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Abstract

Our current knowledge of particle physics, in particular after the discovery of the
Higgs boson, tells us that our Universe is not sitting in its most stable state, which is
its ground state. Since everything in Nature tends to reach such a state, the Universe
will decay towards it, with inevitable consequences on its very existence. The results
we obtain from the Standard Model tell us that this decay will take place after a time
that is enormously greater than the current age of the Universe. However we also
expect that there is still unknown New Physics that completes our knowledge on the
interactions between fundamental particles, and such physics can have an impact on
the stability of the electroweak vacuum. In particular, several works published in
the last decade have shown that, in a flat spacetime background, this New Physics
could trigger a more rapid decay towards the ground state. In this Ph.D. thesis, the
problem of the stability of the Universe was therefore studied in a more complete
context, i.e. considering also the presence of gravity. Using general models of New
Physics, it has therefore been shown that gravity tends to have a stabilizing effect
on the decay of the electroweak vacuum. Nonetheless, gravity fails to wash out the
effects of the New Physics, so in some situations it would imply a very near decay or
even a decay that should have already occurred. In the latter case, the corresponding
New Physics model must obviously be discarded, as it cannot describe the Universe
we observe. However, it has also been shown that the introduction of a direct
coupling between the Higgs boson and gravity can provide a stabilizing mechanism
that saves the Universe from this decay, as it generates a washing out of the New
Physics effects. Finally, we went on to investigate the problem of the stability of
the electroweak vacuum in two specific New Physics models. First of all, theories of
minimal embeddings of the Standard Model in Supergravity framework have been
studied, showing that in these contexts it is possible to introduce further stabilization
mechanisms through the use of appropriate discrete symmetries. Secondly, this
problem has been studied in the Two Higgs Doublet Model, which is a model that
presents a rich proliferation of vacuum states and particles, and the calculation of
the decay time has been used as an additional discriminant to reduce the space of
the parameters of the theory. However, in the latter case, the study of the stability
of the electroweak vacuum was limited only to the case of flat spacetime, leaving

the inclusion of gravity for future studies.
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Chapter 1

Electroweak theory

The Standard Model is a gauge theory [1-5] based on the symmetry group SU(2);®
U(l)y ® SU(3) that describes three of the fundamental interactions (the electro-
magnetic, weak and strong ones) between the elementary constituents of the matter
(quark and leptons) in terms of the exchange of spin-1 particles that employ the role
of mediators of these interactions. In particular, the electroweak theory, developed in
the 60’s by Weinberg, Salam e Glashow, for the first time provided a unified descrip-
tion of the electromagnetic and weak interactions [6-12|. Successively in the 70’s
the quantum chromodynamics was developed to describe the strong interactions.

However, for symmetry reasons, the theory imposes that all the particles have
to be massless, contrary to what we see from phenomenological evidences. Then we
have to consider a mechanism to give mass to the particles, i.e. the Higgs mechanism,
obtaining the modern formulation of the Standard Model. According to the Higgs
mechanism, additionally to the fields giving rise to particles and interactions, in the
Universe there is a further scalar field to which corresponds the Higgs boson, and via
this field we have a potential that generates a set of infinite minima for the ground
state of the Universe. As we shall see, choosing one of the possible minima, the
symmetry mentioned above is spontaneously broken and the particles acquire mass.
This minimum is called electroweak vacuum.

However, the Standard Model provides also the possibility of a metastable sce-
nario: in fact, considering the quantum corrections due to the interaction of the
Higgs boson with the other particles, the Higgs potential presents a second mini-
mum, whose relative height respect to the electroweak vacuum depends mostly from
the mass of the Higgs boson my and from the mass of the top quark m,. Consider-
ing the precise measurement of these masses, we can see that this minimum is lower
than the electroweak minimum, so that it would decay in the stable minimum of
true vacuum through tunneling effect, while the minimum of false vacuum in which
our Universe currently sits is a metastable minimum. Before delving into the theory
of stability of the electroweak vacuum, we provide a description of the electroweak
sector of the Standard Model.



1.1 Gauge principle and Yang-Mills theory

In the search of a theory that is able to describe the fundamental interactions, the
symmetries characterizing the physical systems play an extremely important role:
for instance, the Lorentz invariance (more in general the invariance under Poincaré
transformations) dictated by the principles of Special Relativity [13-15], permits
to reduce the spectrum of possible interactions between quarks and leptons. The
symmetry principle that allows to determine the correct form of the interaction
between elementary particles is the gauge principle [8, 9, 13, 16]. According to this
principle, given a physical system described by a lagrangian having a global internal
symmetry (associated with a given symmetry group), the correct expression of the
interaction is the one obtained imposing that the internal symmetry characterizing
the lagrangian is also a local symmetry.

This can be implemented introducing a number of gauge fields commensurate
to the number of generators of the symmetry group of the lagrangian, and then
properly modifying the derivatives of the fields in such a way that they transform
as the fields themselves. Thus we obtain in the lagrangian an additive term that
describes correctly the minimal interaction between the fields of matter and that
is written as the product of the introduced gauge fields and the Noether current
associated to the global internal symmetry of the starting lagrangian.

In 1954 Yang and Mills propose a generalization of the gauge principle, until
then used to obtain QED that is a gauge theory based on the group symmetry
U(1), characteristic of the electromagnetic interaction, in such a way to apply it to
non-abelian gauge theories. The Yang-Mills theory |7, 8, 10, 11, 13| was then used
in the 60’s to formulate the electroweak theory and afterwards, around 1974, for the

development of the field theory of strong interactions.

1.2 Introduction to electroweak theory

The fermions of the Standard Model, i.e. quarks and leptons [17-21], can be orga-

nized into three families
<V€> (U“ ) (VT) Leptons
e 1 T
t
<b> Quark (1.1)

In particular, the phenomenology allows us to assert that the leptonic doublets be-
longing to the different families are identical from the point of view of the interaction
and they differ only for the masses. The same discussion is valid for the quarks dou-

blets. For instance, the muon p and the tauon 7 are exact copies of the electron
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e from the point of view of quantum numbers, but respect to the latter they have
much more larger masses.

The charged leptons and the quarks are massive particles of 1/2-spin, and then
can be described via Dirac fields [13]. We know that a generic Dirac field ¢(z)
can be written, using chirality projection operators, as a sum of Dirac fields purely
left-handed and right-handed:

9@) = =500 (e) + 5 (w) = Yula) + Yala). (1.2

In the case of neutral leptons we can not use the same representation because (despite
of the fact the last experiments on the neutrinos oscillations have shown that these
particles have a mass [22]) the neutrinos and the antineutrinos are described in the
Standard Model as massless fermions, and then have to be described by left-handed
and right-handed Weyl spinors respectively. Thus in the case of the neutrino we can
do the identification

1—

() = ¥y (@) = =5 (). (1.3)

The electroweak theory is a gauge theory based on the symmetry group SU(2); ®

U(1)y, that is the group associated to the internal symmetries of weak isospin and
of weak hypercharge. To understand the way in which this theory is constructed
we have to introduce some phenomenological observations that allow to determine
the properties and the symmetries characterizing the weak and electromagnetic in-
teractions [23-25|, and that allow to build the modern wunified field theory of the

electroweak interactions:

e The W*, W™ and Z° bosons are massive particles of 1-spin;

e The interactions between quarks and leptons that take place through the ex-
change of the W* bosons, that are the weak interactions with charged currents,

show the following properties:

— only the left-handed fermions and the right-handed antifermions couple
to the vector bosons W' and W™, i.e. the weak interaction does not
preserve parity;

— the W™ bosons couples only to left-handed (right-handed) fermions (an-

tifermions) belonging to the same doublet;

— the partners of quark up, charm and top in the weak isospin doublets are

linear combinations of quark down, strange and bottom;

— all the fermionic doublets couple to the W* bosons with the same cou-

pling constant.

e The interactions between quarks and leptons that take place through the ex-
change of the Z° boson or through the exchange of a photon, i.e. the weak

interactions with neutral current, present the following characteristics:
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— all the interaction vertices preserve the flavour;

— the electromagnetic interactions depend by the electric charge that de-
fines in a unique way the coupling, so that the neutral leptons, i.e. the

neutrinos, can interact only through weak interactions;

— the electromagnetic interaction preserves parity, so that the photons cou-
ple to left-handed fermions and to the corresponding right-handed an-

tifermions in the same way;

— the Z° boson couples to fermions in different way depending on the chi-

rality.

Starting from these observations, since the fields that describe the interacting
particles constitute, from the point of view of group theory [13|, the base for a
representation of the symmetry group characterizing the electroweak interactions,
is possible to determine the symmetry group itself. In quantum electrodynamics
the electromagnetic interaction between quarks and leptons [16] is described by the
interaction lagrangian

Lep = q Y(@)y"b(x) A, (x), (1.4)
i.e. as said above, the interaction is described in terms of a gauge field A,(x) and
the Noether current J,(z) associated to the global internal symmetry U(1) of the
Dirac lagrangian that describes free quarks and leptons. The density lagrangian
that describes the weak interaction between leptons can be built similarly, con-
sidering that the possible leptonic charged current have to be consistent with the

phenomenological properties: then we deduce that the form of these current is of
the kind

= 30ty o) = 540 (]1 75)w,,f<> (1.5)

Zzu,,f D)k (o me (]l ”5>wf<> (1.6)

where Egs. (1.5) and (1.6) are written, for s1mp11(:1ty7 only for the leptons and the

sum over f denotes a sum over the flavours. It is worth to note that the charged
currents are written in terms of the difference of a vectorial current and an assial
one (pseudovectorial) and this defines the so called V-A structure of the weak inter-
actions. As said, since the W* boson couples to left-handed fermions belonging to

the same doublets, it is useful to define relatively to a given flavour family the Dirac

field doublet:
Wh(z) - <¢”f( )> . (17)

by ()
Then the charged currents introduced in the Egs. (1.5) and (1.6) can be written as
= 2 \I/]Lc(a:)%aﬂlf?(x) : (1.8)
f
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Ti(x) = > Uf ()0 (), (1.9)
!

where we have introduced the matrices o = %(01 +i0y) built with the Pauli matri-
ces 0y e 0. Having carried out these considerations, the currents J,(z) e JZ(:I:) can
be interpreted as the Noether currents associated to a symmetry of the lagrangian:
since they are written in terms of Dirac field doublets and of combinations of the
Pauli matrices, that are the generators of the group SU(2) in its fundamental rep-
resentation, we can hypothesize that the symmetry group that characterizes the
electroweak interactions is precisely the group SU(2),, where the index L refers to
the fact that the weak interaction does not distinguish the particles constituting the
left-handed doublets, and then the symmetry is referred to the invariance under ro-
tations in the internal space of the left-handed doublets. Thus we suppose that the
introduced doublets constitute the basic fields for the fundamental representation

of SU(2)p.
It is worth to note that the conserved Noether current associated to the third

generator of SU(2), i.e. the Pauli matrix o3, is given by
Z\Iff 27,0395 (). (1.10)

However, the current given by Eq. (1.10) does not coincide with the electromagnetic
current introduced in Eq. (1.4), and thus the corresponding gauge field to which it
would be coupled can not be interpreted as the photon field. The most simple way
to introduce the electromagnetic field in the theory is to generalize the symmetry

group through an abelian symmetry group
SU2), — SU2),®@U(1)y

At this point, we can proceed with the actual construction of the electroweak
theory: for simplicity of notation, we suppose to have only a lepton family and that
these are massless. The generalization to the case of more families and the inclusion
of the quarks families is trivial, while to consider the fermion masses we have to

introduce the Higgs mechanism. Denoting

()
the lagrangian describing the free leptons is a Dirac lagrangian that, in terms of the
fields in Eq. (1.11), is written as

2 )"0,V (x)

ZIEVI () M,ﬂ/hl (z) + il (z)7" a,ﬂﬁl (z)
+ iy (2)7" 0,0 (x) + i (2)7" 0,47 (x)
()7 0yt () + (2 O () (1.12)

Uy () = (¢”l<x>> Uy(z) =) (x)  Ty(z) = (2), (1.11)
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The free lagrangian of Eq. (1.12) has a global internal symmetry associated with the
transformations of the group G = SU(2);, ® U(1)y, that is the set of simultaneous

global transformations of the spinors:

U(a) L W) = exp(ViB)exp (i5a’) Wi(a) (1.13)
Uy(z) 5 Wh(a) = exp (iVy) Uy(x) (1.14)
Uy(z) S Wy(r) = exp (1Y) y(x) (1.15)

where the parameters a = (ay, @y, 3) and [ are the variables that define the par-

ticular transformation of the group G. The generic phase transformation
U, = exp (2%04) U, € SU2), (1.16)

identifies a rotation in the internal space of the doublets of SU(2), that is the reason
for which under the transformations of the group G it acts only on the doublets
U, (x). The scalar Y; is a quantum number that characterize a given field ¥;(z), and
it is known that as weak hypercharge because, similarly to the case of the electric
charge, this quantum number is the conserved Noether charge associated to the
symmetry U(1)y of the weak interaction.

Having determined the symmetry group characterizing the electroweak interac-
tions, according to the gauge principle we have to impose that the lagrangian £,
given in Eq. (1.12) is invariant under the local transformation of the group symmetry
G. To implement this, as we know, we have to introduce a number of gauge field
commensurate to the number of the generators of the group G, and substitute to
the usual derivatives the corresponding covariant derivatives |7, 16, defined through

the introduced gauge fields:

D“\III(x) = [(3M + igWH(x) + ig’YlBu(a:)] U, (z) (1.17)
D, Vy(z) = |0, +ig'YoB,(z)]| Uy(x) (1.18)
D, Vs(z) = [0, +ig'Y3B,(2)] ¥3(x) (1.19)

where the coupling constant g and ¢' associated to the groups SU(2) and U(1)

respectively are introduced, and we denote

W, (z) = % W (z). (1.20)

m

To be the symmetry defined from the group G a local symmetry, it must occur that
after the transformation U; of the spinor ¥;(x) the covariant derivative D,V ;(x) is

transformed as W, (z):

U.(x) 5 U (x) A DW(x) S UD,V,(x). (1.21)

0



The condition introduced in Eq. (1.21) impose, for the gauge field B, (z) and Wu(a:),

the following transformation laws [6, 7, 10]

Byz) % Bl(x)=B,)- ; 2,8(2) (1.22)
Wu(x) 9, W[L(:c) = UL(:L')W“(:L')Uz(a:) + é [aHUL(f)] U,t(a:) (1.23)

Substituting the covariant derivative defined in Egs. (1.17), (1.18) and (1.19) to the

usual derivative in the lagrangian L, we obtain the lagrangian
3
Z 7D, W, ()
B 3
= Wy (2)y" [0, + igW,] Z “0, +ig'V;B, | W;(x).  (1.24)

To complete the lagrangian we have to insert the kinetic terms relative to the intro-
duced gauge fields. To this end we define, according to the general prescription of
the Yang-Mills theory, the tensors [6-8|:

B,, = 8,B,—0,B,, (1.25)

uv

Wi, = 0,Wy — o,We — gf** W, Wy (1.26)

Then the lagrangian that describes the free fields is:

3
Ly 2 I ou;(x) — 4BWB’“W - —W“ W (1.27)

The interaction between the free fields is described by the interaction lagrangian:
— — 3 p—
Lot = =g W1 @)y W, (2) ¥y (2) — g'B,(x) D Y;0,(0)7" Wy (). (1.28)
j=1

In particular, using Eq. (1.20), we have
| w3 Wl —iw? 1 w? 2 Wi
We=735 I ! 13 =5 . V2 ! (1.29)
2 W, + W), -W, 2
where we have introduced the bosonic field

(x) = 7 ) (1.30)

Then, we obtain

\IJWHW vy

G WluE + G Wh h S (Wi — Wi (131

a|~
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Since the weak interaction involving the charge currents provides the coupling of the
charged bosons W7 with the left-handed fermions belonging to the same doublets,
we can identify the field W, and his adjoint Wg as the bosonic fields of the vector
bosons W and W™ respectively, and then extrapolate for the interaction lagrangian

(1.28) the part that describes the weak coupling for the charged currents:
. 9 7L T L 9 L © L
Loc=—"F= W - W
cc \fwul (I)’}/ uwl ('T) ﬁwl (x>7 ,u,wul (Q?)
= —5 g Whbu (7" (L= 5)tu(a) = ST W@y (1= 95 (@) (132)

The remaining part of the interaction lagrangian (1.28) describes the weak inter-
actions with neutral currents, then the gauge fields ij(:c) and B, (x) have to be
related to the fields describing the bosons Z° and ~. However, it is worth to note
that the gauge field B,,(x), associated to the generator of the group U(1)y, can not
be directly identified with the photon. In fact: i) the electromagnetic field cou-
ples with the left-handed and right-handed fermions in the same way, so that from
Eq. (1.28) follows from the weak hypercharge Y; have to be equal between them; ii)
if we want to identify B, with the photonic field and then if we want to identify
the second term of Eq.(1.28) with the interaction term of QED, then we have to
impose that the constant factor of this term is the electric charge of the fermion. In

conclusion, we have to impose the conditions:
Vi=Y,=Y; ¢V;=Q; Vj.

Such conditions can not be satisfied at the same time, since the particles of the
fermionic doublet would have the same electric charge. To remedy the problem, we
introduce two vectorial field A,(z) and Z,(z) such that

Wi _ [ cosb, sind, Z, (1.33)
B, B —sinf, cosb, A, ’ '

where the introduced angle 6, is known as Weinberg angle or electroweak mixing
angle, because the vectorial fields W}, (z) and B, () are related to the fields A4, ()
and Z,(z) through of a rotation of an angle equal to an half of the Weinberg angle.

The lagrangian describing the weak coupling with neutral currents, is then given by

—S0, (2)y" 030, (z)W, (z) — ¢'B, ZY\P 2)y" ()

Jj=1

—gsin 0,V ()" =2, (x) — ¢' cos b, Z U, ()Y, 0, (x)} A, ()

Lyc =

N)IQ

{ gcos 0,9, (z )’y“%\lll(x) +4d Sinﬁwz \Ifj(x)'y“Yj\Ifj(x)} Z,(x). (1.34)
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At this point using the Gell-Mann relation |7, 18, 23]
93

we can identify the field A,(x) with the field that describes the photon if we impose
gsinf, = ¢ cosf, = e. (1.36)

The relation (1.36) relates, through the Weinberg angle, the coupling constant of the
weak and electromagnetic interactions, and thus states the electroweak unification.

Using the aforementioned relation, we have:
Lyne =Ly + Lqoep

i.e. the electroweak interaction lagrangian with neutral current has contributions

from the interaction terms

Lopp = —eA, () 2 Q; ¥, (x)V" () (1.37)

Ly = _mzﬂ(@ Wuﬂﬂ (v, — a,7s) @/)yl + &ﬁ“ (v, — ayys) @Dz] (1.38)
where we have introduced the axial and vectorial coupling coefficients that depend
from the Weinberg angle 6, and, for a given Dirac field ¢(x), from the eigenvalues
t; of the third component of the isospin operator T; related to the eigenfunction
()

a =ty v =ty —2Qsin’0,, . (1.39)
The presence of such coefficients in Eq. (1.38) denotes, as just observed, that the Z 0
boson is coupled both to left-handed and to right-handed fermions, but with different
weights. For instance, in the case of the neutrino @, = 0 = a, = v, = 1/2, and then
the neutrino interaction with Z° can occur only through its left-handed component.
Moreover, having no charge, a possible right-handed component of the neutrino
can not interact with other particles not even through electromagnetic interaction.
Finally, using Egs. (1.25), (1.26), (1.30), (1.33) and (1.36), we obtain the Yang-Mills
lagrangian which describes the free gauge fields and their self-interactions:
1 1

Ly = —ZBWB“” — ZW;‘WWiW
1 v 1 v 1 v — v
= =3 FwF" = 32,2 = 1 (W, W + W, W)

+ie (WH,WHEA” — W, WEA” + F,,WEWY)

+iecot b, (WA W'Z" — W WEZY + Z, WEWY)

— e cot 0, (2W, WHZ, A" — W, Z'" W, A” — W, A'W, Z")
—e* (W, WEA,AY — W, AW, AY)

—e*cot®,, (W, WHZ,2" — W, Z'W,F Z")

2
e

 25in? 0,

(W, WEW, WY + W, WEW, WY | (1.40)
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where we have defined the fields W, (z) = W, (z) and W, (z) = WJ(;B), and we have

introduced the tensors
F,, = @AV — é’,,Au, WJ, = @LW; - é’,,VV;r ,
Ly = é‘#Z,, - é’l,Z#, W, = ﬁuW,,_ - d,Wu_ )

This lagrangian, as prescribed from the Yang-Mills theory for the system with non-
abelian symmetry, contains self-interaction terms between the fields of the gauge
theory, i.e. the symmetry group SU(2) ® U(1) does not give rise to any vertex
with only the photon and Z° boson fields. The Yang-Mills lagrangian obtained in
Eq. (1.40) describes the free gauge fields, but it presents a problem: gauge bosons
that emerge from the theory are massless, since there are no terms of the kind
m2AZAZ . As is well known, the photon is a massless particle, but the W= and Z°
bosons, on the contrary, are extremely massive. However, the mass terms can not
be directly added in the Yang-Mills lagrangian, since we would have an explicitly
break of the gauge symmetry that we impose. Similarly, we can not consider an

explicit fermionic mass term:

L, =—mp = —m(rbg + riy) .

Such a term is not allowed as it would break the chiral symmetry, reason for which
we have supposed in the free lagrangian (1.12) that the fermions are massless. The

solution to the mass problem lies in the Higgs mechanism [6-11, 26, 27].

1.3 The Higgs mechanism

1.3.1 Spontaneous breaking of the symmetry and Goldstone

theorem

To understand how the gauge bosons acquires mass we have to introduce the spon-
taneous symmetry breaking. To this end we analyze the physical system described
by a lagrangian that involves a set of IV real scalar fields (from now on, if not strictly

needed, we will use the convention to imply the sum over repeated Roman indices):

1 1 A
L= 50,0:0" 0y — miel = 5 (67)" . (L.41)

This lagrangian has a continuous symmetry associated with the group O(N), i.e. it

is invariant under rotations in the hyperplane (¢, ..., ¢x):

Qsi_)gb;:Rijgbj Re O(N).

We analyze the potential:

V(o) = gmet+ 5 (7). (1.42)



To study the stationary points of the potential V' (¢) and establish what is the
absolute minimum, i.e. the ground state of the system, it is necessary to distinguish

two cases:
e m” > 0: in this case the potential has a single minimum in ® = (0,0, ...,0).

e m? < 0: if this condition is implemented, the potential V(¢) has a maximum
in ® = (0,0, ...,0), while the minima of the potential are given by the equation
2

v 2 d 2 al 2 m
agb':gbi m* + 1Y ¢ | =0 . Z@.:—T. (1.43)
t j=1 i=1

This relation describes a ring of minima in the hyperplane (¢4, ..., ¢y), and

then shows that the ground state of the system is degenerate, i.e. there are
infinite configurations that minimize the potential: the choice of one of this
configurations give rise to a spontaneous symmetry breaking (SSB), as the
symmetry characterizing the lagrangian is not shared by the lowest energy

state.

However, Eq. (1.43) determines only the length of the vector ®, which identifies
the minimum, but its direction is arbitrary. Conventionally, we choose the minimum
so that it points to the N-th direction:

o, = (0,0,...,0,v) V=A/——. (1.44)

Then we define o(x) and 7, (z) expanding the field ®(z) = (¢4 (z), ..., ¢y (z)) around
the minimum (1.44), i.e. they are the fields measuring the deviations of ®(x) respect

to the equilibrium ground state configuration ®(z) = ®,:
O(z) = (mi(z), mo(2), ..., 1 (x),v + o(z)) . (1.45)
Substituting in Eq. (1.41) we obtain

1 1 1
L= ééﬂﬂk(x)a“wk(:v) + 58#0(@8“0(3:) - 5(—2m2)02(:c) —V=Am?c?(x)
/ 2_2 A 4 A 2 A 4

— —Im i (z)o(x) + 1° (x) + Eﬂk(x)a (x) + Zﬂ'k(l') , (1.46)
where we have omitted constant term which is irrelevant. The Egs. (1.41) and (1.46)
are the same lagrangian density expressed in terms of different variables. Thus they

are entirely equivalent and must lead to the same physical results.
Since by definition there are no particles in the vacuum, from Egs. (1.44) and

(1.45) we have that the vacuum expectation value (vev) of the field ®(x) is given by:
0]2]0) = |Py| = v. (1.47)
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This is the condition for spontaneous symmetry breaking in the quantized theory,
analogous to Eq. (1.44) in the classical theory.

In Eq. (1.46) we have obtained a theory with a massive field o(z) and N — 1
massless fields: the O(NN) symmetry is broken and the new lagrangian has a residual
O(N —1) symmetry. The massive field o(z) is associated to the radial oscillations of
the field ®(x) around the minimum @, (oscillations of the field along the direction
in which the potential has non-zero second derivative), while the other N — 1 fields
describe the tangential oscillations (oscillations that occur along the set of directions
corresponding to a zero second derivative of the potential). These latter oscillations
occur along the ring of minima, that is along the N — 1-dimensional hypersurface
where all the directions are equivalent: this correspond to the existence of the O(N —
1) residual symmetry. It is worth to note that the difference between the number of
initial and final independent continuous symmetries, i.e. the number of continuous
symmetry spontaneously broken, is equal to N — 1 and then is equal to the number
of massless fields m,(z). The appearance of massless particles in presence of the
spontaneous breaking of a set of continuous symmetries is a general result known
as Goldstone theorem [6-8, 28-30]: for each continuous symmetry spontaneously
broken, the theory must predict a massless particle. The massless particles that

emerge due to the SSB are known as Goldstone bosons.

1.3.2 Higgs mechanism. Spontaneous symmetry breaking of

symmetry in the electroweak theory

The possibility to assign to the gauge bosons a mass term is related to the Higgs
mechanism, which is originated by spontaneous symmetry breaking (SSB) of a sys-
tem with a gauge symmetry [6-8]. In order to illustrate such a mechanism, we
consider the general case of a physical system described by a set of N real scalar
fields, whose lagrangian is characterized by a non-abelian symmetry gauge. Then

the lagrangian is invariant under the fields transformations
¢ - (]l - iaata)ij¢j

where the parameter o, are the variables defining the transformation itself and ¢“
are the group generators of the lagrangian symmetry. In a Yang-Mills theory, the
gauge principle impose that the global internal symmetry of the lagrangian is also
a local symmetry. To this end we introduce the gauge fields A}, and we perform the

usual substitution
,® — D,®=(0,+gT"A,)P b = (p1,...,0n) (1.48)
where we have posed T = —it”. Then, the kinetic term of the lagrangian becomes:
1 2 1 w a o i 1 2 qa Ap b £\
5(Dudi)” = 50,0:0" ¢ + g4, ("o:Ta ¢;) + 59 Ay (1.2),(T72)".  (1.49)
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If the vev @, = (0|P|0) of the field ¢ (that we remember is the classical value of the
field minimizing the potential) is different from zero, then the ground state of the
system is degenerate and to study the theory we have to choose a minimum of the

potential and then study the oscillations around this minimum
O(z) = Dy + n(x). (1.50)

In particular the last term in Eq. (1.49) is quadratic in the gauge fields, then sub-
stituting Eq. (1.50) we obtain a sum of terms with the structure of mass terms for

the gauge bosons:

AL = %mzb[A“(x)]a[Au(@]b My = g7 (T,0);(Ty,)" . (1.51)

The terms m,, define the mass matrix, whose elements in the diagonal part are
positive semi-definite
m2 = ¢*(T,®y)> = 0. (1.52)

Once fixed a, the quantity m> appears in the new lagrangian as a multiplicative fac-
tor in the term quadratic in the gauge field A () that corresponds to the generator
T“, and then m, can be interpreted as the mass of the gauge boson A7 (). This
latter result summarize the Higgs mechanism |26, 27|. Finally, it is worth to note
that in general the Higgs mechanism is such that all the gauge bosons of the theory
acquires a mass, but if one of the generators 7' of the symmetry group leaves the

ground state unchanged, then

that is the gauge boson corresponding to the generator T remains massless. Start-
ing from these general results, we see how to apply the Higgs mechanism to the
electroweak theory, in such a way to obtain mass terms for the gauge bosons that
mediate the weak interaction, and then the correct description of the Weinberg,
Salam and Glashow theory [26, 27, 31-33|.

We introduce in the electroweak interaction the new term
L= (D) (D"®)-V(®) V() =m’0'D+ \(D'D)*. (1.54)

Since we want to break the SU(2) symmetry, the field ®(z) in Eq. (1.54) is a doublet

of complex scalar fields:
¢+
o = <¢0> . (1.55)

If we assign hypercharge Y = 1/2 to the field ®(z), then it follows from Eq. (1.35)
that the lower component ¢” is a neutral complex scalar field, while the upper
component ¢ is a charged complex scalar field. The scalar lagrangian £ introduced

in Eq. (1.54) is by construction invariant for gauge transformation associated to the
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group symmetry SU(2)®U (1) and in particular a possible choice for the generators
of this group is:
1-— O3 1+ O3

01 09 9 5 .

Minimizing the potential V(®) respect to the doublet ® we obtain the condition

2
m

(012[0)* = @)@ = 6" + |o"* = - (1.56)
This relation defines a set of infinitely many minimum states and, taking into account
the physics request that the vacuum charge is zero, Eq. (1.56) can be written in terms

of two conditions for the complex scalars fields that constitute the doublets ®:

N

2
op__m_ v
6" = _

o 0"> =0. (1.57)

In order to study the theory, we carry the following choice of vacuum state

1 (0
2= 7 <U> , (1.58)

so that the SSB occurs only in the electrically neutral component of the field ®(x),
and charge conservation holds exactly. In general, ®; in (1.58) is not invariant under
SU(2)®U (1) gauge transformations, but it is invariant under U(1) electromagnetic
gauge transformations, in order to ensure zero mass for the photon and conservation
of the electric charge.

]1—0'3

5+ if applied

We observe that a linear combination of the generators o, o5,
to the chosen minimum state ®, gives a contribution different from zero, while the

action of the remaining generator on ®, gives zero contribution

Tdy#0  if T = aoy + boy + 152
Td,=0 if T =175

As we have seen, this implies that the theory has three massive gauge boson and
a massless gauge boson. Having made these observations, we have to proceed with
the determination of the masses of the gauge bosons W* and Z°: to this end, it
is necessary to study the oscillations of the field ®(x) around the chosen minimum
state @ in (1.58)

1 0 O i
(@)= 5 (U N H@)) exp {139 (:g)} (1.59)

where the new scalar field H(z) is the Higgs field. To study the oscillations H(x)
around @, the expression in Eq.(1.59) have to be substituted in the lagrangian

in Eq. (1.54) and, to this end, is useful to carry out the gauge choice fixed by the
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condition 0(x) = 0, called unitary gauge. We start with the study of the kinetic term
of the lagrangian: the covariant derivative D,® in Eq. (1.54) is constructed through
the gauge fields W; and B, associated to the symmetry group SU(2) ® U(1) of the
lagrangian
. O C
D, = {(]12X2)au +ig W+ zg'Y(bBu} o (1.60)

where we have introduced the hypercharge matrix Yy that is a diagonal matrix,

whose eigenvalues are the hypercharges associated to the complex scalar fields ¢

and ¢"
. Y. 0 1{1 0
A _ = , 1.61
® ( 0 Y¢o) 2 (0 1) (1.61)

The covariant derivative, written in terms of the doublet ® in Eq. (1.59) and of the
fields W: =W, and W, = WJ, becomes

1 0 i gVv2W,/ ()
D, ®(x) = 7 (%H(:L’)) + S5 [v+ H(z)] (ngM(a:) B gWﬁ(x)) : (1.62)

Correspondingly, the kinetic term of the scalar lagrangian becomes
1 1 1
(D"®)'(D,®) = §6MH6“H + Z(v + H)? {gQWJWE + 5(gw,f’ — g’BM)Q} . (1.63)

Then, using the electroweak unification relation in Eq. (1.36), and the relation defin-
ing the photon and Z° boson fields in Eq. (1.33), we obtain
EF )T 1 a H L, 2 +1i7M 1 H

2cos” 0,

Thus the mass terms for the gauge bosons come from the kinetic part (D" @)T(DHCI))

of the lagrangian in Eq. (1.54), and in particular we obtain:

1 , v
W= SO FWh — = = (1.65)
A, = sin, W, + cos,B, o m., =0, (1.66)
gu

3 .
Z, = cost,W, —sin6,B, —

M7= 9 cos 0,
It is worth to note as Egs. (1.65) and (1.67) put in evidence that the masses of the

W and Z° bosons are related:
1
My = My cos b, = 59 (1.68)

Measuring the masses of the electroweak interaction mediators bosons is then pos-
sible to determine the vacuum expectation value v of the field ®, and it results to be
v ~ 246 GeV. Having analyzed the kinetic term, we can now study the Higgs poten-
tial, that is obtained expanding the potential V' (®) that appears in the lagrangian

(1.54) around its minimum P:
1 A
V(®) = m*®'d + \(0Td)* = 5m2 [v+ H(z)]” + T+ Hx)]" =
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V(®) = V(®) + %mzfﬂ + \H? + %H‘* (1.69)
where V(®) = %v4 is the value of the potential corresponding of its minimum @,
and m3 = 2\v” is the mass of the Higgs boson. We observe that the theory does
not provides any prediction of the Higgs boson mass, but only on the scale of the
SSB v, that is related to the Fermi constant. Taking into account Egs. (1.64) and
(1.69), the scalar lagrangian can be written as £ = —\/4 v* + L + Loy, where L
is the total lagrangian of the Higgs field, while L4y is the lagrangian that describes
the coupling of the Higgs boson with the gauge bosons, and then contains the mass
terms of the W™* and Z° bosons generated from the Higgs mechanism:

1 I 50 ml%l 3 qu 4

2

(%

'CH:

Loy = my W, W {1 + %H + %[ﬁ} + %mQZZMZ“ {1 + H+ %fﬂ} . (171)
We observe that the interaction with the Higgs have the characteristic of being
proportional to the square of the coupled gauge bosons mass. In particular, from
Egs. (1.70) and (1.71) we obtain the Higgs boson self-interaction vertices and the
interaction vertices for the coupling with the W and Z gauge bosons that are used
in the computation of the Feynman diagrams.

The last property that we have to develop is the introduction of a mechanism
that gives mass to fermions: we add to the electroweak lagrangian a Yukawa term
in which there is a coupling of the fermionic spinors with the Higgs doublet. If we
consider only a family of quark and a leptonic family, we can write this lagrangian
as:

o (o o ¢"
‘CY = —Cl(a,d)L 0 dR—CZ(ﬁ,d)L _ U/R—Cg(ﬂ,é)L 0 €R+h.C. (172)
¢ —¢ ¢
where in the second term is present the C-conjugated field to the Higgs scalar
doublet, ®° = i0,®*. In the unitary gauge, after the SSB, this lagrangian assumes
the simplest form

1 _
Ly = —75(1) + H) {c,dd + cytiu + czee} . (1.73)

Then we note that the SSB generates also the fermion masses:

v v v
mg = Ci—= m, = Co—= me = 037.
2

V2 V2

Since we does not know the parameters ¢;, the values of the fermionic masses remain

(1.74)

arbitrary. Moreover, from Eq. (1.73), we can obtain the interaction vertices of the
coupling between the Higgs boson and fermions.
In Eq. (1.72) it could be present a term for the neutrinos similar to the second

term, that however we do not add in the Yukawa lagrangian because in the Standard
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Model the neutrinos are described as massless particles: the presence of such a term,
in fact, would produce a coupling of neutrinos with the Higgs field and then the
generation of a mass term. From the lagrangian (1.73) we note that the coupling of
the Higgs field with fermions depends by the masses of these latter and, in particular,
is linear in my. Finally, when we consider the other fermionic generations, in the
case of quarks we have to consider also the flavour mixing, described by the Cabibbo-
Kobayashi-Maskawa (CKM) matrix, due to the fact that the mass eigenstates do not
coincide with the weak ones: in conclusion, this generates an electroweak current
that provide decays of the quarks between flavours via W= bosons (while this mixing
is not possible with the decay Z° boson). Instead, when we consider more leptonic
families, this phenomenon is not present, always for the hypothesis of the Standard
Model for which the neutrinos are massless. Anyhow, for the scopes of this thesis,

it is not in our interest to go further into the details of this topic.
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Chapter 2

Quantum correction to the Higgs

potential

The spontaneous symmetry breaking determines the vacuum expectation value of a
scalar field ¢ at the classical level, simply minimizing the potential V' (¢). However,
if we consider the perturbative loop corrections, the classical vev is modified. One
of the aim of this Chapter is to find, in a quantum field theory, a function whose
minimum gives us the exact vev: obviously, at the lowest order, the results obtained
from this function have to bring back to the classical case, which is modified to
higher orders by quantum corrections. Supposedly, these corrections will require
a renormalization procedure to remove infinities. The function that respects these
properties is the effective potential |8, 9]. Then, we will compute the effective poten-
tial of the Standard Model to show how we have the formation of a second minimum

respect to the electroweak one.

2.1 Effective potential in scalar theories

We consider for the moment the simplest case of a single real scalar field ¢, and we
suppose that an external source J(x) coupled to the field ¢ is added to the lagrangian.

Then the vacuum-vacuum amplitude is given by the functional generator |7|

209 = @l ) =N [ D6 exp (i [ a'el20) + S0 ) . (21)

where |2) is the quantum vacuum state, while 7" is the time interval on which the
functional integral is computed: in fact, the right hand side of Eq. (2.1) is precisely
the path integral representation of the vacuum-vacuum amplitude in the presence
of the source J. Instead N is a normalization factor: being N irrelevant for the
computations of this paragraph, for the moment we put N’ = 1 and we will restore
it later. We define the functional W{.J] as

W[J] = —iln Z[J]. (2.2)
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Expanding the amplitude in Eq. (2.1) in terms of the Hamiltonian eigenstates, and
performing the Wick rotation (i.e. going to the euclidean signature) 7 = it, we can
compute the limit 7" — oo to obtain:
- —iHT _ -E,T 2 ~EoT) /012
Z[J] = Qe ) ;e (RO —— e KO

Thus, going back to the minkowskian signature, and comparing the expression for
Z|J] obtained from Eq. (2.2), we have:

e—iEOT _ eiW[J] = EO[J] = _%W[‘]]7

i.e. the functional W[J] can be interpreted as the vacuum energy in the presence of
the source J(x) in the time interval T'. In particular, for J = 0 we have the vacuum
energy of the original theory [34]. We consider the functional derivative of W[J]
respect to J(x)

SWJ] i 62[J] _ §D¢ ¢(x)exp[i§(L+T9)] _ (Qe(x)|),

0J(x)  Z[JJoJ(x) (D¢ exp[if(L + To)] QY;

(2.3)

where the subscript J denotes the presence of the external source. Setting J = 0 in
Eq. (2.3), we obtain the one-point Green function, that is the vacuum expectation

value of the field ¢ in the original theory:

SW[J]
dJ(x)

= (o(x)) (2.4)

J=0

Instead, computing the second functional derivative of W[.J] we have:

SWI[J] R4 i 0Z[J])6Z[J]

5I(0)0y)  Z[I10J (@0 (y) | Z[JF 0J(x) 0J(y)
. <<Q|¢<x>¢<y>|Q>J ROBIY <Q|¢<y>|Q>J> .
B Q[ QQ, @, ) |

Setting J = 0 in Eq. (2.5) we obtain the connected two-point Green function, that
is the full propagator of the field ¢:

W] | B B
67 ()8 (y)| = i((@(2)0(y)) — (D(x)XD(y))) = iD(2)D(Y)eonn = iD(z,y) .
(2.6)

Proceeding in a similar way with the higher derivatives, we obtain that W[J] can

be identified with the functional generator of the connected Green functions [34]:

S"WIJ]
dJ(xy)...0J(z,,)

J=0

<¢($1)¢)(xn)>cmm _ (—i)n+1

(2.7)
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We define the classical field ¢, as the vacuum expectation value of the field ¢(x)
in the presence of the source J(z): thus, for Eq. (2.3), the classical field is given by

_OW([J]
- 8J(x)

() (2.8)

Now we define the effective action functional [8, 9| as the Legendre transform of

W(J]:
Mlod = WIIT) - | d's J@)o.(o). (2.9

Then we compute its functional derivative respect to ¢.(z):
ST[od _ SWLI) [0 80),
o)~ T ~ | Y eyt = )
(o 0J) W] [ s 6J(y)
) f Y Souta) 37(0) f Y 6u(@)

Tlod .
S = @ (2.10)

where in the last step we used Eq. (2.8). If we now put J = 0, Egs. (2.4) and (2.8)
tell us that ¢, = {(¢), so that we deduce that the vacuum expectation value (¢) is a

Gely) = J(2) = =J(x) =

stationary point of the effective action I'[¢.]: in fact, from Eq. (2.10) for J = 0 and
¢, = {¢) we obtain:

oI'[¢.] _
o), ., —0. (2.11)

We can find a physical meaning also for the second functional derivative of I'[¢,].
In fact:

f g WL oo f iy 09:(2)  O°T(oc]
0. ()3 (2) 66c(2)0c(y) 0. () 60(2)06c(y)
0°Tlo] _ 8J(y) _ _ 5@

T 0 (@)00.(y)  8J(x)

From Eq. (2.6) we know that for J = 0, and then for ¢, = (¢), the second functional
derivative of W[.J], 6°W[.J]/8J(x)8J(2), is the connected two-point Green function,
i.e. the full propagator iD(z,y). As a consequence, Eq. (2.12) becomes

(x—1y). (2.12)

5*T[¢.)

