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Abstract

Our current knowledge of particle physics, in particular after the discovery of the
Higgs boson, tells us that our Universe is not sitting in its most stable state, which is
its ground state. Since everything in Nature tends to reach such a state, the Universe
will decay towards it, with inevitable consequences on its very existence. The results
we obtain from the Standard Model tell us that this decay will take place after a time
that is enormously greater than the current age of the Universe. However we also
expect that there is still unknown New Physics that completes our knowledge on the
interactions between fundamental particles, and such physics can have an impact on
the stability of the electroweak vacuum. In particular, several works published in
the last decade have shown that, in a flat spacetime background, this New Physics
could trigger a more rapid decay towards the ground state. In this Ph.D. thesis, the
problem of the stability of the Universe was therefore studied in a more complete
context, i.e. considering also the presence of gravity. Using general models of New
Physics, it has therefore been shown that gravity tends to have a stabilizing effect
on the decay of the electroweak vacuum. Nonetheless, gravity fails to wash out the
effects of the New Physics, so in some situations it would imply a very near decay or
even a decay that should have already occurred. In the latter case, the corresponding
New Physics model must obviously be discarded, as it cannot describe the Universe
we observe. However, it has also been shown that the introduction of a direct
coupling between the Higgs boson and gravity can provide a stabilizing mechanism
that saves the Universe from this decay, as it generates a washing out of the New
Physics effects. Finally, we went on to investigate the problem of the stability of
the electroweak vacuum in two specific New Physics models. First of all, theories of
minimal embeddings of the Standard Model in Supergravity framework have been
studied, showing that in these contexts it is possible to introduce further stabilization
mechanisms through the use of appropriate discrete symmetries. Secondly, this
problem has been studied in the Two Higgs Doublet Model, which is a model that
presents a rich proliferation of vacuum states and particles, and the calculation of
the decay time has been used as an additional discriminant to reduce the space of
the parameters of the theory. However, in the latter case, the study of the stability
of the electroweak vacuum was limited only to the case of flat spacetime, leaving
the inclusion of gravity for future studies.
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Chapter 1

Electroweak theory

The Standard Model is a gauge theory [1–5] based on the symmetry group SUp2qLb
Up1qY b SUp3qC that describes three of the fundamental interactions (the electro-
magnetic, weak and strong ones) between the elementary constituents of the matter
(quark and leptons) in terms of the exchange of spin-1 particles that employ the role
of mediators of these interactions. In particular, the electroweak theory, developed in
the 60’s by Weinberg, Salam e Glashow, for the first time provided a unified descrip-
tion of the electromagnetic and weak interactions [6–12]. Successively in the 70’s
the quantum chromodynamics was developed to describe the strong interactions.

However, for symmetry reasons, the theory imposes that all the particles have
to be massless, contrary to what we see from phenomenological evidences. Then we
have to consider a mechanism to give mass to the particles, i.e. the Higgs mechanism,
obtaining the modern formulation of the Standard Model. According to the Higgs
mechanism, additionally to the fields giving rise to particles and interactions, in the
Universe there is a further scalar field to which corresponds the Higgs boson, and via
this field we have a potential that generates a set of infinite minima for the ground
state of the Universe. As we shall see, choosing one of the possible minima, the
symmetry mentioned above is spontaneously broken and the particles acquire mass.
This minimum is called electroweak vacuum.

However, the Standard Model provides also the possibility of a metastable sce-
nario: in fact, considering the quantum corrections due to the interaction of the
Higgs boson with the other particles, the Higgs potential presents a second mini-
mum, whose relative height respect to the electroweak vacuum depends mostly from
the mass of the Higgs boson mH and from the mass of the top quark mt. Consider-
ing the precise measurement of these masses, we can see that this minimum is lower
than the electroweak minimum, so that it would decay in the stable minimum of
true vacuum through tunneling effect, while the minimum of false vacuum in which
our Universe currently sits is a metastable minimum. Before delving into the theory
of stability of the electroweak vacuum, we provide a description of the electroweak
sector of the Standard Model.
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1.1 Gauge principle and Yang-Mills theory

In the search of a theory that is able to describe the fundamental interactions, the
symmetries characterizing the physical systems play an extremely important role:
for instance, the Lorentz invariance (more in general the invariance under Poincaré
transformations) dictated by the principles of Special Relativity [13–15], permits
to reduce the spectrum of possible interactions between quarks and leptons. The
symmetry principle that allows to determine the correct form of the interaction
between elementary particles is the gauge principle [8, 9, 13, 16]. According to this
principle, given a physical system described by a lagrangian having a global internal
symmetry (associated with a given symmetry group), the correct expression of the
interaction is the one obtained imposing that the internal symmetry characterizing
the lagrangian is also a local symmetry.

This can be implemented introducing a number of gauge fields commensurate
to the number of generators of the symmetry group of the lagrangian, and then
properly modifying the derivatives of the fields in such a way that they transform
as the fields themselves. Thus we obtain in the lagrangian an additive term that
describes correctly the minimal interaction between the fields of matter and that
is written as the product of the introduced gauge fields and the Noether current
associated to the global internal symmetry of the starting lagrangian.

In 1954 Yang and Mills propose a generalization of the gauge principle, until
then used to obtain QED that is a gauge theory based on the group symmetry
Up1q, characteristic of the electromagnetic interaction, in such a way to apply it to
non-abelian gauge theories. The Yang-Mills theory [7, 8, 10, 11, 13] was then used
in the 60’s to formulate the electroweak theory and afterwards, around 1974, for the
development of the field theory of strong interactions.

1.2 Introduction to electroweak theory

The fermions of the Standard Model, i.e. quarks and leptons [17–21], can be orga-
nized into three families

˜

νe

e

¸ ˜

νµ

µ

¸ ˜

ντ

τ

¸

Leptons

˜

u

d

¸ ˜

c

s

¸ ˜

t

b

¸

Quark (1.1)

In particular, the phenomenology allows us to assert that the leptonic doublets be-
longing to the different families are identical from the point of view of the interaction
and they differ only for the masses. The same discussion is valid for the quarks dou-
blets. For instance, the muon µ and the tauon τ are exact copies of the electron
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e from the point of view of quantum numbers, but respect to the latter they have
much more larger masses.

The charged leptons and the quarks are massive particles of 1{2-spin, and then
can be described via Dirac fields [13]. We know that a generic Dirac field ψpxq

can be written, using chirality projection operators, as a sum of Dirac fields purely
left-handed and right-handed:

ψpxq “
1´ γ5

2
ψpxq `

1` γ5

2
ψpxq “ ψLpxq ` ψRpxq . (1.2)

In the case of neutral leptons we can not use the same representation because (despite
of the fact the last experiments on the neutrinos oscillations have shown that these
particles have a mass [22]) the neutrinos and the antineutrinos are described in the
Standard Model as massless fermions, and then have to be described by left-handed
and right-handed Weyl spinors respectively. Thus in the case of the neutrino we can
do the identification

ψνpxq ” ψLν pxq “
1´ γ5

2
ψνpxq . (1.3)

The electroweak theory is a gauge theory based on the symmetry group SUp2qL b
Up1qY , that is the group associated to the internal symmetries of weak isospin and
of weak hypercharge. To understand the way in which this theory is constructed
we have to introduce some phenomenological observations that allow to determine
the properties and the symmetries characterizing the weak and electromagnetic in-
teractions [23–25], and that allow to build the modern unified field theory of the
electroweak interactions :

• The W`, W´ and Z0 bosons are massive particles of 1-spin;

• The interactions between quarks and leptons that take place through the ex-
change of theW˘ bosons, that are the weak interactions with charged currents,
show the following properties:

– only the left-handed fermions and the right-handed antifermions couple
to the vector bosons W` and W´, i.e. the weak interaction does not
preserve parity;

– the W˘ bosons couples only to left-handed (right-handed) fermions (an-
tifermions) belonging to the same doublet;

– the partners of quark up, charm and top in the weak isospin doublets are
linear combinations of quark down, strange and bottom;

– all the fermionic doublets couple to the W˘ bosons with the same cou-
pling constant.

• The interactions between quarks and leptons that take place through the ex-
change of the Z0 boson or through the exchange of a photon, i.e. the weak
interactions with neutral current, present the following characteristics:

11



– all the interaction vertices preserve the flavour;

– the electromagnetic interactions depend by the electric charge that de-
fines in a unique way the coupling, so that the neutral leptons, i.e. the
neutrinos, can interact only through weak interactions;

– the electromagnetic interaction preserves parity, so that the photons cou-
ple to left-handed fermions and to the corresponding right-handed an-
tifermions in the same way;

– the Z0 boson couples to fermions in different way depending on the chi-
rality.

Starting from these observations, since the fields that describe the interacting
particles constitute, from the point of view of group theory [13], the base for a
representation of the symmetry group characterizing the electroweak interactions,
is possible to determine the symmetry group itself. In quantum electrodynamics
the electromagnetic interaction between quarks and leptons [16] is described by the
interaction lagrangian

LintQED “ q ψ̄pxqγµψpxqAµpxq , (1.4)

i.e. as said above, the interaction is described in terms of a gauge field Aµpxq and
the Noether current Jµpxq associated to the global internal symmetry Up1q of the
Dirac lagrangian that describes free quarks and leptons. The density lagrangian
that describes the weak interaction between leptons can be built similarly, con-
sidering that the possible leptonic charged current have to be consistent with the
phenomenological properties: then we deduce that the form of these current is of
the kind

Jµpxq “
ÿ

f

ψ̄Lf pxqγµψ
L
νf
pxq “

ÿ

f

ψ̄f pxqγµ

ˆ

1´ γ5

2

˙

ψνf pxq (1.5)

J:µpxq “
ÿ

f

ψ̄Lνf pxqγµψ
L
f pxq “

ÿ

f

ψ̄νf pxqγµ

ˆ

1´ γ5

2

˙

ψf pxq (1.6)

where Eqs. (1.5) and (1.6) are written, for simplicity, only for the leptons and the
sum over f denotes a sum over the flavours. It is worth to note that the charged
currents are written in terms of the difference of a vectorial current and an assial
one (pseudovectorial) and this defines the so called V-A structure of the weak inter-
actions. As said, since the W˘ boson couples to left-handed fermions belonging to
the same doublets, it is useful to define relatively to a given flavour family the Dirac
field doublet:

ΨL
f pxq “

˜

ψνf pxq

ψf pxq

¸

L

. (1.7)

Then the charged currents introduced in the Eqs. (1.5) and (1.6) can be written as

Jµpxq “
ÿ

f

Ψ̄L
f pxqγµσ

`ΨL
f pxq , (1.8)
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J:µpxq “
ÿ

f

Ψ̄L
f pxqγµσ

´ΨL
f pxq , (1.9)

where we have introduced the matrices σ˘ “ 1
2
pσ1˘ iσ2q built with the Pauli matri-

ces σ1 e σ2. Having carried out these considerations, the currents Jµpxq e J
:
µpxq can

be interpreted as the Noether currents associated to a symmetry of the lagrangian:
since they are written in terms of Dirac field doublets and of combinations of the
Pauli matrices, that are the generators of the group SUp2q in its fundamental rep-
resentation, we can hypothesize that the symmetry group that characterizes the
electroweak interactions is precisely the group SUp2qL, where the index L refers to
the fact that the weak interaction does not distinguish the particles constituting the
left-handed doublets, and then the symmetry is referred to the invariance under ro-
tations in the internal space of the left-handed doublets. Thus we suppose that the
introduced doublets constitute the basic fields for the fundamental representation
of SUp2qL.

It is worth to note that the conserved Noether current associated to the third
generator of SUp2q, i.e. the Pauli matrix σ3, is given by

J3
µpxq “

ÿ

f

Ψ̄L
f pxqγµσ3ΨL

f pxq . (1.10)

However, the current given by Eq. (1.10) does not coincide with the electromagnetic
current introduced in Eq. (1.4), and thus the corresponding gauge field to which it
would be coupled can not be interpreted as the photon field. The most simple way
to introduce the electromagnetic field in the theory is to generalize the symmetry
group through an abelian symmetry group

SUp2qL Ñ SUp2qL b Up1qY .

At this point, we can proceed with the actual construction of the electroweak
theory: for simplicity of notation, we suppose to have only a lepton family and that
these are massless. The generalization to the case of more families and the inclusion
of the quarks families is trivial, while to consider the fermion masses we have to
introduce the Higgs mechanism. Denoting

Ψ1pxq ”

˜

ψνlpxq

ψlpxq

¸

L

Ψ2pxq ” ψRνlpxq Ψ3pxq ” ψRl pxq , (1.11)

the lagrangian describing the free leptons is a Dirac lagrangian that, in terms of the
fields in Eq. (1.11), is written as

L0 “

3
ÿ

j“1

iΨ̄jpxqγ
µ
BµΨjpxq

“ iψ̄Lνlpxqγ
µ
Bµψ

L
νl
pxq ` iψ̄Ll pxqγ

µ
Bµψ

L
l pxq

` iψ̄Rνlpxqγ
µ
Bµψ

R
νl
pxq ` iψ̄Rl pxqγ

µ
Bµψ

R
l pxq

“ iψ̄νlpxqγ
µ
Bµψνlpxq ` iψ̄lpxqγ

µ
Bµψlpxq . (1.12)
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The free lagrangian of Eq. (1.12) has a global internal symmetry associated with the
transformations of the group G ” SUp2qL b Up1qY , that is the set of simultaneous
global transformations of the spinors:

Ψ1pxq
G
ÝÑ Ψ1

1pxq “ exp piY1βq exp
´

i
σi
2
αi
¯

Ψ1pxq (1.13)

Ψ2pxq
G
ÝÑ Ψ1

2pxq “ exp piY2βqΨ2pxq (1.14)

Ψ3pxq
G
ÝÑ Ψ1

3pxq “ exp piY3βqΨ3pxq (1.15)

where the parameters α ” pα1, α2, α3q and β are the variables that define the par-
ticular transformation of the group G. The generic phase transformation

UL “ exp
´

i
σi
2
αi
¯

UL P SUp2qL (1.16)

identifies a rotation in the internal space of the doublets of SUp2q, that is the reason
for which under the transformations of the group G it acts only on the doublets
Ψ1pxq. The scalar Yi is a quantum number that characterize a given field Ψipxq, and
it is known that as weak hypercharge because, similarly to the case of the electric
charge, this quantum number is the conserved Noether charge associated to the
symmetry Up1qY of the weak interaction.

Having determined the symmetry group characterizing the electroweak interac-
tions, according to the gauge principle we have to impose that the lagrangian L0

given in Eq. (1.12) is invariant under the local transformation of the group symmetry
G. To implement this, as we know, we have to introduce a number of gauge field
commensurate to the number of the generators of the group G, and substitute to
the usual derivatives the corresponding covariant derivatives [7, 16], defined through
the introduced gauge fields:

DµΨ1pxq “
“

Bµ ` igW̄µpxq ` ig
1Y1Bµpxq

‰

Ψ1pxq (1.17)

DµΨ2pxq “
“

Bµ ` ig
1Y2Bµpxq

‰

Ψ2pxq (1.18)

DµΨ3pxq “
“

Bµ ` ig
1Y3Bµpxq

‰

Ψ3pxq (1.19)

where the coupling constant g and g1 associated to the groups SUp2q and Up1q

respectively are introduced, and we denote

W̄µpxq “
σa
2
W a
µ pxq . (1.20)

To be the symmetry defined from the group G a local symmetry, it must occur that
after the transformation Uj of the spinor Ψjpxq the covariant derivative DµΨjpxq is
transformed as Ψjpxq:

Ψjpxq
G
ÝÑ UjΨjpxq ^ DµΨjpxq

G
ÝÑ UjDµΨjpxq . (1.21)

14



The condition introduced in Eq. (1.21) impose, for the gauge field Bµpxq and W̄µpxq,
the following transformation laws [6, 7, 10]

Bµpxq
G
ÝÑ B1µpxq “ Bµpxq ´

1

g1
Bµβpxq (1.22)

W̄µpxq
G
ÝÑ W̄ 1

µpxq “ ULpxqW̄µpxqU
:

Lpxq `
i

g

“

BµULpxq
‰

U :Lpxq . (1.23)

Substituting the covariant derivative defined in Eqs. (1.17), (1.18) and (1.19) to the
usual derivative in the lagrangian L0, we obtain the lagrangian

L “
3
ÿ

j“1

iΨ̄jpxqγ
µDµΨjpxq

“ iΨ̄1pxqγ
µ
“

Bµ ` igW̄µ

‰

Ψ1pxq `
3
ÿ

j“1

iΨ̄jpxqγ
µ
“

Bµ ` ig
1YjBµ

‰

Ψjpxq . (1.24)

To complete the lagrangian we have to insert the kinetic terms relative to the intro-
duced gauge fields. To this end we define, according to the general prescription of
the Yang-Mills theory, the tensors [6–8]:

Bµν “ BµBν ´ BνBµ , (1.25)

W a
µν “ BµW

a
ν ´ BνW

a
µ ´ gf

abcW b
µW

c
ν . (1.26)

Then the lagrangian that describes the free fields is:

Ltot0 “

3
ÿ

j“1

iΨ̄jpxqγ
µ
BµΨjpxq ´

1

4
BµνB

µν
´

1

4
W a
µνW

µν
a . (1.27)

The interaction between the free fields is described by the interaction lagrangian:

Lint “ ´gΨ̄1pxqγ
µW̄µpxqΨ1pxq ´ g

1Bµpxq
3
ÿ

j“1

YjΨ̄jpxqγ
µΨjpxq . (1.28)

In particular, using Eq. (1.20), we have

W̄µ “
1

2

˜

W 3
µ W 1

µ ´ iW
2
µ

W 1
µ ` iW

2
µ ´W 3

µ

¸

“
1

2

˜

W 3
µ

?
2 W :

µ
?

2 Wµ ´W 3
µ

¸

(1.29)

where we have introduced the bosonic field

Wµpxq “
W 1
µpxq ` iW

2
µpxq

?
2

. (1.30)

Then, we obtain
Ψ̄1γ

µW̄µΨ1

“
1
?

2

!

ψ̄Lνlγ
µW :

µψ
L
l ` ψ̄

L
l γ

µWµψ
L
νl

)

`
1

2

 

ψ̄Lνlγ
µW 3

µψ
L
νl
´ ψ̄Ll γ

µW 3
µψ

L
l

(

. (1.31)
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Since the weak interaction involving the charge currents provides the coupling of the
charged bosons W˘ with the left-handed fermions belonging to the same doublets,
we can identify the field Wµ and his adjoint W :

µ as the bosonic fields of the vector
bosonsW` andW´ respectively, and then extrapolate for the interaction lagrangian
(1.28) the part that describes the weak coupling for the charged currents :

LCC “ ´
g
?

2
ψ̄Lνlpxqγ

µW :
µψ

L
l pxq ´

g
?

2
ψ̄Ll pxqγ

µWµψ
L
νl
pxq

“ ´
g

2
?

2
W :
µψ̄νlpxqγ

µ
p1´ γ5qψlpxq ´

g

2
?

2
Wµψ̄lpxqγ

µ
p1´ γ5qψνlpxq . (1.32)

The remaining part of the interaction lagrangian (1.28) describes the weak inter-
actions with neutral currents, then the gauge fields W 3

µpxq and Bµpxq have to be
related to the fields describing the bosons Z0 and γ. However, it is worth to note
that the gauge field Bµpxq, associated to the generator of the group Up1qY , can not
be directly identified with the photon. In fact: i) the electromagnetic field cou-
ples with the left-handed and right-handed fermions in the same way, so that from
Eq. (1.28) follows from the weak hypercharge Yj have to be equal between them; ii)
if we want to identify Bµ with the photonic field and then if we want to identify
the second term of Eq. (1.28) with the interaction term of QED, then we have to
impose that the constant factor of this term is the electric charge of the fermion. In
conclusion, we have to impose the conditions:

Y1 “ Y2 “ Y3 g1Yj “ Qj @j .

Such conditions can not be satisfied at the same time, since the particles of the
fermionic doublet would have the same electric charge. To remedy the problem, we
introduce two vectorial field Aµpxq and Zµpxq such that

˜

W 3
µ

Bµ

¸

“

˜

cos θw sin θw

´ sin θw cos θw

¸˜

Zµ

Aµ

¸

, (1.33)

where the introduced angle θw is known as Weinberg angle or electroweak mixing
angle, because the vectorial fields W 3

µpxq and Bµpxq are related to the fields Aµpxq
and Zµpxq through of a rotation of an angle equal to an half of the Weinberg angle.
The lagrangian describing the weak coupling with neutral currents, is then given by

LNC “ ´
g

2
Ψ̄1pxqγ

µσ3Ψ1pxqW
3
µpxq ´ g

1Bµ

3
ÿ

j“1

YjΨ̄jpxqγ
µΨjpxq

“

#

´g sin θwΨ̄1pxqγ
µσ3

2
Ψ1pxq ´ g

1 cos θw

3
ÿ

j“1

Ψ̄jpxqγ
µYjΨjpxq

+

Aµpxq

`

#

´g cos θwΨ̄1pxqγ
µσ3

2
Ψ1pxq ` g

1 sin θw

3
ÿ

j“1

Ψ̄jpxqγ
µYjΨjpxq

+

Zµpxq . (1.34)
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At this point using the Gell-Mann relation [7, 18, 23]

Q “ Y ` T3 T3 ”
σ3

2
(1.35)

we can identify the field Aµpxq with the field that describes the photon if we impose

g sin θw “ g1 cos θw “ e . (1.36)

The relation (1.36) relates, through the Weinberg angle, the coupling constant of the
weak and electromagnetic interactions, and thus states the electroweak unification.
Using the aforementioned relation, we have:

LNC “ LZ ` LQED ,

i.e. the electroweak interaction lagrangian with neutral current has contributions
from the interaction terms

LQED “ ´eAµpxq
3
ÿ

j“1

QjΨ̄jpxqγ
µΨjpxq (1.37)

LZ “ ´
e

2 sin θw cos θw
Zµpxq

“

ψ̄νlγ
µ
pvν ´ aνγ5qψνl ` ψ̄lγ

µ
pvl ´ alγ5qψl

‰

(1.38)

where we have introduced the axial and vectorial coupling coefficients that depend
from the Weinberg angle θw and, for a given Dirac field ψpxq, from the eigenvalues
t3 of the third component of the isospin operator T3 related to the eigenfunction
ψpxq

a “ t3 v “ t3 ´ 2Q sin2 θw . (1.39)

The presence of such coefficients in Eq. (1.38) denotes, as just observed, that the Z0

boson is coupled both to left-handed and to right-handed fermions, but with different
weights. For instance, in the case of the neutrino Qν “ 0 ñ aν “ vν “ 1{2, and then
the neutrino interaction with Z0 can occur only through its left-handed component.
Moreover, having no charge, a possible right-handed component of the neutrino
can not interact with other particles not even through electromagnetic interaction.
Finally, using Eqs. (1.25), (1.26), (1.30), (1.33) and (1.36), we obtain the Yang-Mills
lagrangian which describes the free gauge fields and their self-interactions:

LYM “ ´
1

4
BµνB

µν
´

1

4
W i
µνW

µν
i

“ ´
1

4
FµνF

µν
´

1

4
ZµνZ

µν
´

1

4

`

W`
µνW

µν
´ `W´

µνW
µν
`

˘

` ie
`

W`
µνW

µ
´A

ν
´W´

µνW
µ
`A

ν
` FµνW

µ
`W

ν
´

˘

` ie cot θw
`

W`
µνW

µ
´Z

ν
´W´

µνW
µ
`Z

ν
` ZµνW

µ
`W

ν
´

˘

´ e2 cot θw
`

2W´
µ W

µ
`ZνA

µ
´W´

µ Z
µW`

ν A
ν
´W´

µ A
µW´

ν Z
ν
˘

´ e2
`

W´
µ W

µ
`AνA

ν
´W´

µ A
µW`

ν A
ν
˘

´ e2 cot2 θw
`

W´
µ W

µ
`ZνZ

ν
´W´

µ Z
µW`

ν Z
ν
˘

´
e2

2 sin2 θw

`

W´
µ W

µ
`W

´
ν W

ν
` `W

´
µ W

µ
´W

`
ν W

ν
`

˘

, (1.40)
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where we have defined the fieldsW`
µ pxq ” Wµpxq andW

´
µ pxq ” W :

µpxq, and we have
introduced the tensors

Fµν “ BµAν ´ BνAµ , W`
µν “ BµW

`
ν ´ BνW

`
µ ,

Zµν “ BµZν ´ BνZµ , W´
µν “ BµW

´
ν ´ BνW

´
µ .

This lagrangian, as prescribed from the Yang-Mills theory for the system with non-
abelian symmetry, contains self-interaction terms between the fields of the gauge
theory, i.e. the symmetry group SUp2q b Up1q does not give rise to any vertex
with only the photon and Z0 boson fields. The Yang-Mills lagrangian obtained in
Eq. (1.40) describes the free gauge fields, but it presents a problem: gauge bosons
that emerge from the theory are massless, since there are no terms of the kind
m2AaµA

µ
a . As is well known, the photon is a massless particle, but the W˘ and Z0

bosons, on the contrary, are extremely massive. However, the mass terms can not
be directly added in the Yang-Mills lagrangian, since we would have an explicitly
break of the gauge symmetry that we impose. Similarly, we can not consider an
explicit fermionic mass term:

Lm “ ´mψ̄ψ “ ´mpψ̄LψR ` ψ̄RψLq .

Such a term is not allowed as it would break the chiral symmetry, reason for which
we have supposed in the free lagrangian (1.12) that the fermions are massless. The
solution to the mass problem lies in the Higgs mechanism [6–11, 26, 27].

1.3 The Higgs mechanism

1.3.1 Spontaneous breaking of the symmetry and Goldstone
theorem

To understand how the gauge bosons acquires mass we have to introduce the spon-
taneous symmetry breaking. To this end we analyze the physical system described
by a lagrangian that involves a set of N real scalar fields (from now on, if not strictly
needed, we will use the convention to imply the sum over repeated Roman indices):

L “ 1

2
BµφiB

µφi ´
1

2
m2φ2

i ´
λ

4

`

φ2
i

˘2
. (1.41)

This lagrangian has a continuous symmetry associated with the group OpNq, i.e. it
is invariant under rotations in the hyperplane pφ1, ..., φNq:

φi Ñ φ1i “ Rijφj R P OpNq .

We analyze the potential:

V pφq “
1

2
m2φ2

i `
λ

4

`

φ2
i

˘2
. (1.42)
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To study the stationary points of the potential V pφq and establish what is the
absolute minimum, i.e. the ground state of the system, it is necessary to distinguish
two cases:

• m2
ą 0: in this case the potential has a single minimum in Φ ” p0, 0, ..., 0q.

• m2
ă 0: if this condition is implemented, the potential V pφq has a maximum

in Φ ” p0, 0, ..., 0q, while the minima of the potential are given by the equation

BV

Bφi
“ φi

˜

m2
` λ

N
ÿ

j“1

φ2
j

¸

“ 0 ñ

N
ÿ

i“1

φ2
i “ ´

m2

λ
. (1.43)

This relation describes a ring of minima in the hyperplane pφ1, ..., φNq, and
then shows that the ground state of the system is degenerate, i.e. there are
infinite configurations that minimize the potential : the choice of one of this
configurations give rise to a spontaneous symmetry breaking (SSB), as the
symmetry characterizing the lagrangian is not shared by the lowest energy
state.

However, Eq. (1.43) determines only the length of the vector Φ0 which identifies
the minimum, but its direction is arbitrary. Conventionally, we choose the minimum
so that it points to the N -th direction:

Φ0 ” p0, 0, ..., 0, vq v “

d

´
m2

λ
. (1.44)

Then we define σpxq and πkpxq expanding the field Φpxq ” pφ1pxq, . . . , φNpxqq around
the minimum (1.44), i.e. they are the fields measuring the deviations of Φpxq respect
to the equilibrium ground state configuration Φpxq “ Φ0:

Φpxq ” pπ1pxq, π2pxq, . . . , πN´1pxq, v ` σpxqq . (1.45)

Substituting in Eq. (1.41) we obtain

L “ 1

2
BµπkpxqB

µπkpxq `
1

2
BµσpxqB

µσpxq ´
1

2
p´2m2

qσ2
pxq ´

a

´λm2σ3
pxq

´

ˆ

a

´λm2π2
kpxqσpxq `

λ

4
σ4
pxq `

λ

2
π2
kpxqσ

2
pxq `

λ

4
π4
kpxq

˙

, (1.46)

where we have omitted constant term which is irrelevant. The Eqs. (1.41) and (1.46)
are the same lagrangian density expressed in terms of different variables. Thus they
are entirely equivalent and must lead to the same physical results.

Since by definition there are no particles in the vacuum, from Eqs. (1.44) and
(1.45) we have that the vacuum expectation value (vev) of the field Φpxq is given by:

x0|Φ|0y “ |Φ0| “ v . (1.47)
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This is the condition for spontaneous symmetry breaking in the quantized theory,
analogous to Eq. (1.44) in the classical theory.

In Eq. (1.46) we have obtained a theory with a massive field σpxq and N ´ 1

massless fields: the OpNq symmetry is broken and the new lagrangian has a residual
OpN´1q symmetry. The massive field σpxq is associated to the radial oscillations of
the field Φpxq around the minimum Φ0 (oscillations of the field along the direction
in which the potential has non-zero second derivative), while the other N ´ 1 fields
describe the tangential oscillations (oscillations that occur along the set of directions
corresponding to a zero second derivative of the potential). These latter oscillations
occur along the ring of minima, that is along the N ´ 1-dimensional hypersurface
where all the directions are equivalent: this correspond to the existence of the OpN´
1q residual symmetry. It is worth to note that the difference between the number of
initial and final independent continuous symmetries, i.e. the number of continuous
symmetry spontaneously broken, is equal to N ´ 1 and then is equal to the number
of massless fields πkpxq. The appearance of massless particles in presence of the
spontaneous breaking of a set of continuous symmetries is a general result known
as Goldstone theorem [6–8, 28–30]: for each continuous symmetry spontaneously
broken, the theory must predict a massless particle. The massless particles that
emerge due to the SSB are known as Goldstone bosons.

1.3.2 Higgs mechanism. Spontaneous symmetry breaking of
symmetry in the electroweak theory

The possibility to assign to the gauge bosons a mass term is related to the Higgs
mechanism, which is originated by spontaneous symmetry breaking (SSB) of a sys-
tem with a gauge symmetry [6–8]. In order to illustrate such a mechanism, we
consider the general case of a physical system described by a set of N real scalar
fields, whose lagrangian is characterized by a non-abelian symmetry gauge. Then
the lagrangian is invariant under the fields transformations

φi Ñ p1´ iαat
a
qijφj

where the parameter αa are the variables defining the transformation itself and ta

are the group generators of the lagrangian symmetry. In a Yang-Mills theory, the
gauge principle impose that the global internal symmetry of the lagrangian is also
a local symmetry. To this end we introduce the gauge fields Aaµ and we perform the
usual substitution

BµΦ Ñ DµΦ “ pBµ ` gT
aAaµqΦ Φ ” pφ1, ..., φNq (1.48)

where we have posed T a “ ´ita. Then, the kinetic term of the lagrangian becomes:

1

2
pDµφiq

2
“

1

2
BµφiB

µφi ` gA
a
µ

`

B
µφiT

ij
a φj

˘

`
1

2
g2AaµA

µ
b pTaΦqipT

bΦqi . (1.49)
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If the vev Φ0 ” x0|Φ|0y of the field Φ (that we remember is the classical value of the
field minimizing the potential) is different from zero, then the ground state of the
system is degenerate and to study the theory we have to choose a minimum of the
potential and then study the oscillations around this minimum

Φpxq “ Φ0 ` ηpxq . (1.50)

In particular the last term in Eq. (1.49) is quadratic in the gauge fields, then sub-
stituting Eq. (1.50) we obtain a sum of terms with the structure of mass terms for
the gauge bosons:

∆L “ 1

2
m2
abrAµpxqs

a
rAµpxqsb m2

ab “ g2
pTaΦ0qipTbΦ0q

i . (1.51)

The terms mab define the mass matrix, whose elements in the diagonal part are
positive semi-definite

m2
a “ g2

pTaΦ0q
2
ě 0 . (1.52)

Once fixed a, the quantity m2
a appears in the new lagrangian as a multiplicative fac-

tor in the term quadratic in the gauge field Aaµpxq that corresponds to the generator
T a, and then ma can be interpreted as the mass of the gauge boson Aaµpxq. This
latter result summarize the Higgs mechanism [26, 27]. Finally, it is worth to note
that in general the Higgs mechanism is such that all the gauge bosons of the theory
acquires a mass, but if one of the generators T̄ of the symmetry group leaves the
ground state unchanged, then

Φ0 Ñ Φ10 “ p1` αT̄ qΦ0 ” Φ0 ñ T̄Φ0 “ 0 ñ m̄ “ 0 , (1.53)

that is the gauge boson corresponding to the generator T̄ remains massless. Start-
ing from these general results, we see how to apply the Higgs mechanism to the
electroweak theory, in such a way to obtain mass terms for the gauge bosons that
mediate the weak interaction, and then the correct description of the Weinberg,
Salam and Glashow theory [26, 27, 31–33].

We introduce in the electroweak interaction the new term

L “ pDµΦq:pDµΦq ´ V pΦq V pΦq “ m2Φ:Φ` λpΦ:Φq2 . (1.54)

Since we want to break the SUp2q symmetry, the field Φpxq in Eq. (1.54) is a doublet
of complex scalar fields:

Φ ”

˜

φ`

φ0

¸

. (1.55)

If we assign hypercharge Y “ 1{2 to the field Φpxq, then it follows from Eq. (1.35)
that the lower component φ0 is a neutral complex scalar field, while the upper
component φ` is a charged complex scalar field. The scalar lagrangian L introduced
in Eq. (1.54) is by construction invariant for gauge transformation associated to the

21



group symmetry SUp2qbUp1q and in particular a possible choice for the generators
of this group is:

σ1 σ2

1´ σ3

2

1` σ3

2
.

Minimizing the potential V pΦq respect to the doublet Φ we obtain the condition

x0|Φ|0y2 “ Φ:0Φ0 ” |φ
0
|
2
` |φ`|2 “ ´

m2

2λ
. (1.56)

This relation defines a set of infinitely many minimum states and, taking into account
the physics request that the vacuum charge is zero, Eq. (1.56) can be written in terms
of two conditions for the complex scalars fields that constitute the doublets Φ:

|φ0
|
2
“ ´

m2

2λ
”
v2

2
|φ`|2 “ 0 . (1.57)

In order to study the theory, we carry the following choice of vacuum state

Φ0 “
1
?

2

˜

0

v

¸

, (1.58)

so that the SSB occurs only in the electrically neutral component of the field Φpxq,
and charge conservation holds exactly. In general, Φ0 in (1.58) is not invariant under
SUp2qbUp1q gauge transformations, but it is invariant under Up1q electromagnetic
gauge transformations, in order to ensure zero mass for the photon and conservation
of the electric charge.

We observe that a linear combination of the generators σ1, σ2,
1´σ3

2
if applied

to the chosen minimum state Φ0 gives a contribution different from zero, while the
action of the remaining generator on Φ0 gives zero contribution

$

&

%

TΦ0 ‰ 0 if T “ aσ1 ` bσ2 ` c
1´σ3

2

TΦ0 “ 0 if T “ 1`σ3

2

.

As we have seen, this implies that the theory has three massive gauge boson and
a massless gauge boson. Having made these observations, we have to proceed with
the determination of the masses of the gauge bosons W˘ and Z0: to this end, it
is necessary to study the oscillations of the field Φpxq around the chosen minimum
state Φ0 in (1.58)

Φpxq “
1
?

