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Abstract
In this paper we study tax evasion by means of a unified framework, based on a 
behavioral approach, where each individual decision with respect to tax compliance 
is driven by either personal evaluations of the available information, correlated to 
income and the perception of the quality of the public good, and social influences, 
derived by the known decision of neighbors. Our model relies on individual utility 
functions and describes the tax-evasion problem by means of a personal evolution-
ary scheme, in which each citizen dynamically adapts her behavior as a response to 
changing economic and social factors. We will show basic economic intuitions on 
the relevance of penalties, imitation, satisfaction and risk aversion by means of an 
analytical model and its agent-based companion version, in order to analyse differ-
ent elements influencing tax evasion and their dynamic effects. In particular, it is 
shown how the tax-evasion probability changes as a function of the risk-aversion 
and specific focus is dedicated to the role played by non-monetary elements of util-
ity in inducing high levels of tax compliance also at substantially reduced fines.
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1 Introduction

The tax evasion and, more broadly, the black economy results as collective prob-
lems deriving from the aggregation of selfish behaviors assumed by free riders, i.e., 
citizens consuming public goods without contributing to their costs. Both result in 
diminishing tax revenues, thus leading to perverse systemic effects, such as severe 
limitations to the possibilities of governmental expenditure decisions, reduction in 
the quality and the quantity of supplied services, inefficient and negative redistribu-
tive consequences, decrease in social welfare. Being the free rider problem a con-
sequence of the degree of ethical awareness of persons, reflected collectively in the 
degree of civic maturity of populations, it is perhaps useful to address personal and 
social elements influencing the decision to evade the tax burden. Indeed, the related 
literature has shown that, for example, people are more likely to evade if they per-
ceive that others are evading, especially in presence of not too high probabilities of 
being caught (see, for example, Alm et al. 2015, Dubin (2007), McGee (2012), and 
Torgler (2007)). Notable differences can be observed also depending on countries, as 
in Pickhardt and Prinz (2012), Riahi-Belkaoui (2004), and Torgler and Schaltegger 
(2005), while Kirchler (2007) and Shu et al. (2012) offer a focus on a series of factors 
affecting tax compliance, such as perceptions about tax fairness, attitudes and trust 
toward government, social and personal norms. Consequences of evasion are also 
addressed in other contributions, as in Andreoni et al. (1998), Slemrod and Yitzhaki 
(2002), Torgler (2002), Kirchler (2007), and Slemrod (2007), among others.

Models of tax evasion have been developed since the Seventies, by consider-
ing optimizing individuals – fully informed on audit rates and penalties – facing 
different audit strategies. Such contributions discuss also the impact on evasion of 
different tax rates, income distribution and the choice of the basis for taxes com-
putation. Examples are, among others, Allingham and Sandmo (1972), Yitzhaki 
(1987), Clotfelter (1983), Crane and Nourzad (1987), Poterba (1987), Panades 
(2004), Dalamagas (2011), Alstadsæter et  al. (2017), Bertotti and Modanese 
(2014, 2016). A relatively recent approach to the problem has been advanced 
by adopting agent-based models, as shown by Bloomquist (2006), Alm (2012), 
Hokamp (2013), Pickhardt and Prinz (2014), and Bazart et al. (2016). The spe-
cific advantage of this class of models is that they study the rise of bottom-up 
decentralized decisions, which is particularly helpful to analyze collective prob-
lems, specially with reference to complex aggregate contexts. Simulative mod-
els can be, then, particularly helpful in studying behavioral attributes, as in pre-
vious studies of socio-economic and financial markets analysis, as in Pluchino 
et  al. (2010, 2018), Biondo et  al. (2013), Squazzoni et  al. (2014) and Biondo 
(2019). Dealing with tax evasion, agent-based models can replicate the impor-
tance of social norms and auditing, as in Hokamp and Pickhardt (2010), the effect 
of social networks on the tax compliance, as in Vale (2015), or even the impact 
of network configurations on the compliance, as in Andrei et  al. (2014), and in 
Gamannossi degl’Innocenti and Rablen 2020. Korobow, Johnson and Axtell 2007 
consider geographical spillovers and contagion effects in a model with networked 
agents, who are aware of their neighbors’ actions and perceive the reputational 
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pressure of conformity. Related literature debates on the hypothesis that social 
information plays a role in influencing the compliance behavior as, among others, 
in Alm et al. (2017) and Alm and Yunus (2009), and Fortin et al. (2007). Levenko 
and Staehr (2021) found that social norms and awareness about the fiscal system 
are key factors in inducing tax compliance.

From a policy perspective, there are a number of reasons to fight tax evasion. 
Nonetheless, politicians cannot assume drastic positions about the topic, specially in 
contexts where the problem is highly diffuse. The (https:// www. irs. gov/ PUP/ newsr 
oom/) reports that the expenditures paid by governmental authorities to induce vir-
tuous behaviors are significant. However, in many cases, free riders remain unpun-
ished while providing the bad example of being smart enough to exploit common 
resources without paying their part. One of the main findings of Biondo et al. (2020) 
confirms that it is possible to find a suitable configuration of audits and fines that can 
eradicate evasion. Nonetheless, the prevailing economic intuition since the Nineties 
is that, although taxpayer reporting increases with greater audit and penalty rates, 
these responses are not large (Alm et  al. 1992). The prevailing literature suggests 
that authorities should prefer a client-service approach, instead of a cops-robbers 
enforced compliance (Kirchler et  al. 2008; Prinz et  al. 2014). The known conflict 
between individual and collective rationality (Rapoport 1974) creates the paradoxi-
cal outcome of the prisoner’s dilemma. A vast amount of literature, regarding the 
production of public goods, as in Heckathorn (1996), the emergence of social norms 
and social interaction, as in Hardin (1995), and Voss (2001), among others, pose 
the question about the individual decision to cooperate. Cooperation could be the 
optimal choice because of different reasons. First of all, simple altruism, as recalled, 
for just some examples, in Stevens (2018) and Epstein (1993); secondly, imitation, 
as in Callen and Shapero (1974), in Elsenbroich and Gilbert (2014) and McDonald 
and Crandall (2015); alternatively, needed quality of the public good (i.e., quality 
of Institutions) or perceived amount of public expenditure, as in Nicolaides (2014), 
Feld and Frey (2002), and Torgler and Schneider (2009), and Pellizzari and Rizzi 
(2014), among others.

The main aim of this paper is to study tax evasion by means of a unified frame-
work, based on a behavioral approach, where each individual decision with respect 
to tax compliance is driven by either personal evaluations of the available informa-
tion, correlated to income and the perception of the quality of the public good, and 
social influences, derived by the known decision of neighbors. In particular, defined 
the individual utility function, we aim at providing a description of the tax-evasion 
problem by means of an individual-based evolutionary scheme, in which each citi-
zen dynamically adapts her behavior as a response to changing economic and social 
factors. We will show basic economic intuitions on the relevance of penalties, imita-
tion, satisfaction and risk aversion by means of an analytical model and its agent-
based companion version, in order to analyse different elements influencing tax 
evasion. In particular, we define a generalized utility function aimed at providing a 
description of the tax-evasion problem in terms of three components: income, social 
influence and perceived quality of the public good. We will study dynamical effects 
produced by all utility components and their respective parameters.

https://www.irs.gov/PUP/newsroom/
https://www.irs.gov/PUP/newsroom/
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We will show how the tax-evasion probability changes as a function of the risk-
aversion, thus analytically proving and numerically verifying that the level of risk-
aversion determines the value of the penalty factor above which evasion ceases to 
be an optimal strategy. On the other hand, we will underline the role played by non-
monetary terms elements of utility in inducing high levels of tax compliance also 
at substantially reduced fines. In particular, under the action of both social influ-
ence and quality assessment, we find that a taxation scheme shifting the tax burden 
towards the fewer, highest income agents —-which provide the largest fraction of 
the tax revenue—- is generally more effective in fostering tax compliance.

The rest of the paper is structured as follows. In Section 2 the model is presented. 
In Section  3 we present the case of the homogeneous, mean-field population, in 
which all agents are equivalent and all connected to each other. The model will thus 
be thoroughly explored for a comprehensive understanding of the dynamics of the 
system and its stability landscape. In Section  4, we move to consider the case of 
the heterogeneous population, opening to a more policy-oriented analysis. In Sec-
tion 5 we make a further step by considering the case of heterogeneous populations 
structured in social networks and analyse the significance of breaking the mean-field 
condition. Section 6 presents final concluding remarks. Some analytical details are 
reported in the I.

2  The model

Consider a set of N agents, Γ = {a1,a2,...,aN}, representing a population of citizens 
placed on the vertices of a (temporal) network G(Γ,L) , where L is the set of links rep-
resenting social engagement among them. At each time step t, each agent ai gets a 
periodic gross income ci,t initially drawn from a given distribution p(c). For simplic-
ity, income is assumed to be constant in time, so that ci,t = ci. The generic agent ai 
is also responsible to report to the Government the received income. In this respect, 
she adopts a simple “all-or-nothing” choice: she can either pay the due tax burden or 
evade it completely. Government is assumed to have always the possibility to control 
the fiscal compliance of citizens; therefore, each agent ai has a probability πa to be 
audited, which is invariant in time.

