con-
tributes to the prevalence of obesity, especially among those who are genetically susceptible
to the condition [80,81]. These emerged topics are according to the bibliometric studies of
Liao and Li which reveal interesting hotspots of metabolic-associated fatty liver disease,
obesity, and children/adolescent who suffer from obesity-related illnesses at an increasing
rate [35,36].

As shown in Figure 9, probiotic, prebiotic, and synbiotic are also frequent keywords.
Several pieces of evidence have demonstrated that probiotics and prebiotics can reduce
dysbiosis [42,53,82–85]. The probiotic Lactobacillus has been highlighted as a research
hotspot [36]. Synbiotics, which have positive effects on the balance of gut microbiota,
are a combination of prebiotics and probiotics [14,19,86]. Synbiotics have been shown to
ameliorate NAFLD severity [19,86]. Inflammation, obesity, and changes in glucose and lipid
metabolism are some of the main causes of NAFLD; however, the exact pathophysiological
processes and mechanisms that lead to NAFLD are not well understood. There is some
evidence that synbiotics can help people with NAFLD reduce inflammation and improve
insulin resistance [16,84,87]. The keywords postbiotics and parabiotics did not appear among
frequent terms, probably because these topics are still relatively new.

In the cluster colored in green, we found group, diet, supplementation, week, abundance,
firmicute, liver inflammation, and toll-like receptor-4 (TLR4). The diversity, composition,
and metabolic activity of the gut microbiome are highly associated with dietary patterns
and nutrient intake [88,88]. Dysbiosis in patients with NAFLD, NASH, and cirrhosis is
characterized by a decrease in total bacterial diversity and richness as well as a shift toward
a community composed of more Firmicutes and fewer Bacteroidetes [89–91]. Moreover,
dietary modifications alter the composition and activity of the gut microbiome, which
may assist in ameliorating comorbidities, such as metabolic syndrome and NAFLD, and
delaying their progression into more severe forms, such as NASH and cirrhosis [92–94].
As aforementioned, inflammation is one of the main causes of NAFLD, and the severity
of inflammation influences its progression into more severe forms [95]. Toll-like receptors
(TLRs) are activated by components of gut bacteria, leading to liver inflammation and
ultimately the development of NASH and NASH-related cancer [96–98]. The expression
of TLR ligands in the gut is reduced by the use of probiotics [99–101]. Similarly, the
bibliometric analysis of Yang reveals that the inflammation theme is an active research
topic [37].

The terms cirrhosis, therapy, diagnosis, complication, and hepatic encephalopathy appear
among the frequent keywords in the cluster colored blue. The diagnosis and treatment
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of cirrhosis, the last stage of alcohol-related liver disease, are crucial [94,102]. On the
other hand, the search for noninvasive markers and avoiding the development of liver
cancers are emerging hotspots of fundamental importance [35]. Hepatic encephalopathy is
a common consequence of cirrhosis that causes cognitive and movement impairment. The
pathogenesis of hepatic encephalopathy is significantly influenced by microbiome–host
interactions [103,104].

As shown in Figure 10, from the year 2017 to 2020, we assisted in a shift to the
keywords (frames in red): rRNA gene sequencing, Akkermansia, SCFA (short-chain fatty
acids), and FMT (fecal microbiome transplantation).

The rRNA sequencing is an important tool for identifying the bacterial communities
that constitute the microbiome, and its use has expanded from the laboratory to the clinic in
recent years [105,106]. Under pathological conditions such as NAFLD, and as it progresses
to more severe forms such as NASH and cirrhosis, we can analyze the abundance and
classification of bacteria by sequencing the DNA sequences that encode ribosomal 16S rRNA
in the bacterial genome and learn about meaningful changes of the microbiome [107]. It can
also be used to create new probiotics and study the effects of biotics on the gut microbiome.