2

˜

0

v `Hpxq

¸

exp
!

i
σi
2
θipxq

)

(1.59)

where the new scalar field Hpxq is the Higgs field. To study the oscillations Hpxq
around Φ0, the expression in Eq. (1.59) have to be substituted in the lagrangian
in Eq. (1.54) and, to this end, is useful to carry out the gauge choice fixed by the
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condition θpxq “ 0, called unitary gauge. We start with the study of the kinetic term
of the lagrangian: the covariant derivative DµΦ in Eq. (1.54) is constructed through
the gauge fields W i

µ and Bµ associated to the symmetry group SUp2q b Up1q of the
lagrangian

DµΦ “
!

p12ˆ2qBµ ` ig
σi
2
W i
µ ` ig

1ŶΦBµ

)

Φ (1.60)

where we have introduced the hypercharge matrix ŶΦ that is a diagonal matrix,
whose eigenvalues are the hypercharges associated to the complex scalar fields φ`

and φ0

ŶΦ “

˜

Y
φ
` 0

0 Y
φ

0

¸

“
1

2

˜

1 0

0 1

¸

. (1.61)

The covariant derivative, written in terms of the doublet Φ in Eq. (1.59) and of the
fields W`

µ ” Wµ and W´
µ ” W :

µ, becomes

DµΦpxq “
1
?

2

˜

0

BµHpxq

¸

`
i

2
?

2
rv `Hpxqs

˜

g
?

2W`
µ pxq

g1Bµpxq ´ gW
3
µpxq

¸

. (1.62)

Correspondingly, the kinetic term of the scalar lagrangian becomes

pDµΦq:pDµΦq “
1

2
BµHB

µH `
1

4
pv `Hq2

"

g2W`
µ W

µ
´ `

1

2
pgW 3

µ ´ g
1Bµq

2

*

. (1.63)

Then, using the electroweak unification relation in Eq. (1.36), and the relation defin-
ing the photon and Z0 boson fields in Eq. (1.33), we obtain

pDµΦq:pDµΦq “
1

2
BµHB

µH `
1

4
g2
pv `Hq2

"

W`
µ W

µ
´ `

1

2 cos2 θw
ZµZ

µ

*

. (1.64)

Thus the mass terms for the gauge bosons come from the kinetic part pDµΦq:pDµΦq

of the lagrangian in Eq. (1.54), and in particular we obtain:

W˘
µ “

1
?

2
pW 1

µ ¯ iW
2
µq Ñ mW “

gv

2
, (1.65)

Aµ “ sin θwW
3
µ ` cos θwBµ Ñ mγ “ 0 , (1.66)

Zµ “ cos θwW
3
µ ´ sin θwBµ Ñ mZ “

gv

2 cos θw
. (1.67)

It is worth to note as Eqs. (1.65) and (1.67) put in evidence that the masses of the
W˘ and Z0 bosons are related:

mW “ mZ cos θw “
1

2
vg . (1.68)

Measuring the masses of the electroweak interaction mediators bosons is then pos-
sible to determine the vacuum expectation value v of the field Φ, and it results to be
v „ 246 GeV. Having analyzed the kinetic term, we can now study the Higgs poten-
tial, that is obtained expanding the potential V pΦq that appears in the lagrangian
(1.54) around its minimum Φ0:

V pΦq “ m2Φ:Φ` λpΦ:Φq2 “
1

2
m2
rv `Hpxqs2 `

λ

4
rv `Hpxqs4 ñ
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V pΦq “ V pΦ0q `
1

2
m2
HH

2
` λvH3

`
λ

4
H4 (1.69)

where V pΦ0q “
λ
4
v4 is the value of the potential corresponding of its minimum Φ0

and m2
H “ 2λv2 is the mass of the Higgs boson. We observe that the theory does

not provides any prediction of the Higgs boson mass, but only on the scale of the
SSB v, that is related to the Fermi constant. Taking into account Eqs. (1.64) and
(1.69), the scalar lagrangian can be written as L “ ´λ{4 v4

`LH `LGH , where LH
is the total lagrangian of the Higgs field, while LGH is the lagrangian that describes
the coupling of the Higgs boson with the gauge bosons, and then contains the mass
terms of the W˘ and Z0 bosons generated from the Higgs mechanism:

LH “
1

2
BµHB

µH ´
1

2
m2
HH

2
´
m2
H

2v
H3
´
m2
H

8v2 H
4 , (1.70)

LGH “ m2
WW

´
µ W

µ
`

"

1`
2

v
H `

1

v2H
2

*

`
1

2
m2
ZZµZ

µ

"

1`
2

v
H `

1

v2H
2

*

. (1.71)

We observe that the interaction with the Higgs have the characteristic of being
proportional to the square of the coupled gauge bosons mass. In particular, from
Eqs. (1.70) and (1.71) we obtain the Higgs boson self-interaction vertices and the
interaction vertices for the coupling with the W and Z gauge bosons that are used
in the computation of the Feynman diagrams.

The last property that we have to develop is the introduction of a mechanism
that gives mass to fermions: we add to the electroweak lagrangian a Yukawa term
in which there is a coupling of the fermionic spinors with the Higgs doublet. If we
consider only a family of quark and a leptonic family, we can write this lagrangian
as:

LY “ ´c1pū, d̄qL

˜

φ`

φ0

¸

dR´ c2pū, d̄qL

˜

φ0˚

´φ´

¸

uR´ c3pν̄, ēqL

˜

φ`

φ0

¸

eR`h.c. (1.72)

where in the second term is present the C-conjugated field to the Higgs scalar
doublet, Φc

” iσ2Φ˚. In the unitary gauge, after the SSB, this lagrangian assumes
the simplest form

LY “ ´
1
?

2
pv `Hq

 

c1d̄d` c2ūu` c3ēe
(

. (1.73)

Then we note that the SSB generates also the fermion masses:

md “ c1

v
?

2
mu “ c2

v
?

2
me “ c3

v
?

2
. (1.74)

Since we does not know the parameters ci, the values of the fermionic masses remain
arbitrary. Moreover, from Eq. (1.73), we can obtain the interaction vertices of the
coupling between the Higgs boson and fermions.

In Eq. (1.72) it could be present a term for the neutrinos similar to the second
term, that however we do not add in the Yukawa lagrangian because in the Standard
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Model the neutrinos are described as massless particles: the presence of such a term,
in fact, would produce a coupling of neutrinos with the Higgs field and then the
generation of a mass term. From the lagrangian (1.73) we note that the coupling of
the Higgs field with fermions depends by the masses of these latter and, in particular,
is linear in mf . Finally, when we consider the other fermionic generations, in the
case of quarks we have to consider also the flavour mixing, described by the Cabibbo-
Kobayashi-Maskawa (CKM) matrix, due to the fact that the mass eigenstates do not
coincide with the weak ones: in conclusion, this generates an electroweak current
that provide decays of the quarks between flavours viaW˘ bosons (while this mixing
is not possible with the decay Z0 boson). Instead, when we consider more leptonic
families, this phenomenon is not present, always for the hypothesis of the Standard
Model for which the neutrinos are massless. Anyhow, for the scopes of this thesis,
it is not in our interest to go further into the details of this topic.
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Chapter 2

Quantum correction to the Higgs
potential

The spontaneous symmetry breaking determines the vacuum expectation value of a
scalar field φ at the classical level, simply minimizing the potential V pφq. However,
if we consider the perturbative loop corrections, the classical vev is modified. One
of the aim of this Chapter is to find, in a quantum field theory, a function whose
minimum gives us the exact vev: obviously, at the lowest order, the results obtained
from this function have to bring back to the classical case, which is modified to
higher orders by quantum corrections. Supposedly, these corrections will require
a renormalization procedure to remove infinities. The function that respects these
properties is the effective potential [8, 9]. Then, we will compute the effective poten-
tial of the Standard Model to show how we have the formation of a second minimum
respect to the electroweak one.

2.1 Effective potential in scalar theories

We consider for the moment the simplest case of a single real scalar field φ, and we
suppose that an external source Jpxq coupled to the field φ is added to the lagrangian.
Then the vacuum-vacuum amplitude is given by the functional generator [7]

ZrJs “ xΩ|e´iĤT |Ωy “ N
ż

Dφ exp

ˆ

i

ż

d4x rLpφq ` Jpxqφpxqs
˙

, (2.1)

where |Ωy is the quantum vacuum state, while T is the time interval on which the
functional integral is computed: in fact, the right hand side of Eq. (2.1) is precisely
the path integral representation of the vacuum-vacuum amplitude in the presence
of the source J . Instead N is a normalization factor: being N irrelevant for the
computations of this paragraph, for the moment we put N “ 1 and we will restore
it later. We define the functional W rJs as

W rJs ” ´i lnZrJs . (2.2)
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Expanding the amplitude in Eq. (2.1) in terms of the Hamiltonian eigenstates, and
performing the Wick rotation (i.e. going to the euclidean signature) τ “ it, we can
compute the limit T Ñ 8 to obtain:

ZrJs “ xΩ|e´iĤT |Ωy “
ÿ

n

e´EnT |xn|Ωy|2 ÝÝÝÑ
TÑ8

e´E0T |x0|Ωy|2 .

Thus, going back to the minkowskian signature, and comparing the expression for
ZrJs obtained from Eq. (2.2), we have:

e´iE0T “ eiW rJs ñ E0rJs “ ´
1

T
W rJs ,

i.e. the functional W rJs can be interpreted as the vacuum energy in the presence of
the source Jpxq in the time interval T . In particular, for J “ 0 we have the vacuum
energy of the original theory [34]. We consider the functional derivative of W rJs
respect to Jpxq

δW rJs

δJpxq
“ ´

i

ZrJs

δZrJs

δJpxq
“

ş

Dφ φpxq exp
“

i
ş

pL` Jφq
‰

ş

Dφ exp
“

i
ş

pL` Jφq
‰ “

xΩ|φpxq|ΩyJ
xΩ|ΩyJ

, (2.3)

where the subscript J denotes the presence of the external source. Setting J “ 0 in
Eq. (2.3), we obtain the one-point Green function, that is the vacuum expectation
value of the field φ in the original theory:

δW rJs

δJpxq

ˇ

ˇ

ˇ

ˇ

ˇ

J“0

“ xφpxqy . (2.4)

Instead, computing the second functional derivative of W rJs we have:

δ2W rJs

δJpxqδJpyq
“ ´

i

ZrJs

δ2ZrJs

δJpxqδJpyq
`

i

ZrJs2
δZrJs

δJpxq

δZrJs

δJpyq

“ i

ˆ

xΩ|φpxqφpyq|ΩyJ
xΩ|ΩyJ

´
xΩ|φpxq|ΩyJ
xΩ|ΩyJ

xΩ|φpyq|ΩyJ
xΩ|ΩyJ

˙

. (2.5)

Setting J “ 0 in Eq. (2.5) we obtain the connected two-point Green function, that
is the full propagator of the field φ:

δ2W rJs

δJpxqδJpyq

ˇ

ˇ

ˇ

ˇ

ˇ

J“0

“ i
`

xφpxqφpyqy ´ xφpxqyxφpyqy
˘

“ ixφpxqφpyqyconn “ iDpx, yq .

(2.6)
Proceeding in a similar way with the higher derivatives, we obtain that W rJs can
be identified with the functional generator of the connected Green functions [34]:

xφpx1q...φpxnqyconn “ p´iq
n`1 δnW rJs

δJpx1q...δJpxnq

ˇ

ˇ

ˇ

ˇ

ˇ

J“0

. (2.7)
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We define the classical field φc as the vacuum expectation value of the field φpxq
in the presence of the source Jpxq: thus, for Eq. (2.3), the classical field is given by

φcpxq “
δW rJs

δJpxq
. (2.8)

Now we define the effective action functional [8, 9] as the Legendre transform of
W rJs:

Γrφcs “ W rJs ´

ż

d4x Jpxqφcpxq . (2.9)

Then we compute its functional derivative respect to φcpxq:

δΓrφcs

δφcpxq
“
δW rJs

δφcpxq
´

ż

d4y
δJpyq

δφcpxq
φcpyq ´ Jpxq

“

ż

d4y
δJpyq

δφcpxq

δW rJs

δJpyq
´

ż

d4y
δJpyq

δφcpxq
φcpyq ´ Jpxq “ ´Jpxq ñ

δΓrφcs

δφcpxq
“ ´Jpxq (2.10)

where in the last step we used Eq. (2.8). If we now put J “ 0, Eqs. (2.4) and (2.8)
tell us that φc “ xφy, so that we deduce that the vacuum expectation value xφy is a
stationary point of the effective action Γrφcs: in fact, from Eq. (2.10) for J “ 0 and
φc “ xφy we obtain:

δΓrφcs

δφcpxq

ˇ

ˇ

ˇ

ˇ

ˇ

φc“xφy

“ 0 . (2.11)

We can find a physical meaning also for the second functional derivative of Γrφcs.
In fact:
ż

d4z
δ2W rJs

δJpxqδJpzq

δ2Γrφcs

δφcpzqδφcpyq
“

ż

d4z
δφcpzq

δJpxq

δ2Γrφcs

δφcpzqδφcpyq
“

“
δ2Γrφcs

δJpxqδφcpyq
“ ´

δJpyq

δJpxq
“ ´δp4qpx´ yq . (2.12)

From Eq. (2.6) we know that for J “ 0, and then for φc “ xφy, the second functional
derivative of W rJs, δ2W rJs{δJpxqδJpzq, is the connected two-point Green function,
i.e. the full propagator iDpx, yq. As a consequence, Eq. (2.12) becomes

ż

d4z Dpx, zq
δ2Γrφcs

δφcpzqδφcpyq

ˇ

ˇ

ˇ

ˇ

ˇ

φc“xφy

“ iδp4qpx´ yq . (2.13)

This means that the second functional derivative of the effective action is the inverse
of the propagator, and can be identified as the 1PI two-point Green function [34]

δ2Γrφcs

δφcpzqδφcpyq

ˇ

ˇ

ˇ

ˇ

ˇ

φc“xφy

“ iD´1
px, yq . (2.14)
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Proceeding in a similar way with the higher derivatives, we conclude that the ef-
fective action Γrφcs can be interpreted as the functional generator of 1PI Green
function:

xφpx1q...φpxnqy1PI “ i
δnΓrφcs

δφcpx1q...δφcpxnq

ˇ

ˇ

ˇ

ˇ

ˇ

φc“xφy

. (2.15)

At this point we introduce the effective potential : the general form of the effective
action is given by the standard kinetic term with the square of the derivative of the
field, times a non trivial factor, a term that does not depend on the derivatives of the
field, and an infinite series of corrective terms with higher order derivatives. In other
words, we can write the effective action as an expansion in powers of derivatives of
φc (gradient expansion) [35]:

Γrφcs “

ż

d4x

„

´Veff rφcs `
1

2
pBµφcq

2Zeff rφcs ` ...



. (2.16)

The functional Veff introduced in (2.16) is called effective potential. Since we want
the vacuum state is invariant under Poincaré transformations, then we consider
only solutions for which the vev of the field φ, and then φc, is independent from x.
Thus, considering φc “ cost., all the terms containing derivatives of φc in Eq. (2.16)
vanish and we have only the term Veff , that is however independent from x. As a
consequence, the integral over x gives simply the 4-dimensional volume factor V T .
In conclusion

Γrφcs “ ´V T Veff pφcq , (2.17)

so that, thermodynamically speaking, the effective action is an extensive quantity.
Moreover, the condition in Eq. (2.11) for which xφpxqy “ φc minimize Γrφcs for
J “ 0, with Eq. (2.17) is reduced to

d

dφc
Veff pφcq “ 0 . (2.18)

Every solution of Eq. (2.18) gives us the vev of the field φ in a vacuum state invari-
ant under translations, and then from such a relation we deduce that the effective
potential is precisely the function that we proposed to find.

In general, the effective potential Veff pφcq can have more stationary points: a
maximum corresponds to an instable configuration of the system; an absolute min-
imum is the state of minimal energy, also called true vacuum, that is a stable min-
imum state; a relative minimum is a metastable vacuum state, also called false
vacuum, that can decay towards the true vacuum state of the system through quan-
tum tunneling. In particular, in a system with spontaneous symmetry breaking,
the vacuum state is degenerate, and then the effective potential will be stationary
respect to all the minimum states.
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At this point, we consider the expansion of the effective action Γrφcs in powers
of the classical field φc:

Γrφcs “
8
ÿ

n“1

1

n!

ż

d4x1 . . . d
4xn Γpnqpx1, . . . , xnq φcpx1q . . . φcpxnq . (2.19)

The coefficients of the expansion Γpnqpx1, . . . , xnq, according to Eq. (2.15), are the 1PI
n-point Green function. Now we consider the Fourier transform of the coefficients
Γpnqpx1, . . . , xnq:

Γpnqpx1, . . . , xnq “

ż

d4k1

p2πq4
. . .

d4kn

p2πq4
p2πq4 δpk1 ` ¨ ¨ ¨ ` knq

ˆ Γpnqpk1, . . . , knq e
ipk1¨x1`¨¨¨`kn¨xnq .

Inserting this expression in Eq. (2.19) and expanding the Γpnq in powers of momenta,
we obtain

Γrφcs “
8
ÿ

n“1

1

n!

ż

d4x1 . . . d
4xn

ż

d4k1

p2πq4
. . .

d4kn

p2πq4

ˆ

ż

d4x e´ipk1`¨¨¨`knq¨x eipk1¨x1`¨¨¨`kn¨xnq

ˆ

”

Γpnqp0, 0, . . . , 0qφcpx1q . . . φcpxnq ` . . .
ı

“

ż

d4x
8
ÿ

n“1

1

n!

”

Γpnqp0, 0, . . . , 0qφnc pxq
ı

.

In the first step we have used the integral representation of the Dirac delta δpk1 `

...` knq. In the second step we have recombined the factors e´ikix and eikixi in such
a way to obtain the delta δpxi ´ xq using the integrals over ki. Finally with these
Dirac deltas we have solved the integrals over xi. The higher order terms in the
expansion in powers of momenta contribute with derivatives of the field, and then
vanishes if we consider φc constant. Comparing this expression with Eq. (2.17) we
obtain

Veff pφcq “ ´
8
ÿ

n“1

1

n!
φnc Γpnqpki “ 0q , (2.20)

i.e. Veff is given by the sum of all the 1PI diagrams with zero external momenta.
If these diagrams involve integrations over the internal momenta, then in general
they will be divergent, but if the theory is renormalizable these divergences can be
absorbed in the physical parameters.

For instance, we consider the scalar theory described by the lagrangian:

L “ 1

2
Bµφ B

µφ´
1

2
m2φ2

´
λ

4
φ4 .

All the divergences have to be absorbed by a redefinition of m2 and λ and by the
normalization of the field. A typical definition of the renormalized mass of a scalar
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field is

m2
R ”

d2V

dφ2
c

ˇ

ˇ

ˇ

ˇ

ˇ

φc“0

“ ´Γp2qpki “ 0q (2.21)

i.e. using Eq. (2.20), we can define it as the opposite of the inverse of the propagator
with zero external momenta. Similarly, always using Eq. (2.20), we can define the
renormalized coupling constant as the 4-point 1PI correlation function with zero
external momenta

λR ”
d4V

dφ4
c

ˇ

ˇ

ˇ

ˇ

ˇ

φc“0

“ ´Γp4qpki “ 0q . (2.22)

Finally, the definition of the normalization factor of the field is usually given by

BΓp2q

Bp2

ˇ

ˇ

ˇ

ˇ

ˇ

p
2
“m

2

“ 1 (2.23)

that, through Eq. (2.17), gives Zpφc “ 0q “ 1.
In conclusion, from Eq. (2.20) we see that to compute the effective potential Veff

we have to sum all the 1PI diagrams, and apply renormalization conditions to cure
the divergences of these diagrams [35]. Afterwards, from the effective potential Veff
we can obtain the vevs as its stationary points, and then compute the minima of
the potential itself.

2.1.1 Computation of the effective action

The effective action Γrφcs contains all the information about the quantum dynamics
of the theory, so that it is important to understand the systematics of its explicit
computation: the first step is to compute the functional ZrJs, from which we obtain
W rJs through Eq. (2.2), and afterwards we apply the Legendre transform respect
to φcpxq in Eq. (2.9) to find Γrφcs [7, 34]. The starting point is the classical la-
grangian, rewritten in terms of the renormalized field φr: this can be divided in a
renormalized part Lr including the physical parameter, and a part δL that contains
the counterterms:

Lrφrs “ Lrrφrs ` δLrφrs . (2.24)

Introducing the external source J , this can be divided similarly into a renormalized
term Jr and an additional counterterm δJ :

Jpxq “ Jrpxq ` δJpxq . (2.25)

The term Jr is defined imposing the definition of φc at the lowest order in pertur-
bation theory:

δSrrφrs

δφrpxq

ˇ

ˇ

ˇ

ˇ

ˇ

φr“φc

` Jrpxq “ 0 , (2.26)
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i.e. is defined as the term of J such that the first variation of the renormalized
action with the inclusion of the external source vanishes. Then, Eq. (2.26) is the
Euler-Lagrange equation of the renormalized part of the theory modified through
the introduction of the source term Jφ. Instead, the term δJ is fixed imposing the
definition of φc order by order in perturbation theory, i.e. φcpxq “ xφpxqyJr`δJ . At
this point, we proceed considering the functional ZrJs in Eq. (2.1) and writing it in
terms of the decomposition in Eqs. (2.24) and (2.25):

ZrJs “

ż

Dφ exp

"

i

ż

d4x

ˆ

Lrrφrpxqs ` Jrpxqφrpxq

` δLrφrpxqs ` δJpxqφrpxq
˙*

”

ż

Dφ exp
!

i
´

Srrφrs ` Jr.φr ` δSrφrs ` δJ.φr

¯)

(2.27)

where we have introduced the notation:

J.φ “

ż

d4x Jpxqφpxq . (2.28)

The lowest contribution at this path integral comes from the classical configura-
tion of the field φcpxq. We can evaluate these integrals using the steepest descent
approximation (that corresponds to a loop expansion in powers of ~), writing

φrpxq “ φcpxq ` ηpxq . (2.29)

Now we can expand the action in the path integral in powers of the fluctuation ηpxq.
Concerning the first two terms in Eq. (2.27), we have

Srrφrs ` Jr.φr “

ż

d4x

ˆ

Lrrφrpxqs ` Jrpxqφrpxq
˙

“

ż

d4x

ˆ

Lrrφcpxqs ` Jrpxqφcpxq
˙

`

ż

d4x

¨

˝

δSrrφrs

δφrpxq

ˇ

ˇ

ˇ

ˇ

ˇ

φr“φc

` Jrpxq

˛

‚ηpxq

`
1

2

ż

d4x

ż

d4y ηpxq
δ2Srrφrs

δφrpxqδφrpyq

ˇ

ˇ

ˇ

ˇ

ˇ

φr“φc

ηpyq ` . . . . (2.30)

The term linear in η vanishes for Eq. (2.26) and then we have only:

Srrφrs ` Jr.φr “ Srrφcs ` Jr.φc

`
1

2

ż

d4x

ż

d4y ηpxq
δ2Srrφrs

δφrpxqδφrpyq

ˇ

ˇ

ˇ

ˇ

ˇ

φr“φc

ηpyq ` interaction vertices in η . (2.31)

Concerning the last two terms in the action, that represent the counterterms, ex-
panding the field φr around φc we obtain:

δSrφrs ` δJ.φr “
`

δSrφcs ` δJ.φc
˘

`
`

δSrφc ` ηs ´ δSrφcs ` δJ.η
˘

. (2.32)
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The second term in Eq. (2.32) can be expanded in powers of η: we obtain the
counterterms that have to be included in the Feynman diagrams corresponding
to the self-interaction vertices in η due to the cubic and higher order terms in
Eq. (2.31). The first term is a constant respect to the integration over η and thus
gives an additional term in the exponential coming from the first term in Eq. (2.31)
[7]. Putting together these terms we arrive to the expression for the functional
generator ZrJs.

The higher order terms, that is the self-interaction terms together with their
counterterms, can be combined to give the exponential of a sum of connected dia-
grams: then a part for these terms the functional ZrJs is given by

ZrJs “ exp

"

i

ˆ

Srrφcs ` Jr.φc ` δSrφcs ` δJ.φc

˙*

ˆ

ż

Dη exp

$

&

%

i

2

ż

d4x d4y ηpxq
δ2Srrφrs

δφrpxqδφrpyq

ˇ

ˇ

ˇ

ˇ

ˇ

φr“φc

ηpyq

,

.

-

` . . . . (2.33)

The inverse of the operator that appears in the quadratic term in η defines a prop-
agator for the field η, that is given by:

Dpx, yq “ ´i

ˆ

δ2Srrφcs

δφrpxqδφrpyq

˙´1

. (2.34)

The functional integral in η can be computed with the Gaussian integral:

ż

Dη exp

$

&

%

i

2

ż

d4x d4y ηpxq
δ2Srrφrs

δφrpxqδφrpyq

ˇ

ˇ

ˇ

ˇ

ˇ

φr“φc

ηpyq

,

.

-

“ det
´

´Sp2qr rφcs
¯´ 1

2
,

(2.35)
where Sp2qrφcs is the operator whose components are the second derivative of Srφs
respect to φpxq and φpyq:

δ2Srφs

δφpxqδφpyq
” xy|Sp2qrφs |xy . (2.36)

At this point, we use Eq. (2.2) to obtain W rJs: in particular, if O is a generic
operator, we know that lnpdet Oq “ TrplnOq. In conclusion we find:

W rJs “ Srrφcs ` Jr.φc `
i

2
Tr ln

´

´Sp2qr rφcs
¯

` δSrφcs ` δJ.φc ´ ipsum of connected diagramsq . (2.37)

Finally, using Eq. (2.9), we compute the Legendre transform to obtain the effec-
tive action Γrφcs: reminding of Eq. (2.25), we obtain that all the terms depending
explicitly form the external source J are cancelled. In conclusion

Γrφcs “ Srrφcs `
i

2
Tr ln

´

´Sp2qr rφcs
¯

` δSrφcs ´ ipsum of connected diagramsq . (2.38)
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As we expected, the effective action depends explicitly only by φc. Moreover, it is
given by the sum of the classical action (first and third term), a one-loop correction
written in closed form (second term), and a infinite series of higher-loop correc-
tion that can be computed diagrammatically using the vertices and the propagator
deduced for the field fluctuation η.

Equivalently it is possible to compute the effective action in terms of the bare
quantities. Following a computation similar to those of Eq. (2.38) we have:

Γrφcs “ Srφcs `
i

2
Tr ln

´

´Sp2qrφcs
¯

`Op~2
q . (2.39)

In particular, in the next paragraph we will use precisely Eq. (2.39) in order to
see explicitly the introduction of counterterms in scalar theories. It is worth to
note as the Tr ln terms both in Eqs. (2.38) and (2.39) are Op~q once we restore the
dimensions.

2.1.2 Effective action for Linear Sigma Model

Using Eq. (2.39) we have find a complete way to compute the effective action Γrφcs,
although not very useful for practical purposes. To better understand the meaning
of this expression, we now see how to compute explicitly Γrφcs in the linear sigma
model, in which we have a N -uplet of scalar field Φ “ pφ1, φ2, ..., φNq [7]. The
lagrangian is

L “ 1

2
pBµφ

i
q
2
´

1

2
m2
pφiq2 ´

λ

4

“

pφiq2
‰2
. (2.40)

We expand around the classical field φi “ φic ` ηi. Since we expect to find a vac-
uum state invariant under translation, we limit ourselves to study the simple case
in which the classical field φc is constant. This condition simplifies considerably our
computation: in particular, according to Eq. (2.17), the final result will be propor-
tional to the 4-dimensional volume V T . At this point, inserting in the expansion of
the fields in Eq. (2.40), we obtain

L “ ´1

2
m2
pφicq

2
´
λ

4

“

pφicq
2
‰2
´
`

m2
` λpφicq

2
˘

φicη
i

`
1

2
pBµη

i
q
2
´

1

2
m2
pηiq2 ´

λ

2

“

pφicq
2
pηiq2 ` 2pφicη

i
q
2
‰

` . . . . (2.41)

According to Eq. (2.38), we can ignore the linear term in η, while from the quadratic
term in η we obtain

δ2SrΦcs

δφipxqδφjpyq

ˇ

ˇ

ˇ

ˇ

ˇ

φ“φc

“

ˆ

´ B
2δij ´m2δij ´ λ

“

pφicq
2δij ` 2φicφ

j
c

‰

˙

δp4qpx´ yq . (2.42)

We note that the operator in Eq. (2.42) has the form of a Klein-Gordon operator.
To clarify this relation, we orientate the coordinates in such a way that Φc points
towards the N -th direction:

Φc “ p0, 0, ..., 0, φcq . (2.43)
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Therefore, the operator in Eq. (2.42) is properly equal to the Klein-Gordon operator
p´B

2
´Mipφcq

2
q, where

Mipφcq
2
“

$

&

%

λφ2
c `m

2 acting on η1, ..., ηN´1

3λφ2
c `m

2 acting on ηN
. (2.44)

The functional determinant in Eq. (2.35) is the product of the determinants of these
Klein-Gordon operators:

det
´

´Sp2qrφcs
¯

“
“

det
`

B
2
` pλφ2

c `m
2
q
˘‰N´1 “

det
`

B
2
` p3λφ2

c `m
2
q
˘‰

. (2.45)

We have already seen that for a generic operator we can convert the determinant in
a trace, so that

ln detpB2
` µ2

q “ Tr lnpB2
` µ2

q .

Applying to Eq. (2.45) we have:

ln det
´

´Sp2qrφcs
¯

“ Tr ln
`

B
2
` p3λφ2

c `m
2
q
˘

` pN ´ 1qTr ln
`

B
2
` pλφ2

c `m
2
q
˘

.

(2.46)
Then we compute the traces of the operators in Eq. (2.46) as the sum of their
eigenvalues. It is easy to show that, being the Klein-Gordon operator diagonal, the
operator lnpB2

` µ2
q is also diagonal, so that:

Tr lnpB2
` µ2

q “

ż

d4x xx| lnpB2
` µ2

q|xy

“

ż

d4x

ż

d4k

p2πq4
xx| lnpB2

` µ2
q|pyxp|xy

“

ż

d4x

ż

d4k

p2πq4
e´ikx lnpB2

` µ2
qeikx

“ V T

ż

d4k

p2πq4
lnp´k2

` µ2
q . (2.47)

In the last step, once we apply the operator to eikx, the two exponentials cancel each
other, so that the integral over x gives the factor V T of 4-dimensional volume: we
note that this is exactly the factor that we expect to appear from Γrφcs.

Now we want to restore again the normalization factor N using appropriate
boundary condition on Γrφcs. For instance, to see the connection between the effec-
tive potential that we will extract form Eq. (2.39) and the one given by Eq. (2.20),
we can choose Γr0s “ 0 to obtain:

N “ det
´

´Sp2qr r0s
¯

1
2
, (2.48)

so that, in Eq. (2.39) we have the additional term ´ i
2
NTr lnpB2

` m2
q. Applying

Eq. (2.47), we have:

Tr lnpB2
`Mipφcq

2
q ´ Tr lnpB2

`m2
q “ V T

ż

d4k

p2πq4
ln

ˆ

´k2
`Mipφcq

2

´k2
`m2

˙

. (2.49)
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In conclusion, from Eq. (2.39) with the additional term due to the normalization
factor (2.48), we can extract the one-loop effective potential Veff pφcq comparing the
expression of Γrφs for φc constant with Eq. (2.17):

Veff pφcq “
1

2
m2φ2

c `
1

4
λφ4

c

`
i

2

ż

d4k

p2πq4
ln

ˆ

´k2
`m2

` 3λφ2
c

´k2
`m2

˙

` pN ´ 1q
i

2

ż

d4k

p2πq4
ln

ˆ

´k2
`m2

` λφ2
c

´k2
`m2

˙

.

(2.50)

Obviously, the same result can be obtained from Eq. (2.20) where we have seen that
the effective potential is given by the sum of the 1PI n-point Green function: in
fact, up to the one-loop order Veff pφcq is given by the tree level potential V0pφcq “
1
2
m2φ2

c `
1
4
λφ4

c with the resummation of the one-loop 1PI diagrams

` ` ` ` . . .

so that, computing iΓpnqpki “ 0q with the usual Feynman rules, the resummation
over n in (2.20) is the power expansion of logarithm, i.e. we obtain the last two
terms in Eq. (2.50).

At this point, however, in order to simplify the computations of the loop integrals,
it is convenient to normalize the effective action in a different way. In particular,
we choose to normalize the effective action Γrφcs to the massless theory one with
a vacuum energy Ω. Then from the normalization factor N we have an additional
term ´N i

2
Tr lnpB2

q `Ω in Eq. (2.39), where Ω is the bare vacuum energy constant
that we have to renormalize together with the bare parameters m2 and λ. With this
choice of N , instead of the expression in (2.50), for the effective potential we have:

Veff pφcq “ Ω`
1

2
m2φ2

c `
1

4
λφ4

c

`
i

2

ż

d4k

p2πq4
ln

ˆ

1´
m2
` 3λφ2

c

k2

˙

` pN ´ 1q
i

2

ż

d4k

p2πq4
ln

ˆ

1´
m2
` λφ2

c

k2

˙

.

(2.51)

Then, we compute the following integral with momentum cut-off regularization after
performing a Wick rotation:

i

2

ż

d4k

p2πq4
ln

ˆ

1´
µ2

k2

˙

“ ´
1

2

ż

d4kE

p2πq4
ln

ˆ

1`
µ2

k2
E

˙

“ ´
1

32π2

ż Λ
2

0

dk2
E ln

ˆ

1`
µ2

k2
E

˙

“ ´
1

32π2

¨

˝

pk2
Eq

2

2
ln

ˆ

1`
µ2

k2
E

˙

ˇ

ˇ

ˇ

ˇ

ˇ

Λ
2

0

`
µ2

2

ż Λ
2

0

dk2
E

k2
E

k2
E ` µ

2

˛

‚

“ ´
1

64π2

„

Λ4 ln

ˆ

Λ2
` µ2

Λ2

˙

` µ2Λ2
´
`

µ2
˘2

ln

ˆ

Λ2
` µ2

µ2

˙

. (2.52)
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Expanding in powers of m2
{Λ2

! 1, we obtain:

i

2

ż

d4k

p2πq4
ln

ˆ

1´
µ2

k2

˙

“ ´
1

64π2

„

2µ2Λ2
`
`

µ2
˘2
ˆ

ln
µ2

Λ2 ´
1

2

˙

`OpΛ´2
q . (2.53)

Now we want to express the effective potential in terms of the renormalized
quantities. Then we write:

Ω “ ΩR ` δΩ

m2
“ m2

R ` δm
2 (2.54)

λ “ λR ` δλ

where δΩ, δm2 and δλ are the counterterms that will absorb the divergent part of
the effective potential and then are Op~q, as these comes from the Op~q correction
to the potential, i.e. the last two terms in (2.51). Then, if we insert the splitting
in Eq. (2.54) in the effective potential, in the one-loop correction we can substitute
simply m2 and λ with m2

R and λR respectively, because the counterterms provide
an Op~2

q correction. Moreover, we can also choose ΩR “ 0. Applying Eq. (2.53) to
the effective potential, we can write:

Veff pφcq “
1

2
m2
Rφ

2
c `

1

4
λRφ

4
c ` δΩ`

1

2
δm2φ2

c `
1

4
δλφ4

c

`
1

64π2

„

2
`

m2
R ` 3λRφ

2
c

˘

Λ2
`
`

m2
R ` 3λRφ

2
c

˘2
ˆ

ln
m2
R ` 3λRφ

2
c

Λ2 ´
1

2

˙

`
N ´ 1

64π2

„

2
`

m2
R ` λRφ

2
c

˘

Λ2
`
`

m2
R ` λRφ

2
c

˘2
ˆ

ln
m2
R ` λRφ

2
c

Λ2 ´
1

2

˙

. (2.55)

It is worth to note that this result is manifestly OpNq symmetric: in fact Eq. (2.39)
applied to the lagrangian in Eq. (2.40) is manifestly OpNq invariant term by term.
As a consequence, we had to arrive necessarily to a result for Veff pφcq that is OpNq
invariant.