At each time step t, agent ai makes her choice by comparing utility levels deriv-
ing from two competing alternatives, by means of her individual utility function, 
defined as:

being σ ∈{pay,evade} the label indicating the strategy for which the utility is com-
puted. Utility is expressed as a function of three components. An endogenous one, 
Y�
i,t

 , which depends on the monetary income as a function of the tax compliance of 
the agent; and two exogenous: S�

i,t
 , depending on the imitation of peers’ behavior in 

order to minimize the psychological cost entailed by acting differently (i.e., contra-
rily); and Q�

i,t
 , related to the individual assessment of the supplied public good (in 

turn dependent on collected tax revenues.) More precisely:

(1)U�
i,t
= f

(
Y�
i,t
, S�

i,t
,Q�

i,t

)
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– When the agent ai receives the amount ci, if the chosen strategy is pay, the net 
income is reduced to X = ci − T(ci), being T(ci) < ci the due tax burden. Instead, 
should the agent choose the strategy evade, by accepting the risk to be audited, 
the final income received by her would be either X = ci − PT(ci) or X = ci, accord-
ing to the fact that she has been fined after being audited, or not, being P the 
penalty factor. Thus, similarly to Allingham and Sandmo (1972), the first com-
ponent of utility is computed as a continuous function yi(x), supposed increasing 
and concave, i.e., with y�

i
(x) > 0 and y��

i
(x) < 0 , in order to model risk-aversion 

for perceived gains. Agents ignore the exact value of the audit rate πa, but they 
infer it on the basis of the available partial information, coming either directly 
from their own past experience (whether or not they were already audited at the 
previous time step) or indirectly by shared information by their neighbors. In par-
ticular, given the network G(Γ,L) , each agent has a personal neighborhood Ii,t ⊂Γ 
defined as the set containing herself and other agents connected to her in G(Γ,L) . 
We assume that the personal estimate of the audit probability of agent ai is πi,t = 
|Ξi,t− 1|/|Ii,t− 1|, where |Ξi,t− 1|, is the cardinality of the set containing agents audited 
at the previous time step belonging to her neighborhood. Therefore, in general, 
πi,t≠πa. In order to have a common scale for all utility components, we normal-
ize the disposable income with respect to its maximal value, and define x = X/ci, 
so to have yi(x). Thus, the utility coming from the monetary gain is perceived by 
the agent in relative terms, consistently with the assumption that she knows in 
advance her gross income. Accordingly, the monetary contributions to the indi-
vidual utility entailed by the strategies pay and evade are defined as, respectively,

and

– Each agent ai estimates the current proportion of tax evaders in the entire popula-
tion as the number of evaders at time t − 1 among her neighbors.Implicitly, we 
are assuming that an agent is always able to retrieve such information from her 
social contacts. This assumption is here useful to show the impact of such a com-
plete awareness; it might be not fully satisfied in reality, although not impossible. 
Reduced information can be reasonably thought as providing a more moderate 
impact. Defined as A the adjacency matrix of the network G(Γ,L) , with generic 
element Aij = 1 if (i,j) ∈ L, i.e., agent ai and agent aj are linked neighbors, and Aij 
= 0 otherwise, the estimate of the proportion of evaders computed by agent ai is 
defined as:

(2)Y
pay

i,t
≡ yi

(
1 −

T(ci)

ci

)

(3)Yevade
i,t

≡
(
1 − �i,t

)
yi(1) + �i,tyi

(
1 −

PT(ci)

ci

)

(4)�i,t =

∑N

j=1
Aijej,t−1

∑N

j=1
Aij
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where  ej,t− 1 = 1 if agent aj evaded at time t − 1, and  ej,t− 1 = 0 otherwise. 
Then, the agent ai perceives the social pressure toward, respectively, eva-
sion or compliance, if ρi,t > 1/2 or ρi,t < 1/2, while feeling no pressure if ρi,t 
= 1/2. We define the term Si,t by the continuous, increasing and odd function 
si
(
�i,t − 1∕2

)
 , i.e., s�

i
(x) > 0 and si(−x) = −si(x), with si(0) = 0 . Then, the contri-

bution to the utility is given by either Sevade
i,t

= si
(
�i,t − 1∕2

)
 , for strategy evade or 

S
pay

i,t
= si

(
1∕2 − �i,t

)
= −Sevade

i,t
 , for strategy pay.

– The quality of the public good supplied by the government at each time 
step t is modelled as a function of the tax revenue at time t − 1, i.e., 
Tt−1 =

∑N

i=1
T(ci)

�
1 − ei,t−1

�
 , thus it can be considered as dependent on the level 

of tax compliance of the population, whose maximal tax revenue –obtained in 
the absence of tax evaders– would be Tmax =

∑N

i=1
T(ci) . More specifically, we 

introduce a quality function G(x), bounded in [0, 1] , increasing and concave so 
that the production function of Government is implicitly assumed to exhibit 
decreasing returns, i.e., with G�(x) > 0 and G��(x) < 0 , with x = Tt−1∕Tmax . We 
also assign to each agent a personal expected quality level qi ∈ [0,1], which 
remains constant in time: the comparison between qi and Gt determines either 
satisfaction or frustration in the agent ai, thus inducing adaptive behavior. The 
model considers both cases of positive and negative adaptations. A positive feed-
back would consist in the fact that a citizen satisfied by the quality of the public 
good (i.e., qi < Gt) maintains a high tax compliance as to award the Government 
for the appreciated provision, whereas an unsatisfied citizen (i.e., qi > Gt) would 
choose a revenge strategy by evading if the quality of the public good is low. 
Instead, a negative feedback would consist in the fact that a citizen satisfied by 
the quality of the public good may decide to evade in order to maximize the free 
rider rent, whereas an unsatisfied citizen decides to pay because she understands 
the relevance of collecting more taxes. Thus, the term Qi,t related to the quality of 
the public good is modelled by �igi

(
qi − Gt

)
 , with γi = 1 for the positive-feedback 

case and γi = − 1 for the negative-feedback, being gi(x) a continuous, increas-
ing and odd function. Thus, the contribution to the utility is computed as either 
Qevade

i,t
= �i gi

(
qi − Gt

)
 , for strategy evade or Qpay

i,t
= �i gi

(
Gt − qi

)
= −Qevade

i,t
 , for 

strategy pay.

Agents’ choice is simplified at the highest grade: each agent will be prone to 
adopt, at each time t, the strategy entailing the highest overall utility level. Eq. (1) 
is actually computed, for each agent ai, as a weighted average of the three above-
presented utility components,

being ki =
(
k
(Y)

i
, k

(S)

i
, k

(Q)

i

)
 the vector of ai’s individual weights. Accordingly to 

Eq.  (5), ai is more likely to select the evade (resp. pay) strategy if Uevade
i,t

> U
pay

i,t
 

(resp. Uevade
i,t

< U
pay

i,t
 ). More precisely, the more positive (resp. negative) is the utility 

difference ΔUi,t ≡ Uevade
i,t

− U
pay

i,t
 , the more (resp. the less) probable the agent is to 

(5)U�
i,t
= k

(Y)

i
Y�
i,t
+ k

(S)

i
S�
i,t
+ k

(Q)

i
Q�

i,t
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adopt strategy evade (resp. pay). Once defined ΔYi,t ≡ Yevade
i,t

− Y
pay

i,t
 , the final form 

of the utility difference results to be

Conveniently, the functions y(x), s(x) and g(x) will be chosen to take values in the 
interval [− 1,1]. As a consequence, also the three terms (excluding the weights) in 
both, Eqs.  (5) and (6), will lie in that interval, so that the a priori contribution of 
each of them is entirely committed to the magnitude of the respective weight. The 
reader is referred to Section 3 for a detailed discussion about the dynamical roles of 
each term.

We adopt a bounded rationality approach (Simon 1990), considering that 
agents select what they believe is the best strategy, given the elements they 
observe around them, at each time step. Indeed, the choice of agent ai at time t 
is determined on the basis of the information collected (directly and indirectly) 
by her. Then, a possible perspective of imperfect rationality, meant in the game-
theoretical sense of a partial lack of consistency with respect to the best response 
strategy, is here modeled by assuming that the strategy entailing the highest util-
ity is associated to a probability smaller than 1, whereas it attains exactly 1 in the 
asymptotic and hypothetical scenario that we could label as “perfect consistency” 
(or “perfect rationality”). In order to obtain such a behavioral configuration, the 
probability ξi,t that agent ai chooses the evade strategy at time t, is computed as a 
logistic function,

being, instead, �i,t
(
−ΔUi,t

)
= 1 − �i,t

(
ΔUi,t

)
 the probability that she chooses the pay 

strategy. We, thus, account for the possibility that ai is compliant although ΔUi,t > 0 
and, vice versa, that she evades although ΔUi,t < 0. The parameter βi ≥ 0 can be 
interpreted as a measure of the degree of ex post consistency (rationality) of agent 
ai: in the limit βi → ∞ , the function ξi,t(x) converges to a step function ζi,t(x), such 
that ζi,t(x > 0) = 1, ζi,t(x < 0) = 0 and ζi,t(x = 0) = 0.5, thus granting that the agent’s 
choice is fully consistent with the utility difference given by Eq. (6). Contrariwise, 
for any finite βi, 0 < ξi,t < 1 is obtained. In particular, the case with βi = 0, would 
describe a completely random choice, i.e., ξi,t = 0.5. Ideally, β can be calibrated to 
guarantee a certain level of consistency, for instance, at the maximal utility differ-
ence, |ΔU| = 1. Then β is chosen to provide an agent with a given percentage of 
(maximal) consistency, given by ξ(1) = (1 + e−β)− 1 (for example, β = 6 would corre-
spond to a maximal consistency of 99.8%). The lack of full consistency, as entailed 
by any finite value of β, can stem from various elements: people may have limited 
computational ability; they may generally possess only partial and noisy information 
about how fines and audits are implemented; they may feel persuaded by the behav-
ior and the income of their peers, or, lastly, have a biased perception of the quality of 
public goods. Further, their behavior could be driven by endogenous factors as per-
sonal beliefs or cultural traits, leading, for instance, to an unconditioned compliance.