_— = i6W(x —q). .
56.()00.(1) e —y) (213)

(ZSC =<¢>

Jd4z D(z, 2)

This means that the second functional derivative of the effective action is the inverse

of the propagator, and can be identified as the 1PI two-point Green function [34]

T[]

so.00.|, DY) 2

be={¢)
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Proceeding in a similar way with the higher derivatives, we conclude that the ef-
fective action I'[¢.] can be interpreted as the functional generator of 1PI Green
function:

0"T¢.]

=1
6¢C((1}1)(5¢C<xn) bo=(>

(P(1)--0(Tn)), ) (2.15)

At this point we introduce the effective potential: the general form of the effective
action is given by the standard kinetic term with the square of the derivative of the
field, times a non trivial factor, a term that does not depend on the derivatives of the
field, and an infinite series of corrective terms with higher order derivatives. In other
words, we can write the effective action as an expansion in powers of derivatives of

o, (gradient expansion) [35]:

o] = | Vglod + 00020l v | . 210

The functional V., introduced in (2.16) is called effective potential. Since we want
the vacuum state is invariant under Poincaré transformations, then we consider
only solutions for which the vev of the field ¢, and then ¢, is independent from =x.
Thus, considering ¢, = cost., all the terms containing derivatives of ¢, in Eq. (2.16)
vanish and we have only the term V_;;, that is however independent from z. As a
consequence, the integral over x gives simply the 4-dimensional volume factor VT

In conclusion

F[(z)c] =-VT ‘/;ff(¢c)7 (217>

so that, thermodynamically speaking, the effective action is an extensive quantity.
Moreover, the condition in Eq.(2.11) for which {(¢(x)) = ¢, minimize I'[¢.] for
J =0, with Eq. (2.17) is reduced to

- Vags(0) 0. (2.18)
Every solution of Eq. (2.18) gives us the vev of the field ¢ in a vacuum state invari-
ant under translations, and then from such a relation we deduce that the effective
potential is precisely the function that we proposed to find.

In general, the effective potential V,;;(¢.) can have more stationary points: a
maximum corresponds to an instable configuration of the system; an absolute min-
imum is the state of minimal energy, also called true vacuum, that is a stable min-
imum state; a relative minimum is a metastable vacuum state, also called false
vacuum, that can decay towards the true vacuum state of the system through quan-
tum tunneling. In particular, in a system with spontaneous symmetry breaking,
the vacuum state is degenerate, and then the effective potential will be stationary

respect to all the minimum states.
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At this point, we consider the expansion of the effective action I'[¢,] in powers
of the classical field ¢,

T[¢.] = ;%Jd%l di, T (2, ) du(xy) . () (2.19)

The coefficients of the expansion '™ (x1,...,2,), according to Eq. (2.15), are the 1PI
n-point Green function. Now we consider the Fourier transform of the coefficients
F(”)(xl, e Ty

n d'k d'k,
F( )(1‘1, . ,ZL’n) = J (277)14 (27-(-)4 (271')4 (5(]{;1 4+ o+ kn)

x T (ky, ... k,) ot thnan)

)

Inserting this expression in Eq. (2.19) and expanding the I' ™ in powers of momenta,

= d*k d*k,
[[é.] = Z ot fd4x1 d4an (2754 )

" fd‘*;z: ikt ) ik oy )

we obtain

x [F(")(o,o,...,o) Gu(1) - .. bo(,) + .. ]
=Jd4x 3 l'[ﬂ”)(o,o,...,()) qxj(x)] .

In the first step we have used the integral representation of the Dirac delta d(k; +

—ik;x ik;x;

... + k). In the second step we have recombined the factors e and e in such
a way to obtain the delta d(x; — x) using the integrals over k;. Finally with these
Dirac deltas we have solved the integrals over z;. The higher order terms in the
expansion in powers of momenta contribute with derivatives of the field, and then
vanishes if we consider ¢, constant. Comparing this expression with Eq. (2.17) we

obtain
0

Vigs(60) = = 3 1 6 Tk, = 0), (2.20)

n=1""
i.e. Vsy is given by the sum of all the 1PT diagrams with zero external momenta.
If these diagrams involve integrations over the internal momenta, then in general
they will be divergent, but if the theory is renormalizable these divergences can be
absorbed in the physical parameters.

For instance, we consider the scalar theory described by the lagrangian:

§¢4.

1 1
_ oy 22_
L 26M¢é’¢ 2mgf) 1

All the divergences have to be absorbed by a redefinition of m?* and A and by the

normalization of the field. A typical definition of the renormalized mass of a scalar
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field is
22

v
de

= Ik =0) (2.21)
¢c=0

2
mpg

i.e. using Eq. (2.20), we can define it as the opposite of the inverse of the propagator
with zero external momenta. Similarly, always using Eq. (2.20), we can define the
renormalized coupling constant as the 4-point 1PI correlation function with zero
external momenta

_d'V

=i =T -0), 2:2)

AR

¢.=0
Finally, the definition of the normalization factor of the field is usually given by

~1 (2.23)

that, through Eq. (2.17), gives Z(¢, = 0) = 1.

In conclusion, from Eq. (2.20) we see that to compute the effective potential V,
we have to sum all the 1PI diagrams, and apply renormalization conditions to cure
the divergences of these diagrams [35]. Afterwards, from the effective potential V,,
we can obtain the vevs as its stationary points, and then compute the minima of

the potential itself.

2.1.1 Computation of the effective action

The effective action I'[¢,.] contains all the information about the quantum dynamics
of the theory, so that it is important to understand the systematics of its explicit
computation: the first step is to compute the functional Z[.J], from which we obtain
W[J] through Eq. (2.2), and afterwards we apply the Legendre transform respect
to ¢.(x) in Eq.(2.9) to find I'[¢.] |7, 34]. The starting point is the classical la-
grangian, rewritten in terms of the renormalized field ¢,: this can be divided in a
renormalized part £, including the physical parameter, and a part 6L that contains

the counterterms:

Llo.] = L.[o]+0L[¢,]. (2.24)

Introducing the external source J, this can be divided similarly into a renormalized

term J, and an additional counterterm 6.J:
J(x) = J.(x) +dJ(z). (2.25)

The term J, is defined imposing the definition of ¢, at the lowest order in pertur-

bation theory:
(SST—[QST] + J.(x) =0, (2.26)

0¢,(z) oo,

32



i.e. is defined as the term of J such that the first variation of the renormalized
action with the inclusion of the external source vanishes. Then, Eq. (2.26) is the
Euler-Lagrange equation of the renormalized part of the theory modified through
the introduction of the source term J¢. Instead, the term §.J is fixed imposing the
definition of ¢, order by order in perturbation theory, i.e. ¢.(z) = {¢(x)); 155 At
this point, we proceed considering the functional Z[J] in Eq. (2.1) and writing it in
terms of the decomposition in Egs. (2.24) and (2.25):

= [D6 e { [ (ﬁr[@(mn + (26, ()

Lo, (0)] + 81(2)0r(0) )}
_ qus exp {i(Sr[gzﬁr] + Joi, + 3S[,] + 5J.¢r>} (2.27)
where we have introduced the notation:
J.p = Jd% J(2)p(x). (2.28)

The lowest contribution at this path integral comes from the classical configura-
tion of the field ¢.(x). We can evaluate these integrals using the steepest descent

approximation (that corresponds to a loop expansion in powers of k), writing

Op(1) = Gc(x) +1(2). (2.29)

Now we can expand the action in the path integral in powers of the fluctuation n(x).

Concerning the first two terms in Eq. (2.27), we have

0001+ 9.0, = [t (L1, + 010 0))

- [ (zr[¢c<x>] ¥ Jr(mw) [ c;z:[g)]

oy e faune e

The term linear in 1 vanishes for Eq. (2.26) and then we have only:

+Jy (@) |n(e)
Pr=0

ny) + ... . (2.30)
Pr=0c

[¢r +J ¢r_ [¢c]+<] ¢c

wy e[ dvaw 5o >§3§iﬁ]<>

Concerning the last two terms in the action, that represent the counterterms, ex-

n(y) + interaction vertices in . (2.31)
Gr=0.

panding the field ¢, around ¢, we obtain:

6S[¢,] + 6J.¢, = (6S[¢.] + 6J.9.) + (6S[¢. + 1] — 65[d.] + 6Jm) . (2.32)
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The second term in Eq.(2.32) can be expanded in powers of 7: we obtain the
counterterms that have to be included in the Feynman diagrams corresponding
to the self-interaction vertices in 7 due to the cubic and higher order terms in
Eq.(2.31). The first term is a constant respect to the integration over n and thus
gives an additional term in the exponential coming from the first term in Eq. (2.31)
[7]. Putting together these terms we arrive to the expression for the functional
generator Z|[J].

The higher order terms, that is the self-interaction terms together with their
counterterms, can be combined to give the exponential of a sum of connected dia-

grams: then a part for these terms the functional Z[.J] is given by
40 - oo (516 + 550+ 590

0%, [¢,]
¢, ()00, (y)

X JDU exp %Jd4xd4y n(x) n(y) ¢ +.... (2.33)

Dr=9¢.

The inverse of the operator that appears in the quadratic term in 7 defines a prop-
agator for the field n, that is given by:
1

(L Fsled )
Dley) = <§¢Axw¢xw) | (2.34

The functional integral in n can be computed with the Gaussian integral:

(NI

0°S,[¢,]
¢, ()00, (y)

JDn exp ifd% d*y n(x)

5 n(y) ¢ = det (=$Pad) © .

Dr=9¢.

(2.35)

where S®[¢.] is the operator whose components are the second derivative of S[¢]
respect to ¢(z) and ¢(y):

0*5[¢]
06()06(y)

At this point, we use Eq.(2.2) to obtain W{[J]: in particular, if O is a generic

= (| (9] |) - (2.36)

operator, we know that In(det O) = Tr(In O). In conclusion we find:
W] = S0 + Jy6c + 5 Trln (=52[0.])
+ 0S[¢.] + 0J.¢. — i(sum of connected diagrams) . (2.37)

Finally, using Eq.(2.9), we compute the Legendre transform to obtain the effec-
tive action I'[¢.]: reminding of Eq. (2.25), we obtain that all the terms depending

explicitly form the external source J are cancelled. In conclusion

Mo = S6 + 3 Trin (~52[5,))
+ 0S[¢.] — i(sum of connected diagrams) . (2.38)
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As we expected, the effective action depends explicitly only by ¢.. Moreover, it is
given by the sum of the classical action (first and third term), a one-loop correction
written in closed form (second term), and a infinite series of higher-loop correc-
tion that can be computed diagrammatically using the vertices and the propagator
deduced for the field fluctuation 7.

Equivalently it is possible to compute the effective action in terms of the bare

quantities. Following a computation similar to those of Eq. (2.38) we have:
Do) = Sléd + 5 Trin (=S®[6,]) + O(?). (2.39)

In particular, in the next paragraph we will use precisely Eq.(2.39) in order to
see explicitly the introduction of counterterms in scalar theories. It is worth to
note as the Trln terms both in Eqgs. (2.38) and (2.39) are O(h) once we restore the

dimensions.

2.1.2 Effective action for Linear Sigma Model

Using Eq. (2.39) we have find a complete way to compute the effective action T'[¢,],
although not very useful for practical purposes. To better understand the meaning
of this expression, we now see how to compute explicitly I'[¢.] in the linear sigma
model, in which we have a N-uplet of scalar field ® = (¢', ¢ ...,¢") [7]. The

lagrangian is
1 ; 1 : A,
L= 5(5;@1)2 - §m2(¢1)2 1 [(6")?]

We expand around the classical field ¢' = &' + 1. Since we expect to find a vac-

2

(2.40)

uum state invariant under translation, we limit ourselves to study the simple case
in which the classical field ¢, is constant. This condition simplifies considerably our
computation: in particular, according to Eq. (2.17), the final result will be propor-
tional to the 4-dimensional volume V'T'. At this point, inserting in the expansion of
the fields in Eq. (2.40), we obtain

£ = — () = 260 — (m? + M6DP) ol
2@ — P = S [O0A +2e ]+ (2a)

According to Eq. (2.38), we can ignore the linear term in 7, while from the quadratic

term in 7 we obtain

525[ C] ( 2 ¢ij 2 ¢ij i\2 ¢ij ¥ ) (4)
Pl — | = 0% —m?67 — A[(¢")%6Y + 20147 )6W(x —y). (2.42

We note that the operator in Eq. (2.42) has the form of a Klein-Gordon operator.

To clarify this relation, we orientate the coordinates in such a way that &, points
towards the N-th direction:

®, = (0,0,...,0,0,) . (2.43)
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Therefore, the operator in Eq. (2.42) is properly equal to the Klein-Gordon operator
(—0% = M;(¢.)*), where

o2 +m® acting on ', ..., "Nt

M;(6.)* = (2.44)

3\¢2 +m? acting on ™

The functional determinant in Eq. (2.35) is the product of the determinants of these

Klein-Gordon operators:

det (—5(2) [¢C]) = [det (% + (A2 +m))]" " [det (% + BAGZ +m?))] . (2.45)

We have already seen that for a generic operator we can convert the determinant in
a trace, so that
Indet(0% + 4%) = Trin(0® + 1°).

Applying to Eq. (2.45) we have:

hMa@ﬁ%@D:ﬂmwﬁmwﬁ+mw+uw¢mmq + (Ag2 +m?)) .

(2.46)
Then we compute the traces of the operators in Eq.(2.46) as the sum of their
eigenvalues. It is easy to show that, being the Klein-Gordon operator diagonal, the

operator In(0% + 1) is also diagonal, so that:
Trin(é® + p*) = Jd4x (x| In(&* + p*)|z)
d'k
= [t [ G @ ol
Jd4 J 4 efzkx 111 a + /LQ)Gikx

k
—VTJWI(I@+M) (2.47)

In the last step, once we apply the operator to ¢*® the two exponentials cancel each
other, so that the integral over x gives the factor V1" of 4-dimensional volume: we
note that this is exactly the factor that we expect to appear from I'[¢,.].

Now we want to restore again the normalization factor N using appropriate
boundary condition on I'[¢,]. For instance, to see the connection between the effec-
tive potential that we will extract form Eq. (2.39) and the one given by Eq. (2.20),

we can choose I'[0] = 0 to obtain:
%
N = det (—S,@ [0]) , (2.48)

so that, in Eq.(2.39) we have the additional term —% NTrIn(0* + m?®). Applying
Eq. (2.47), we have:

4 2 2
Trin(0® + M;(¢.)°) — Trln(é* + m?) = VT J (;l l;4 In (_k ;quj;) > . (2.49)
7r —
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In conclusion, from Eq.(2.39) with the additional term due to the normalization
factor (2.48), we can extract the one-loop effective potential V,;;(¢.) comparing the
expression of I'[@] for ¢, constant with Eq. (2.17):

1 1
Verp(de) = §m2¢3 + Z)\cbi

. AL k2 2 2 . 4 12 2 2
+3J 4ln( +72n +§)‘¢c)+(N—1)3fdk4ln( k;—i—2m +2A¢C>.
2 ) (2m) —k*+m 2 ) (2m) —k"+m

(2.50)

Obviously, the same result can be obtained from Eq. (2.20) where we have seen that
the effective potential is given by the sum of the 1PI n-point Green function: in
fact, up to the one-loop order V,;;(¢.) is given by the tree level potential V,(¢,) =

%m%bi + ;llAgbﬁ with the resummation of the one-loop 1PI diagrams

so that, computing :T™(k; = 0) with the usual Feynman rules, the resummation
over n in (2.20) is the power expansion of logarithm, i.e. we obtain the last two
terms in Eq. (2.50).

At this point, however, in order to simplify the computations of the loop integrals,
it is convenient to normalize the effective action in a different way. In particular,
we choose to normalize the effective action I'[¢,] to the massless theory one with
a vacuum energy 2. Then from the normalization factor A/ we have an additional
term —N £ Tr In(6%) + Q in Eq. (2.39), where Q is the bare vacuum energy constant
that we have to renormalize together with the bare parameters m* and A. With this

choice of N, instead of the expression in (2.50), for the effective potential we have:

1 1
Ver(oe) = Q + §m2¢>§ + Zﬁ@f

i [ d%k m? + 3\¢? i [ d'% m* + \p:
—1—51—(27?)4 ln<1——k2 )—1—(]\7—1)5[—(2%)4 ln(l——k2 ) )
(2.51)

Then, we compute the following integral with momentum cut-off regularization after

performing a Wick rotation:

i [ d% 12 1 J d'ky ( ,ﬁ) 1 JA2 , 12
A (1B )= = m(1+5 ) =-— | aZm(1+%
2J (2m)* < k:2> 2) ()t k2 R n( k%)

A? 2

1 E2)2 2 2 A 2

- —— (ki) ln(1+'u—2) +M—J Ak} —2—
321 2 ka 0 2 0 kE+[L

1 A%+ 2 o (A4 42
= lA4 ln( 2 ) + 1A — (uz) 1n< 2 )] . (2.52)
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Expanding in powers of m? / A? « 1, we obtain:

%f% n (1 B Z_z> _ _6417T2 [M?A2 + (;ﬂ)2 (mi—z — %)] + O(A™?). (2.53)

Now we want to express the effective potential in terms of the renormalized

quantities. Then we write:

Q= Qp + 690
m?® = mjp + om’ (2.54)
A= Ap+ 0\

where 69, ém? and S\ are the counterterms that will absorb the divergent part of
the effective potential and then are O(h), as these comes from the O(h) correction
to the potential, i.e. the last two terms in (2.51). Then, if we insert the splitting
in Eq. (2.54) in the effective potential, in the one-loop correction we can substitute
simply m? and A with m% and Ag respectively, because the counterterms provide
an O(hz) correction. Moreover, we can also choose Qp = 0. Applying Eq. (2.53) to

the effective potential, we can write:
1 2 42 1 4 1 2,2 1 4
Vers(9e) = §mR¢c + Z)\RQZ% + 080 + §5m o. + Z(L\gbc

mp + 3Ard: _1)]

64 A? 2

N-—1 Y+ At 1
t [2 (m% + Age?) A% + (m% + Apo?)” <1n %ﬂ“ - 5)] . (2.55)
vis

It is worth to note that this result is manifestly O(V) symmetric: in fact Eq. (2.39)
applied to the lagrangian in Eq. (2.40) is manifestly O(N) invariant term by term.

+ % [2 (m% + 3\ge2) A + (m% + 3AR¢§)2 <ln

As a consequence, we had to arrive necessarily to a result for V,;¢(¢.) that is O(N)
invariant.

At this point, we have to apply renormalization conditions in order to determine
the counterterms. We have seen in Egs. (2.21), (2.22) and (2.23) a possible choice
for the renormalization conditions at zero external momenta (k; = 0). However,
here we want to use a set of renormalization conditions with the introduction of
an arbitrary scale u. In particular, we require that the radiative correction to V.,
coming from the i-nth field vanish when M;(¢.)> = p*. It is easy to see that such

property is implemented by the following renormalization conditions:

Nm?‘% m%
= In —-

Verp(@e = , 2.56

ff(¢ ) 6,20 64> M2 ( )

&V, (¢ N + 2)\pm? 201

—fo(d) |z W DA RTR (m DR —) , (2.57)
doe  lg,=o 16m v

d*V, ¢ (6, N + 8)\? 2 3

@ Ves(9) =6[AR+¥<lnm—f+—)] | (2.58)
dge g0 167 poo 2
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Applying these renormalization conditions to Eq. (2.55), we obtain three equations
for 6, om? and d\:

2 A2 4 2
50 = NQ;R;\ + ]gff (lnA—2 + 1) : (2.59)
T 7 ol
N +2) Az A* (N +2)Azgm3 A1
5m2 = —( 1671-2R + ( ]_631'2R f In F + 5 , (260)
(N+8)X; [ A 1
AN=-—2"E = +-). (2.61)
1672 ,u2 2

From now on we will have only renormalized quantities, so that we will submit for
notation simplicity the subscript R. Substituting Egs. (2.59), (2.60) and (2.61) in

Eq. (2.55) we obtain the renormalized effective potential:

1 1
Verp(de) = §m2q§§ + Z)@g

1 24 302
+—— | (m® +3)¢2)*In T o0 +23 i
647 1
2 2.2 m? + >\¢g

Once we have obtained the expression of the effective potential in Eq. (2.62), as we
know from Eq. (2.18), for every fixed value of m* X and p we can determine the
vacuum states of the system minimizing V,;;(¢.) respect to ¢..

The correction to V(¢) is not defined when the arguments of the logarithms
become negative, but the minima of V. ;, are located outside this region of values of

¢, |7, 35]. This problem is particularly clear in the limit m? — 0: Eq. (2.62) acquires

the form
1, A, 23

V. == A+ -——— N+38) (1 - = 9In3| | . 2.63
eff(¢c) 4¢c ( + 4 (471_)2¢c ( + ) n Iu2 2 + n ( )

From this expression we can see that V,;¢(¢.) has a zero when ¢, is of order

2 2
2 M (4m)

~ 2 — . 2.64
%N eXp[ (N+8)>\] (2.64)

Near this point, we find a minimum corresponding to a non zero value of ¢.. How-
ever, this zero is present due to the "cancellation" of the term of lowest order quan-
tum correction. In other words, the perturbation theory is completely "broken"

before we can address the issue regarding a minimum of V_¢(¢.) with m? = 0 due
to SSB [7].
2.2 Standard Model one-loop effective potential

To compute the Higgs effective potential we have to extract the relevant part of the

Standard Model lagrangian that we have seen in Chapter 1, i.e. the part containing
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quadratic terms in the fields:

1 a v 1 v
Lo tWaWE - 1B, B 1 (D,9) (D40) — 80— A(@'e)
1 1
B 2_5((3MW(5)2 o 2_5((3MBM>2 + Eferm7 (265>

where the first two terms in the second line are the gauge fixing contribution, while
Lo, 18 the fermionic contribution that we will analyze in detail later. Moreover,
the tensors W), and B, are given in (1.25) and (1.26), while ® is the Higgs doublet
in (1.55) and D, ® is given in (1.60).

2.2.1 Scalar contribution

We start with the computation of the contribution to the effective potential from the

Higgs sector: it is worth to note that, if we write the scalar SU(2) doublet explicitly

$1+ido
(z) = (%fm) ) (2.66)
NG

the tree level potential tree-level is
24 1 fxv2 Lo Ao
V(®) =m d'd 4+ A\(P'D)” = FH o; + Z(gbz) (2.67)

that is nothing but the Linear Sigma Model potential in Eq.(2.40) with N = 4, where
we choose ¢5 = H as the component of the doublet that acquires a non-zero classical
value ¢.. Moreover, we want to renormalize the effective potential in such a way
that the scalar radiative correction vanish for M;(¢.)* = p* (with M,(¢,)* given in
(2.44)). Then, the scalar contributions to the counterterms are given in Egs. (2.59)-
(2.61), while the Higgs contribution to the renormalized effective potential is given
by the first two lines of Eq. (2.62), and the Goldstone contributions are given by the
third line with N = 4.

2.2.2 Gauge contribution

Once we choose ¢3 = H in the doublet (2.66) as the only field that acquires a
non-zero classical value ¢, using Egs. (1.33) and (1.36), we can write the relevant

quadratic gauge part of Eq. (2.65) as:

]‘ v — v 1 v
Equadratic = - Z (W;Z/W—f + WMVWE ) - ZZMVZM
1 ~ 1
+ §MW(¢C)2 (Wiwh + W, W) + EMZ(¢C)2Z#Z“
1
5 [("WD)?+ ("W, ) + (0"Z,)7] (2.68)
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where the mass terms

M6 = 196 My(0.f = 16 + 67) (2.69)

come from the kinetic part D,®D"®. Moreover, we will see that the contributions
to the effective potential due to gauge bosons are of the form M*log M? as for the
scalar case, so that we have no contribution to the Higgs effective potential from the
gauge field of the photon as M, = 0. This is the reason for which we do not include
the photon kinetic term —4F,, F" in Eq. (2.68).

We start with the computation of the Z contribution. The first step is to rewrite

the kinetic action:

Siin[Z] = —i fd‘*x z"Zz,, = 711 f d'z ("2 — 0" 2") (0,2, — 0,Z,)

v
1 12 12
=3 jd‘*;c ("2 0,2, - d"2"0,7,) . (2.70)
Then using the differentiation chain rule we have:
oMz" ez, =" (2"0,2,) — 2""0,Z, (2.71)
orz'o,z,=0a(2"0,2,) - 2"0"0,Z, (2.72)
where the divergence terms in the integral give surfaces terms that vanish. Thus we
write: .
SiinlZ] = 3 Jd4x Z,(x) (62 g — 8“8”) Z,(x). (2.73)
Then the action of the quadratic contribution can be written as:
1 1
5121 5 [z, @9 - (1- 7 ) 0" + 0ty | 20) =

1
S;(ﬁ/) [¢C] = (92 g,uu - (1 - g) a,uau + gyVMZ(¢c)2 : (274)

Since we want to compute the inverse operator K, of S fﬁ,) [Z], it is more convenient
to write Eq. (2.74) in momentum space, so that we write the Fourier transform of

the field Z,,():

d4k —ikx
Z,(z) = JWZMU{;) ek (2.75)

Then substituting in the action we obtain:

S[Z] = % f d'z f a'k Z,(k)e ™

(2m)*
2 _pv 1 v v 2 d4k:/ N —ik'z
X la [ (1 — E) M + g™ My (d,) ]J(2W>4zy(k)e

1 d'% ( d*
=3 J 2n)? f 2y Z,(k)
x l—kz g+ (1 - %) kMK + g“"MZ(¢C)2] Z,(K) J d'z e T (9.76)
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We note that the integral over z gives (27)*6™ (k + k). In conclusion:

S[z] %J%Zu(k) l-/& o (1 - %) FE 4 MZ(¢C)29W] Z,(—k). (2.77)

Then the operator (2.74) in momentum space is:
1
SN¢e] = —k* g, + <1 — E) Kk, + My(6e)’ g - (2.78)
The inverse operator K, has the form
K,, = A(k*)g,, + B(k*)k,k, . (2.79)

Using the condition K*” Sﬁ) [Z] = 6%, we can determine A(k*) and B(k?), so that:

1 kK,
K;u/:— _gpl/—i_(l_g)kQ_fl;wZ(qb)Q :

K = My(9.)*
In the Landau gauge, for which £ = 0, the numerator is the projector over the states

(2.80)

satisfying the Lorentz condition:

kK,

s (2.81)

P,Lw:g;w_

With calculation similar to those seen in Section 2.1 for the scalar case, the one-
loop contribution of the Z boson to I'[¢,.] is given by Trln (—S/(ﬁ,) [gbc]), that we

want to write in terms of the operator K, using the property of the logarithm:

I

%Trln (—S/S?,)[gbc]) = —% Trln (-K,,) , (2.82)

where Tr denote also the trace over the Lorentz indices. We can exploit the following

properties for an operator:
0= AP, (2.83)

F(0) = 2 F(N)P; (284)

where )\; are the eigenvalues of the matrix O and P; are the projectors over their

relative eigenstate. In particular, considering the operator

d*k 1
O = f e = M0 ™ 25

it is clear from Eq. (2.83) that the (continuous) eigenvalues of O, are W Then,
—z

using Eq. (2.84)
log (0,,) = — f % log (k* — My(¢.)?) Py, - (2.86)
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We can express the trace over the continuum index %k in Eq. (2.82) as an integral
similarly to Eq.(2.47), and we can reduced the trace Tr over all the indices to a
trace tr over only the Lorentz indices. In this way, we reduce the computation of
Eq. (2.82) to the trace tr of an operator of the kind (2.86), so that:

; j d*k
%Tr In <—Sf3) [¢C]> _ %VT J Wlog (K = My(¢.)%) trP,, . (2.87)

From Eq. (2.81) it is clear that trP,, = 3. Moreover, following Section 2.1.2, we nor-
malize the effective action to the massless theory one, so that from A we obtain the
additional term —% TrIn (62 G — (1 = 1/€) 6Hé‘l,). Clearly this term (in the Landau
gauge) is equal to the right hand side of Eq. (2.87) with M(¢.)* = 0. In conclusion,

the radiative contribution to the Higgs effective potential coming from the Z boson

Vy(0,) = 3% f (5:54 log (1 - %ﬁ))g) . (2.88)

Similarly we can compute the the contribution of the W bosons, and it is easy to
see that the result is given equal to Eq. (2.88) with the substitution M, — My, and

with a factor 2 that takes into account that there are two W bosons:

1S:

- [ dk My (6,)°
Vi (6,) = 3i f 2y (1 - %) . (2.89)
Using Eq. (2.53) we compute the integrals over k:
~ 3 My(0.)? 1
V(o) = o 2005000707 + (30007 (w255 - 1) oo
~ 6 My (6.)* 1
Vo0 = s [2wten? + Ot (0)” (w22 - Y| ey

In particular, as for the scalar contributions seen in Section 2.2.1, we require
that the radiative contribution of the gauge boson Z to the effective potential van-
ishes when M(¢,)* = p?, and similarly for the gauge boson W when My (¢.)* = 1°.
Then we cancel the divergences appearing in Eqgs. (2.90) and (2.91) with the countert-
erms, considering additional terms in 69, ém?* and 6\ in order to take into account
the gauge contributions. Finally, making explicit M, and My, with Egs. (2.69), the

renormalized contributions to the Higgs potential coming from the gauge sector are:
3(g° +9°) ot 0"+ 9%) o
10247 Ap® ’
69" 0. . g’0:
5 In=—-.
10247 4p

Vz(e) = (2.92)

Viv(¢e) = (2.93)

2.2.3 Fermionic contribution

The fermionic contribution comes from the Ly, in Eq.(2.65), that in principle

contains for all the family of fermions (quarks and leptons) the corresponding kinetic
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terms and the Yukawa term in Eq. (1.72). However, we will see that the fermionic
contribution has again the form M*log M?, so that the dominant contribution comes

from the quark top. Then the relevant fermionic contribution is:

‘Ct = 775@ (Z’yuau - Mt<¢0)> 77ba ) (294>

where the mass term

My(¢.) = % P (2.95)

comes from the Yukawa term (1.72), using Eq.(2.66) for the Higgs doublet and
choosing ¢35 = H as the only field that acquires a non-zero classical value ¢,.
With calculation similar to those seen in Section 2.1 for the scalar case, the

one-loop contribution of the top quark to I'[¢,] is given by

o (-52[6]) =~ Tmn [~ 7+ ML)] . (296

where the minus sign overall comes from the anticommutation property of the top
quark field ¢(x). Then, proceeding as in Eq. (2.47):
d'k

5T (~590a]) = -5 VT | Gy (K MGIL)] L o

where here tr means the trace over the Lorentz indices and over the colour indices.

We use the fact that if O is diagonal, then also f(O) is diagonal. In particular,

the argument of the log is diagonal in the colour space due to d,;, so that:

Tn |G ( =K+ M0 L) | = T [In (= K+ My(6.)14) 0]

= In (=K + M(¢)1,)T (6,5) = 3In (= K+ M,(6.)1,) (2.98)
where 7 means the trace over the colour indices and 7 (d,,) = 3. Then, from now

on in this subsection tr means the trace over the Lorentz indices only. Moreover,

using the property of the logarithm:

. : e
— %Tr In (—Sﬁ) [¢C]) =3 % VTtrfW In ( — K+ Mt(¢c>14)

1

_ 3! VTtrJ (;i:; [m (= K+ M(¢,)1,) +In (K + Mt(¢c)14)]

2
-3 % VT f %tr In [( — K+ Mt(¢c)2)14] : (2.99)

where in the last step we use ¥ 2 = k*1,. The argument of the log is then diagonal

also in the space of the Dirac matrices due to 1,, and then:

trin [ (= £+ My(0)°) 1| = tr In (= 1 + M (6.)°) L |
=In(— K + M/(¢.))tr(1,) = 4In (= &* + M,(.)%) (2.100)
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being tr(1,) = 4. In conclusion:

/ d'k
I Trn (—Sﬁ’ [¢c]) — 6 VTJ—4 In (= & + M,(¢.)%). (2.101)
2 (2m)
Once we normalize the effective action to the massless theory one, as we done
in the previous sections, from N we obtain also the additional term %Tr In (—id),
that is equal to Eq. (2.101) with M,(¢.) = 0. In conclusion, the contribution to the

Higgs effective potential of the quark top is:

s e (LK M(6.)"
Vi(¢.) = 61 J 2n) log (1 — T) . (2.102)
Using Eq. (2.53) we compute the integral in k:
Y _ i 242 22 Mt(¢c)2 _1
Viten) = oo |20 P+ (o)’ (w5 - )] oy

and with Eq. (2.94) we explicit M,. Requiring that this radiative contribution van-
ishes when M,(¢,)* = p*, we obtain the additional terms in the counterterms that
take into account the quark top contribution. Finally, the renormalized contribution
to the Higgs potential from the fermionic sector is:

3y; do . yr do

Vi(de) = — 6ar? 02 (2.104)

2.3 Renormalization group improved effective Higgs

potential

In conclusion, putting together the results of Eqgs. (2.62), (2.93), (2.92) and (2.104)
that give the one-loop effective potential correction to the classical Higgs potential
Eq. (2.67) we get:

‘/;ff((bc) = %(¢c> + V:e(¢c) + Vq(¢c) + Vf((bc)
me? + !

1
92
(m?+3062)"  m>+ 300> 3(m*+20D)°  m®+ A’
+ 5 In 5 + 5 In 5
647 W 647 7
6g'6t . 50? 3(¢*+ 9D et (4P +g7) St
5 In > + 5 In 5
10247°  4p 10247 Aq1

4,4 2,2
_ 3@ Ui (2.105)
647 21

The next step is the Renormalization Group Improvement (RGI) of the effective

potential, that is an application of the renormalization group theory. We denote
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with g; a generic coupling constant of the Standard Model (despite of it is a scalar,
gauge or Yukawa coupling). Being the loop expansion a coupling constants g; power
expansion, the n-loop effective potential will have terms of order g/**'. Moreover,

for every loop we have to consider a power of In ¢? /M 2 such that the n-loop will

2\ N
gt <1n ¢—§) )
L

Since we require that our expansion parameter is less than 1 in order for the pertur-

have terms of the form

bative expansion to be reliable, it is not sufficient to require that all the couplings
be small, but that all the factor g;In(¢>/u*) be small. In principle, it is always
possible to choose p in such a way that the logarithm is small, but it can only take
a single value. If we are interested in the potential over a range from ¢; and ¢,,
then we have to require that g; In(¢7/¢3) to be smaller than 1. However, in almost
all the calculation in which the one-loop effective potential is needed, the region of
field space over which we work is so large that g; ln(gzﬁ / qb%) ~ 1. Then we need of a
renormalization group improvement if we want that our loop expansion to remain
valid. Such a potential generated with the renormalization group theory, is usually
called renormalization group improved effective potential [36].

The renormalization scale p in the expression of the effective potential (2.105) is
arbitrary, and the effects of changing it can be absorbed into changes in the coupling
constants and field, i.e. considering g; = g;(¢t). The renormalization group equation
for the effective potential is nothing but the statement that V;;(¢.) cannot be
affected by the change in the arbitrary parameter p:

av
—— —0. 2.106
0 (2.106)
Moreover, being the effective potential a function of the couplings g; and of the field

¢., we can explicit Eq. (2.106) using the chain rule, obtaining the Callan-Symanzik

equation:
0 0 9 0 0
. —\v =0 2.107
(“_w + By, g P m gt ¢cva¢c) crp(de) =0, (2.107)
where we have defined doi(1)
gi\H
_ ) 2.108

The functions 3, are the beta functions that describe the changing of the couplings
with the energy in a theory. We have also defined

do. (1)
dp

Y ¢o(p) = p (2.109)

where + is called anomalous dimension. From Eq. (2.19) with ¢, = const. it is clear
that computing the n-th derivative respect to ¢, of Eq. (2.107), it is reduced to the

Callan-Symanzik equation for the 1PI Green’s functions.
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It is worth to note that the renormalization group equation is exact, and if we
know (3, v e 7, we can solve Eq. (2.107) exactly, and then if we known V,;, at a given
value of ¢, then we know it for all the value of ¢.. However, the functions 3, v and
Y are known only perturbatively as a power series of the couplings g;, and they do
not require small logarithms. Thus, by only assuming that the couplings are small,
the beta and gamma functions can be determined to the desired level of accuracy,
and solving the Callan-Symanzik equation we obtain an expression for V,;¢(¢.) that
is valid also if g; In(¢2/M?) is not less than 1, then extending the region of validity
of the potential.

Basing on dimensional grounds, we assume for the solution of Eq.(2.107) the

following form:

1 .

V;sz(géc) = 5 ( » 94y ¢cv )¢§ + ix(m279w gbcaﬂ) (bf:la

where m? has the dimension of a mass squared, while ) is dimensionless: this fixes
their dependence from the couplings m? and g;. In fact, m* have to depend linearly
on m?, so that it carries all the mass dimension and m* can depend on ¢, and
only by the ratio ¢./u. Instead X can not depend on m?, and being dimensionless
also it can depend on ¢, and p only by the ratio ¢./u. Then it is useful to introduce

the dimensionless variable

e
I

t=1In—< (2.110)

and write the potential as:

1~
i (m?, g 1) 6% + 7 Moist) 6 - (2.111)

N | —

Verp(de) =

Inserting this solution in the Callan-Symanzik equation, and writing it in terms of
the dimensionless variable ¢, we note that the ¢ and gbé‘ parts have to be separately

zero, so that we obtain the two differential equations for m?* and X

( — + 5 -+ 47) Xgizt) =0 (2.112)
0 0 0 9
- 2 o t) = 2.11
( &t 691 g +m /}/m9 2+ 7) ( » 945 ) 07 ( 3)
where we have defined
- 5o, Von v
- e oy o m 5T 2.114

The Egs. (2.112) and (2.113) can be solved using the method of characteristics,

obtaining for the potential:

Visslod) = mA (OGP 6 + OG04 (2.115)
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Figure 2.1: Left panel: Higgs running coupling constant, where we put in evidence
that for = 10" we have negative values for A(p). Right panel: sketch of the RGI
Higgs effective potential.

where

G(t) = exp (— Jt dt' 5 (gi(t'))) , (2.116)

v

while g;(t) and m?(t) are solutions of the differential equations

dg; dm?

dat By, (9:) g m* () T (9:) (2.117)

with boundary conditions ¢;(v) = g; and m*(v) = mJ (for instance, the measured
values of the Standard Model couplings and of the Higgs mass at the EW scale v).
See Appendix A for the expression of 3, , 7, and .