At this point, we have to apply renormalization conditions in order to determine
the counterterms. We have seen in Eqs. (2.21), (2.22) and (2.23) a possible choice
for the renormalization conditions at zero external momenta (ki “ 0). However,
here we want to use a set of renormalization conditions with the introduction of
an arbitrary scale µ. In particular, we require that the radiative correction to Veff
coming from the i-nth field vanish when Mipφcq

2
“ µ2. It is easy to see that such

property is implemented by the following renormalization conditions:

Veff pφcq
ˇ

ˇ

ˇ

φc“0
“
Nm4

R

64π2 ln
m2
R

µ2 , (2.56)

d2Veff pφcq

dφ2
c

ˇ

ˇ

ˇ

ˇ

φc“0

“ m2
R `

pN ` 2qλRm
2
R

16π2

ˆ

ln
m2
R

µ2 `
1

2

˙

, (2.57)

d4Veff pφcq

dφ4
c

ˇ

ˇ

ˇ

ˇ

φc“0

“ 6

„

λR `
pN ` 8qλ2

R

16π2

ˆ

ln
m2
R

µ2 `
3

2

˙

. (2.58)
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Applying these renormalization conditions to Eq. (2.55), we obtain three equations
for δΩ, δm2 and δλ:

δΩ “ ´
Nm2

R Λ2

32π2 `
Nm4

R

64π2

ˆ

ln
Λ2

µ2 `
1

2

˙

, (2.59)

δm2
“ ´

pN ` 2qλR Λ2

16π2 `
pN ` 2qλRm

2
R

16π2

ˆ

ln
Λ2

µ2 `
1

2

˙

, (2.60)

δλ “
pN ` 8qλ2

R

16π2

ˆ

ln
Λ2

µ2 `
1

2

˙

. (2.61)

From now on we will have only renormalized quantities, so that we will submit for
notation simplicity the subscript R. Substituting Eqs. (2.59), (2.60) and (2.61) in
Eq. (2.55) we obtain the renormalized effective potential:

Veff pφcq “
1

2
m2φ2

c `
1

4
λφ4

c

`
1

64π2

«

pm2
` 3λφ2

cq
2 ln

m2
` 3λφ2

c

µ2

` pN ´ 1qpm2
` λφ2

cq
2 ln

m2
` λφ2

c

µ2

ff

. (2.62)

Once we have obtained the expression of the effective potential in Eq. (2.62), as we
know from Eq. (2.18), for every fixed value of m2, λ and µ we can determine the
vacuum states of the system minimizing Veff pφcq respect to φc.

The correction to V pφq is not defined when the arguments of the logarithms
become negative, but the minima of Veff are located outside this region of values of
φc [7, 35]. This problem is particularly clear in the limit m2

Ñ 0: Eq. (2.62) acquires
the form

Veff pφcq “
1

4
φ4
c

ˆ

λ`
1

4

λ2

p4πq2
φ4
c

„

pN ` 8q

ˆ

ln
λφ2

c

µ2 ´
3

2

˙

` 9 ln 3

˙

. (2.63)

From this expression we can see that Veff pφcq has a zero when φc is of order

φ2
c „

µ2

λ
exp

„

´
p4πq2

pN ` 8qλ



. (2.64)

Near this point, we find a minimum corresponding to a non zero value of φc. How-
ever, this zero is present due to the "cancellation" of the term of lowest order quan-
tum correction. In other words, the perturbation theory is completely "broken"
before we can address the issue regarding a minimum of Veff pφcq with m

2
“ 0 due

to SSB [7].

2.2 Standard Model one-loop effective potential

To compute the Higgs effective potential we have to extract the relevant part of the
Standard Model lagrangian that we have seen in Chapter 1, i.e. the part containing
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quadratic terms in the fields:

L “ ´1

4
W a
µνW

µν
a ´

1

4
BµνB

µν
` pDµΦq:pDµΦq ´m2Φ:Φ´ λpΦ:Φq2

´
1

2ξ
pBµW

µ
a q

2
´

1

2ξ
pBµB

µ
q
2
` Lferm , (2.65)

where the first two terms in the second line are the gauge fixing contribution, while
Lferm is the fermionic contribution that we will analyze in detail later. Moreover,
the tensors W a

µν and Bµν are given in (1.25) and (1.26), while Φ is the Higgs doublet
in (1.55) and DµΦ is given in (1.60).

2.2.1 Scalar contribution

We start with the computation of the contribution to the effective potential from the
Higgs sector: it is worth to note that, if we write the scalar SUp2q doublet explicitly

Φpxq “

˜

φ1`iφ2?
2

φ3`iφ4?
2

¸

, (2.66)

the tree level potential tree-level is

V pΦq “ m2Φ:Φ` λpΦ:Φq2 “
1

2
µ2φ2

i `
λ

4
pφ2

i q
2 (2.67)

that is nothing but the Linear Sigma Model potential in Eq.(2.40) withN “ 4, where
we choose φ3 ” H as the component of the doublet that acquires a non-zero classical
value φc. Moreover, we want to renormalize the effective potential in such a way
that the scalar radiative correction vanish for Mipφcq

2
“ µ2 (with Mipφcq

2 given in
(2.44)). Then, the scalar contributions to the counterterms are given in Eqs. (2.59)-
(2.61), while the Higgs contribution to the renormalized effective potential is given
by the first two lines of Eq. (2.62), and the Goldstone contributions are given by the
third line with N “ 4.

2.2.2 Gauge contribution

Once we choose φ3 ” H in the doublet (2.66) as the only field that acquires a
non-zero classical value φc, using Eqs. (1.33) and (1.36), we can write the relevant
quadratic gauge part of Eq. (2.65) as:

Lquadratic “´
1

4

`

W`
µνW

µν
` `W´

µνW
µν
´

˘

´
1

4
ZµνZ

µν

`
1

2
MW pφcq

2
`

W`
µ W

µ
` `W

´
µ W

µ
´

˘

`
1

2
MZpφcq

2ZµZ
µ

´
1

2ξ

“

pB
µW`

µ q
2
` pB

µW´
µ q

2
` pB

µZµq
2
‰

, (2.68)
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where the mass terms

MW pφcq
2
“

1

4
g2φ2

c MZpφcq
2
“

1

4
pg2
` g12qφ2

c (2.69)

come from the kinetic part DµΦDµΦ. Moreover, we will see that the contributions
to the effective potential due to gauge bosons are of the form M4 logM2 as for the
scalar case, so that we have no contribution to the Higgs effective potential from the
gauge field of the photon as Mγ “ 0. This is the reason for which we do not include
the photon kinetic term ´1

4
FµνF

µν in Eq. (2.68).
We start with the computation of the Z contribution. The first step is to rewrite

the kinetic action:

SkinrZs “ ´
1

4

ż

d4xZµνZµν “ ´
1

4

ż

d4x pBµZν
´ B

νZµ
q
`

BµZν ´ BνZµ
˘

“ ´
1

2

ż

d4x
`

B
µZν

BµZν ´ B
µZν

BνZµ
˘

. (2.70)

Then using the differentiation chain rule we have:

B
µZν

BµZν “ B
µ
`

Zν
BµZν

˘

´ Zν
B
µ
BµZν (2.71)

B
µZν

BνZµ “ B
µ
`

Zν
BνZµ

˘

´ Zν
B
µ
BνZµ (2.72)

where the divergence terms in the integral give surfaces terms that vanish. Thus we
write:

SkinrZs “
1

2

ż

d4xZµpxq
`

B
2 gµν ´ BµBν

˘

Zνpxq . (2.73)

Then the action of the quadratic contribution can be written as:

SrZs “
1

2

ż

d4xZµpxq

„

B
2 gµν ´

ˆ

1´
1

ξ

˙

B
µ
B
ν
` gµνMZpφcq

2



Zνpxq ñ

Sp2qµν rφcs “ B
2 gµν ´

ˆ

1´
1

ξ

˙

BµBν ` gµνMZpφcq
2 . (2.74)

Since we want to compute the inverse operator Kµν of S
p2q
µν rZs, it is more convenient

to write Eq. (2.74) in momentum space, so that we write the Fourier transform of
the field Zµpxq:

Zµpxq “

ż

d4k

p2πq4
Zµpkq e

´ikx . (2.75)

Then substituting in the action we obtain:

SrZs “
1

2

ż

d4x

ż

d4k

p2πq4
Zµpkq e

´ikx

ˆ

„

B
2 gµν ´

ˆ

1´
1

ξ

˙

B
µ
B
ν
` gµνMZpφcq

2


ż

d4k1

p2πq4
Zνpk

1
q e´ik

1
x

“
1

2

ż

d4k

p2πq4

ż

d4k1

p2πq4
Zµpkq

ˆ

„

´k2 gµν `

ˆ

1´
1

ξ

˙

kµkν ` gµνMZpφcq
2



Zνpk
1
q

ż

d4x e´ipk`k
1
qx . (2.76)
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We note that the integral over x gives p2πq4δp4qpk ` k1q. In conclusion:

SrZs “
1

2

ż

d4k

p2πq4
Zµpkq

„

´k2 gµν `

ˆ

1´
1

ξ

˙

kµkν `MZpφcq
2gµν



Zνp´kq . (2.77)

Then the operator (2.74) in momentum space is:

Sp2qµν rφcs “ ´k
2 gµν `

ˆ

1´
1

ξ

˙

kµkν `MZpφcq
2gµν . (2.78)

The inverse operator Kµν has the form

Kµν “ Apk2
qgµν `Bpk

2
qkµkν . (2.79)

Using the condition Kµρ Sp2qρν rZs “ δµν , we can determine Apk2
q and Bpk2

q, so that:

Kµν “
1

k2
´MZpφcq

2

„

´gµν ` p1´ ξq
kµkν

k2
´ ξMZpφcq

2



. (2.80)

In the Landau gauge, for which ξ “ 0, the numerator is the projector over the states
satisfying the Lorentz condition:

Pµν “ gµν ´
kµkν

k2 . (2.81)

With calculation similar to those seen in Section 2.1 for the scalar case, the one-
loop contribution of the Z boson to Γrφcs is given by i

2
Tr ln

´

´Sp2qµν rφcs
¯

, that we
want to write in terms of the operator Kµν using the property of the logarithm:

i

2
Tr ln

´

´Sp2qµν rφcs
¯

“ ´
i

2
Tr ln

`

´Kµν

˘

, (2.82)

where Tr denote also the trace over the Lorentz indices. We can exploit the following
properties for an operator:

O “
ÿ

i

λiPi (2.83)

fpOq “
ÿ

i

fpλiqPi (2.84)

where λi are the eigenvalues of the matrix O and Pi are the projectors over their
relative eigenstate. In particular, considering the operator

Oµν “

ż

d4k

p2πq4
1

k2
´MZpφcq

2 Pµν (2.85)

it is clear from Eq. (2.83) that the (continuous) eigenvalues of Oµν are 1

k
2
´M

2
Z

. Then,
using Eq. (2.84)

log
`

Oµν

˘

“ ´

ż

d4k

p2πq4
log

`

k2
´MZpφcq

2
˘

Pµν . (2.86)
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We can express the trace over the continuum index k in Eq. (2.82) as an integral
similarly to Eq. (2.47), and we can reduced the trace Tr over all the indices to a
trace tr over only the Lorentz indices. In this way, we reduce the computation of
Eq. (2.82) to the trace tr of an operator of the kind (2.86), so that:

i

2
Tr ln

´

´Sp2qµν rφcs
¯

“
i

2
V T

ż

d4k

p2πq4
log

`

k2
´MZpφcq

2
˘

trPµν . (2.87)

From Eq. (2.81) it is clear that trPµν “ 3. Moreover, following Section 2.1.2, we nor-
malize the effective action to the massless theory one, so that from N we obtain the
additional term ´ i

2
Tr ln

`

B
2 gµν ´ p1´ 1{ξq BµBν

˘

. Clearly this term (in the Landau
gauge) is equal to the right hand side of Eq. (2.87) withMZpφcq

2
“ 0. In conclusion,

the radiative contribution to the Higgs effective potential coming from the Z boson
is:

rVZpφcq “ 3
i

2

ż

d4k

p2πq4
log

ˆ

1´
MZpφcq

2

k2

˙

. (2.88)

Similarly we can compute the the contribution of the W bosons, and it is easy to
see that the result is given equal to Eq. (2.88) with the substitution MZ ÑMW and
with a factor 2 that takes into account that there are two W bosons:

rVW pφcq “ 3i

ż

d4k

p2πq4
log

ˆ

1´
MW pφcq

2

k2

˙

. (2.89)

Using Eq. (2.53) we compute the integrals over k:

rVZpφcq “
3

64π2

„

2MZpφcq
2Λ2

`
`

MZpφcq
2
˘2
ˆ

ln
MZpφcq

2

Λ2 ´
1

2

˙

, (2.90)

rVW pφcq “
6

64π2

„

2MW pφcq
2Λ2

`
`

MW pφcq
2
˘2
ˆ

ln
MW pφcq

2

Λ2 ´
1

2

˙

. (2.91)

In particular, as for the scalar contributions seen in Section 2.2.1, we require
that the radiative contribution of the gauge boson Z to the effective potential van-
ishes whenMZpφcq

2
“ µ2, and similarly for the gauge bosonW whenMW pφcq

2
“ µ2.

Then we cancel the divergences appearing in Eqs. (2.90) and (2.91) with the countert-
erms, considering additional terms in δΩ, δm2 and δλ in order to take into account
the gauge contributions. Finally, making explicit MZ and MW with Eqs. (2.69), the
renormalized contributions to the Higgs potential coming from the gauge sector are:

VZpφcq “
3
`

g2
` g12

˘2
φ4
c

1024π2 ln

`

g2
` g12

˘

φ2
c

4µ2 , (2.92)

VW pφcq “
6g4φ4

c

1024π2 ln
g2φ2

c

4µ2 . (2.93)

2.2.3 Fermionic contribution

The fermionic contribution comes from the Lferm in Eq. (2.65), that in principle
contains for all the family of fermions (quarks and leptons) the corresponding kinetic
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terms and the Yukawa term in Eq. (1.72). However, we will see that the fermionic
contribution has again the formM4 logM2, so that the dominant contribution comes
from the quark top. Then the relevant fermionic contribution is:

Lt “ ψ̄a
`

iγµBµ ´Mtpφcq
˘

ψa , (2.94)

where the mass term
Mtpφcq “

yt
?

2
φc (2.95)

comes from the Yukawa term (1.72), using Eq. (2.66) for the Higgs doublet and
choosing φ3 ” H as the only field that acquires a non-zero classical value φc.

With calculation similar to those seen in Section 2.1 for the scalar case, the
one-loop contribution of the top quark to Γrφcs is given by

´
i

2
Tr ln

´

´S
p2q
ab rφcs

¯

“ ´
i

2
Tr ln

”

δab

´

´ i��B `Mtpφcq14

¯ı

, (2.96)

where the minus sign overall comes from the anticommutation property of the top
quark field ψpxq. Then, proceeding as in Eq. (2.47):

´
i

2
Tr ln

´

´S
p2q
ab rφcs

¯

“ ´
i

2
V T tr

ż

d4k

p2πq4
ln
”

δab

´

´��k `Mtpφcq14

¯ı

, (2.97)

where here tr means the trace over the Lorentz indices and over the colour indices.
We use the fact that if O is diagonal, then also fpOq is diagonal. In particular,

the argument of the log is diagonal in the colour space due to δab, so that:

T ln
”

δab

´

´��k `Mtpφcq14

¯ı

“ T
“

ln
`

´��k `Mtpφcq14

˘

δab
‰

“ ln
`

´��k `Mtpφcq14

˘

T pδabq “ 3 ln
`

´��k `Mtpφcq14

˘

, (2.98)

where T means the trace over the colour indices and T pδabq “ 3. Then, from now
on in this subsection tr means the trace over the Lorentz indices only. Moreover,
using the property of the logarithm:

´
i

2
Tr ln

´

´S
p2q
ab rφcs

¯

“ ´3
i

2
V T tr

ż

d4k

p2πq4
ln
`

´��k `Mtpφcq14

˘

“ ´3
i

2
V T tr

ż

d4k

p2πq4

”

ln
`

´��k `Mtpφcq14

˘

` ln
`

��k `Mtpφcq14

˘

ı

“ ´3
i

2
V T

ż

d4k

p2πq4
tr ln

”

`

´ k2
`Mtpφcq

2
˘

14

ı

, (2.99)

where in the last step we use ��k
2
“ k214. The argument of the log is then diagonal

also in the space of the Dirac matrices due to 14, and then:

tr ln
”

`

´ k2
`Mtpφcq

2
˘

14

ı

“ tr
”

ln
`

´ k2
`Mtpφcq

2
˘

14

ı

“ ln
`

´ k2
`Mtpφcq

2
˘

trp14q “ 4 ln
`

´ k2
`Mtpφcq

2
˘

, (2.100)
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being trp14q “ 4. In conclusion:

´
i

2
Tr ln

´

´S
p2q
ab rφcs

¯

“ ´6i V T

ż

d4k

p2πq4
ln
`

´ k2
`Mtpφcq

2
˘

. (2.101)

Once we normalize the effective action to the massless theory one, as we done
in the previous sections, from N we obtain also the additional term i

2
Tr ln p´i��Bq,

that is equal to Eq. (2.101) with Mtpφcq “ 0. In conclusion, the contribution to the
Higgs effective potential of the quark top is:

rVtpφcq “ 6i

ż

d4k

p2πq4
log

ˆ

1´
Mtpφcq

2

k2

˙

. (2.102)

Using Eq. (2.53) we compute the integral in k:

rVtpφcq “
12

64π2

„

2Mtpφcq
2Λ2

`
`

Mtpφcq
2
˘2
ˆ

ln
Mtpφcq

2

Λ2 ´
1

2

˙

, (2.103)

and with Eq. (2.94) we explicit Mt. Requiring that this radiative contribution van-
ishes when Mtpφcq

2
“ µ2, we obtain the additional terms in the counterterms that

take into account the quark top contribution. Finally, the renormalized contribution
to the Higgs potential from the fermionic sector is:

Vtpφcq “ ´
3y4

t φ
4
c

64π2 ln
y2
t φ

2
c

2µ2 . (2.104)

2.3 Renormalization group improved effective Higgs
potential

In conclusion, putting together the results of Eqs. (2.62), (2.93), (2.92) and (2.104)
that give the one-loop effective potential correction to the classical Higgs potential
Eq. (2.67) we get:

Veff pφcq “ V0pφcq ` Vspφcq ` Vgpφcq ` Vf pφcq

“
1

2
m2φ2

c `
λ

4
φ4
c

`

`

m2
` 3λφ2

c

˘2

64π2 ln
m2
` 3λφ2

c

µ2 `
3
`

m2
` λφ2

c

˘2

64π2 ln
m2
` λφ2

c

µ2

`
6g4φ4

c

1024π2 ln
g2φ2

c

4µ2 `
3
`

g2
` g12

˘2
φ4
c

1024π2 ln

`

g2
` g12

˘

φ2
c

4µ2

´
3y4

t φ
4
c

64π2 ln
y2
t φ

2
c

2µ2 . (2.105)

The next step is the Renormalization Group Improvement (RGI) of the effective
potential, that is an application of the renormalization group theory. We denote
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with gi a generic coupling constant of the Standard Model (despite of it is a scalar,
gauge or Yukawa coupling). Being the loop expansion a coupling constants gi power
expansion, the n-loop effective potential will have terms of order gn`1

i . Moreover,
for every loop we have to consider a power of lnφ2

c{M
2, such that the n-loop will

have terms of the form

gn`1
i

ˆ

ln
φ2
c

µ2

˙n

.

Since we require that our expansion parameter is less than 1 in order for the pertur-
bative expansion to be reliable, it is not sufficient to require that all the couplings
be small, but that all the factor gi lnpφ

2
c{µ

2
q be small. In principle, it is always

possible to choose µ in such a way that the logarithm is small, but it can only take
a single value. If we are interested in the potential over a range from φ1 and φ2,
then we have to require that gi lnpφ

2
1{φ

2
2q to be smaller than 1. However, in almost

all the calculation in which the one-loop effective potential is needed, the region of
field space over which we work is so large that gi lnpφ

2
1{φ

2
2q „ 1. Then we need of a

renormalization group improvement if we want that our loop expansion to remain
valid. Such a potential generated with the renormalization group theory, is usually
called renormalization group improved effective potential [36].

The renormalization scale µ in the expression of the effective potential (2.105) is
arbitrary, and the effects of changing it can be absorbed into changes in the coupling
constants and field, i.e. considering gi “ gipµq. The renormalization group equation
for the effective potential is nothing but the statement that Veff pφcq cannot be
affected by the change in the arbitrary parameter µ:

dV

dµ
“ 0 . (2.106)

Moreover, being the effective potential a function of the couplings gi and of the field
φc, we can explicit Eq. (2.106) using the chain rule, obtaining the Callan-Symanzik
equation:

ˆ

µ
B

Bµ
` βgi

B

Bgi
`m2γm

B

Bm2 ` φc γ
B

Bφc

˙

Veff pφcq “ 0 , (2.107)

where we have defined
βgi “ µ

dgipµq

dµ
. (2.108)

The functions βgi are the beta functions that describe the changing of the couplings
with the energy in a theory. We have also defined

γ φcpµq “ µ
dφcpµq

dµ
γmm

2
pµq “ µ

dm2
pµq

dµ
(2.109)

where γ is called anomalous dimension. From Eq. (2.19) with φc “ const. it is clear
that computing the n-th derivative respect to φc of Eq. (2.107), it is reduced to the
Callan-Symanzik equation for the 1PI Green’s functions.
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It is worth to note that the renormalization group equation is exact, and if we
know β, γ e γm we can solve Eq. (2.107) exactly, and then if we known Veff at a given
value of φc, then we know it for all the value of φc. However, the functions β, γ and
γm are known only perturbatively as a power series of the couplings gi, and they do
not require small logarithms. Thus, by only assuming that the couplings are small,
the beta and gamma functions can be determined to the desired level of accuracy,
and solving the Callan-Symanzik equation we obtain an expression for Veff pφcq that
is valid also if gi lnpφ

2
c{M

2
q is not less than 1, then extending the region of validity

of the potential.
Basing on dimensional grounds, we assume for the solution of Eq. (2.107) the

following form:

Veff pφcq “
1

2
rm2
pm2, gi;φc, µqφ

2
c `

1

4
rλpm2, gi;φc, µqφ

4
c ,

where rm2 has the dimension of a mass squared, while rλ is dimensionless: this fixes
their dependence from the couplings m2 and gi. In fact, rm2 have to depend linearly
on m2, so that it carries all the mass dimension and rm2 can depend on φc and µ

only by the ratio φc{µ. Instead rλ can not depend on m2, and being dimensionless
also it can depend on φc and µ only by the ratio φc{µ. Then it is useful to introduce
the dimensionless variable

t “ ln
φc
µ

(2.110)

and write the potential as:

Veff pφcq “
1

2
rm2
pm2, gi; tqφ

2
c `

1

4
rλpgi; tqφ

4
c . (2.111)

Inserting this solution in the Callan-Symanzik equation, and writing it in terms of
the dimensionless variable t, we note that the φ2

c and φ
4
c parts have to be separately

zero, so that we obtain the two differential equations for rm2 and rλ:
ˆ

´
B

Bt
` βgi

B

Bgi
` 4γ

˙

rλpgi; tq “ 0 (2.112)

ˆ

´
B

Bt
` βgi

B

Bgi
`m2γm

B

Bm2 ` 2γ

˙

rm2
pm2, gi; tq “ 0 , (2.113)

where we have defined

βgi “
βgi

1´ γ
γm “

γm
1´ γ

γ “
γ

1´ γ
. (2.114)

The Eqs. (2.112) and (2.113) can be solved using the method of characteristics,
obtaining for the potential:

Veff pφcq “
1

2
m2
ptqGptq2φ2

c `
1

4
λptqGptq4φ4

c , (2.115)
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Figure 2.1: Left panel: Higgs running coupling constant, where we put in evidence
that for µ Á 1011 we have negative values for λpµq. Right panel: sketch of the RGI
Higgs effective potential.

where

Gptq ” exp

ˆ

´

ż t

v

dt1 γ
`

gipt
1
q
˘

˙

, (2.116)

while giptq and m
2
ptq are solutions of the differential equations

dgi
dt
“ βgipgiq

dm2

dt
“ m2

ptq γmpgiq (2.117)

with boundary conditions gipvq “ ḡi and m
2
pvq “ m2

H (for instance, the measured
values of the Standard Model couplings and of the Higgs mass at the EW scale v).
See Appendix A for the expression of βgi , γm and γ.

Once we know the beta and gamma function, we can solve (numerically) the set of
differential equations (2.117), and we note an important characteristic of the running
coupling constant λpµq, i.e. at the scale µinst „ 1011 GeV it becomes negative as we
can see in Fig. 2.1. From the expression of the βλ function in Appendix A it is clear
that this behaviour is due to the quark top contribution that presents the fermionic
characteristic opposite sign respect to the bosonic contributions. Moreover, being
µinst the relevant scale of the problem and it is much larger that the EW scale
v „ 246 GeV, it is clear that we can neglect the φ2 term in Eq. (2.115), and write
the RG improved Higgs effective potential as:

VRGIpφq »
1

4
λeffpφqφ

4 . (2.118)

In particular, this behaviour of the running coupling constant λ can be seen
in Eq. (2.118) as an instability of the Higgs effective potential in µinst, and in the
presence of a second minimum at a scale of φ „ 1030 GeV. Then it is of the great
importance to study the stability condition of the EW vacuum (where our Universe
sits) respect to this second minimum. This topic will be the main argument of the
next chapters.
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Chapter 3

Instanton physics and vacuum decay

Many of the phenomena that we find in quantum field theory are related to the
tunnel effect. The most known method for the study of the quantum tunneling is the
WKB method, based on semiclassical approximations, while for the generalizations
to the quantum field theories is useful to employ the path integral formalism. The
approach to the quantum tunneling with functional formalism is the base of the
instanton method [37–41] that is founded on searching the euclidean solution of
the equation of motion. The elegance of this method lies in the fact that once
the Euclidean formalism has been developed for systems with a finite number N
of degrees of freedom, the generalization to the context of quantum field theory is
immediate.

3.1 Tunneling in quantum mechanics

We consider a particle that moves in a one-dimensional space, subject to a potential
V pqq and having energy E, then described by the hamiltonian

H “ p2

2m
` V pqq .

We denote with qmax the point in which V has a maximum, and with q1 and q2 the
classical inversion points, that are the points in which the potential V pqq is equal
to the energy E of the particle, E “ V pqjq. Then in the region q1 ă q ă q2 we have
E ă V pqq and such points define a region of the space in which the kinetic energy
of the particle is negative, since the total energy E is less than the potential V

Ecinpqq “ E ´ V pqq ă 0 @q P rq1, q2s .

The spatial interval rq1, q2s then defines the classical forbidden region.
Quantum mechanics says us that exists a non zero probability that a particle

which moves along a positive direction of the x axis, with energy E less than V pqmaxq,
can cross the barrier. This classically forbidden motion is called quantum tunneling :

49



Figure 3.1: Potential energy barrier.

the probability amplitude relative to the possibility of transmission is given by the
semiclassical approximation of the WKB method [37, 39–42]

|T pEq| “ exp

"

´
1

~

ż q2

q1

a

2mrV pqq ´ Es dq

*

p1`Op~qq . (3.1)

Then we can say that the tunneling probability at the lowest order is proportional
to e´

B
2~ where we have defined the transmission integral

B “ 2

ż q2

q1

dq
a

2mrV pqq ´ Es . (3.2)

Being the kinetic energy negative in the forbidden region, we have 9q2
ptq ă 0, i.e.

the particle moves with a canonical velocity 9qptq that is imaginary in the classically
forbidden region. Such a velocity can be thought as the derivative of the canonical
position qptq respect to an imaginary time τ “ ´it. This observation suggests to
adopt an euclidean analysis of the problem doing a Wick rotation of the t axis
and identifying tE “ τ . It is worth to study the tunneling phenomenon in the
one dimensional case especially in two cases: the symmetric double well potential
problem and the metastable state problem [38, 39].

In the first problem, for which the potential is shown in Fig. 3.2, the quantum
states are degenerate. In fact the potential is characterized by two different ground
states, |Ly and |Ry, localized in correspondence of both the two degenerate minima.
In quantum perturbation theory, this implies a spontaneous breaking of the parity
symmetry, but this is not possible because the spectrum of the Schroedinger operator
in this case is discrete and thus the ground state has to correspond to a symmetric
eigenfunction. This apparent discrepancy is solved by the quantum tunneling that
leads to a splitting of the energy level, and then the presence of a unique ground
state given by the symmetric combination of |Ly and |Ry.
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Figure 3.2: Double-well potential.

Referring to the situation shown in Fig. 3.2, where the minima are in q “ ˘a and
the maximum is in q “ 0, if the barrier is infinitely high limqÑ0 V pqq “ 8 (and then
impenetrable), then the potential is equivalent to those of two decoupled harmonic
oscillators with minima in q “ ˘a. In this case there would be two possible set of
harmonic oscillator eigenstates, localized in correspondence of the two minima and
the two ground states would have the same energy E0.

Instead if the barrier is finite, as in Fig. 3.2, neither of the two ground states
remain eigenstates of the hamiltonian because the possibility of tunneling couples
the potentials of the harmonic oscillators and this perturbation alters the eigenstates
of the system, creating a splitting of the energy levels. In particular, if E0 ă V p0q

then the symmetric and antisymmetric combinations of the two states |Ly and |Ry
will give rise to the hamiltonian eigenstates:

|˘y “
1
?

2
p|Ly ˘ |Ryq E˘ “ E0 ¯

∆

2
, (3.3)

where the factor that defines the splitting of the fundamental energy level is tied up
to the tunneling probability through the relation

∆

2
9 exp

"

´
1

~

ż `a

´a

a

2m rV pqq ´ Es dq

*

. (3.4)

The two states defined through Eq. (3.3) are then states of the system with energies
more or less high compared to E0 and in particular the ground state of the system
is the state |`y, i.e. it is the state given by the symmetric combination of the two
original vacuum states. Now, if for t “ 0 a particle is in the state |Ly, then at the
generic time t

|ψptqy “ e´
i
~ Ĥt

„

1
?

2
p|`y ` |´yq



“
1

2
e´

i
~E`t

”

p1` e´
i
~∆t
q|Ly ` p1´ e´

i
~∆t
q|Ry

ı

. (3.5)
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Figure 3.3: Potential with a metastable vacuum.

Then the system oscillates between the two states |Ly and |Ry, and the oscillation
occurs with a frequency ∆, i.e. it depends from the tunneling probability amplitude.

At this point, we study the problem of metastable state, a phenomenon that can
occur when the potential describing a system presents one or more local minima in a
side of the barrier and an absolute minimum from the other side, as in Fig. 3.3 [39].
If the barrier were infinite, i.e. if the tunneling probability vanish, there would be a
set of discrete levels in a side of the barrier and a spectrum of energy levels thicker on
the other side. In the case of a finite barrier, in which we suppose that the classical
inversion points of motion are qi “ a and qf “ b, the possibility of tunneling gives
rise, as in the previous case, to a mixing of eigenstates of the hamiltonian, but in
this case the tunneling probability is high as the system will tend to decay towards
the absolute minimum, called true vacuum, of the potential. In the limit in which
the width of the absolute minimum is infinity, it can be proved that if the system
is initially in the state |Ly (with reference to Fig. 3.3, the particle is located in the
relative minimum q “ a with energy E “ 0) the probability amplitude xL|ψptqy
that, at the time t, the system is still in this state decays exponentially with the
time, where the exponent is in turn proportional to e´B{2~. The state |Ly is called
metastable state and it is not an eigenstate of the hamiltonian. Moreover, it will
have a complex energy E0 whose imaginary part defines the decay amplitude of the
state

ImrE0s ”
Γ

2
. (3.6)

In fact the potential analyzed can be seen as the analytic continuation of a potential
with a single minimum in q “ a that constitutes the ground state of the system [39],
and then the complex energy can be interpreted as the analytic continuation of the
real energy associated to this state.
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3.2 Tunneling with functional formalism

The WKB method turns out to be quite effective for the description of the phe-
nomenon of tunneling in the context of quantum mechanics, but to extend the
treatment to the context of quantum field theory it is easier to use the functional
formalism of the path integral [43].

Let us see how to treat, in general, a one dimensional quantum system given by a
particle with mass m, without spin and subject to a potential V pqq. Using the path
integral formalism, the probability amplitude that the particle is in the position qi
at the initial time ti “ ´T {2 and that it is revealed in the position qf at the final
instant tf “ `T {2, is given by the functional integral

@

qf ;`T {2|qi;´T {2
D

” xqf |e
´ i

~ Ĥt|qiy “ N
ż

Dqptq exp

"

i

~
Srqptqs

*

(3.7)

where N is a normalization factor. Performing the Wick rotation (t “ ´iτ) the
functional integral becomes

@

qf ;`T {2|qi;´T {2
D

” xqf |e
´ 1

~ Ĥτ |qiy “ N
ż

Dqpτq exp

"

´
1

~
SErqpτqs

*

(3.8)

where SErqpτqs is the euclidean action, given by

SErqpτqs “

ż `T
2

´T
2

„

1

2
m 9q2

` V pqq



dτ , (3.9)

and the dot denotes the derivative respect to τ . In other words, in Eq. (3.7) we do
the substitutions t Ñ ´iτ and Srqptqs Ñ iSErqpτqs with SE defined by Eq. (3.9),
to obtain Eq. (3.8). Moreover, Eq. (3.9) says that using the euclidean formalism is
equivalent to study the motion of the particle in a potential ´V pqq.

Since we want to determine the transition amplitude Ap|qi;´T {2y Ñ |qf ;T {2yq,
the path qpτq which is followed by the particle will respect the conditions

qp´T {2q “ qi qp`T {2q “ qf , (3.10)

and then the functional integration in Eq. (3.8) have to be extended to the functions
that respect such conditions.

Moreover, the euclidean formalism is useful also to obtain information on the
ground state of the system: the matrix element in the left hand side of Eq. (3.8) can
be expanded using the orthonormal complete set of eigenstates |ny of the hamiltonian
Ĥ

xqf ;`T {2|qi;´T {2y “ xqf |e
´ 1

~ ĤT |qiy “
8
ÿ

n“0

e´
1
~EnT xqf |nyxn|qiy . (3.11)

In the limit T Ñ 8 this amplitude is dominated by the terms corresponding to the
energies En that are smaller. In particular, if E0 is the energy of the ground state
|0y:

xqf |e
´ 1

~ ĤT |qiy
T"1
ÝÝÑ e´

1
~E0T xqf |0yx0|qiy . (3.12)
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In other words, in this limit we can approximate

xqf ;`T {2|qi;´T {2y „ ψ0pqf qψ
˚
0 pqiqe

´
E0
~ T . (3.13)

In this way, determining the path integral in Eq. (3.8), we can obtain information
on the energy of the ground state and on its corresponding wave function ψ0pqq.

Now we see how to determine the path integral in Eq. (3.8) in the semiclassical
limit, that is expanding the action around its minimum. We consider the “stationary
path”, i.e. the path that minimizes the euclidean action (3.9), and that then is the
classical solution q̄pτq of the euclidean equation of motion

δSErqs

δqpτq
“ 0 ñ ´m:qpτq `

dV pqq

dq
“ 0 . (3.14)

The generic path is given by qpτq “ q̄pτq ` ηpτq, where ηpqq is the quantum fluc-
tuation around q̄pτq. Since all the paths must have the same extrema, it will be
ηp˘T {2q “ 0. At this point, we expand the euclidean action around the classical
solution q̄pτq:

SErqpτqs „ SErq̄pτqs`
1

2

ż

ηpτq

„

δ2SErqs

δqpτqδqpτ 1q
δpτ ´ τ 1q



qpτq“q̄pτq

ηpτ 1q dτ dτ 1 . (3.15)

The term in square brackets in Eq. (3.15) is called Quantum Fluctuation Operator
S2Erq̄pτqs, and it is obtained from the second variation of the euclidean action. To
compute this operator we write the generic path as qpτq “ q̄pτq ` λ ηpτq with η

subject to the constraints seen above. Now we can see the action as a function of λ,
SE “ SEpλq. Computing the second variation of the action around its minimum is
now equivalent to compute the second derivative of SEpλq in λ “ 0. Then

dSE
dλ

“

ż T
2

´T
2

dτ

ˆ

BLE
Bq

η `
BLE
B 9q

9η

˙

ˇ

ˇ

ˇ

ˇ

ˇ

λ“0

ñ

d2SE

dλ2 “

ż T
2

´T
2

dτ

ˆ

B
2LE
Bq2 η2

` 2
B

2LE
BqB 9q

η 9η `
B

2LE
B 9q2 9η2

˙

ˇ

ˇ

ˇ

ˇ

ˇ

λ“0

.