(6)ΔUi,t = k
(Y)

i

ΔYi,t

2
+ k

(S)

i
si
(
�i,t − 1∕2

)
+ k

(Q)

i
�igi

(
qi − Gt

)

(7)�i,t
(
ΔUi,t

)
=

1

1 + e−βiΔUi,t
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It is worth to notice that, since the utility difference ΔUi,t is linear in the 
weights, one may prefer, alternatively, to refer to ex post weights defined as 
β
(X)

i
= βk

(X)

i
 , X ∈{Y,S,Q}, by absorbing βi in their definition. Thus, the higher is 

β
(X)

i
 , the more consistent is agent ai with respect to the (partial) best response 

strategy dictated by the utility component X. Being just a matter of definition, 
here we choose to follow with the first convention regarding k(X)

i
 , X ∈{Y,S,Q}, as 

a weight and βi as an overall consistency parameter. All in all, individual behavior 
evolves as schematised in Fig. 1.

The numerical implementation of the model, addressed in the next sections, 
requires the selection of specific functional forms for the functions y(x), s(x) and 
g(x), defining the components of the utility function in Eq. (5). Following Kirk-
wood (2004), we choose

being sgn(x) = x/|x| the sign function, and R(X) ≡ R(X)
(
�
(X)

i
;x

(X)
max

)
=
[
1 − e−�

(X)

i
x
(X)
max

]−1
 , 

X ∈{Y,S,Q}, a normalization factor bounding utility component X to the interval 
[−1, 1] , where x(Y)max = x

(Q)
max = 1 and x(S)max = 1∕2 . Eqs.  (8)-(10) define generalised 

logistic functions whose growth rate λi ≥ 0 regulates how quickly they converge to 
the boundaries {− 1,1}. It holds λi = −(d2ui/dx2)/(dui/dx), ∀ui ∈{yi,si,gi}. Therefore, 
for the monetary utility component yi, �

(Y)

i
 represents the constant absolute risk aver-

sion (CARA) of agent ai. Accordingly, her aversion to risk grows with �(Y)
i

 , while 
she becomes risk neutral in the �(Y)

i
→ 0 limit. For the remaining components, �(S)

i
 

and �(Q)
i

 govern how the susceptibility of the respective utility components changes 
under, respectively, shifts in the fraction of neighbors adopting a certain strategy, 
and shifts in the quality of the public good. Lastly, the quality function G(x) is con-
veniently modelled by a logistic function similar to those in Eqs. (8)-(10),

(8)yi(x) = R(Y)
(
1 − e−�

(Y)

i
|x|
)
sgn(x)

(9)si(x) = R(S)
(
1 − e−�

(S)

i
|x|
)
sgn(x)

(10)gi(x) = R(Q)
(
1 − e−�

(Q)

i
|x|
)
sgn(x)

Fig. 1  Strategy adoption scheme 
for a generic agent ai at the 
time step t of a Monte Carlo 
simulation. Here, r is a random 
variable, re-drawn uniformly in 
(0, 1) at each step, and for each 
of the agents
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with x = Tt−1∕Tmax ∈ [0, 1] , as explained above, and η ≥ 0 is a constant param-
eter regulating how fast the returns of the production function of the Government 
decrease as collected tax revenues increase.

3  Homogeneous mean‑field populations

We start by considering a homogeneous society where all agents are equivalent 
among them and all mutually connected (i.e., they possess complete information on 
any other agent). Specifically, all the agents share the same values of the individual 
parameters, i.e., ci = c, qi = q, γi = γ, βi =β, ki = k, 𝜆i = 𝜆 , ∀i. Since all agents get 
the same gross income c, we define the tax simply as T(c) = 𝜃c, being 𝜃 ∈ (0,1) the 
chosen tax rate. Moreover, since agents are assumed to interact, at each time step, 
with any other agent in the population, they agree on all estimates: πi,t = 〈πt〉 
= πa, ρi,t = 〈ρi,t〉 = ρt, ∀i. Also, Tt∕Tmax = 1 − �t . Therefore, each agent inter-
acts with an effective mean-field ρt, which is also the probability of being a tax-
evader at time t for any agent in the population. As a consequence, ΔUi,t = ΔUt 
and �i,t = �t = 1∕(1 + e−βΔUt ) , ∀i. The system is, therefore, described by a single 
dynamic equation for ρt:

Equation (12) defines our analytical model. It will be studied in order to understand 
basic mechanisms driving dynamical features of the here proposed agent-based 
model. In the following, we first analyze the role of each utility components in influ-
encing the stability of the system, and then we perform a linear stability analysis to 
know how attractive points of Eq. (12) are affected by changes in model parameters. 
Finally, we show potentially interesting results for some cases.

3.1  Stability analysis

Since individuals’ choice is (fully) consistent with the utility difference, Eq.  (6), 
–and therefore with its sign– we can grasp an essential understanding of the model 
by looking for the conditions at which that difference vanishes and the agent is indif-
ferent with respect to the two strategies. To this end, let us first consider the special 
cases in which only one of the three components is present:

– Monetary term, k = (1,0,0). This is the only endogenous term, giving a non 
dynamic contribution to an agent’s utility, and also the only one depending 
on controllable parameters, that is, taxation and penalty policies. Given the 
audit probability πa and a tax rate 𝜃 = T(c)/c, there exists a value P̃ of the 
penalty at which ΔU = ΔY/2 = 0. Although a general closed expression for 

(11)G(x) =
1 − e−�x

1 − e−�

(12)�t =
1

1 + e−βΔUt
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P̃ is found with some algebra from ΔU = 0, it has a complicated dependence 
on the other parameters. Instead, it is more instructive to look at the limits 
� → 0 , at which y(x) ≃ x , and � → ∞ , at which y(x) approaches a step function 
such that y(x < 0) = − 1, y(0) = 0 and y(x > 0) = 1. In the first case, ΔU = (1 
− πaP)𝜃/2, hence P̃ = 𝜋a

−1 , independently of the tax rate. On the other hand, 
ΔU is linearly proportional to the latter, therefore, for P < P̃ , the larger the tax 
rate, the higher is the probability that an agent evades (vice versa for P > P̃ ). 
In the second limit, ΔU approaches a step function such that ΔU = 0 for P < 
𝜃− 1, ΔU = −πa/2 for P = 𝜃− 1 and ΔU = −πa for P > 𝜃− 1, thus the higher the 
tax rate, the lower the threshold penalty to exceed in order to sharply increase 
the compliance probability of an agent. In this case, while being always non 
positive, ΔU presents a step whose magnitude is exactly equal to the audit 
probability. All in all, we can say that, to some extent, tax rate and audit prob-
ability progressively exchange their role when shifting from one limit to the 
other. Lastly, since ΔY (hence ΔU) does not depend on ρ, it is insensitive to 
initial conditions, meaning the system has only one attractive point, given by 
ρ⋆ = (1 + e−βΔY/2)− 1.

– Social term, k = (0, 1, 0). This is a purely dynamic term, depending 
exclusively on the fraction ρ of evaders in the population. The sign of 
ΔU = s(� − 1∕2) is solely determined by how ρ compares with 1/2. Then, 
since ΔU is positive (negative) if and only if ρ > 1/2 (ρ < 1/2), if the inequal-
ity ρ > 1/2 holds at a given time, it will hold at all future times. Consequently, 
two attractive fixed points exist, one below and one above the repelling point 
ρ = 1/2. The initial condition ρ0 will decide which of the two is reached by the 
system. The social term can, thus, be seen as always acting as a positive feed-
back loop.

– Quality term, k = (0,0,1). This is a dynamic term depending on the fraction 
ρ of evaders through the normalized tax revenue T∕Tmax = 1 − � , argument of 
the quality function G ≡ G(1 − ρ). Therefore, ΔU = �g(q − G) = 0 for ρ such 
that q = G, easily found to be �̃� ≡ �̃�(q, 𝜂) = 1 + ln

[
1 − q(1 − e−𝜂)

]
∕𝜂 . From the 

fact that G decreases with ρ and increases with η, it can be shown that �̃� is 
an increasing function of η, while it decreases with the expected quality q. 
Although �̃� plays here the role that 1/2 plays for the social term, the fact that, 
in general, it is �̃� ≠ 1∕2 , makes the analysis more involved. Let us first con-
sider the positive feedback case (γ = 1). As for the social term, since ΔU is an 
increasing function of ρ, and ξ(ρ) ≡ ξ(ΔU(ρ)) is too (dξ/d(ΔU) > 0 always), 
ρ − ξ(ρ) can have more than one zero and, correspondingly, the system more 
then one fixed point. Suppose, for instance, that �̃� > 1∕2 . Let us define ρ+ ≡ 
ρ+(q,η,β) as the lowest ρ such that, if ρ ≥ ρ+ at some time, it will be so for all 
future times. Since ΔU = 0 at �̃� , at the next time step 𝜌 = 1∕2 < �̃� , hence nec-
essary 𝜌+ > �̃� . From the given definition follows that, if currently 𝜌 ∈