Once we know the beta and gamma function, we can solve (numerically) the set of
differential equations (2.117), and we note an important characteristic of the running
coupling constant A(u), i.e. at the scale p,g ~ 10" GeV it becomes negative as we
can see in Fig. 2.1. From the expression of the £, function in Appendix A it is clear
that this behaviour is due to the quark top contribution that presents the fermionic
characteristic opposite sign respect to the bosonic contributions. Moreover, being
linst the relevant scale of the problem and it is much larger that the EW scale
v ~ 246 GeV, it is clear that we can neglect the ¢ term in Eq. (2.115), and write
the RG improved Higgs effective potential as:

1

Viar(9) = {har(6) 6" (2118)

In particular, this behaviour of the running coupling constant A can be seen
in Eq.(2.118) as an instability of the Higgs effective potential in p,, and in the
presence of a second minimum at a scale of ¢ ~ 10*° GeV. Then it is of the great
importance to study the stability condition of the EW vacuum (where our Universe
sits) respect to this second minimum. This topic will be the main argument of the

next chapters.
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Chapter 3
Instanton physics and vacuum decay

Many of the phenomena that we find in quantum field theory are related to the
tunnel effect. The most known method for the study of the quantum tunneling is the
WKB method, based on semiclassical approximations, while for the generalizations
to the quantum field theories is useful to employ the path integral formalism. The
approach to the quantum tunneling with functional formalism is the base of the
instanton method [37-41] that is founded on searching the euclidean solution of
the equation of motion. The elegance of this method lies in the fact that once
the Euclidean formalism has been developed for systems with a finite number N
of degrees of freedom, the generalization to the context of quantum field theory is

immediate.

3.1 Tunneling in quantum mechanics

We consider a particle that moves in a one-dimensional space, subject to a potential

V(q) and having energy E, then described by the hamiltonian

2

_ P
7—[—2m+V(q).

We denote with g,,,, the point in which V' has a maximum, and with ¢; and ¢, the
classical inversion points, that are the points in which the potential V' (g) is equal
to the energy E of the particle, ' = V/(g;). Then in the region ¢; < ¢ < g, we have
E < V(q) and such points define a region of the space in which the kinetic energy

of the particle is negative, since the total energy E is less than the potential V'

EC?/!’L(Q) = F - V(q) <0 vq € [qu.IQ] :

The spatial interval [q;, ¢,] then defines the classical forbidden region.
Quantum mechanics says us that exists a non zero probability that a particle
which moves along a positive direction of the x axis, with energy E less than V' (¢,,42),

can cross the barrier. This classically forbidden motion is called quantum tunneling:
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Figure 3.1: Potential energy barrier.

the probability amplitude relative to the possibility of transmission is given by the
semiclassical approximation of the WKB method [37, 39-42]

() = exp { ~ [ VERIV@ ~ ] da} 1+ 0. (3.1)

Then we can say that the tunneling probability at the lowest order is proportional

B
to e 2 where we have defined the transmission integral

B—2 J " dg \2m[V g — B]. (3.2)
@
Being the kinetic energy negative in the forbidden region, we have q2(t) < 0, ie.
the particle moves with a canonical velocity ¢(t) that is imaginary in the classically
forbidden region. Such a velocity can be thought as the derivative of the canonical
position ¢(t) respect to an imaginary time 7 = —it. This observation suggests to
adopt an euclidean analysis of the problem doing a Wick rotation of the ¢ axis
and identifying t; = 7. It is worth to study the tunneling phenomenon in the
one dimensional case especially in two cases: the symmetric double well potential
problem and the metastable state problem [38, 39].

In the first problem, for which the potential is shown in Fig. 3.2, the quantum
states are degenerate. In fact the potential is characterized by two different ground
states, |L) and |R), localized in correspondence of both the two degenerate minima.
In quantum perturbation theory, this implies a spontaneous breaking of the parity
symmetry, but this is not possible because the spectrum of the Schroedinger operator
in this case is discrete and thus the ground state has to correspond to a symmetric
eigenfunction. This apparent discrepancy is solved by the quantum tunneling that
leads to a splitting of the energy level, and then the presence of a unique ground

state given by the symmetric combination of |L) and |R).
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Figure 3.2: Double-well potential.

Referring to the situation shown in Fig. 3.2, where the minima are in ¢ = +a and
the maximum is in ¢ = 0, if the barrier is infinitely high lim, 4 V(¢) = o (and then
impenetrable), then the potential is equivalent to those of two decoupled harmonic
oscillators with minima in ¢ = +a. In this case there would be two possible set of
harmonic oscillator eigenstates, localized in correspondence of the two minima and
the two ground states would have the same energy FEj,.

Instead if the barrier is finite, as in Fig. 3.2, neither of the two ground states
remain eigenstates of the hamiltonian because the possibility of tunneling couples
the potentials of the harmonic oscillators and this perturbation alters the eigenstates
of the system, creating a splitting of the energy levels. In particular, if £, < V(0)
then the symmetric and antisymmetric combinations of the two states |L) and |R)

will give rise to the hamiltonian eigenstates:
1
V2

where the factor that defines the splitting of the fundamental energy level is tied up

1+ (L) £[R))  Ey=E T, (3.3)

o | >

to the tunneling probability through the relation

5 eewfp [ Ve - B} (3.0

The two states defined through Eq. (3.3) are then states of the system with energies
more or less high compared to E|, and in particular the ground state of the system
is the state |+), i.e. it is the state given by the symmetric combination of the two
original vacuum states. Now, if for ¢ = 0 a particle is in the state |L), then at the

generic time ¢

St|e.

() = 4 | i+ 193]

V2
(R [ R ST (3.5)
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Figure 3.3: Potential with a metastable vacuum.

Then the system oscillates between the two states |L) and |R), and the oscillation

occurs with a frequency A, i.e. it depends from the tunneling probability amplitude.

At this point, we study the problem of metastable state, a phenomenon that can
occur when the potential describing a system presents one or more local minima in a
side of the barrier and an absolute minimum from the other side, as in Fig. 3.3 [39].
If the barrier were infinite, i.e. if the tunneling probability vanish, there would be a
set of discrete levels in a side of the barrier and a spectrum of energy levels thicker on
the other side. In the case of a finite barrier, in which we suppose that the classical
inversion points of motion are ¢; = a and g; = b, the possibility of tunneling gives
rise, as in the previous case, to a mixing of eigenstates of the hamiltonian, but in
this case the tunneling probability is high as the system will tend to decay towards
the absolute minimum, called true vacuum, of the potential. In the limit in which
the width of the absolute minimum is infinity, it can be proved that if the system
is initially in the state |L) (with reference to Fig. 3.3, the particle is located in the
relative minimum ¢ = a with energy E = 0) the probability amplitude (L|¢(t))

that, at the time ¢, the system is still in this state decays exponentially with the
time, where the exponent is in turn proportional to e 2/?". The state |L) is called
metastable state and it is not an eigenstate of the hamiltonian. Moreover, it will

have a complex energy E, whose imaginary part defines the decay amplitude of the
state

Im[Ey] =

no | H

. (3.6)

In fact the potential analyzed can be seen as the analytic continuation of a potential
with a single minimum in ¢ = a that constitutes the ground state of the system [39],

and then the complex energy can be interpreted as the analytic continuation of the
real energy associated to this state.

52



3.2 Tunneling with functional formalism

The WKB method turns out to be quite effective for the description of the phe-
nomenon of tunneling in the context of quantum mechanics, but to extend the
treatment to the context of quantum field theory it is easier to use the functional
formalism of the path integral [43].

Let us see how to treat, in general, a one dimensional quantum system given by a
particle with mass m, without spin and subject to a potential V' (q). Using the path
integral formalism, the probability amplitude that the particle is in the position g;
at the initial time ¢, = —77/2 and that it is revealed in the position ¢, at the final
instant t; = +7°/2, is given by the functional integral

{ap; +T/2lq;; ~T/2) = {gsle” "M |g;) = NJDQ(t) exp {%S[q(t)]} (3.7)

where N is a normalization factor. Performing the Wick rotation (f = —i7) the

functional integral becomes

o #7120 ~T/2) = Cple 07l = [ Datryexp {1 8ila(rl} 69

where Sg[q(7)] is the euclidean action, given by

4T
Sela(r)] = [ |+ v ar, (39)
2
and the dot denotes the derivative respect to 7. In other words, in Eq. (3.7) we do
the substitutions ¢ — —i7 and S[q(t)] — iSg[q(T)] with Sy defined by Eq.(3.9),
to obtain Eq. (3.8). Moreover, Eq. (3.9) says that using the euclidean formalism is
equivalent to study the motion of the particle in a potential —V'(q).

Since we want to determine the transition amplitude A(|g;; =T/2) — |q4;T/2)),

the path ¢(7) which is followed by the particle will respect the conditions

q(=T/2) = ¢ q(+T/2) = qy, (3.10)

and then the functional integration in Eq. (3.8) have to be extended to the functions
that respect such conditions.

Moreover, the euclidean formalism is useful also to obtain information on the
ground state of the system: the matrix element in the left hand side of Eq. (3.8) can

be expanded using the orthonormal complete set of eigenstates |n) of the hamiltonian

~

H

0

{ap: +T/2la5; ~T/2) = (aple "™ gy = 3 e 7T (q |n)(nlq;). (3.11)

n=0
In the limit 7" — oo this amplitude is dominated by the terms corresponding to the
energies F,, that are smaller. In particular, if Ej, is the energy of the ground state
10): - . 1
1 1 3
{agle™ ™ gy == e 70T gs[0)0]g;) - (3.12)
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In other words, in this limit we can approximate

(s +T)20q5 =T/2) ~ g (g)e 7 (3.13)

In this way, determining the path integral in Eq. (3.8), we can obtain information
on the energy of the ground state and on its corresponding wave function y(q).
Now we see how to determine the path integral in Eq. (3.8) in the semiclassical
limit, that is expanding the action around its minimum. We consider the “stationary
path”, i.e. the path that minimizes the euclidean action (3.9), and that then is the

classical solution g(7) of the euclidean equation of motion

0Sxlq] dV (q)
dq(T) dgq

The generic path is given by ¢(7) = q(7) + n(7), where n(q) is the quantum fluc-

=0 = —mg(T) +

—0. (3.14)

tuation around (7). Since all the paths must have the same extrema, it will be
n(£T/2) = 0. At this point, we expand the euclidean action around the classical
solution ¢(7):

2
Sela(r)] ~ Sela(r)1+ 3 [0(r) |55 508 e =) w(ryarar. @
q(7)=q(7)

The term in square brackets in Eq. (3.15) is called Quantum Fluctuation Operator
St[q(7)], and it is obtained from the second variation of the euclidean action. To
compute this operator we write the generic path as ¢(7) = ¢(7) + An(r) with n
subject to the constraints seen above. Now we can see the action as a function of A,
S = Sg(A). Computing the second variation of the action around its minimum is

now equivalent to compute the second derivative of Sg(A) in A = 0. Then

Sy (= oLy, Ly .
) _J_TdT(aq T2 )

=
2 A=0
&Sy [ PLy , Ly Ly
(7, ) . .
ot = [ (G2 G G )|

From now on we omit to specify that the partial derivative are computed in A = 0

to lighten the notation. Integrating by parts:

d2SE :fg dT 82£E 772—‘[_ aQEE n2 2 _JT dTi aQEE T]Z
d\? _r o¢° 0q0q " |z ) dr \ 0qdq

. PLy _J 4 d (L .

Remembering that n(+7/2) = 0 and computing the derivatives of Ly we obtain:

N

|

N

T
2

& d*Viq

d*Sp
d)\?

A=0
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Then:

Sla(r)] = [%f;q[f]) s(r Tl)hﬂ_qm
_ K_mdd_; + dzg‘-’)) 5(r — T’)L(T)_q(ﬂ . (3.17)

In this approximation, i.e. up to O@(n®), being n(r) = ¢(7) — §(7), we have that
the path integral in Eq. (3.8) is

2
a? V(g

—L (dr n(0) -m<L T
JDC](T) e #5ell L =7 5pla)] JDQ(T) ;T )< CET >qn( g (3.18)

Now we can do a change of variable ¢(7) — n(7) (with jacobian equal to 1)

3 tdr o et L V@Y
JDC](T) e~ Srli] o o7 Sslar)] JDU(T) )( " al >‘7n( g (3.19)

To complete the computation of the path integral in Eq. (3.19), we have to find the
eigenfunction 1, (7) and the eigenvalues A, of the Quantum Fluctuation Operator

solving the equation

dr? dq2

(—m 44 wg)) n(7) = A thn(7). (3.20)

If we expand the quantum fluctuation n(7) in terms of the eigenfunctions v, (7), we

obtain

n(r) =detn(r) = q(r) = q7) + D cath(T) . (3.21)

Obviously, the eigenfunctions ,(7) are a complete orthonormal set. Moreover,
we know that the generic path ¢(7) of the particle have to respect the boundary
conditions in Eq. (3.10), and in particular the classical path, solution of the classical
equation of motion (3.14), has to respect such conditions: as a consequence, from
Eq. (3.21) we conclude that the eigenfunctions v, (7) of the Quantum Fluctuation

Operator have to vanish in 7 = +77/2 (38, 39]. In conclusion, we have:

U (£T/2) =0 an(T)wm(T) dr = 6,,, . (3.22)

Once we write the quantum fluctuation 7(7) as an expansion of the eigenfunctions in

Eq. (3.21), we can substitute such expansion in the exponent of Eq. (3.19), obtaining

1 & d*V(g)
i ) 477 (i + ) i) =

1 1 2
=5 | (; cm¢m(7)) (Zn: )\ncnwn(T)) = ﬁZ)\ncn (3.23)

n
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Figure 3.4: Potential of a single well.

where in the last step we have used the orthonormality of the eigenfunctions v,,(7)
given in Eq. (3.22).
Then being 77( ) = Z n@bn( ), we can do another change of variables: {n;(7)} —

/(7). In conclusion (a part an irrelevant

Jacoblan factor that can be included in the normalization factor A'), we obtain:

E];[dqi H\/ﬁ

As a consequence, the path integral in Eq. (3.19) becomes:

e ar n(r)(—m%+# ()
Dy(r)e ™ ar " dg J “atnln 3.24
f n(7) H \/ﬁ (3.24)

Then if the eigenvalues \,, are positive for all n, we have:

"

— o= {dr n(r) fmi+d V(Q) _1 1
fpn(f) e ™ ( ) =] [An? = [det(S5(q))] 2 (3.25)
where in the first step we have used the gaussian integration. In conclusion, going
up the chain of equality up to Eq. (3.8), we obtain the transition amplitude in the

semiclassical approximation:

-

{agi +T /2005 =T/2) = agle gy = Ne Wl [det(Sh(@))] > (3.26)

A very simple case to study with the functional formalism is the potential with a
single minimum in ¢ = ¢, for which we suppose for simplicity V(g,) = 0, as shown
in Fig. 3.4. Taking the boundary conditions ¢; = ¢; = gy, the unique solution of the
equation of motion in Eq. (3.14) is the trivial solution ¢(7) = ¢o. For this solution
it is obvious that Sg = 0. Thus, from Egs. (3.26) and (3.17) we have that

[N

<q0|67%HT|qO> = N [det(—m 7 + mw?)] (3.27)
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where we have denoted w? = V”(g,)/m (the prime denotes the derivative respect to

q). For large values of T, it can be proved that [3§]

N [det(—ma? + mw2)]_% = 4 /% e T (3.28)

Comparing Eq. (3.13) with Eq. (3.27) with the help of Eq. (3.28), we obtain that the
energy of the ground state E, and the corresponding eigenfunction v, are exactly

those of a one dimensional harmonic oscillator:

By=gho (0P = /™2 (329)
wh
The detailed computation of Eq. (3.28) is referred to Appendix B.

In particular, in the case of the harmonic oscillator potential %mw2, the param-
eter w coincide with the frequency of the oscillator. Moreover, when we expand a
generic potential V' (¢) around its minimum g, at the lowest order, this is reduced to
the potential of an harmonic oscillator: this is the second order, since the zero order
term V(qy) vanish by hypothesis, while the first order term V'(q,) vanish because

Qo 1s a stationary point.

3.2.1 Application to the double well potential and instantons

Let us apply the results seen in the previous subsection to the symmetric double
well potential which was presented in the introduction of this chapter and shown in
Fig. 3.2. In particular, we recall that if ¢ = +a are the minima of the potential then
we assume V' (+a) = 0 [38, 39].

Moreover, if we specify a shape for the double-well potential, we can also find a

solution of the classical equation of motion (3.14):
V(g) = M¢* — a*)*. (3.30)

The vantage of using a specific expression for the potential as the one in Eq. (3.30) is
that the determinant in Eq. (3.26) can be computed explicitly. With this potential
we have

1 B 8\a? 9

" =4 2 2 — V" (+ = .
V7 (q) = 4X(3¢" — a”) = mV (+a) p- w

Multiplying the classical equation of motion (3.14) for ¢ we obtain:

. dV(q ..o omd . .dV (q dg dV (q d
mq:% - mqq:?E(f:q%:E%:Ev@
md o d 1 5
ety SN - = 31
5 7.4 dTV(Q) = 54 Vig) +c (3.31)
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Figure 3.5: Instanton solution with centroid 7, between the minima —a and a. In

the example shown in figure, the centroid is taken in 7, = 0.

In particular, with the boundary conditions that we will use, it is ¢ = 0. Thus,
the result of Eq. (3.31) says us that the solutions to the classical equation of motion

correspond to solutions with vanishing energy:

1
E= émQQ ~V(g) =0. (3.32)
Substituting the expression (3.31) in the euclidean action (3.9), we obtain:
T/2
Selq] = J mq® dr . (3.33)
~T/2

Solving explicitly the classical equation of motion with appropriate boundary con-

ditions, we can have three kinds of solutions:

e the particles remains trapped in one of the two minima , so that the boundary
conditions are ¢(—T/2) = q(T/2) = a or q(=T/2) = q(T/2) = —a. In such a

case, the solutions are respectively ¢(7) = a and ¢(7) = —a for every T;

e The particles leaves the minimum —a to reach the minimum a, so that the
boundary conditions are ¢(—7/2) = —a and ¢(T/2) = a. In particular, this
solution is called instanton. We can also have the situation in which the
particles leaves the minimum a to reach the minimum —a. In such a case the
boundary condition are ¢(—7/2) = a and ¢(T/2) = —a, and the solution is

called anti-instanton;

e the particles oscillates between the two minima.

To obtain the solution of (anti-) instanton, we insert the explicit expression of the
potential in Eq. (3.32):

, 2 a g 2\ (7
(=t -q) < = J . qq2=i\/gf dr,
0 - T,




where ¢; is the solution of (anti-) instanton, corresponding to the sign (—) +, while
7. is called centroid of the instanton and it is the point in which the instanton vanish.

In conclusion, having defined w? = 8\a* /m, we obtain:

T—00

q,(T) = fatanh [%(T — TC)] — > +a. (3.34)

Let us compute the probability amplitudes using Eq. (3.8): first, we compute the
persistence amplitude <a|67%HT|a> = <—a|67%HT| — a), that is the probability am-
plitude that the particle, starting from a minimum, after a dynamical evolution in

an euclidean time 7' continues to be found in the starting minimum:

I, = (ale HT|ay = A J Dy(r) exp {—%SE[Q(T)]} | (3.35)

The boundary conditions will be ¢ (—=T/2) = ¢(T/2) = a: the only solution to
the equation of motion (3.14) with these boundary conditions is the trivial solution
G(T) = a. Moreover, it is evident that Sg[a] = 0: in other words, we are in the
same conditions of the single well potential and the amplitude (3.35), once defined
w® = V"(+a)/m, is given by Eq. (3.28)

1 mw\1/2 _1,

I = N [det $"(a)]? = (—> o2 (3.36)
mh

Now we compute the transition amplitude <a]e_%ﬁT| —ay = <—a|e_%ﬁT\a>, that

is the probability amplitude that the particles steps from a minimum to another

after a dynamical evolution in a time 7T

I —dale ™| — gy = N J Da(r) exp {—%SE[qm]} | (3.37)

In this case, the boundary conditions are given by ¢ (—71/2) = —a and ¢ (7'/2) = a.
The euclidean action computed in the (anti-) instanton solution (3.34) is finite and
it is given by Eq. (3.33):

T
+Z 3

S;=Slgl =  middr = 2=

3 Tax - (3.38)

The detailed computation of Eq. (3.38) is referred to Appendix C. This result is
particularly worth as it put in evidence the translation invariance of the action S;,
i.e. the fact that it is independent from the centroid 7, of the instanton.

Applying Eq. (3.26) we obtain:

L = N e+ [det S”(q1)] 2 . (3.39)

However Eq. (3.26) was obtained in the hypothesis that the eigenvalues of the op-
erator Sz(q) were all positive: in the double-well case it is possible to demonstrate

that we have a zero mode, i.e. an eigenfunction of the operator with zero eigenvalue.
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Then, the determinant gives a divergent factor and, in conclusion, this expression
for I, is wrong.

We can easily demonstrate that the zero mode of the operator Sz (q;) is given by

Yo(r) = N7V chfl—f) (3.40)

where N is a normalization factor. Being y(7) a zero mode, it will be solution if
the equation

[—mdd—; + V”(QI)] o(T) = 0, (3.41)

that is Eq. (3.20) with Ay = 0. To demonstrate that 1y(7) in Eq. (3.40) is a zero
mode of the Quantum Fluctuation Operator it is sufficient to see that ¢; is solution
of Eq. (3.41):

& d . (dg d
M = ™M= dg

) V) = ), (3.42)
where in the second step we have used the chain rule to write the derivative respect to
7 as a derivative respect to ¢, and we have used the equation of motion mg, = V'(q;).
The factor N can be determined normalizing 1,(7) to 1, and then computing the

integral:
T/2

N = i2dr = (3.43)
T/2
where in the last step we have used Eq. (3.38). In conclusion, the zero mode is given
by
m dqp
S[ dT ’

Now, we see how to treat this zero mode in the functional formalism: as in Eq. (3.21),

Yo(T) = (3.44)

we expand the quantum fluctuation in the base of the eigenfunctions of the Quantum

Fluctuation Operator
g(r) = qr(7) + (7 ) + ch% , (3.45)

supposing (without lost of generality) that the zero mode is the eigenfunction with

= (0. Then, when we integrate over the corresponding c,, we do not have the
gaussian factor in the integral: the axes ¢y in the space of the coefficients c,, is called
flat direction.

If we vary the coefficient ¢y, we have a variation of ¢(7) given by:

6q = 1o(T) 0cy -

On the other hand, a variation of the centroid 7, induces a variation on ¢(7):

59 oqr . St
dq 57_ —0T, 557} = P (1) T,
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where in the last step we used Eq. (3.44). Comparing the two expressions for dq, we
obtain the jocobian factor for the change of variables ¢, — 7, in the integration over
the flat direction, |dcy/drt,| = 4/S;/m, that is:

dCO . S[ dr
Norh N 2rnhm ¢

In this way, the integration over the zero mode is substituted by an integration over

(3.46)

the centroid 7,.: in other words, 7, is promoted to dynamical variable, called collective
coordinate, over which we integrate. Regarding the other directions cy, ¢y, cs, ...,
called gaussian directions, these do not cause problems and then the integration
over these variables continues to give the product of the eigenvalues A,, for n > 1.
In conclusion, the integration over the flat direction gives a factor 71" times for
the pre-factor in Eq. (3.46), while the integration over the gaussian directions gives
a factor [det’ S};(ql)]_a, where the prime in the determinant denotes that this is
computed excluding the zero eigenvalue A\, from the product of the \,,. With this

treatment of the zero modes, Eq. (3.39) becomes

S] Y2 lg ! oan -1
Iinst =NT (27rhm) e n [det S (QI)] i
If we now define )
St V2T det! S"(qr)] ®
K = 3.47
<27Tﬁm> det S"(a) ’ (3.47)

the transition amplitude becomes
Lye = N KT e %5 [det S"(a)] "/ (3.48)

Obviously, the factor A[det S”(a)]™"/? is still the determinant of the one-well po-
tential, and then is given by Eq. (3.28).

In addition to the contribution in Eq. (3.48), we have to consider also the contri-
butions of the quasi-solutions given by the multi-instantons, i.e. by configurations in
which we have n alternating solutions of instanton and anti-instanton well distinct
from each other, as shown in Fig. 3.6. To obtain these conditions we have to apply
the dilute gas approxzimation. For large values of 7 the instanton ¢;(7) tends to a:

then, the instanton equation (3.31)

dq 2V (q)

dr m

can be approximated expanding the potential V' (q)

Z—z = V—@ (q(1) —a). (3.49)

m

Being w® = V"(+a)/m, we can solve the differential equation obtaining:
q(t) ~a—e 7. (3.50)
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Figure 3.6: Multi-instanton solution, in which we have n instantons and anti-
instantons alternating and distinct between them, as established by the dilute in-

stanton gas approximation.

Such a behaviour shows that the size of the instanton is of order w™'. Then, to have
an instanton/anti-instanton solution as the one shown in Fig.3.6 it has to verify
that w™'

that comes from the quasi-solutions of the dilute instanton gas approximation, we

« T. In particular, once we compute the contribution to the amplitudes

will see that such a contribution is even the dominant one, although it comes from
approximate solutions.

In this configuration with n alternating instantons and anti-instantons, we denote
with ¢, (7) the corresponding quasi-solution: the action is simply given by n times
the action S; of the single instanton S(g,) = nS;. Concerning the determinant, we
consider the time evolution operator ¢ 17T as the product of operators describing
the evolution of the system in time intervals of the order w™' centered in 7y, i.e.
in the centroids of the instantons/anti-instantons: if it were not for these small
intervals around the centers of (anti-) instantons, V" would be always equal to w?,
and the result for the determinant would be given directly from Eq. (3.28), that is
it would be as if the system were trapped in a single minimum [38|. On the other
hand, each of these intervals containing an (anti-) instanton involves a correction by
a factor K to the contribution of Eq. (3.28): then, we have

1
_ mwyz _w
[det’S" (q,,)] V2 (—)2 e 2 TK™. (3.51)
mh
Also in this case, the prime denotes a reduced determinant computed only on the
non-zero eigenvalues. In fact, every (anti-) instanton, in addition to contributing to
the K correction, contributes to the calculation of the amplitude also with a zero
mode: we can introduce a collective coordinate 7; for each (anti-) instanton
T T

__<7—1<7-2<...<7- < —.
2 "2
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Finally, integrating over all the collective coordinates 7;, we obtain the factor:

T/2 -T2 T/2 Tn
J dTl f dT2 f dTn = —' . (352)
n!

_T/2 T Tn—1

Putting together all these factors, we obtain that the contribution of the configura-
tion ¢, (7) with n alternating instantons and anti-instantons is given by:
I, = (Wf 3T s pen L (3.53)
wh
Since for n = 1 Eq. (3.53) has to reduce to Eq. (3.48), we conclude that the correction
factor K is exactly given by Eq. (3.47).

Now we can compute the total contribution to the amplitudes <a|e*%gT|a> and
<a|e_%HT| —ay. To this end, it is important to remember that an instanton describes
the transition from the minimum —a to the minimum a, while an anti-instanton
describes the opposite transition, from a to —a: it is then clear that to have an
effective transition from a minimum to the other, we need to consider a configuration
with an odd number n of (anti-) instantons, while to have a permanence in the
starting minimum, we need to consider a configuration with an even number of
(anti-) instantons. In other words, the transition amplitude is given by the sum over
all the odd n of the contribution [,,, while the persistence amplitude is given by the
sum of all the even n of I,:

(ale | —ay = (~ale " T|ay = Y I, =

odd n

L 1/ n ooy 1
— (@) e 2T Z - (e_ﬁSIKT> = (@) e 27 sinh <6_5S1KT) (3.54)
mh odd n n! mh

(ale T |ay = (~ale™ 3| —ay = Y I, =

1 w 1 n 1 w 1
()7 B () = () e e (k) o

where in the sums over n we have simply recognised the Taylor expansion of the
hyperbolic functions.

Let us see that the contribution to the probability amplitudes that arises from the
diluted instanton gas approximation is the dominant one: in fact, this approximation
is valid only where the density of the instantons n/T is sufficiently low. In an
exponential sum Y y"/n!, the dominant contribution comes from the terms n ~ y,
so that the dominant contribution in Egs. (3.54) and (3.55) comes from the terms
noo Ke_%sf = n < KTe_%S’ .

T
This expression says us that, for small A4, the dominant terms are those for which the

density of (anti-) instantons n/T is exponentially small, and then when their average
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separation is very large. We note as this average separation between the (anti-)
instantons is independent from T: the dilute instanton gas approximation is then
a good approximation for small i and the condition for its validity is independent
from T, as long as T is large enough [38].

To conclude the study of the double-well, we now see how to apply the probability
amplitude computed in this subsection to obtain the ground state of the system and
its first excited state. To this end, it is useful to write Egs. (3.54) and (3.55) in a

unique equation:

<ia\6_%ﬁT\ —ay = <m_;;> PesT % [exp (—FKTG_%SI) F exp (—KTe_%SI)] :
" (3.56)
We denote with |+) e |—) the combinations, respectively, symmetric and e anti-
symmetric of the two states of harmonic oscillators |L) and |R) localized at the two
minima: as we know, |+) and |—) are eigenstate of the hamiltonian, on the contrary
of the two state |L) and |R). In particular, they are the two eigenstates with the
lowest energy levels (ignoring that without the penetration barrier they becomes

degenerate):
1
V2

For T sufficiently large, we can neglect all the contributions that come from the

)= 7= (L [R). (3.57)

eigenstates with higher energy, and then we can write:
(xale” 17| — a) = (tal+)(+] — aye T+ T 4 (|-}~ — ape #P-T . (3.58)

Clearly {a|+) = +(—a|%), and we have also [(a|+)| = [{a|-)| for very large T.
Then:

(Hale 17| = a) = [(al+)? (e7H5T 7 e HETY (3.59)

Comparing Egs. (3.56) and (3.59) we find the lowest energy levels E, :

i
B, = — FhKe w51, (3.60)

2
that, once we compute the determinant in K (see Appendix C) is the same result
in Eq. (3.3) that is obtained with the WKB method.

3.2.2 Application to the decay of a metastable state and
bounce solutions

Let us study the decay of a metastable state, that is the state of a system in which

we have a potential V' (¢q) that presents a local minimum in ¢ = a, as those shown

in Fig.3.7. We suppose also in this case that V' (a) = 0. If we consider a dynamical

evolution in a time 7', most of the results obtained in the previous subsection can
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Figure 3.7: Potential with a metastable vacuum. In the example shown in the figure
we have a = 0. In addition to the minimum a, we have another point b in which

the potential is zero, called classical motion inversion point. The dashed potential
corresponds to the euclidean potential —V'(q)

be immediately reapplied: for instance, the classical euclidean equation of motion is
still given by

(3.61)

Again, from the equation of motion we obtain that their solutions corresponds

to solutions with vanishing energy F = 1/2m¢* — V(¢q) = 0, from which it follows
that the euclidean action is given by:

mq® dr.

Sglal = JT/2

(3.62)
T/2

This time, solving the classical equations of motion with the boundary conditions,
we have two kind of solutions:

e the particle remains trapped into the metastable minimum, so that the bound-

ary conditions are ¢(—7/2) = ¢(T/2) = a. In this case, the solution is given
by ¢(7) = a for every time T;

e The particle leaves the minimum a to reach the classical motion inversion
point b, also called turning point.

Since in a we have £ = 0 and in b we
have V' (b) = 0, for the conservation of energy it is clear that in b it is ¢ = 0.

As a consequence, once the particle reaches the turning point b it can only
return in the metastable minimum a. Then the boundary conditions are again
q(=T/2) = q(T/2) = a, so that to these boundary conditions correspond an-
other classical solution in addition to the trivial one, contrary to what happens

with the double-well. This solution is called bounce solution g,(7) and is shown
in Fig. 7.1.
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Figure 3.8: Left panel: bounce solution. Right panel: multi-bounce solution.

Then, this analysis allows us to conclude that the only probability amplitude

that we have to compute is given by:
(ale T qy — NJDq(T)e-iSE[‘ﬂ (3.63)

with boundary conditions ¢(—7/2) = ¢(T/2) = a. The amplitude in Eq.(3.63),
in addition to consider the contribution to the classical solutions, also takes into
account the multi-bounce solution shown in Fig.7.1. In this case, we do not have
restrictions on the number n of bounce, so that summing over all the contributions

we obtain an exponential rather than an hyperbolic function:
; _1
<a|e_%HT\a> = N [det §"(a)] % exp [KTe_%SE[qb]] =
= (%) PesT exp [KTG_%SE[%]} (3.64)
since the determinant computed in the trivial solution is still given by Eq. (3.28),
and also in this case we define w® = V" (a)/m.

In the limit w7 >» 1, in a similar way to the case of the double well, it is possible

to extract the value of the ground state energy E,: in fact in this limit we have

(ale” "1 |a)y = (alghp)bo|aye #E0T . (3.65)

In conclusion, comparing Eqs. (3.64) and (3.65), we have:
1 1
Ey = hw - hE e~ n9pln] (3.66)

However this time the corrective factor K due to every bounce is not given by
Eq. (3.47). In fact, first of all we note that, respect to the result obtained with the
WKB method, we lost a factor 1/2 in the second term of Eq. (3.66). Moreover, it
would not be possible to have a decay: since in the case of a metastable state the
decay rate is given by I' = 2ImE,, if the expression of K were given by Eq. (3.47),
then E, would be real and therefore I' = 0.
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Figure 3.9: Left panel: family of functions parametrized by their stationary point c.

Right panel: behaviour of the action in function of ¢ [39].

In fact, for a potential which presents a metastable vacuum it is necessary to take
into account some devices regarding the factor K, which will be a pure imaginary
quantity. First of all, following the same argument that gives Eq. (3.44), we have to

note that the Quantum Fluctuation Operator has still a zero mode:

dolr) = \/?b (). (3.67)

where Sy, is the action in Eq. (3.62) computed in the bounce solution g,(7). We denote
with 7 the euclidean instant of time in which the particle reaches the turning point b.
Having found that dg,/dm = 0 in the turning point b, i.e. for 7 = 7, we conclude that
correspondingly the bounce solution has a maximum. However, precisely because
the bounce solution has a maximum in the turning point dg,/dr = 0, from Eq. (3.67)
we conclude that the zero mode 1),(7) has instead a node corresponding to this point.

Now, for the operator Sz[q,] the lowest eigenvalues corresponds to an eigenfunc-
tion without nodes, the successive eigenvalues corresponds to an eigenfunction with
a node, and so on [39]. This property, precisely because the zero mode has a node,
allows us to conclude that there must be an eigenfunction without nodes, with an
eigenvalue lower than A, = 0, that is a negative eigenvalues [44].

To understand the origin of these negative modes in a qualitative way, we consider
the family of configurations shown in the left panel of Fig. 3.9. We parametrize these
configurations through their stationary point (maximum) c¢. The path with ¢ = b
corresponds to the bounce solution, while the one with ¢ = a corresponds to the
trivial solution ¢(7) = a.

The trivial solution and the bounce solution, being the only solutions to the
equations of motion, are the only configurations of this paths family that are sta-
tionary for the action Sg[q]: the trivial solution is a local minimum for Sy(c), since
for a small variation dq(7) the kinetic energy, as well as the potential one, acquires
a positive increment. Then, when ¢ increases from 0 to one of the values corre-
sponding to these variations, the total action can only increase monotonically until
it reach the bounce. Since this is the only other stationary point, then it have to be

a maximum for the action Sg(c). Thus, when ¢ further increases, the configurations
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Figure 3.10: Contour in the complex plane over which we solve the integral over the

negative mode [39].

begin to stay "for more time" in the region with negative potential energy, so that
the action decreases monotonically.

As we know, our path integral is an integral over infinite dimensions, but the
only problematic integration is the one over the coefficient of the negative mode.
We can see how to treat this integration considering the similar integral

+00

d

J = f \/2% e 5% (3.68)
-0

where S(c) is the function just described and is shown in the right panel of Fig. 3.9.

When ¢ — —oo the action increases and the integral converges. On the other hand,
when ¢ — oo we have that S(c) — —oo and then the integral diverges. The solution
consists in using the analytic continuation to the complex plane: the key observation
is the fact that the potential with a metastable state in ¢ = a can be seen as the
analytic continuation of a potential with a global minimum in ¢ = a. For this last
potential, the minimum corresponds to a stable state with a well defined real energy,
and the integration over c¢ gives a finite integral. In our case, there are no stable
states localized around ¢ = a and the integral over c is not well defined. It becomes
well defined when we deform the integration contour for the variable ¢ from the real
axes to the complex plane, as shown in Fig. 3.10.

The integration from —oo to b is clearly real. The imaginary part comes frm the

remain contour: using the steepest descent approximation we obtain

ImJ — Im ( f exp {_ [%s + oSt~ bﬂ} jQZTh)

1 1 _
=3 e 7 [det Spla]] 7 | (3.69)

D=

where the factor 1/2 is due to the fact that the contour involves only half of the

gaussian peak. Taking into account this factor, the new factor K is given by:

i | S, [det’ Sgla]]
K =— . 3.70
2 \V 2rhm [ det Spla] (3.70)
Then, from Eq. (3.66) we obtain the decay rate:

Sh [det’ Sg[%]]_
2rhm | det Splal

D=

D=

I =2ImE, = e % (3.71)
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We note that this result is obtained supposing that V' (a) = 0. In general case in
which V(a) # 0, defining B = S, — S(a), we obtain

[ B [det’ Spla)]7* 15
I = b 3.72
2mhm [ det Spla] ‘ (3.72)

Specifying the potential V' (q) we can also compute the determinant factor in a way

similar to the one seen for the double well case.

3.3 Quantum tunnelling in systems with N degrees

of freedom

Let us generalize the results seen in the previous subsection to a discrete dynamical
system with N degrees of freedom. We introduce the N-dimensional vector q =
(q1,---,qn) which has as components the generalized coordinates ¢; associated to
every degree of freedom of the system. The lagrangian describing this system can

be written in a compact way as:

1y 1.
L= ;mqf — V(g qn) = §mq2 —V(q). (3.73)

The extension of the WKB method to the case of a system with N degrees of freedom
is based on the search of the most probable escape path (MPEP) [39, 45, 46]: in fact,
to study the tunnelling from a local minimum of the potential, it is not sufficient to
know the probability amplitude to pass through the barrier, but also the preferential
point in which the particle emerges from the barrier in the classically permitted
region. In fact the barrier, being multidimensional, can be crossed in any direction.

Every possible path through the barrier can be parametrized by a curve q(s),

where the parameter s is defined by the relation:

N 2
(ds)? = ; (%m) = (dq)*. (3.74)
If we choose s; = 0, the initial condition for the path q(s) is given by q(0) =
qo: in this point, the potential V(q) is equal to the energy of the particle £ =
V(qy). Instead the final point q; = q(s;) is not univocal, since it depends from the
particular path. The generic P(qy — ¢;) = q(s), once parametrized in this way,
constitutes a one-dimensional trajectory for which the correspondent transmission

integral can be defined, similarly to the one dimensional case:

Bl -2 emVia - Elda -

BP] =2 L L am[Vials)] = ] ds (3.75)
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where we have used Eq.(3.74). Then the MPEP is the path that minimizes the
transmission integral B[P] in Eq. (3.75). In conclusion, following the WKB approx-
imation, the tunneling amplitude will be given by Ae*%, where B is precisely the
transmission integral (3.75), while A is a parameter to be determined.