Recently, Akkermansia muciniphila, a novel microbe that regulates numerous metabo-
lites, including SCFA, has been added to the list of probiotics based on results from a variety
of animal and human investigations [108,109]. Treatment with Akkermansia muciniphila
decreased insulin sensitivity, fat deposition, and weight gain in animal models [110]. Sup-
plementation with A. muciniphila lowers hepatic steatosis and intestinal permeability [111].
Amuc 1100, a protein derived from A. muciniphila’s outer membrane, has been shown to
interact with TLRs [112].

Dietary fiber and indigestible starch are broken down by gut microbiota into SCFAs,
the types of which vary with the kind of microbiota present and the type of fiber eaten [113].
More than 90% of the SCFAs in the digestive tract are composed of acetate, propionate, and
butyrate [114]. The liver uses SCFAs as an energy source and as a key player in lipogenesis
and gluconeogenesis after they are absorbed in the intestine [115]. Reduced levels of
butyrate and butyrate-producing bacteria are frequently related to metabolic problems [116],
indicating that the precise distribution of SCFAs may be crucial for understanding their role
in NAFLD. Elevated amounts of fecal acetate were found in individuals with severe fibrosis,
while increased levels of fecal butyrate and propionate were seen in patients with mild to
moderate fibrosis [117,118]. The importance of SFCAs as an object of future research is an
emerging hotspot [37].

Reconstructing and restoring the intestinal microecological balance and diversity using
FMT is an innovative technique. FMT has been shown to be effective in the treatment of
a variety of conditions, including hepatic encephalopathy [103,119–121]. Several studies
in animals have indicated that FMT can ameliorate NAFLD, NASH, and cirrhosis symp-
toms by rebalancing the gut microbiome [26,122,123]. Due to its promising results, FMT
is increasingly being considered for use in NAFLD/NASH and cirrhotic patients. The
interaction between gut microbiota composition and NAFLD was also highlighted by the
findings of Witjes et al. [124], who found that FMT from healthy donors could influence
hepatic gene expression as well as plasma metabolites implicated in inflammation and
lipid metabolism. Therefore, the development of microbiome-targeted therapeutic tech-
niques should be investigated to facilitate the discovery of novel preventive and therapeutic
approaches for NAFLD and derived pathological spectrum.

While every effort was made to be as thorough as possible and make sure the results
were accurate, there were still some limitations. First, we examined only articles in the free
access version of the Dimensions database. It is possible that if we had used a different
set of databases, we might have gotten different results. Secondly, we limited our search
to articles originally published only in the English language, overlooking some studies
published in other languages.
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5. Conclusions

The role of the gut microbiome in the progression of nonalcoholic fatty liver disease
(NAFLD) and its relationship with biotics has become a hot topic in recent years. Over the
past decade, there has been a significant increase in studies in this field. China leads the
field with the biggest number of papers, followed closely by the United States. However,
the United States is the most influential country in this area. As such, it is essential for
authors and nations to work closely together in order to advance the area. Out of a total of
422 journals, most articles have been published in Nutrients. Hepatology had the greatest
number of citations. Research into the following topics is expected to emerge in this field:

- evaluation of risk factors that are associated with the progression of NAFLD, such as
obesity and metabolic syndrome;

- pathogenic mechanisms, such as liver inflammation through toll-like receptor activa-
tion or alteration of short-chain fatty acid metabolisms, which contribute to NAFLD
development and its progression in more severe forms, such as cirrhosis;

- therapy for cirrhosis rough dysbiosis reduction, and research on hepatic encephalopa-
thy, a common consequence of cirrhosis;

- evaluation of diversity, and composition of gut microbiome under NAFLD, and as it
varies under NASH and cirrhosis by rRNA gene sequencing, a tool which can also be
used for the development of new probiotics and explore into the impact of biotics on
the gut microbiome;

- treatments to reduce dysbiosis, almost with probiotics, prebiotics, and synbiotics, and
with new probiotics, such as Akkermansia, or FMT, or diet.

These findings have significant implications for future research into the role of the gut
microbiome in the progression of NAFLD and its connection with biotics.
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