[
�̃�, 𝜌+

)
 , 

then ρ will eventually decrease below �̃� , and therefore converge to a fixed 
point below 1/2. Thus ρ+ represents a repelling point, separating the basins 
of attraction of the two attractive points, one above it and one below 1/2. For 
fixed q and η, it depends on β through Eq.  (12). Specifically, in the β → ∞ 
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limit, 𝜌+ → �̃� , for the new ρ will tend to 1 or 0 depending on whether the cur-
rent ρ is greater or smaller than �̃� . For any finite value of β, instead, the fact 
that 𝜌 > �̃� does not guarantee it will be so at future times: a stronger condition 
for ρ is needed, namely, for it to stay above ρ+. The smaller β, the smaller |ρ| 
for any fixed ΔU, and thus the higher ρ+. Eventually, if β is low enough, ρ+ 
> 1, meaning the system has only one fixed point, i.e., that one below 1/2. The 
case with �̃� < 1∕2 symmetrically mirrors this, as the analysis repeats identi-
cally in relation to 𝜌− < �̃� , the repelling point that, if positive, traps ρ below it 
(hence below �̃� ), while the other attractive point now lies above 1/2. At last, 
if �̃� = 1∕2 , then simply 𝜌+ = 𝜌− = �̃� , with the two attractive points found one 
below and one above 1/2. Let us now consider agents with negative feedback 
(γ = − 1). In this case ΔU = −g(q − G) and ξ(ρ) is a decreasing function of 
ρ, implying either an oscillatory transient and that ρ − ξ(ρ), increasing with 
ρ, can only have one zero. The latter corresponds to an attractive or repul-
sive point depending on the chosen set of parameters. If attractive, the oscilla-
tory transient dies away. If repulsive, the transient stabilizes into an attracting 
sequence of period 2 whose periodic points correspond to the fixed points of 
the second iterate ξ(2)(ρ) ≡ ξ(ξ(ρ)) (which, consistently, is an increasing func-
tion of ρ). Since ξ(ρ) maps the interval [0, �̃�] into a subset of [1/2,1], and the 
interval [�̃�, 1] into a subset of [0, 1/2], supposed �̃� > 1∕2 ( ̃𝜌 < 1∕2 ), it follows 
the two attractive periodic points must be either, both in the interval [1∕2, �̃�] 
( [�̃�, 1∕2] ), or, one below (above) 1/2 and one above (below) �̃� . On which side 
of the period-doubling bifurcation the system is, mainly depends on the value 
of β. In the β → 0 limit, ξ(ρ) becomes linear and can only vary in the small 
interval 1/2 ±β /4, thus |dξ(ρ)/dρ| < 1 everywhere and the unique fixed point is 
attractive. By increasing β, |dξ(ρ)/dρ| grows more the closer ρ is to �̃� , at which 
|dξ(ρ)/dρ| is approximately linear with respect to β. The bifurcation is then 
marked by the smallest β for which |dξ(ρ)/dρ| = 1 at the fixed point. Accord-
ingly, in the β → ∞ limit, it is immediately verified that ρ alternates between 0 
and 1.

All in all, the joint contribution of the three terms yields various stability landscapes. 
Depending on the set of parameters, it is yielded: a single, attractive, fixed point; 
a bistability; a tristability, under the combined action of the social and the quality 
terms (for positive feedback only), given �̃� is far enough from 1/2; a sequence of 
period 2 (for negative feedback only).

3.2  Stability of equilibrium states

We are now ready to look for the stability conditions of the equilibrium states of 
Eq. (12). For positive feedback, these are always fixed points (of ξ(ρ)). For negative 
feedback, they are either fixed points (of ξ(ρ)) or periodic points of period 2 (i.e., 
fixed points of the second iterate ξ(2)(ρ)). Even in the latter case, since the period-
doubling bifurcation occurs when the fixed point becomes repelling, knowing 
whether the condition for the stability of the fixed point is satisfied or not is enough 
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to establish on which side of the bifurcation the system lies. Therefore, we proceed 
by analysing the stability of the fixed points of ξ(ρ). Given the values of all parame-
ters, these can be calculated from Eq.  (12) once the utility components, i.e., the 
functions y(x), s(x) and g(x), have been chosen, for instance, as specified in 
Eqs. (8)–(10). Nonetheless, we can preliminary find the general condition that must 
hold in order for a fixed point ρ = ρ⋆ to be attractive, for any opportune choice of 
these functions. Thus, suppose to displace the system from ρ⋆ by an infinitesimal 
amount 𝜖, so that it is now in the state ρt = ρ⋆ + 𝜖. Expanding Eq. (12) up to the first 
order around 𝜖 = 0, one finds that 𝜌

t+1 = 𝜌⋆ + 𝜖𝜅𝜕(ΔU)∕𝜕𝜖|𝜖=0 = 𝜌⋆ + 𝜖𝜅𝜕(ΔU)∕𝜕𝜌|𝜌=𝜌⋆ , being 
𝜅 ≡ 𝜕𝜉∕𝜕(ΔU)|𝜌=𝜌⋆ = β

[
e−β|ΔU|𝜉2

]
𝜌=𝜌⋆

 a non-negative factor. It follows that ρ⋆ is 
attractive if and only if 𝜕𝜉(𝜌)∕𝜕𝜌|𝜌=𝜌⋆ = |𝜅𝜕(ΔU)∕𝜕𝜌|𝜌=𝜌⋆ < 1 , being

Equation (13) does not get any contribution from the monetary term, thus weighting 
it enough (i.e., lowering the other terms) entails the presence of only one, attractive, 
fixed point for the system. Still without making explicit the form of the utility com-
ponents, we can study how an equilibrium ρ⋆ depends on various parameters. Let a 
be the varying parameter (excluding β at this stage). Differentiating Eq.  (12) with 
respect to a, at ρ = ρ⋆, and solving for ∂ρ⋆/∂a, yields

The stability condition, whenever fulfilled, ensures the denominator to be positive. 
Consequently, the sign of ∂ρ⋆/∂a simply coincides with the sign of 𝜕(ΔU)∕𝜕a|𝜌=𝜌⋆ . 
As shown in the I, the derivatives with respect to the penalty factor P, to the audit 
probability πa, and to the quality parameter q, are solely determined by the first 
order requirement on the utility components. In particular, for any set of values of 
all parameters, we find ∂ρ⋆/∂P < 0, ∂ρ⋆/∂πa < 0, and ∂ρ⋆/∂q > 0 for γ = 1 and ∂ρ⋆/∂q 
< 0 for γ = − 1.

Concerning the tax rate 𝜃, the sign of ∂ρ⋆/∂𝜃 depends on the value of 𝜃 itself, 
given the utility component y(x) and the values of P and πa. Specifically, for any 
risk-averse agent, the range of values of P and πa for which ∂ρ⋆/∂𝜃 < 0 shrinks (or 
even disappears) as 𝜃 increases (see the I). Therefore, we can say that the higher 𝜃, 
the smaller the region of parameters (P, πa) for which an increase of the tax rate low-
ers ρ⋆. In particular, given the relatively low values taken by the audit probability 
and the penalty rate, ∂ρ⋆/∂𝜃 > 0 is typically verified in real scenarios, even suppos-
ing risk-neutral agents.

Finally, differentiating Eq. (12) with respect to β, at ρ = ρ⋆, one finds

Hence the sign of the derivative is determined by the sign of ΔU|𝜌=𝜌⋆ . Since ρ⋆ 
> 1/2 (< 1/2) when the latter is positive (negative), it means that increasing β – as 

(13)
𝜕(ΔU)

𝜕𝜌

||||𝜌=𝜌⋆
=
[
k(S)s�(𝜌 − 1∕2) + k(Q)𝛾 g�(q − G) G�(1 − 𝜌)

]
𝜌=𝜌⋆

(14)
𝜕𝜌⋆

𝜕a
=

[
𝜕(ΔU)∕𝜕a

𝜅−1 − 𝜕(ΔU)∕𝜕𝜌

]

𝜌=𝜌⋆

(15)
𝜕𝜌⋆

𝜕β
=

1

β

[
ΔU

𝜅−1 − 𝜕(ΔU)∕𝜕𝜌

]

𝜌=𝜌⋆
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expected – enhances the selection pressure in favor of the best-response strategy at 
the equilibrium. Specifically, in the weak selection regime, i.e., when β → 0 , we get 
a simple linear dependence, 𝜕𝜌⋆∕𝜕β → ΔU|𝜌=𝜌⋆∕4 ; while in the strong selection 
regime, β → ∞ , 𝜕𝜌⋆∕𝜕β → 0 because the probability ξ of evading saturates to 1 or 0, 
depending on whether ΔU|𝜌=𝜌⋆ is positive or negative, respectively.

3.3  Results

Some results obtained by solving Eq. (12) are here presented and discussed. Given 
that the monetary parameters are the only ones –at short time scales, at least– to 
be controllable from a realistic policy perspective, we study how the equilibria ρ = 
ρ⋆ are affected by them. In the following, we fix the tax rate at 𝜃 = 0.345 as in the 
flat taxation later described in Section 4.2, so that we can make a proper compari-
son between these results and those obtained for heterogeneous populations. Also, 
the audit probability is fixed to πa = 0.1, which is estimated to be an upper bound 
for many countries (Bernasconi 1998), whereas lower values of πa do not yield any 
qualitative change. Therefore, we study ρ⋆ as a function of the penalty factor, P, and 
of the risk-aversion, λ(Y), which is obviously essential to decide the impact of a pen-
alty, albeit not controllable. This same setting is reproduced for different values of 
the consistency parameter, β. We then take q = 0.5 and η = 1, implying �̃�(q, 𝜂) ≈ 0.62

,and λ(S) = λ(Q) = 2, taken equal to better appreciate the effect of the sign of the feed-
back. Variations of these choices are discussed further on. At last, for the reasons 
explained at the end of Section 2, we focus on populations where the monetary part 
is dominant. Specifically, the weight vector is taken as either k = (4∕6, 1∕6, 1∕6) 
(from now on, denoted as configuration ‘Y+’), in which case the monetary com-
ponent weighs twice the sum of the other two, or k = (1, 0, 0) (denoted as ‘Y1’), 
providing a reference for the classical, limit, scenario of exclusively monetary utility 
maximization, in line with Allingham and Sandmo (1972).