In particular, to minimize the integral B[P] it is useful to use the lagrangian
formalism. According to the Jacobi principle of classical mechanics, assigned a
physical system described by the lagrangian £ introduced in Eq.(3.73), the path
q(s) : qy — q; that minimizes the integral

- L L 2m E = Vials)] ds

provides the solution to the equations of motion

1
5m(f +V(q)=E. (3.76)

Instead, according to the Hamilton principle, the same solution can be found mini-
mizing the action that describes the system:

Sla] - J £(q, a)dt = J [%mff - V<q>] dt (3.77)

with the boundary conditions q(ty) = qq e q(t;) = q;-
This result suggests that the path which minimizes the transmission integral
B[P] given in Eq. (3.75) can be obtained as solution that minimizes the following

action: .
T
Selq] = f [quQ - V(q)] dr (3.78)
7o
which is nothing but the euclidean action obtained performing a Wick rotation 7 = it
(from now on, the point denotes a derivative respect to 7, and not respect to t).
Applying the Hamilton principle to Eq. (3.78), i.e. finding the stationary points of

the action S, we obtain the euclidean equation of motion:
mq(7) = VV(q). (3.79)

If q(7) is the general solution of Eq. (3.79), multiplying for q and following a similar
argument to the one of Eq. (3.32) (this time we have E = V(q) # 0), we obtain:

Smi = V(a)~ B = V(a) - Viay). (3.50)

Then, we can compute the euclidean action in the solution q(7) of the equation of

motion:
Selal = | 20V(@) - Vi@ dr + [ Viaar -
= F (m&®)?\/2[V(@) — V(gy)] dr + J N V(qy)dr =

70 70

Tf

-| VIl — Viag)] ds + [ v, (3.81)

0 To
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where in the last step we have used Eq. (3.74) for the change of variable in the first
integral. This equation put in evidence the relation between the euclidean action
(3.78) and the transmission integral (3.75):

Selal = 3817 + | Viadr. (3.82)

7o

In the case of a double well potential, as we know, the transition amplitudes are

characterized by an instanton solution, whose transmission integral according to
Eq. (3.82) is given by:

L BP] = 55la] ~ Selay]. (359
In the case in which we have a tunneling between a local minimum q, and a turning
point q; that is not a minimum of the potential, the turning point q; = q(7) is
reached in the time interval [—oo, 7], where T is the euclidean time for which the
first derivative of the solution vanish, q(7) = 0, as the velocity of the particle vanish
in the turning point (classical inversion point of the motion). Since the lagrangian
is invariant under time reversal transformations, the solution can be continued in
such a way that the path ends in q(o0) = q,, and correspondingly the euclidean
action is doubled. Then to the solution to the equation of motion, i.e. the bounce

solution, corresponds the transmission integral

B[P] = Sgla] — Selao] - (3.84)
In conclusion, the bounce corresponds to a path that origins in the local minimum

qy, continues to the turning point q; = q(7), and ends in qj.

3.4 Quantum tunneling in QFT

The description of the quantum tunneling through functional formalism is useful
because it can be easily generalized to the case of continuous dynamical system, i.e.
a system with infinity degrees of freedom, and then in the contest of a quantum field
theory.

In the transition to the continuum limit, the N- dimensional configuration space
of the generalized coordinate ¢;(t) is substituted by an co-dimensional configuration
space, and then the generalized coordinates ¢;(t) become continuous functions ¢,(x)
in space and time.

The transition to the continuum limit, as we will see, implies the presence of
additional zero modes. Regarding the negative modes we have seen that in the
instanton case (double well problem) there are no negative modes, while in the case
of the bounce solution (decay of a metastable state) the presence of a negative mode
is related to the fact the path is extended to the classically permitted region, and

this is due to the instability of the local minimum state in ¢ = a. The instability of
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Figure 3.11: Scalar potential with two non-degenerate minima [39].

the local minimum state is independent on the number of degrees of freedom of the
system, so that the argument that we have seen in quantum mechanics is valid also
in the case of the bounce solution in quantum field theory [38, 39|, i.e. there is no
appearence of additional negative modes.

As a consequence, in the generalization to a quantum field theory the divergences
emerge both in the computation of the functional determinants [47] and in the
counterterms of the euclidean action: these latter are removed by renormalization.

From now on, we will work in natural units h = ¢ = 1.

3.4.1 Bounce in QFT: vacuum decay

Let us consider a scalar theory, described by the lagrangian density
1
L= 50,0 6= V(6), (3.85)

where the potential V(¢), shown in Fig. 3.11, presents two non-degenerate minima:
the minimum ¢y, is a local minimum and represents a state of false vacuum [40,
41], while the minimum ¢,, is an absolute minimum, i.e. it is the ground state of
the theory, called true vacuum. Classically the state ¢y, is stable, while from the
quantum point of view it can decay through quantum tunneling in the state ¢y, [48].
The potential V(¢) is a density of potential energy, therefore what actually needs
to be analyzed is the integral of V() over all the space R

Ulo)] = [ dx [% (Vo) + V(¢>] . (3.86)

If the false vacuum decays following a series of configurations spatially homogeneous,
this would require the tunneling through an infinite potential energy barrier: the
tunneling amplitude in this case would vanish. Instead, the false vacuum decays

through a tunneling process, which starts from a spatially homogeneous state, in
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a state with a region in which there is a bubble of true vacuum immersed in a
background of false vacuum. In this case the tunneling, that is the nucleation of a
bubble, can originate at any point x € R* and then the decay rate T, that depends
from the volume of the physical space, is formally infinite; the quantity physically
relevant is then the decay rate for volume unity I'/V |38, 39|.

A continuous dynamical system is a system with infinite degrees of freedom, so
that the possible path that connects ¢, and ¢,, are infinite. Every path is defined by
a succession of field configurations, constitutes a transversal section of the potential
barrier, and it has to conclude in an end-point which is at the same energy of the
starting potential, Vy, = V(¢y,). As we know, the path effectively followed by
the system is obtained minimizing the classical euclidean action and constitutes the
bounce solution of the euclidean equation of motion. The equation of dynamical

evolution of the scalar ¢(x) are obtained from the Euler-Lagrange equations:

oL oL o av
— =0, =——— = —¢—Vh+ —=0. 3.87
2%~ 30,9 o 1 357
Then, passing to the euclidean formalism, the equations of motion become:
0 dv
P —¢+ + V% = @ (3.88)

which are obtained starting from the Euclidean action

sele] = | dr a'x [ F (Vo) + <¢>]. (3.89)

With the appropriate boundary conditions, that we will see later, from this equation
we obtain the bounce solution ¢,(x,t). The decay rate for volume units has the

following form [39]

g = Ae_B con B = SE[¢b] — SE[¢fv:| , (390)

where Sg[¢y] is the euclidean action computed in the bounce solution, while

Sglos] = J dr d’x Vy,

is the euclidean action computed in the homogeneous solution of false vacuum.
Instead, the factor A comes from a computation of functional determinants [47].
Although both of these actions are infinite, their difference is finite.

Solving Eq. (3.88) is equivalent to find a static solution in four spatial dimen-
sions: apparently, this is forbidden by the Derrick theorem [39, 49|. However, in
the demonstration of the Derrick theorem we assume that ¢ reaches the absolute
minimum of V' at infinity, and this does not happen for the bounce solution. Now,
for a theory in D spatial dimensions we can define:

lde d%z (0,00)* Iy = JdT 7z [V(s) = Vi -

IK:2
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With a manipulation similar to the one of the Derrick theorem, we obtain

1-D

As a consequence, we conclude that

B = Sglé] — Spldgp] = Ik + Iy = 1+ D I . (3.92)
In our case, D = 3 so that we obtain:
1 1 3 1
B = 5 §6u¢b(z) Moy(x) p d°x dT = 5],(. (3.93)

Let us determine the boundary conditions for Eq. (3.88) needed to obtain the bounce
solution: such conditions are obtained from the fact that the bounce represents a
path through the configurations space that starts from the state ¢, at the time
instant 7;,, = —o0, reaches the turning point in the opposite side of the barrier at a

time instant 7, and then returns in the initial configuration at 7y, = 400 |38, 39
p(x, o) = ¢;,  VxeR’. (3.94)

We note that it must be d¢/0r = 0 everywhere along the hypersurfaces 7 = 7;,;
and 7 = T, since these are the hypersurfaces of the turning point where the kinetic
energy is zero. Moreover, we have to require that all the configurations along the

tunneling path have finite potential energy, comparable to V (¢, ), so that:
¢(|x| = 0,7) = ¢y,  VtER. (3.95)

Now we note that the euclidean equation of motion in Eq. (3.88) and the boundary
conditions in Egs. (3.94) and (3.95) show a symmetry respect to the transformations
defined by the group O(4), i.e. respect to the rotations in the 4-dimensional euclidean
space. Then we can fix 7 = 0, that is we choose the origin as the centre of symmetry
and use the O(4) invariance to find the bounce. In fact the bounce, being a non-
trivial solution of the PDEs invariant under the O(4) group transformations, it must

also be invariant with respect to these transformations. In order to exploit the O(4)

r=V1l+x>. (3.96)

This quantity represents the distance of the generic point (7,x) of the euclidean

invariance, we define

space from the origin, that is the radial coordinate. Since the bounce solution ¢y (x) is
invariant respect to the O(4) symmetry, we can suppose that it depends exclusively
from the distance r of the generic point (7,x) from the origin of the euclidean
space, that is ¢,(7,x) = ¢,(r). Taking into account the definition in Eq. (3.96), the

euclidean equations of motion (3.88) become

. 3 . v (¢)
o(r) + - P(r) = o (3.97)
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where the dots denote the derivatives of the field ¢(r) respect to the variable r.
The boundary conditions in Egs. (3.94) and (3.95) become a single condition for
Eq. (3.97):
lim ¢(r) = ¢y, - (3.98)
r—0
Moreover, we have to require that the solution is not singular in the origin. In

particular, for the condition of regularity in the origin we have
$(0) = 0. (3.99)

Having the O(4) symmetry, the tunneling exponent in Eq. (4.15) becomes
2 [7 3150

B—or fo dr r {§¢b(7~) LV (dy) — va} | (3.100)
In conclusion, taking into account of the O(4) symmetry, we have reduced a problem
with infinite degrees of freedom to the study of a simple differential equation. The
existence of a bounce solution for the equation of motion in Eq. (3.88), i.e. a solution
compatible with the boundary conditions (3.94) and (3.95) was demonstrated by
Coleman using his argument of the overshoot-undershoot method [39].

At this point we proceed to the determination of the decay rate for volume units
[38, 39]. To determine I'/V it is sufficient to take into account the changing that we
encounter in the passage to the continuum limit, and then modifying appropriately
the relation of Eq. (3.72) for the decay width obtained in the context of quantum
mechanics. Since the bounce solution, in the context of the quantum field theory,
is not spatially homogeneous, in addition to the zero mode corresponding to the
invariance under time translations, there are other three zero modes corresponding
to the invariance under space translations, i.e. a zero mode for each of the three
generators of the spatial translations in R®. Moreover, as we have just explained, the
passage to the continuum limit can not give rise to new negative modes. Another
point of fundamental importance in the study of the decay rate is its renormalization:
some divergences are cancelled by ratio of determinants [47|, the other divergences
have to be treated and in particular we can use the method of counterterms of the

renormalized perturbation theory.

_1
2

exp{ (SE ¢b] SE[¢fv])} ) (3-101)

In conclusion, the decay width for volume units is
det SZ; ¢b]

- {15 ool ol

where the euclidean actions that appear in the previous equation are written in

terms of the renormalized parameters and of the counterterms. The factor N, is the
normalization factor of the zero mode corresponding to the translations along the
direction z, of the Minkowski space: for the O(4) symmetry of the bounce, these
factors have to be equal and, using Eq. (3.92), they are give by

Nazfd% (aaqs)Q:%J v (0,0)° —EIK_B.
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As a consequence, we have
det’ Sp[oy]

T (E i
Vo \2r) |det Sp[¢s,]

where the action S, that appears in Eq. (3.102) is the action of the counterterms.

o~ St d]=Suils.]} .~ B (3.102)

In conclusion, we observe that once the decay width T" is determined we can obtain

the tunneling time T ~ T~ associated to the decay of the vacuum.

3.4.2 Bounce in QFT: inclusion of gravity

Now we want to include the effect of gravity in the study of the stability problem in
QFT. In fact, there are many cases in which gravity becomes important: the most
obvious case is the one in which we have a transition involving a mass scale close to
the Planck scale. Gravitational effects can also come into play at lower mass scales
if the "true vacuum bubble" is formed with a size large enough to be sensitive to
the curvature of spacetime (strong gravity regime).

Let us start with a brief description of the initial state of false vacuum, which
requires some observations when gravity is included. The scalar field is obviously
uniform, equal to ¢y, everywhere. The nature of spacetime depends on the value of
the potential in the false vacuum. If V;, = V(¢y,) = 0, the false vacuum spacetime
is simply a Minkowski flat spacetime. If, on the other hand, V/, is not zero, then
it will be equal to a non-zero cosmological constant and the false vacuum will be
either a de Sitter spacetime or an anti-de Sitter spacetime, depending on whether
Vs, either positive or negative, respectively [39]. Regarding the tunneling problem,
Coleman and de Luccia have shown that including gravity the nucleation rate will
still be obtained from a bounce solution, but with a Euclidean action that now

includes gravitational contribution. In other words

g — Ae B = Ae—{5[¢b]—5[¢fu]} (3'103)

where ¢, is a bounce solution of the Euler-Lagrange equations obtained from the
gravitational action [50].
To obtain the equations of motion with the inclusion of gravity, we consider the

minimal action that is obtained including the Einstein-Hilbert term:

R

S[¢: 9] = Jd4x\/§ [_W + %g"”vmﬁ V,0+V(p) (3.104)

where R is the Ricci scalar and G is the Newton gravitational constant. The poten-
tial V(¢), as in the case of flat spacetime, presents a local minimum (false vacuum)
at ¢ = ¢y,, and a global minimum (true vacuum) at ¢ = ¢y,

We know that in flat spacetime, for a theory with a single scalar field, the bounce

solution that minimizes the action has an O(4) symmetry. Since there is no reason
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why gravitational effects can break this symmetry, we can assume that even in the
presence of gravity the bounce is invariant under 4-dimensional rotations. Basing on
this assumption, we can determine an euclidean metric that is invariant by rotations:
we start from the 3-dimensional case, in which the generic metric invariant under
rotations is the one of the 3-sphere. On each sphere we can introduce the angular
coordinates in the usual way and therefore we define a radial curve as the curve
obtained for fixed angular coordinates. For the rotational invariance, the radial
curve has to be perpendicular to the intersecting 3-spheres: we choose our radial
coordinate r to measure the distance along these radial curves. As a result, the

metric we are looking for can be written in the form
ds* = dr* + p*(r)dS2; (3.105)

where dQ); is the metric of the unitary 3-sphere, while p is the curvature radius for
each 3-sphere at fixed r coordinate.
From the action in Eq. (3.104), we obtain the Euler-Lagrange and Einstein field

equations (k = 87G):

me—%awR==ﬁﬂw (3.106)

Ty = 0,00, — | 30,000 + V16)] (3.107)

0,0"% =:9Q§g?2. (3.108)

Using the metric given in Eq. (3.105), the equations in (3.106) and (3.108) become:
b3 g b= - 1—§p2<—§q&2+w¢>) (3.109)

where the dots denotes the differentiation respect to the radial coordinate r. The
bounce solution needed to compute the false vacuum transition rate is now given
by the field solution and the metric solution, respectively ¢, () and p, (), of these
coupled differential equations, once we have identified the appropriate boundary
conditions. Differentiating Eq. (3.109-b) with respect to r, we obtain another useful

equation which, in particular, is more stable for numerical analysis:

=50 (+V(0). (3.110)

In the derivation of Egs. (3.109) from Einstein equations, we can also compute
the Ricci scalar using the metric in Eq. (3.105):

R=—%Qﬁ+ﬁ—n. (3.111)

However, this expression is not useful to compute numerically the tunneling expo-

nent B. To obtain an expression numerically more stable, computing the trace in
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Eq. (3.106), we have the following general expression:

g =0,00"p +4V(9). (3.112)
We will use soon this last expression in the action to explicit the Einstein-Hilbert
term.

The boundary conditions for the field equations depend on the topology of the
solution which, as often happens in general relativity, cannot be specified in ad-
vance. In particular, they depend on the asymptotic behavior of p: in the case of
our interest, i.e. the one in which the spacetime of the false vacuum is a Minkowski
spacetime, we have that V, = 0. Then, Eq. (3.109-b) calculated in the false vacuum
solution reduces to p° = 1, since ¢, is uniform and therefore gb vanishes. Conse-
quently, the curvature p is given by p(r) = r + ¢, where ¢ is an integration constant:
this straight line is therefore the straight line to which the solution p of the equations
of motion tends asymptotically. In other words, as anticipated at the beginning of
this subsection, if Vj, = 0 the spacetime is reduced to simple flat Minkowski space-
time in the false vacuum, and the solution has the topology of R*. Given the O(4)
invariance of the spacetime, we can take the boundary condition p(0) = 0, and
this will be the only zero for the curvature p. Finally, as regards the ¢ field, the
boundary conditions will always be given by Eqgs. (3.98) and (3.99). Summing up,
the boundary conditions for the bounce solution of Eq. (3.109) are:

plo)=0  0)=0  p(0)=0. (3.113)

Finally, let us compute the tunneling exponent B using Eq.(3.112) to obtain
a general expression for the action. Inserting Eq.(3.112) in the action (3.104) to

explicit the term that contain the Ricci scalar R, after simple manipulations we get:

S[é, 9] = — J d*z\/gV (). (3.114)

Using the O(4) symmetry, Eq. (3.114) becomes:

S[o,p] = —2r° foo dr p*V (). (3.115)

0

The integration extremes in Eq. (3.115) are due to the fact that we are in a curved
background with the topology of R*, so that r € [0, c0]. Tt is worth to note that if we
compute the action in the false vacuum trivial solution of the equations (3.109), we
obtain Sy, = S[¢y,, ps,] = 0, since in our topology V' (¢,) = 0. In conclusion, from
Eq. (3.115) we obtain that the tunneling exponent is simply given by B = S[¢y, py)-
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Chapter 4

New solutions in the presence of New
Physics beyond the Standard Model

In Chapter 2 we have seen how the radiative corrections to the Higgs potential
introduce the problem of the stability of the electroweak vacuum, since we have the
formation of a second minimum in addition to the EW one, where our Universe sits.
In this Chapter we present a brief overview of the state of art of this problem up
to the results presented in [51]. Then, using the tools introduced in Chapter 3, we
move on to the computation of the bounce solution needed to obtain the decay rate
of the EW vacuum in presence of gravity. In particular, the new results obtained
in [51] with the introduction of New Physics (NP) in the Standard Model (SM) are
illustrated.

4.1 Stability problem of the electroweak vacuum in
Standard Model

The discovery of the Higgs boson, theoretically postulated as a fundamental ingre-
dient of the electroweak theory to introduce the masses of the SM particles, by the
ATLAS and CMS collaborations of the Large Hadron Collider [52, 53] led to re-
sults that proved to be perfectly consistent with the theoretical predictions of the
Standard Model. Moreover, one of the most important goals of present theoretical
and experimental particle physics is the search for New Physics (NP) beyond the
Standard Model (BSM), even though direct experimental searches up to now have
not revealed any sign of it. These results have revived a great interest in the idea
that New Physics can only manifest at very high energy scales, and in particular at
the Planck scale Mp.

In this context, the study of the stability of the electroweak vacuum can give
an important boost, as we will see. For this study, as we have seen in Chapter 2,

it is needed to know the Higgs effective potential V,;;(¢) up to very high values
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Stability
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Figure 4.1: Phase diagram in the plane (mg, m,) that is obtained with the standard
analysis of the stability problem, i.e. considering the Standard Model alone. The
determination of the stability and instability lines allows to divide the (mg,m,)
plane into three regions, and in particular the point (m%”, m;""), identified by the
current experimental values of the masses of the Higgs boson and the top quark, is
in the region of metastability and is close to the stability line [54].

of the Higgs field ¢(z) = H(x). If we denote with v the point in which the Higgs
potential has a minimum, i.e. where we have the electroweak minimum v ~ 246
GeV, the effective potential V,;;(¢) due to the loop corrections associated to quark
top, has a maximum for ¢ > v, and subsequently decreases forming a new minimum
in ¢ = ¢, » v. For simplicity we can normalize the potential V,¢(¢) in such a way
that V,;;(v) = 0, and with this normalization choice the instability scale, ¢;,s > v,

is determined by the following condition

‘/;ff((binst) = 07 (41>

i.e. @i 1S a zero of the Higgs effective potential immediately following the elec-
troweak minimum v. The instability scale is mainly determined by the values of the
masses of the Higgs boson and the top quark. The experimental values [55-60] for

these values are:
mi" = 125.7 + 0.25 GeV m;? =173.34 + 1.3 GeV (4.2)
and considering their central values, we find:
Ginst ~ 10" GeV..

For ¢ > ¢,;,+ the Higgs effective potential becomes negative and for ¢ » v it
forms the second minimum ¢,,,;,,- The condition of stability depends on the specific

values of the parameters of the Standard Model, and in particular on the values of the
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mass of the Higgs boson my and on the mass of the top quark m,. If the minimum
is higher than the electroweak vacuum, then the latter is absolutely stable, otherwise
the electroweak vacuum is a state of false vacuum, i.e. it is a metastable state which
decays through quantum tunneling towards the state ¢,,;, of true vacuum. In the
latter case it is necessary to compare the average life 7 of the electroweak vacuum

with the age of the Universe T;;. Summing up:

e The electroweak vacuum v is stable, i.e. it is a state of true vacuum, if we have
that V. ;(dmin) > Vepr(v). This condition defines, in the space of parameters

(myg, my), the region of absolute stability.

e The electroweak vacuum v is unstable, i.e. it is a state of false vacuum, if we
have that V,;;(ém) < Vepp(v) and that the average life 7 of the vacuum is
7 < Ty. In the (my, m,) plane these conditions identify the region of absolute

instability.

o The electroweak vacuum v is metastable if we have that V. ;(dmim) < Verr(v)
and that the average life of the vacuum is 7 > Ty;. This case, which is what is
realized considering the current experimental values for my and m;, is usually

called metastability scenario.

To study the stability of the electroweak vacuum we have first to determine the
functional form of the Higgs effective potential V,;¢(¢) (see Chapter 2). In general,
the condition of stability of the electroweak vacuum is studied varying the masses
my and m, and the results are presented through phase diagrams of stability in the
plane (mg, m;). This plane is thus divided into the regions of stability, metastability
and instability, and the straight lines that separate these regions are defined by the
conditions [61-64]

‘/eff(v) = ‘/eff(¢mzn> Stablhty line (43)
Verr(0) > Vopp(dmin) and 7 =Ty Instability line. (4.4)

According to this analysis, when the central values for the masses of the Higgs
boson and the top quark are considered, the electroweak minimum is in the region
of metastability and the average life of the electroweak vacuum is enormously greater
than the life of the Universe. As is clear from Fig. 4.1 [65], the current experimental
values for the masses of the Higgs boson and the top quark [55-60] are compatible
with a metastable universe, very close to the region of stability.

The EW vacuum stability condition was first studied in a flat spacetime back-
ground, and the interesting possibility that the SM is valid all the way up to the
Planck scale Mp, meaning that NP shows up only at this scale, was investigated. In
such a scenario, naturally prompted by the lack of direct observation of hints of new
physics, the analysis was performed under the assumption [66] that the presence of

NP at Mp could be neglected for the computation of the tunneling time 7 from the
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false to the true vacuum of the SM, so that 7 was calculated by considering SM
interactions only [62-64, 66-70]. In particular, in [67] it was argued that the reason
why NP at Mp (even if present) can be neglected in the calculation of the tunnel-
ing rate is due to the fact that the instability scale ¢y, ~ 10" GeV is sufficiently

smaller than Mp, i.e. a decoupling effect was expected.

However, it was later realized that the EW vacuum is very sensitive to unknown
NP even if it lives at scales far away from ¢, and the decay rate of the EW
vacuum can be strongly modified by its presence [54, 65, 71, 72|. The reason why the
decoupling theorem does not hold in this case is that tunneling is a non-perturbative
phenomenon [72|, while the former applies when calculating scattering amplitudes
in perturbation theory at energies E much lower than M., the physical cut-off scale
of the theory under investigation (Mp, Mgyp, ...). In this case the contributions
to scattering amplitudes from physics that lives at M, is suppressed by factors
of F/M., to the appropriate power, and this is how physics at the scale M., is
decoupled from physics at the scale E.

Instead, as we have seen in Chapter 3, for the tunneling phenomena the bulk of
the contribution to 7 comes from the exponential of the (Euclidean) action calculated
at the saddle point of the path integral for the tunneling rate, i.e. the bounce solution
to the (Euclidean) Euler-Lagrange equation [38], and for this tree level contribution
no suppression factors of the kind (E/Mp)" can ever appear. If the Higgs potential
is modified by the presence of NP at Mp, the new bounce is certainly different from
the one obtained when these terms are neglected. The action calculated for this new
bounce solution is also modified and (once exponentiated) it can give rise to a value

of 7 enormously different from the one obtained when the NP terms are neglected.

As we have said in Section 3.4.2, the inclusion of gravity in the vacuum stability
analysis was pioneered in [50] by Coleman and de Luccia. For the transition from
a false Minkowski vacuum to a true Anti-de Sitter (AdS) vacuum, it was shown
that, when the size of the Schwarzschild radius of the true vacuum bubble is much
smaller than its size, i.e. when gravitational effects are weak, the probability of
materialization of such a bubble is close to the flat spacetime result, while when
the Schwarzschild radius becomes comparable to the bubble size, i.e. in a strong
gravitational regime, the presence of gravity stabilizes the false vacuum, preventing
the materialization of a true vacuum bubble. In other words, gravity tends to
stabilize the false vacuum, and in a strong gravity regime the materialization of
bubbles of true vacuum is quenched. Coleman and collaborators considered a scalar
theory where the potential V(¢) has an energy density difference V(o) — V()
much smaller than the height of the “potential barrier”, V(¢y,,) — V(¢ ), where
V(¢top) is the maximum of the potential between the two minima. Given this
condition, the true vacuum bubble is separated from the false vacuum sea by a “thin

wall”, and this allows to treat the problem analytically, within the so-called thin-wall
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approximation.

However, the SM case is very far from the "thin wall regime" analyzed in [50]. In
order to get close to the SM case, but still keeping a simple model as in [50], a scalar
theory with a potential whose parameters can be adjusted to explore cases far from
the thin wall regime was considered in [73|, and a numerical analysis of the false
vacuum stability condition was performed. The main result is that for the potential
that well approximates the SM case, the stabilizing effect of gravity is hardly seen
even in very strong gravity regimes. As suggested in [74-76], the total quenching of
the vacuum decay rate can eventually be reached at some very high scale. As shown
in [73] however, for the SM case such an effect takes place in a far transplanckian
regime where the theory has already lost its validity. The results obtained with the
simple model considered in 73] were later confirmed in [77]|, where a bona fide SM
Higgs effective potential was used.

In order to complete the stability analysis of the EW vacuum when gravity is
taken into account, it is of the greatest importance to understand to which extent the
presence of gravity can counteract the NP destabilizing effect discussed in [54, 65,
71, 72]. In the present Chapter we address these issues, that are very important for
current studies and for model building of BSM physics, where we are often confronted
with the possibility of considering NP at Planckian and/or trans-Planckian scales.
Anticipating on the results of the following sections, we will see that the tunneling
time from the false to the true vacuum is still strongly dependent on NP even if
it lives at very high (» ¢y,) scales, thus confirming the results of the analysis
performed in the flat spacetime background [54, 65, 71, 72|.

Summing up the theory presented in Chapter 3, the computation of the decay
time of the state of our Universe is reduced to the computation of the bounce
solution of the equation of motion of a scalar field ¢ with the appropriate boundary
conditions, that are Eqs. (3.97)-(3.99) for the flat spacetime case, and Egs. (3.109)
and (3.113) for the curved spacetime case. In both cases, the decay rate I' of the

false vacuum is given by:
I = De Glenl=5Slon]) — p =B (4.5)

where B = S[¢y] —S|dg] is the tunneling exponent and the exponential of —B  gives
the “tree-level” contribution to the decay rate, while D is the quantum fluctuation
determinant. If V' (¢g,) = 0, the action S|[¢y,| vanishes, and the tunneling exponent
is simply B = S[¢]. In particular these equations, a part for very special cases,
can not be solved analytically and then is necessary to solve them numerically, and
this is the case for the Standard Model. For this purpose, we have developed a
new numerical method to find the bounce solution, whose details are presented in
Appendix D.

Since we are interested in the stability analysis of the EW vacuum, in our case
the scalar field ¢ is the Higgs field, and the potential V' (¢) is the renormalization
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group improved Higgs effective potential that we have written in Eq. (2.118) as:

Veu(6) ~ Pau(@), (1.6

where Agy(¢) is the quartic running coupling Agy(p) (p is the running scale) with
p=¢ [71, 78].

However, the purpose of the present Chapter is to study the impact that NP at
high energies can have on the stability condition of the EW vacuum when the SM
coupling to gravity is taken into account. We are then not interested in precision
measurements and/or refinements of previous analyses. We can then leave aside
these questions and work in a simplified yet very robust framework, by using a good
approximation of the SM effective potential that was obtained in [79] by fitting the

two-loops improved Higgs potential with the three parameter function [79]:

¢\’ o\

where Mp = 1/4/G is the Planck mass. The fit gives:
A =—0013 a=14x10"° B=63x10"°. (4.8)

In the following we work with the Higgs potential (4.6) with Ag\i(¢) given by (4.7)
and (4.8).
Moreover, both in the flat and curved spacetime cases, an important parameter

is the size R of the bounce, defined as the value of r such that

8(R) = 504(0). (4.9

Going back to (4.5) for the vacuum decay rate, a good approximation to the prefactor
for the case that we are considering is given in terms of the bounce size R and of

T;;, the age of the Universe, and the EW vacuum tunneling time 7 = I'"" turns out

to be [71]: \
T~ (&3> e’ (4.10)
Ty
In the following we use (4.10) to calculate the false vacuum lifetime.
Before ending this Section and moving to the study of the impact of NP on the
EW vacuum stability, we would like to test our tools starting with the known cases

of the flat and curved spacetime backgrounds in the absence of NP (i.e. considering

the SM alone), and briefly sketch the analysis for these cases.

Flat spacetime. In order to proceed with the numerical solution of the bounce
equation (3.97), we begin by scaling the dimensionful field ¢ and the radial coordi-

nate r to dimensionless quantities, p(z) and = respectively, by using Planck units:

x = Mpr o(z) = o(r)

= (4.11)
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Then Eq. (3.97), the boundary conditions (3.98)-(3.99) and the potential (4.6) be-

come:

¢+ 2 = T (1.12)
p(0)=0  ¢(0)=0 (4.13)
U(p) = 3904 (A + aln® o + Bn ), (4.14)

where the prime denotes the derivative respect to x. After the scaling (4.11), the

tunneling exponent (3.100) becomes:

B2 LOO iz o [%apé(:}:) + U(gpb)] | (4.15)

Solving numerically the bounce equation (4.12), with the Higgs potential given
by (4.14) and (4.8), and inserting the result for ,(z) in (4.15), after using the values
found for B and R, namely B = 2025.27 and R = 10.7597, we finally get for the

lifetime 7 of the EW vacuum:
Tt ~ 10977, | (4.16)

in very good agreement with the results known in the literature. This is the first test
of our numerical method (see Appendix D), and also shows that we are considering

a good approximation for the Higgs potential.

Curved spacetime. As in the case of flat spacetime, we move to dimensionless
quantities. Defining the dimensionless curvature a(x) = Mp p(r), Egs. (3.109-a) and

(3.110) (that will be used in the following numerical integration) become:

/ dU " 87T 12
_ - U 4.17
i a 3 a ((p + ) , ( )

/

()0” _"_ 3 g ()0
a

where the potential U(p) is the same as in (4.14). The corresponding boundary

conditions are:
p(@)=0 ¢0)=0 a0)=0 d(0)=1. (4.18)

As we have already said, p(r) ~ r for r — o0, and the asymptotic (z — o)
behavior of the bounce solution in the presence of gravity is the same as in the flat
spacetime case.

In terms of dimensionless quantities, from (3.115) we find for the tunneling ex-

ponent:

0
B = —27r2f dz ayU () (4.19)

0
where (4, a;) is the bounce solution to the system (4.17).

In the left panel of Fig.4.2 the bounce profile ¢, (z) is plotted. The right panel

shows the difference a,(x) — x: we clearly see how a;(z) reaches asymptotically the
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Figure 4.2: Left panel: Profile of the bounce solution ¢(z) in the presence of gravity.
It is obtained for the potential (4.14) with the parameters A, «, § given in (4.8). The
center of the bounce is at ¢(0) = 0.0712, its size is R = 350.2996 and the tunneling
exponent is B = 2062.5836. Right panel: Difference between the curvature radius

and its asymptotic value, a(z) — x, for the same parameters as in the left panel.

Minkowskian behavior a(x) ~ z + ¢. Finally, with the help of (4.10), we obtain the
tunneling time in the presence of gravity:

Toraw ~ 10°°1 Ty, . (4.20)

Once again we observe that the above result is in good agreement with known
results [77]. Moreover, comparing (4.20) with the corresponding flat spacetime tun-
neling time (4.16), we see that gravity (as expected) tends to stabilize the EW
vacuum.

4.2 New physics: Higher order operators

The results briefly presented in Section 4.1 are known and concern the stability
analysis under the assumption that new physics at Mp is decoupled from the physics
that triggers the EW vacuum decay, and that it should be possible to calculate the
tunneling rate ignoring these terms.

The analysis of the previous section is essential to set the proper framework
where the effects of the presence of NP at Mp can be properly investigated. We
parametrize NP as in [54, 65, 71| with the help of higher powers of ¢ added to the
Higgs potential:

Xe 0 As ¢°

| % ==+ =——. 4.21

It was shown in [54, 65, 71| for the flat spacetime case that when Ag < 0 and
Ag > 0 the potential (4.21) destabilizes the EW vacuum. In other words, these NP
terms favor the nucleation of true vacuum bubbles and, depending on the specific
values of A\g and g, this destabilization effect could dramatically reduce the EW
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Figure 4.3: The blue curve is the profile of the bounce solution obtained for the
potential (4.22) with A\¢ = 0 and Ay = 0, i.e. in the absence of new physics. The
yellow curve is the profile of the bounce solution for A\; = —0.03 and A\g = 0.03, while
the green one is the profile of the bounce obtained for Ay = —0.04 and Ay = 0.04.
Note that with increasing values of the couplings the center of the bounce ¢(0)

becomes larger while the size diminishes.

vacuum lifetime 7 in (4.16) and make it even shorter than the age of the Universe
Ty;. We now consider the same kind of analysis in the presence of gravity.
Adding the NP terms (4.21) to the SM Higgs potential (4.6), and moving again

to dimensionless quantities, the new dimensionless potential U(p) becomes:

1 2 1
Ulp) = Zap4 ()\* +aln®¢p+ BIn'p + §>\6g02 + 5)\8@4) : (4.22)

A first important result of our analysis is that for each value of the couple (Ag,
Ag) there is a different bounce solution to Egs. (4.17), all of them being different from
the solution obtained for the SM alone, i.e. the case A\¢ = 0, Ay = 0. Therefore, the
“new” bounce solutions related to the presence of new physics, here parametrized
in terms a given couple (\g, Ag), is still present even when in the stability analysis
gravity is explicitly taken into account.

In order to illustrate these results, in Fig.4.3 we show bounce solutions to
Egs. (4.17) for \s = —0.03, Ag = 0.03 (yellow curve), Ay = —0.04, Ay = 0.04 (green
curve) and compare them with the corresponding Ag = 0, Ag = 0 (blue curve) case.
The profiles obtained are definitely new solutions to these equations related to the
specific values of A\g and Ag, clearly different from the bounce (blue curve) obtained
for the SM alone (A = 0 and A\g = 0).

With the help of (4.10) we now calculate the EW vacuum lifetime for different
values of the NP couplings A\¢ and Ag. The fourth column of Tab.4.1 contains

different values of the tunneling time obtained for different couples (g, Ag). For
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A6 Ag Taat/TU Tgrav/ Ty

0 0 10639 10661
—0.05 0.1 10*46 1093
—0.1 0.2 10317 10°%
—0.15  0.25 10" 10512
—0.3 0.3 102 10%%7
—0.45 0.5 107% 10'™
—0.7 0.6 107162 10%
—1.2 1.0 1071 1078
—1.7 1.5 10729 1071
—2.0 2.1 10729 107

Table 4.1: Tunneling time for different values of \g and Ag, both for the flat and
curved spacetime cases. We note that although gravity tends to stabilize the EW
vacuum (the tunneling time 7, is always higher than the corresponding one in flat

spacetime Tg,), new physics has always a strong impact.

comparison, the third column contains the corresponding values of 7 for the flat
spacetime analysis. First of all we note that the effect already seen in the previous
section for the SM alone (also reported in the first line of the table, the case Ag = 0,
Ag = 0), namely that the presence of gravity tends to stabilize the EW vacuum, is
maintained even in the presence of new physics.

However, a simple inspection of this table shows that even though the presence
of gravity tends to stabilize the EW vacuum as compared to the corresponding
flat spacetime case, still for O(1) values of the new physics couplings Ag and Ag
the tunneling time can be made smaller than the age of the Universe T;;. Let us
consider just a couple of examples. For \¢ = —0.3 and A\g = 0.3 for instance, the
EW vacuum in the flat spacetime background is unstable, being 7 ~ 107727}, but
for the corresponding case with gravity included we observe a stabilization of the
EW vacuum: 7 ~ 10%7T},. There is a competition between the destabilizing effect
of NP and the stabilizing effect of gravity. In this example, gravity takes over new
physics and as a result the EW vacuum turns out to be stable. However for larger
(absolute) values of the NP couplings, the destabilizing effect of NP takes over the
stabilizing effect of gravity. For instance, for A\ = —1.2 and A\g = 1.0, despite the
stabilizing effect of gravity (7, » That), the EW vacuum turns out to be unstable:
Tyray ~ 1077°Ty,.

The results discussed above with the help of Table 4.1 are better summarized in
Fig. 4.4 where the stability diagram in the (Ag, Ag) plane is presented for the range
of values —1.5 < \g < —0.4 and 0.4 < A\g < 1.5. We see that, when the analysis is
performed in the flat spacetime case (i.e. when we ignore the presence of gravity),

the stability region (7 > Ty, blue area) is confined to the upper right corner of
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Figure 4.4: Stability diagram in the (A, Ag) plane showing three separate regions
where: (1) Ty, Tgraw > Ty (blue region); (ii) 744 < Ty, Tyraw > Ty (yellow region);
(iii) Tfaes Tgraw < Ty (red region). Note that, as in the blue (red) area 7y, and
Tyrav are both larger (smaller) than Ty, in these regions we wrote 7 > Ty, (7 < Tyy)
with no further specification. The potential of (4.14) and parameters A, a, [ given
in (4.8) are used. Note that although the inclusion of gravity induces an enlargement
of the region with EW vacuum lifetime larger than T}, for a large portion of the

phase diagram we have 7 < Ty, even when gravity is taken into account.

this figure. When the presence of gravity is taken into account, the stability region
(1 > Ty) broadens (blue + yellow area), and this shows the tendency of gravity
toward stabilization. Yet, for a large portion of the parameter space the EW vacuum
is still unstable, thus showing that the potential stabilization that should be induced
by gravity is not sufficient to counteract against the destabilization mechanism due
to the presence of high energy NP. In this respect, it is important to note that this
destabilization occurs for physical O(1) values of the coupling constants A\g and Ag.
In Fig. 4.5 we show some more quantitative details of the phase diagram drawn in
Fig. 4.4, presenting the flat spacetime case (left panel) separately from the case when
gravity is taken into account (right panel).