From now on we omit to specify that the partial derivative are computed in λ “ 0

to lighten the notation. Integrating by parts:

d2SE

dλ2 “

ż T
2

´T
2

dτ
B

2LE
Bq2 η2

`

„

B
2LE
BqB 9q

η2



T
2

´T
2

´

ż T
2

´T
2

dτ
d

dτ

ˆ

B
2LE
BqB 9q

˙

η2

`

„

B
2LE
B 9q2 η 9η



T
2

´T
2

´

ż T
2

´T
2

dτ η
d

dτ

ˆ

B
2LE
BqB 9q

9η

˙

.

Remembering that ηp˘T {2q “ 0 and computing the derivatives of LE we obtain:

d2SE

dλ2

ˇ

ˇ

ˇ

ˇ

ˇ

λ“0

“

ż T
2

´T
2

η

ˆ

´m
d2

dτ 2 `
d2V pqq

dq2

˙

η dτ . (3.16)
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Then:

S2Erq̄pτqs ”

„

δ2SErqs

δqpτqδqpτ 1q
δpτ ´ τ 1q



qpτq“q̄pτq

“

„ˆ

´m
d2

dτ 2 `
d2V pqq

dq2

˙

δpτ ´ τ 1q



qpτq“q̄pτq

. (3.17)

In this approximation, i.e. up to Opη2
q, being ηpτq “ qpτq ´ q̄pτq, we have that

the path integral in Eq. (3.8) is

ż

Dqpτq e´
1
~SErqpτqs » e´

1
~SErq̄pτqs

ż

Dqpτq e
´ 1

2~
ş

dτ ηpτq

ˆ

´m d
2

dτ
2`

d
2
V pqq

dq
2

˙

q̄

ηpτq

. (3.18)

Now we can do a change of variable qpτq Ñ ηpτq (with jacobian equal to 1)

ż

Dqpτq e´
1
~SErqpτqs » e´

1
~SErq̄pτqs

ż

Dηpτq e
´ 1

2~
ş

dτ ηpτq

ˆ

´m d
2

dτ
2`

d
2
V pqq

dq
2

˙

q̄

ηpτq

. (3.19)

To complete the computation of the path integral in Eq. (3.19), we have to find the
eigenfunction ψnpτq and the eigenvalues λn of the Quantum Fluctuation Operator
solving the equation

ˆ

´m
d2

dτ 2 `
d2V pqq

dq2

˙

q̄

ψnpτq “ λn ψnpτq . (3.20)

If we expand the quantum fluctuation ηpτq in terms of the eigenfunctions ψnpτq, we
obtain

ηpτq “
ÿ

n

cnψnpτq ñ qpτq “ q̄pτq `
ÿ

n

cnψnpτq . (3.21)

Obviously, the eigenfunctions ψnpτq are a complete orthonormal set. Moreover,
we know that the generic path qpτq of the particle have to respect the boundary
conditions in Eq. (3.10), and in particular the classical path, solution of the classical
equation of motion (3.14), has to respect such conditions: as a consequence, from
Eq. (3.21) we conclude that the eigenfunctions ψnpτq of the Quantum Fluctuation
Operator have to vanish in τ “ ˘T {2 [38, 39]. In conclusion, we have:

ψnp˘T {2q “ 0

ż

ψnpτqψmpτq dτ “ δnm . (3.22)

Once we write the quantum fluctuation ηpτq as an expansion of the eigenfunctions in
Eq. (3.21), we can substitute such expansion in the exponent of Eq. (3.19), obtaining

1

2~

ż

dτ ηpτq

ˆ

´m
d2

dτ 2 `
d2V pqq

dq2

˙

q̄

ηpτq “

“
1

2~

ż

dτ

˜

ÿ

m

cmψmpτq

¸˜

ÿ

n

λncnψnpτq

¸

“
1

2~
ÿ

n

λnc
2
n (3.23)
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Figure 3.4: Potential of a single well.

where in the last step we have used the orthonormality of the eigenfunctions ψnpτq
given in Eq. (3.22).

Then, being ηpτq “
ř

n cnψnpτq, we can do another change of variables: tηipτqu Ñ
t

cn?
2π~u, where the index i identifies the path qipτq. In conclusion (a part an irrelevant

jacobian factor that can be included in the normalization factor N ), we obtain:

rDqpτqs ”
ź

i

dqipτq “
ź

n

dcn
?

2π~
.

As a consequence, the path integral in Eq. (3.19) becomes:

ż

Dηpτq e
´ 1

2~
ş

dτ ηpτq

ˆ

´m d
2

dτ
2`

d
2
V pqq

dq
2

˙

q̄

ηpτq

“
ź

n

ż

dcn
?

2π~
e´

1
2~λnc

2
n . (3.24)

Then if the eigenvalues λn are positive for all n, we have:

ż

Dηpτq e
´ 1

2~
ş

dτ ηpτq

ˆ

´m d
2

dτ
2`

d
2
V pqq

dq
2

˙

q̄

ηpτq

“
ź

n

λ
´ 1

2
n “

“

detpS2Epq̄qq
‰´ 1

2 (3.25)

where in the first step we have used the gaussian integration. In conclusion, going
up the chain of equality up to Eq. (3.8), we obtain the transition amplitude in the
semiclassical approximation:

@

qf ;`T {2|qi;´T {2
D

” xqf |e
´ i

~ ĤT |qiy “ N e´
1
~SErq̄pτqs

“

detpS2Epq̄qq
‰´ 1

2 . (3.26)

A very simple case to study with the functional formalism is the potential with a
single minimum in q “ q0, for which we suppose for simplicity V pq0q “ 0, as shown
in Fig. 3.4. Taking the boundary conditions qi “ qf “ q0, the unique solution of the
equation of motion in Eq. (3.14) is the trivial solution q̄pτq “ q0. For this solution
it is obvious that SE “ 0. Thus, from Eqs. (3.26) and (3.17) we have that

xq0|e
´ 1

~ ĤT |q0y “ N
“

detp´m B
2
τ `mω

2
q
‰´ 1

2 (3.27)
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where we have denoted ω2
“ V 2pq0q{m (the prime denotes the derivative respect to

q). For large values of T , it can be proved that [38]

N
“

detp´mB2
τ `mω

2
q
‰´ 1

2 “

c

mω

π~
e´

1
2
ωT . (3.28)

Comparing Eq. (3.13) with Eq. (3.27) with the help of Eq. (3.28), we obtain that the
energy of the ground state E0 and the corresponding eigenfunction ψ0 are exactly
those of a one dimensional harmonic oscillator:

E0 “
1

2
~ω |xq0|0y|

2
“

c

mω

π~
. (3.29)

The detailed computation of Eq. (3.28) is referred to Appendix B.
In particular, in the case of the harmonic oscillator potential 1

2
mω2, the param-

eter ω coincide with the frequency of the oscillator. Moreover, when we expand a
generic potential V pqq around its minimum q0, at the lowest order, this is reduced to
the potential of an harmonic oscillator: this is the second order, since the zero order
term V pq0q vanish by hypothesis, while the first order term V 1pq0q vanish because
q0 is a stationary point.

3.2.1 Application to the double well potential and instantons

Let us apply the results seen in the previous subsection to the symmetric double
well potential which was presented in the introduction of this chapter and shown in
Fig. 3.2. In particular, we recall that if q “ ˘a are the minima of the potential then
we assume V p˘aq “ 0 [38, 39].

Moreover, if we specify a shape for the double-well potential, we can also find a
solution of the classical equation of motion (3.14):

V pqq “ λpq2
´ a2

q
2 . (3.30)

The vantage of using a specific expression for the potential as the one in Eq. (3.30) is
that the determinant in Eq. (3.26) can be computed explicitly. With this potential
we have

V 2pqq “ 4λp3q2
´ a2

q ñ
1

m
V 2p˘aq “

8λa2

m
” ω2 .

Multiplying the classical equation of motion (3.14) for 9q we obtain:

m:q “
dV pqq

dq
ñ m 9q :q “

m

2

d

dτ
9q2
“ 9q

dV pqq

dq
“
dq

dτ

dV pqq

dq
“

d

dτ
V pqq ñ

m

2

d

dτ
9q2
“

d

dτ
V pqq ñ

1

2
m 9q2

“ V pqq ` c (3.31)
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Figure 3.5: Instanton solution with centroid τc between the minima ´a and a. In
the example shown in figure, the centroid is taken in τc “ 0.

In particular, with the boundary conditions that we will use, it is c “ 0. Thus,
the result of Eq. (3.31) says us that the solutions to the classical equation of motion
correspond to solutions with vanishing energy:

E “
1

2
m 9q2

´ V pqq “ 0 . (3.32)

Substituting the expression (3.31) in the euclidean action (3.9), we obtain:

SErqs “

ż T {2

´T {2

m 9q2 dτ . (3.33)

Solving explicitly the classical equation of motion with appropriate boundary con-
ditions, we can have three kinds of solutions:

• the particles remains trapped in one of the two minima , so that the boundary
conditions are qp´T {2q “ qpT {2q “ a or qp´T {2q “ qpT {2q “ ´a. In such a
case, the solutions are respectively qpτq “ a and qpτq “ ´a for every τ ;

• The particles leaves the minimum ´a to reach the minimum a, so that the
boundary conditions are qp´T {2q “ ´a and qpT {2q “ a. In particular, this
solution is called instanton. We can also have the situation in which the
particles leaves the minimum a to reach the minimum ´a. In such a case the
boundary condition are qp´T {2q “ a and qpT {2q “ ´a, and the solution is
called anti-instanton;

• the particles oscillates between the two minima.

To obtain the solution of (anti-) instanton, we insert the explicit expression of the
potential in Eq. (3.32):

9q “ ˘

c

2λ

m
pa2
´ q2

q q2
ď a2

ñ

ż qI

0

dq

a2
´ q2 “ ˘

c

2λ

m

ż τ

τc

dτ ,
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where qI is the solution of (anti-) instanton, corresponding to the sign (´) `, while
τc is called centroid of the instanton and it is the point in which the instanton vanish.
In conclusion, having defined ω2

“ 8λa2
{m, we obtain:

q
I
pτq “ ˘a tanh

”ω

2
pτ ´ τcq

ı

ÝÝÝÑ
τÑ8

˘a . (3.34)

Let us compute the probability amplitudes using Eq. (3.8): first, we compute the
persistence amplitude xa|e´

1
~ ĤT |ay “ x´a|e´

1
~ ĤT | ´ ay, that is the probability am-

plitude that the particle, starting from a minimum, after a dynamical evolution in
an euclidean time T continues to be found in the starting minimum:

I0 “ xa|e
´ 1

~ ĤT |ay “ N
ż

Dqpτq exp

"

´
1

~
SErqpτqs

*

. (3.35)

The boundary conditions will be q p´T {2q “ q pT {2q “ a: the only solution to
the equation of motion (3.14) with these boundary conditions is the trivial solution
q̄pτq “ a. Moreover, it is evident that SEras “ 0: in other words, we are in the
same conditions of the single well potential and the amplitude (3.35), once defined
ω2
“ V 2p˘aq{m, is given by Eq. (3.28)

I0 “ N
“

det S2paq
‰´ 1

2 “

´mω

π~

¯1{2

e´
1
2
ωT . (3.36)

Now we compute the transition amplitude xa|e´
1
~ ĤT | ´ ay “ x´a|e´

1
~ ĤT |ay, that

is the probability amplitude that the particles steps from a minimum to another
after a dynamical evolution in a time T :

Iinst “ xa|e
´ĤT

| ´ ay “ N
ż

Dqpτq exp

"

´
1

~
SErqpτqs

*

. (3.37)

In this case, the boundary conditions are given by q p´T {2q “ ´a and q pT {2q “ a.
The euclidean action computed in the (anti-) instanton solution (3.34) is finite and
it is given by Eq. (3.33):

SI ” S rqIs “

ż `T
2

´T
2

m 9q2
Idτ “

mω3

12λ
. (3.38)

The detailed computation of Eq. (3.38) is referred to Appendix C. This result is
particularly worth as it put in evidence the translation invariance of the action SI ,
i.e. the fact that it is independent from the centroid τc of the instanton.

Applying Eq. (3.26) we obtain:

Iinst “ N e´
1
~SI

“

det S2pqIq
‰´ 1

2 . (3.39)

However Eq. (3.26) was obtained in the hypothesis that the eigenvalues of the op-
erator S2Epq̄q were all positive: in the double-well case it is possible to demonstrate
that we have a zero mode, i.e. an eigenfunction of the operator with zero eigenvalue.
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Then, the determinant gives a divergent factor and, in conclusion, this expression
for Iinst is wrong.

We can easily demonstrate that the zero mode of the operator S2EpqIq is given by

ψ0pτq “ N´1{2dqIpτq

dτ
(3.40)

where N is a normalization factor. Being ψ0pτq a zero mode, it will be solution if
the equation

„

´m
d2

dτ 2 ` V
2
pqIq



ψ0pτq “ 0 , (3.41)

that is Eq. (3.20) with λ0 “ 0. To demonstrate that ψ0pτq in Eq. (3.40) is a zero
mode of the Quantum Fluctuation Operator it is sufficient to see that 9qI is solution
of Eq. (3.41):

m
d2

dτ 2 9qI “
d

dτ
m:qI “

ˆ

dqI
dτ

d

dqI

˙

V 1pqIq “ 9qIV
2
pqIq , (3.42)

where in the second step we have used the chain rule to write the derivative respect to
τ as a derivative respect to q, and we have used the equation of motionm:qI “ V 1pqIq.
The factor N can be determined normalizing ψ0pτq to 1, and then computing the
integral:

N “

ż T {2

´T {2

9q2
Idτ “

SI
m
, (3.43)

where in the last step we have used Eq. (3.38). In conclusion, the zero mode is given
by

ψ0pτq “

c

m

SI

dqI
dτ

. (3.44)

Now, we see how to treat this zero mode in the functional formalism: as in Eq. (3.21),
we expand the quantum fluctuation in the base of the eigenfunctions of the Quantum
Fluctuation Operator

qpτq “ qIpτq ` ηpτq “ qIpτq `
ÿ

n

cnψnpτq , (3.45)

supposing (without lost of generality) that the zero mode is the eigenfunction with
n “ 0. Then, when we integrate over the corresponding c0, we do not have the
gaussian factor in the integral: the axes c0 in the space of the coefficients cn is called
flat direction.

If we vary the coefficient c0, we have a variation of qpτq given by:

δq “ ψ0pτq δc0 .

On the other hand, a variation of the centroid τc induces a variation on qpτq:

δq “
δq

δτc
δτc “ ´

δqI
δτ
δτc “ ´

c

SI
m
ψ0pτq δτc
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where in the last step we used Eq. (3.44). Comparing the two expressions for δq, we
obtain the jocobian factor for the change of variables c0 Ñ τc in the integration over
the flat direction, |dc0{dτc| “

a

SI{m, that is:

dc0
?

2π~
“

c

SI
2π~m

dτc . (3.46)

In this way, the integration over the zero mode is substituted by an integration over
the centroid τc: in other words, τc is promoted to dynamical variable, called collective
coordinate, over which we integrate. Regarding the other directions c1, c2, c3, ...,
called gaussian directions, these do not cause problems and then the integration
over these variables continues to give the product of the eigenvalues λn for n ě 1.

In conclusion, the integration over the flat direction gives a factor T times for
the pre-factor in Eq. (3.46), while the integration over the gaussian directions gives
a factor

“

det1 S2EpqIq
‰´ 1

2 , where the prime in the determinant denotes that this is
computed excluding the zero eigenvalue λ0 from the product of the λn. With this
treatment of the zero modes, Eq. (3.39) becomes

Iinst “ N T

ˆ

SI
2π~m

˙1{2

e´
1
~SI

“

det1 S2pqIq
‰´ 1

2 .

If we now define

K “

ˆ

SI
2π~m

˙1{2 „
det1 S2pqIq

det S2paq

´ 1
2

, (3.47)

the transition amplitude becomes

Iinst “ N KT e´
1
~SI rdet S2paqs´1{2 . (3.48)

Obviously, the factor N rdet S2paqs´1{2 is still the determinant of the one-well po-
tential, and then is given by Eq. (3.28).

In addition to the contribution in Eq. (3.48), we have to consider also the contri-
butions of the quasi-solutions given by the multi-instantons, i.e. by configurations in
which we have n alternating solutions of instanton and anti-instanton well distinct
from each other, as shown in Fig. 3.6. To obtain these conditions we have to apply
the dilute gas approximation. For large values of τ the instanton qIpτq tends to a:
then, the instanton equation (3.31)

dq

dτ
“

c

2V pqq

m

can be approximated expanding the potential V pqq

dq

dτ
“

c

V 2paq

m
pqpτq ´ aq . (3.49)

Being ω2
“ V 2p˘aq{m, we can solve the differential equation obtaining:

qpτq „ a´ e´ωτ . (3.50)
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Figure 3.6: Multi-instanton solution, in which we have n instantons and anti-
instantons alternating and distinct between them, as established by the dilute in-
stanton gas approximation.

Such a behaviour shows that the size of the instanton is of order ω´1. Then, to have
an instanton/anti-instanton solution as the one shown in Fig. 3.6 it has to verify
that ω´1

! T . In particular, once we compute the contribution to the amplitudes
that comes from the quasi-solutions of the dilute instanton gas approximation, we
will see that such a contribution is even the dominant one, although it comes from
approximate solutions.

In this configuration with n alternating instantons and anti-instantons, we denote
with qnpτq the corresponding quasi-solution: the action is simply given by n times
the action SI of the single instanton Spqnq “ nSI . Concerning the determinant, we
consider the time evolution operator e´

1
~HT as the product of operators describing

the evolution of the system in time intervals of the order ω´1 centered in τi, i.e.
in the centroids of the instantons/anti-instantons: if it were not for these small
intervals around the centers of (anti-) instantons, V 2 would be always equal to ω2,
and the result for the determinant would be given directly from Eq. (3.28), that is
it would be as if the system were trapped in a single minimum [38]. On the other
hand, each of these intervals containing an (anti-) instanton involves a correction by
a factor K to the contribution of Eq. (3.28): then, we have

“

det1S2pqnq
‰´1{2

“

´mω

π~

¯
1
2
e´

ω
2
TKn . (3.51)

Also in this case, the prime denotes a reduced determinant computed only on the
non-zero eigenvalues. In fact, every (anti-) instanton, in addition to contributing to
the K correction, contributes to the calculation of the amplitude also with a zero
mode: we can introduce a collective coordinate τi for each (anti-) instanton

´
T

2
ă τ1 ă τ2 ă ... ă τn ă

T

2
.
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Finally, integrating over all the collective coordinates τi, we obtain the factor:
ż T {2

´T {2

dτ1

ż ´T {2

τ1

dτ2 ...

ż T {2

τn´1

dτn “
T n

n!
. (3.52)

Putting together all these factors, we obtain that the contribution of the configura-
tion qnpτq with n alternating instantons and anti-instantons is given by:

In “
´mω

π~

¯
1
2
e´

ω
2
T e´

1
~nSIKnT

n

n!
. (3.53)

Since for n “ 1 Eq. (3.53) has to reduce to Eq. (3.48), we conclude that the correction
factor K is exactly given by Eq. (3.47).

Now we can compute the total contribution to the amplitudes xa|e´
1
~ ĤT |ay and

xa|e´
1
~ ĤT |´ay. To this end, it is important to remember that an instanton describes

the transition from the minimum ´a to the minimum a, while an anti-instanton
describes the opposite transition, from a to ´a: it is then clear that to have an
effective transition from a minimum to the other, we need to consider a configuration
with an odd number n of (anti-) instantons, while to have a permanence in the
starting minimum, we need to consider a configuration with an even number of
(anti-) instantons. In other words, the transition amplitude is given by the sum over
all the odd n of the contribution In, while the persistence amplitude is given by the
sum of all the even n of In:

xa|e´
1
~ ĤT | ´ ay “ x´a|e´

1
~ ĤT |ay “

ÿ

odd n

In “

“

´mω

π~

¯
1
2
e´

ω
2
T

ÿ

odd n

1

n!

´

e´
1
~SIKT

¯n

“

´mω

π~

¯
1
2
e´

ω
2
T sinh

´

e´
1
~SIKT

¯

(3.54)

xa|e´
1
~ ĤT |ay “ x´a|e´

1
~ ĤT | ´ ay “

ÿ

even n

In “

“

´mω

π~

¯
1
2
e´

ω
2
T

ÿ

even n

1

n!

´

e´
1
~SIKT

¯n

“

´mω

π~

¯
1
2
e´

ω
2
T cosh

´

e´
1
~SIKT

¯

(3.55)

where in the sums over n we have simply recognised the Taylor expansion of the
hyperbolic functions.

Let us see that the contribution to the probability amplitudes that arises from the
diluted instanton gas approximation is the dominant one: in fact, this approximation
is valid only where the density of the instantons n{T is sufficiently low. In an
exponential sum

ř

yn{n!, the dominant contribution comes from the terms n „ y,
so that the dominant contribution in Eqs. (3.54) and (3.55) comes from the terms

n

T
„ Ke´

1
~SI ñ n > KTe´

1
~SI .

This expression says us that, for small ~, the dominant terms are those for which the
density of (anti-) instantons n{T is exponentially small, and then when their average
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separation is very large. We note as this average separation between the (anti-)
instantons is independent from T : the dilute instanton gas approximation is then
a good approximation for small ~ and the condition for its validity is independent
from T , as long as T is large enough [38].

To conclude the study of the double-well, we now see how to apply the probability
amplitude computed in this subsection to obtain the ground state of the system and
its first excited state. To this end, it is useful to write Eqs. (3.54) and (3.55) in a
unique equation:

x˘a|e´
1
~ ĤT | ´ ay “

´mω

π~

¯
1
2
e´

ω
2
T 1

2

”

exp
´

`KTe´
1
~SI

¯

¯ exp
´

´KTe´
1
~SI

¯ı

.

(3.56)
We denote with |`y e |´y the combinations, respectively, symmetric and e anti-
symmetric of the two states of harmonic oscillators |Ly and |Ry localized at the two
minima: as we know, |`y and |´y are eigenstate of the hamiltonian, on the contrary
of the two state |Ly and |Ry. In particular, they are the two eigenstates with the
lowest energy levels (ignoring that without the penetration barrier they becomes
degenerate):

|˘y “
1
?

2
p|Ly ˘ |Ryq . (3.57)

For T sufficiently large, we can neglect all the contributions that come from the
eigenstates with higher energy, and then we can write:

x˘a|e´
1
~ ĤT | ´ ay “ x˘a|`yx`| ´ aye´

1
~E`T ` x˘a|´yx´| ´ aye´

1
~E´T . (3.58)

Clearly xa|˘y “ ˘x´a|˘y, and we have also |xa|`y| “ |xa|´y| for very large T .
Then:

x˘a|e´
1
~ ĤT | ´ ay “ |xa|`y|2

´

e´
1
~E`T ¯ e´

1
~E´T

¯

. (3.59)

Comparing Eqs. (3.56) and (3.59) we find the lowest energy levels E˘:

E˘ “
~ω
2
¯ ~Ke´

1
~SI . (3.60)

that, once we compute the determinant in K (see Appendix C) is the same result
in Eq. (3.3) that is obtained with the WKB method.

3.2.2 Application to the decay of a metastable state and
bounce solutions

Let us study the decay of a metastable state, that is the state of a system in which
we have a potential V pqq that presents a local minimum in q “ a, as those shown
in Fig. 3.7. We suppose also in this case that V paq “ 0. If we consider a dynamical
evolution in a time T , most of the results obtained in the previous subsection can
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Figure 3.7: Potential with a metastable vacuum. In the example shown in the figure
we have a “ 0. In addition to the minimum a, we have another point b in which
the potential is zero, called classical motion inversion point. The dashed potential
corresponds to the euclidean potential ´V pqq.

be immediately reapplied: for instance, the classical euclidean equation of motion is
still given by

m:q “
dV pqq

dq
. (3.61)

Again, from the equation of motion we obtain that their solutions corresponds
to solutions with vanishing energy E “ 1{2m 9q2

´ V pqq “ 0, from which it follows
that the euclidean action is given by:

SErqs “

ż T {2

´T {2

m 9q2 dτ . (3.62)

This time, solving the classical equations of motion with the boundary conditions,
we have two kind of solutions:

• the particle remains trapped into the metastable minimum, so that the bound-
ary conditions are qp´T {2q “ qpT {2q “ a. In this case, the solution is given
by qpτq “ a for every time τ ;

• The particle leaves the minimum a to reach the classical motion inversion
point b, also called turning point. Since in a we have E “ 0 and in b we
have V pbq “ 0, for the conservation of energy it is clear that in b it is 9q “ 0.
As a consequence, once the particle reaches the turning point b it can only
return in the metastable minimum a. Then the boundary conditions are again
qp´T {2q “ qpT {2q “ a, so that to these boundary conditions correspond an-
other classical solution in addition to the trivial one, contrary to what happens
with the double-well. This solution is called bounce solution qbpτq and is shown
in Fig. 7.1.
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Figure 3.8: Left panel: bounce solution. Right panel: multi-bounce solution.

Then, this analysis allows us to conclude that the only probability amplitude
that we have to compute is given by:

xa|e´
1
~ ĤT |ay “ N

ż

Dqpτqe´
1
~SErqs (3.63)

with boundary conditions qp´T {2q “ qpT {2q “ a. The amplitude in Eq. (3.63),
in addition to consider the contribution to the classical solutions, also takes into
account the multi-bounce solution shown in Fig. 7.1. In this case, we do not have
restrictions on the number n of bounce, so that summing over all the contributions
we obtain an exponential rather than an hyperbolic function:

xa|e´
1
~ ĤT |ay “ N

“

det S2paq
‰´ 1

2 exp
”

KTe´
1
~SErqbs

ı

“

“

´mω

π~

¯
1
2
e´

ω
2
T exp

”

KTe´
1
~SErqbs

ı

(3.64)

since the determinant computed in the trivial solution is still given by Eq. (3.28),
and also in this case we define ω2

“ V 2paq{m.
In the limit ωT " 1, in a similar way to the case of the double well, it is possible

to extract the value of the ground state energy E0: in fact in this limit we have

xa|e´
1
~ ĤT |ay “ xa|ψ0yxψ0|aye

´ 1
~E0T . (3.65)

In conclusion, comparing Eqs. (3.64) and (3.65), we have:

E0 “
1

2
~ω ´ ~Ke´

1
~SErqbs . (3.66)

However this time the corrective factor K due to every bounce is not given by
Eq. (3.47). In fact, first of all we note that, respect to the result obtained with the
WKB method, we lost a factor 1{2 in the second term of Eq. (3.66). Moreover, it
would not be possible to have a decay: since in the case of a metastable state the
decay rate is given by Γ “ 2 ImE0, if the expression of K were given by Eq. (3.47),
then E0 would be real and therefore Γ “ 0.
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Figure 3.9: Left panel: family of functions parametrized by their stationary point c.
Right panel: behaviour of the action in function of c [39].

In fact, for a potential which presents a metastable vacuum it is necessary to take
into account some devices regarding the factor K, which will be a pure imaginary
quantity. First of all, following the same argument that gives Eq. (3.44), we have to
note that the Quantum Fluctuation Operator has still a zero mode:

ψ0pτq “

c

m

Sb
9qbpτq , (3.67)

where Sb is the action in Eq. (3.62) computed in the bounce solution qbpτq. We denote
with τ̄ the euclidean instant of time in which the particle reaches the turning point b.
Having found that dqb{dτ “ 0 in the turning point b, i.e. for τ “ τ̄ , we conclude that
correspondingly the bounce solution has a maximum. However, precisely because
the bounce solution has a maximum in the turning point dqb{dτ “ 0, from Eq. (3.67)
we conclude that the zero mode ψ0pτq has instead a node corresponding to this point.

Now, for the operator S2Erqbs the lowest eigenvalues corresponds to an eigenfunc-
tion without nodes, the successive eigenvalues corresponds to an eigenfunction with
a node, and so on [39]. This property, precisely because the zero mode has a node,
allows us to conclude that there must be an eigenfunction without nodes, with an
eigenvalue lower than λ0 “ 0, that is a negative eigenvalues [44].

To understand the origin of these negative modes in a qualitative way, we consider
the family of configurations shown in the left panel of Fig. 3.9. We parametrize these
configurations through their stationary point (maximum) c. The path with c “ b

corresponds to the bounce solution, while the one with c “ a corresponds to the
trivial solution qpτq “ a.

The trivial solution and the bounce solution, being the only solutions to the
equations of motion, are the only configurations of this paths family that are sta-
tionary for the action SErqs: the trivial solution is a local minimum for SEpcq, since
for a small variation δqpτq the kinetic energy, as well as the potential one, acquires
a positive increment. Then, when c increases from 0 to one of the values corre-
sponding to these variations, the total action can only increase monotonically until
it reach the bounce. Since this is the only other stationary point, then it have to be
a maximum for the action SEpcq. Thus, when c further increases, the configurations
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Figure 3.10: Contour in the complex plane over which we solve the integral over the
negative mode [39].

begin to stay "for more time" in the region with negative potential energy, so that
the action decreases monotonically.

As we know, our path integral is an integral over infinite dimensions, but the
only problematic integration is the one over the coefficient of the negative mode.
We can see how to treat this integration considering the similar integral

J “

ż `8

´8

dc
?

2π~
e´

1
~Sc , (3.68)

where Spcq is the function just described and is shown in the right panel of Fig. 3.9.
When cÑ ´8 the action increases and the integral converges. On the other hand,
when cÑ 8 we have that Spcq Ñ ´8 and then the integral diverges. The solution
consists in using the analytic continuation to the complex plane: the key observation
is the fact that the potential with a metastable state in q “ a can be seen as the
analytic continuation of a potential with a global minimum in q “ a. For this last
potential, the minimum corresponds to a stable state with a well defined real energy,
and the integration over c gives a finite integral. In our case, there are no stable
states localized around q “ a and the integral over c is not well defined. It becomes
well defined when we deform the integration contour for the variable c from the real
axes to the complex plane, as shown in Fig. 3.10.

The integration from ´8 to b is clearly real. The imaginary part comes frm the
remain contour: using the steepest descent approximation we obtain

ImJ “ Im

ˆ
ż

exp

"

´

„

1

~
Sb `

1

2~
S2Erqbspc´ bq

2

*

dc
?

2π~

˙

“
1

2
e´

1
~Sb

“

det S2Erqbs
‰´ 1

2 , (3.69)

where the factor 1{2 is due to the fact that the contour involves only half of the
gaussian peak. Taking into account this factor, the new factor K is given by:

K “
i

2

c

Sb
2π~m

„

det1 S2Erqbs

det S2Eras

´ 1
2

. (3.70)

Then, from Eq. (3.66) we obtain the decay rate:

Γ “ 2 ImE0 “

c

Sb
2π~m

„

det1 S2Erqbs

det S2Eras

´ 1
2

e´
1
~Sb . (3.71)
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We note that this result is obtained supposing that V paq “ 0. In general case in
which V paq ‰ 0, defining B “ Sb ´ Spaq, we obtain

Γ “

c

B

2π~m

„

det1 S2Erqbs

det S2Eras

´ 1
2

e´
1
~B . (3.72)

Specifying the potential V pqq we can also compute the determinant factor in a way
similar to the one seen for the double well case.

3.3 Quantum tunnelling in systems with N degrees
of freedom

Let us generalize the results seen in the previous subsection to a discrete dynamical
system with N degrees of freedom. We introduce the N -dimensional vector q ”
pq1, ..., qNq which has as components the generalized coordinates qi associated to
every degree of freedom of the system. The lagrangian describing this system can
be written in a compact way as:

L “ 1

2

N
ÿ

i“1

m 9q2
i ´ V pq1, ..., qNq “

1

2
m 9q2

´ V pqq . (3.73)

The extension of the WKB method to the case of a system with N degrees of freedom
is based on the search of the most probable escape path (MPEP) [39, 45, 46]: in fact,
to study the tunnelling from a local minimum of the potential, it is not sufficient to
know the probability amplitude to pass through the barrier, but also the preferential
point in which the particle emerges from the barrier in the classically permitted
region. In fact the barrier, being multidimensional, can be crossed in any direction.

Every possible path through the barrier can be parametrized by a curve qpsq,
where the parameter s is defined by the relation:

pdsq2 “
N
ÿ

i“1

ˆ

Bqi
Bs
ds

˙2

“ pdqq2 . (3.74)

If we choose si “ 0, the initial condition for the path qpsq is given by qp0q “
q0: in this point, the potential V pqq is equal to the energy of the particle E ”

V pq0q. Instead the final point qf “ qpsf q is not univocal, since it depends from the
particular path. The generic Ppq0 Ñ qf q ” qpsq, once parametrized in this way,
constitutes a one-dimensional trajectory for which the correspondent transmission
integral can be defined, similarly to the one dimensional case:

BrPs “ 2

ż qf

q0

a

2m rV pqq ´ Es dq ñ

BrPs “ 2

ż sf

0

a

2m rV rqpsqs ´ Es ds (3.75)
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where we have used Eq. (3.74). Then the MPEP is the path that minimizes the
transmission integral BrPs in Eq. (3.75). In conclusion, following the WKB approx-
imation, the tunneling amplitude will be given by Ae´

B
2~ , where B is precisely the

transmission integral (3.75), while A is a parameter to be determined.
In particular, to minimize the integral BrPs it is useful to use the lagrangian

formalism. According to the Jacobi principle of classical mechanics, assigned a
physical system described by the lagrangian L introduced in Eq. (3.73), the path
qpsq : q0 Ñ qf that minimizes the integral

I “

ż sf

0

a

2m rE ´ V rqpsqss ds

provides the solution to the equations of motion
1

2
m 9q2

` V pqq “ E . (3.76)

Instead, according to the Hamilton principle, the same solution can be found mini-
mizing the action that describes the system:

Srqs “

ż tf

t0

Lpq, 9qqdt “
ż tf

t0

„

1

2
m 9q2

´ V pqq


dt (3.77)

with the boundary conditions qpt0q “ q0 e qptf q “ qf .
This result suggests that the path which minimizes the transmission integral

BrPs given in Eq. (3.75) can be obtained as solution that minimizes the following
action:

SErqs “

ż τf

τ0

„

1

2
m 9q2

` V pqq


dτ (3.78)

which is nothing but the euclidean action obtained performing a Wick rotation τ “ it

(from now on, the point denotes a derivative respect to τ , and not respect to t).
Applying the Hamilton principle to Eq. (3.78), i.e. finding the stationary points of
the action SE, we obtain the euclidean equation of motion:

m:qpτq “ ∇V pqq . (3.79)

If q̄pτq is the general solution of Eq. (3.79), multiplying for 9̄q and following a similar
argument to the one of Eq. (3.32) (this time we have E “ V pqq ‰ 0), we obtain:

1

2
m 9̄q2

“ V pq̄q ´ E “ V pq̄q ´ V pq0q . (3.80)

Then, we can compute the euclidean action in the solution q̄pτq of the equation of
motion:

SErq̄s “
ż τf

τ0

2 rV pq̄q ´ V pq0qs dτ `

ż τf

τ0

V pq0qdτ “

“

ż τf

τ0

pm 9̄q2
q

1
2

a

2 rV pq̄q ´ V pq0qs dτ `

ż τf

τ0

V pq0qdτ “

“

ż sf

0

a

2m rV rq̄psqs ´ V pq0qs ds`

ż τf

τ0

V pq0qdτ , (3.81)
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where in the last step we have used Eq. (3.74) for the change of variable in the first
integral. This equation put in evidence the relation between the euclidean action
(3.78) and the transmission integral (3.75):

SErq̄s “
1

2
BrP̄s `

ż τf

τ0

V pq0qdτ . (3.82)

In the case of a double well potential, as we know, the transition amplitudes are
characterized by an instanton solution, whose transmission integral according to
Eq. (3.82) is given by:

1

2
BrP̄s “ SErq̄s ´ SErq0s . (3.83)

In the case in which we have a tunneling between a local minimum q0 and a turning
point qf that is not a minimum of the potential, the turning point qf ” q̄pτ̄q is
reached in the time interval r´8, τ̄ s, where τ̄ is the euclidean time for which the
first derivative of the solution vanish, 9̄qpτ̄q “ 0, as the velocity of the particle vanish
in the turning point (classical inversion point of the motion). Since the lagrangian
is invariant under time reversal transformations, the solution can be continued in
such a way that the path ends in q̄p8q “ q0, and correspondingly the euclidean
action is doubled. Then to the solution to the equation of motion, i.e. the bounce
solution, corresponds the transmission integral

BrP̄s “ SErq̄s ´ SErq0s . (3.84)

In conclusion, the bounce corresponds to a path that origins in the local minimum
q0, continues to the turning point qf ” q̄pτ̄q, and ends in q0.