Results are depicted in Figs. 2 and 3, and support the analysis in Section 3.1. As 
we already know, by varying a single variable (i.e., P or λ(Y )), there is always only 
one fixed point in  Y1. In  Y+, instead, the system has one fixed point for negative 

Fig. 2  Stable fixed point ρ = ρ⋆ (color-coded) of the homogeneous mean-field system described by 
Eq. (12), as a function of the risk-aversion, λ(Y), and the penalty factor, P, for a population in the  Y1 con-
figuration, i.e., only accounting for the monetary component. From left to right, the consistency param-
eter, β, is equal to 6, 10 and 20, respectively. Moreover, 𝜃 = 0.345, πa = 0.1 and ρ0 = 0.3. The horizontal, 
grey line denotes P = 𝜃− 1, set as a threshold for values of risk-aversion high enough. For comparison 
with the curves obtained in the  Y+ configuration and those shown after for heterogeneous populations, 
we highlighted the respective results obtained here for λ(Y) ∈{0.5,5.0} by vertical, dashed white lines
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feedback (γ = − 1) almost everywhere and two fixed points for positive feedback (γ 
= 1). Altogether, the surface ρ⋆ ≡ ρ⋆(P,λ(Y )) can change multiple times by varying 
the initial condition ρ0, while it can do it only once at a given point whenever a bi-
stability exists. Specifically, for γ = 1, we show the results for ρ0 = 0.3 and 0.6, while 
for γ = − 1 we show only the case with ρ0 = 0.3, as in this case the system is almost 
insensible to initial conditions. The comparison between Figs. 2 and 3 displays the 
strong impact that even a small contribution coming from the non-monetary utility 
components can have on the proportion of evaders in the population.

The configuration  Y1 stands as a reference to evaluate the effect of non-mone-
tary contributions to the utility. Figure 2 confirms what we learnt from the stability 
analysis in Section 3.1. For agent with small risk-aversion, increased fines have an 
impact as the penalty rate approaches P̃ = 𝜋−1

a
 (here equal to 10). On the other hand, 

for agents with high risk-aversion, compliance (i.e., 1 − ρ⋆) is largely insensible to 
P below the threshold P ≈ 𝜃− 1 (becoming an exact equality in the limit �(Y) → ∞ ), 
while raising abruptly at it. No surprise then, in both cases, if the values of the pen-
alty factor adopted in many countries –typically below 2 (Bernasconi 1998)– turn 
out to be largely ineffective. This is indeed confirmed by the experimental study 

Fig. 3  Stable fixed point ρ = ρ⋆ (color-coded) of the homogeneous mean-field system described by 
Eq.  (12), as a function of the risk-aversion, λ(Y), and the penalty factor, P, for a population in the  Y+ 
configuration, i.e., with weight vector k = (4∕6, 1∕6, 1∕6) . For positive feedback (γ = 1) two solutions are 
shown, one for ρ0 = 0.3 and one for ρ0 = 0.6. For negative feedback (γ = − 1) we used ρ0 = 0.3. Moreover, 
𝜃 = 0.345, πa = 0.1, q = 0.5, η = 1 and λ(S) = λ(Q) = 2. The horizontal, grey line denotes P = 𝜃− 1, working 
as a threshold for values of risk-aversion high enough. For comparison with the curves shown after for 
heterogeneous populations, we highlighted the respective results obtained here for λ(Y) ∈{0.5,5.0} via 
vertical, dashed white lines



811

1 3

Taxation and evasion: a dynamic model  

of Alm et al. (1992)1. Looking at the precise values taken by ρ⋆, we see what we 
expect: indeed, since ΔY > 0 for P sufficiently close to 1, ρ⋆ stays above 1/2 for any 
finite λ(Y), while decreasing with the latter. As a consequence, in the limit of large β, 
ρ⋆ is sharpened towards 1, except for large enough P and λ(Y), for which it converges 
to 0.

For positive feedback (γ = 1), ρ⋆ is sensibly larger or smaller in  Y+ than in  Y1, 
depending on whether both λ(Y) and P are relatively low or high, respectively. How 
much low or high they should be, in turn, depends on the value of β, and we can 
understand this from the previous analysis. Indeed, in  Y1, since ΔU does not depend 
on ρ, increasing β has the sole effect of making ρ⋆ more extreme. On the other hand, 
whenever k ≠ (1, 0, 0) , changing β has the further effect of shifting the repelling 
point separating the two basins of attraction. As a consequence, by increasing the 
latter, we see in Fig. 3 (first two rows) that (i) the threshold curve moves, so that 
some points end up on the other side of it; and (ii) ρ⋆ is sharpened at all points. 
The reason for (i) is to be found in the superposition between the positive feedback 
coming from the quality term and the always positive feedback coming from the 
social one. Indeed, all other conditions being equal, an increased β raises the initial 
effect of the non-monetary terms, which cause the threshold curve to move towards 
lower or upper values of P and λ(Y) depending on whether ρ0 is low or high enough, 
respectively. The comparison with the  Y1 configuration proves that the effect of pen-
alties is overall enhanced by the presence of the non-monetary terms. For β low 
enough, the abrupt drop of ρ⋆ occurs at penalty factors smaller than the threshold 
P̃ = 𝜋−1

a
 holding for  Y1, even in the limit of risk neutrality, whereas for larger λ(Y) 

compliance is always high (see the next paragraph for further comments on this), 
with a small, but sharp decrease at P ≈ 𝜃− 1. By increasing β, due to the shift of the 
threshold curve, in the lower solution (ρ0 = 0.3) ρ⋆ is always very low, and there is 
no point in increasing P; in the upper solution (ρ0 = 0.6) it drops abruptly for high 
enough risk-aversion, provided P is sufficiently close to 𝜃− 1, while it remains very 
high for less risk-averse agents, unless P lies enough above P̃ = 𝜋−1

a
.

We note at this point that for P close or even equal to 1, contrarily to what one 
may expect by relying on the monetary term only, a very high compliance is found 
for wide ranges of the parameters, especially for high initial compliance (e.g., 1 − ρ0 
= 0.7). However, this is not surprising from what has been said above, as a suffi-
ciently small ρ0 makes both the social and the quality term raise the utility of the pay 
strategy enough to make it the preferred one. This is also true, independently of ρ0, 
whenever β and λ(Y) are, respectively, low and high enough. Indeed, by increasing 
λ(Y), ΔY approaches 0 when P is enough close to 1 (precisely, when P < 𝜃− 1 in the 
limit �(Y) → ∞ ), while the contribution from non-monetary terms, even if positive 

1 In this regard, it is crucial to notice that fines are typically imposed, not just on the last unreported 
amount, but on the ones over a certain time frame (as also done in Alm et al. (1992)). Therefore, in order 
to compare such fine policies with a “markovian” one which, as in our model, refers only to the last 
report, a proper rescaling should be considered. As a first approximation, the longer the time frame on 
which the “non-markovian” penalty factor is imposed, the smaller is the corresponding “markovian” one. 
Nevertheless, a precise mapping should consider the “non-markovian”, temporal dimension of an agent’s 
reasoning (Allingham and Sandmo 1972).
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(i.e., towards evasion) for large ρ0, is small, as their weigh is small. Consequently, 
given that β is not large, ρ first decreases towards 0.5 and from there, once smaller 
than ̃𝜌(q, 𝜂 , towards a small ρ⋆ (below 0.5). A convergence to high compliance even 
when the fine does not imply any surcharge could still seem an unrealistic outcome. 
Under the assumptions of the model, this might be used as a criterion to constrain 
the parameters. However, the prediction of the degree of compliance of a population 
is beyond the scope of the present release of the model.

For negative feedback (γ = − 1),  Y+ yields similar results to  Y1. This can be par-
tially understood from the fact that the negative feedback tends to mitigate the final 
ρ⋆ by compensating, to some extent, the positive feedback coming from the social 
term (indeed, such compensation is maximal for �̃�(q, 𝜂) approaching 1/2, as the two 
terms always interfere destructively). Clearly, this is possible as long as the social 
and the quality terms contribute comparably to the utility function (which, given 
k(S) = k(Q), motivates the choice λ(S) = λ(Q)). Still, significant deviations between the 
two cases are seen while increasing β, as the sharp transition curve for high enough 
P (above P ≈ 𝜃− 1, becoming an exact threshold in the limit �(Y) → ∞ ) and λ(Y), set-
tles much more rapidly in  Y+ than in  Y1. In other words, the large β limit is reached 
earlier in the former.

4  Heterogeneous mean‑field populations

In this section we consider populations where agents have heterogeneous character-
istics, while being all connected. Before discussing the results, we adapt the micro-
scopic Markov chain approach (MMCA) introduced by Gómez et al. (2010), which 
is an analytical model that, while preserving the heterogeneities of the agents and 
their (non trivial) social networks —-studied in Section 5—-, has the advantage of 
being much faster to simulate than the corresponding ABM.

4.1  MMCA approach

The model proposed in Section 2 defines a system depending, at each time step, on 
the previous time step only, thus describable as a Markov process. By means of the 
MMCA, we can track –analytically– the probability for agent ai to be a tax evader at 
time t, Pi,t , by the following dynamic equation

with ξi,t given in Eq. (7). The proportion of evaders estimated by agent ai is

while the tax revenue at time t − 1 is given by

(16)Pi,t = Pi,t−1 − Pi,t−1(1 − �i,t) + (1 − Pi,t−1)�i,t = �i,t

(17)�i,t =

∑N

j=1
AijPj,t−1

∑N

j=1
Aij
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Finally, being any agent audited independently with probability πa at each time step, 
the estimate of the audit probability πi,t, made by agent ai at any time t, coincides 
with its expected value, i.e., πa itself. While preserving the local heterogeneities of 
the system, the MCCA assumes the microscopic state variables 

{
Pi,t

}
i=1,…,N

 are 
mutually independent.