Let us summarize the results of the present Section. We have seen that the
stability condition of the EW vacuum is the result of a competition between the
destabilizing effect of NP and the stabilizing tendency of gravity. However, even
keeping the values of the coupling constants in the natural O(1) range, for a large

portion of the parameter space the destabilization induced by Planckian NP largely
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Figure 4.5: Stability diagrams in the (\g, Ag) plane for log,,(7/77;) with the potential
of (4.14) and parameters \,, «, B given in (4.8). Left panel: flat spacetime case.
Right panel: curved spacetime case. In each of the two panels, the black lines are
curves with fixed values of log,,(7/Ty;) (reported on it), while the thick red dashed
line indicates the points where 7 = Ty;. Colors serve as a guidance, indicating
the decreasing of log,,(7/Ty;) from the right to the left. Note that the inclusion of

gravity induces a broad enlargement of the region where the EW vacuum is stable
(logyo(7/T17) > 0).

overwhelms the tendency of gravity toward stabilizing the EW vacuum: the con-
tribution to the decay rate through the new bounce solution by far dominates the

contribution coming from the bounce solution obtained by considering SM only.

4.3 New physics: large mass particles

In the present Section the stability analysis of the EW vacuum will be performed
by considering a different parametrization for NP at high energy scales. Actually in
[54, 65, 71] and in the previous section the analysis was performed by parametrizing
NP at the Planck scale in terms of few higher order (non-renormalizable) operators.
This is just a convenient and efficient way of mimicking the presence of new physics,
clearly not an (illegitimate) truncation of the UV completion of the SM. However, it
was expressed a certain skepticism on these results, suggesting that this effect should
disappear when the infinite tower higher dimensional operators of the renormalizable
UV completion of the SM is taken into account, so that the expected decoupling of
very high energy physics from the mechanism that triggers the decay of the false
vacuum should be recovered. It was actually suspected that this effect takes place
above the physical cutoff, where the control of the theory is lost [80].

Although it is understandable that the parametrization of NP in terms of higher
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order operators could be the source of a certain confusion, the destabilizing effect
has nothing to do with this parametrization. For the case of a flat spacetime back-
ground in [72] the stability analysis was performed by parametrizing NP in terms of
renormalizable additional terms, with a fermion and a boson with very high masses
that interact with the Higgs field, and it was shown that the destabilizing effect
found in [54, 65, 71| is still present.

In this Section we present the same kind of analysis of [72| taking into account the
presence of gravity (i.e. considering the case of a curved spacetime background), and
show that as for the case of the parametrization used in the previous section, gravity
does not produce any washing out of the destabilizing effect of new physics, although
it slightly mitigates it. In order to illustrate the destabilization phenomenon we
consider as in [72| a renormalizable model that is not a realistic high energy UV-
completion of the SM but is very appropriate to the purposes of the this Section.
New Physics that lives at very high energy scales is then parametrized by adding
to the SM a scalar field S and a fermion field v that interact in a simple way with
the Higgs field ¢, with very large masses (see below) Mg and M, of the scalar and
fermion respectively.

Apart from the kinetic terms, the additional terms in the Lagrangian are:

M3 A _ _
AL = 7552 + Zss‘l + g5¢>S% + M b + gpdib) . (4.23)

To understand how a NP Lagrangian of this kind can arise in a physical setup,
we note that the large mass term M, can be thought as a sort of heavy right handed
“neutrino” in the framework of a see-saw mechanism. While the corresponding
light “neutrino” is totally harmless for the stability of the EW vacuum, the heavy
“neutrino” can play an important role in destabilizing the vacuum. The scalar field
S counterbalances the destabilizing effect of 1. Note that models with new scalar
fields coupled to the Higgs (although admittedly unrealistic) have already been used
to provide a stabilization mechanism for the Higgs effective potential [81, 82].

For the purposes of the present Chapter, it is sufficient to consider the impact of
the additional terms (4.23) on the Higgs effective potential V' (¢) at the one-loop level
only. In fact we do not need a better level of precision as we are not interested in
extracting precise numbers but we only want to illustrate the destabilization effect
that arises from very high energy physics (see also the considerations developed
below Eq. (4.6)). The one-loop contribution to V' (¢) from these terms is:

v - 295¢)” [m (Mé + 295¢2) 3]

647> M3 2
2
(M} +970°)" || (Mi+g70") 3
a2 "™\ T2 | 9l (4.24)
]_67'(' MS 2

where the renormalization scale p is taken as o = Mg. In this respect we note

that at very high values of the running scale the SM quartic coupling reaches a
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plateau: Agy(p) has practically the same value in the whole range [M;, Mg], and
this is why we can use Agy(Mg) as the threshold value for the coupling (even though
strictly speaking we should use Agy(My) (see below)), and can choose = Mg as
the renormalization (threshold) scale.

The presence of the high energy NP of (4.23) is then taken into account by
adding to the SM potential Vgy(¢) in (4.6) and (4.7) the contribution coming from
Vi(¢). To this end we have to implement the matching conditions described below.
First of all we expand the potential V;(¢) in powers of ¢ and isolate the constant,
the ¢* and the ¢* terms. Then at the threshold scale M ¢ we require that: (i)
the renormalized cosmological constant A, given by the sum of all the constant
terms (those coming from the SM potential and those coming from V;(¢)) vanishes,
A(p = My) ~ 0; (ii) the renormalized mass term, given by the sum of all the
coefficients of ¢*, and identified with the SM mass parameter mgy (u = M ) at the
scale My, vanishes: méy (= M ) ~ 0 (more precisely we neglect this term to a very
high degree of accuracy for the large values of ¢ considered); (iii) the renormalized
quartic coupling, given by the sum of all the coefficients of ¢, is identified with the
SM quartic coupling at the scale My, Agy(p = My). In other words, at the scale
M this coefficient is matched with the value of the quartic coupling obtained by
considering the running of the renormalization group equations for the SM couplings
alone.

The above requirements for the renormalized cosmological constant and mass are
well known features. For the renormalized A (apart from the fine tuning problem)
we can practically consider that A(y = 0) ~ A(u = My) ~ 0. The same is true for
the renormalized mass, for which we take m*(u = 0) ~ m*(u = M) ~ 0, meaning
that we neglect the ¢ term as compared to the #* and other terms for these large
values of ¢, and that the running of the renormalized mass is totally harmless in
this respect. For the quartic coupling we have a true matching condition. In fact
we require that at the threshold scale p = M/ the quartic coupling coincides with
Asm(pe = My), that is obtained by running the renormalization group equations
for the SM couplings only. Practically starting from the scale M, the potential is
given by the SM contribution Vgy(¢) plus the contribution of V;(¢) subtracted of

its constant, quadratic and quartic powers of ¢, that we call V,(¢) from now on:

Via() = Pw(@)o + V1(6). (4.25)

We are now ready to use our model of high energy NP to calculate the EW
vacuum lifetime for different values of the masses M, and Mg of ¢ and S, and for
different values of the coupling constants. For our illustrative purposes we have
chosen to consider the four following examples: (i) Mg = 2.5 x 107", My =3 x 1074,
gs = 0.96, g7 = 0.5 ; (i) Mg = 2.0 x 107", M; = 107, g4 = 0.9, g7 = 0.5 ;
(ili) Mg = 2.0 x 107", My = 1072, gg = 0.95, g7 = 0.4 ; (iv) Mg = 1.5 x 107,
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Figure 4.6: Left panel: Profile of the bounce solutions ¢(z) for the potential (4.25)
relative to the four cases considered in the text: Mg = 2.5 x 107", M; =3 x 1074,
gs = 0.96, g7 = 0.5 (yellow) ; Mg = 2.0 x 107", M; = 107%, g5 = 0.9, g7 = 0.5
(blue); Mg = 2.0 x 107", M; = 107°, g = 0.95, g7 = 0.4 (green); Mg = 1.5 x
1071, M; =5 x 1072, g5 = 0.92, gfc = 0.4 (red). Right panel: the corresponding
difference between the curvature radius and its asymptotic value, a(x) — z, for the

same parameters as in the left panel.

M; =5 x 1072, g5 = 0.92, gj% = 0.4. First of all we have to solve the bounce
equations (4.17) for ¢(x) and a(z). In Fig.4.6 the profiles of the bounce solutions
op(z) for the four different cases (i), (ii), (iii) and (iv) and the corresponding plots
of ay(x) — x are presented, with colors yellow, blue, green and red respectively.

These are the first relevant results of the present Section: in the presence of
NP at very high energies, new bounce solutions exist not only when the analysis is
carried in the flat spacetime background [72]| but also when we take into account the
presence of gravity. These results reinforce those of the previous section, where high
energy NP was parametrized in terms of higher order operators, and show that the
appearance of new bounce solutions is not an artifact of the specific parametrization
used in Section 4.2.

Using (4.10) to calculate the vacuum lifetime, for the examples considered above

we find in units of 7y, (going from (i) to (iv)):

T=10%,7=10" 7=10", 7 = 107, (4.26)
to be compared with the corresponding results for the tunneling time obtained from
the analysis performed in a flat spacetime background, where we have:

=10, 7=10""" 7 =10", 7 = 10*". (4.27)

Egs. (4.26) and (4.27) together with Fig. 4.6 contain the main lesson of the present
Section. They definitely show that, even when gravity is included in the analysis, the
presence of NP at high energy scales can have an enormous impact on the vacuum

lifetime. It is worth to remind here that when the calculation is performed in the
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curved spacetime background and the presence of high energy new physics is not
considered, the tunneling time is given by (4.20) (7 ~ 10°'7};), while from (4.26)
we see that 7 strongly depends on the parameters of new physics, and can turn out
to be even shorter than the age of the Universe.

Moreover, by comparing (4.26) and (4.27) we see that gravity, while still showing
a slight tendency toward stabilization (which is what we observe in the absence of NP
when comparing (4.16) with (4.20)), only produces a “tiny” effect, that qualitatively
does not modify significantly the stability condition of the EW vacuum. Despite
the fact that in our toy model NP lives at very high energy scales, the expectation
that the tunneling time should be insensitive to it, in other words that the result
shown in (4.20) should not be modified by the presence of NP at high energies, is
not fulfilled. These results confirm the analysis of the previous section. Here, with
the help of a fully renormalizable toy UV completion of the SM, we have shown that
the EW vacuum lifetime strongly depends on NP even if the latter lives at very high
energy scales. These findings are at odds with a widely diffused expectation, based
on a naive application of the decoupling argument, and show that the fact that the
vacuum stability condition depends on physics that lives at very high energy scales
is not due to an illegitimate extrapolation of the theory beyond its validity, as it
was previously thought [80]. On the contrary, that expectation was based on an
illegitimate application of the decoupling theorem to a phenomenon (the tunneling
of the EW vacuum) to which it cannot be applied. Before ending this Section, we
would like to stress once again that with respect to the previous section, where
NP interactions were parametrized with the help of higher order non-renormalizable
operators, here NP is given in terms of a fully renormalizable theory, thus showing
that the effect that we present is a genuine physical effect and has nothing to do

with the specific parametrization of NP.
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Chapter 5

Direct Higgs-gravity interaction and

stability of our Universe

In the previous chapter we have seen that the tunneling time 7 of the EW vacuum
is extremely sensitive to the presence of unknown New Physics, and the latter can
enormously lower 7. This poses a serious problem for the stability of our universe,
demanding for a physical mechanism that protects it from a disastrous decay. In
this Chapter we will see that there exists an universal stabilizing mechanism that
naturally originates from the non-minimal coupling between gravity and the Higgs
boson. This Higgs-gravity interaction necessarily arises from the quantum dynamics
of the Higgs field in a gravitational background. Then such a stabilizing mechanism
is certainly present, and it is not related to any specific model, being rather natural
and universal as it comes from fundamental pillars of our physical world: gravity,

the Higgs field, the quantum nature of physical laws [83].

5.1 Non-minimal coupling of Higgs field to gravity

In Section 3.4.2 we have seen how to include gravity in the analysis of the stability
problem of a false vacuum for a scalar field theory. In particular, we have considered
a maximally symmetric spacetime, i.e. a spacetime with O(4) symmetry described
by the metric (3.105), and the scalar field was minimally coupled to gravity, i.e. we
have considered only the Einstein-Hilbert term in the action (3.104) as interaction
terms of gravity.

Instead, in Chapter 4 we have applied such a theory to the study of the stability

problem of the EW vacuum, and in particular considering the SM alone we find that
T, ~ 10T, (5.1)

i.e. the tunneling time 7 is much larger than the age of the Universe T;;. However,
considering New Physics at the Planck scale Mp, the tunneling time 7 can become

less than T, also in the presence of gravity, as we have seen in Table 4.1.
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In this Chapter we want to study the effect of destabilizing New Physics on the
EW vacuum lifetime when we consider a more general gravitational setup. In fact,
the quantum dynamics of the Higgs field ¢ in a gravitational background imposes a
direct interaction between ¢ and gravity [84, 85|. Then, the action that describes
the dynamics of the field ¢ is [77]

R 1 1
S1o, 9] = Jd4$\/§ [—m + 59“”@%15 d,0 +V(p) + §€¢2R] (5.2)

where R is the Ricci scalar and G is the Newton gravitational constant. Instead, &
is the coupling constant of the direct coupling between gravity and the scalar field
®. The potential V(¢), as in the minimal coupling case £ = 0, has a local minimum
(false vacuum) in ¢ = ¢y,, and an absolute minimum (true vacuum) in ¢ = ¢y,
Moreover, ¢ = ¢y, is a Minkowskian false vacuum V' (¢g,) = 0.

As in the minimal coupling case, there are no reasons for which gravitational
effects can break the O(4) symmetry of the flat spacetime case, so that we can assume
that also in the presence of non-minimally coupled gravity the bounce solution is
invariant under 4 dimensional rotations. Basing on this assumption, the curved

spacetime is still described by the metric
ds® = dr* + p*(r)dQ; (5.3)

where dQ2 is the metric of the unitary 3-sphere, while p is the curvature radius of
each 3-sphere at fixed r.
From the action in Eq. (5.2), we obtain the Euler-Lagrange and the Einstein field

equations (k = 87G):

T;w + 25 |:a,u(¢ ay¢) - g,ul/a)\(gb 8>\¢>:|

1
Ruy - §g/u/R =K 1_ f{§¢2 (54)
1
T,uu = ,LL¢ ay¢ — G |:§a,u¢ au¢ + V(¢)] (55)
w, _ dV(9)
0,0"p = 0 + &R . (5.6)
Using the metric given in Eq. (5.3), the equations in (5.4) and (5.6) become:
S LAV b K, 30 V(9) — 66500
o+3 0 0=g TR p=1-3p [ réd? : (5.7)

where the dots denotes the differentiation respect to the radial coordinate r. The
bounce solution needed to compute the transition rate from the false vacuum is
again given by the field and metric solutions, respectively ¢, (r) and p, (7), of these
coupled differential equations, once we have the appropriate boundary conditions
(3.113):

o) =0 $0)=0  p(0)=0. (5.8)



For numerical computation is useful to differentiate Eq. (5.7-b) respect to r, obtain-

ing the equation:

ok P V()36 (8 + 00+ Lod)
p__gp 1—Iif¢2

: (5.9)

and the boundary condition p(0) = 1. In fact, as in the minimal coupling case
the equations (5.7-a) and (5.9), once we use the scaling to Mp to obtain their
dimensionless version, are more stable for a numerical analysis. It is worth to note
as for & = 0 the Egs. (5.7) and (5.9) are reduce to the Egs. (3.109) and (3.110),
i.e. the equations of motion for ¢ and p in a curved spacetime background with a
minimal coupling of gravity and matter, the case studied in Chapter 4 [50].

In the derivation of Eq. (5.7) from the Einstein equation, we can compute the

Ricci scalar using the metric in Eq. (5.3):

6, . .
R = —? (pp+p2—1) : (5.10)

However, this expression is not useful to numerically solve the equations of mo-
tion. To obtain a numerically stable expression, we compute the trace of Eq. (5.4)

obtaining the following general expression:

R
(1 - k&%) — = (1 —6£)0,00"¢ + 4V (¢) — 6£¢0,0" . (5.11)

Then, we can use Eq. (5.6) to explicit d,0"¢ in Eq.(5.11): in this way, using the
O(4) symmetry, we obtain an expression for R in terms of the scalar field ¢ and its

derivatives: _2

9" (1 —68) +4V(¢) — 69 dV /dg
1 — kE(1 —68)¢” '

The Eq. (5.12), contrary to Eq. (5.10), is not a general expression for R since, having

R=k

(5.12)

used the equation of motion Eq. (5.6), it is valid only for the solution of Eq. (5.7).
However, as anticipated, it is useful to explicit R in Eq. (5.7-a) just using Eq. (5.12)
to numerically solve this equation together with Eq. (5.9).

Finally, we compute the tunneling exponent B, using Eq.(5.11) to obtain a
general expression for the action. Inserting Eq.(5.11) in Eq. (5.2) to explicit the

terms that contains the Ricci scalar R, after simple steps we obtain:

S[6, 9] = f dhe /g [V (@) + 360,(6 00)] (5.13)

The second term in this expression, after integration, is reduced to a boundary term
that vanish at infinity. Then, using the O(4) symmetry, the Eq. (5.13) becomes:

S[é, p| = —27° f " V(). (5.14)

0
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At this point, we must note some important properties concerning Eq. (5.14): (i)
there is no explicit dependence of the action on coupling &, and therefore the action
will depend on this parameter only through a possible implicit dependence of the
scalar field ¢(r) and of the curvature p(r); (ii) if we compute the action in the
trivial solution of false vacuum of Eq. (5.7), we get Sy, = S|y, ps] = 0, since in
our topology V(¢y,) = 0. Finally, from Eq. (5.14), we get that tunneling exponent
is given by B = S|y, py)-

5.2 Effect of Planck scale New Physics

Once we have computed the bounce solution from Eq. (5.7) with the boundaries
(5.8), we can compute the decay rate I' (= 1/7) from the false to the true vacuum,
that is still given by [40, 41, 50]:

[ = De S50 (5.15)

where S, = S|y, pp], St is the action calculated at the trivial false vacuum solution
(dpvs prv), and D is the quantum fluctuation determinant.

As for the minimal coupling case £ = 0, we can define the size R of the bounce as
the value of the radial coordinate r such that ¢,(R) = 3¢(0), so that the prefactor
D in Eq. (5.15) can be estimated to a good approximation [86] as D ~ TpR ™, and

1 4
T~ (%) e — (%) e Ty . (5.16)
U U

In calculating the EW vacuum lifetime 7, in the bounce equations (5.7) we have

7 then becomes:

to use the appropriate potential V' (¢). If we consider the Standard Model only, i.e.
assuming that NP has no impact on 7 (63, 64, 66, 67|, we have to consider the SM
(renormalization group improved) Higgs potential Vgy(¢) [35, 87, 88], still given by:

Vend(6) = Phaui(9)6, (517)
where Agyi(¢) is the quartic running coupling Ag(p) with p = ¢ [68-70, 89]. In
particular, we use the fit given in Eqgs. (4.7) and (4.8) for the running coupling
constant, as we have done in Chapter 4. As long as the NP terms are neglected,
the inclusion of %£¢2R in the action does not change the stability condition of the
universe, as 7 still remains much larger than 7j; (see the blue line of Fig. 5.2) [77].

However, as we have seen in the previous chapter, we known that the necessarily
present NP terms can have an enormous impact on 7 [51, 54, 65, 71-73|. For the
New Physics at high (Planckian) energies we use the parametrization in Eq. (4.21),
i.e. we add to the SM Higgs potential Vgy(¢) higher powers of ¢:

6 8
Var () = m% n aQ%, (5.18)
P P
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Figure 5.1: Left column. - Upper panel: bounce solution ¢ (r) (red dashed line)
for the action in (5.2), with potential V(¢) = Vou(®) + Vip(¢), where a; = —0.2
and as = 0.125. The bounce ¢_ (r) (blue solid line) for the SM potential Vgy(¢)
alone is also plotted. Lower panel: the same for p(r) —r. Middle and right columns:
the same as for the left column for the action with the additional term %€¢2R with

¢ = 1,10 respectively.

where we have defined a; = A\g/6 and a, = Ag/8, so that we now take

V(9) = Vam(o) + Var(0) .- (5.19)

As an illustrative example, we consider for the (dimensionless) couplings «; and
oy specific values, a; = —0.2 and a, = 0.125, and for the EW vacuum lifetime in
the presence of NP with & = 0 we find (see the eighth row of Tab4.1):

T, =10""Ty. (5.20)

In fact, as we know the presence of these NP terms can enormously lower 7 [51, 54,
65, 71-73], to the point that we can get 7 « Ty;. In particular, the huge difference
between 7 and 7, is due to a big difference between the bounces in the two cases
considered, as can be seen from the left column of Fig. 5.1.

From the results presented in Chapter 4 we conclude that there must be a mech-
anism that protects our universe from a disastrous decay. In this Chapter we show
that there exists a universal stabilizing mechanism that arises from the combination
of three basic pillars of our physical world: (i) gravity; (ii) the Higgs boson; (iii) the
quantum nature of physical laws. In fact we show that turning on (as we must) the
interaction £¢°R, with the exception of a tiny range of values of &, the EW vacuum

lifetime 7 is enormously enhanced and becomes much larger than Tj;, even in the
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§ Tom Typ § Tom Tp
—15 107° 1070 0.3 1090 1077
—10 107 1070 0.5 10568 10%
_5 10710 10710 0.7 10674 10346
—1 10684 10680 0.8 10676 10512
—05 10677 10600 1 10679 10666
—0.3 10672 10358 5 10709 10709
—0.1 1086 10% 10 10™ 10™

0 10661 10—58 15 10735 10735

Table 5.1: Values of 7 (second column) and 7, (third column) in T units for
different values of ¢ (first column). For 7, only the SM potential Vgy(¢) is consid-
ered. For 7, the potential Vyp(¢) of Eq. (4.21) is added to Vg (¢), with coupling

constants: a; = —0.2 and ay = 0.125.

presence of Planckian NP. We can see such effect in the result presented in Tab. 5.1,
where we shows the tunneling time 7, (and for comparison 7 ) for different &,
taking o, = —0.2 and ay, = 0.125 in Vyp(o).

A graphical representation of the results of Tab. 5.1 is given in Fig. 5.2, where the
decay time 7 (more precisely log (7/T},)) as a function of £ is plotted in the interval
—1.5 < £ < 1.8. The range of ¢ where 7 is lower than Ty is very tiny (—0.05 <
¢ < 0.5), and centered around its minimal value &;, ~ 0.22. We observe that,
for increasing values of ||, 7, tends towards 7, : this means that the interaction
%f(bQR is so strong to wash out the destabilizing effect of the NP potential (5.18).

The coincidence between 7, and 7, is due to the fact that with increasing [¢]
the bounces obtained with the Higgs potential V (¢) = Vg (#) + Vip (@) tend towards
the SM ones, as can be seen from Fig. 5.1. In fact, actually ¢, (0) and ¢, (0) both
decrease with increasing &, and reach the value ¢(0) ~ 0.002 for ¢ = 10. For further
increasing values of £, not presented in the figure, ¢ (0) and ¢_,(0) still coincide
and take lower and lower values. For negative &, the same trend is observed for
increasing |¢].

To better appreciate the impact of this mechanism, we estimate (for these suf-
ficiently large values of |£|) the relative weight in the equations of motion (5.7-a)
and (5.9) of the two terms ¢* and ¢° in the potential V(@) = Vi (o) + Vap(¢) by

considering the ratio:
C¥1¢6 . 40(1

(et A
Being ¢(0) = max ¢,(r) and ¢(0) « 1, we find A(¢) « 1 (Planck units), so that

A(p) = o (5.21)
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Figure 5.2: The red dashed line is the log,,(7/7T};) as a function of ¢ for the Higgs
potential V(¢) = Vig(é) + Vap(¢), where: o; = —0.2 and o, = 0.125. The blue
line is the log,o(7/Ty;) for the SM potential V,g(¢) alone. The green horizontal line

separates the region 7 < Ty; (lower one) from the region 7 > Ty, (upper one).

the (potentially destabilizing) #° term is very much suppressed as compared to the
standard ¢* term. It is then not surprising that the bounce solution for the potential
Vaum(@) + Vap (@) converges to the corresponding bounce for Vg (¢) alone.

A direct consequence of the coincidence of (¢, (), p,, (7)) and (¢, (7), p.. (7))
is properly the coincidence of 7, and 7 , i.e. the washing out of the NP destabi-

SsMm?

lization. In fact, from (5.14) we see that S, at the bounce (¢, (r), p, (7)) is:

5,0 = =2 [, [Virl6,) + Vo 6,,)]. 5.2

As for sufficiently large values of £ we have (¢, (1), p. (7)) = (¢4, (T), Py, (7)),
Eq. (5.22) can be replaced with:

5, = =2 [ gt Va0, + Varlo,)| 529

For the argument given above, the second term in the r.h.s. of Eq. (5.23) is negli-

gible as compared to the first one, ie. S, — S In conclusion, having ¢ (r)

SM*

and ¢__(r) practically the same size R, from Eq. (5.16) it follows that 7_, and 7

coincide.

The enormous stabilizing effect of the Higgs-gravity interaction can be further
illustrated by comparing values of 7 calculated at different values of £ (e.g. £ = 0,
¢ = 0.9) in a region of the parameter space (aq,ay) where in the £ = 0 case 7 is

always lower than Tj;. For a; and ay, we chose the ranges: —0.25 < a; < —0.16;
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Figure 5.3: Left panel. Stability diagram in the («, o) plane for the range —0.25 <
a; < —0.16 , 0.08 < ay < 0.13, when & = 0. Right panel. Stability diagram for

¢ = 0.9 in the same region of the (o, ) plane.
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Figure 5.4:  Stability diagrams in the (aq,as) plane for the potential V(¢) =
Vg (@) + Vip(¢), with o; and «y in the same ranges as in Fig.5.3. From left to
right, from top to bottom: £ = —0.4, —0.3, 0.7, 0.8. The first two values of £ are on
the left of &,;, (the value of & where 7 reaches its minimal value), the last two ones

on the right side.

0.08 < ay < 0.13. The results are shown in Fig. 5.3: the left panel is the stability

diagram for the £ = 0 case (it is a zoom in the dangerous parameter region of the
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right panel of Fig. 4.5, plotted in terms of a; and ay), the right one for £ = 0.9. The
black lines are level curves with the same value of 7, and the numbers on the top of
them are log, (7/Ty;). The red color scale of the left panel, ranging from darker to
lighter (left to right), indicates increasing values of 7; as said above, 7 < Ty, in the
whole region. The right panel is the stability diagram for & = 0.9. The blue color
scale again indicates increasing values 7 going from left to right. The values of 7
have enormously increased, and in the same region of the (ay,ay) plane they turn
out to be much larger than T;;. The destabilizing effect of the NP terms is entirely
washed out by the direct coupling between the Higgs field and gravity. In Fig.5.4
we consider other values of £ (£ = —0.4,—0.3,0.7,0.8) that confirm these results.
The results shown in these stability diagram suggest an important conclusion.
If we do not take into account the direct Higgs-gravity interaction, NP terms can
strongly destabilize the EW vacuum, and without a knowledge of high energy New
Physics, in particular without a complete theory of Quantum Gravity, we cannot
draw any conclusion on the ultimate fate of our universe. The Higgs-gravity interac-
tion term, whose presence is guaranteed by exceptionally well known experimental
facts (gravity, the Higgs boson, the quantum nature of physical laws), acts as a
universal stabilizing mechanism, that washes out any potentially destabilizing ef-
fect from high energy New Physics (for instance from unknown Quantum Gravity),

protecting our universe from a disastrous decay.
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Chapter 6

Stability of the EW Vacuum in
SUGRA frameworks

In the previous chapters we have seen that the problem of stability of the EW
vacuum [35, 66, 67, 87-98] has been central not only in our understanding of the
Standard Model, but also in demystifying the very nature of possible New Physics.
In particular, we have shown that Planckian NP can strongly affect the stability
of the EW vacuum and the presence of possible harmful Planck-scale-suppressed

operators of the form ¢>"/Mg"* can no longer be ignored in the computation [51].

Although we may not be able to exclude a priori such harmful operators, one may
still wonder whether a mechanism exists in order to protect the EW vacuum from a
disastrous decay. In Chapter 4 we have seen that the direct interaction between the
Higgs boson and gravity can provide such a mechanism. We can also require whether
a protective symmetry can be invented in order to postpone the appearance of these

2n—4

harmful Planck-scale-suppressed operators ¢*"/Mg""* to arbitrarily high orders n,

so as to render their destabilising effect on the EW vacuum harmless.

In this Chapter we will show how supergravity (SUGRA) embeddings of the
SM [99] could be sufficient to protect the stability of the EW vacuum up to very
large values of the soft supersymmetry (SUSY) breaking scale Mg, above the SM
instability scale of 10" GeV. Moreover, we will explicitly demonstrate how discrete
R symmetries could be used in order to restrict the form of the holomorphic super-
potential W, and so suppress the appearance of the harmful Planck-scale operators
of the type ¢>"/Mg"* to arbitrary higher powers of n [100].

6.1 Theoretical background

In this Chapter we will refer to many equations of the previous chapters which we

will report here for the sake of simplicity. In particular, we will consider both the
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flat spacetime background, described by the action (3.89)

S[p] = fd‘*x (%a,@ 0,0 + V(¢)) , (6.1)

and the curved spacetime background, described by the action (3.104)

1 1
S[¢agmx] = Jd4x\/§< - 5 MI%IR + §guya,u¢ 8y¢ + V(¢)> ) (62)

where Mp, is the reduced Planck mass. The latter is related to the ordinary Planck
mass Mp ~ 1.9 x 10" GeV and the Newton’s constant Gy as follows:
Mp 1

Ml?’l = Q = (87TGN)_ .

In Egs. (6.1) and (6.2), g,,, is the O(4) symmetric metric given in Eq. (3.105), while
V(¢) is the potential with a metastable state that is given by Egs. (4.6), (4.7) and
(4.8) in the Standard Model case.

As in the previous chapters, we will compute the bounce solutions relative to the

(6.3)

potential taken into account using Eqs. (3.97), (3.98) and (3.99) for the flat spacetime
background, and Egs. (3.109) and (3.113) for the curved spacetime background.

Then, the tunneling time 7 = "' is computed in the usual way:

R4
I = pe(Sul-ston]) — pe2 o 1~ <—4) ™ Ty, (6.4)

Ty
where R is the size of the bounce solution. The tunneling exponent B in the flat

space time case is given by:

B =2n® JOO dr v (%Qﬁg + V(¢b)) = —27° JOC drr® V(ey,), (6.5)

0 0

where in the left hand side, following steps similar to those of Derrick’s theorem,
the kinetic term % o7 in (6.5) may effectively be replaced with =2V (¢). Instead, in

the curved spacetime case the tunneling exponent B is given by:

B = —2n° f:o dr 0’ V(). (6.6)

6.2 Planckian New Physics Effects

In this Section we consider the presence of Planck-scale suppressed operators of
the type ¢*"/M*"~* in addition to the SM effective potential Viy(¢), where M is of
order Mp. Such operators could in principle be generated by quantum gravity effects
and as such, they cannot be excluded a priori from Vg (). If their contribution to
the SM potential becomes negative, they may have a dramatic destabilizing effect

on our EW vacuum, as extensively discussed in Chapter 4 for n = 3 |54, 65, 71, 72|.
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As we will show below this destabilizing effect may be resent also for n > 3: for
these reasons we call such operators that contribute with a negative sign to Vg ()
as harmful operators.

Let us consider a set of distinet ¢*"-models that could effectively describe un-
known Planckian NP effects. To this end, we extend the SM effective potential as

follows:

Van(0) = Vau(9) + Vap (9), (6.7)

where n > 3, and

o (an Cy ¢2(n+ 1)

L + .
2n Mt 2(n+1) M2

Vi (6) = (6:8)
It is worth to note that all potentials V5, (¢) in (6.7) reduce to Vgy(¢) for ¢ « M, as
its NP part, Vlé%n)(¢), becomes subdominant in this small-field regime. For all the
NP effective potentials Vl\(ﬁ)")(@, we will assume that ¢; is negative, but ¢, is positive,
so as to ensure the convexity of the potential at high field values of ¢ » M. Thus,
the first term ¢*"/M*"~* in (6.8) represents a harmful operator, which we will use
from now on to characterize both the ¢*"-model and its effective potential Vy, ().
In the following, we will analyze numerically the impact of the harmful Planck-
scale NP operators ¢2"/M =4 on the tunnelling time 7 of the EW vacuum, for
all n = 3. To better assess the relevance of these operators, we will simply set

c¢; = —2 and ¢y = 2. Moreover, we will investigate two Planck-scale scenarios with:
(i) M = Mp and (ii) M = Mp/10, for both a flat and a curved background metric.

6.2.1 Planck-Scale Scenarios with M = Mp

We first consider a class of ¢*"-scenarios with scalar potentials Vy,, (¢) given by (6.7),
where the Planckian NP scale M is set equal to Mp. As can be seen from the upper
panel of Fig.6.1 and presented by dashed lines in multiple colours, the negative
contribution of the harmful Planck-scale operators ¢*"/Ma""* in (6.8) produces a
second minimum in their respective effective potentials at ¢ ~ Mp. For comparison,
in the same panel we display with a solid blue line the SM effective potential Vgy ()
given in (4.6).

As we know from the previous chapters, a key quantity that determines the
tunnelling decay time 7 of the EW vacuum is the actual profile of the bounce so-
lutions ¢(r) = ¢(r). These are depicted by dashed lines in multiple colours on
the lower panel of Fig. 6.1 for a flat background metric, where the solid line in blue
corresponds to the SM bounce. Note that all the bounces ¢(r) reach their highest
value close to r = 0, thereby giving the largest support to the tunnelling expo-
nent B in (6.4). When normalising the effect of the harmful NP operators to the
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Figure 6.1: Upper panel. Scalar potentials V;,(¢) [cf. (6.7)], for 3 < n < 10, as
functions of ¢ (dashed lines), with ¢; = —¢, = —2 and M = Mp. The blue line
corresponds to the SM potential Vg (¢) given in (5.17). Lower panel. Radial profiles
of bounce solutions ¢(r) = ¢,(r) (dashed lines) for the same class of Planck-scale
scenarios evaluated for a flat spacetime metric. The solid (blue) line refers to the

respective SM bounce.

one originating from the SM potential term %)\¢4, we get the ratio

Ry — % <%?)QM. (6.9)

Since ¢(0)/Mp ~ 1 for all n > 3, we expect that as n increases, R,, will decrease and
the predictions for the EW vacuum lifetime 7 will get closer to the SM value 7gy;.
Indeed, this property is observed in Tab. 6.1 for the flat spacetime case. In order to
get a lifetime 7 much larger than the age of the Universe T, we need to suppress

2n—4

all potentially harmful operators ¢*"/Ma""* up to n = 6, while one gets 7 ~ Tqy
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2n ¢2n

T /Ty /Ty T /Ty /Ty
n (flat) (curved) n (flat) (curved)
3 107208 107122 7 107 8.8 x 10!

4 1071 3.4 x 10%! 8 100 8.8 x 105
5 1071 8.8 x 10 9 10 8.8 x 10%!

6 107 8.8 x 10! 10 10 8.8 x 10%!

Table 6.1: Lifetime 7 of the EW vacuum for a class of Planck-scale scenarios with
harmful operators ¢*"/M*"~*  evaluated for a flat and a curved background metric.

As input values for the NP parameters, we set ¢; = —cy = —2 and M = Mp.

when n > 50. In the next section, we will outline a protective mechanism within a
SUGRA framework, which can in principle give rise to such a suppression.

Let us now investigate the effect of a curved background metric on the EW
vacuum lifetime 7. Unlike in the flat spacetime, an important novel aspect of the
curved metric is that for increasing n, the bounce solutions ¢(r) and p(r) rapidly
tend to the corresponding SM bounces, as shown in Fig. 6.2. As exhibited in Tab. 6.1,
we obtain 7 ~ gy ~ 10°' T, (cf. Eq.(4.20)), for all Planck-scale scenarios with
n > 4. This stabilizing effect of gravity on the EW vacuum may also be attributed
to the fact that for n >4, one finds ¢(0) ~ 0.07 which is smaller by more than
one order of magnitude from the corresponding value in the flat spacetime. As a
result, the size of NP contributions as represented by R,, in (6.9) will decrease
more drastically as n grows, for a curved spacetime metric. In the next section, we
will explore whether this feature will persist for Planck-scale scenarios with a lower

quantum gravity scale M.

6.2.2 Planck-Scale Scenarios with M = Mp/10

Proceeding as in the previous section, we will analyze a similar class of ¢*"-models,
by assuming that the Planckian NP scale M is now one order of magnitude smaller,
i.e. M = Mp/10. Such a choice may be motivated by the fact that the relevant
energy scale of quantum gravity that enters Einstein’s equation is the reduced Planck
mass Mp, (cf. Eq.(6.3)), rather than the ordinary Planck mass Mp.

From the upper panel of Fig. 6.3, we observe that the minimum of the poten-
tials V5, is now located to a smaller value at ¢, ~ Mp/10. The profiles of the
bounces ¢(r) for a flat spacetime metric are presented by dashed lines in various
colours in the lower panel of Fig. 6.3, while the solid (blue) line stands for the SM

bounce. In order to assess the impact of gravity, we give in Tab. 6.2 the lifetime 7 of
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Figure 6.2: Upper panel. Radial dependence of the bounce solutions ¢(r) (dashed
lines) for the Planck-scale scenarios, with n = 3,4 and M = Mp, evaluated for a
curved spacetime metric. Lower panel. Radial profiles for p(r) —r (dashed lines) for
the same scenarios and background metric. The solid (blue) lines in the two panels

show the bounce profiles in the SM.

the EW vacuum, for both a flat and a curved spacetime background. As opposed to
the previous scenarios, we now observe that the impact of gravity is less significant,
and restoration of the SM prediction for 7 takes place for n > 41.

Comparing the flat-spacetime results exhibited in Tabs. 6.2 and 6.1, we notice
that the predicted values for the tunnelling times 7 for each n turn out to be close.

As before, we may understand this result by looking at the ratios,

2n—4 2n—4
o = 20 (S0) 2 000)

Unlike the previous case M = Mp, an extra factor 10*"~* now appears, because we
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1000
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¢2n ¢2n
A2l 7'/ Ty 7'/ Ty Ve T/ Ty 7'/ Ty
n (flat)  (curved) n (flat) (curved)
3 107294 10729 7 102 10*
6 107° 107 10 10*% 10?4

Table 6.2: Lifetime 7 of the EW vacuum for a class of Planck-scale scenarios that
include harmful operators ¢"/M>"~*, with M = Mp/10, evaluated for both a flat

and a curved background metric.
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Figure 6.4: The same as in Fig. 6.2, for scenarios with 3 < n < 10 and M = Mp/10.

have M = Mp/10. As can be seen from the lower panel of Fig. 6.3, the maximum
of all bounces reached at their origin (r = 0) approaches the value: ¢(0)/Mp ~ 0.1.
Hence, the enhancement factor 10**~* in (6.10) gets compensated by a corresponding
factor (¢(0)/ MP)%_4 ~ 107®"Y As a consequence of this cancellation, the order-
of-magnitude estimates of the tunnelling time 7 for the two Planck-scale scenarios,
with M = Mp and M = My /10, will be comparable.

Let us now turn our attention to the curved spacetime analysis and the numerical
estimates of the EW vacuum lifetime 7 given in Tab. 6.2. As mentioned earlier, the
impact of gravity on 7 is minimal in this case. This can be better understood by
analysing the profile for the bounce solutions ¢(r) and p(r), for n > 3. As shown in
Fig. 6.4, the bounces ¢(r) quickly approach the ones found above in Fig. 6.3 (lower

panel) for the flat spacetime metric. Hence, we expect for the EW vacuum lifetime 7
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to be less affected by the presence of gravity, becoming independent of the radial
coordinate p(r).