3.4 Quantum tunneling in QFT

The description of the quantum tunneling through functional formalism is useful
because it can be easily generalized to the case of continuous dynamical system, i.e.
a system with infinity degrees of freedom, and then in the contest of a quantum field
theory.

In the transition to the continuum limit, the N - dimensional configuration space
of the generalized coordinate qiptq is substituted by an 8-dimensional configuration
space, and then the generalized coordinates qiptq become continuous functions φapxq
in space and time.

The transition to the continuum limit, as we will see, implies the presence of
additional zero modes. Regarding the negative modes we have seen that in the
instanton case (double well problem) there are no negative modes, while in the case
of the bounce solution (decay of a metastable state) the presence of a negative mode
is related to the fact the path is extended to the classically permitted region, and
this is due to the instability of the local minimum state in q “ a. The instability of
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Figure 3.11: Scalar potential with two non-degenerate minima [39].

the local minimum state is independent on the number of degrees of freedom of the
system, so that the argument that we have seen in quantum mechanics is valid also
in the case of the bounce solution in quantum field theory [38, 39], i.e. there is no
appearence of additional negative modes.

As a consequence, in the generalization to a quantum field theory the divergences
emerge both in the computation of the functional determinants [47] and in the
counterterms of the euclidean action: these latter are removed by renormalization.
From now on, we will work in natural units ~ “ c “ 1.

3.4.1 Bounce in QFT: vacuum decay

Let us consider a scalar theory, described by the lagrangian density

L “ 1

2
Bµφ B

µφ´ V pφq , (3.85)

where the potential V pφq, shown in Fig. 3.11, presents two non-degenerate minima:
the minimum φfv is a local minimum and represents a state of false vacuum [40,
41], while the minimum φtv is an absolute minimum, i.e. it is the ground state of
the theory, called true vacuum. Classically the state φfv is stable, while from the
quantum point of view it can decay through quantum tunneling in the state φtv [48].
The potential V pφq is a density of potential energy, therefore what actually needs
to be analyzed is the integral of V pφq over all the space R3

U rφpxqs “
ż

d3x
„

1

2
p∇φq2 ` V pφq



. (3.86)

If the false vacuum decays following a series of configurations spatially homogeneous,
this would require the tunneling through an infinite potential energy barrier: the
tunneling amplitude in this case would vanish. Instead, the false vacuum decays
through a tunneling process, which starts from a spatially homogeneous state, in
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a state with a region in which there is a bubble of true vacuum immersed in a
background of false vacuum. In this case the tunneling, that is the nucleation of a
bubble, can originate at any point x P R3 and then the decay rate Γ, that depends
from the volume of the physical space, is formally infinite; the quantity physically
relevant is then the decay rate for volume unity Γ{V [38, 39].

A continuous dynamical system is a system with infinite degrees of freedom, so
that the possible path that connects φfv and φtv are infinite. Every path is defined by
a succession of field configurations, constitutes a transversal section of the potential
barrier, and it has to conclude in an end-point which is at the same energy of the
starting potential, Vfv ” V pφfvq. As we know, the path effectively followed by
the system is obtained minimizing the classical euclidean action and constitutes the
bounce solution of the euclidean equation of motion. The equation of dynamical
evolution of the scalar φpxq are obtained from the Euler-Lagrange equations:

BL
Bφ

“ Bµ
BL

BpBµφq
ñ

B
2

Bt2
φ´∇2φ`

dV

dφ
“ 0 . (3.87)

Then, passing to the euclidean formalism, the equations of motion become:

B
2

Bτ 2φ`∇
2φ “

dV

dφ
(3.88)

which are obtained starting from the Euclidean action

SErφs “

ż

dτ d3x
„

1

2
9φ2
`

1

2
p∇φq2 ` V pφq



. (3.89)

With the appropriate boundary conditions, that we will see later, from this equation
we obtain the bounce solution φbpx, tq. The decay rate for volume units has the
following form [39]

Γ

V
“ Ae´B con B “ SErφbs ´ SErφfvs , (3.90)

where SErφbs is the euclidean action computed in the bounce solution, while

SErφfvs “

ż

dτ d3x Vfv

is the euclidean action computed in the homogeneous solution of false vacuum.
Instead, the factor A comes from a computation of functional determinants [47].
Although both of these actions are infinite, their difference is finite.

Solving Eq. (3.88) is equivalent to find a static solution in four spatial dimen-
sions: apparently, this is forbidden by the Derrick theorem [39, 49]. However, in
the demonstration of the Derrick theorem we assume that φ reaches the absolute
minimum of V at infinity, and this does not happen for the bounce solution. Now,
for a theory in D spatial dimensions we can define:

IK “
1

2

ż

dτ dDx pBµφbq
2 IV “

ż

dτ dDx
“

V pφbq ´ Vfv
‰

.
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With a manipulation similar to the one of the Derrick theorem, we obtain

IV “
1´D

1`D
IK . (3.91)

As a consequence, we conclude that

B “ SErφbs ´ SErφfvs “ IK ` IV “
2

1`D
IK . (3.92)

In our case, D “ 3 so that we obtain:

B “
1

2

ż
"

1

2
Bµφbpxq B

µφbpxq

*

d3x dτ “
1

2
IK . (3.93)

Let us determine the boundary conditions for Eq. (3.88) needed to obtain the bounce
solution: such conditions are obtained from the fact that the bounce represents a
path through the configurations space that starts from the state φfv at the time
instant τin “ ´8, reaches the turning point in the opposite side of the barrier at a
time instant τ̄ , and then returns in the initial configuration at τfin “ `8 [38, 39]

φpx,˘8q “ φfv @x P R3 . (3.94)

We note that it must be Bφ{Bτ “ 0 everywhere along the hypersurfaces τ “ τini

and τ “ τ̄ , since these are the hypersurfaces of the turning point where the kinetic
energy is zero. Moreover, we have to require that all the configurations along the
tunneling path have finite potential energy, comparable to V pφfvq, so that:

φp|x| “ 8, τq “ φfv @t P R . (3.95)

Now we note that the euclidean equation of motion in Eq. (3.88) and the boundary
conditions in Eqs. (3.94) and (3.95) show a symmetry respect to the transformations
defined by the groupOp4q, i.e. respect to the rotations in the 4-dimensional euclidean
space. Then we can fix τ̄ “ 0, that is we choose the origin as the centre of symmetry
and use the Op4q invariance to find the bounce. In fact the bounce, being a non-
trivial solution of the PDEs invariant under the Op4q group transformations, it must
also be invariant with respect to these transformations. In order to exploit the Op4q
invariance, we define

r “
a

τ 2
` x2 . (3.96)

This quantity represents the distance of the generic point pτ,xq of the euclidean
space from the origin, that is the radial coordinate. Since the bounce solution φbpxq is
invariant respect to the Op4q symmetry, we can suppose that it depends exclusively
from the distance r of the generic point pτ,xq from the origin of the euclidean
space, that is φbpτ,xq ” φbprq. Taking into account the definition in Eq. (3.96), the
euclidean equations of motion (3.88) become

:φprq `
3

r
9φprq “

dV pφq

dφ
(3.97)
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where the dots denote the derivatives of the field φprq respect to the variable r.
The boundary conditions in Eqs. (3.94) and (3.95) become a single condition for
Eq. (3.97):

lim
rÑ8

φprq “ φfv . (3.98)

Moreover, we have to require that the solution is not singular in the origin. In
particular, for the condition of regularity in the origin we have

9φp0q “ 0 . (3.99)

Having the Op4q symmetry, the tunneling exponent in Eq. (4.15) becomes

B “ 2π2

ż 8

0

dr r3

"

1

2
9φ2
bprq ` V pφbq ´ Vfv

*

. (3.100)

In conclusion, taking into account of the Op4q symmetry, we have reduced a problem
with infinite degrees of freedom to the study of a simple differential equation. The
existence of a bounce solution for the equation of motion in Eq. (3.88), i.e. a solution
compatible with the boundary conditions (3.94) and (3.95) was demonstrated by
Coleman using his argument of the overshoot-undershoot method [39].

At this point we proceed to the determination of the decay rate for volume units
[38, 39]. To determine Γ{V it is sufficient to take into account the changing that we
encounter in the passage to the continuum limit, and then modifying appropriately
the relation of Eq. (3.72) for the decay width obtained in the context of quantum
mechanics. Since the bounce solution, in the context of the quantum field theory,
is not spatially homogeneous, in addition to the zero mode corresponding to the
invariance under time translations, there are other three zero modes corresponding
to the invariance under space translations, i.e. a zero mode for each of the three
generators of the spatial translations in R3. Moreover, as we have just explained, the
passage to the continuum limit can not give rise to new negative modes. Another
point of fundamental importance in the study of the decay rate is its renormalization:
some divergences are cancelled by ratio of determinants [47], the other divergences
have to be treated and in particular we can use the method of counterterms of the
renormalized perturbation theory.

In conclusion, the decay width for volume units is

Γ

V
“

#

4
ź

a“0

c

Na

2π

+

ˇ

ˇ

ˇ

ˇ

det1 S2Erφbs

det S2Erφfvs

ˇ

ˇ

ˇ

ˇ

´ 1
2

exp
 

´
`

SErφbs ´ SErφfvs
˘(

, (3.101)

where the euclidean actions that appear in the previous equation are written in
terms of the renormalized parameters and of the counterterms. The factor Na is the
normalization factor of the zero mode corresponding to the translations along the
direction xa of the Minkowski space: for the Op4q symmetry of the bounce, these
factors have to be equal and, using Eq. (3.92), they are give by

Na “

ż

d4x pBaφq
2
“

1

4

ż

d4x
`

Bµφ
˘2
“

1

2
IK “ B .
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As a consequence, we have

Γ

V
“

ˆ

B

2π

˙2 ˇ
ˇ

ˇ

ˇ

det1 S2Erφbs

det S2Erφfvs

ˇ

ˇ

ˇ

ˇ

´ 1
2

e´tSctrφbs´Sctrφfvsue´B (3.102)

where the action Sct that appears in Eq. (3.102) is the action of the counterterms.
In conclusion, we observe that once the decay width Γ is determined we can obtain
the tunneling time τ „ Γ´1 associated to the decay of the vacuum.

3.4.2 Bounce in QFT: inclusion of gravity

Now we want to include the effect of gravity in the study of the stability problem in
QFT. In fact, there are many cases in which gravity becomes important: the most
obvious case is the one in which we have a transition involving a mass scale close to
the Planck scale. Gravitational effects can also come into play at lower mass scales
if the "true vacuum bubble" is formed with a size large enough to be sensitive to
the curvature of spacetime (strong gravity regime).

Let us start with a brief description of the initial state of false vacuum, which
requires some observations when gravity is included. The scalar field is obviously
uniform, equal to φfv everywhere. The nature of spacetime depends on the value of
the potential in the false vacuum. If Vfv ” V pφfvq “ 0, the false vacuum spacetime
is simply a Minkowski flat spacetime. If, on the other hand, Vfv is not zero, then
it will be equal to a non-zero cosmological constant and the false vacuum will be
either a de Sitter spacetime or an anti-de Sitter spacetime, depending on whether
Vfv either positive or negative, respectively [39]. Regarding the tunneling problem,
Coleman and de Luccia have shown that including gravity the nucleation rate will
still be obtained from a bounce solution, but with a Euclidean action that now
includes gravitational contribution. In other words

Γ

V
“ Ae´B “ Ae´tSrφbs´Srφfvsu (3.103)

where φb is a bounce solution of the Euler-Lagrange equations obtained from the
gravitational action [50].

To obtain the equations of motion with the inclusion of gravity, we consider the
minimal action that is obtained including the Einstein-Hilbert term:

Srφ, gµνs “

ż

d4x
?
g

„

´
R

16πG
`

1

2
gµν∇µφ∇νφ` V pφq



(3.104)

where R is the Ricci scalar and G is the Newton gravitational constant. The poten-
tial V pφq, as in the case of flat spacetime, presents a local minimum (false vacuum)
at φ “ φfv, and a global minimum (true vacuum) at φ “ φtv.

We know that in flat spacetime, for a theory with a single scalar field, the bounce
solution that minimizes the action has an Op4q symmetry. Since there is no reason
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why gravitational effects can break this symmetry, we can assume that even in the
presence of gravity the bounce is invariant under 4-dimensional rotations. Basing on
this assumption, we can determine an euclidean metric that is invariant by rotations:
we start from the 3-dimensional case, in which the generic metric invariant under
rotations is the one of the 3-sphere. On each sphere we can introduce the angular
coordinates in the usual way and therefore we define a radial curve as the curve
obtained for fixed angular coordinates. For the rotational invariance, the radial
curve has to be perpendicular to the intersecting 3-spheres: we choose our radial
coordinate r to measure the distance along these radial curves. As a result, the
metric we are looking for can be written in the form

ds2
“ dr2

` ρ2
prqdΩ2

3 (3.105)

where dΩ2
3 is the metric of the unitary 3-sphere, while ρ is the curvature radius for

each 3-sphere at fixed r coordinate.
From the action in Eq. (3.104), we obtain the Euler-Lagrange and Einstein field

equations (κ “ 8πG):

Rµν ´
1

2
gµνR “ κTµν (3.106)

Tµν “ BµφBνφ´ gµν

„

1

2
Bµφ B

µφ` V pφq



(3.107)

BµB
µφ “

dV pφq

dφ
. (3.108)

Using the metric given in Eq. (3.105), the equations in (3.106) and (3.108) become:

:φ` 3
9ρ

ρ
9φ “

dV

dφ
9ρ2
“ 1´

κ

3
ρ2

ˆ

´
1

2
9φ2
` V pφq

˙

(3.109)

where the dots denotes the differentiation respect to the radial coordinate r. The
bounce solution needed to compute the false vacuum transition rate is now given
by the field solution and the metric solution, respectively φ

b
prq and ρ

b
prq, of these

coupled differential equations, once we have identified the appropriate boundary
conditions. Differentiating Eq. (3.109-b) with respect to r, we obtain another useful
equation which, in particular, is more stable for numerical analysis:

:ρ “ ´
κ

3
ρ
´

9φ2
` V pφq

¯

. (3.110)

In the derivation of Eqs. (3.109) from Einstein equations, we can also compute
the Ricci scalar using the metric in Eq. (3.105):

R “ ´
6

ρ2

`

ρ:ρ` 9ρ2
´ 1

˘

. (3.111)

However, this expression is not useful to compute numerically the tunneling expo-
nent B. To obtain an expression numerically more stable, computing the trace in
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Eq. (3.106), we have the following general expression:

R

κ
“ Bµφ B

µφ` 4V pφq . (3.112)

We will use soon this last expression in the action to explicit the Einstein-Hilbert
term.

The boundary conditions for the field equations depend on the topology of the
solution which, as often happens in general relativity, cannot be specified in ad-
vance. In particular, they depend on the asymptotic behavior of ρ: in the case of
our interest, i.e. the one in which the spacetime of the false vacuum is a Minkowski
spacetime, we have that Vfv “ 0. Then, Eq. (3.109-b) calculated in the false vacuum
solution reduces to 9ρ2

“ 1, since φfv is uniform and therefore 9φ vanishes. Conse-
quently, the curvature ρ is given by ρprq “ r` c, where c is an integration constant:
this straight line is therefore the straight line to which the solution ρ of the equations
of motion tends asymptotically. In other words, as anticipated at the beginning of
this subsection, if Vfv “ 0 the spacetime is reduced to simple flat Minkowski space-
time in the false vacuum, and the solution has the topology of R4. Given the Op4q
invariance of the spacetime, we can take the boundary condition ρp0q “ 0, and
this will be the only zero for the curvature ρ. Finally, as regards the φ field, the
boundary conditions will always be given by Eqs. (3.98) and (3.99). Summing up,
the boundary conditions for the bounce solution of Eq. (3.109) are:

φp8q “ 0 9φp0q “ 0 ρp0q “ 0 . (3.113)

Finally, let us compute the tunneling exponent B using Eq. (3.112) to obtain
a general expression for the action. Inserting Eq. (3.112) in the action (3.104) to
explicit the term that contain the Ricci scalar R, after simple manipulations we get:

Srφ, gµνs “ ´

ż

d4x
?
g V pφq . (3.114)

Using the Op4q symmetry, Eq. (3.114) becomes:

Srφ, ρs “ ´2π2

ż 8

0

dr ρ3V pφq . (3.115)

The integration extremes in Eq. (3.115) are due to the fact that we are in a curved
background with the topology of R4, so that r P r0,8s. It is worth to note that if we
compute the action in the false vacuum trivial solution of the equations (3.109), we
obtain Sfv ” Srφfv, ρfvs “ 0, since in our topology V pφfvq “ 0. In conclusion, from
Eq. (3.115) we obtain that the tunneling exponent is simply given by B “ Srφb, ρbs.
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Chapter 4

New solutions in the presence of New
Physics beyond the Standard Model

In Chapter 2 we have seen how the radiative corrections to the Higgs potential
introduce the problem of the stability of the electroweak vacuum, since we have the
formation of a second minimum in addition to the EW one, where our Universe sits.
In this Chapter we present a brief overview of the state of art of this problem up
to the results presented in [51]. Then, using the tools introduced in Chapter 3, we
move on to the computation of the bounce solution needed to obtain the decay rate
of the EW vacuum in presence of gravity. In particular, the new results obtained
in [51] with the introduction of New Physics (NP) in the Standard Model (SM) are
illustrated.

4.1 Stability problem of the electroweak vacuum in
Standard Model

The discovery of the Higgs boson, theoretically postulated as a fundamental ingre-
dient of the electroweak theory to introduce the masses of the SM particles, by the
ATLAS and CMS collaborations of the Large Hadron Collider [52, 53] led to re-
sults that proved to be perfectly consistent with the theoretical predictions of the
Standard Model. Moreover, one of the most important goals of present theoretical
and experimental particle physics is the search for New Physics (NP) beyond the
Standard Model (BSM), even though direct experimental searches up to now have
not revealed any sign of it. These results have revived a great interest in the idea
that New Physics can only manifest at very high energy scales, and in particular at
the Planck scale MP .

In this context, the study of the stability of the electroweak vacuum can give
an important boost, as we will see. For this study, as we have seen in Chapter 2,
it is needed to know the Higgs effective potential Veff pφq up to very high values
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Figure 4.1: Phase diagram in the plane pmH ,mtq that is obtained with the standard
analysis of the stability problem, i.e. considering the Standard Model alone. The
determination of the stability and instability lines allows to divide the pmH ,mtq

plane into three regions, and in particular the point pmexp
H ,mexp

t q, identified by the
current experimental values of the masses of the Higgs boson and the top quark, is
in the region of metastability and is close to the stability line [54].

of the Higgs field φpxq ” Hpxq. If we denote with v the point in which the Higgs
potential has a minimum, i.e. where we have the electroweak minimum v „ 246

GeV, the effective potential Veff pφq due to the loop corrections associated to quark
top, has a maximum for φ ą v, and subsequently decreases forming a new minimum
in φ “ φmin " v. For simplicity we can normalize the potential Veff pφq in such a way
that Veff pvq “ 0, and with this normalization choice the instability scale, φinst " v,
is determined by the following condition

Veff pφinstq “ 0 , (4.1)

i.e. φinst is a zero of the Higgs effective potential immediately following the elec-
troweak minimum v. The instability scale is mainly determined by the values of the
masses of the Higgs boson and the top quark. The experimental values [55–60] for
these values are:

mexp
H “ 125.7˘ 0.25 GeV mexp

t “ 173.34˘ 1.3 GeV (4.2)

and considering their central values, we find:

φinst „ 1011 GeV .

For φ ą φinst the Higgs effective potential becomes negative and for φ " v it
forms the second minimum φmin. The condition of stability depends on the specific
values of the parameters of the Standard Model, and in particular on the values of the
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mass of the Higgs boson mH and on the mass of the top quark mt. If the minimum
is higher than the electroweak vacuum, then the latter is absolutely stable, otherwise
the electroweak vacuum is a state of false vacuum, i.e. it is a metastable state which
decays through quantum tunneling towards the state φmin of true vacuum. In the
latter case it is necessary to compare the average life τ of the electroweak vacuum
with the age of the Universe TU . Summing up:

• The electroweak vacuum v is stable, i.e. it is a state of true vacuum, if we have
that Veff pφminq ą Veff pvq. This condition defines, in the space of parameters
pmH ,mtq, the region of absolute stability.

• The electroweak vacuum v is unstable, i.e. it is a state of false vacuum, if we
have that Veff pφminq ă Veff pvq and that the average life τ of the vacuum is
τ ă TU . In the pmH ,mtq plane these conditions identify the region of absolute
instability.

• The electroweak vacuum v is metastable if we have that Veff pφminq ă Veff pvq

and that the average life of the vacuum is τ ą TU . This case, which is what is
realized considering the current experimental values for mH and mt, is usually
called metastability scenario.

To study the stability of the electroweak vacuum we have first to determine the
functional form of the Higgs effective potential Veff pφq (see Chapter 2). In general,
the condition of stability of the electroweak vacuum is studied varying the masses
mH and mt and the results are presented through phase diagrams of stability in the
plane pmH ,mtq. This plane is thus divided into the regions of stability, metastability
and instability, and the straight lines that separate these regions are defined by the
conditions [61–64]

Veff pvq “ Veff pφminq Stability line (4.3)

Veff pvq ą Veff pφminq and τ “ TU Instability line . (4.4)

According to this analysis, when the central values for the masses of the Higgs
boson and the top quark are considered, the electroweak minimum is in the region
of metastability and the average life of the electroweak vacuum is enormously greater
than the life of the Universe. As is clear from Fig. 4.1 [65], the current experimental
values for the masses of the Higgs boson and the top quark [55–60] are compatible
with a metastable universe, very close to the region of stability.

The EW vacuum stability condition was first studied in a flat spacetime back-
ground, and the interesting possibility that the SM is valid all the way up to the
Planck scale MP , meaning that NP shows up only at this scale, was investigated. In
such a scenario, naturally prompted by the lack of direct observation of hints of new
physics, the analysis was performed under the assumption [66] that the presence of
NP at MP could be neglected for the computation of the tunneling time τ from the
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false to the true vacuum of the SM, so that τ was calculated by considering SM
interactions only [62–64, 66–70]. In particular, in [67] it was argued that the reason
why NP at MP (even if present) can be neglected in the calculation of the tunnel-
ing rate is due to the fact that the instability scale φinst „ 1011 GeV is sufficiently
smaller than MP , i.e. a decoupling effect was expected.

However, it was later realized that the EW vacuum is very sensitive to unknown
NP even if it lives at scales far away from φinst, and the decay rate of the EW
vacuum can be strongly modified by its presence [54, 65, 71, 72]. The reason why the
decoupling theorem does not hold in this case is that tunneling is a non-perturbative
phenomenon [72], while the former applies when calculating scattering amplitudes
in perturbation theory at energies E much lower thanMcut, the physical cut-off scale
of the theory under investigation (MP , MGUT , ...). In this case the contributions
to scattering amplitudes from physics that lives at Mcut is suppressed by factors
of E{Mcut to the appropriate power, and this is how physics at the scale Mcut is
decoupled from physics at the scale E.

Instead, as we have seen in Chapter 3, for the tunneling phenomena the bulk of
the contribution to τ comes from the exponential of the (Euclidean) action calculated
at the saddle point of the path integral for the tunneling rate, i.e. the bounce solution
to the (Euclidean) Euler-Lagrange equation [38], and for this tree level contribution
no suppression factors of the kind pE{MP q

n can ever appear. If the Higgs potential
is modified by the presence of NP at MP , the new bounce is certainly different from
the one obtained when these terms are neglected. The action calculated for this new
bounce solution is also modified and (once exponentiated) it can give rise to a value
of τ enormously different from the one obtained when the NP terms are neglected.

As we have said in Section 3.4.2, the inclusion of gravity in the vacuum stability
analysis was pioneered in [50] by Coleman and de Luccia. For the transition from
a false Minkowski vacuum to a true Anti-de Sitter (AdS) vacuum, it was shown
that, when the size of the Schwarzschild radius of the true vacuum bubble is much
smaller than its size, i.e. when gravitational effects are weak, the probability of
materialization of such a bubble is close to the flat spacetime result, while when
the Schwarzschild radius becomes comparable to the bubble size, i.e. in a strong
gravitational regime, the presence of gravity stabilizes the false vacuum, preventing
the materialization of a true vacuum bubble. In other words, gravity tends to
stabilize the false vacuum, and in a strong gravity regime the materialization of
bubbles of true vacuum is quenched. Coleman and collaborators considered a scalar
theory where the potential V pφq has an energy density difference V pφfvq ´ V pφtvq

much smaller than the height of the “potential barrier”, V pφtopq ´ V pφfvq, where
V pφtopq is the maximum of the potential between the two minima. Given this
condition, the true vacuum bubble is separated from the false vacuum sea by a “thin
wall”, and this allows to treat the problem analytically, within the so-called thin-wall
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approximation.
However, the SM case is very far from the "thin wall regime" analyzed in [50]. In

order to get close to the SM case, but still keeping a simple model as in [50], a scalar
theory with a potential whose parameters can be adjusted to explore cases far from
the thin wall regime was considered in [73], and a numerical analysis of the false
vacuum stability condition was performed. The main result is that for the potential
that well approximates the SM case, the stabilizing effect of gravity is hardly seen
even in very strong gravity regimes. As suggested in [74–76], the total quenching of
the vacuum decay rate can eventually be reached at some very high scale. As shown
in [73] however, for the SM case such an effect takes place in a far transplanckian
regime where the theory has already lost its validity. The results obtained with the
simple model considered in [73] were later confirmed in [77], where a bona fide SM
Higgs effective potential was used.

In order to complete the stability analysis of the EW vacuum when gravity is
taken into account, it is of the greatest importance to understand to which extent the
presence of gravity can counteract the NP destabilizing effect discussed in [54, 65,
71, 72]. In the present Chapter we address these issues, that are very important for
current studies and for model building of BSM physics, where we are often confronted
with the possibility of considering NP at Planckian and/or trans-Planckian scales.
Anticipating on the results of the following sections, we will see that the tunneling
time from the false to the true vacuum is still strongly dependent on NP even if
it lives at very high (" φinst) scales, thus confirming the results of the analysis
performed in the flat spacetime background [54, 65, 71, 72].

Summing up the theory presented in Chapter 3, the computation of the decay
time of the state of our Universe is reduced to the computation of the bounce
solution of the equation of motion of a scalar field φ with the appropriate boundary
conditions, that are Eqs. (3.97)-(3.99) for the flat spacetime case, and Eqs. (3.109)
and (3.113) for the curved spacetime case. In both cases, the decay rate Γ of the
false vacuum is given by:

Γ “ De´pSrφbs´Srφfvsq ” D e´B (4.5)

where B ” Srφbs´Srφfvs is the tunneling exponent and the exponential of ´B gives
the “tree-level” contribution to the decay rate, while D is the quantum fluctuation
determinant. If V pφfvq “ 0, the action Srφfvs vanishes, and the tunneling exponent
is simply B “ Srφbs. In particular these equations, a part for very special cases,
can not be solved analytically and then is necessary to solve them numerically, and
this is the case for the Standard Model. For this purpose, we have developed a
new numerical method to find the bounce solution, whose details are presented in
Appendix D.

Since we are interested in the stability analysis of the EW vacuum, in our case
the scalar field φ is the Higgs field, and the potential V pφq is the renormalization
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group improved Higgs effective potential that we have written in Eq. (2.118) as:

VSMpφq „
1

4
λSMpφqφ

4 , (4.6)

where λSMpφq is the quartic running coupling λSMpµq (µ is the running scale) with
µ “ φ [71, 78].

However, the purpose of the present Chapter is to study the impact that NP at
high energies can have on the stability condition of the EW vacuum when the SM
coupling to gravity is taken into account. We are then not interested in precision
measurements and/or refinements of previous analyses. We can then leave aside
these questions and work in a simplified yet very robust framework, by using a good
approximation of the SM effective potential that was obtained in [79] by fitting the
two-loops improved Higgs potential with the three parameter function [79]:

λSMpφq “ λ˚ ` α

ˆ

ln
φ

MP

˙2

` β

ˆ

ln
φ

MP

˙4

, (4.7)

where MP “ 1{
?
G is the Planck mass. The fit gives:

λ˚ “ ´0.013 α “ 1.4ˆ 10´5 β “ 6.3ˆ 10´8 . (4.8)

In the following we work with the Higgs potential (4.6) with λSMpφq given by (4.7)
and (4.8).

Moreover, both in the flat and curved spacetime cases, an important parameter
is the size R of the bounce, defined as the value of r such that

φbpRq “
1

2
φbp0q . (4.9)

Going back to (4.5) for the vacuum decay rate, a good approximation to the prefactor
for the case that we are considering is given in terms of the bounce size R and of
TU , the age of the Universe, and the EW vacuum tunneling time τ “ Γ´1 turns out
to be [71]:

τ »

ˆ

R4

T 3
U

˙

eB . (4.10)

In the following we use (4.10) to calculate the false vacuum lifetime.
Before ending this Section and moving to the study of the impact of NP on the

EW vacuum stability, we would like to test our tools starting with the known cases
of the flat and curved spacetime backgrounds in the absence of NP (i.e. considering
the SM alone), and briefly sketch the analysis for these cases.

Flat spacetime. In order to proceed with the numerical solution of the bounce
equation (3.97), we begin by scaling the dimensionful field φ and the radial coordi-
nate r to dimensionless quantities, ϕpxq and x respectively, by using Planck units:

x ”MP r ϕpxq ”
φprq

MP

. (4.11)
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Then Eq. (3.97), the boundary conditions (3.98)-(3.99) and the potential (4.6) be-
come:

ϕ2pxq `
3

x
ϕ1pxq “

dU

dϕ
(4.12)

ϕp8q “ 0 ϕ1p0q “ 0 (4.13)

Upϕq “
1

4
ϕ4

`

λ˚ ` α ln2 ϕ` β ln4 ϕ
˘

, (4.14)

where the prime denotes the derivative respect to x. After the scaling (4.11), the
tunneling exponent (3.100) becomes:

B “ 2π2

ż 8

0

dx x3

„

1

2
ϕ1bpxq ` Upϕbq



. (4.15)

Solving numerically the bounce equation (4.12), with the Higgs potential given
by (4.14) and (4.8), and inserting the result for ϕbpxq in (4.15), after using the values
found for B and R, namely B “ 2025.27 and R “ 10.7597, we finally get for the
lifetime τ of the EW vacuum:

τflat „ 10639TU , (4.16)

in very good agreement with the results known in the literature. This is the first test
of our numerical method (see Appendix D), and also shows that we are considering
a good approximation for the Higgs potential.

Curved spacetime. As in the case of flat spacetime, we move to dimensionless
quantities. Defining the dimensionless curvature apxq “MP ρprq, Eqs. (3.109-a) and
(3.110) (that will be used in the following numerical integration) become:

ϕ2 ` 3
a1

a
ϕ1 “

dU

dϕ
a2 “ ´

8π

3
a
`

ϕ1 2 ` U
˘

, (4.17)

where the potential Upϕq is the same as in (4.14). The corresponding boundary
conditions are:

ϕp8q “ 0 ϕ1p0q “ 0 ap0q “ 0 a1p0q “ 1 . (4.18)

As we have already said, ρprq „ r for r Ñ 8, and the asymptotic (x Ñ 8)
behavior of the bounce solution in the presence of gravity is the same as in the flat
spacetime case.

In terms of dimensionless quantities, from (3.115) we find for the tunneling ex-
ponent:

B “ ´2π2

ż 8

0

dx a3
bUpϕbq (4.19)

where (ϕb, ab) is the bounce solution to the system (4.17).
In the left panel of Fig. 4.2 the bounce profile ϕbpxq is plotted. The right panel

shows the difference abpxq ´ x: we clearly see how abpxq reaches asymptotically the
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Figure 4.2: Left panel: Profile of the bounce solution ϕpxq in the presence of gravity.
It is obtained for the potential (4.14) with the parameters λ˚, α, β given in (4.8). The
center of the bounce is at ϕp0q “ 0.0712, its size is R “ 350.2996 and the tunneling
exponent is B “ 2062.5836. Right panel: Difference between the curvature radius
and its asymptotic value, apxq ´ x, for the same parameters as in the left panel.

Minkowskian behavior apxq „ x` c. Finally, with the help of (4.10), we obtain the
tunneling time in the presence of gravity:

τgrav „ 10661TU . (4.20)

Once again we observe that the above result is in good agreement with known
results [77]. Moreover, comparing (4.20) with the corresponding flat spacetime tun-
neling time (4.16), we see that gravity (as expected) tends to stabilize the EW
vacuum.

4.2 New physics: Higher order operators

The results briefly presented in Section 4.1 are known and concern the stability
analysis under the assumption that new physics atMP is decoupled from the physics
that triggers the EW vacuum decay, and that it should be possible to calculate the
tunneling rate ignoring these terms.

The analysis of the previous section is essential to set the proper framework
where the effects of the presence of NP at MP can be properly investigated. We
parametrize NP as in [54, 65, 71] with the help of higher powers of φ added to the
Higgs potential:

VNPpφq “
λ6

6

φ6

M2
P

`
λ8

8

φ8

M4
P

. (4.21)

It was shown in [54, 65, 71] for the flat spacetime case that when λ6 ă 0 and
λ8 ą 0 the potential (4.21) destabilizes the EW vacuum. In other words, these NP
terms favor the nucleation of true vacuum bubbles and, depending on the specific
values of λ6 and λ8, this destabilization effect could dramatically reduce the EW
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Figure 4.3: The blue curve is the profile of the bounce solution obtained for the
potential (4.22) with λ6 “ 0 and λ8 “ 0, i.e. in the absence of new physics. The
yellow curve is the profile of the bounce solution for λ6 “ ´0.03 and λ8 “ 0.03, while
the green one is the profile of the bounce obtained for λ6 “ ´0.04 and λ8 “ 0.04.
Note that with increasing values of the couplings the center of the bounce ϕp0q
becomes larger while the size diminishes.

vacuum lifetime τ in (4.16) and make it even shorter than the age of the Universe
TU . We now consider the same kind of analysis in the presence of gravity.

Adding the NP terms (4.21) to the SM Higgs potential (4.6), and moving again
to dimensionless quantities, the new dimensionless potential Upϕq becomes:

Upϕq “
1

4
ϕ4

ˆ

λ˚ ` α ln2 ϕ` β ln4 ϕ`
2

3
λ6ϕ

2
`

1

2
λ8ϕ

4

˙

. (4.22)

A first important result of our analysis is that for each value of the couple (λ6,
λ8) there is a different bounce solution to Eqs. (4.17), all of them being different from
the solution obtained for the SM alone, i.e. the case λ6 “ 0, λ8 “ 0. Therefore, the
“new” bounce solutions related to the presence of new physics, here parametrized
in terms a given couple (λ6, λ8), is still present even when in the stability analysis
gravity is explicitly taken into account.