4.2  Results

In what follows, we present the numerical results obtained by integrating the 
MMCA according to Eq.  (16) and compare them with the MC simulation results 
of an equivalent agent-based model (ABM). We consider populations of N = 2000 
agents, all mutually connected, whose individual parameters, except their income, 
are drawn from normal distributions. Unless differently specified, we assume the fol-
lowing mean (denoted through a bar, e.g., x̄ ) and standard deviations (indicated as 
σ, e.g., σx) for the various normal distributions: k̄i = (4∕6, 1∕6, 1∕6) ( �k(X) = 0.02 , 
X ∈{Y,S,Q}), q̄ = 0.5 (σq = 0.05), �̄�(S) = �̄�(Q) = 2 ( ��(S) = ��(Q) = 0.1 ). Moreover, as 
before, we take πa = 0.1, η = 1 and βi = 6, ∀i = 1,… ,N . As a proxy for real distribu-
tions, the gross income of agents is drawn from a Pareto distribution with exponent 
α = 1.16 (Arnold (2014)). Clearly, the tax rate, 𝜃i = T(ci)/ci, now generally depends 
on the gross income. Specifically, we consider three different taxation policies (see 
Fig. 4): a flat tax, yielding a constant tax rate –thus allowing us to make a proper 
comparison with the results shown in Section 3 for a homogeneous mean-field popu-
lation; a progressive scheme with three tax brackets; and a continuously progressive 
one, i.e., with a continuously varying tax rate. In order to compare them directly, we 

(18)Tt−1 =

N�

i=1

T(ci)
�
1 − Pi,t−1

�
= N

�
⟨T(ci)⟩ −

�
T(ci)Pi,t−1

��

Fig. 4  The three taxation policies used: flat, bracket progressive and continuously progressive. The plot 
on the left shows the function τ(c), such that τ(c)dc represents the tax rate imposed on the infinitesimal 
interval [c,c + dc] of gross income. The plot on the right shows the cumulative tax rate, T(c)/c, obtained 
from the due tax burden T(c) = cmin�min + ∫ c

cmin
�(c)dc . The vertical dashed lines delimit the three brack-

ets
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take the bracket progressive as a reference and calibrate the others two to ensure the 
same maximal tax revenue (± 0.001%). More precisely, we use:

– flat

  A constant tax rate 𝜃 = 0.345; thus, the tax burden for agent ai is simply T(ci) 
= 𝜃ci;

– bracket progressive

  Three brackets 50% − 25% − 25% with tax rates 0.15, 0.25 and 0.35, respec-
tively;

– continuously progressive

  The tax rate modelled by a logistic function, defined as

with

and

where τmin and τmax are the minimal and maximal tax rates, while σ regu-
lates the position of the inflection point of the curve. Then, agent ai dues a 
tax burden given by T(ci) = cmin�min + ∫ ci

cmin
�(c)dc . The continuously pro-

gressive taxation scheme here used has parameters: τmin = 0.03, τmax = 0.35 
and σ = 7 ×  10− 4.

The used gross income distribution implies that the agents in the last quartile 
–the third bracket– provides about the 99% of the maximal tax revenue, for any 
of the three taxation policies (precisely, the 98.9% for the flat tax, the 99.3% for 
the bracket progressive, and the 99.5% for the continuously progressive). This 
is a first fact to account for when interpreting the results. Moreover, as we know 
from Section  3.1, when the risk-aversion is low enough, the monetary term 
—-hence the probability of evading—- increases or decreases linearly with the 
tax rate, 𝜃i, depending on whether the penalty rate lies below or above P̃ = 1∕𝜋a . 
Taking πa = 0.1 yields P̃ = 10 , which is a higher value than those assumed in 
this section. Even more so by recalling that πa = 0.1 is likely an upper bound 
for realistic audit probabilities (Bernasconi 1998). Therefore, for the considered 
range of penalty rates, a higher gross income always entails a lower compliance 
when the risk-aversion is small. In the opposite scenario of high risk-aversion, as 
shown in Section 3.1, there is a critical value of the penalty at which the mon-
etary term sharply decreases –in turn raising the probability of tax compliance–, 
defined by P𝜃i = 1, which generally depends on the income of agent ai. In any 
progressive taxation, this implies that lower values of the critical penalty are 
associated to higher gross incomes.

(19)�(c) = �1(�2 − e−�c)

(20)�1 = (�max − �min)∕(e
−�cmin − e−�cmax )

(21)�2 = (�maxe
−�cmin − �mine

−�cmax )∕(�max − �min)
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Figure 5 illustrates the obtained results. We used ρ0 = 0.3, which seems to be a 
realistic value for real-world levels of compliance2. Nonetheless, the results persist 
unchanged whenever ρ0 stays below approximately 0.5, which is already an extraor-
dinary level of evasion. Each of MMCA curves, resulting from the integration of 
the system of Eqs. (16), is constructed by connecting 100 points, each showing the 
average (solid line) and the standard error (ribbon) computed over 50 runs. Being 
the MMCA a deterministic approach, the variance in results solely derives from 
redrawing the individual parameters at each run, and not from statistical fluctua-
tions. The MC points represent values averaged over 10 runs, whose standard errors 
are reported as error bars. MMCA and MC always appear to match nicely.

To begin with, we note that, under the flat tax, curves for the final fraction of 
evaders –and consequently for the tax revenue– quantitatively superpose to those 

Fig. 5  Results for heterogeneous mean-field populations in the (average) configuration  Y+ ( �k(X) = 0.02 , 
X ∈{Y,S,Q}), under the three taxation schemes used: flat (left column), bracket progressive (middle col-
umn) and continuously progressive (right column). The first row reports the final fraction of evaders in 
the population as a function of the penalty factor, P. The results from the integration of the MMCA 
equations and from the MC simulations are indicated, respectively, with solid lines and points, whose 
standard errors are denoted by ribbons and error bars. The second row reports the corresponding value 
of the expected proportion of tax revenue, T∕Tmax , as found in the MMCA. Vertical dashed lines indicate 
the thresholds P = 𝜃− 1 and 𝜃 = T(c)/c, only meaningful for �̄�(Y) = 5.0 . In all cases, ��(Y) = 0.1 . Moreover, 
πa = 0.1, q̄ = 0.5 (σq = 0.05), η = 1, �̄�(S) = �̄�(Q) = 2 ( ��(S) = ��(Q) = 0.1 ) and ρ0 = 0.3

2 Following Bernasconi (1998), the percentage of people correctly reporting their incomes is estimated 
to lie between 30% and 60% in different countries. The remaining percentage is estimated to report 
between the 60% and 80% of their income. Taken together, one gets an average degree of compliance 
between approximately 70% and 90%, which can be considered as an effective probability of evasion in 
our simplified “all-or-nothing” model.
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found for the respective homogeneous population (see Fig.  3). This shows that, 
whenever the heterogeneity in the parameters is not large, i.e., whenever it makes 
sense to consider a population as reflecting a certain type of representative agent, 
the homogeneous mean-field model is an excellent approximation. On the other 
hand, while it cannot represent scenarios with variable tax rates, it nonetheless pro-
vides the (quantitative) insights to correctly understand them. In such scenarios, we 
observe phenomena exclusively deriving from the (high) heterogeneity among the 
gross incomes (therefore tax rates) of the agents.

Looking first at the case of low risk-aversion, i.e., �̄�(Y) = 0.5 , we note two dif-
ferences between the progressive policies and the flat tax. For positive feedback (γ 
= 1), the sharp drop in the fraction of evaders occurs at notably lower values of the 
penalty factor; precisely, at P ≈ 3 and P ≈ 2 for bracket and continuously progressive 
schemes, respectively, against a P ≈ 4 found for the flat tax. Although the precise 
value of such critical penalty factors depends on the various parameters and cannot 
be taken as quantitatively indicative for practical purposes, the strong variations seen 
here suggest that penalties substantially lower than expected could suffice to have an 
important impact on compliance. In this regard, as we have shown for homogeneous 
populations, such evidence is out of the scope of approaches based on representative 
agents, where also the gross income is homogeneous (Allingham and Sandmo 1972; 
Bernasconi 1998)3. As already explained for homogeneous populations, the exist-
ence of the sharp transition for all taxation policies stems from the interplay between 
the monetary term and the non-monetary ones: when P is above a critical value, 
the monetary term (which is positive, given that P < P̃ ) is no longer able to com-
pensate the contribution coming from the sum of the other two (which are initially 
negative for ρ0 = 0.3), and the fraction of evaders drops. The smaller the tax rate, 
the smaller the critical P at which this occurs. In light of that, the shift of the transi-
tion towards lower values of the penalty factor is explained by the proportionality 
between the monetary term and the tax rate. As illustrated in Fig. 4, the tax burden 
due by the large majority of agents (approximately the 91%) is smaller in the pro-
gressive schemes than in the flat one. More precisely, the tax burden is less than half 
of the one due with a flat tax for about the 53% of agents in the bracket progressive, 
and for about the 68% in the continuously progressive. As a consequence, there is a 
large fraction of agents with a tax rate (hence a monetary term) substantially smaller 
than the flat tax rate, so that a smaller P is now sufficient to raise their probability of 
compliance and, in a rapid cascade catalyzed by the positive feedback provided by 
both the non-monetary terms, the compliance of almost the entire population. This 

3 By an experimental study, Alm et  al. (1992), conclude that penalties play only a moderate role in 
increasing the average compliance, which is indeed expected given the low fine rates they use. Rather, 
their findings indicate low levels of risk-aversion. Interestingly, in their setup all participants are initially 
endowed with the same amount of tokens and receive similar gross incomes at each round, while the tax 
rate is the same for all of them. It is worth underlying that in the experiment tokens are accumulated over 
turns, which clearly changes the dynamics of the dilemma. Nonetheless, it should be also noticed that the 
fine is imposed not only on the unreported income of the current round, but also on unreported income of 
previous four rounds, thus compensating –to some extent– the accumulation of wealth and, hence, bring-
ing the individual perspective closer to the one considered here.
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is made explicit in the first row of Fig. 6, where the probability for an agent to evade 
(pay) is shown to always increase (decrease) with her gross income, for any pro-
gressive taxation. Said differently, progressive taxation combined with small risk-
aversion let the bulk of agents with a smaller gross income drive the system towards 
higher levels of compliance at lower penalty factors.