The above exercise illustrates how the occurrence of harmful operators in Planck-
ian NP theories that happen to realise a relatively low scale of quantum gravity M
face a serious destabilization problem of the EW vacuum. In the next section, we
will discuss mechanisms that can naturally suppress the presence of leading harmful

operators to sufficiently higher powers of n, within a minimal SUGRA framework.

6.3 Protective Mechanisms in SUGRA

Given our ignorance of a UV-complete theory of quantum gravity, Planck-scale
gravitational effects are usually treated within the context of a low-energy effective
field theory by considering all possible gauge-invariant non-renormalizable operators
suppressed by inverse powers of a high-scale mass M, which is typically of the order
of the reduced Planck mass Mp; ~ 2.4 x 10'® GeV. Specifically, gravitational effects
on the SM scalar potential Vg (¢) along the gauge-invariant field direction ¢ =
V2 (@TQ)I/Q > 0, where ® is the SM Higgs doublet, may be described by the effective

potential

o] )\ 2n
V(gb) = VSM Z 2_ MZTL ) (61)
with Viy(¢) = —m?¢?/2 + A¢*/4. Depending on the sign and size of the coef-

ficient \g for the leading Planck-scale suppressed operator gbG/ M?, the lifetime of
the EW vacuum can vary by many orders of magnitude [54]. In particular, if \g is
negative and |\g| large, the operator #° /M ? then becomes harmful and could lead
to a dramatic destabilization of the EW vacuum, for both flat and curved spacetime
backgrounds [51]. In the following, we will show how SUGRA embeddings of the
SM [99] could protect the EW vacuum from rapid decay up to very large values
of the soft SUSY-breaking scale Mg, above the so-called SM metastability scale
of 10" GeV.

To start with, let us first consider the Minimal Supersymmetric extension of the
Standard Model (MSSM), in which only Planck-mass suppressed non-renormalizable
operators involving the Higgs chiral superfields H 1,2 are considered. In other words,
we ignore for simplicity non-renormalizable operators of all other chiral superfields
in the effective superpotential W. In a SUGRA framework, W will then be given
by
o ()"

Pon
W W() + /,LHlHQ + Z om M2n 3

(6.2)

where
W, = hH,LE + hy H,OD + h, H,QU (6.3)
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is the usual MSSM superpotential without the p term, and fAfl, PAIQ are the chiral
superfields for the two Higgs doublets, @, L are the chiral superfields for the quark
and lepton left-handed iso-doublets, and U , ﬁ, E are their respective right-handed
iso-singlet counterparts'. Note that in writing (6.3), we have suppressed all flavour
indices from the lepton and quark Yukawa couplings h;, h; and h,,.

To simplify matters, we consider that all our SUGRA embeddings are based on
a minimal Kaehler potential K given by

K =K@ @) = HH + HH + ..., (6.4)

where @; is a generic chiral superfield and contributions from SU(2); and U(1)y
vector superfields are not shown. At the tree level, the scalar SUGRA potential
V may be written as a sum of three terms: V = Vp + V) + V4, since it receives
three contributions from: (i) F-terms (Vz), (ii) D-terms (Vp), and (iii) the so-called
SUSY-breaking terms (V4,) induced by spontaneous breakdown of SUGRA that may
occur in the so-called hidden sector of the theory [99]|. In particular, the F- and

D-terms of the potential V' may be calculated from the general expressions:

F2> ICJ' —1.47 ’C,i' * ‘W‘Q
Ve = MM [(W + o8 W)G ok (W,; + M—§W> — 3 ](6.5)

Pl Pl Pl
2
v, = % flD"DP, (6.6)
where W= W(sz)) K= ,C(Soj7901)7 W,i = aW/aSDw ’C,i = 8/C/6‘g02, ,C,f = K:,*z etc,

L7 i5 the inverse of the Kaehler-manifold metric:

for a generic scalar field ¢;, and G~
G; = K;; = 821C/(890ié‘g0;). In addition, ¢ is a generic gauge coupling, e.g. of
SU(2)z, fu is the gauge kinetic function taken to be minimal, ie. f,; = d,, and
D* = K ,T"p are the so-called D-terms, where T are the generators of the gauge
group. Finally, the SUSY-breaking Higgs potential Vi generated from the effective
superpotential in (6.2) is given by

o8]
Vie = mi|H[> + m3|Hy|* + (BMHlﬂz + )] A2n(MW

+ H.c.) . (6.7)

n=2

For the purpose of this Chapter, we will assume that the u-term and the soft mass
parameters mig and By are of order Mg, but all other SUSY-breaking A-terms A,,,
could be as large as M. Although such an unusual assumption does not sizeably
destabilize the gauge hierarchy for Mg < 10 TeV, it can still significantly affect
the predictions for the Higgs-boson mass spectrum. Here, we will not address the
mechanism causing this large hierarchy between the soft parameters and the higher
order A-terms, as it strongly depends on the details of the hidden sector in which
SUSY gets spontaneously broken [99].

"Here we follow the conventions of [101]. A comprehensive review of the EW sector of the
MSSM is given in [102]
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Let us for the moment consider the SUSY limit of the MSSM, by ignoring the
induced SUSY-breaking terms V;7 in the scalar potential V. Assuming that the -
term is of order Mg and so negligible when compared to Mp;, the renormalizable part
of the MSSM potential, denoted by V, has an F- and D-flat direction associated
with the gauge-invariant operator ﬁlﬁfg. In the absence of the p-term, the scalar

field configuration:

1 o
H1—7§<0>, HQ‘ﬁ<¢)’ 0%

with £ € [0,27) and all other scalar fields taken at the origin, gives rise to an exact
flat direction for Vj, i.e. 0V /d¢ = 0. Here ¢ is a positive scalar field background with
canonical kinetic term that parameterizes the D-flat direction. The CP-odd angle
¢ indicates that the flat directions for H; and H, may also differ by an arbitrary
relative phase £. Hence, the parameters (¢,&) describe fully the D-flat direction
of interest. Now, in the flat-space limit Mp, — oo, Vjr is positive, implying that
Vo = Vor + Vop = 0, where the equality sign holds along a flat direction, such as the
¢-direction.

The above property of a non-negative potential will generically persist in the
minimal SUGRA for the full observable-sector potential V', namely upon the inclu-
sion of gauge-invariant non-renormalizable operators consisting only of MSSM fields.
To see this, we first write the MSSM superpotential W as the sum: W = D W“,
where W* is an arbitrary superpotential term labelled by the index a. Then, we
notice that the only negative contribution to V' can potentially come from both the
cross terms and the last term that occur in Vi given in (6.5). In particular, up to

K/ My

an overall positive factor e , we have

ayp sbx aya b
Ve 2> l(’cg WIW* 4 H.c.> —~ 3%] = Z<Na+Nb—3) w
ab Mp, Mp, ab Mp,
’ ’ (6.9)
In arriving at the last equality in (6.9), we used the fact that K ; V% = N,W* in
minimal SUGRA, where N, is the number of scalar fields ¢; present in W?. Given

that N,;, > 2 for all superpotential terms in the MSSM, the last expression on the
RHS of (6.9) will be non-negative, with a possible exception specific field configu-
rations for which N, # N,. Thus, barring fine-tuning, the F-term potential Vy of
the observable sector in (6.5) will be non-negative®. Since Vp > 0 as well, the com-
plete MSSM scalar potential, including the infinite series of the non-renormalizable

operators, will generically be non-negative.

2Instead, hidden-sector chiral superfields 7 can lead to a negative contribution to Vy via SUSY-
breaking effects from a Polonyi-type superpotential Wiqgen = m?(Z + B), for which N, < 1. This
negative contribution is even desirable, as it can be used to fine-tune the cosmological constant
to its observed small value. Similarly, non-minimal Kaehler potential may also lead to negative

contributions to V. A more detailed discussion is given in [99)].
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The above situation changes drastically, if the SUSY-breaking A-terms as given
in (6.7) are added to the scalar potential V. For illustration, let us consider the

minimally extended MSSM superpotential

W=W0+MH1H2+&( 1)

—_— 1
spaL Al (6.10)

which induces the SUSY-breaking potential

(H,H,)?

Vibe = mi[Hif* + ma [Hyf* + (BMHlHQ + A

+ H.c.), (6.11)
for the Higgs sector. For simplicity, we envisage a scenario for which miz < Bu.
Moving along the D-flat direction as stated in (6.8), and upon ignoring radiative
corrections for field values ¢ > Mg, the leading part of the scalar potential takes on

the simple form:

2 2i¢ 2 6 2 4
i [ M o Re(@®4) L o ¢ 5 82 1 ¢
V, _ 9 /Mpy | Y2 4) 44 SR i T S
i(9) = e >t T T s e\t maE Tean) ]
(6.12)
where higher-order terms proportional to |u|/M < Mg/M « 1 were neglected and

m? = |e® Bu — |u|?| is arranged to be of the required EW order. Note that even if
Ay > 0, the field direction (6.8) with ¢ = 7/2 will make the coefficient Re(e**A4,)
entering the potential V; in (6.12) negative. If A, is comparable to M, the quartic
coupling ¢* can become both sizeable and negative, giving rise to a potential V,
that develops a new minimum of order M /|p,|, far away from its SM value. On the
other hand, the higher powers ¢°, ¢* and ¢' are all proportional to the positive
coefficient |p,|?, thereby ensuring the convexity of the potential V;. Clearly, this
exercise shows that SUSY is rather effective in protecting the stability of the EW
vacuum from unknown Planck-scale gravitational effects, unless the induced SUSY-
breaking coupling A, happens to be of order M ~ Mp.

In the following, we will see that SUSY may still be effective for protecting
the stability of our EW vacuum, even for extreme scenarios with A,, ~ Mp
and Mg above the metastability scale of order 10'"" GeV, along the lines of split-
SUSY [103, 104]. To this end, let us first consider the following discrete symmetry

transformations on the chiral superfields:
(ﬁ17ﬁ27@72\;> _)w(ﬁl7ﬁ27@7i)7 (613>

whereas the remaining iso-singlet chiral superfields, U , Dand F , do not transform.
Equation (6.13) implies: W — W*W. Ifw? = 1, the discrete transformations stated
in (6.13) give rise to a global Z, symmetry, which is automatically satisfied by the
complete effective superpotential W.g in (6.2) and the minimal Kaehler potential K

in (6.4). For w? # 1, however, the superpotential W is charged and (6.13) represents
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a non-trivial discrete R-symmetry, which is maintained by an appropriate rotation
of the Grassmann-valued coordinates of the SUSY space.

We may now exploit this discrete R-symmetry in order to suppress lower powers
of the non-renormalizable operators in the effective superpotential w given in (6.2),
as well as the respective A,, terms induced by W. Given that ﬁ[ﬂ% — w2[§1ﬁ2

under the discrete R-symmetry transformations in (6.13), we may now require that
W= W, (6.14)

for n > 2. Note that for n = 1,2, no non-trivial restrictions on the form of W will
arise.

Let us therefore turn our attention to the case with n = 3 in (6.14). This leads
to a scenario realizing the discrete R-symmetry ZF, with w* = 1 and w® = —1 # 1.

In this case, W takes on the form:

e ™ 55 Pe (ﬁ[ﬂ%)g P10 (ﬁ1ﬁ2)5
W= Wt it + s 0 e

In such a minimal SUGRA framework with R-symmetry, the induced SUSY-breaking

potential for the Higgs sector is expected to be of the form [99]:

(H, Hy)* (H, Hs)’
JVE M7

As before, we assume for simplicity that the soft SUSY-breaking mass parame-

(6.15)

ters mig are small, i.e. mig « Bpu, so that they can be ignored. Likewise, we
assume that only the leading pg-coupling and the Ay term are sizeable and so rele-
vant. In this case, along the D-flat direction (6.8), the scalar potential for ¢ > Mg

will acquire the simple form

2 2 2
Vals) = ¢ 1M [—m—

: Re(¢™4g) ¢° | |ool* 0" (1+ 9 ¢ 14 )]

_ —_ _ _.I_ _

aM ME 32 MO T2 ME T2 M
(6.17)
In fact, this last result can be generalized to a discrete R-symmetry Z& . with

¢° +

w?™ D = 1 and n > 3. In this case, the leading form of the scalar potential V5,, for
¢ > Mg becomes

m’ 2 Re(e" ZEA%) ¢2n

ERA T VAR VT

+ ponl* 677 (1 j dn=3 ¢ - ¢ )] (6.18)
221 pp2en=3) 2(2n)? M3 22n)? Mp )|

Va6 > Ms) = e¢2/M31[—

In the above, we have also neglected all small terms that are proportional to |u|/M.

If Ay, > 0, the proper harmful D-flat direction is obtained for £ = 7/n, leading to the
smallest negative coefficient for the ¢*" operator in (6.18), since Re(e" ™ A,,) = — Ay, < 0.
In the next section, we will use the leading form of the SUGRA-derived potential

Von (@) in (6.18), for field values ¢ > Mg, in order to assess the stability of the EW

vacuum against the presence of harmful Planck-scale suppressed operators.
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6.4 EW Vacuum Stability in SUGRA Models

In this Section, we will analyze the stability of the EW vacuum, upon minimally
embedding the SM into an effective SUGRA theory that happens to predict the
leading form of Planckian NP. We will consider a SUGRA-derived extension of the
SM effective potential V5, (¢) for Higgs field values ¢ above the soft SUSY-breaking
scale Mg. This means that for ¢ > Mg, we will adopt the leading form of the SUGRA
potential V5, (¢) of (6.18). Instead, for ¢ < Mg, the SM effective potential Vg (o)
given in (5.17) will be regarded to be an accurate approximation of the theory,
Le. Vo,(¢p < Mg) = Vau(é). Given that the reduced Planck mass Mp, (cf. (6.3))
becomes the relevant mass scale in SUGRA, all mass parameters will be given in
Mp, units. To simplify further our analysis, we identify the scale M in (6.18) with
Mp,, i.e. M = Mp,.

As for the soft SUSY-breaking scale Mg, we consider two different scenarios that
realize: (i) a very large Mg = 10° TeV; (ii) a relatively low Mg = 10 TeV. In all
scalar potentials V5, (¢), we select the flat direction for which the CP-odd phase
¢ in (6.8) is given by ¢ = m/n. This gives rise to a harmful operator ¢*"/Mpp*
which has the largest negative contribution to V5, (¢). Furthermore, for the induced
SUSY-breaking trilinears A,,, we assume that they take the following four discrete

values:

Ay = Mpy, Mp/5, Mp/10, Mp/50. (6.19)

Finally, we set all superpotential couplings p,,, = 1, for simplicity.

6.4.1 SUGRA Scenarios with Mg = 10° TeV

We will first consider a minimal SUGRA scenario with Mg = 10° TeV. The results of
our analysis are exhibited in Tab. 6.3, for different values of n corresponding to the
SUGRA potentials V5, (¢) (cf. (6.18)). In detail, Tab. 6.3 shows the value of the AdS
vacuum energy Vi, = Vo, (dmin) at the Planckian AdS vacuum ¢,;,, the field values,

Jat and @5, as determined at the center of the bounce (with ¢y = ¢(r = 0)),

flat curved

as well as the EW vacuum lifetimes 7 and 7 (in Ty units) for a flat and
a curved spacetime background, respectively. A key theoretical parameter in our
analysis is the SUSY-breaking trilinear coupling A,,,, which takes four representative
values as stated in (6.19).

From Tab. 6.3, we observe that for A,, = Mp;, no noticeable stabilizing effect
on the EW vacuum was found, notwithstanding the presence of gravity and the
induced curved background metric. In fact, we have checked that 7% ~ 794 for
very high values of n as well. Although this result may seem counter-intuitive, it
certainly implies that the protective mechanism presented in Section 6.3 appears to

be ineffective to assure the stability of our EW vacuum in this case.
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n A2n Vmin gbmin ¢ Oﬂat (():urved Tﬂat 7_curved
2 1 —4.1791 1.4310 1.4281 14253 107%% 107%%
3 1 —5.1768 1.4308 14308 1.4308 107> 107*7
4 1 —5.6986 14264 14264 1.4264 1072 1076
2 | 1/5 —0.0133 0.7161  0.0021 0.0019 107 1072%
3 11/5 —0.0401 0.9790 0.9787 0.9786 107'*% 107"
4 | 1/5 —0.0669 1.0991 1.0991 1.0991 107 107
2 [1/10 | —0.0014 0.5122  0.0013 0.0013 107'° 107!
3 11/10 |  —0.0057 0.8268 0.8262 0.8261 107 10"

4 [1/10| —0.0108 0.9809 0.9809 0.9809 10"  10%%

2 [1/50 | —9.8 x 107° 0.2307 0.0008 0.0008 10 10%

3 | 1/50 | —0.00007  0.5554 0.5543 0.5543 10™%  10%*
4 [1/50| —0.00018  0.7519 0.7519 0.7519 10%'7  10%°

Table 6.3: Numerical estimates of the AdS vacuum energy V., at the AdS vac-
uum ¢,;,, the field values ¢, = ¢,(0) at the center of the bounce, the EW vacuum
lifetimes 7 (in 73 units) for a flat and a curved spacetime background, in SUGRA
scenarios with harmful operators ¢>"/M**~* (cf. (6.18)). The input parameters for
such scenarios are: Mg = 10° TeV, M = My, pan = 1, while A,, takes the four
discrete values given in (6.19). All energy scales are given in units of the reduced

Planck mass Mp,.

As A,, assumes smaller values as shown in Tab. 6.3, e.g. Ay, = Mp;/5, we no-

flat curved

tice that unlike n = 2, the lifetime of the EW vacuum, 7% and 7 evaluated
separately for a flat and a curved spacetime metric, gets prolonged, as expected.
For all the scenarios with n = 2, the destabilizing effect of the negative ¢* potential
term is so strong that even the inclusion of gravity can no longer alter the value
of 7. Otherwise, we anticipate on general grounds that the inclusion of gravity will
increase the stability of the EW vacuum for all scenarios n > 3. However, for the
scenario with A,, = Mp;/5, all low order harmful operators with n = 2, 3, 4 lead
to lifetimes 7 « Ty, as can be seen from Tab.6.3. When A,,, becomes even smaller,
ie. Ay, = Mp/10 and A,, = Mp;/50, a quicker stabilization of the EW vacuum is
achieved and the predicted tunnelling time 7 becomes much larger than the age of

the Universe Ty, for all scenarios with n > 3 and n > 2, respectively. This result is
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Figure 6.5: The bounces ¢(r) (upper panel) and the curvatures p(r) (lower panel)
for the potential (6.18) with A,, = Mp,/5 and n = 4, for a flat (solid blue) and a

curved (dashed red) spacetime.

in agreement with the discussion presented in Section 6.2, since the negative A,,-
dependent contribution of the harmful operators to the potentials V5,, becomes less
significant for scenarios with lower values As,,,.

Finally, it is interesting to observe that as n increases, the AdS vacuum ¢,;, and
the bounces, ¢o™ and ¢§™ ! at r = 0, all start to converge towards the same value:
G = Oi2t — gemved T the same context, we have verified that the whole radial
profile ¢™(r) will start to coincide with that of ¢ *4(r). In fact, the difference
a2t and 79! found in Tab. 6.3 will result from the two actions of the

bounce solutions (cf. (6.5) and (6.6)),

between 7

0 Q0
Sl{,iat _ —277'2 J dr 7‘3 V(Qbﬂat) and Sl():urved _ —27T2 J dr p3 V(¢curved) 7
0 0

which determine the tunnelling exponent B in (6.4). Hence, the deviation of the
curvature of the metric, p = p(r) (curved spacetime), from the respective flat one,

p"(r) = r, will control the difference in the predictions for 7" versus 7%,
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n A2n Vmin ¢min élat Surved Tﬂat 7_curved
2 1 —4.1791 1.4310 1.4281 1.4253 10728 107>
3 1 —5.1768 1.4308 1.4308 1.4308 107%% 1077
4 1 —5.6986 1.4264 1.4264 1.4264 107%8 1072
2 | 1/5 —0.0133 0.7161 224 x 1077 2.04 x 1077 107" 107"
3 11/5 —0.0401 0.9790 0.9787 0.9786 10710 1071
4 1 1/5 —0.0669 1.0991 1.0991 1.0991 107 1071
2 |1/10| —0.0014 0.5123 149 x 1077 147 x 1077 107" 107"
3 |1/10|  —0.0057 0.8268 0.8262 0.8261 107 10"
4 [1/10| —0.0108 0.9809 0.9809 0.9809 10** 10*°
2 | 1/50 | —9.8 x 10°® 0.2307 1.10 x 107" 1.10 x 1077 10" 10™

3 [1/50| —0.00008  0.5554 0.5543 0.5543 10%196 108
4 [1/50 | —0.00018  0.7519 0.7519 0.7519 1080%6 10990

Table 6.4: The same as in Tab. 6.3, but with Mg = 10 TeV.

In Fig. 6.5, we give a concrete example, where we plot the bounces ¢(r) (upper
panel) and the curvatures p(r) (lower panel) for the potential (6.18) with n = 4 and
Ay, = Mp /5, for a flat (solid blue line) and a curved (dashed red line) background
metric. We see that while the two bounce solutions for ¢(r) practically coincide, the
corresponding ones for p(r) differ from one another, thereby causing the prediction

for 78 to significantly deviate from that for 75",

6.4.2 SUGRA Scenarios with Mg = 10 TeV

We will now study a class of minimal SUGRA scenarios with a soft SUSY-breking
scale Mg = 10 TeV. Such scenarios are better motivated, in the sense that they
require a much smaller degree of fine tuning for solving the infamous gauge hierarchy
problem. Otherwise, all other theoretical parameters take the same values as before.
This exercise will allow us to probe the sensitivity of our results to Mg. Tab.6.4
summarizes the findings of our analysis.

As was the case for the SUGRA scenarios with Mg = 10? TeV, we find similar
features for those with Mg = 10 TeV. As before, we obtain that for any fixed value

of A,,,, the EW vacuum lifetime 7 will increase with n. Likewise, 7 will also increase,
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as Ay, decreases. Similarly, we notice that for n = 2, the destabilizing effect of the
negative ¢* potential term is strong enough to counter-act the respective stabilising
effect thanks to gravity. As a consequence, the predictions for 7 turn out not to
depend on the choice of the background metric. As before, we observe that for
Ay, = Mp/50, the EW vacuum lifetime gets adequately prolonged, becoming much
larger than T}, already from n = 2 and on.

If we compare the results presented in Tab.6.4 to those in Tab. 6.3, we will

fla curved

observe that the tunnelling times 7 and 7 are rather comparable, especially
when n > 3. Evidently, this suggests that even if gravity is taken into account,
the bounce solutions seem to be insensitive to the matching of the SM effective
potential Vgy(¢) to the SUGRA potential V,,(¢) for a wide range of ¢ values:
¢ =10 — 10° TeV.

In order to gain further insight into this point, we consider a variant effective
scalar potential %n(qﬁ) To be precise, for ¢ < 10 TeV, we set %n(gb) = Vam(o), and
for ¢ > 10° TeV, %n(cﬁ) = V5,(¢). However, between the field values ¢ = 10 TeV and
¢ = 10° TeV, the new potential ‘N/Qn(gzﬁ) is assumed to follow an interpolating straight
line. Interestingly enough, the tunnelling times 7, as well as the other parameters
shown in Tab. 6.4, come out to be close to the corresponding ones obtained when
Van (@) or Va,(¢) are used as an interpolation from 10 to 10° TeV. Consequently,
the bounce solutions turn out to be insensitive to the shape of the potential in the
above range of ¢. This observation explains the robustness and the independence

of these results for a wide range of soft SUSY-breaking scales: Mg = 10 — 10° TeV.
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Chapter 7

Electroweak vacuum lifetime in two

Higgs doublet models

The two-Higgs doublet model (2HDM) [105, 106] is arguably the simplest SM ex-
tension, in which the particle content of the SM is complemented by a second Higgs
doublet. The model boasts a rich phenomenology, with a larger scalar sector, in-
cluding two CP-even scalars, a pseudoscalar and a charged scalar, and may have
spontaneous CP breaking for certain choices of its parameters, thus offering an ad-
ditional source of CP violation. Obviously, the additional scalars predicted in 2HDM
are not yet discovered, and the model must also be in agreement with current exper-
imental searches for BSM particles. Even after demanding that the 125 GeV scalar
be SM-like, there remains a large 2HDM parameter space available to comply with
those experimental results.

An interesting property of the 2HDM strictly related to the scope of this thesis
is that already at the classical level it has a richer vacuum structure. Whereas in the
classical SM potential there can only be one type of minimum, the 2HDM has the
possibility of three physically different kinds of minima: an electroweak-breaking but
CP-and-charge preserving (we call it “normal” minimum), analogous to the SM; a
minimum which spontaneously breaks both the electroweak and CP symmetries; and
a minimum where the vacuum expectation value (vev) of the scalar doublets carries
electric charge, and electric charge conservation no longer holds. However, the scalar
potential of the model is such that, at least at tree level, minima of a different nature
cannot simultaneously coexist [107-110]. The stability of a 2HDM vacuum against
tunneling to another vacuum of a different nature is therefore ensured by the theory
itself, at least at tree level.

Moreover, there is a very crucial property concerning 2HDM normal vacua: for
certain regions of the parameter space, there may exist two non-degenerate vacua of
this type [109-111], both of them CP and charge preserving, but having vevs which
break the electroweak symmetry. However, the vevs of the doublets, v;, are such

that in “our” minimum they satisfy v + v = 246 GeV? (thus in “our” minimum
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all elementary particles have their well-known masses), whereas a different mass
spectrum holds for the second minimum. If the EW vacuum which the universe
currently occupies is not the absolute minimum of the potential, it will sooner or
later tunnel to a deeper minimum that breaks the same symmetries, then ensuring
a situation similar to those of Higgs effective potential in SM. The fundamental
difference between the 2HDM and the SM is that in the latter case the EW vacuum
shows its instability (metastability) only once radiative corrections are taken into
account, and this is mainly due to the negative contribution to the potential coming
from the top quark (see Chapter 2). Instead in the 2HDM the coexistence of two
minima in the potential already occurs at tree-level, and the analysis of the stability
of the false vacuum (the EW minimum in our case) can be already undertaken at this
level (i.e. prior to the study of the loop corrected potential). The conditions under
which a second 2HDM minimum may exist, and the condition which discriminates
whether “our” minimum is the global one were established in refs. [109, 110, 112, 113],
and we will summarize them in Section 7.2. The deeper vacuum, different from the
“standard” EW breaking one, was usually dubbed panic vacuum in the context of
the 2HDM [112, 113]: in fact, as we know a transition from the EW minimum to the
deeper one would be disastrous, as such a transition would release a colossal amount
of energy and, since the fields in the two minima have different vevs, all elementary
particles would change their masses upon transition to the deeper vacuum.
However, the mere existence of a “panic” vacuum is not sufficient to exclude the
parameters of the potential which yield such a possibility. In fact, if the tunneling
time 7 from the false to the true vacuum is larger than the age of the universe, the
existence of the deeper vacuum would have no impact whatsoever in the phenomenol-
ogy observed while the universe lies in the upper minimum. Thus the computation
of 7 becomes a fundamental tool to distinguish between those regions of the param-
eter space which yield dangerous panic vacua, and those for which the deeper vacua
exist but are practically harmless. In this Chapter, we will undertake a thorough
analysis of the tunneling between neutral vacua in the 2HDM by calculating the
EW vacuum lifetime. To this end, we have to look for the bounce solutions to the
Euclidean Euler-Lagrange equations that have O(4) symmetry [114]. It is worth to
note that here we limit ourselves to compute the EW vacuum lifetime in the flat

spacetime background, while the inclusion of gravity is postponed to future studies.

7.1 The Two-Higgs Doublet Model potential

The 2HDM is perhaps the simplest extension of the SM since the particle content
of the 2HDM is enlarged by a second SU(2)y, x U(1)y doublet, but the gauge and
fermion content of the model is the same as the SM’s [105, 106]. The model therefore

contains two hypercharge 1 doublets, ®; and ®,, in terms of which the most general
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renormalizable 2HDM scalar potential is written as
Vo= m%1|‘1)1’2 + m§2|®2\2 - (mi‘bl‘% + h-C-)
1 1
+§)\1’(I)1|4 + 5)\2@2‘4 + Ag|@ 7| Do) + Ay @D,

+ B% (@}%)2 | @y 2 (@{%) + | @y (@}%) + h.c.] . (7.1)
where the coefficients m?s, As67 can be complex. The doublets ®; and ®, are
not physical fields: the mass eigenstates which arise from them are physical, but
the doublets themselves are not. This means that any linear combination of the
doublets which preserves the form of the model’s kinetic terms provides an equally
valid physical description of physics. This corresponds to an invariance of the model
under fields redefinitions, so called basis changes of the form @, = U;;®;, where
U is a 2 x 2 unitary matrix. Though the potential of Eq.(7.1) seemingly has 14
independent real parameters, the freedom to redefine the doublets means that in
fact one can eliminate three of those parameters, and thus the most general 2HDM
scalar potential has 11 independent real parameters [115].

Considering the whole theory we must include the Yukawa sector, i.e. the scalar-
fermion interactions, but this makes us fall into a problem: if we build the most gen-
eral lagrangian with two Higgs doublets, the Yukawa sector will include tree-level
flavour changing neutral currents (FCNC) mediated by neutral scalars. This hap-
pens because the most general Yukawa terms of the 2HDM include interactions of
both doublets with all fermions. However, these FCNC are very tightly constrained
by experimental data and they should be avoided. The most studied model elim-
inates tree-level scalar-mediated FCNC by imposing a Z, discrete symmetry upon
the model. The discrete symmetry usually considered demands that the lagrangian
be invariant under a transformation on the doublets of the form ®; — ®; and
dy, — —P, [116, 117]. As a consequence, the parameters mJy, Ag and \; vanish from
the potential, though m?, is reintroduced as a (real) soft-breaking term, to enlarge
the allowed parameter space and, among other things, allow the theory to have a
decoupling limit [115] where the masses of all scalars other than the SM-like one can

be made very large. The final potential with which we will be working is thus
Vo= mh[@ + ms| @l — miy (0[0, + hoc.)
+%)\1’(I)1|4 + %)\2@2‘4 + A3 @1 [P @, + Ay B, + %)\5 l(‘ﬂqby + h-C-] ;
(7.2)

where now all parameters are real (we have further imposed CP conservation on the
potential, which makes all possible complex phases vanish).
The 2HDM, of course, is not only a theory of the scalar sector, it includes also

gauge bosons and three generations of fermions, as does the SM. The most general
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Yukawa sector of the model, as mentioned above, will generate tree-level FCNC
which are strongly disfavoured by experimental results. These are eliminated im-
posing, on the full lagrangian, the discrete symmetry ®; — &, and &, — —&,
and we have already explained the impact of this symmetry on the scalar sector;
on the Yukawa sector, it forces only one of the doublets to couple (and thus give
mass) to each generation of like-charged fermions. Depending on how the fermionic
fields (both the left doublets and right singlets) transform under the Z, symmetry,
there are then several possible types of 2HDM, with different phenomenologies and
classified according to their scalar-fermion interactions. Usually, one considers four

different types':

e Model Type I, where all fermions couple to a single Higgs doublet, chosen as

®, per convention.

e Model Type II, where all right-handed up-type quarks couple to ®,, but right-
handed down-type quarks and charged leptons couple to ®,;. This type of

couplings is analogous to what happens in SUSY models.

e The Lepton-specific model, in which all quarks couple to ®,, but right-handed
charged leptons couple to ;.

e The Flipped model, in which right handed up quarks and charged leptons
couple to ®,, but right-handed down quarks couple to ®,.

Thus for each model each same-charge type of fermions may gain their masses from
different Higgs doublets. The fact that only one Higgs doublet couples to fermions
of the same electric charge eliminates tree-level FCNC, as the couplings between
the physical scalar particles and the fermions will be described by diagonal matri-
ces [106]. As already mentioned, each of these models has different phenomenologies,

a subject we will address in Section 7.1.3.

7.1.1 Theoretical constraints on quartic couplings

The quartic couplings of (7.2) are not completely unconstrained. In order to ensure
that the potential is bounded from below (BFB), meaning, no directions in field
space along which the potential can tend to minus-infinity, the couplings need to
obey [118]

AM>0 , A>0,
A3 > =/ My, A3+ A — | As] > =V A A (7.3)

'The number of possible models would increase if one were to consider also the possible in-

teraction terms between the scalar doublets and neutrinos, which we will not do in the current

work.

126



It has been proven that these (tree-level) conditions are both necessary and sufficient
[109, 110]. Another set of constraints upon the potential’s parameters arises from
requiring that the theory be unitary. This translates into further constraints upon

the quartic couplings of the potential, which may be reduced to [119-121]

|>\3 - )\4‘ < &7
’)\3+2A4i3)\5‘ < 87

1
‘5 ()\1 + Xy + \/(A1 — X))’ + 4Ai>
1
'5 (/\1 + X + \/()\1 — X))’ + 4A§)

Here we will consider these tree-level constraints, though one-loop contributions
have been considered [122-131].

< 87

< 8. (7.4)

7.1.2 The electroweak-breaking minimum

The potential described by Eq. (7.2) can yield, depending of the values of the param-
eters, different types of minima. The scalar fields can acquire vacuum expectation
values (vevs) and break the symmetries of the model in different ways. We call

“normal vacuum” the case where both doublets acquire real and neutral vevs,

1 ({0 1 ({0
() o 5() e

These normal minima are similar to the SM vacuum: they break the same gauge
symmetries and preserve CP, and constitute the focus of this Chapter (we will briefly
discuss other types of possible 2HDM minima in Section 7.2). Let us now define the
(real) components of the doublets ®; and @, as

@1:L<%1+i‘%z> 7 <I>2=L<%3+i.%4>, (7.6)
V2 \ o +iea V2 \ o i
where the upper components correspond to charged (+41) fields and the lower com-
ponents, to neutral ones. When the potential develops a normal minimum, the real
neutral components, ¢,; and ¢,4, give rise to two mass eigenstates which correspond
to CP-even scalars, dubbed h and H. On the other hand, the imaginary compo-
nents, ¢;; and ;,, originate a pseudoscalar particle, A, and the neutral Goldstone
boson G° which provides the Z boson with its mass. Finally, the upper, charged
components ¢,; vield a charged Higgs scalar, H* and the charged Goldstone boson
G* which gives mass to the W gauge bosons. For such normal minima it is also
customary to define two angles: the ratio of the vevs v; and v, defines the angle £,
such that

tan § = % (7.7)

U1
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B is the angle which diagonalizes both the charged and pseudoscalar squared scalar
mass matrices, and can be considered to only take values between 0 and 7/2 without
loss of generality?. On the other hand, the CP-even squared scalar mass matrix is
diagonalized by a different angle, «, defined such that the two physical eigenstates,

h and H, are related to the neutral real components of the doublets as
h = sinap,; — cosap,,
H = —cosap,, — sinag,. (7.8)

Again without loss of generality, this angle can be chosen such that —7/2 < o < 7/2.
The minimization conditions relate the vevs of Eq.(7.5) to the parameters of the

potential, such that

A A
m%lvl — m%vz + ?111;’ + %vgvl = 0
2 2 Ay 3 Asas o B
MooV — MoV + ?/Uz + Tvlvg = O, (79)
where we have defined
)\345 = )\3 + )\4 + )\5 . (710)

Notice that, since the potential is invariant under a sign change for both doublets,
if Egs. (7.9) admit a solution {v;, vy} obviously {—v;, —v,} will also be a solution.
Also obviously, this second solution will be physically indistinguishable from the
first one. This seemingly trivial point will be extremely important later on, and we
will show in Section 7.4 that it can have a stunning impact on the tunneling rates
between vacua.

Instead of the potential’s couplings, we can choose to describe the model in terms
of the four physical masses, m; = 125 GeV, my, my and m =, the angles 8 and
a, the vev v = 246 GeV and a further parameter, for instance the soft breaking
term miy: a total of eight parameters, just as the potential of Eq. (7.2). The quartic

couplings of the model can then be expressed as

1 2 9 2 9 2 5g
>\1 = T29 (CamH + SaMp —Mp2— |,
v CB Cﬁ
1 2 9 2 9 2 Cp
)\2 = T35 9 <8amH + My — Mipg— |,
v 85 35
1 2 32a(m%{ - mi) m%z
AS = 5 ZmHi + - ;
v 52 5pCp
1 2 2 m%z
A4 = 3 my — 2mHi )
v S/gCﬁ
A L (miy 7.11
5 — 5 —my |, ( . )
v 8565

where for simplification we defined sy = sin @ and ¢y = cos@.

This choice is valid for one specific vacuum, other vacua may have vevs of different signs.
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7.1.3 Experimental constraints on the 2HDM

The larger scalar content of the 2HDM, compared with the SM, leads to measurable
impacts on several experimental observables. So far no scalars other than the 125
GeV one have been discovered, and therefore BSM searches at the LHC and else-
where impose bounds on the masses and couplings of the extra scalars of the 2HDM.
Further, even before the discovery of the Higgs boson, electroweak precision studies
from LEP and other accelerators were used to curtail the values of BSM models,
including the 2HDM. A charged scalar such as the one predicted by the 2HDM
has considerable contributions to several B-meson observables, and data from B-
physics measurements constitute some of the model’s most stringent constraints. In
this Chapter we incorporated a wealth of experimental constraints in the parameter
scans used in Section 7.5.

In general, BSM physics may have substantial contributions to Electroweak Pre-
cision Constraints (EWPC), namely the oblique S, T and U parameters [132-134].
These constraints may, for instance, force the charged Higgs mass and the pseu-
doscalar one to be very close in value. We computed these oblique parameters
and used the most recent fit [135] to constrain the 2HDM parameter space. Direct
searches from LEP, using the channel e"e™ — H*H~ [136], impose a lower bound
on the charged Higgs mass of roughly 100 GeV, which we also implemented. More-
over, the 2HDM contributions to B-physics observables, such as the values of the
b — s7v decay rate [137-141] and the Z — bb width [137, 142|, impose consider-
able constraints, usually expressed as exclusions on the m +—tan 3 plane. Roughly
speaking, these constraints translate as requiring that tan 8 be above 1 for most
of the parameter space in all model types, and an almost tan S-independent lower
bound on the charged Higgs mass for model type II (and Flipped), of roughly ~ 580
GeV [141]. Other flavour constraints, such as those arising from B — 7v, AMBs,d’
etc. [143], were also taken into account.

The Higgs boson discovery at the LHC has been followed by many measurements
of this particle’s properties, which have been seen to be very much in agreement
with what one could expect for a SM-like scalar. The experimental results are thus
pushing the 2HDM into the so-called “alignment limit”, wherein the 125 GeV state
is almost “aligned” with one of the doublets (this in practice corresponds to values
of sin( — «) very close to 1), and the remaining scalars sufficient massive, or with
sufficiently weak interactions, to have eluded detection thus far. In practical terms,
the LHC constraints are obtained from the p ratios between the observed number
of events in some Higgs-mediated channel, and the SM expected value for the same
quantity. Then, for the 2HDM the quantities to compare with experimental results

such as those from [144| are

y _ O_ZHDM(pp_) h) BRQHDM(h_)X)
Y ™Mep—n) BR™M(h— X)

, (7.12)
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where o stands for the production cross section of h in proton-proton collisions at
the LHC and BR for the decay branching ratios of h to some final state X, such
as ZZ, WW, ~yv, bb, .... The fact that h is behaving in a SM-like manner means
that the measured values for these puy are close to one, but the current experimental
uncertainties still allow values with deviations larger than 30% from unity. In our
calculations we will consider mostly scalars produced via the main channel of gluon-
gluon fusion, the cross sections of such processes being obtained by SusHiv1.6.0
[145, 146], at NNLO QCD. Other production channels (such as VBF, bbh or tth)
could also have been used, but for the purposes of the work presented in this Chapter
they would be an unnecessary complication. As for the branching ratios, all decay
widths were computed at leading order, with the necessary NLO QCD corrections
to the bb width taken into account. In fact, requiring that ., oy Hpp a0d fi-7 be
within 30% of their SM value (i.e., all ’s having values in the interval 0.7 to 1.3)
is more than enough to ensure compliance with the 2 x 1o experimental precision

from [144], and even with current run-II results.