In order to illustrate these results, in Fig. 4.3 we show bounce solutions to
Eqs. (4.17) for λ6 “ ´0.03, λ8 “ 0.03 (yellow curve), λ6 “ ´0.04, λ8 “ 0.04 (green
curve) and compare them with the corresponding λ6 “ 0, λ8 “ 0 (blue curve) case.
The profiles obtained are definitely new solutions to these equations related to the
specific values of λ6 and λ8, clearly different from the bounce (blue curve) obtained
for the SM alone (λ6 “ 0 and λ8 “ 0).

With the help of (4.10) we now calculate the EW vacuum lifetime for different
values of the NP couplings λ6 and λ8. The fourth column of Tab. 4.1 contains
different values of the tunneling time obtained for different couples (λ6, λ8). For
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λ6 λ8 τflat{TU τgrav{TU

0 0 10639 10661

´0.05 0.1 10446 10653

´0.1 0.2 10317 10598

´0.15 0.25 10186 10512

´0.3 0.3 10´52 10287

´0.45 0.5 10´93 10173

´0.7 0.6 10´162 1047

´1.2 1.0 10´195 10´58

´1.7 1.5 10´206 10´106

´2.0 2.1 10´206 10´121

Table 4.1: Tunneling time for different values of λ6 and λ8, both for the flat and
curved spacetime cases. We note that although gravity tends to stabilize the EW
vacuum (the tunneling time τgrav is always higher than the corresponding one in flat
spacetime τflat), new physics has always a strong impact.

comparison, the third column contains the corresponding values of τ for the flat
spacetime analysis. First of all we note that the effect already seen in the previous
section for the SM alone (also reported in the first line of the table, the case λ6 “ 0,
λ8 “ 0), namely that the presence of gravity tends to stabilize the EW vacuum, is
maintained even in the presence of new physics.

However, a simple inspection of this table shows that even though the presence
of gravity tends to stabilize the EW vacuum as compared to the corresponding
flat spacetime case, still for Op1q values of the new physics couplings λ6 and λ8

the tunneling time can be made smaller than the age of the Universe TU . Let us
consider just a couple of examples. For λ6 “ ´0.3 and λ8 “ 0.3 for instance, the
EW vacuum in the flat spacetime background is unstable, being τ „ 10´52TU , but
for the corresponding case with gravity included we observe a stabilization of the
EW vacuum: τ „ 10287TU . There is a competition between the destabilizing effect
of NP and the stabilizing effect of gravity. In this example, gravity takes over new
physics and as a result the EW vacuum turns out to be stable. However for larger
(absolute) values of the NP couplings, the destabilizing effect of NP takes over the
stabilizing effect of gravity. For instance, for λ6 “ ´1.2 and λ8 “ 1.0, despite the
stabilizing effect of gravity (τgrav " τflat), the EW vacuum turns out to be unstable:
τgrav „ 10´58TU .

The results discussed above with the help of Table 4.1 are better summarized in
Fig. 4.4 where the stability diagram in the pλ6, λ8q plane is presented for the range
of values ´1.5 ă λ6 ă ´0.4 and 0.4 ă λ8 ă 1.5. We see that, when the analysis is
performed in the flat spacetime case (i.e. when we ignore the presence of gravity),
the stability region (τ ą TU , blue area) is confined to the upper right corner of
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Figure 4.4: Stability diagram in the (λ6, λ8) plane showing three separate regions
where: (i) τflat, τgrav ą TU (blue region); (ii) τflat ă TU , τgrav ą TU (yellow region);
(iii) τflat, τgrav ă TU (red region). Note that, as in the blue (red) area τflat and
τgrav are both larger (smaller) than TU , in these regions we wrote τ ą TU (τ ă TU)
with no further specification. The potential of (4.14) and parameters λ˚, α, β given
in (4.8) are used. Note that although the inclusion of gravity induces an enlargement
of the region with EW vacuum lifetime larger than TU , for a large portion of the
phase diagram we have τ ă TU , even when gravity is taken into account.

this figure. When the presence of gravity is taken into account, the stability region
(τ ą TU) broadens (blue ` yellow area), and this shows the tendency of gravity
toward stabilization. Yet, for a large portion of the parameter space the EW vacuum
is still unstable, thus showing that the potential stabilization that should be induced
by gravity is not sufficient to counteract against the destabilization mechanism due
to the presence of high energy NP. In this respect, it is important to note that this
destabilization occurs for physical Op1q values of the coupling constants λ6 and λ8.
In Fig. 4.5 we show some more quantitative details of the phase diagram drawn in
Fig. 4.4, presenting the flat spacetime case (left panel) separately from the case when
gravity is taken into account (right panel).

Let us summarize the results of the present Section. We have seen that the
stability condition of the EW vacuum is the result of a competition between the
destabilizing effect of NP and the stabilizing tendency of gravity. However, even
keeping the values of the coupling constants in the natural Op1q range, for a large
portion of the parameter space the destabilization induced by Planckian NP largely
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Figure 4.5: Stability diagrams in the (λ6, λ8) plane for log10pτ{TU) with the potential
of (4.14) and parameters λ˚, α, β given in (4.8). Left panel: flat spacetime case.
Right panel: curved spacetime case. In each of the two panels, the black lines are
curves with fixed values of log10pτ{TUq (reported on it), while the thick red dashed
line indicates the points where τ “ TU . Colors serve as a guidance, indicating
the decreasing of log10pτ{TUq from the right to the left. Note that the inclusion of
gravity induces a broad enlargement of the region where the EW vacuum is stable
(log10pτ{TUq ą 0).

overwhelms the tendency of gravity toward stabilizing the EW vacuum: the con-
tribution to the decay rate through the new bounce solution by far dominates the
contribution coming from the bounce solution obtained by considering SM only.

4.3 New physics: large mass particles

In the present Section the stability analysis of the EW vacuum will be performed
by considering a different parametrization for NP at high energy scales. Actually in
[54, 65, 71] and in the previous section the analysis was performed by parametrizing
NP at the Planck scale in terms of few higher order (non-renormalizable) operators.
This is just a convenient and efficient way of mimicking the presence of new physics,
clearly not an (illegitimate) truncation of the UV completion of the SM. However, it
was expressed a certain skepticism on these results, suggesting that this effect should
disappear when the infinite tower higher dimensional operators of the renormalizable
UV completion of the SM is taken into account, so that the expected decoupling of
very high energy physics from the mechanism that triggers the decay of the false
vacuum should be recovered. It was actually suspected that this effect takes place
above the physical cutoff, where the control of the theory is lost [80].

Although it is understandable that the parametrization of NP in terms of higher
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order operators could be the source of a certain confusion, the destabilizing effect
has nothing to do with this parametrization. For the case of a flat spacetime back-
ground in [72] the stability analysis was performed by parametrizing NP in terms of
renormalizable additional terms, with a fermion and a boson with very high masses
that interact with the Higgs field, and it was shown that the destabilizing effect
found in [54, 65, 71] is still present.

In this Section we present the same kind of analysis of [72] taking into account the
presence of gravity (i.e. considering the case of a curved spacetime background), and
show that as for the case of the parametrization used in the previous section, gravity
does not produce any washing out of the destabilizing effect of new physics, although
it slightly mitigates it. In order to illustrate the destabilization phenomenon we
consider as in [72] a renormalizable model that is not a realistic high energy UV-
completion of the SM but is very appropriate to the purposes of the this Section.
New Physics that lives at very high energy scales is then parametrized by adding
to the SM a scalar field S and a fermion field ψ that interact in a simple way with
the Higgs field φ, with very large masses (see below) MS and Mf of the scalar and
fermion respectively.

Apart from the kinetic terms, the additional terms in the Lagrangian are:

∆L “
M2

S

2
S2
`
λS
4
S4
` gSφ

2S2
`Mf ψ̄ψ ` gfφψ̄ψ . (4.23)

To understand how a NP Lagrangian of this kind can arise in a physical setup,
we note that the large mass termMf can be thought as a sort of heavy right handed
“neutrino” in the framework of a see-saw mechanism. While the corresponding
light “neutrino” is totally harmless for the stability of the EW vacuum, the heavy
“neutrino” can play an important role in destabilizing the vacuum. The scalar field
S counterbalances the destabilizing effect of ψ. Note that models with new scalar
fields coupled to the Higgs (although admittedly unrealistic) have already been used
to provide a stabilization mechanism for the Higgs effective potential [81, 82].

For the purposes of the present Chapter, it is sufficient to consider the impact of
the additional terms (4.23) on the Higgs effective potential V pφq at the one-loop level
only. In fact we do not need a better level of precision as we are not interested in
extracting precise numbers but we only want to illustrate the destabilization effect
that arises from very high energy physics (see also the considerations developed
below Eq. (4.6)). The one-loop contribution to V pφq from these terms is:

V1pφq “

`

M2
S ` 2gSφ

2
˘2

64π2

„

ln

ˆ

M2
S ` 2gSφ

2

M2
S

˙

´
3

2



´

`

M2
f ` g

2
fφ

2
˘2

16π2

«

ln

˜

M2
f ` g

2
fφ

2

M2
S

¸

´
3

2

ff

, (4.24)

where the renormalization scale µ is taken as µ “ MS. In this respect we note
that at very high values of the running scale the SM quartic coupling reaches a
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plateau: λSMpµq has practically the same value in the whole range rMf ,MSs, and
this is why we can use λSMpMSq as the threshold value for the coupling (even though
strictly speaking we should use λSMpMf q (see below)), and can choose µ “ MS as
the renormalization (threshold) scale.

The presence of the high energy NP of (4.23) is then taken into account by
adding to the SM potential VSMpφq in (4.6) and (4.7) the contribution coming from
V1pφq. To this end we have to implement the matching conditions described below.
First of all we expand the potential V1pφq in powers of φ and isolate the constant,
the φ2 and the φ4 terms. Then at the threshold scale Mf we require that: (i)
the renormalized cosmological constant Λ, given by the sum of all the constant
terms (those coming from the SM potential and those coming from V1pφq) vanishes,
Λpµ “ Mf q „ 0; (ii) the renormalized mass term, given by the sum of all the
coefficients of φ2, and identified with the SM mass parameter m2

SMpµ “ Mf q at the
scaleMf , vanishes: m

2
SMpµ “Mf q „ 0 (more precisely we neglect this term to a very

high degree of accuracy for the large values of φ considered); (iii) the renormalized
quartic coupling, given by the sum of all the coefficients of φ4, is identified with the
SM quartic coupling at the scale Mf , λSMpµ “ Mf q. In other words, at the scale
Mf this coefficient is matched with the value of the quartic coupling obtained by
considering the running of the renormalization group equations for the SM couplings
alone.

The above requirements for the renormalized cosmological constant and mass are
well known features. For the renormalized Λ (apart from the fine tuning problem)
we can practically consider that Λpµ “ 0q „ Λpµ “ Mf q „ 0. The same is true for
the renormalized mass, for which we take m2

pµ “ 0q „ m2
pµ “ Mf q „ 0, meaning

that we neglect the φ2 term as compared to the φ4 and other terms for these large
values of φ, and that the running of the renormalized mass is totally harmless in
this respect. For the quartic coupling we have a true matching condition. In fact
we require that at the threshold scale µ “ Mf the quartic coupling coincides with
λSMpµ “ Mf q, that is obtained by running the renormalization group equations
for the SM couplings only. Practically starting from the scale Mf , the potential is
given by the SM contribution VSMpφq plus the contribution of V1pφq subtracted of
its constant, quadratic and quartic powers of φ, that we call V 1pφq from now on:

Vtotpφq “
1

4
λSMpφqφ

4
` V 1pφq . (4.25)

We are now ready to use our model of high energy NP to calculate the EW
vacuum lifetime for different values of the masses Mf and MS of ψ and S, and for
different values of the coupling constants. For our illustrative purposes we have
chosen to consider the four following examples: (i)MS “ 2.5ˆ10´1, Mf “ 3ˆ10´4,
gS “ 0.96, g2

f “ 0.5 ; (ii) MS “ 2.0 ˆ 10´1, Mf “ 10´4, gS “ 0.9, g2
f “ 0.5 ;

(iii) MS “ 2.0 ˆ 10´1, Mf “ 10´3, gS “ 0.95, g2
f “ 0.4 ; (iv) MS “ 1.5 ˆ 10´1,
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Figure 4.6: Left panel: Profile of the bounce solutions ϕpxq for the potential (4.25)
relative to the four cases considered in the text: MS “ 2.5 ˆ 10´1, Mf “ 3 ˆ 10´4,
gS “ 0.96, g2

f “ 0.5 (yellow) ; MS “ 2.0 ˆ 10´1, Mf “ 10´4, gS “ 0.9, g2
f “ 0.5

(blue); MS “ 2.0 ˆ 10´1, Mf “ 10´3, gS “ 0.95, g2
f “ 0.4 (green); MS “ 1.5 ˆ

10´1, Mf “ 5 ˆ 10´3, gS “ 0.92, g2
f “ 0.4 (red). Right panel: the corresponding

difference between the curvature radius and its asymptotic value, apxq ´ x, for the
same parameters as in the left panel.

Mf “ 5 ˆ 10´3, gS “ 0.92, g2
f “ 0.4. First of all we have to solve the bounce

equations (4.17) for ϕpxq and apxq. In Fig. 4.6 the profiles of the bounce solutions
ϕbpxq for the four different cases (i), (ii), (iii) and (iv) and the corresponding plots
of abpxq ´ x are presented, with colors yellow, blue, green and red respectively.

These are the first relevant results of the present Section: in the presence of
NP at very high energies, new bounce solutions exist not only when the analysis is
carried in the flat spacetime background [72] but also when we take into account the
presence of gravity. These results reinforce those of the previous section, where high
energy NP was parametrized in terms of higher order operators, and show that the
appearance of new bounce solutions is not an artifact of the specific parametrization
used in Section 4.2.

Using (4.10) to calculate the vacuum lifetime, for the examples considered above
we find in units of TU (going from (i) to (iv)):

τ “ 10´65 , τ “ 10´93 , τ “ 1094 , τ “ 10307 , (4.26)

to be compared with the corresponding results for the tunneling time obtained from
the analysis performed in a flat spacetime background, where we have:

τ “ 10´80 , τ “ 10´103 , τ “ 1080 , τ “ 10293 . (4.27)

Eqs. (4.26) and (4.27) together with Fig. 4.6 contain the main lesson of the present
Section. They definitely show that, even when gravity is included in the analysis, the
presence of NP at high energy scales can have an enormous impact on the vacuum
lifetime. It is worth to remind here that when the calculation is performed in the
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curved spacetime background and the presence of high energy new physics is not
considered, the tunneling time is given by (4.20) (τ „ 10661TU), while from (4.26)
we see that τ strongly depends on the parameters of new physics, and can turn out
to be even shorter than the age of the Universe.

Moreover, by comparing (4.26) and (4.27) we see that gravity, while still showing
a slight tendency toward stabilization (which is what we observe in the absence of NP
when comparing (4.16) with (4.20)), only produces a “tiny” effect, that qualitatively
does not modify significantly the stability condition of the EW vacuum. Despite
the fact that in our toy model NP lives at very high energy scales, the expectation
that the tunneling time should be insensitive to it, in other words that the result
shown in (4.20) should not be modified by the presence of NP at high energies, is
not fulfilled. These results confirm the analysis of the previous section. Here, with
the help of a fully renormalizable toy UV completion of the SM, we have shown that
the EW vacuum lifetime strongly depends on NP even if the latter lives at very high
energy scales. These findings are at odds with a widely diffused expectation, based
on a naive application of the decoupling argument, and show that the fact that the
vacuum stability condition depends on physics that lives at very high energy scales
is not due to an illegitimate extrapolation of the theory beyond its validity, as it
was previously thought [80]. On the contrary, that expectation was based on an
illegitimate application of the decoupling theorem to a phenomenon (the tunneling
of the EW vacuum) to which it cannot be applied. Before ending this Section, we
would like to stress once again that with respect to the previous section, where
NP interactions were parametrized with the help of higher order non-renormalizable
operators, here NP is given in terms of a fully renormalizable theory, thus showing
that the effect that we present is a genuine physical effect and has nothing to do
with the specific parametrization of NP.
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Chapter 5

Direct Higgs-gravity interaction and
stability of our Universe

In the previous chapter we have seen that the tunneling time τ of the EW vacuum
is extremely sensitive to the presence of unknown New Physics, and the latter can
enormously lower τ . This poses a serious problem for the stability of our universe,
demanding for a physical mechanism that protects it from a disastrous decay. In
this Chapter we will see that there exists an universal stabilizing mechanism that
naturally originates from the non-minimal coupling between gravity and the Higgs
boson. This Higgs-gravity interaction necessarily arises from the quantum dynamics
of the Higgs field in a gravitational background. Then such a stabilizing mechanism
is certainly present, and it is not related to any specific model, being rather natural
and universal as it comes from fundamental pillars of our physical world: gravity,
the Higgs field, the quantum nature of physical laws [83].

5.1 Non-minimal coupling of Higgs field to gravity

In Section 3.4.2 we have seen how to include gravity in the analysis of the stability
problem of a false vacuum for a scalar field theory. In particular, we have considered
a maximally symmetric spacetime, i.e. a spacetime with Op4q symmetry described
by the metric (3.105), and the scalar field was minimally coupled to gravity, i.e. we
have considered only the Einstein-Hilbert term in the action (3.104) as interaction
terms of gravity.

Instead, in Chapter 4 we have applied such a theory to the study of the stability
problem of the EW vacuum, and in particular considering the SM alone we find that

τ
SM
„ 10661TU , (5.1)

i.e. the tunneling time τ
SM

is much larger than the age of the Universe TU . However,
considering New Physics at the Planck scale MP , the tunneling time τ can become
less than TU also in the presence of gravity, as we have seen in Table 4.1.
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In this Chapter we want to study the effect of destabilizing New Physics on the
EW vacuum lifetime when we consider a more general gravitational setup. In fact,
the quantum dynamics of the Higgs field φ in a gravitational background imposes a
direct interaction between φ and gravity [84, 85]. Then, the action that describes
the dynamics of the field φ is [77]

Srφ, gµνs “

ż

d4x
?
g

„

´
R

16πG
`

1

2
gµνBµφ Bνφ` V pφq `

1

2
ξφ2R



(5.2)

where R is the Ricci scalar and G is the Newton gravitational constant. Instead, ξ
is the coupling constant of the direct coupling between gravity and the scalar field
φ. The potential V pφq, as in the minimal coupling case ξ “ 0, has a local minimum
(false vacuum) in φ “ φfv, and an absolute minimum (true vacuum) in φ “ φtv.
Moreover, φ “ φfv is a Minkowskian false vacuum V pφfvq “ 0.

As in the minimal coupling case, there are no reasons for which gravitational
effects can break theOp4q symmetry of the flat spacetime case, so that we can assume
that also in the presence of non-minimally coupled gravity the bounce solution is
invariant under 4 dimensional rotations. Basing on this assumption, the curved
spacetime is still described by the metric

ds2
“ dr2

` ρ2
prqdΩ2

3 (5.3)

where dΩ2
3 is the metric of the unitary 3-sphere, while ρ is the curvature radius of

each 3-sphere at fixed r.
From the action in Eq. (5.2), we obtain the Euler-Lagrange and the Einstein field

equations (κ “ 8πG):

Rµν ´
1

2
gµνR “ κ

Tµν ` 2ξ
”

Bµpφ Bνφq ´ gµνBλpφ B
λφq

ı

1´ κξφ2 (5.4)

Tµν “ Bµφ Bνφ´ gµν

„

1

2
Bµφ B

µφ` V pφq



(5.5)

BµB
µφ “

dV pφq

dφ
` ξRφ . (5.6)

Using the metric given in Eq. (5.3), the equations in (5.4) and (5.6) become:

:φ` 3
9ρ

ρ
9φ “

dV

dφ
` ξφR 9ρ2

“ 1´
κ

3
ρ2
´1

2
9φ2
` V pφq ´ 6ξ 9ρ

ρ
φ 9φ

1´ κξφ2 , (5.7)

where the dots denotes the differentiation respect to the radial coordinate r. The
bounce solution needed to compute the transition rate from the false vacuum is
again given by the field and metric solutions, respectively φ

b
prq and ρ

b
prq, of these

coupled differential equations, once we have the appropriate boundary conditions
(3.113):

φp8q “ 0 9φp0q “ 0 ρp0q “ 0 . (5.8)
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For numerical computation is useful to differentiate Eq. (5.7-b) respect to r, obtain-
ing the equation:

:ρ “ ´
κ

3
ρ

9φ2
` V pφq ´ 3ξ

´

9φ2
` φ:φ` 9ρ

ρ
φ 9φ

¯

1´ κξφ2 , (5.9)

and the boundary condition 9ρp0q “ 1. In fact, as in the minimal coupling case
the equations (5.7-a) and (5.9), once we use the scaling to MP to obtain their
dimensionless version, are more stable for a numerical analysis. It is worth to note
as for ξ “ 0 the Eqs. (5.7) and (5.9) are reduce to the Eqs. (3.109) and (3.110),
i.e. the equations of motion for φ and ρ in a curved spacetime background with a
minimal coupling of gravity and matter, the case studied in Chapter 4 [50].

In the derivation of Eq. (5.7) from the Einstein equation, we can compute the
Ricci scalar using the metric in Eq. (5.3):

R “ ´
6

ρ2

`

ρ:ρ` 9ρ2
´ 1

˘

. (5.10)

However, this expression is not useful to numerically solve the equations of mo-
tion. To obtain a numerically stable expression, we compute the trace of Eq. (5.4)
obtaining the following general expression:

`

1´ κξφ2
˘ R

κ
“ p1´ 6ξqBµφB

µφ` 4V pφq ´ 6ξφBµB
µφ . (5.11)

Then, we can use Eq. (5.6) to explicit BµB
µφ in Eq. (5.11): in this way, using the

Op4q symmetry, we obtain an expression for R in terms of the scalar field φ and its
derivatives:

R “ κ
9φ2
p1´ 6ξq ` 4V pφq ´ 6ξφ dV {dφ

1´ κξp1´ 6ξqφ2 . (5.12)

The Eq. (5.12), contrary to Eq. (5.10), is not a general expression for R since, having
used the equation of motion Eq. (5.6), it is valid only for the solution of Eq. (5.7).
However, as anticipated, it is useful to explicit R in Eq. (5.7-a) just using Eq. (5.12)
to numerically solve this equation together with Eq. (5.9).

Finally, we compute the tunneling exponent B, using Eq. (5.11) to obtain a
general expression for the action. Inserting Eq. (5.11) in Eq. (5.2) to explicit the
terms that contains the Ricci scalar R, after simple steps we obtain:

Srφ, gµνs “

ż

d4x
?
g
“

´V pφq ` 3ξBµpφ B
µφq

‰

. (5.13)

The second term in this expression, after integration, is reduced to a boundary term
that vanish at infinity. Then, using the Op4q symmetry, the Eq. (5.13) becomes:

Srφ, ρs “ ´2π2

ż 8

0

dr ρ3V pφq . (5.14)
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At this point, we must note some important properties concerning Eq. (5.14): (i)
there is no explicit dependence of the action on coupling ξ, and therefore the action
will depend on this parameter only through a possible implicit dependence of the
scalar field φprq and of the curvature ρprq; (ii) if we compute the action in the
trivial solution of false vacuum of Eq. (5.7), we get Sfv ” Srφfv, ρfvs “ 0, since in
our topology V pφfvq “ 0. Finally, from Eq. (5.14), we get that tunneling exponent
is given by B “ Srφb, ρbs.

5.2 Effect of Planck scale New Physics

Once we have computed the bounce solution from Eq. (5.7) with the boundaries
(5.8), we can compute the decay rate Γ (“ 1{τ) from the false to the true vacuum,
that is still given by [40, 41, 50]:

Γ “ D e´rSb´Sfvs , (5.15)

where Sb ” Srφb, ρbs, Sfv is the action calculated at the trivial false vacuum solution
pφfv, ρfvq, and D is the quantum fluctuation determinant.

As for the minimal coupling case ξ “ 0, we can define the size R of the bounce as
the value of the radial coordinate r such that φbpRq “ 1

2
φbp0q, so that the prefactor

D in Eq. (5.15) can be estimated to a good approximation [86] as D » T 3
UR´4, and

τ then becomes:

τ »

ˆ

R4

T 3
U

˙

eSb “

ˆ

R4

T 4
U

˙

eSb TU . (5.16)

In calculating the EW vacuum lifetime τ , in the bounce equations (5.7) we have
to use the appropriate potential V pφq. If we consider the Standard Model only, i.e.
assuming that NP has no impact on τ [63, 64, 66, 67], we have to consider the SM
(renormalization group improved) Higgs potential VSMpφq [35, 87, 88], still given by:

VSMpφq “
1

4
λSMpφqφ

4 , (5.17)

where λSMpφq is the quartic running coupling λeffpµq with µ “ φ [68–70, 89]. In
particular, we use the fit given in Eqs. (4.7) and (4.8) for the running coupling
constant, as we have done in Chapter 4. As long as the NP terms are neglected,
the inclusion of 1

2
ξφ2R in the action does not change the stability condition of the

universe, as τ still remains much larger than TU (see the blue line of Fig. 5.2) [77].
However, as we have seen in the previous chapter, we known that the necessarily

present NP terms can have an enormous impact on τ [51, 54, 65, 71–73]. For the
New Physics at high (Planckian) energies we use the parametrization in Eq. (4.21),
i.e. we add to the SM Higgs potential VSMpφq higher powers of φ:

VNPpφq “ α1

φ6

M2
P

` α2

φ8

M4
P

, (5.18)
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Figure 5.1: Left column. - Upper panel: bounce solution φ
NP
prq (red dashed line)

for the action in (5.2), with potential V pφq “ VSMpφq ` VNPpφq, where α1 “ ´0.2

and α2 “ 0.125. The bounce φ
SM
prq (blue solid line) for the SM potential VSMpφq

alone is also plotted. Lower panel: the same for ρprq´ r. Middle and right columns:
the same as for the left column for the action with the additional term 1

2
ξφ2R with

ξ “ 1, 10 respectively.

where we have defined α1 “ λ6{6 and α2 “ λ8{8, so that we now take

V pφq “ VSMpφq ` VNPpφq . (5.19)

As an illustrative example, we consider for the (dimensionless) couplings α1 and
α2 specific values, α1 “ ´0.2 and α2 “ 0.125, and for the EW vacuum lifetime in
the presence of NP with ξ “ 0 we find (see the eighth row of Tab 4.1):

τ
NP
“ 10´58 TU . (5.20)

In fact, as we know the presence of these NP terms can enormously lower τ [51, 54,
65, 71–73], to the point that we can get τ ! TU . In particular, the huge difference
between τ

SM
and τ

NP
is due to a big difference between the bounces in the two cases

considered, as can be seen from the left column of Fig. 5.1.
From the results presented in Chapter 4 we conclude that there must be a mech-

anism that protects our universe from a disastrous decay. In this Chapter we show
that there exists a universal stabilizing mechanism that arises from the combination
of three basic pillars of our physical world: (i) gravity; (ii) the Higgs boson; (iii) the
quantum nature of physical laws. In fact we show that turning on (as we must) the
interaction ξφ2R, with the exception of a tiny range of values of ξ, the EW vacuum
lifetime τ is enormously enhanced and becomes much larger than TU , even in the
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ξ τ
SM

τ
NP

´15 10736 10736

´10 10726 10726

´5 10710 10710

´1 10684 10680

´0.5 10677 10600

´0.3 10672 10358

´0.1 10666 1065

0 10661 10´58

ξ τ
SM

τ
NP

0.3 10660 10´167

0.5 10668 1023

0.7 10674 10346

0.8 10676 10512

1 10679 10666

5 10709 10709

10 10725 10725

15 10735 10735

Table 5.1: Values of τ
SM

(second column) and τ
NP

(third column) in TU units for
different values of ξ (first column). For τ

SM
, only the SM potential VSMpφq is consid-

ered. For τ
NP
, the potential VNPpφq of Eq. (4.21) is added to VSMpφq, with coupling

constants: α1 “ ´0.2 and α2 “ 0.125.

presence of Planckian NP. We can see such effect in the result presented in Tab. 5.1,
where we shows the tunneling time τ

NP
(and for comparison τ

SM
) for different ξ,

taking α1 “ ´0.2 and α2 “ 0.125 in VNPpφq.
A graphical representation of the results of Tab. 5.1 is given in Fig. 5.2, where the

decay time τ (more precisely log
10
pτ{TUq) as a function of ξ is plotted in the interval

´1.5 ď ξ ď 1.8. The range of ξ where τ is lower than TU is very tiny (´0.05 >
ξ > 0.5), and centered around its minimal value ξmin „ 0.22. We observe that,
for increasing values of |ξ|, τ

NP
tends towards τ

SM
: this means that the interaction

1
2
ξφ2R is so strong to wash out the destabilizing effect of the NP potential (5.18).
The coincidence between τ

NP
and τ

SM
is due to the fact that with increasing |ξ|

the bounces obtained with the Higgs potential V pφq “ VSMpφq`VNPpφq tend towards
the SM ones, as can be seen from Fig. 5.1. In fact, actually φ

SM
p0q and φ

NP
p0q both

decrease with increasing ξ, and reach the value φp0q „ 0.002 for ξ “ 10. For further
increasing values of ξ, not presented in the figure, φ

SM
p0q and φ

NP
p0q still coincide

and take lower and lower values. For negative ξ, the same trend is observed for
increasing |ξ|.

To better appreciate the impact of this mechanism, we estimate (for these suf-
ficiently large values of |ξ|) the relative weight in the equations of motion (5.7-a)
and (5.9) of the two terms φ4 and φ6 in the potential V pφq “ VSMpφq ` VNPpφq by
considering the ratio:

Apφq “
α1φ

6

pλ{4qφ4 “
4α1

λ
φ2. (5.21)

Being φp0q “ maxφbprq and φp0q ! 1, we find Apφq ! 1 (Planck units), so that
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Figure 5.2: The red dashed line is the log10pτ{TUq as a function of ξ for the Higgs
potential V pφq “ Veffpφq ` VNPpφq, where: α1 “ ´0.2 and α2 “ 0.125. The blue
line is the log10pτ{TUq for the SM potential Veffpφq alone. The green horizontal line
separates the region τ ă TU (lower one) from the region τ ą TU (upper one).

the (potentially destabilizing) φ6 term is very much suppressed as compared to the
standard φ4 term. It is then not surprising that the bounce solution for the potential
VSMpφq ` VNPpφq converges to the corresponding bounce for VSMpφq alone.

A direct consequence of the coincidence of pφ
SM
prq, ρ

SM
prqq and pφ

NP
prq, ρ

NP
prqq

is properly the coincidence of τ
NP

and τ
SM
, i.e. the washing out of the NP destabi-

lization. In fact, from (5.14) we see that Sb at the bounce pφ
NP
prq, ρ

NP
prqq is:

S
NP
“ ´2π2

ż 8

0

dr ρ3
NP

”

VeffpφNP
q ` VNPpφNP

q

ı

. (5.22)

As for sufficiently large values of |ξ| we have pφ
NP
prq, ρ

NP
prqq Ñ pφ

SM
prq, ρ

SM
prqq,

Eq. (5.22) can be replaced with:

S
NP
“ ´2π2

ż 8

0

dr ρ3
SM

”

VeffpφSM
q ` VNPpφSM

q

ı

. (5.23)

For the argument given above, the second term in the r.h.s. of Eq. (5.23) is negli-
gible as compared to the first one, i.e. S

NP
Ñ S

SM
. In conclusion, having φ

SM
prq

and φ
NP
prq practically the same size R, from Eq. (5.16) it follows that τ

NP
and τ

SM

coincide.

The enormous stabilizing effect of the Higgs-gravity interaction can be further
illustrated by comparing values of τ calculated at different values of ξ (e.g. ξ “ 0,
ξ “ 0.9) in a region of the parameter space pα1, α2q where in the ξ “ 0 case τ is
always lower than TU . For α1 and α2 we chose the ranges: ´0.25 ď α1 ď ´0.16;
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Figure 5.3: Left panel. Stability diagram in the pα1, α2q plane for the range ´0.25 ď

α1 ď ´0.16 , 0.08 ď α2 ď 0.13, when ξ “ 0. Right panel. Stability diagram for
ξ “ 0.9 in the same region of the pα1, α2q plane.
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Figure 5.4: Stability diagrams in the (α1, α2) plane for the potential V pφq “
Veffpφq ` VNPpφq, with α1 and α2 in the same ranges as in Fig. 5.3. From left to
right, from top to bottom: ξ “ ´0.4,´0.3, 0.7, 0.8. The first two values of ξ are on
the left of ξmin (the value of ξ where τ reaches its minimal value), the last two ones
on the right side.

0.08 ď α2 ď 0.13. The results are shown in Fig. 5.3: the left panel is the stability
diagram for the ξ “ 0 case (it is a zoom in the dangerous parameter region of the
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right panel of Fig. 4.5, plotted in terms of α1 and α2), the right one for ξ “ 0.9. The
black lines are level curves with the same value of τ , and the numbers on the top of
them are log

10
pτ{TUq. The red color scale of the left panel, ranging from darker to

lighter (left to right), indicates increasing values of τ ; as said above, τ ă TU in the
whole region. The right panel is the stability diagram for ξ “ 0.9. The blue color
scale again indicates increasing values τ going from left to right. The values of τ
have enormously increased, and in the same region of the pα1, α2q plane they turn
out to be much larger than TU . The destabilizing effect of the NP terms is entirely
washed out by the direct coupling between the Higgs field and gravity. In Fig. 5.4
we consider other values of ξ (ξ “ ´0.4,´0.3, 0.7, 0.8) that confirm these results.

The results shown in these stability diagram suggest an important conclusion.
If we do not take into account the direct Higgs-gravity interaction, NP terms can
strongly destabilize the EW vacuum, and without a knowledge of high energy New
Physics, in particular without a complete theory of Quantum Gravity, we cannot
draw any conclusion on the ultimate fate of our universe. The Higgs-gravity interac-
tion term, whose presence is guaranteed by exceptionally well known experimental
facts (gravity, the Higgs boson, the quantum nature of physical laws), acts as a
universal stabilizing mechanism, that washes out any potentially destabilizing ef-
fect from high energy New Physics (for instance from unknown Quantum Gravity),
protecting our universe from a disastrous decay.
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Chapter 6

Stability of the EW Vacuum in
SUGRA frameworks

In the previous chapters we have seen that the problem of stability of the EW
vacuum [35, 66, 67, 87–98] has been central not only in our understanding of the
Standard Model, but also in demystifying the very nature of possible New Physics.
In particular, we have shown that Planckian NP can strongly affect the stability
of the EW vacuum and the presence of possible harmful Planck-scale-suppressed
operators of the form φ2n

{M2n´4
P can no longer be ignored in the computation [51].

Although we may not be able to exclude a priori such harmful operators, one may
still wonder whether a mechanism exists in order to protect the EW vacuum from a
disastrous decay. In Chapter 4 we have seen that the direct interaction between the
Higgs boson and gravity can provide such a mechanism. We can also require whether
a protective symmetry can be invented in order to postpone the appearance of these
harmful Planck-scale-suppressed operators φ2n

{M2n´4
P to arbitrarily high orders n,

so as to render their destabilising effect on the EW vacuum harmless.

In this Chapter we will show how supergravity (SUGRA) embeddings of the
SM [99] could be sufficient to protect the stability of the EW vacuum up to very
large values of the soft supersymmetry (SUSY) breaking scale MS , above the SM
instability scale of 1011 GeV. Moreover, we will explicitly demonstrate how discrete
R symmetries could be used in order to restrict the form of the holomorphic super-
potential W , and so suppress the appearance of the harmful Planck-scale operators
of the type φ2n

{M2n´4
P to arbitrary higher powers of n [100].