Still in the low risk-aversion case, the results for negative feedback (γ = − 1) are 
easily understood from what we just observed. As before, for any fixed penalty, the 
smaller the tax rate for an agent, the higher her compliance (see Fig. 6). Therefore, 
as we see in Fig. 4, the compliance slightly increases passing from the flat tax to 
the bracket progressive, and finally to the continuously progressive. However, as for 
Section 3, the effect of the fine is strongly reduced by the approximate compensation 
between the social and the quality terms, thus explaining the presence of very small 
variations for γ = − 1, independently of the taxation policy.

In the high risk-aversion scenario, i.e., �̄�(Y) = 5.0 , the condition P𝜃i = 1 –defining 
the threshold value of P at which the monetary term sharply decreases for an agent 
with tax rate 𝜃i– makes outcomes found for progressive schemes deviate from the 
ones found for flat tax –or homogeneous populations. In Fig. 5, for the bracket pro-
gressive, we highlighted two particular values of P: the first one is the value at which 
P𝜃i = 1 for the agents of highest income (i.e., in the third bracket); the second one 

Fig. 6  Average probability for an agent to evade, ⟨Pi⟩ , as as a function of her gross income (each bin 
includes 40 agents), ci, for heterogeneous mean-field populations in the (average) configuration  Y+ 
( �k(X) = 0.02 , X ∈{Y,S,Q}), under the three taxation schemes used: flat (left column), bracket progres-
sive (middle column) and continuously progressive (right column). For the bracket progressive taxation, 
the vertical dashed lines denote the values of income separating consecutive brackets, as in Fig. 4. It is 
worth to notice that the line on the right corresponds to the first threshold shown in Fig. 5, while the one 
on the left to the second threshold. In all cases, ��(Y) = 0.1 . Moreover, πa = 0.1, q̄ = 0.5 (σq = 0.05), η = 1, 
�̄�(S) = �̄�(Q) = 2 ( ��(S) = ��(Q) = 0.1 ) and ρ0 = 0.3
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is the value at which P𝜃i = 1 for the agents of highest income in the second bracket. 
Therefore, approaching and overcoming the first threshold, only agents in the third 
bracket initially increase their compliance. As they contribute to the large part of 
the tax revenue, the quality term sharply increases. Then, if the feedback is posi-
tive, the quality term increases the compliance of other agents too; if the feedback 
is negative, it has the opposite effect. This is why the variation of ρ, alongside the 
variation of the tax revenue, is maximal at the first threshold. For negative feedback, 
interestingly, ρ increases with P in a range around the threshold. This is explained 
by the large difference in the proportion between high income agents, for which the 
condition for the threshold is (nearly) satisfied –making them more compliant–, and 
the rest of agents, whose decision is essentially affected by the change in the quality 
term –making them less compliant when γ = − 1. This is illustrated in the second 
row of Fig.  6, where we see that, by increasing P from below the first threshold 
to the second one, the probability of evasion increases or decreases depending on 
whether the agent has a high or low gross income, respectively. The second thresh-
old works analogously. However, since at that point all agents in the third bracket 
have already passed their threshold, the effect on the tax revenue and on the over-
all compliance is already vanished. For this reason, the second threshold is better 
understood as an upper bound on P below which the observed effects are expected. 

Fig. 7  Results for heterogeneous mean-field populations in the (average) configuration  Y+ ( �k(X) = 0.02 , 
X ∈{Y,S,Q}), with two types of agents, half giving positive feedback (γ = 1) and half giving negative 
feedback (γ = − 1). The results are shown for three taxation schemes: flat (left column), bracket progres-
sive (middle column) and continuously progressive (right column). The first row reports the final fraction 
of evaders in the population as a function of the penalty factor, P. The results from the integration of the 
MMCA equations and from the MC simulations are indicated, respectively, with solid lines and points, 
whose standard errors are denoted by ribbons and error bars. The second row reports the corresponding 
value of the expected proportion of tax revenue, T∕Tmax , as found in the MMCA. The vertical dashed 
lines indicate the thresholds P = 𝜃− 1, 𝜃 = T(c)/c, only meaningful for �̄�(Y) = 5.0 . In all cases, ��(Y) = 0.1 . 
Moreover, πa = 0.1, q̄ = 0.5 (σq = 0.05), η = 1, �̄�(S) = �̄�(Q) = 2 ( ��(S) = ��(Q) = 0.1 ) and ρ0 = 0.3
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The results found for the continuously progressive regime emerge from the same 
mechanism. Although clear brackets cannot be distinguished in this case, we see 
from Fig. 4 that the tax rate imposed on high gross incomes is close for the two pro-
gressive schemes. Consequently, as seen in Fig. 5, the first threshold of the bracket 
progressive effectively works for the continuously progressive as well. Nonetheless, 
the small surplus of tax rate in the continuously progressive, makes the change in 
ρ (and the raise in the tax revenue) slightly more marked. On the other hand, being 
the tax rate imposed on low gross incomes substantially lower than in the bracket 
progressive, further increasing P has a weaker effect in the continuously progres-
sive. This explains why at higher penalties the level of compliance decreases passing 
from the latter to the bracket progressive, and then to the flat tax. All in all, we have 
seen that when risk-aversion is high and taxation is progressive, the compliance of 
the system is mainly driven by agents with higher or lower gross income, depending 
on whether the adopted penalty factor is, respectively, close to or larger enough than 
the threshold associated to high gross incomes (and thus high tax rates).

So far, we focused on heterogeneous populations where each of individual 
parameters (except the gross income) is drawn from a normal distribution, taken 
the same for all agents. This allows to study different populations where all agents 
are sufficiently well represented by a typical, “average” agent, whose parameters 
coincide with the population averages. We refer to them as one-type populations. 
Another possibility, allowing for more heterogeneity, is to consider a multi-type 
population by dividing it into sub-populations, each represented by a different type 
of agent (characterised by the means of the respective normal distributions of the 
parameters). Following this line, we started by studying populations with three or 
four different types, distinguished by how they assign weights to the utility com-
ponents. What we found is that, whenever the weight vector averaged over the 
entire population is equal or close to the one of a corresponding one-type popula-
tion, the results almost superpose. For this reason, we do not show them here.

Novel results derive, instead, by considering two-type populations where types differ 
solely for the sign of the feedback (see Fig. 7). In particular, we took half of the popula-
tion with γ = 1 and half with γ = − 1. For the same reasons explained before, for low 
risk-aversion the compliance increases going from the flat tax to the bracket progressive, 
and then to the continuously progressive. The same is true for high risk-aversion when the 
penalty factor is not much higher than the threshold penalty for the third bracket, while 
the reversed order holds for higher penalties. Moreover, we verified that the probability 
of compliance is always higher for positive feedback agents when risk-aversion is high, in 
line with the fact that ρ is always lower for one-type populations with positive feedback 
(see Fig. 5). With low risk-aversion, instead, the sharp transition in ρ is strongly delayed to 
higher penalties (at P ≈ 9.5 for the used setup), and therefore the negative feedback agents 
are the most compliant for any penalty below the critical one, in accordance to what can 
be observed by comparing one-type populations of opposite feedback (see Fig. 5). The 
delay derives from the fact that only half of the agents –those with positive feedback– now 
contribute in favor of the transition. Furthermore, for any P below the critical value for the 
low risk-aversion and positive feedback population, the value of ρ is always intermedi-
ate with respect to the values found for the two one-type populations, although generally 
it is not close to their average value. We note also that the penalty has a stronger impact 



820 A. E. Biondo et al.

1 3

on compliance than it has for one-type populations, given ρ now spans larger ranges of 
values. Additionally, for the progressive policies, the increase of ρ found for the high risk-
aversion and negative feedback population is now suppressed, hence compliance always 
grows when increasing the penalty. Along what we observed for one-type populations, 
this further suggests that penalties may be more effective than expected when the hetero-
geneities of agents are taken into account. At last, we verified that this symmetric two-
type population is not equivalent to a one-type population in which the quality term has 
no weight, as one would expect if the overall contribution of agents with opposite feed-
back compensated. This is the case only when both, G(x) (Eq. (11)) and ξ(x) (Eq. (7)) 
become linear, which only happens in the limits � → 0 and β → 0 , respectively, the latter 
defining however a case of no interest.