Finally, there is a wealth of results on searches for the extra scalars predicted
in the 2HDM (see ref. [147| and references therein, for a review of the status of
the diverse search channels), with measurements imposing exclusion regions in the
parameter space of the model. By and large, requiring that the 125 GeV state h
be very SM-like is sufficient to comply with most exclusion bounds for other scalar
searches, even though there are exceptions [148], like pseudoscalar production and
decay to Zh in the wrong sign limit in the 2HDM [149-155]. For the purposes of this
Chapter, in which we wish to show the possible importance of the tunneling time
calculations in 2HDM parameter space, it was verified that in regions of parameters
analysed the 30% bound on the several py was sufficient to comply with extra scalar

search results.

7.2 Coexisting minima in the 2HDM

Since the 2HDM has a scalar potential much more elaborate than the SM one, it
possesses therefore a richer vacuum structure. In fact, in the 2HDM three classes of
vacua may occur, depending on the parameters of the model. The first corresponds
to normal vacua, wherein the doublets have vevs such as those described by Eq. (7.5).
This kind of vacuum therefore breaks SU(2); x U(1)y down to U(1),,, just as
the EW vacuum in the SM, therefore preserving both CP and the electromagnetic
symmetry.

Vacua with a spontaneous breaking of CP are also possible, and in fact their
existence is the main reason the model was created by T.D. Lee [105]. Such vacua

occur when the doublets have neutral vevs, but now, unlike Eq.(7.5), a relative
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complex phase between them appears, i.e. the vevs are of the form

1 0 1 0
<q)1>CP = 7§ <U1> ) <(I)2>CP = \/_i <v2 expw> ) (7-13)

with 6 # nm, for any integer n. The complex phase induces spontaneous CP breaking
and the resulting scalar mass eigenstates have no definite CP quantum numbers:
they are neither CP-even nor CP-odd. As a consequence, the neutral mass matrix
in such minima is more complex than the analogous matrix in normal vacua: in
the latter, a 4 x 4 matrix breaks into two 2 x 2 blocks, one having two non-zero
eigenvalues, corresponding to the masses of the CP-even states h and H, the other
having a zero eigenvalue (the Goldstone boson G”) and the pseudoscalar mass of A;
in the former case, the 4 x 4 matrix does not reduce to two blocks, it possesses a
zero eigenvalue (again the neutral Goldstone) and three eigenstates with interactions
such that they are neither scalars nor pseudoscalars.

Charge breaking vacua are also a possibility, where the upper components of the

doublets also acquire vevs, i.e. we will have

1 {0 1 [
<(I)1>CB = \/_5 (Ui) ’ <(I)2>CB = \_@ <Ué) . (7'14)

These minima, of course, are to be avoided: the charged vev v5 above will break the
electromagnetic symmetry and give the photon a mass. In the scalar mass matrix,
the neutral (lower) components of the doublets now appear mixed with the charged
ones (upper), the resulting 8 x 8 mass matrix having a total of four zero eigenvalues,
corresponding to the expected four Goldstone bosons arising from the full breaking
of the gauge symmetry group.

The existence of a diverse number of minima in the potential raises the possibility
of tunneling between different vacua, and certainly the hypothetical existence of, for
instance, a CB minimum deeper than a EW or CP one, could constitute a problem
for the model. However, it has been shown that if a normal minimum exists, any
CP or charge breaking solutions of the minimisation equations are necessarily saddle
points which lie above the normal minimum [107-110]. In fact, it was possible to
show that the value of the potential at normal vacua (Vy), CP stationary points
(Vep) or CB ones (Vo) can be related to one another, for coexisting tree-level

stationary points of these types. The following formulae have been established:

2
Vop = Vy = (25;) [(Ulvé — vy07)? "‘U%UQQ] (7.15)
N
oy _ 2, 2.2 .2
Vep — Vv = <P) [(v105 cos 0 — vy0,)* + 070, sin’ 6] | (7.16)
N

with the vevs for each possible stationary points defined in Egs. (7.5), (7.13) and

(7.14), and the subscript “N” refers that the masses m m, and the vev v are

HY
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computed at the normal stationary point. The terms within the square brackets
are obviously positive thus, if N is a minimum, its squared scalar masses will all be
positive, and hence these expressions show that Vo > Vy and Vop > Vy when N
is a minimum. It is also easy to show that in that case both C'P and C'B stationary
points would necessarily be saddle points. Analogously, if the potential is such that
a CP (CB) minimum occurs, any eventual normal or CB (C'P) stationary points
would live above the minimum and be saddle points. Thus tunneling to deeper
minima of a different nature is impossible in the 2HDM.

There is however another aspect of the 2HDM vacuum structure which sets it
apart from the SM, to wit, in certain situations the minimization conditions allow
for several non-equivalent normal stationary points [111]|. Therefore, already at tree-
level, there is the possibility of two (no more than two) normal minima coexisting in
the potential, at different depths [109, 110]. In other words, other than the normal
vacuum with vevs given by Eq. (7.5), for which one has v} + v3 = v* = (246 GeV)?,
there may exist a second normal vacuum N’, with different vevs {v},v5}. For this
second minimum of the potential, the sum of the squared vevs takes a different
value, smaller or larger than (246 GeV)?. The two minima are not degenerate, in
fact they verify [112, 113]

2 2
1 mo+ mo+
VN/ —VN = Z [( ,U];I ) — ( Ug ) ] (/Ul'Ué—UQ/Ull)27 (717)
N N’

where the quantity (mzi /112) is evaluated at each of the minima, N and N’. This

raises the possibility that our vacuum, with v = 246 GeV, is not the deepest one:
there is nothing, in Eq. (7.17), which privileges the minimum N over N', unlike what
happened in Egs. (7.15) or (7.16). In fact, for certain regions of the 2HDM potential,
N’ may be found to be the global minimum of the model, and a minimum where
the exact same symmetries have been broken, but where all elementary particles
have different masses. In that situation our universe could tunnel to this deeper
minimum, with obvious catastrophic consequences.

The conditions under which this rather intriguing possibility arises were estab-
lished in literature [109, 110, 112, 113|. Defining the quantity

k=2 (7.18)

the necessary (but not sufficient) conditions for the softly broken Z, 2HDM potential

to have two minima are

mi 4+ k*mi, < 0, (7.19)

\S/EJF{/E < 1, (7.20)

132



where we have defined the variables z and y as

4k m%Q RV )\1)\2
mi; + K miy Asas — VAAL
y = mi — K m3 vVAAs + Asss (7.21)
m%l + k2 m§2 VALAg — Agys
It was demonstrated [113| that the EW vacuum “N” (“our” minimum) is the global,

true, minimum of the theory if and only if D > 0, where the discriminant D is a

quantity given by
D = miy(m}; — k*m3,)(tan § — k). (7.22)

Notice how, remarkably, the value of D can, in principle, be obtained by experiments
performed on “our” minimum, without any knowledge of the existence of N'.

Let us again recall (see the discussion following Eq. (7.9)) that if the minimisa-
tion conditions yield the solutions N = {v;,v,} and N' = {v},v}}, they also include
other “mirror” solutions, N = {—v,, —vy} and N = {—v}, —vh}. This is a trivial
consequence of the fact that the potential is invariant under a sign change of both
doublets, V (P, ;) = V(—=P;,—D,), and apparently this has no physical conse-
quences: the potential is degenerate at N and N (N’ and N/), and physics at these
two minima is entirely identical. No physical differences whatsoever may arise from
being at N or N (N’ or N,), because the only difference between both minima is the
overall sign of both fields: no interference effects, for instance, will be sensitive to the
sign change. The SM minimum of the Higgs potential, of course, is also degenerate
with a continuum of other possible solutions: recall the shape of the tree-level SM
Higgs potential, where infinitely many degenerate minima lie in a full circle. This is
due to the fact that the SM minimum is determined by the equation {|®|) = v/+/2,
which yields a continuum of possible solutions, corresponding to different gauge
choices for the Higgs doublet . However, for the 2HDM potential, each of the
minima N and N’ is not degenerate with a continuum of other minima, but rather
with another separate isolated minimum, N and N respectively. We emphasize
these seemingly trivial aspects of the minimisation solutions because they may have
dramatic consequences in the computation of tunneling rates, as will be discussed

below in Section 7.4.

7.3 Tunneling and bounces

In Chapters 3 - 6 we have developed and used the theoretical tools needed to compute
the tunneling time 7 for the decay of a false vacuum toward a true vacuum in the
case of a single scalar theory. In particular, we know that the tunneling time is
given by the decay rate, 7 = I'"*, computed via the bounce solution related to the

potential under consideration. However, in the case of the 2HDM (i.e. with the
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potential (7.2)) we are studying the stability of the EW vacuum in a theory with
more than one scalar field.

The extension of the theoretical tools of the bounce equations to the case with
N real fields ¢;, © = 1,..., N is straightforward. If we denote the fields with ¢ =
(¢1, P, - - ., ¢n) and the potential as V' (¢), the bounce configuration is a non-trivial

solution of the coupled system of N ordinary differential equation:

2
Poi  3doi _ V(@)

— 7.23
dr®  rdr 0o (7.23)
with boundary conditions
d¢z _ : _ fv
il 0 lim ¢; = ¢7", (7.24)

where ¢; = ¢ are the values of the fields ¢; at the false vacuum. Following the
same steps of the N = 1 case, the action calculated at the bounce solution ¢,(r) =
(D1(7), ..., dn (7)) bounce for the N field case takes the form:

2 poo
Bz—ﬂ—f drr®
2 Jo

dv(e)
de;

, (7.25)

by

i

where a sum over ¢ is implied.

Apart from very simple cases, the system (7.23) cannot be solved analytically
and we have to rely on numerical methods to evaluate the bounce configurations.
To this end, we used the public Wolfram Mathematica code developed in [156].
The latter solves the system (7.23) with the help of a multiple shooting method,
exploiting the asymptotic behavior of the bounce solution for r — 0 and r —

(that is known in both cases analytically). Finally, the tunneling rate is given by:

r=1p Zgb?(())] e . (7.26)

In general, if the false vacuum can decay towards more than one state, I' is
obtained by calculating the different rates I';: I' = > . I'; and 7 =T -1

For the 2HDM case, the two doublets have a total of eight real components,
as seen in Eq. (7.6). Therefore, in principle, the calculation of the bounce solution
should involve all eight fields, which should contribute to the tunneling time shown
in Eq.(7.26). However, the gauge structure of the model allows a considerable
simplification of this procedure. In fact, since the model has a SU(2) x U(1) gauge
invariance, we can choose a specific gauge in order to remove several of the real
components of the doublets. This is a well-known feature of the 2HDM [106] which,
in passing, is also the reason why the most generic vacua of the model can be cast
into the form of egs. (7.5), (7.13) and (7.14). In the end, we can choose to eliminate
two of the upper components of the doublets (two charged fields) and one of the
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imaginary components of the lower part of the doublets, so that we are left with

simplified doublets given by

1 0 1 Gy + 105
d, = — b, = — 7.27
! \/§<¢1)’ 2 \/§<¢2+i¢3>’ ( )

where for convenience we have renamed the real component fields.

For the CP-conserving potential of Eq.(7.1) that we have been studying, the
bounce equation (7.23) will allow a further simplification, involving only two of the
above component fields, namely ¢; and ¢,. In fact, let us consider the derivatives
of the potential with respect to each of the ¢, that appear in the right-hand side of
the bounce equation (7.23). These are given by

(% = % [2mi) + Mgt + Ag (63 + 85 + 0F + 63) + Aa(@3 + 03) + As(63 — 03)]

sy (7.28)
27‘; = % [2m3y + (83 + 63 + 62 + 02) + (Ag + Ay + As)0d] 0 — mbaery  (7.29)
27;/3 = % [2m3s + Aa(03 + &5 + 3 + 63) + (A + A — As)6i] &5 (7.30)
% = % [2m3, + N5 + 65 + 63 + 62) + Asd7] &4 (7.31)
27‘5/5 = % [2m3s + Xo(03 + 05 + 05 + 03) + As6i] s - (7.32)

Notice how in the three last equations the fields ¢35, ¢, and ¢5 factorize, and how
that does not occur for the derivatives of the potential with respect to ¢, and ¢,.

This leads to bounce equations for each of the ¢,; of the following form:

Lo, 3o,

Tzt = Jilén65) 61 — mises (7.33)
Ciz?f " ;% = fadr,. .- 65) $2 — mixdy (7.34)
C§$3+§% = Ja(@1 - 05) 05 (7.35)
d;“;% = a1, 65) b4 (7.36)
d'ps  3dps Fbrn 00 s -

dr? r dr

where the functions f; can be read from Egs. (7.28)-(7.32). These equations must be
solved with the boundary conditions (7.24). In our case, for which both the true and
false vacua of the CP conserving potential are themselves CP and charge conserving,
the boundary condition (7.24) always implies ¢3(00) = ¢,(0) = ¢5(0) = 0 at any

vacua.
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We observe that there is a fundamental difference between the bounce equations
for {¢1, d,} and those for {¢s, ¢4, ¢5}. Namely, in the right-hand side of the latter
equations the factorization of the fields ¢5, ¢, and ¢5 implies that the trivial solutions
d5(r) = 0, ¢4(r) = 0 and ¢5(r) = 0 exist. Moreover, they respect the above-
mentioned boundary conditions, and thus are acceptable bounce solutions. On the
contrary, in the right-hand side of the first two equations there is an extra term
linear in the fields ¢; and ¢,. And, though the trivial solutions ¢;(r) = 0 and
¢o(r) = 0 also satisfy eqgs. (7.33) and (7.34), they do not comply with the boundary
conditions at infinity for these two fields, which are of the form ¢;(c0) = v; and
¢(0) = v, with non-zero values for the false vacua vevs v; and vy: thus they are
not bounce solutions.

This strongly suggests that the bounce solutions connecting the true and false
vacua have the profiles ¢5(r), ¢4(r) and ¢5(r) identically vanishing in the whole
range for r, from 0 to co. This would imply that the original 2HDM 8-field bounce
calculation reduces to a 2-field problem. In fact, in all the hundreds of thousands of
cases that we have studied numerically (see Section 7.5), we have always verified that
only ¢,(r) and ¢,(r) have non-trivial profiles, while ¢5(r), ¢4(r) and ¢5(r) always
vanish*.

This is not merely a mathematical property of the bounce equations (7.23),
but rather it is dictated by the physics of the model. To illustrate this point,
let us consider for the moment the Complex 2HDM (C2HDM) [157-165|, where
no CP symmetry is imposed on the potential of Eq.(7.2). In this generalisation,
both parameters m3, and A; can be complex although one of these phases can
always be absorbed into one of the fields. We are then left with a single complex
parameter in the potential, which we choose as the soft breaking term. Let us then
write miy = |my| exp”2. This potential may have coexisting minima as well [111].
However, there is the possibility that in one of these minima the vevs of the doublets
are real (as in Eq. (7.5)) and in the other the vevs have a relative complex phase (as
in Eq.(7.13)). But since the potential explicitly breaks the CP symmetry due to
the presence of the phase 0,5, both of these vacua are CP breaking, even if the vevs
are real. For the C2HDM potential with complex m?3,, then, the derivatives of the
potential with respect to ¢, are slightly modified, and the bounce equations (7.33)-
(7.37) become

d*¢,  3d

d¢21 * _% = [il¢r,.. b5) P1 — |mf2|(¢>2 costhy — Pgsinfyy)  (7.38)
r roar

¢y 3de

= folo1,.. 05) Py — ¢1\mf2| cos 5 (7.39)

dr® v dr

*Notice how the soft breaking term m§2 in the potential prevents solutions of the minimisation
conditions of Eq. (7.9) with any of the vevs equal to zero.
*Notice however that we do not possess a full analytical demonstration of this property.
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Figure 7.1: Bounce solution (¢q, ¢o, ¢3, ¢4) for the C2HDM. The fifth bounce for
¢5 is identical to that for ¢,.

d? 3d
d;b;) + ;% = f3(f1,...05) 03 + ¢1‘mf2’ sin 65 (7.40)
d? 3d
d:,b; + ;% = fulo1,...05) ¢4 (7.41)
d? d

% + Bﬁ = f5(d1,... 05) 05 (7.42)

d’rz ; dr

Comparing the system of equations (7.33)-(7.37) with the corresponding system
(7.38)-(7.42) we observe that, while the two last equations remain unchanged, the
right hand side of the third equation contains an additional term that does not fac-
torize ¢z (further, the non-factorized terms in Eqs. (7.38)-(7.39) have also changed).
Thus, we no longer expect a trivial profile for the bounce solution ¢5(r). Clearly, the
appearance of the additional term in the bounce equation for ¢, which we recall is
the complex neutral component of the second doublet, depends on the presence of
the explicitly CP breaking phase #,5: the different physics described by the C2ZHDM
induces a different structure in the bounce equations. At this point, we consider
many different choices for the parameters of the C2HDM potential in which coex-
isting minima occur. These points are chosen such that the false vacuum has real
vevs, while the vevs of the true minimum have a relative complex phase. Comput-
ing the bounce solution for this parameter space, our expectation for the bounce
profiles is fully confirmed: for this new model, ¢;, @5 and ¢ are non trivial profiles,
while ¢, and ¢5 vanish as before. We see a particular example of this behaviour in
Fig. 7.1, where we plot the different fields of the bounce solution ¢; as a function of
r. We remind that in this plot the fields tend at r — oo to the false vacua vevs,
and thus ¢3 in that limit vanishes, as expected. As opposed to what happened in
the CP conserving potential, however, ¢5(r) is no longer vanishing everywhere. In
particular, we observe that at » = 0 it is taking a non-zero value, thus contributing

(as well as the other non-zero components of the bounce) to the evaluation of the
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tunneling time in Eq. (7.26).

It is worth stressing at this stage that this change in the behaviour of ¢5(r)
is due to the different physics described by the two potentials. Only due to the
explicit CP violation of the C2HDM can ¢ have a non-trivial profile, while explicit
CP conservation forces this component of the bounce to vanish for all values of r.
Further, we have to note that for both potentials ¢, and ¢5 are always vanishing,
which is to be expected on physical grounds, since no charge breaking can occur in

either of the models when a normal minimum exists.

7.4 Tunneling to degenerate vacua

At this stage, and before we embark on scans of the 2HDM parameter space, let us
discuss a novel aspect of the tunneling calculations which arise in this model. As we
have emphasised previously, if the minimisations conditions (7.9) have a solution of
the form {v;, vy}, they also include the solutions {—v;, —v,}. The same happens
for the second, non degenerate minimum N’, which corresponds to vevs of the form
{vi, va}.

Let now N = {v;, v,} and N = {—v;, —v,} be the false vacua of the model,
and assume that “our” vacuum corresponds to N. The universe may now tunnel
to two degenerate true vacua, N = {v], v5} and N = {—v], —v5}. Since N’ and
N’ describe exactly the same physics, but (as we will see soon) there are crucial
differences between the tunneling rates from N to either N’ or N

In order to understand this critical point, let us consider a specific example, for
which the parameters of the 2HDM potential (7.2) are chosen to be

mi; = —12305.9 , miy = —7932.3 , miy = —1047.5 (GeV?)
A= 207544 , A\, = 0.377709 , A3 = 1.8562 ,
N, = —1.7028 , X5 = —0.345453. (7.43)

This choice of parameters yields a maximum M at field values M = {¢;, ¢} =

{0, 0} and the following minima (all vevs in GeV),

N = {97.3767, 225.907} , N = {—97.3767, —225.907}
N' = {162.491, —319.463} , N = {-162.491, 319.463} . (7.44)

We also have two couples of saddle points,

S, = {43.6574, 221.06} , S, = {—43.6574, —221.06}
S, = {95.5578 , 48.8458} | S, = {—95.5578 , —48.8458} . (7.45)

If we now calculate the bounce solutions for the transitions from N to N’ and

from N to N/, and assuming for the sake of argument that only one of these tran-
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Figure 7.2: Location of all extrema of the 2HDM potential for the choice of param-
eters in (7.43). Saddle points are marked with “x”, the maximum of the potential,
at (0,0), with a black triangle. The false minima are marked with red circles, the
true ones with green squares. The lines connecting N to N’ and N illustrate how

different the paths between these minima may be.

sitions was possible, we would obtain the following tunneling times (see Eq. (7.26)),

0

(N — N)
(N — N)

8 x 1021 Ty,
2 x 107" Ty, (7.46)

0

where T}; is the current age of the universe. If one were to only consider the transition
N — N’ one would conclude that the false vacuum N was absolutely stable, whereas
the second transition, N — N/, instead shows NN to be incredibly unstable, having
decayed to N almost immediately after the Big Bang. The discrepancy between the
tunneling times for both transitions is astonishing, all the more so because the lower
minima N’ and N are degenerate and describe exactly the same physics. Thus one
might naively expect that there should be no difference in the tunneling rate from
N to either of them: after all the difference in the value of the potential between
N and N’ or between N and N’ is exactly the same, and given by Eq. (7.17). The
fundamental reason of this difference is extremely simple to understand, and lies
in the landscape of minima and saddle points yielding very different possible paths
for tunneling between N and N’ or N'. This may be seen in Fig. 7.2, where it
is illustrated, in the {¢;, ¢,} plane, the locations of all extrema of the potential
listed above. Notice how N is not equally distant from N’ and N/; notice also,
and perhaps even more importantly, that the path from N to both of the lower
minima passes close to a different landscape of saddle points. Instead, from N to
N’ there is a saddle point almost at the beginning, to N the first saddle point is
further away. Also, the steepest descent from N to N’ is possibly “deviated” by

the several remaining saddle points and the maximum along the way, which would
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Figure 7.3: Left panel: Plot of the potential V' (¢, ¢5) of Eq. (7.2) for the parameters
given of Eq.(7.43). Right panel: The same potential rotated anticlockwise by 90
degrees. The left panel better shows the decay path from N to N'; the right panel
from N to N'. The path connecting N while N’ is longer than the path connecting
N with N
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Figure 7.4: Bounce solutions for fields ¢; and ¢, for the transitions from N to N’
(B1) and from N to N’ (B2). In both cases the fields ¢; tend to the same values at
r — o0, i.e. the values of the fields at the false vacuum N, ¢% e ¢Y. But at r = 0

the fields assume different values, close to the vevs at each of the degenerate true
vacua.

explain the much larger tunneling time found, whereas the path to N seems much
more “direct”. To further drive in this point, consider Fig. 7.3, where we show 3D
plots illustrating the shape of the potential along the (seemingly) shortest path from
N to both N’ and N': these images show that, even though the difference in depth
of the potential is exactly the same between N and N’ or between N and N/, it
is quite clearly easier for the latter transition to occur than the former. In fact
the bounce solutions obtained in the transition from N to N’ (which we now call
“B17) and from N to N (“B2”) are quite different, as can be appreciated in Fig. 7.4.
In this plot it is presented the evolution with the radial coordinate r of the two
bounce profiles for the fields ¢; and ¢, found for the specific example we have been
considering. Notice how the solutions, B1 and B2, converge for large values of r

to the same values, which are the values of the vevs at the false vacuum N, as was
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to be expected. However, the values of the fields ¢; at r = 0 diverge significantly,
assuming even opposite signs. Recall that at » = 0 the bounce solution is found for
values of the fields “close” to the true vacuum of the theory. Hence we find that,
for the bounce B1, ¢, assumes a large negative value, ~ —130 GeV and ¢, a large
positive one, ~ 260 GeV. It is worth to note how these values for the bounce are
close to the vevs of the true vacuum N’ (~ —162, ~ 320 GeV). Likewise, the values
found for the bounce solution B2 are close to the vevs found for the other lower
vacuum, N'. Thus, despite the fact that both N’ and N are degenerate and at the
same relative depth to N, the bounce solutions for the two possible transitions are
very different, and in fact lead to very different values for the bounce action S[¢,]

from Eq. (7.25), and hence to the two extremely different lifetime values found.
If the potential has, from N, two possible “decay channels”, then its decay rate,

I', will be given by

1 1
Nt —7
T(N—=>N) 7(N->N)

I =T(N>N)+TI(N->N) = (7.47)

with the “partial” tunneling times from Eq. (7.46). Thus, the lifetime 7 of the false

vacuum N will obviously be

-1
1 1 1 113
= - = 4 — ~ 2x10 T, 7.48

r (T(N — N') (N — N’)) v (7.48)

where in analogy with nuclear decays, when one of the decay channels is much faster
than the other, it dominates over the total lifetime. The conclusion to draw from
this particular example is simple: both degenerate lower vacua must be considered
for the calculation of the tunneling time, and the stability of the false vacuum may
depend crucially on which of the true vacua it is decaying into. It was verified that
differences in tunneling times to true degenerate vacua can be as extreme as those
presented in Eq. (7.46) for many choices of parameters in the potential, though not
always. For many other regions of parameter space, though the two possible decay
rates may differ, they do not affect qualitatively the overall stability of the false
vacuum. Meaning, in many cases, if the tunneling time to one of the lower vacua
is, say, much larger (smaller) than Tj;, the other tunneling time, while possibly very
different, will also be much larger (smaller) than Tj;. Nonetheless, as we will shortly
see, for certain regions the computation of 7 taking into account the existence of

both possible true vacua increased the number of dangerous false vacua by as much
as 50%.

7.5 2HDM Numerical Scans

The physics arguments of Section 7.3 show that the tunneling rate calculation can

be reduced, for the CP conserving potential of Eq.(7.2), to a two-field problem.
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Nonetheless extensive numerical checks were performed, comparing eight-field cal-
culations with two-field ones, and no differences were ever found. Also, in Section 7.4
it was shown the importance of computing the tunneling rates to both degenerate
true vacua. Armed with these two important theoretical insights, we can proceed
to an extensive scan of the 2HDM parameter space. The goal of this Section is to
ascertain how much of that parameter space should be avoided due to tunneling
times shorter than the age of the universe.

It was chosen to work in models type I and II (for the remaining types of Yukawa
interactions the conclusions reached would certainly be very similar). All parameter

scans presented in this Section are such that:

e They include at least one (CP conserving) minimum with v = 246 GeV and
my = 125 GeV

e All theoretical and experimental results mentioned in Section 7.1.3 are satis-
fied. In particular, we demanded that all uy ratios (defined in Eq. (7.12)) be
within 30% of their expected SM value of 1, which reproduces quite satisfac-
torily the current status of LHC results.

o I <tanf <30 and —7/2 < a < 7/2.

e The mass of the heavier CP-even scalar H is chosen in the interval between
130 and 1000 GeV. The mass of the pseudoscalar A is chosen between 100
and 1000 GeV. For the charged mass, its lower bound is 100 GeV for model
type I and 580 GeV for model type II (the difference due to flavour physics
constraints described in Section 7.1.3). The upper bound for the charged mass
is again 1000 GeV.

e The soft breaking parameter m3, is taken with both signs, and magnitude
below roughly 500 GeV?.

These parameter scans are not meant to be exhaustive: representative regions of the
2HDM parameter space were merely sampled to illustrate the possible impact that
tunneling times to deeper vacua lower than the age of the universe may have. We

now consider different scenarios.

7.5.1 General scans for type I and II models

To illustrate the possible relevance of false vacua exclusion (due to low tunneling
times) in general, “blind”, scans of parameter space, we generated large datasets
(over 100000 different combinations of parameters) for models type I and II.

In Fig. 7.5 it is shown the result of the analysis, by plotting the values of A5 vs

the pseudoscalar mass m 4. The colour code in these plots is such that:
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Figure 7.5: Scatter plot of A5 vs. m, for general scan on the parameter space of a
type I (left) and type II (right) 2HDM. In blue, all points generated which conform
to theoretical and experimental constraints; in green, the subset of those for which
two normal vacua are possible; in yellow, the subset of those for which D < 0 and
thus the EW vacuum may be the false one; and in red, those points for which the

tunneling time to the true vacuum is smaller than the age of the universe.

e In blue we present all points generated which satisfy the theoretical and ex-
perimental constraints explained above. The other colours are superimposed
on top of the blue points. Or, in other words, the green, yellow, red points are

a subset of the blue ones.

e The green points correspond to the subset of the blue ones for which the two
CP-conserving minima conditions of Eqgs. (7.19) and (7.20) are satisfied. Recall
that those conditions are necessary ones, but not sufficient, and therefore not
all green points will truly correspond to the existence of two minima. In fact,
that happens typically for only half of these points. Notice the disproportion
in size of the green region compared to the blue one: dual minima in the

2HDM potential are, in general, a rare occurrence.

e In yellow it is shown the subset of the green points for which the discriminant
D from Eq.(7.22) is negative, i.e. the points for which, if two minima exist,

“our” electroweak vacuum with v = 246 GeV will not be the deeper one.

e Finally in red, the subset of the yellow points for which: (a) two minima exist,
(b) “our” electroweak vacuum is not the global minimum and (c) the tunneling
time from “our” vacuum to the deeper true vacuum is less than the age of the

universe.

The visible blue points in these figures are clearly safe combinations of parameters,
for which the EW vacuum is not only safe but also unique. Several comments are

in order to better interpret these plots. First, please take into account the fact that
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these plots are dense in each of the colours. In other words, in the middle of the
green, or yellow, or red points there are blue ones. Thus the red regions are not
wholly excluded: though dangerous tunneling times seem to be found for specific
areas in the m 4—\5 plane, those areas will in general also include perfectly acceptable
blue (green, yellow) points for which there might not even be two minima. Second,
there is no obvious pattern to the green, yellow or red regions: the existence of two
minima, and dangerous tunneling times for the acceptable EW vacuum, depends
on non-trivial relations between the potential’s parameters, which are difficult to
visualize in this 2-dimensional slice of what is in truth an 8-dimensional parameter
space. Third, in general it seems easier to find two minima (and dangerous short-
lived vacua) in model type II than in I. This is a consequence of the hard bound on
the charged Higgs mass in model type II which arises from b — sv constraints. This
bound tends to privilege higher, positive, values of m7,, for which the discriminant
D is usually found to be positive (and thus “our” EW vacuum is the global minimum
of the model).

To illustrate the frequency with which dangerous vacua are found in this blind
scan, consider the results shown above for type I: the total number of generated
(blue) points conforming to all theory and experimental constraints was above
120000; of these, roughly 21500 (green) points were found which might have two
minima (satisfying Eqgs. (7.19) and (7.20)): in fact, of those, two minima were found
only for over 11000 points. The (yellow) points with D < 0, with possible local
EW vacua with v = 246 GeV, totalled almost 9500, and out of these over 4200 were
found for which the tunneling time to the global (v # 246 GeV) minimum is inferior
to Ty;. Thus the percentage of points of the initial parameter space excluded on
tunneling time arguments is about 3.5%. For model type II, a similar accounting
yields a percentage of excluded points of roughly 0.2%.

The distribution of dangerous (red) points in Fig. 7.5 is clearly not homogeneous,
and the percentages of excluded points found in the previous paragraph are therefore
not to be interpreted as, for instance, 3.5% of type I parameter space being ruled out
on low tunneling times grounds. In fact, while certain regions of 2HDM parameter
space are completely safe (the blue points visible in Fig. 7.5, for instance), others
may yield a far larger percentage of dangerous minima than the numbers quoted

above. To illustrate this let us now consider a few benchmark scenarios.

7.5.2 First benchmark scenarios: safe regions

As discussed above, the distribution of parameter space points for which dangerous
short-lived false vacua occur in the 2HDM is not uniform. The regions of parameter
space which conform to equations (7.19), (7.20) or have the discriminant (7.22)
negative are usually not easily visualized in 2-dimensional slices, and as explained in

Section 7.4, the tunneling time to lower vacua may depend crucially on the landscape
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of saddle points in field space, and this will also depend in a non-trivial manner on
the numerical values of the couplings, affecting the number of possible solutions of
the minimisation conditions of Eq. (7.9). In the present subsection, we will give two
examples of parameter choices for which, due to different reasons, the EW vacuum
is perfectly safe. In all cases to follow we study model type I, and fix six of the
parameters of the model, allowing two others to vary in such a manner as to comply
with all theory and experimental constraints. Since we wish to have a physically
interesting EW vacuum, we chose to specify the values of (in principle) observable
2HDM parameters, rather than the couplings of the potential in Eq. (7.2). To this
end, we of course chose the value of v = 246 GeV and m,, = 125 GeV for the EW
vacuum, and then proceed to select, for each benchmark scenario, the masses my
and m .+, the value of tan 8 and of sin( — «) (thus, indirectly, the value of a). We
chose sin(5 — «) because this quantity is already quite constrained to be close to
unity by LHC data.

The 2HDM parameter scan we undertake therefore considers these six parameters
fixed and then proceeds to choosing random values for two others, which we chose
to be A\s and m,°. Each selection of parameters is then verified for theory and
experimental constraints, and if all are obeyed a satisfactory EW vacuum is found. A
posteriori the existence of a second minimum is checked, and if that second minimum

is the global one, the tunneling time to the true vacuum is computed.
e Decoupling scenario

As a first example, we have chosen my = 600 GeV, m + = 700 GeV, tan 3 = 1
and sin(f — «) = 0.99. Though )5 was allowed to vary between —10 and 10, only
values in the window between ~ —6.3 and ~ —2.3 were found after all constraints
applied. Likewise, the pseudoscalar mass is found to be constrained between roughly
620 and 705 GeV. It is well known that the electroweak precision constraints (namely
the bounds on the Peskin-Takeushi parameters S, T and U) force the extra scalar
masses to be close in the high mass range, so these results are not surprising.

The high values for the extra scalar masses coupled with the fact that sin(5 — «)
is extremely close to 1°, meaning that we are well within a decoupling regime for
the model. Of course, one of the possible explanations for the current LHC results
is the decoupling of all BSM particles, yielding a SM-like 125 GeV scalar. Thus the
benchmark scenario chosen herein is of experimental interest.

For all 200000 points generated complying with the choices above for the param-
eters and all constraints, we observe that the conditions for the possible existence

of two minima, Eqgs. (7.19) and (7.20), are never satisfied. Thus, for this benchmark

®The reason for this is related to Eq. (7.11), which show it to be an efficient choice of parameters
to fully specify the 2HDM potential.
This implies that the coupling of h to Z or W bosons and to fermions is very much SM-like.
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Figure 7.6: Scatter plots of A5 vs. m, for the low mass stable benchmark scenario

considered. The colour code is the same as in fig. 7.5.

scenario, the EW vacuum is unique, and thus (at tree-level at least) entirely stable.
This does not mean that any choice of parameters in the decoupling regime will
always fall into this category, although, as explained above for the type II model,
large masses tend to yield stable EW vacua. Of course, there is no need to go into
the decoupling regime to find parameters for which no non-degenerate vacua do not
exist: the blue points in Fig. 7.5 show this to be true. Thus some regions of 2HDM
parameter space have EW vacua which are unique at tree-level. Therefore, apart
from the possibility of one-loop corrections to the potential originating deeper vacua
as seems to be the case in the SM, the stability of the EW vacuum in such 2HDM

parameter space regions is ensured and no tunneling calculations are needed.
e Low mass stable scenario

Consider now a different choice of parameters corresponding to much lower
masses for the extra scalars: my = 280 GeV, m,+ = 400 GeV, tan = 2.3 and
again sin( — «) = 0.99. This last choice all but ensures h has SM-like behaviour.
The value of tan 3 is chosen such as to comply with the exclusion in the tan S—m ,+
plane stemming from B-physics constraints [143|. The low masses chosen for H and
H?* are obviously interesting from the experimental point of view, as they raise the
possibility of new particles discovered at LHC. As before, electroweak precision con-
straints force the pseudoscalar to be close in mass to the charged scalar, as can be
appreciated from Fig.7.6. In this plot it is shown a “phase diagram” of the 2HDM
parameter space. Unlike the plots in Fig. 7.5 (the colour code is the same here than
in those plots) the parameter space now being scanned is truly a two-dimensional
one, and thus Fig. 7.6 gives us a clearer picture of regions having different vacuum

structure.
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Figure 7.7: Scatter plots of A (left) and mj, (right) vs. m, for the benchmark

scenario considered in Section 7.5.3. The colour code is the same as in fig. 7.5.

What we observe in Fig. 7.6 is the total absence of red points, and only a thin
yellow strip where the EW vacuum could be the false vacuum. Indeed, for all points
for which the EW vacuum is indeed a local minimum of the potential and not
the global one, tunneling time calculations have revealed that the lifetime of the
false vacuum is always far superior to the current age of the universe. Thus, even
though for this benchmark scenario there may be dual minima, and “our” vacuum
is not guaranteed to be the true vacuum of the model, it is nonetheless found to
be either stable or incredibly long lived. Hence one must be careful to not exclude
offhand regions of parameter space for which the discriminant D from Eq. (7.22) is
negative: D > 0 is a necessary and sufficient condition for the EW vacuum with
v = 246 GeV to be the global minimum of the theory, but as this example shows,
points with D < 0 may be entirely acceptable, having lifetimes larger than T3;.
One must therefore be cautious in excluding regions of parameter space using the
sign of discriminant D, as was made in refs. [129, 166]: if D < 0, tunneling times
involving two-field bounce equations need to be computed, lest one is needlessly

refusing phenomenologically acceptable combinations of 2HDM parameters.

7.5.3 Second benchmark scenario: considerable exclusion

The vacuum stability of the 2HDM may however change dramatically even for seem-
ingly small variations in its parameters. Consider yet another choice of parameters,
still corresponding to low masses for the extra scalars: my = 200 GeV, m = = 400
GeV, tan = 2.5 and again sin(5 — ) = 0.99. Though this choice of parameters
seems to be very similar to the previous benchmark considered, the allowed vacuum
structure of the model is now quite different, as may be appreciated from Fig.7.7.
Notice how the region where two minima are in principle allowed (the yellow points)
is now much larger, and how many red points now occur. In fact, for this region of

parameter space, roughly 67% of all cases where “our” vacuum is the higher min-
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imum yield a tunneling time inferior to the age of the universe. Globally, we find
that for the points generated in this benchmark scenario which verify all theory and
experimental constraints, roughly 11% have dangerous tunneling times. This is a
much greater percentage than the one found for the blind parameter scan, showing
that specific regions of the parameter space may be much more prone to dangerous
false vacua than others. It is quite stunning how merely increasing by 0.2 the value of
tan 8 and reducing by 80 GeV the value of the heavier CP-even scalar may have such
a drastic effect in the vacuum structure of the 2HDM, but that simply reflects the
complicated and non-obvious dependence on these parameters in Eqs. (7.9), (7.19),
(7.20) and (7.22). This not to mention the susceptibility of the tunneling time calcu-
lations to the geometry of the potential (which may be heavily influenced by changes
in the potential’s couplings) as illustrated in Figs.7.2 and 7.3. It is worth also to
consider the importance of calculating the tunneling rates to the degenerate true
vacua: as discussed in Section 7.4, despite that degeneracy originating physically
equivalent vacua, the lifetime of the false vacuum can change immensely if one does
not take into account the existence of two possible true vacua it can decay into. In
this present case, doing the lifetime calculation correctly taking into account both
lower vacua yielded roughly 50% more dangerous red points than if we considered
tunneling to only one of the lower vacua.

In the right of Fig.7.7 we plot mj, against m,, illustrating nicely how all EW
false vacua can only occur for negative values of the soft breaking parameter. This
is a known feature of the 2HDM: negative discriminant D seems to only occur for
negative mi,, though there is no demonstration of this property. It would imply a
correlation in the signs of the two last terms in the definition of the discriminant in
Eq. (7.22).
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Chapter 8

Conclusions and outlook

In this thesis we studied several aspects on the topic of the stability analysis of
the electroweak vacuum (where our entire Universe sits), using the formalism of the
computation of a metastable vacuum decay rate through the bounce solutions of the
euclidean equations of motion for scalar fields. In particular, we studied the impact
of physics beyond the Standard Model on the stability condition of our Universe,
considering both models in which we have new physics only around the Planck
scale Mp, and models that provide new physics at lower scales. In this Chapter we
summarize the main results presented in Chapters 4, 5, 6 and 7 of this thesis, i.e.
the chapters based on the original works in Refs. [51, 83, 100, 114].