6.1 Theoretical background

In this Chapter we will refer to many equations of the previous chapters which we
will report here for the sake of simplicity. In particular, we will consider both the
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flat spacetime background, described by the action (3.89)

Srφs “

ż

d4x

ˆ

1

2
Bµφ Bµφ ` V pφq

˙

, (6.1)

and the curved spacetime background, described by the action (3.104)

Srφ, gµνs “

ż

d4x
?
g

ˆ

´
1

2
M2

Pl R `
1

2
gµνBµφ Bνφ ` V pφq

˙

, (6.2)

where MPl is the reduced Planck mass. The latter is related to the ordinary Planck
mass MP « 1.9ˆ 1019 GeV and the Newton’s constant GN as follows:

M2
Pl ”

M2
P

8π
“

`

8π GN

˘´1
. (6.3)

In Eqs. (6.1) and (6.2), gµν is the Op4q symmetric metric given in Eq. (3.105), while
V pφq is the potential with a metastable state that is given by Eqs. (4.6), (4.7) and
(4.8) in the Standard Model case.

As in the previous chapters, we will compute the bounce solutions relative to the
potential taken into account using Eqs. (3.97), (3.98) and (3.99) for the flat spacetime
background, and Eqs. (3.109) and (3.113) for the curved spacetime background.
Then, the tunneling time τ “ Γ´1 is computed in the usual way:

Γ “ De´
`

Srφbs´Srφfvs

˘

” De´B ñ τ »

ˆ

R4

T 4
U

˙

eSb TU , (6.4)

where R is the size of the bounce solution. The tunneling exponent B in the flat
space time case is given by:

B “ 2π2

ż 8

0

dr r3

ˆ

1

2
9φ2
b ` V pφbq

˙

“ ´ 2π2

ż 8

0

dr r3 V pφbq , (6.5)

where in the left hand side, following steps similar to those of Derrick’s theorem,
the kinetic term 1

2
9φ2
b in (6.5) may effectively be replaced with ´2V pφbq. Instead, in

the curved spacetime case the tunneling exponent B is given by:

B “ ´2π2

ż 8

0

dr ρ3 V pφq . (6.6)

6.2 Planckian New Physics Effects

In this Section we consider the presence of Planck-scale suppressed operators of
the type φ2n

{M2n´4 in addition to the SM effective potential VSMpφq, where M is of
orderMP. Such operators could in principle be generated by quantum gravity effects
and as such, they cannot be excluded a priori from VSMpφq. If their contribution to
the SM potential becomes negative, they may have a dramatic destabilizing effect
on our EW vacuum, as extensively discussed in Chapter 4 for n “ 3 [54, 65, 71, 72].
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As we will show below this destabilizing effect may be resent also for n ą 3: for
these reasons we call such operators that contribute with a negative sign to VSMpφq

as harmful operators.
Let us consider a set of distinct φ2n-models that could effectively describe un-

known Planckian NP effects. To this end, we extend the SM effective potential as
follows:

V2npφq “ VSMpφq ` V
p2nq

NP pφq , (6.7)

where n ě 3, and

V
p2nq

NP pφq “
c1

2n

φ2n

M2n´4 `
c2

2pn` 1q

φ2pn`1q

M2n´2 . (6.8)

It is worth to note that all potentials V2npφq in (6.7) reduce to VSMpφq for φ !M , as
its NP part, V p2nqNP pφq, becomes subdominant in this small-field regime. For all the
NP effective potentials V p2nqNP pφq, we will assume that c1 is negative, but c2 is positive,
so as to ensure the convexity of the potential at high field values of φ " M . Thus,
the first term φ2n

{M2n´4 in (6.8) represents a harmful operator, which we will use
from now on to characterize both the φ2n-model and its effective potential V2npφq.

In the following, we will analyze numerically the impact of the harmful Planck-
scale NP operators φ2n

{M2n´4 on the tunnelling time τ of the EW vacuum, for
all n ě 3. To better assess the relevance of these operators, we will simply set
c1 “ ´2 and c2 “ 2. Moreover, we will investigate two Planck-scale scenarios with:
(i) M “MP and (ii) M “MP{10, for both a flat and a curved background metric.

6.2.1 Planck-Scale Scenarios with M “MP

We first consider a class of φ2n-scenarios with scalar potentials V2npφq given by (6.7),
where the Planckian NP scale M is set equal to MP. As can be seen from the upper
panel of Fig. 6.1 and presented by dashed lines in multiple colours, the negative
contribution of the harmful Planck-scale operators φ2n

{M2n´4
P in (6.8) produces a

second minimum in their respective effective potentials at φ „MP. For comparison,
in the same panel we display with a solid blue line the SM effective potential VSMpφq

given in (4.6).
As we know from the previous chapters, a key quantity that determines the

tunnelling decay time τ of the EW vacuum is the actual profile of the bounce so-
lutions φprq ” φbprq. These are depicted by dashed lines in multiple colours on
the lower panel of Fig. 6.1 for a flat background metric, where the solid line in blue
corresponds to the SM bounce. Note that all the bounces φprq reach their highest
value close to r “ 0, thereby giving the largest support to the tunnelling expo-
nent B in (6.4). When normalising the effect of the harmful NP operators to the
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Figure 6.1: Upper panel. Scalar potentials V2npφq [cf. (6.7)], for 3 ď n ď 10, as
functions of φ (dashed lines), with c1 “ ´c2 “ ´2 and M “ MP. The blue line
corresponds to the SM potential VSMpφq given in (5.17). Lower panel. Radial profiles
of bounce solutions φprq ” φbprq (dashed lines) for the same class of Planck-scale
scenarios evaluated for a flat spacetime metric. The solid (blue) line refers to the
respective SM bounce.

one originating from the SM potential term 1
4
λφ4, we get the ratio

R2n “
2 c1

nλ

ˆ

φp0q

MP

˙2n´4

. (6.9)

Since φp0q{MP „ 1 for all n ě 3, we expect that as n increases, R2n will decrease and
the predictions for the EW vacuum lifetime τ will get closer to the SM value τSM.
Indeed, this property is observed in Tab. 6.1 for the flat spacetime case. In order to
get a lifetime τ much larger than the age of the Universe TU , we need to suppress
all potentially harmful operators φ2n

{M2n´4
P up to n “ 6, while one gets τ „ τSM
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φ2n

M2n´4 τ{TU τ{TU
φ2n

M2n´4 τ{TU τ{TU

n (flat) (curved) n (flat) (curved)

3 10´208 10´122 7 107 8.8 ˆ 10661

4 10´166 3.4 ˆ 10661 8 1071 8.8 ˆ 10661

5 10´114 8.8 ˆ 10661 9 10133 8.8 ˆ 10661

6 10´55 8.8 ˆ 10661 10 10193 8.8 ˆ 10661

Table 6.1: Lifetime τ of the EW vacuum for a class of Planck-scale scenarios with
harmful operators φ2n

{M2n´4, evaluated for a flat and a curved background metric.
As input values for the NP parameters, we set c1 “ ´c2 “ ´2 and M “MP.

when n ě 50. In the next section, we will outline a protective mechanism within a
SUGRA framework, which can in principle give rise to such a suppression.

Let us now investigate the effect of a curved background metric on the EW
vacuum lifetime τ . Unlike in the flat spacetime, an important novel aspect of the
curved metric is that for increasing n, the bounce solutions φprq and ρprq rapidly
tend to the corresponding SM bounces, as shown in Fig. 6.2. As exhibited in Tab. 6.1,
we obtain τ „ τSM „ 10661 TU (cf. Eq. (4.20)), for all Planck-scale scenarios with
n ě 4. This stabilizing effect of gravity on the EW vacuum may also be attributed
to the fact that for n ě 4, one finds φp0q „ 0.07 which is smaller by more than
one order of magnitude from the corresponding value in the flat spacetime. As a
result, the size of NP contributions as represented by R2n in (6.9) will decrease
more drastically as n grows, for a curved spacetime metric. In the next section, we
will explore whether this feature will persist for Planck-scale scenarios with a lower
quantum gravity scale M .

6.2.2 Planck-Scale Scenarios with M “MP{10

Proceeding as in the previous section, we will analyze a similar class of φ2n-models,
by assuming that the Planckian NP scale M is now one order of magnitude smaller,
i.e. M “ MP{10. Such a choice may be motivated by the fact that the relevant
energy scale of quantum gravity that enters Einstein’s equation is the reduced Planck
mass MPl (cf. Eq. (6.3)), rather than the ordinary Planck mass MP.

From the upper panel of Fig. 6.3, we observe that the minimum of the poten-
tials V2n is now located to a smaller value at φmin „ MP{10. The profiles of the
bounces φprq for a flat spacetime metric are presented by dashed lines in various
colours in the lower panel of Fig. 6.3, while the solid (blue) line stands for the SM
bounce. In order to assess the impact of gravity, we give in Tab. 6.2 the lifetime τ of
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Figure 6.2: Upper panel. Radial dependence of the bounce solutions φprq (dashed
lines) for the Planck-scale scenarios, with n “ 3, 4 and M “ MP, evaluated for a
curved spacetime metric. Lower panel. Radial profiles for ρprq´ r (dashed lines) for
the same scenarios and background metric. The solid (blue) lines in the two panels
show the bounce profiles in the SM.

the EW vacuum, for both a flat and a curved spacetime background. As opposed to
the previous scenarios, we now observe that the impact of gravity is less significant,
and restoration of the SM prediction for τ takes place for n ě 41.

Comparing the flat-spacetime results exhibited in Tabs. 6.2 and 6.1, we notice
that the predicted values for the tunnelling times τ for each n turn out to be close.
As before, we may understand this result by looking at the ratios,

R2n “
2 c1

nλ

ˆ

φp0q

M

˙2n´4

“
2 c1

nλ

ˆ

10φp0q

MP

˙2n´4

. (6.10)

Unlike the previous case M “MP, an extra factor 102n´4 now appears, because we
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Figure 6.3: The same as in Fig. 6.1, but setting instead M “MP{10.

φ2n

M2n´4 τ{TU τ{TU
φ2n

M2n´4 τ{TU τ{TU

n (flat) (curved) n (flat) (curved)

3 10´204 10´203 7 1012 1021

4 10´162 10´160 8 1076 1087

5 10´110 10´106 9 10138 10152

6 10´51 10´44 10 10198 10214

Table 6.2: Lifetime τ of the EW vacuum for a class of Planck-scale scenarios that
include harmful operators φ2n

{M2n´4, with M “ MP{10, evaluated for both a flat
and a curved background metric.
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Figure 6.4: The same as in Fig. 6.2, for scenarios with 3 ď n ď 10 and M “MP{10.

have M “ MP{10. As can be seen from the lower panel of Fig. 6.3, the maximum
of all bounces reached at their origin (r “ 0) approaches the value: φp0q{MP „ 0.1.
Hence, the enhancement factor 102n´4 in (6.10) gets compensated by a corresponding
factor

`

φp0q{MP

˘2n´4
„ 10´p2n´4q. As a consequence of this cancellation, the order-

of-magnitude estimates of the tunnelling time τ for the two Planck-scale scenarios,
with M “MP and M “MP{10, will be comparable.

Let us now turn our attention to the curved spacetime analysis and the numerical
estimates of the EW vacuum lifetime τ given in Tab. 6.2. As mentioned earlier, the
impact of gravity on τ is minimal in this case. This can be better understood by
analysing the profile for the bounce solutions φprq and ρprq, for n ě 3. As shown in
Fig. 6.4, the bounces φprq quickly approach the ones found above in Fig. 6.3 (lower
panel) for the flat spacetime metric. Hence, we expect for the EW vacuum lifetime τ
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to be less affected by the presence of gravity, becoming independent of the radial
coordinate ρprq.

The above exercise illustrates how the occurrence of harmful operators in Planck-
ian NP theories that happen to realise a relatively low scale of quantum gravity M
face a serious destabilization problem of the EW vacuum. In the next section, we
will discuss mechanisms that can naturally suppress the presence of leading harmful
operators to sufficiently higher powers of n, within a minimal SUGRA framework.

6.3 Protective Mechanisms in SUGRA

Given our ignorance of a UV-complete theory of quantum gravity, Planck-scale
gravitational effects are usually treated within the context of a low-energy effective
field theory by considering all possible gauge-invariant non-renormalizable operators
suppressed by inverse powers of a high-scale mass M , which is typically of the order
of the reduced Planck mass MPl « 2.4ˆ 1018 GeV. Specifically, gravitational effects
on the SM scalar potential VSMpφq along the gauge-invariant field direction φ “
?

2 pΦ:Φq1{2 ě 0, where Φ is the SM Higgs doublet, may be described by the effective
potential

V pφq “ VSMpφq `
8
ÿ

n“3

λ2n

2n

φ2n

M2n´4 , (6.1)

with VSMpφq “ ´m2φ2
{2 ` λφ4

{4. Depending on the sign and size of the coef-
ficient λ6 for the leading Planck-scale suppressed operator φ6

{M2, the lifetime of
the EW vacuum can vary by many orders of magnitude [54]. In particular, if λ6 is
negative and |λ6| large, the operator φ6

{M2 then becomes harmful and could lead
to a dramatic destabilization of the EW vacuum, for both flat and curved spacetime
backgrounds [51]. In the following, we will show how SUGRA embeddings of the
SM [99] could protect the EW vacuum from rapid decay up to very large values
of the soft SUSY-breaking scale MS , above the so-called SM metastability scale
of 1011 GeV.

To start with, let us first consider the Minimal Supersymmetric extension of the
Standard Model (MSSM), in which only Planck-mass suppressed non-renormalizable
operators involving the Higgs chiral superfields pH1,2 are considered. In other words,
we ignore for simplicity non-renormalizable operators of all other chiral superfields
in the effective superpotential xW . In a SUGRA framework, xW will then be given
by

xW “ xW0 ` µ pH1
pH2 `

8
ÿ

n“2

ρ2n

2n

p pH1
pH2q

n

M2n´3 , (6.2)

where
xW0 “ hl pH1

pL pE ` hd pH1
pQ pD ` hu pH2

pQpU (6.3)
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is the usual MSSM superpotential without the µ term, and pH1, pH2 are the chiral
superfields for the two Higgs doublets, pQ, pL are the chiral superfields for the quark
and lepton left-handed iso-doublets, and pU , pD, pE are their respective right-handed
iso-singlet counterparts1. Note that in writing (6.3), we have suppressed all flavour
indices from the lepton and quark Yukawa couplings hl, hd and hu.

To simplify matters, we consider that all our SUGRA embeddings are based on
a minimal Kaehler potential pK given by

pK ” Kppϕ˚i , pϕiq “ pH:

1
pH1 `

pH:

2
pH2 ` . . . , (6.4)

where pϕi is a generic chiral superfield and contributions from SU(2)L and U(1)Y
vector superfields are not shown. At the tree level, the scalar SUGRA potential
V may be written as a sum of three terms: V “ VF ` VD ` Vbr, since it receives
three contributions from: (i) F -terms (VF ), (ii) D-terms (VD), and (iii) the so-called
SUSY-breaking terms (Vbr) induced by spontaneous breakdown of SUGRA that may
occur in the so-called hidden sector of the theory [99]. In particular, the F - and
D-terms of the potential V may be calculated from the general expressions:

VF “ eK{M
2
Pl

„ˆ

W, i `
K, i
M2

Pl

W
˙

G´1, ij̄

ˆ

W, j̄ `
K, j̄
M2

Pl

W˚

˙

´ 3
|W |2

M2
Pl



(6.5)

VD “
g2

2
f´1
ab D

aDb , (6.6)

where W ” Wpϕiq, K ” Kpϕ˚i , ϕiq, W, i ” BW{Bϕi, K, i ” BK{Bϕi, K, ī ” K˚, i etc,
for a generic scalar field ϕi, and G

´1,ij̄ is the inverse of the Kaehler-manifold metric:
Gij̄ “ K, ij̄ “ B

2K{pBϕiBϕ˚j q. In addition, g is a generic gauge coupling, e.g. of
SU(2)L, fab is the gauge kinetic function taken to be minimal, i.e. fab “ δab, and
Da

“ K, ϕT aϕ are the so-called D-terms, where T a are the generators of the gauge
group. Finally, the SUSY-breaking Higgs potential V H

br generated from the effective
superpotential in (6.2) is given by

V H
br “ m2

1 |H1|
2
` m2

2 |H2|
2
`

ˆ

BµH1H2 `

8
ÿ

n“2

A2n

pH1H2q
n

M2n´3 ` H.c.

˙

. (6.7)

For the purpose of this Chapter, we will assume that the µ-term and the soft mass
parameters m2

1,2 and Bµ are of order MS , but all other SUSY-breaking A-terms A2n

could be as large as M . Although such an unusual assumption does not sizeably
destabilize the gauge hierarchy for MS ă

„ 10 TeV, it can still significantly affect
the predictions for the Higgs-boson mass spectrum. Here, we will not address the
mechanism causing this large hierarchy between the soft parameters and the higher
order A-terms, as it strongly depends on the details of the hidden sector in which
SUSY gets spontaneously broken [99].

1Here we follow the conventions of [101]. A comprehensive review of the EW sector of the
MSSM is given in [102]
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Let us for the moment consider the SUSY limit of the MSSM, by ignoring the
induced SUSY-breaking terms V H

br in the scalar potential V . Assuming that the µ-
term is of orderMS and so negligible when compared toMPl, the renormalizable part
of the MSSM potential, denoted by V0, has an F - and D-flat direction associated
with the gauge-invariant operator pH1

pH2. In the absence of the µ-term, the scalar
field configuration:

H1 “
1
?

2

˜

φ

0

¸

, H2 “
eiξ
?

2

˜

0

φ

¸

, (6.8)

with ξ P r0, 2πq and all other scalar fields taken at the origin, gives rise to an exact
flat direction for V0, i.e. BV0{Bφ “ 0. Here φ is a positive scalar field background with
canonical kinetic term that parameterizes the D-flat direction. The CP-odd angle
ξ indicates that the flat directions for H1 and H2 may also differ by an arbitrary
relative phase ξ. Hence, the parameters pφ, ξq describe fully the D-flat direction
of interest. Now, in the flat-space limit MPl Ñ 8, V0F is positive, implying that
V0 “ V0F `V0D ě 0, where the equality sign holds along a flat direction, such as the
φ-direction.

The above property of a non-negative potential will generically persist in the
minimal SUGRA for the full observable-sector potential V , namely upon the inclu-
sion of gauge-invariant non-renormalizable operators consisting only of MSSM fields.
To see this, we first write the MSSM superpotential xW as the sum: xW “

ř

a
xWa,

where xWa is an arbitrary superpotential term labelled by the index a. Then, we
notice that the only negative contribution to V can potentially come from both the
cross terms and the last term that occur in VF given in (6.5). In particular, up to
an overall positive factor eK{M

2
Pl , we have

VF Ą
ÿ

a,b

„ˆ

K, ī
M2

Pl

Wa
, iWb˚

` H.c.

˙

´ 3
WaWb˚

M2
Pl



“
ÿ

a,b

´

Na `Nb ´ 3
¯WaWb˚

M2
Pl

.

(6.9)
In arriving at the last equality in (6.9), we used the fact that K, īWa

, i “ NaWa in
minimal SUGRA, where Na is the number of scalar fields ϕi present in xWa. Given
that Na,b ě 2 for all superpotential terms in the MSSM, the last expression on the
RHS of (6.9) will be non-negative, with a possible exception specific field configu-
rations for which Na ‰ Nb. Thus, barring fine-tuning, the F -term potential VF of
the observable sector in (6.5) will be non-negative2. Since VD ě 0 as well, the com-
plete MSSM scalar potential, including the infinite series of the non-renormalizable
operators, will generically be non-negative.

2Instead, hidden-sector chiral superfields pZ can lead to a negative contribution to VF via SUSY-
breaking effects from a Polonyi-type superpotential xWhidden “ m2

p pZ`βq, for which Na,b ď 1. This
negative contribution is even desirable, as it can be used to fine-tune the cosmological constant
to its observed small value. Similarly, non-minimal Kaehler potential may also lead to negative
contributions to VF . A more detailed discussion is given in [99].
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The above situation changes drastically, if the SUSY-breaking A-terms as given
in (6.7) are added to the scalar potential V . For illustration, let us consider the
minimally extended MSSM superpotential

xW “ xW0 ` µ pH1
pH2 `

ρ4

4

p pH1
pH2q

2

M
, (6.10)

which induces the SUSY-breaking potential

V H
4,br “ m2

1 |H1|
2
` m2

2 |H2|
2
`

ˆ

BµH1H2 ` A4

pH1H2q
2

M
` H.c.

˙

, (6.11)

for the Higgs sector. For simplicity, we envisage a scenario for which m2
1,2 ! Bµ.

Moving along the D-flat direction as stated in (6.8), and upon ignoring radiative
corrections for field values φ ąMS , the leading part of the scalar potential takes on
the simple form:

V4pφq “ eφ
2
{M

2
Pl

„

´
m2

2
φ2
`

Repe2iξA4q

2M
φ4
`
|ρ4|

2

8

φ6

M2

ˆ

1 `
5

32

φ2

M2
Pl

`
1

32

φ4

M4
Pl

˙

,

(6.12)
where higher-order terms proportional to |µ|{M ă

„ MS{M ! 1 were neglected and
m2

“ |eiξ Bµ ´ |µ|2| is arranged to be of the required EW order. Note that even if
A4 ą 0, the field direction (6.8) with ξ “ π{2 will make the coefficient Repe2iξA4q

entering the potential V4 in (6.12) negative. If A4 is comparable to M , the quartic
coupling φ4 can become both sizeable and negative, giving rise to a potential V4

that develops a new minimum of order M{|ρ4|, far away from its SM value. On the
other hand, the higher powers φ6, φ8 and φ10 are all proportional to the positive
coefficient |ρ4|

2, thereby ensuring the convexity of the potential V4. Clearly, this
exercise shows that SUSY is rather effective in protecting the stability of the EW
vacuum from unknown Planck-scale gravitational effects, unless the induced SUSY-
breaking coupling A4 happens to be of order M „MPl.

In the following, we will see that SUSY may still be effective for protecting
the stability of our EW vacuum, even for extreme scenarios with A2n „ MPl

and MS above the metastability scale of order 1011 GeV, along the lines of split-
SUSY [103, 104]. To this end, let us first consider the following discrete symmetry
transformations on the chiral superfields:

´

pH1 , pH2 , pQ , pL
¯

Ñ ω
´

pH1 , pH2 , pQ , pL
¯

, (6.13)

whereas the remaining iso-singlet chiral superfields, pU , pD and pE, do not transform.
Equation (6.13) implies: xW Ñ ω2

xW . If ω2
“ 1, the discrete transformations stated

in (6.13) give rise to a global Z2 symmetry, which is automatically satisfied by the
complete effective superpotentialWeff in (6.2) and the minimal Kaehler potential K
in (6.4). For ω2

‰ 1, however, the superpotentialW is charged and (6.13) represents
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a non-trivial discrete R-symmetry, which is maintained by an appropriate rotation
of the Grassmann-valued coordinates of the SUSY space.

We may now exploit this discrete R-symmetry in order to suppress lower powers
of the non-renormalizable operators in the effective superpotential xW given in (6.2),
as well as the respective A2n terms induced by xW . Given that pH1

pH2 Ñ ω2
pH1

pH2

under the discrete R-symmetry transformations in (6.13), we may now require that

ω2n
“ ω2 , (6.14)

for n ą 2. Note that for n “ 1, 2, no non-trivial restrictions on the form of xW will
arise.

Let us therefore turn our attention to the case with n “ 3 in (6.14). This leads
to a scenario realizing the discrete R-symmetry ZR

4 , with ω
4
“ 1 and ω2

“ ´1 ‰ 1.
In this case, xW takes on the form:

xW “ xW0 ` µ pH1
pH2 `

ρ6

6

p pH1
pH2q

3

M3 `
ρ10

10

p pH1
pH2q

5

M7 ` . . . (6.15)

In such a minimal SUGRA framework withR-symmetry, the induced SUSY-breaking
potential for the Higgs sector is expected to be of the form [99]:

V H
6,br “

ˆ

BµH1H2 ` A6

pH1H2q
3

M3 ` A10

pH1H2q
5

M7 ` . . .

˙

` H.c. (6.16)

As before, we assume for simplicity that the soft SUSY-breaking mass parame-
ters m2

1,2 are small, i.e. m2
1,2 ! Bµ, so that they can be ignored. Likewise, we

assume that only the leading ρ6-coupling and the A6 term are sizeable and so rele-
vant. In this case, along the D-flat direction (6.8), the scalar potential for φ ą MS

will acquire the simple form

V6pφq “ eφ
2
{M

2
Pl

„

´
m2

2
φ2
`

Repe3iξA6q

4M

φ6

M2 `
|ρ6|

2

32

φ10

M6

ˆ

1`
9

72

φ2

M2
Pl

`
1

72

φ4

M4
Pl

˙

.

(6.17)
In fact, this last result can be generalized to a discrete R-symmetry ZR

2n´2, with
ω2pn´1q

“ 1 and n ě 3. In this case, the leading form of the scalar potential V2n for
φ ąMS becomes

V2npφ ąMSq “ eφ
2
{M

2
Pl

„

´
m2

2
φ2

`
Repen iξA2nq

2n´1M

φ2n

M2pn´2q

`
|ρ2n|

2

22n´1

φ2p2n´1q

M2p2n´3q

ˆ

1 `
4n´ 3

2p2nq2
φ2

M2
Pl

`
1

2p2nq2
φ4

M4
Pl

˙

. (6.18)

In the above, we have also neglected all small terms that are proportional to |µ|{M .
If A2n ą 0, the proper harmfulD-flat direction is obtained for ξ “ π{n, leading to the
smallest negative coefficient for the φ2n operator in (6.18), since Repen iξA2nq “ ´A2n ă 0.

In the next section, we will use the leading form of the SUGRA-derived potential
V2npφq in (6.18), for field values φ ą MS , in order to assess the stability of the EW
vacuum against the presence of harmful Planck-scale suppressed operators.
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6.4 EW Vacuum Stability in SUGRA Models

In this Section, we will analyze the stability of the EW vacuum, upon minimally
embedding the SM into an effective SUGRA theory that happens to predict the
leading form of Planckian NP. We will consider a SUGRA-derived extension of the
SM effective potential V2npφq for Higgs field values φ above the soft SUSY-breaking
scaleMS . This means that for φ ąMS , we will adopt the leading form of the SUGRA
potential V2npφq of (6.18). Instead, for φ ă MS , the SM effective potential VSMpφq

given in (5.17) will be regarded to be an accurate approximation of the theory,
i.e. V2npφ ă MSq “ VSMpφq. Given that the reduced Planck mass MPl (cf. (6.3))
becomes the relevant mass scale in SUGRA, all mass parameters will be given in
MPl units. To simplify further our analysis, we identify the scale M in (6.18) with
MPl, i.e. M “MPl.

As for the soft SUSY-breaking scaleMS , we consider two different scenarios that
realize: (i) a very large MS “ 109 TeV; (ii) a relatively low MS “ 10 TeV. In all
scalar potentials V2npφq, we select the flat direction for which the CP-odd phase
ξ in (6.8) is given by ξ “ π{n. This gives rise to a harmful operator φ2n

{M2n´4
Pl

which has the largest negative contribution to V2npφq. Furthermore, for the induced
SUSY-breaking trilinears A2n, we assume that they take the following four discrete
values:

A2n “ MPl , MPl{5 , MPl{10 , MPl{50 . (6.19)

Finally, we set all superpotential couplings ρ2n “ 1, for simplicity.

6.4.1 SUGRA Scenarios with MS “ 109 TeV

We will first consider a minimal SUGRA scenario withMS “ 109 TeV. The results of
our analysis are exhibited in Tab. 6.3, for different values of n corresponding to the
SUGRA potentials V2npφq (cf. (6.18)). In detail, Tab. 6.3 shows the value of the AdS
vacuum energy Vmin ” V2npφminq at the Planckian AdS vacuum φmin, the field values,
φ flat

0 and φ curved
0 , as determined at the center of the bounce (with φ0 ” φbpr “ 0q),

as well as the EW vacuum lifetimes τflat and τ curved (in TU units) for a flat and
a curved spacetime background, respectively. A key theoretical parameter in our
analysis is the SUSY-breaking trilinear coupling A2n, which takes four representative
values as stated in (6.19).

From Tab. 6.3, we observe that for A2n “ MPl, no noticeable stabilizing effect
on the EW vacuum was found, notwithstanding the presence of gravity and the
induced curved background metric. In fact, we have checked that τflat

„ τ curved, for
very high values of n as well. Although this result may seem counter-intuitive, it
certainly implies that the protective mechanism presented in Section 6.3 appears to
be ineffective to assure the stability of our EW vacuum in this case.
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n A2n Vmin φmin φ flat
0 φ curved

0 τflat τ curved

2 1 ´4.1791 1.4310 1.4281 1.4253 10´238 10´238

3 1 ´5.1768 1.4308 1.4308 1.4308 10´238 10´237

4 1 ´5.6986 1.4264 1.4264 1.4264 10´238 10´236

2 1/5 ´0.0133 0.7161 0.0021 0.0019 10´200 10´200

3 1/5 ´0.0401 0.9790 0.9787 0.9786 10´146 10´135

4 1/5 ´0.0669 1.0991 1.0991 1.0991 10´129 10´104

2 1/10 ´0.0014 0.5122 0.0013 0.0013 10´170 10´170

3 1/10 ´0.0057 0.8268 0.8262 0.8261 1075 10100

4 1/10 ´0.0108 0.9809 0.9809 0.9809 10193 10260

2 1/50 ´9.8 ˆ 10´6 0.2307 0.0008 0.0008 1061 1061

3 1/50 ´0.00007 0.5554 0.5543 0.5543 104205 104354

4 1/50 ´0.00018 0.7519 0.7519 0.7519 108317 109056

Table 6.3: Numerical estimates of the AdS vacuum energy Vmin at the AdS vac-
uum φmin, the field values φ0 ” φbp0q at the center of the bounce, the EW vacuum
lifetimes τ (in TU units) for a flat and a curved spacetime background, in SUGRA
scenarios with harmful operators φ2n

{M2n´4 (cf. (6.18)). The input parameters for
such scenarios are: MS “ 109 TeV, M “ MPl, ρ2n “ 1, while A2n takes the four
discrete values given in (6.19). All energy scales are given in units of the reduced
Planck mass MPl.

As A2n assumes smaller values as shown in Tab. 6.3, e.g. A2n “ MPl{5, we no-
tice that unlike n “ 2, the lifetime of the EW vacuum, τflat and τ curved evaluated
separately for a flat and a curved spacetime metric, gets prolonged, as expected.
For all the scenarios with n “ 2, the destabilizing effect of the negative φ4 potential
term is so strong that even the inclusion of gravity can no longer alter the value
of τ . Otherwise, we anticipate on general grounds that the inclusion of gravity will
increase the stability of the EW vacuum for all scenarios n ě 3. However, for the
scenario with A2n “ MPl{5, all low order harmful operators with n “ 2, 3, 4 lead
to lifetimes τ ! TU , as can be seen from Tab. 6.3. When A2n becomes even smaller,
i.e. A2n “ MPl{10 and A2n “ MPl{50, a quicker stabilization of the EW vacuum is
achieved and the predicted tunnelling time τ becomes much larger than the age of
the Universe TU , for all scenarios with n ě 3 and n ě 2, respectively. This result is
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Figure 6.5: The bounces φprq (upper panel) and the curvatures ρprq (lower panel)
for the potential (6.18) with A2n “ MPl{5 and n “ 4, for a flat (solid blue) and a
curved (dashed red) spacetime.

in agreement with the discussion presented in Section 6.2, since the negative A2n-
dependent contribution of the harmful operators to the potentials V2n becomes less
significant for scenarios with lower values A2n.

Finally, it is interesting to observe that as n increases, the AdS vacuum φmin and
the bounces, φflat

0 and φcurved
0 at r “ 0, all start to converge towards the same value:

φmin “ φflat
0 “ φcurved

0 . In the same context, we have verified that the whole radial
profile φflat

prq will start to coincide with that of φcurved
prq. In fact, the difference

between τflat and τ curved found in Tab. 6.3 will result from the two actions of the
bounce solutions (cf. (6.5) and (6.6)),

Sflat
b “ ´2π2

ż 8

0

dr r3 V pφflat
q and Scurved

b “ ´2π2

ż 8

0

dr ρ3 V pφcurved
q ,

which determine the tunnelling exponent B in (6.4). Hence, the deviation of the
curvature of the metric, ρ “ ρprq (curved spacetime), from the respective flat one,
ρflat

prq “ r, will control the difference in the predictions for τflat versus τ curved.
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n A2n Vmin φmin φ flat
0 φ curved

0 τflat τ curved

2 1 ´4.1791 1.4310 1.4281 1.4253 10´238 10´238

3 1 ´5.1768 1.4308 1.4308 1.4308 10´238 10´237

4 1 ´5.6986 1.4264 1.4264 1.4264 10´238 10´236

2 1/5 ´0.0133 0.7161 2.24 ˆ 10´7 2.04 ˆ 10´7 10´184 10´184

3 1/5 ´0.0401 0.9790 0.9787 0.9786 10´146 10´135

4 1/5 ´0.0669 1.0991 1.0991 1.0991 10´129 10´104

2 1/10 ´0.0014 0.5123 1.49 ˆ 10´7 1.47 ˆ 10´7 10´154 10´154

3 1/10 ´0.0057 0.8268 0.8262 0.8261 1076 10100

4 1/10 ´0.0108 0.9809 0.9809 0.9809 10218 10260

2 1/50 ´9.8 ˆ 10´6 0.2307 1.10 ˆ 10´7 1.10 ˆ 10´7 1076 1076

3 1/50 ´0.00008 0.5554 0.5543 0.5543 104196 104354

4 1/50 ´0.00018 0.7519 0.7519 0.7519 108006 109056

Table 6.4: The same as in Tab. 6.3, but with MS “ 10TeV.

In Fig. 6.5, we give a concrete example, where we plot the bounces φprq (upper
panel) and the curvatures ρprq (lower panel) for the potential (6.18) with n “ 4 and
A2n “MPl{5, for a flat (solid blue line) and a curved (dashed red line) background
metric. We see that while the two bounce solutions for φprq practically coincide, the
corresponding ones for ρprq differ from one another, thereby causing the prediction
for τflat to significantly deviate from that for τ curved.

6.4.2 SUGRA Scenarios with MS “ 10 TeV

We will now study a class of minimal SUGRA scenarios with a soft SUSY-breking
scale MS “ 10 TeV. Such scenarios are better motivated, in the sense that they
require a much smaller degree of fine tuning for solving the infamous gauge hierarchy
problem. Otherwise, all other theoretical parameters take the same values as before.
This exercise will allow us to probe the sensitivity of our results to MS . Tab. 6.4
summarizes the findings of our analysis.

As was the case for the SUGRA scenarios with MS “ 109 TeV, we find similar
features for those with MS “ 10 TeV. As before, we obtain that for any fixed value
of A2n, the EW vacuum lifetime τ will increase with n. Likewise, τ will also increase,
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as A2n decreases. Similarly, we notice that for n “ 2, the destabilizing effect of the
negative φ4 potential term is strong enough to counter-act the respective stabilising
effect thanks to gravity. As a consequence, the predictions for τ turn out not to
depend on the choice of the background metric. As before, we observe that for
A2n “MP{50, the EW vacuum lifetime gets adequately prolonged, becoming much
larger than TU , already from n “ 2 and on.

If we compare the results presented in Tab. 6.4 to those in Tab. 6.3, we will
observe that the tunnelling times τflat and τ curved are rather comparable, especially
when n ě 3. Evidently, this suggests that even if gravity is taken into account,
the bounce solutions seem to be insensitive to the matching of the SM effective
potential VSMpφq to the SUGRA potential V2npφq for a wide range of φ values:
φ “ 10´ 109 TeV.