5  Heterogeneous structured populations

In this last section, we consider populations where agents, besides having heterogeneous 
characteristics, engage and exchange information in accordance to a certain network of 
acquaintances. To this end, one should note that the dynamics, as defined by Eqs. (5)–(7), 
does not explicitly depend on local network properties of the agents. As a consequence, 
one can expect the sole structure of interactions not to play an essential role. In fact, 
although the very dissimilar networks we used, we found the respective results to gener-
ally superpose. Despite this, the network acquires importance when it translates the exist-
ence of some correlation in the characteristics of agents. Indeed, they estimate both the 
audit probability and the fraction of evaders according to their neighborhood. Therefore, 
if some individual characteristics affect the state of an agent (as seen above in relation to, 
for instance, tax rates and feedback), they also have an indirect effect on the neighbors of 
the agent. While considering non-random policies for the probability of audit is an inter-
esting and easily implemented extension of the presented model, that indirect effect is for 
the moment only conveyed by the social term. In particular, we focus here on how tax 
compliance is affected by a positive correlation (or assortativity) between the incomes 
of acquaintances. In sociology, such a correlation is known as homophily (McPherson 
et al. 2001) and denotes the similarity, as measured in relation to various features, between 
individuals that are socially connected. In particular, both social and spatial segregation 
—-the two being entangled– is well documented to be strongly correlated with income 
and wealth (Reardon and Bischoff (2011) and McPherson et al. (2001) and references 
therein). Verified that the network properties are not a main factor, we present the results 
for a population of N = 2000 agents arranged on the vertices of a two-dimensional grid. 
We consider a one-type population in the same setup as the one used in Section 4.2. To 
study how the income-income correlation affects the results, we induce different levels of 
correlation as measured by the Pearson correlation coefficient4.

4 Following Burgio et  al. (2021), N gross incomes are first drawn from the income distribution and 
assigned at random to the agents. Hence, the correlation coefficient, r, is approximately zero at the begin-
ning. Then, an iterative, greedy algorithm is started. At each iteration, two agents are picked at random 
and their incomes are swapped whenever this leads to an increase of r. The algorithm stops when the 
desired value is attained (± 0.01).
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5.1  Results

Figure  8 nicely illustrates the effect of the correlation on the overall compliance. 
One immediately notices some loss of accuracy of the MMCA, even if it is still 
able to reproduce the qualitative trends of the MC points5. For low risk-aversion and 
positive feedback, the cascade mechanism through which agents with lower gross 
income drive the system to a sharp increase in compliance is weakened by the corre-
lation, which is why we observe the transition to be delayed and slightly smoothed. 
Indeed, that mechanism is based on the social influence that lower income agents 
have on higher income ones. However, increasing the income-income correlation 
makes the network more and more segregated, in turn reducing that influence. For 
negative feedback, as already observed for mean-field populations, the effectiveness 
of this mechanism is largely compensated by the quality term. Nonetheless, due to 
segregation, high income agents have a slightly higher probability of evasion which, 
translating into a lower public goods’ quality, in turn pushes the overall compliance. 
This is indeed what we see in Fig. 8.

Fig. 8  Final fraction of evaders as a function of the penalty factor, P, for heterogeneous populations in 
the (average) configuration  Y+ ( �k(X) = 0.02 , X ∈{Y,S,Q}), arranged in a two-dimensional grid. The 
results are shown for the bracket progressive taxation and three different levels of income-income cor-
relation, as measured by the Pearson correlation coefficient, r. The final fraction of evaders in the popu-
lation is reported as a function of the penalty factor, P. The results from the integration of the MMCA 
equations and from the MC simulations are indicated, respectively, with solid lines and points, whose 
standard errors are denoted by ribbons and error bars. The vertical dashed lines indicate each threshold P 
= 𝜃− 1, 𝜃 = T(c)/c, only meaningful for �̄�(Y) = 5.0 . In all cases, ��(Y) = 0.1 . Moreover, πa = 0.1, q̄ = 0.5 (σq 
= 0.05), η = 1, �̄�(S) = �̄�(Q) = 2 ( ��(S) = ��(Q) = 0.1 ) and ρ0 = 0.3

5 We recall that, in the MMCA, an agent estimates (i) the audit probability as equal to the global value, 
πa = 0.1, and (ii) the proportion of evaders as the average of the probabilities of evasion in her neighbor-
hood, which is therefore a real number. On the contrary, in the MC, (i) the estimation of the audit prob-
ability fluctuates around πa = 0.1 with a large standard deviation of approximately 0.28, given a neigh-
borhood of 5 agents, as in the grid; and (ii) the estimated fraction of evaders can only take rational values 
as n/5, n = 0,… , 5 . Since the discrepancy between MMCA and MC is found even in the case with no 
income-income correlation and for different networks, we conclude that it originates from the combina-
tion of the differences in (i)-(ii) with the various dynamical non-linearities. Consistently, we verified that 
the MMCA approaches the MC when the edge density of the network is increased, for the differences in 
(i)-(ii) tend to vanish the more the network is close to a complete one, i.e., a mean-field scenario.
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For high risk-aversion, since the mechanism through which the high income 
agents drive the system towards increased compliance (for penalty factors below or 
around the threshold associated to the third bracket) is based on the quality term, it 
is mostly unaffected by the network segregation. Indeed, for positive feedback, seg-
regation raises and lowers the compliance probability of, respectively, high and low 
income agents, in comparison with the case of random mixing. Therefore, while the 
quality term increases under the contribution of high income agents, this is compen-
sated by the decrease of the social term as seen by the large majority of the popula-
tion. The overall compliance thus results to be almost insensible to the correlation. 
For negative feedback, instead, since a higher public goods’ quality has the opposite 
effect of lowering compliance, this sum up to the decrease of the social term, even-
tually enhancing the aforementioned mechanism, as seen in Fig. 8.

In the end, social segregation as encoded in an income-income assortativity 
seems to reduce the overall effectiveness of penalties (although compliance is gener-
ally still higher than in the absence of non-monetary terms). Nonetheless, we can-
not exclude that accounting for the correlations induced by other individual features 
could change or even overturn what found here. We want to stress that the pres-
ence of an assortative mixing among agents can importantly affect the dynamics of 
the system whenever the individual behavior is affected by the social structure, as 
already found for other problems as, among others, the adoption of conventions and 
innovations (Nair et al. 2021) and references therein) or the spreading of an epidem-
ics in relation to the adoption of health behavior (Munzert et al. 2021; Burgio et al. 
2021).

6  Conclusions

In this paper we present a new model introducing a unified framework to analyse dif-
ferent elements influencing tax evasion. In particular, we define a generalized utility 
function aimed at providing a description of the tax-evasion problem in terms of 
three components: income, social influence and perceived quality of the public good. 
We considered a behavioral economics perspective, in which optimal strategies are 
chosen according to the corresponding understanding of available information.

Through a stability analysis performed assuming a homogeneous mean-field popula-
tion, where all agents are equivalent and all mutually interacting, we study the dynami-
cal effects produced by all three utility components and their respective parameters. 
Taking the penalty factor as a policy parameter, a first set of results (where only mon-
etary factors are considered) shows how the tax-evasion probability changes as a func-
tion of the risk-aversion: we analytically prove and numerically verify the way in which, 
in agreement with economic literature, the level of risk-aversion determines the value 
of the penalty factor above which evasion ceases to be an optimal strategy. In particular, 
we confirm that, as expected, low values of penalty factors adopted in many countries 
turn out to be largely ineffective. On the other hand, by considering even a small contri-
bution from the non-monetary terms, high levels of tax compliance become accessible 
also at substantially reduced fines. This result is further confirmed for more realistic 
heterogeneous populations, where agents with Pareto distributed incomes and therefore 
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different tax rates are modeled. Both MMCA and Monte Carlo numerical results show 
that, in these cases, the effectiveness of penalties is actually even reinforced, pointing 
out the importance of accounting for such and other heterogeneities among agents. In 
particular, under the action of both social influence and quality assessment, we find that 
a taxation scheme that shifts the tax burden towards the fewer, highest income agents 
—-which provide the largest fraction of the tax revenue—-, while easing it for the 
numerous, lower income ones, is generally more effective in fostering tax compliance.

Finally, considering heterogeneous populations arranged according to a social net-
work reflecting income correlations among peers, we find the previous effect to be 
slightly weakened, although compliance is generally higher than in the sole presence of 
the monetary term (in which case the network has no effect).

Further research is in our agenda for many aspects currently being investigated in 
forthcoming companion papers. First of all, the hypothesis of partial evasion, in which 
the decision is not binary and the citizen may decide to hide a portion of her income 
to the Government. Secondly, the multi-period framework, in which the penalty can 
all previous time steps and not only the current time. Further, this opens the problem 
to a dynamic optimization framework, in which each agent tries to maximize the util-
ity by referring also to future periods. Third, a differentiation among public goods and 
services, to deal with the Governmental choice about their quality and reveal that a 
strategy may optimize the expenditure while trying to reduce evasion. Fourth, the audit 
probability could be differentiated according to the income, thus distributing differently 
in the population the incentives determining the choice about compliance/evasion. 
Finally, further individual features may have a key-role, such as cultural variables, tra-
ditions and customs, which may determine a strong variability of behaviors and induce 
widely diverse assessment of all elements driving the contribution of citizens to public 
goods for the community.

Appendix: Further analysis of the stable equilibria

As shown by Eq. (14), given a stable fixed point ρ = ρ⋆ and a parameter a, the sign 
of ∂ρ⋆/∂a simply coincides with the sign of 𝜕(ΔU)∕𝜕a|𝜌=𝜌⋆ . Here we give the explicit 
expression of the latter for any a ∈ {P, πa, 𝜃, q, c}. For a = P, we get

For a = πa,

For a = 𝜃,

(22)
𝜕(ΔU)
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||||𝜌=𝜌⋆
=
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= −
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2
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]
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,
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and the sign depends on 𝜃 itself, on P and πa, and on y(x). For any risk-averse 
agent, since y�(x) is maximized at x = 0, the region of parameters (P, πa) for which 
∂(ΔU)/∂𝜃 < 0 shrinks (or even disappears) when 𝜃 approaches 1. Specifically, the 
higher is 𝜃, the higher P and πa needs to be to make ∂(ΔU)/∂𝜃 < 0. Therefore, fixed 
P and πa, ∂(ΔU)/∂𝜃 < 0 if 𝜃 is large enough. At last, for a = q, one gets

whose sign follows the feedback, i.e., positive for γ = 1 and negative for γ = − 1.
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