In Chapter 4 we studied the impact of very high energy NP (around the Planck
scale Mp) on the stability condition of the EW vacuum by carrying the analysis
in a curved spacetime background. In particular, we saw that taking into account
the presence of gravity does not modify qualitatively the results of previous stud-
ies |54, 65, 71, 72|, where the same analysis was carried in a flat spacetime back-
ground. In fact, as for this latter case, the main result is that we have new bounce
solutions due to the New Physics modification to the RG improved Higgs effective
potential, and these can have an enormous impact on the EW vacuum lifetime, by
far dominating over the contribution that comes from the known solutions obtained
with the unmodified Standard Model potential.

As in |54, 65, 71] we first performed the analysis by adding to the SM potential
higher powers of the Higgs field, more precisely terms as ¢° / M3 and ng/M]% that
are certainly generated in a quantum gravity context [167]. Then, following [73|, we
parametrized high energy new physics in a different manner, namely by adding to the
SM potential a boson S and a fermion ¢, with very large masses Mg and M}, coupled
to the Higgs boson. As for the analysis carried in flat spacetime, in both models we
actually find that the presence of new physics can have an enormous impact on the
EW vacuum stability condition. In particular, these results definitely show that,
irrespectively of the parametrization used to describe high energy new physics, it is

not possible to ignore its presence when the stability analysis is performed. Then,
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such analysis could be of the greatest importance for current studies and for model
building of Beyond Standard Model physics, where we often have to take into account

new physics at very high (Planckian and/or trans-Planckian) scales.

To be more specific, from the result obtained in the flat spacetime [54, 65, 71, 72|,
we know that New Physics introduced via this kind of models tends to destabilize
the electroweak vacuum, even making the tunneling time less than the age of the
Universe, and thus to move the instability line of the phase diagram in Fig.4.1
towards the point corresponding to the central values of the masses of the Higgs
boson and of the top quark, that is the point corresponding to our Universe. The
results illustrated in this Chapter with the inclusion a minimal coupling of gravity
with matter (i.e. considering a curved spacetime background with the only inclusion
of the Einstein-Hilbert term) show that this destabilization effect of New Physics is
still present and turns out to be dominant, although gravity tends to stabilize the

electroweak vacuum, i.e. to suppress the nucleation of true vacuum bubbles [51].

In Chapter 5 we studied the impact of a direct coupling of the Higgs field ¢ with
gravity on the stability of the electroweak vacuum when we include New Physics
at high energy scales, describing this latter adding the higher order operator at
the Planck scale ¢6/M1% and ¢8/Mf§ to the Higgs potential. In fact, in view of the
destabilization effect induced by this kind of New Physics models, we want to search
for a stabilization mechanism for the electroweak vacuum, and we showed that this
direct coupling between gravity and matter could provide such a mechanism. This
non minimal coupling is described adding to the lagrangian a term £¢°R, where
R is the Ricci scalar and £ is the coupling constant. The impact of this coupling
considering only the Standard Model was studied in |77]: a part for a small region
around the conformal value £ = 1/6, this coupling tends to increase the electroweak

vacuum lifetime 7 value, respect to the minimal coupling case £ = 0.

Once we include New Physics beyond Standard Model, the results presented in
this Chapter show that the electroweak vacuum stability continue to strongly depend
from the value of the coupling &: in fact, taking into account specific New Physics
cases, i.e. fixing the values of the NP couplings, we find a behaviour of the tunneling
time 7 that presents a minimum as shown in Fig. 5.2, while moving away from this
minimum, the 7(§) curve has a monotonous increasing behavior. Depending on the
values of NP couplings, in a small interval around the minimum of 7(§) (which can
include also the minimal coupling case £ = 0), we can have values of the tunneling
time less than the age of the Universe 7 < T}, then a situation that can not describe

our Universe.

However, for sufficiently large values of the coupling, but of the order of unity
|€] ~ 1, the tunneling time becomes greater than the age of the Universe 7 > T},
(a situation consistent with our Universe), i.e. the non minimal coupling solves the

instability due to the presence of New Physics. If this were not enough, gravity with
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non minimal coupling can have such a strong stabilizing effect that it completely
washes out the effects of New Physics: this effect is shown in Fig. 5.2 where we see
that the curve for 7(£) obtained with the inclusion of NP (with a specific values of
the coupling) collapses on the corresponding SM curve for “large” values of |£|. This
washing out effect of the non minimal coupling is present for a large region of the

parameter space of the NP coupling, as can be seen in Figs. 5.3 and 5.4 [83].

In view of this enormous stabilizing effect induced by the term £¢*R for values
of £ outside the small range around the minimum of 7(¢), and under the assumption
that the physical value (still unknown) of ¢ lies outside this range, we are led to
formulate the following conjecture, which we call “Direct Coupling Stability Con-
jecture”. An intrinsic stabilization mechanism that protects our Universe from any
possible destabilization that could come from unknown New Physics beyond SM is
provided by three simple and primordial ingredients: the quantum nature of the
laws that govern the Universe, and the very existence of gravity and of the Higgs
boson. This is all that is needed to require the presence of the direct coupling term

between the Higgs field and the Ricci scalar.

It is worth to note that the results illustrated in this Chapter show how the
washing out effect due to gravity is strictly related to the fact that for values of ||
sufficiently large the center of the bounces, and therefore their maximum value, tends
to be smaller and smaller, and this leads the bounce solutions obtained by including
the New Physics to coincide with those obtained with the Standard Model only.
Therefore, we can say that this electroweak vacuum stabilization mechanism could
be due to a gravitational mechanism that tends to “flatten” the bounce solutions,

i.e. to obtain solutions with an ever smaller center and an ever larger size.

In Chapter 6 we have studied the stability of the EW vacuum in the presence
of Planck-scale suppressed operators of the form ¢2"/M =4 where M is of order
the Planck mass Mp, then a generalization of the higher order operators models
considered in the previous chapters. As said above, such operators can no longer
be excluded in the presence of gravity, as they could in principle be generated by
quantum gravity effects. If these operators contribute with a negative sign to the SM
effective potential, they will in general have a destabilizing effect on the EW vacuum,
and therefore we have called them harmful. We have then evaluated the lifetime 7
of the EW vacuum both in a flat and in a gravitational background for simple
scenarios of Planckian NP with convex potentials in the presence of these harmful
operators. Obviously, for n = 3 and M = Mp we recover the results quoted in
Chapter 4 [51]. For such scenarios, we have found that longevity of the EW vacuum
requires n > 4, leading to a EW vacuum lifetime greater of the one obtained with
the SM alone, 7 > 7q\;. Most remarkably, for theories with relatively lower scale M
of quantum gravity, e.g. M = Mp/10, a safely stable EW vacuum implies that all

harmful operators up to n = 6 need to be either accidentally suppressed or naturally
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eliminated by the action of some symmetry.

Besides resorting to ad hoc accidental suppressions, in this Chapter we have
explored the possibility whether the harmful Planck-scale operators of the form
¢*"/M**~* could be eliminated naturally to leading order because of the action of
some symmetry. In this context, we have shown how minimal embeddings of the
SM in SUGRA can stabilize the EW vacuum against these harmful operators up
to very high values of the induced SUSY-violating A-couplings and the soft SUSY-
breaking scale Mg. The scale Mg may even lie above the so-called SM instability
scale of 10" GeV. In particular, we have explicitly demonstrated how discrete R
symmetries, such as Z§n,2, could be invoked to suppress the harmful operators to
arbitrary higher powers of n. In this minimal SUGRA framework, we have analyzed
different scenarios of Planck-scale gravitational physics and derived lower limits on
the power n that will be needed in order to render the EW vacuum sufficiently long-
lived. We have presented numerical estimates for a few representative scenarios
realising a low and high soft SUSY-breaking scale Mg, i.e. for Mg = 10 TeV and
Mg = 10° TeV [100].

The results presented in this Chapter have revealed the severity of the stability
problem for theories with low-scale quantum gravity. In particular, we have illus-
trated that such theories face serious difficulties in ensuring adequate longevity of
our EW vacuum. These theories may have a string-theoretic origin [168]| giving
rise to realizations with a lower effective Planck mass, including models with large
compact dimensions [169, 170]. It would be interesting to analyse the restrictions
that can be derived from the evaluation of 7 on the fundamental parameters of such

theories.

In Chapter 7 we studied the EW vacuum stability condition in one of the most
simple extension of the SM, the Two Higgs Doublet Model. This model presents a
richer phenomenology than the SM, providing extra scalar particles. In particular it
has a very rich vacuum structure, providing the possibility of the formation of a elec-
troweak breaking, CP conserving true vacuum different from “our” vacuum also at
the tree level, whereas in SM the EW vacuum metastability occurs due to radiative
corrections to the potential. However, for the 2HDM we consider the stability analy-
sis only for a flat spacetime background, postponing the study in a curved spacetime
background in future works. We analysed in depth the possibility of using the life-
time of false vacua as an exclusion tool of regions of parameter space in 2HDM.
The gauge freedom of the model allowed us to reduce the complexity of an a priori
8-field problem, and the physics of the models under discussion, coupled with the
shape of the bounce equations describing the tunneling trajectories between vacua,
permitted a further simplification. This is the first main result that we obtained
in this Chapter: we have shown that, in the CP-conserving 2HDM potential the

tunneling time calculation is reduced to a 2-field problem. The remaining fields do
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not contribute, their bounce equations only allowing for trivial, vanishing solutions

when the appropriate boundary conditions are taken into account.

However, the 2-field case produces a bizarre consequence, that is the second
main result obtained in this Chapter. The 2HDM is invariant under a simultaneous
sign redefinition for both scalar doublets, and no physical consequences should in
principle arise from such a sign swap. Indeed, for any pair of solutions of the
minimisation conditions of the potential, its symmetric is also a solution. This is a
well-known, and trivial, property of 2HDM vacuum solutions. Any minimum found
isin fact a “pair of minim”, degenerate, separate in field space, each producing exactly
the same physics. We showed that this may have significant impact in the lifetime of
false vacua: indeed, the false vacuum can decay to a pair of degenerate true vacua,
separated in field space, and the trajectory to each of the true vacua will not be, in
general, the same. Hence the partial decay rates to each of the deeper vacua will in
general be different, and the landscape of maxima and saddle points found along the
trajectories to each true vacuum can indeed yield vastly different tunneling rates.
We find many instances where considering both tunneling possibilities yielded false
vacua with lifetimes shorter than the age of the universe, whereas considering only

one of the decaying possibilities seemed to indicate a stable false vacuum.

Applying the theoretical insights gained on generic scans of the 2HDM parameter
space, we analysed which regions of that parameter space might be excluded on
grounds of short EW vacuum lifetime. Generic scans over all allowed (under theory
and experimental constraints) parameters show that the existence of non-degenerate
minima is rare in the 2HDM, and that even when a false vacuum occurs, its lifetime
is often found to be superior to the age of the universe. The percentage of 2HDM
parameter space points excluded in generic scans is then found to be of the order of a
few percent. However, care must be exercised in reading this result, since the regions
of 2HDM parameter space where non-degenerate minima occur are not uniformly

distributed, and neither is the subset of those for which short-lived false vacua occur.

We therefore proceeded to considering specific benchmark scenarios, illustrating
how three very different regimes might occur. First we considered a choice for extra
scalar masses and angles a and /3 (see Eqgs. (7.7) and (7.8)) that pushed the theory
well into the decoupling regime. Such a choice corresponds to a region of parameter
space for which no non-degenerate minima exist in the potential, and as such the
model is entirely stable at tree-level. The decoupling regime, of course, is not the
only case where no non-degenerate vacua do not occur, the same does happen for
smaller masses of the extra scalars. The second scenario considered studied a low-
mass case for the extra scalars, and for which the possibility of a false EW vacuum
now arises: certain regions of the considered parameter space had D < 0, the
discriminant which characterizes false vacua (see Eq. (7.22)). However, for all such

false vacua, the tunneling times towards the true vacuum were always found to be
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larger than 77;, and therefore stability is ensured. Thus the mere existence of a false
vacuum should not be used per se to exclude regions of parameter space for which
D < 0: tunneling times should and must be computed, and parameter exclusion
should only be decided after that calculation.

Finally, we considered a low-mass scenario for which a large swath of parameter
space is excluded on grounds of the short lifetime of the false vacuum found. The
importance of a proper lifetime calculation (taking into account the existence of
a pair of lower true vacua, related by sign changes in the values of the vevs) was
emphasised. In fact, the number of dangerous vacua found can increase by as much
as 50% when the full vacuum structure is taken into account. Though dangerous
vacua are hard to pinpoint in terms of relations between potential couplings or
physical observables, we observed that a negative discriminant only seems to occur
for a negative soft breaking term m7, in the potential [114].

The overall conclusion of this work is that 2HDM vacuum instability at tree-
level can have significant impact on parameter exclusion for certain regions of the
parameter space, but that requires an appropriate calculation of the bounce solu-
tions, taking into account the 2-field dynamics that CP-conservation allows us to
study. Of crucial importance is also the seemingly trivial existence of pairs of de-
generate, sign-swap-related, true vacua, since the lifetime of the false vacua may
depend enormously on that fact. Generic blind scans of 2HDM parameters may
suggest that the frequency of dangerous vacua is very small, but the results pre-
sented in this Chapter show that these vacua may be quite abundant for specific,
experimentally-interesting, regions of parameter space. Though the current analysis
was performed at tree-level, the significance of the results found is undeniable. Of
course, from the existing SM studies, we can expect that radiative corrections will
further complicate matters and bring more possibilities of vacuum instability. Thus

a one-loop extension of the work presented in this Chapter should be undertaken.
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Appendix A

Standard Model 3 and ~ functions

Usually the 8 and 7 function are computed diagrammatically and now we simply
state it, as their computations are not a goal of this thesis. Here we want only to see
how the Higgs scalar 8 and +,, functions can be obtained from the effective potential
(2.105) and from Eq. (2.107).

In fact we can write V,;¢(¢) = Vo (¢) + V.(¢), where Vj(¢) is the classical part of
the Higgs effective potential, while

‘/;(¢) = V:e(¢c) + va(¢c> + Vf(¢c) (Al)

is the radiative part. Then the Callan-Symanzik equation can be written as:

0 o, @ 0
u%Vc(qﬁ) + (Ba—AﬂLm Yo =5 +¢7%) Vo(9)

om?
1 24\
=§m2 <7m+27— )(bz

3272

1 1 3, 4 2
- ANy — 2UN + gt + 2 (¢® + ¢*)" — 6yt f-0. A2
+4<B+ v 16W2[ + 19 +8(g +4g%) =6y | |o" =0 (A.2)

Hence we can read off

1 3 4 2
+ 4Ny = 202+ St + Z (2 + ) — 6y A3
B+ 4)y 16W2( 19 8(9 g”)" — 6y (A.3)
12\
Vm + 277 = 5 - (A.4)
167

The anomalous dimension have to be computed diagrammatically. In fact we know
that the renormalized field ¢ and the bare field ¢, (independent from the renormal-

ization scale u, but dependent on the cut-off scale A) are related

6= 7 (9 M) "% 6, (A5)

where the field strength renormalization Z is dimensionless, and then can depend
on A and p only through the ratio A/pu. Then substituting (A.5) in Eq. (2.109-a) we
obtain:

1 d

v = —5,11@1112. (A.6)
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The field strength renormalization Z can be computed diagrammatically from the

external momentum p dependent part of the Higgs self-energy E(pg) as:

0
Z=1+—3p" : (A7)
0p o
p =mpg
giving for the anomalous dimension:
v = ! 5 (392 + gl2) ~3y; ) - (A.8)
167> \ 4
Substituting into Egs. (A.3) and (A.4) then yields
_ 1 2 2 ? 34, 3,9, 2 4
B=—5(A24N+12y7 —9¢° —3¢g") + =¢g" + = (¢° + )" — 6y; (A.9)
167 4 8
1 3 2 2 2
= 120 — = : A.10
Vi 167r2( 5 (39" +¢7) + 6y, (A.10)

It should be noted that the negative terms in Eq.(A.9), in particular the quartic
Yukawa term y, will have a reducing effect on the value of the coupling A and could
be responsible for causing any vacuum instability.

Finally, from the self-energy of the W and Z bosons, of the gluon boson and
of the quark top, we can compute diagrammatically the respective field strength
renormalizations Z, and the coupling counterterms to relate the bare g; to the

renormalized ones, and then use Eq. (2.108) to compute the beta functions:

19 ¢ 141 ¢ 7¢2
__9 LA S A1l
g 6 167> B 6 167> Fo. 1672 ( )
1 /9 9 17
By = 152 (5?;? — (893 - 592 + E9/2> yt) : (A.12)

In conclusion, using Egs. (A.9), (A.11) and (A.12), we can solve the differential
equations in (2.117-a) with boundary conditions given by the value of the coupling
g; measured, for instance, at the EW scale v. The solution of this set of differential
equations are the running coupling constant of the Standard Model. In particular,

in Fig. 2.1 we have the Higgs scalar running coupling constant \(u).
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Appendix B

Potential with a single minimum:
computation of the functional

determinant

We consider a potential with a single minimum as those shown in the left panel
of Fig.B.1, in which the minimum is located in ¢ = ¢, and for which we suppose
Vig) = 0.

We want to compute the probability amplitude:

ale a0y = [ Datryexp { el | (B.1)

The solution to the euclidean equation of motion that satisfies to the boundary
conditions q(—%) =qy = q(%) is given by the constant solution ¢(7) = ¢y, shown in
the right panel of Fig. B.1.

In this case, we have that Sg[qy] = 0: in fact V(gy) = 0 by hypothesis, while
4o = 0 as qq is a constant. Then, using Eq. (3.26), we obtain

1

{qole” a ‘QO> N[deth QO 2 NH)\ 7- (B.2)

As a consequence, we have to compute the eigenvalues )\, of the operator Sg(qp).
Defining w? = L q“ and using Eqs. (3.17) and (3.20), to obtain A, we have to solve

the eigenvalues equatlon.

& )

T

whose boundary conditions v, (£7/2) = 0 are given by Eq. (3.22). The solution to

this equation is:



o r

Figure B.1: Left panel: potential with a second minimum in qy. Right panel: trivial

solution ¢(7) = qp.

Imposing the boundary conditions, we obtain the eigenvalues \,,:

[ A\n 5 T [ A\n o T U
coS ——w = 1=0 = — —w = =n= =
m 2 m 2 2

A = m le + (%)Q] . (B.4)

Consequently, Eq. (B.2) becomes:

o] "N s

The first product is independent from w, so that we denote with A/ the entire

prefactor independent from w
0¢]
M-~
n=l (T)

Instead, to compute the second product we use (see the demonstration behind):

y? sinh 7y
(1 + —2) = : (B.5)
n

Y

et

Using Eq. (B.5), we have:

(-] )]} -

In conclusion, we find that the functional determinant is given by:

a2 —1/2 inh wT —1/2
N | det —m—2—|-mw2 =N i )
dt wT
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In the limit w — 0, this transition amplitude have to reduce to the corresponding

amplitude for the euclidean free particle

m _1
K(qy,q0;—T1/2,T/2) = \/% o~ 7S

where S is the classical euclidean action of the free particle: however, once again,
the action vanish, S, = 0, since the solution ¢(7) = ¢, is a constant. Then, since in

the limit w — 0, we have that (%) tends to 1:

, [ m
N = o2mhT

d? 9 e mw\ 1/2 1
det | —m—5 = . B.6
Nl ¢ < mdt2 e )] <27Th> y/sinh wT (B:6)

Now, in the limit w1 » 1 we have:

In conclusion:

ewT e—wT —1/2
— 1
(sinhwT) Y% = (T) — 2 e 2T

and then we obtain the result presented in Eq. (3.28)

4 ~1/2 2,
N ldet <—m—2 + mw2>] = (@) e 2T
dt 7h

Product

To demonstrate Eq.(B.5), we start from the Fourier expansion of the function

cos(zx) in the variable z € (—m, 7):

o0
cos(zx) = % + Z ay cos(kx)
k=1

where the Fourier coefficient a; are given by:
s 2 : 2 s
ag = J cos(zx)dr = 2sin(rz) a, = —J cos(zx) cos(kx)dx .
0 TZ T Jo

Since cos(zz) is a function even in z, it is clear that in the Fourier expansion the
terms with sin(kz) are not present, as the corresponding coefficient vanishes. At

this point, using the sum formula of the cosine we have
1
cos(zx) cos(kx) = 5 [cos((z + k)x) + cos((z — k)x)] .

Then we can compute explicitly the Fourier coefficients ay:

a, = %Lﬂ cos(zx) cos(kx)dr = % {Sin(iz++kk)x) n Sin((;__kk)x)r

0
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.k 2zsin(mz)
= (=1 )

As a consequence, for —m < z < 7, we can expand cos(zx) as:

2zsin(m 1 k
cos(zz) zsin(mz) [2 i 0 C(;s( ;2)]
™ z 2" =
k=

[y

Setting z = 7, we have (—1)* cos(kn) = (—1)" (=1)" = (=1)** = 1. Moreover, we

have that:
2z 1 1

22— k2 z—k+z+k'

In conclusion, we can write the expansion for the function 7 cot(mz):

1
7TCOt7TZ_—+Z< —i—k)'
z

Such an expansion puts in evidence as the function 7 cot 7z has simple poles of the

first order for z = 0, +1, +2, ... with all the residues equal to 1. Now, we compute

the following derivative:

dl sin 7z ‘ i 1
—1In = 7T CO 772——=
dz T2 “\z-n z—l—n ’

where in the last step we used the expansion of 7 cot 72z that we have just obtained.

At this point, integrating terms by terms in the interval 0 < z < 1 (chosen in such

a way that the series is uniformly convergent), we obtain:

In (S“;:Z) - i [111 (Z__n”) e Z ”)]

n=1
0 22
n=1 n
0 2
SIN T2 y4
fi(-3)
Tz it n

Finally, setting z = iy we obtain Eq. (B.5).
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Appendix C

Mathematical appendix to the

instanton computation

Computation of the instanton action S;

Let us compute the action of the insanton in the double-well using Eq. (3.38):

N

+ +

Sr=|  mgidr = f

!

2mV (qr) dr .

~[N
Sl

To compute V' (q;) we use Egs. (3.30) and (3.34):
2

V(gr) = Mqi — a®)? = \a* {tamh2 [g(T - Tc)] - 1}
* = m?w!/64)\%. Moreover, denoting u = & (7 —17.) we have

being w? = 8\a®/m = a
du = 5 dr. Then, in the limit T" — +o0

4 2 4 +00
m)\mwf du (tanhzu—l)Z.

o= T o

—0Q0

We use the change of variables ¢t = tanh u, so that:

d sinhu ,  cosh®u —sinh®u du = (1 — tanh®u)du .

dt = — =
du cosh u “ cosh’® u
Then, the integral in S; becomes
3.3 pl 3 3 3 3
m°w 4 m°w m°w
= dt(1—1%) = = — . 1
5= Ton L (1=t = 3 T6x = =5y (C.1)

This result put in evidence as the action computed in the instanton solution is

translation invariant, since it does not depend of the centroid ..
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Computation of K

To compute K:

eI

e () [t ]

it is necessary to solve the eigenvalues equation for the operator S”(g;), where w? =

8\a*/m, while S; is given by Eq. (C.1). The eigenvalue equation has the form:

d’z, (1)
dr"
where using Egs. (3.30) and (3.34) it is easy to see

V' (qr) = mw® (1 ~ 2cosh® [£(7 — ﬂ:)]) . (e

It is clear that Eq. (C.3) is a Schroedinger equation with a potential U(7) = V" (¢(7)).

T m

V(g () 2(r) = (7). (3

w

From the form of this potential it is clear that that there are discrete as well as con-
tinuous spectra.

The explicit form of the eigenvalues equation is:

302
2, — (W —€,)x, + %xn =0 (C.5)
2 cosh” u

where u = $(7 — 7.). To simplify this equation we make a change of variable:

¢ = ar(7) = tanhw .
a
Then:
cosh? u '
dg§ w 2 w 2
=S - - 21 -
SoY0-¢) = a-t-a,

In terms of ¢ the equation becomes:

d o d b B
d_g(l_g)d_fx"+<a+1—§2>x"_o7 (C.6)
where )
a=6 b=4(6"_2w)
w

Let be ¢ a constant and set x,, = (1 — £*)°y (¢ will be chosen appropriately later).
Then, after a simple algebra, we get:

2

2
(1—52)%—(4c+2)§2—§+(a—2c—402+b1+462)><:0‘ (C.7)

We make a further change of variable:

2= 2(1-8) (©8)
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1—z=%(1+§) 1 -6 =42(1-2).

There is a correspondence in the asymptotic values of the variables:

T — = E—1 = z—0

T — —0 = E— —1 = z—1.

Then the equation further simplifies to

d*¢ dy s b+4c
1—2)— 2 1—(4c+2)z)— —2c—14 —_— =0.
2( Z>dz2+(c+ (4e + )z)dZJr(a c c+42(1_z) X

Now if we choose ¢ such that b + 4¢> = 0, we obtain the familiar hypergeometric

equation
&’ d

(-2t (= (a+B+1)2) 2 —apy =0 (C.9)
dz dz

with

v=2c+1 a+pf=4c+1 aff =4 +2c—a.

In our case with a = 6, these parameters simplify to:
a=2c—2 B=2c+3 y=2+1. (C.10)

The solution to Eq.(C.9) is the hypergeometric function F(«, 3,7;2), which near
z = (0 has the expansion:
aBz  ala+1)B(B+1)2°

F ) =14 —=— z

(C.11)

- Continuous spectrum

For € > w?, if we do not impose any asymptotic conditions, the spectrum is contin-

uous, and it can be parametrized by the real positive momentum

p=Ve—w < k g (C.12)

Since there is no barrier for € > w?, we expect that the particle does not get reflected
at all as it travels from 7 = —oo to 7 = oo. This means that all the scattering
dynamics is contained in the knowledge of the phase shift 6, defined here as (setting
7, =0):

2, (T — o) ="

T,(T — —0) = P

As it will be shown, to compute the contribution to the determinant, the knowledge

of 4, will be enough.
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2
Now for € > w”, we have

b= —4c® = 4k = &= -k
The solution which has asymptotic behaviour €”” as 7 — o0 (i.e. z — 0) is, choosing
c=—ik
r=(1-&)"F(a, 8,7 2). (C.13)
1

In fact, using u = 5wt and hence 2uk = wrk = pr, in the limit 7 — o we have:

(1—€)7* = (cosh®u)™ = (4e=2) " = 4=ikeirm. (C.14)

To find the phase shift, we must analytically continue this solution to the one

valid around z = 1, i.e. for 7 — —oo. In this limit, for the front factor we have:
(1 . 52)—7:]6 ~ (462u>
Thus, this factor alone represents the reflected wave. On the other hand, the hyper-

TR gtk (C.15)

geometric function must be rewritten as:

Fla, B,y 2) = Fy\(1—2) + Fy(1 — 2) (C.16)
where
Fi(l—z) = Eg)f((z);(j - gF(a,B, a+pB—y+1;1—2) (C.17)
Pyl z)= r(v)g((s);(g)— 7) (1= 2y1-o=s
x F(y—a,y— By +1—a—pB1-2) (C.18)
with
a=-2k—-2 B=-2ik+3 ~y=-2k+1. (C.19)

It is easy to see that F(1 — z) vanishes due to the denominator factor I'(y — ) =
['(—2) which diverges. This shows that indeed there is no reflected wave. The
remaining part (1 — &%) " F,(1 — z) becomes
i ['(—2ik + 1)I'(—2:k) 9ik
1 _ 2 lkF 1 _ — 1 _ 12
=) Bl -2) = s Tk —g
x (1= 1 +0(1-2)
14 2ik)(1 + ik I
(1 —2ik)(1 — ik)
x (1+0(1—-2))
(14 2ik)(1 +ik) _ip s
= 47T C.20
1—2ik)(1—ik) °© (C-20)
Comparing with (C.14), we can red off the phase shift as

o (1+20k)(1+ k)
e = (1 — 2ik)(1 — ik) (C-21)
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- Discretization of the continuous spectrum

To compute the contribution to the determinant, we must regularize the continuous
spectrum. The simplest way is to put the system in a box of interval —T/2 < 7 <

T /2. As boundary conditions we take
x(=T/2) =x(T/2) =0

Because of this boundary conditions, there will be a reflected wave (which vanishes
at T' — o0) and we must consider the general solution. Since z,(—7) is obviously a

solution independent of z,(7), such a solution is:
= Ax,(7) + Br,(—7). (C.22)
Applying the boundary conditions above, we get
Ax,(T/2) + Bx,(=T/2) =0
Ax,(=T/2) + Bz,(T/2) = 0.
Non-trivial solution exists if and only if A = +£B. this means

% — 41, (C.23)

Using the asymptotic form of the solution, the left hand side become e T — +1.
Hence the solutions are given by:

nm + 90,

T

where we denote by p,, the (by definition positive) parameter p satisfying the above

b, = n=0,1,2,... (C.24)

condition.
We now compute the contribution of these modes to the ratio of the determinant.
We recall that for the harmonic oscillator case, the spectrum is
_nmw
Pn = T
It is clear that in the limit 7" — oo, contribution from a finite number of eigenvalues
with n ~ O(1) cancel against the contribution from the harmonic oscillator states as

they both become w?. Thus, the ratio to be computed can be taken as (by shifting
a few levels and recalling p = Ve —w? = ¢ = w? + p2):

w +pn
R = . C.25
Hw T (C.25)

As T — oo, the difference Ap, = p,, — p,, = d,/T — 0. Thus, we can expand in
powers of Ap,, to the first order. Hence

" _
= exp (Z lnw D ) ~ exp (Z 2€"Ap;) ) (C.26)

o w+pn ol W TPy
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Moreover, the interval w/T" goes to zero and we may convert Eq.(C.26) into the

integral by noting

_ 0 o, 0 )
Ap, = Z =25 = L(Pur1 — o) = ZAp, .
Pn T T 7_‘_(anrl pn) T Pn
So we get
1 (™ 2p )
R~ ex —J 5 d
p(W o 2+p2p

1 (™. d P
= exp (%L 5pd—p In <1 + P) dp)
1

© dg,
— exp (—%L by I (1+ &%) dk> (C.27)

where in the last step we used we integrate by parts. From Eq. (C.21) for the phase

shift, we easily get
doy, 2 4

= + .
dk 1+ Kk 144k

(C.28)

Now we use the formula
©In(1 +k* 1
f AR g = Ty (1 + —> , (C.29)
o 1+a’k a a
to easily get:

1
R=e = 5 (C.30)

Remarkably, we have been able to compute the ratio of the determinant exactly.

- Discrete spectrum

Now we consider the discrete part of the spectrum in the case w® — ¢, > 0. Thus,

we should set

2
W —€

w
The solution to the Schroedinger equation which is finite near z = 0 (i.e. 7 — 0) is

where F'(«, 3,7; z) is given by (C.11), with
oa=2k—2 b6 =2k+3 vy=2k+1. (C.33)

In order for this equation to be finite at z = 1 (i.e. as 7 — —o0), the series must
terminate at finite terms. Since §,7v,k > 0 and a = 2k — 2 > —2, it can occur only

when

(C.34)
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Recalling the definition of k, this means that there are two discrete energy levels

(bound states):
3
€ =0 € = ZWZ' (C.35)

The corresponding wave functions can be obtained using the form of the (trun-

cated) hypergeometric function:

1 T20  —w(T—T,)
To(7T) ~ e c C.36
ol7) cosh? [%(7’ — TC)] ( )

sinh [5(7 = 7)| roo —s(ron
cosh? [‘5"(7' — Tc)]

It is easy to see that zy(7), i.e. the eigenfunction corresponding to the zero eigenvalue

(C.37)

T\T) ~

€, is proportional to dq;(7)/dr. Then, we have found the zero mode that we have

encountered and treated in Chapter 3.

Derrick theorem

In the computation of the exponent B of the vacuum decay amplitude we have used
the Derrick theorem |34, 39|: we consider a vector of scalar fields in D+ 1 dimensions

¢ = (¢,), whose dynamics is described by the scalar lagrangian

L= 50,66~ U(6) = 50,6,0"00 — U(bs). (C.39)

where U is a non-negative function that vanishes in the ground states of the theory.
The theorem establishes that for D > 2 the unique non-singular, static and finite
energy solutions are the ground states.

To demonstrate the theorem, we define the two functionals

I = %fd% (Vo,)? Iy = Jde Uld,) - (C.39)

The two functionals I and I;, are non-negative and vanish simultaneously only on
the ground states. We consider a solution of the equations of motion ¢g(x): since this
function is a stationary point for the lagrangian in all the possible configurations
space, then it will be a fortiori a stationary point for all the configuration sub-
spaces to which it belongs. As a consequence, we define a set of functions through

a parameter that defines a scaling of the lengths:
bs(x;A) = dg(Ax) A>0. (C.40)

The energy functional, in general, is given by the sum of the functionals in Eq. (C.39):
computed in the solutions of Eq.(C.40), after the change of variables due to the

scaling, we obtain
Es(\) = Eg[ps(Ax)] = N> PIe + \PI, . (C.41)
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Since ¢g(x) is a solution, the function Eg()A) has to be stationary for A = 1: differ-

entiating respect to the parameter A we obtain

If D> 2, since Iy = 0 and Iy, = 0, Eq. (C.42) can be satisfied only by I = 0 and
I, = 0. This implies that ¢g(x) = const, that is ¢g is a ground state. Instead,
if D = 2 Eq.(C.42) implies that I, = 0, so that the static solutions given by
dEg[¢]/d¢ = 0 can be obtained also from 61 [¢]/0¢ = 0. The resulting equation is

Vi =0. (C.43)

. . . D . . .
Then, an harmonic function in all the space R™ is necessarily a constant function

also in this case, ¢g(x) = const. This complete the demonstration of the theorem.
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Appendix D

Numerical computation of the

bounce solution

The search for the bounce solution is a boundary-value problem specified by the
values of ¢'(0) and ((o0). This can be turned into an initial-value problem using
the shooting method, whereby ((o0) is replaced by ¢(0), and the appropriate value
for the latter quantity is found iteratively, solving Eq.(4.12) (or its curved-space
generalization) for different initial values until the desired (o) is obtained.

As will be clear below, knowledge of the asymptotic behavior of ¢(x) for z — 0
and x — o is a crucial ingredient for the efficiency of the shooting algorithm. To
find the expected behavior of ¢(x) in the relevant regimes, we begin by expanding
o(z) around z = 0:

o(x) = By + Byx® + Bya® + .. (D.1)

where the linear term is missing due to the condition ¢’(0) = 0. Inserting this
expansion in (4.12), with U(y) given by (4.14) we find that the coefficients of the
odd-power terms vanish, B,,,; = 0, while all the coefficients of the even-power terms
B,,, are functions of the first coefficient B, (called B from now on). Truncating the
expansion to the z? term:

B3
o) =B+— (A +SmBral’ B+ B+ ' B)at .. (D2)

The coefficient of z* turns out to be negative, so near the origin the bounce profile
behaves as an upside-down parabola.

As for the behavior of ¢(x) for  — o0, we note that U(y) — 0 for x — oo, and
o(x) — 0 for x — o0. Asymptotically Eq.(4.12) and the corresponding solution are

then:
" 3 / A
pla)+ 9@ =0 = o) =—, (D.3)
where A is one of the integration constants, while the second additive integration
constant vanishes due to the condition ¢(c0) = 0. In other words, for the bounce

solution z%¢(x) has to reach a plateau for x — co.
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Numerically, we have implemented a fully adaptive algorithm designed to: (i)
pick an initial guess (p(0) = B, ¢'(0) = 0), (ii) integrate Eq. (4.12) numerically
while monitoring the behavior of ¢(z), and (iii) iteratively restart the procedure
with a suitably corrected B until the condition (o) = 0 is satisfied up to a pre-
scribed tolerance. In practice, the numerical integration is carried out in the range
[%min> Tmax], Where we have chosen z,;, = 107" and z,,,, = 10°, so that the initial
conditions for ¢ and ¢’ are given at x = x,,;, using Eq. (D.2). With this boundary
conditions, we find a class of solutions ¢g(z), parametrized by B. Following the
overshoot-undershoot argument of Coleman [38|, we want to tune the parameter B
until we converge to the solution which reaches a plateau for x — 0.

We found that the characterization of the final state is of crucial importance
to the effectiveness of the search. In particular, introducing the reference point
Trop = Tmax — 10° and a tolerance e = 107'°, we found that the following three criteria

are sufficient to lead the algorithm to the bounce solution in all cases (denoting

Pa) = 2*p()):

1 If @(max) — P(7ef) > €, the scalar field has reversed its direction before
reaching ¢ = 0, and is returning towards its initial position. The initial guess
for p(znm) was therefore too low, and B is correspondingly increased by a

quantity 4.

2. If §(2pax) — P(2er) < —¢, the scalar field is overshooting the top of the hill.
The initial guess for ¢(z,,;,) was therefore too high, and B is correspondingly

decreased by a quantity §.

3. If |P(Zmax) — @(Tre)| < €, we consider that the plateau has been reached, i.e.

that the bounce solution is found within the required precision.

Furthermore, the algorithm stores a state consisting of both B and its value for
the two preceding iterations. It is therefore possible to detect oscillations in B and
bisect (or otherwise decrease) . We found that decreasing ¢ to §/10 each time B
changes trend leads to a particularly efficient search, that converges exponentially
to the solution, as will be illustrated below.

The inclusion of gravity does not modify our algorithm, as we found that, for
xr — o0, the areal radius goes as a ~ = + ¢ (see Chapter 4), i.e. the curvature tends
asymptotically to zero (the value of the constant ¢ is given by a(x) — x when the
plateau is reached).

For this reason, the criteria for tuning the initial value of ¢, introduced in the flat
case, can also be used on a curved spacetime. Again, we implemented the boundary

condition in z;,:

/

O(Tmin) = B @l(xmin) =0 a(Tyyip) = € a/(xmin) =1, (D.4)
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with € « 1 (clearly we cannot use a(z,,;,) = 0 due to the factor ™' in (4.17-a)).

After solving the equations, the size R of the bounce solution is obtained and
we can compute the integral in Eq. (4.19).

We go now back to the flat spacetime case and include the NP terms of (4.21),
thus obtaining the (dimensionless) potential (4.22). The bonus for our analysis is
that this potential does not modify the asymptotic behavior of the bounce solution
op(z) for  — oo, as in this limit we still have U(gp(z)) — 0. Therefore the inclusion
of NP does not lead to any substantial change in our numerical method. The only
modification with respect to the flat spacetime case concerns the expansion of the
bounce solution around the origin x = 0. In the flat case, by considering the
integration range [T, Tymax], We found that the initial values for solving Eq. (4.12)
with the shooting method are obtained once we take the expansion (D.2) of ¢(x)
and its first derivative at x,,;,. Repeating the same analysis for the potential (4.22),
we find that NP simply leads to additional terms in these expressions. Thus, the
new expansion for ¢(z) is given by (again up to O(z?)):

3

o(x) = B—i—% <>\* + X\B> 4+ X\B* + %1nB+aln2B+B1n3B+ﬁln4B> 2+
(D.5)
which we use to set initial conditions for ¢(z,,;,) and ¢'(2,,). An analogous ap-
proach is followed when we consider the alternative parametrization of NP given in
Eq. (4.25). Just like in the case without new physics, when we include gravity we
use the initial values (D.4), and the numerical integration of the equations of motion

is reduced to the tuning of the parameter B.
Fig. D.1 illustrates the exponential convergence of our algorithm in the four cases

presented in this appendix.
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Figure D.1: Convergence of ¢(x,,,) to its final value (left column), as well as of

' (Tmax) + 20(Tmax ) /Tmax t0 zero (right column), in the four cases (flat and curved,

with and without new physics) discussed in the appendix.
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