In order to gain further insight into this point, we consider a variant effective
scalar potential rV2npφq. To be precise, for φ ă 10 TeV, we set rV2npφq “ VSMpφq, and
for φ ą 109 TeV, rV2npφq “ V2npφq. However, between the field values φ “ 10 TeV and
φ “ 109 TeV, the new potential rV2npφq is assumed to follow an interpolating straight
line. Interestingly enough, the tunnelling times τ , as well as the other parameters
shown in Tab. 6.4, come out to be close to the corresponding ones obtained when
VSMpφq or V2npφq are used as an interpolation from 10 to 109 TeV. Consequently,
the bounce solutions turn out to be insensitive to the shape of the potential in the
above range of φ. This observation explains the robustness and the independence
of these results for a wide range of soft SUSY-breaking scales: MS “ 10´ 109 TeV.
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Chapter 7

Electroweak vacuum lifetime in two
Higgs doublet models

The two-Higgs doublet model (2HDM) [105, 106] is arguably the simplest SM ex-
tension, in which the particle content of the SM is complemented by a second Higgs
doublet. The model boasts a rich phenomenology, with a larger scalar sector, in-
cluding two CP-even scalars, a pseudoscalar and a charged scalar, and may have
spontaneous CP breaking for certain choices of its parameters, thus offering an ad-
ditional source of CP violation. Obviously, the additional scalars predicted in 2HDM
are not yet discovered, and the model must also be in agreement with current exper-
imental searches for BSM particles. Even after demanding that the 125 GeV scalar
be SM-like, there remains a large 2HDM parameter space available to comply with
those experimental results.

An interesting property of the 2HDM strictly related to the scope of this thesis
is that already at the classical level it has a richer vacuum structure. Whereas in the
classical SM potential there can only be one type of minimum, the 2HDM has the
possibility of three physically different kinds of minima: an electroweak-breaking but
CP-and-charge preserving (we call it “normal” minimum), analogous to the SM; a
minimum which spontaneously breaks both the electroweak and CP symmetries; and
a minimum where the vacuum expectation value (vev) of the scalar doublets carries
electric charge, and electric charge conservation no longer holds. However, the scalar
potential of the model is such that, at least at tree level, minima of a different nature
cannot simultaneously coexist [107–110]. The stability of a 2HDM vacuum against
tunneling to another vacuum of a different nature is therefore ensured by the theory
itself, at least at tree level.

Moreover, there is a very crucial property concerning 2HDM normal vacua: for
certain regions of the parameter space, there may exist two non-degenerate vacua of
this type [109–111], both of them CP and charge preserving, but having vevs which
break the electroweak symmetry. However, the vevs of the doublets, vi, are such
that in “our” minimum they satisfy v2

1 ` v2
2 “ 246 GeV2 (thus in “our” minimum
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all elementary particles have their well-known masses), whereas a different mass
spectrum holds for the second minimum. If the EW vacuum which the universe
currently occupies is not the absolute minimum of the potential, it will sooner or
later tunnel to a deeper minimum that breaks the same symmetries, then ensuring
a situation similar to those of Higgs effective potential in SM. The fundamental
difference between the 2HDM and the SM is that in the latter case the EW vacuum
shows its instability (metastability) only once radiative corrections are taken into
account, and this is mainly due to the negative contribution to the potential coming
from the top quark (see Chapter 2). Instead in the 2HDM the coexistence of two
minima in the potential already occurs at tree-level, and the analysis of the stability
of the false vacuum (the EWminimum in our case) can be already undertaken at this
level (i.e. prior to the study of the loop corrected potential). The conditions under
which a second 2HDM minimum may exist, and the condition which discriminates
whether “our” minimum is the global one were established in refs. [109, 110, 112, 113],
and we will summarize them in Section 7.2. The deeper vacuum, different from the
“standard” EW breaking one, was usually dubbed panic vacuum in the context of
the 2HDM [112, 113]: in fact, as we know a transition from the EW minimum to the
deeper one would be disastrous, as such a transition would release a colossal amount
of energy and, since the fields in the two minima have different vevs, all elementary
particles would change their masses upon transition to the deeper vacuum.

However, the mere existence of a “panic” vacuum is not sufficient to exclude the
parameters of the potential which yield such a possibility. In fact, if the tunneling
time τ from the false to the true vacuum is larger than the age of the universe, the
existence of the deeper vacuum would have no impact whatsoever in the phenomenol-
ogy observed while the universe lies in the upper minimum. Thus the computation
of τ becomes a fundamental tool to distinguish between those regions of the param-
eter space which yield dangerous panic vacua, and those for which the deeper vacua
exist but are practically harmless. In this Chapter, we will undertake a thorough
analysis of the tunneling between neutral vacua in the 2HDM by calculating the
EW vacuum lifetime. To this end, we have to look for the bounce solutions to the
Euclidean Euler-Lagrange equations that have O(4) symmetry [114]. It is worth to
note that here we limit ourselves to compute the EW vacuum lifetime in the flat
spacetime background, while the inclusion of gravity is postponed to future studies.

7.1 The Two-Higgs Doublet Model potential

The 2HDM is perhaps the simplest extension of the SM since the particle content
of the 2HDM is enlarged by a second SUp2qW ˆ Up1qY doublet, but the gauge and
fermion content of the model is the same as the SM’s [105, 106]. The model therefore
contains two hypercharge 1 doublets, Φ1 and Φ2, in terms of which the most general
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renormalizable 2HDM scalar potential is written as

V “ m2
11|Φ1|

2
`m2

22|Φ2|
2
´

´

m2
12Φ:1Φ2 ` h.c.

¯

`
1

2
λ1|Φ1|

4
`

1

2
λ2|Φ2|

4
` λ3|Φ1|

2
|Φ2|

2
` λ4|Φ

:

1Φ2|
2

`

„

1

2
λ5

´

Φ:1Φ2

¯2

` λ6|Φ1|
2
´

Φ:1Φ2

¯

` λ7|Φ2|
2
´

Φ:1Φ2

¯

` h.c.



, (7.1)

where the coefficients m2
12, λ5,6,7 can be complex. The doublets Φ1 and Φ2 are

not physical fields: the mass eigenstates which arise from them are physical, but
the doublets themselves are not. This means that any linear combination of the
doublets which preserves the form of the model’s kinetic terms provides an equally
valid physical description of physics. This corresponds to an invariance of the model
under fields redefinitions, so called basis changes of the form Φ1i “ UijΦj, where
U is a 2 ˆ 2 unitary matrix. Though the potential of Eq. (7.1) seemingly has 14
independent real parameters, the freedom to redefine the doublets means that in
fact one can eliminate three of those parameters, and thus the most general 2HDM
scalar potential has 11 independent real parameters [115].

Considering the whole theory we must include the Yukawa sector, i.e. the scalar-
fermion interactions, but this makes us fall into a problem: if we build the most gen-
eral lagrangian with two Higgs doublets, the Yukawa sector will include tree-level
flavour changing neutral currents (FCNC) mediated by neutral scalars. This hap-
pens because the most general Yukawa terms of the 2HDM include interactions of
both doublets with all fermions. However, these FCNC are very tightly constrained
by experimental data and they should be avoided. The most studied model elim-
inates tree-level scalar-mediated FCNC by imposing a Z2 discrete symmetry upon
the model. The discrete symmetry usually considered demands that the lagrangian
be invariant under a transformation on the doublets of the form Φ1 Ñ Φ1 and
Φ2 Ñ ´Φ2 [116, 117]. As a consequence, the parameters m2

12, λ6 and λ7 vanish from
the potential, though m2

12 is reintroduced as a (real) soft-breaking term, to enlarge
the allowed parameter space and, among other things, allow the theory to have a
decoupling limit [115] where the masses of all scalars other than the SM-like one can
be made very large. The final potential with which we will be working is thus

V “ m2
11|Φ1|

2
`m2

22|Φ2|
2
´m2

12

´

Φ:1Φ2 ` h.c.
¯

`
1

2
λ1|Φ1|

4
`

1

2
λ2|Φ2|

4
` λ3|Φ1|

2
|Φ2|

2
` λ4|Φ

:

1Φ2|
2
`

1

2
λ5

„

´

Φ:1Φ2

¯2

` h.c.



,

(7.2)

where now all parameters are real (we have further imposed CP conservation on the
potential, which makes all possible complex phases vanish).

The 2HDM, of course, is not only a theory of the scalar sector, it includes also
gauge bosons and three generations of fermions, as does the SM. The most general
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Yukawa sector of the model, as mentioned above, will generate tree-level FCNC
which are strongly disfavoured by experimental results. These are eliminated im-
posing, on the full lagrangian, the discrete symmetry Φ1 Ñ Φ1 and Φ2 Ñ ´Φ2

and we have already explained the impact of this symmetry on the scalar sector;
on the Yukawa sector, it forces only one of the doublets to couple (and thus give
mass) to each generation of like-charged fermions. Depending on how the fermionic
fields (both the left doublets and right singlets) transform under the Z2 symmetry,
there are then several possible types of 2HDM, with different phenomenologies and
classified according to their scalar-fermion interactions. Usually, one considers four
different types1:

• Model Type I, where all fermions couple to a single Higgs doublet, chosen as
Φ2 per convention.

• Model Type II, where all right-handed up-type quarks couple to Φ2, but right-
handed down-type quarks and charged leptons couple to Φ1. This type of
couplings is analogous to what happens in SUSY models.

• The Lepton-specific model, in which all quarks couple to Φ2, but right-handed
charged leptons couple to Φ1.

• The Flipped model, in which right handed up quarks and charged leptons
couple to Φ2, but right-handed down quarks couple to Φ1.

Thus for each model each same-charge type of fermions may gain their masses from
different Higgs doublets. The fact that only one Higgs doublet couples to fermions
of the same electric charge eliminates tree-level FCNC, as the couplings between
the physical scalar particles and the fermions will be described by diagonal matri-
ces [106]. As already mentioned, each of these models has different phenomenologies,
a subject we will address in Section 7.1.3.

7.1.1 Theoretical constraints on quartic couplings

The quartic couplings of (7.2) are not completely unconstrained. In order to ensure
that the potential is bounded from below (BFB), meaning, no directions in field
space along which the potential can tend to minus-infinity, the couplings need to
obey [118]

λ1 ą 0 , λ2 ą 0 ,

λ3 ą ´
a

λ1λ2 , λ3 ` λ4 ´ |λ5| ą ´
a

λ1λ2 . (7.3)

1The number of possible models would increase if one were to consider also the possible in-
teraction terms between the scalar doublets and neutrinos, which we will not do in the current
work.
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It has been proven that these (tree-level) conditions are both necessary and sufficient
[109, 110]. Another set of constraints upon the potential’s parameters arises from
requiring that the theory be unitary. This translates into further constraints upon
the quartic couplings of the potential, which may be reduced to [119–121]

|λ3 ´ λ4| ă 8π

|λ3 ` 2λ4 ˘ 3λ5| ă 8π
ˇ

ˇ

ˇ

ˇ

1

2

ˆ

λ1 ` λ2 `

b

pλ1 ´ λ2q
2
` 4λ2

4

˙
ˇ

ˇ

ˇ

ˇ

ă 8π

ˇ

ˇ

ˇ

ˇ

1

2

ˆ

λ1 ` λ2 `

b

pλ1 ´ λ2q
2
` 4λ2

5

˙
ˇ

ˇ

ˇ

ˇ

ă 8π. (7.4)

Here we will consider these tree-level constraints, though one-loop contributions
have been considered [122–131].

7.1.2 The electroweak-breaking minimum

The potential described by Eq. (7.2) can yield, depending of the values of the param-
eters, different types of minima. The scalar fields can acquire vacuum expectation
values (vevs) and break the symmetries of the model in different ways. We call
“normal vacuum” the case where both doublets acquire real and neutral vevs,

xΦ1yN “
1
?

2

˜

0

v1

¸

, xΦ2yN “
1
?

2

˜

0

v2

¸

. (7.5)

These normal minima are similar to the SM vacuum: they break the same gauge
symmetries and preserve CP, and constitute the focus of this Chapter (we will briefly
discuss other types of possible 2HDM minima in Section 7.2). Let us now define the
(real) components of the doublets Φ1 and Φ2 as

Φ1 “
1
?

2

˜

ϕc1 ` iϕc2
ϕr1 ` iϕi1

¸

, Φ2 “
1
?

2

˜

ϕc3 ` iϕc4
ϕr2 ` iϕi2

¸

, (7.6)

where the upper components correspond to charged (+1) fields and the lower com-
ponents, to neutral ones. When the potential develops a normal minimum, the real
neutral components, ϕr1 and ϕr2, give rise to two mass eigenstates which correspond
to CP-even scalars, dubbed h and H. On the other hand, the imaginary compo-
nents, ϕi1 and ϕi2, originate a pseudoscalar particle, A, and the neutral Goldstone
boson G0 which provides the Z boson with its mass. Finally, the upper, charged
components ϕci yield a charged Higgs scalar, H˘ and the charged Goldstone boson
G˘ which gives mass to the W gauge bosons. For such normal minima it is also
customary to define two angles: the ratio of the vevs v1 and v2 defines the angle β,
such that

tan β “
v2

v1

. (7.7)
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β is the angle which diagonalizes both the charged and pseudoscalar squared scalar
mass matrices, and can be considered to only take values between 0 and π{2 without
loss of generality2. On the other hand, the CP-even squared scalar mass matrix is
diagonalized by a different angle, α, defined such that the two physical eigenstates,
h and H, are related to the neutral real components of the doublets as

h “ sinαϕr1 ´ cosαϕr2

H “ ´ cosαϕr1 ´ sinαϕr2 . (7.8)

Again without loss of generality, this angle can be chosen such that ´π{2 ď α ď π{2.
The minimization conditions relate the vevs of Eq. (7.5) to the parameters of the
potential, such that

m2
11v1 ´ m2

12v2 `
λ1

2
v3

1 `
λ345

2
v2

2v1 “ 0

m2
22v2 ´ m2

12v1 `
λ2

2
v3

2 `
λ345

2
v2

1v2 “ 0 , (7.9)

where we have defined
λ345 ” λ3 ` λ4 ` λ5 . (7.10)

Notice that, since the potential is invariant under a sign change for both doublets,
if Eqs. (7.9) admit a solution tv1 , v2u obviously t´v1 , ´v2u will also be a solution.
Also obviously, this second solution will be physically indistinguishable from the
first one. This seemingly trivial point will be extremely important later on, and we
will show in Section 7.4 that it can have a stunning impact on the tunneling rates
between vacua.

Instead of the potential’s couplings, we can choose to describe the model in terms
of the four physical masses, mh “ 125 GeV, mH , mA and m

H
˘ , the angles β and

α, the vev v “ 246 GeV and a further parameter, for instance the soft breaking
term m2

12: a total of eight parameters, just as the potential of Eq. (7.2). The quartic
couplings of the model can then be expressed as

λ1 “
1

v2c2
β

ˆ

c2
αm

2
H ` s

2
αm

2
h ´m

2
12

sβ
cβ

˙

,

λ2 “
1

v2s2
β

ˆ

s2
αm

2
H ` c

2
αm

2
h ´m

2
12

cβ
sβ

˙

,

λ3 “
1

v2

„

2m2

H
˘ `

s2αpm
2
H ´m

2
hq

s2β

´
m2

12

sβcβ



,

λ4 “
1

v2

ˆ

m2
A ´ 2m2

H
˘ `

m2
12

sβcβ

˙

,

λ5 “
1

v2

ˆ

m2
12

sβcβ
´m2

A

˙

, (7.11)

where for simplification we defined sθ “ sin θ and cθ “ cos θ.
2This choice is valid for one specific vacuum, other vacua may have vevs of different signs.
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7.1.3 Experimental constraints on the 2HDM

The larger scalar content of the 2HDM, compared with the SM, leads to measurable
impacts on several experimental observables. So far no scalars other than the 125
GeV one have been discovered, and therefore BSM searches at the LHC and else-
where impose bounds on the masses and couplings of the extra scalars of the 2HDM.
Further, even before the discovery of the Higgs boson, electroweak precision studies
from LEP and other accelerators were used to curtail the values of BSM models,
including the 2HDM. A charged scalar such as the one predicted by the 2HDM
has considerable contributions to several B-meson observables, and data from B-
physics measurements constitute some of the model’s most stringent constraints. In
this Chapter we incorporated a wealth of experimental constraints in the parameter
scans used in Section 7.5.

In general, BSM physics may have substantial contributions to Electroweak Pre-
cision Constraints (EWPC), namely the oblique S, T and U parameters [132–134].
These constraints may, for instance, force the charged Higgs mass and the pseu-
doscalar one to be very close in value. We computed these oblique parameters
and used the most recent fit [135] to constrain the 2HDM parameter space. Direct
searches from LEP, using the channel e`e´ Ñ H`H´ [136], impose a lower bound
on the charged Higgs mass of roughly 100 GeV, which we also implemented. More-
over, the 2HDM contributions to B-physics observables, such as the values of the
b Ñ sγ decay rate [137–141] and the Z Ñ bb̄ width [137, 142], impose consider-
able constraints, usually expressed as exclusions on the m

H
˘–tan β plane. Roughly

speaking, these constraints translate as requiring that tan β be above 1 for most
of the parameter space in all model types, and an almost tan β-independent lower
bound on the charged Higgs mass for model type II (and Flipped), of roughly „ 580

GeV [141]. Other flavour constraints, such as those arising from B Ñ τν, ∆MBs,d
,

etc. [143], were also taken into account.
The Higgs boson discovery at the LHC has been followed by many measurements

of this particle’s properties, which have been seen to be very much in agreement
with what one could expect for a SM-like scalar. The experimental results are thus
pushing the 2HDM into the so-called “alignment limit”, wherein the 125 GeV state
is almost “aligned” with one of the doublets (this in practice corresponds to values
of sinpβ ´ αq very close to 1), and the remaining scalars sufficient massive, or with
sufficiently weak interactions, to have eluded detection thus far. In practical terms,
the LHC constraints are obtained from the µ ratios between the observed number
of events in some Higgs-mediated channel, and the SM expected value for the same
quantity. Then, for the 2HDM the quantities to compare with experimental results
such as those from [144] are

µX “
σ2HDM

pppÑ hq

σSMpppÑ hq

BR2HDM
phÑ Xq

BRSM
phÑ Xq

, (7.12)
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where σ stands for the production cross section of h in proton-proton collisions at
the LHC and BR for the decay branching ratios of h to some final state X, such
as ZZ, WW , γγ, bb̄, . . . . The fact that h is behaving in a SM-like manner means
that the measured values for these µX are close to one, but the current experimental
uncertainties still allow values with deviations larger than 30% from unity. In our
calculations we will consider mostly scalars produced via the main channel of gluon-
gluon fusion, the cross sections of such processes being obtained by SusHiv1.6.0
[145, 146], at NNLO QCD. Other production channels (such as VBF, bb̄h or tt̄h)
could also have been used, but for the purposes of the work presented in this Chapter
they would be an unnecessary complication. As for the branching ratios, all decay
widths were computed at leading order, with the necessary NLO QCD corrections
to the bb̄ width taken into account. In fact, requiring that µZZ , µγγ, µbb̄ and µτ τ̄ be
within 30% of their SM value (i.e., all µ’s having values in the interval 0.7 to 1.3)
is more than enough to ensure compliance with the 2 ˆ 1σ experimental precision
from [144], and even with current run-II results.

Finally, there is a wealth of results on searches for the extra scalars predicted
in the 2HDM (see ref. [147] and references therein, for a review of the status of
the diverse search channels), with measurements imposing exclusion regions in the
parameter space of the model. By and large, requiring that the 125 GeV state h
be very SM-like is sufficient to comply with most exclusion bounds for other scalar
searches, even though there are exceptions [148], like pseudoscalar production and
decay to Zh in the wrong sign limit in the 2HDM [149–155]. For the purposes of this
Chapter, in which we wish to show the possible importance of the tunneling time
calculations in 2HDM parameter space, it was verified that in regions of parameters
analysed the 30% bound on the several µX was sufficient to comply with extra scalar
search results.

7.2 Coexisting minima in the 2HDM

Since the 2HDM has a scalar potential much more elaborate than the SM one, it
possesses therefore a richer vacuum structure. In fact, in the 2HDM three classes of
vacua may occur, depending on the parameters of the model. The first corresponds
to normal vacua, wherein the doublets have vevs such as those described by Eq. (7.5).
This kind of vacuum therefore breaks SUp2qL ˆ Up1qY down to Up1qem, just as
the EW vacuum in the SM, therefore preserving both CP and the electromagnetic
symmetry.

Vacua with a spontaneous breaking of CP are also possible, and in fact their
existence is the main reason the model was created by T.D. Lee [105]. Such vacua
occur when the doublets have neutral vevs, but now, unlike Eq. (7.5), a relative
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complex phase between them appears, i.e. the vevs are of the form

xΦ1yCP “
1
?

2

˜

0

v̄1

¸

, xΦ2yCP “
1
?

2

˜

0

v̄2 expiθ

¸

, (7.13)

with θ ‰ nπ, for any integer n. The complex phase induces spontaneous CP breaking
and the resulting scalar mass eigenstates have no definite CP quantum numbers:
they are neither CP-even nor CP-odd. As a consequence, the neutral mass matrix
in such minima is more complex than the analogous matrix in normal vacua: in
the latter, a 4 ˆ 4 matrix breaks into two 2 ˆ 2 blocks, one having two non-zero
eigenvalues, corresponding to the masses of the CP-even states h and H, the other
having a zero eigenvalue (the Goldstone boson G0) and the pseudoscalar mass of A;
in the former case, the 4 ˆ 4 matrix does not reduce to two blocks, it possesses a
zero eigenvalue (again the neutral Goldstone) and three eigenstates with interactions
such that they are neither scalars nor pseudoscalars.

Charge breaking vacua are also a possibility, where the upper components of the
doublets also acquire vevs, i.e. we will have

xΦ1yCB “
1
?

2

˜

0

v11

¸

, xΦ2yCB “
1
?

2

˜

v13

v12

¸

. (7.14)

These minima, of course, are to be avoided: the charged vev v13 above will break the
electromagnetic symmetry and give the photon a mass. In the scalar mass matrix,
the neutral (lower) components of the doublets now appear mixed with the charged
ones (upper), the resulting 8ˆ8 mass matrix having a total of four zero eigenvalues,
corresponding to the expected four Goldstone bosons arising from the full breaking
of the gauge symmetry group.

The existence of a diverse number of minima in the potential raises the possibility
of tunneling between different vacua, and certainly the hypothetical existence of, for
instance, a CB minimum deeper than a EW or CP one, could constitute a problem
for the model. However, it has been shown that if a normal minimum exists, any
CP or charge breaking solutions of the minimisation equations are necessarily saddle
points which lie above the normal minimum [107–110]. In fact, it was possible to
show that the value of the potential at normal vacua (VN), CP stationary points
(VCP ) or CB ones (VCB) can be related to one another, for coexisting tree-level
stationary points of these types. The following formulae have been established:

VCB ´ VN “

˜

m2

H
˘

4v2

¸

N

”

pv1v
1
2 ´ v2v

1
1q

2
` v2

1v
1
3

2
ı

(7.15)

VCP ´ VN “

ˆ

m2
A

4v2

˙

N

“

pv1v̄2 cos θ ´ v2v̄1q
2
` v2

1 v̄
2
2 sin2 θ

‰

, (7.16)

with the vevs for each possible stationary points defined in Eqs. (7.5), (7.13) and
(7.14), and the subscript “N ” refers that the masses m

H
˘ , mA and the vev v are
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computed at the normal stationary point. The terms within the square brackets
are obviously positive thus, if N is a minimum, its squared scalar masses will all be
positive, and hence these expressions show that VCB ą VN and VCP ą VN when N
is a minimum. It is also easy to show that in that case both CP and CB stationary
points would necessarily be saddle points. Analogously, if the potential is such that
a CP (CB) minimum occurs, any eventual normal or CB (CP ) stationary points
would live above the minimum and be saddle points. Thus tunneling to deeper
minima of a different nature is impossible in the 2HDM.

There is however another aspect of the 2HDM vacuum structure which sets it
apart from the SM, to wit, in certain situations the minimization conditions allow
for several non-equivalent normal stationary points [111]. Therefore, already at tree-
level, there is the possibility of two (no more than two) normal minima coexisting in
the potential, at different depths [109, 110]. In other words, other than the normal
vacuum with vevs given by Eq. (7.5), for which one has v2

1 ` v
2
2 “ v2

“ p246 GeVq2,
there may exist a second normal vacuum N 1, with different vevs tv11, v

1
2u. For this

second minimum of the potential, the sum of the squared vevs takes a different
value, smaller or larger than p246 GeVq2. The two minima are not degenerate, in
fact they verify [112, 113]

VN 1 ´ VN “
1

4

«˜

m2

H
˘

v2

¸

N

´

˜

m2

H
˘

v2

¸

N
1

ff

pv1v
1
2 ´ v2v

1
1q

2 , (7.17)

where the quantity
`

m2

H
˘{v2

˘

is evaluated at each of the minima, N and N 1. This
raises the possibility that our vacuum, with v “ 246 GeV, is not the deepest one:
there is nothing, in Eq. (7.17), which privileges the minimum N over N 1, unlike what
happened in Eqs. (7.15) or (7.16). In fact, for certain regions of the 2HDM potential,
N 1 may be found to be the global minimum of the model, and a minimum where
the exact same symmetries have been broken, but where all elementary particles
have different masses. In that situation our universe could tunnel to this deeper
minimum, with obvious catastrophic consequences.

The conditions under which this rather intriguing possibility arises were estab-
lished in literature [109, 110, 112, 113]. Defining the quantity

k “ 4

d

λ1

λ2

, (7.18)

the necessary (but not sufficient) conditions for the softly broken Z2 2HDM potential
to have two minima are

m2
11 ` k

2m2
22 ă 0, (7.19)

3
a

x2
`

3

b

y2
ď 1, (7.20)
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where we have defined the variables x and y as

x “
4 k m2

12

m2
11 ` k

2m2
22

?
λ1λ2

λ345 ´
?
λ1λ2

,

y “
m2

11 ´ k
2m2

22

m2
11 ` k

2m2
22

?
λ1λ2 ` λ345

?
λ1λ2 ´ λ345

. (7.21)

It was demonstrated [113] that the EW vacuum “N” (“our” minimum) is the global,
true, minimum of the theory if and only if D ą 0, where the discriminant D is a
quantity given by

D “ m2
12pm

2
11 ´ k

2m2
22qptan β ´ kq . (7.22)

Notice how, remarkably, the value of D can, in principle, be obtained by experiments
performed on “our” minimum, without any knowledge of the existence of N 1.

Let us again recall (see the discussion following Eq. (7.9)) that if the minimisa-
tion conditions yield the solutions N “ tv1, v2u and N

1
“ tv11, v

1
2u, they also include

other “mirror” solutions, N “ t´v1,´v2u and N
1
“ t´v11,´v

1
2u. This is a trivial

consequence of the fact that the potential is invariant under a sign change of both
doublets, V pΦ1,Φ2q “ V p´Φ1,´Φ2q, and apparently this has no physical conse-
quences: the potential is degenerate at N and N (N 1 and N 1), and physics at these
two minima is entirely identical. No physical differences whatsoever may arise from
being at N or N (N 1 or N 1), because the only difference between both minima is the
overall sign of both fields: no interference effects, for instance, will be sensitive to the
sign change. The SM minimum of the Higgs potential, of course, is also degenerate
with a continuum of other possible solutions: recall the shape of the tree-level SM
Higgs potential, where infinitely many degenerate minima lie in a full circle. This is
due to the fact that the SM minimum is determined by the equation x|Φ|y “ v{

?
2,

which yields a continuum of possible solutions, corresponding to different gauge
choices for the Higgs doublet Φ. However, for the 2HDM potential, each of the
minima N and N 1 is not degenerate with a continuum of other minima, but rather
with another separate isolated minimum, N and N

1 respectively. We emphasize
these seemingly trivial aspects of the minimisation solutions because they may have
dramatic consequences in the computation of tunneling rates, as will be discussed
below in Section 7.4.

7.3 Tunneling and bounces

In Chapters 3 - 6 we have developed and used the theoretical tools needed to compute
the tunneling time τ for the decay of a false vacuum toward a true vacuum in the
case of a single scalar theory. In particular, we know that the tunneling time is
given by the decay rate, τ “ Γ´1, computed via the bounce solution related to the
potential under consideration. However, in the case of the 2HDM (i.e. with the

133



potential (7.2)) we are studying the stability of the EW vacuum in a theory with
more than one scalar field.

The extension of the theoretical tools of the bounce equations to the case with
N real fields φi, i “ 1, ..., N is straightforward. If we denote the fields with φ “
pφ1, φ2, . . . , φNq and the potential as V pφq, the bounce configuration is a non-trivial
solution of the coupled system of N ordinary differential equation:

d2φi

dr2 `
3

r

dφi
dr

“
BV pφq

Bφi
(7.23)

with boundary conditions

dφi
dr

ˇ

ˇ

ˇ

ˇ

r“0

“ 0 lim
rÑ8

φi “ φfv
i , (7.24)

where φi “ φfv
i are the values of the fields φi at the false vacuum. Following the

same steps of the N “ 1 case, the action calculated at the bounce solution φbprq “
pφ1prq, . . . , φNprqqbounce for the N field case takes the form:

B “ ´
π2

2

ż 8

0

dr r3

«

dV pφq

dφi
φi

ff

φb

, (7.25)

where a sum over i is implied.
Apart from very simple cases, the system (7.23) cannot be solved analytically

and we have to rely on numerical methods to evaluate the bounce configurations.
To this end, we used the public Wolfram Mathematica code developed in [156].
The latter solves the system (7.23) with the help of a multiple shooting method,
exploiting the asymptotic behavior of the bounce solution for r Ñ 0 and r Ñ 8

(that is known in both cases analytically). Finally, the tunneling rate is given by:

Γ “ T 3
U

«

ÿ

i

φ2
i p0q

ff2

e´B . (7.26)

In general, if the false vacuum can decay towards more than one state, Γ is
obtained by calculating the different rates Γi : Γ “

ř

i Γi and τ “ Γ´1.
For the 2HDM case, the two doublets have a total of eight real components,

as seen in Eq. (7.6). Therefore, in principle, the calculation of the bounce solution
should involve all eight fields, which should contribute to the tunneling time shown
in Eq. (7.26). However, the gauge structure of the model allows a considerable
simplification of this procedure. In fact, since the model has a SUp2q ˆ Up1q gauge
invariance, we can choose a specific gauge in order to remove several of the real
components of the doublets. This is a well-known feature of the 2HDM [106] which,
in passing, is also the reason why the most generic vacua of the model can be cast
into the form of eqs. (7.5), (7.13) and (7.14). In the end, we can choose to eliminate
two of the upper components of the doublets (two charged fields) and one of the
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imaginary components of the lower part of the doublets, so that we are left with
simplified doublets given by

Φ1 “
1
?

2

˜

0

φ1

¸

, Φ2 “
1
?

2

˜

φ4 ` iφ5

φ2 ` iφ3

¸

, (7.27)

where for convenience we have renamed the real component fields.
For the CP-conserving potential of Eq. (7.1) that we have been studying, the

bounce equation (7.23) will allow a further simplification, involving only two of the
above component fields, namely φ1 and φ2. In fact, let us consider the derivatives
of the potential with respect to each of the φi that appear in the right-hand side of
the bounce equation (7.23). These are given by

BV

Bφ1

“
1

2

“

2m2
11 ` λ1φ

2
1 ` λ3pφ

2
2 ` φ

2
3 ` φ

2
4 ` φ

2
5q ` λ4pφ

2
2 ` φ

2
3q ` λ5pφ

2
2 ´ φ

2
3q
‰

φ1

´m2
12φ2 (7.28)

BV

Bφ2

“
1

2

“

2m2
22 ` λ2pφ

2
2 ` φ

2
3 ` φ

2
4 ` φ

2
5q ` pλ3 ` λ4 ` λ5qφ

2
1

‰

φ2 ´m
2
12φ1 (7.29)

BV

Bφ3

“
1

2

“

2m2
22 ` λ2pφ

2
2 ` φ

2
3 ` φ

2
4 ` φ

2
5q ` pλ3 ` λ4 ´ λ5qφ

2
1

‰

φ3 (7.30)

BV

Bφ4

“
1

2

“

2m2
22 ` λ2pφ

2
2 ` φ

2
3 ` φ

2
4 ` φ

2
5q ` λ3φ

2
1

‰

φ4 (7.31)

BV

Bφ5

“
1

2

“

2m2
22 ` λ2pφ

2
2 ` φ

2
3 ` φ

2
4 ` φ

2
5q ` λ3φ

2
1

‰

φ5 . (7.32)

Notice how in the three last equations the fields φ3, φ4 and φ5 factorize, and how
that does not occur for the derivatives of the potential with respect to φ1 and φ2.
This leads to bounce equations for each of the φi of the following form:

d2φ1

dr2 `
3

r

dφ1

dr
“ f1pφ1, . . . φ5qφ1 ´ m2

12φ2 (7.33)

d2φ2

dr2 `
3

r

dφ2

dr
“ f2pφ1, . . . φ5qφ2 ´ m2

12φ1 (7.34)

d2φ3

dr2 `
3

r

dφ3

dr
“ f3pφ1, . . . φ5qφ3 (7.35)

d2φ4

dr2 `
3

r

dφ4

dr
“ f4pφ1, . . . φ5qφ4 (7.36)

d2φ5

dr2 `
3

r

dφ5

dr
“ f5pφ1, . . . φ5qφ5 , (7.37)

where the functions fi can be read from Eqs. (7.28)-(7.32). These equations must be
solved with the boundary conditions (7.24). In our case, for which both the true and
false vacua of the CP conserving potential are themselves CP and charge conserving,
the boundary condition (7.24) always implies φ3p8q “ φ4p8q “ φ5p8q “ 0 at any
vacua.
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We observe that there is a fundamental difference between the bounce equations
for tφ1, φ2u and those for tφ3, φ4, φ5u. Namely, in the right-hand side of the latter
equations the factorization of the fields φ3, φ4 and φ5 implies that the trivial solutions
φ3prq “ 0, φ4prq “ 0 and φ5prq “ 0 exist. Moreover, they respect the above-
mentioned boundary conditions, and thus are acceptable bounce solutions. On the
contrary, in the right-hand side of the first two equations there is an extra term
linear in the fields φ1 and φ2. And, though the trivial solutions φ1prq “ 0 and
φ2prq “ 0 also satisfy eqs. (7.33) and (7.34), they do not comply with the boundary
conditions at infinity for these two fields, which are of the form φ1p8q “ v1 and
φ2p8q “ v2 with non-zero values for the false vacua vevs v1 and v2

3: thus they are
not bounce solutions.

This strongly suggests that the bounce solutions connecting the true and false
vacua have the profiles φ3prq, φ4prq and φ5prq identically vanishing in the whole
range for r, from 0 to 8. This would imply that the original 2HDM 8-field bounce
calculation reduces to a 2-field problem. In fact, in all the hundreds of thousands of
cases that we have studied numerically (see Section 7.5), we have always verified that
only φ1prq and φ2prq have non-trivial profiles, while φ3prq, φ4prq and φ5prq always
vanish4.

This is not merely a mathematical property of the bounce equations (7.23),
but rather it is dictated by the physics of the model. To illustrate this point,
let us consider for the moment the Complex 2HDM (C2HDM) [157–165], where
no CP symmetry is imposed on the potential of Eq. (7.2). In this generalisation,
both parameters m2

12 and λ5 can be complex although one of these phases can
always be absorbed into one of the fields. We are then left with a single complex
parameter in the potential, which we choose as the soft breaking term. Let us then
write m2

12 “ |m
2
12| expθ12 . This potential may have coexisting minima as well [111].

However, there is the possibility that in one of these minima the vevs of the doublets
are real (as in Eq. (7.5)) and in the other the vevs have a relative complex phase (as
in Eq. (7.13)). But since the potential explicitly breaks the CP symmetry due to
the presence of the phase θ12, both of these vacua are CP breaking, even if the vevs
are real. For the C2HDM potential with complex m2

12, then, the derivatives of the
potential with respect to φi are slightly modified, and the bounce equations (7.33)-
(7.37) become

d2φ1

dr2 `
3

r

dφ1

dr
“ f1pφ1, . . . φ5qφ1 ´ |m2

12|pφ2 cos θ12 ´ φ3 sin θ12q (7.38)

d2φ2

dr2 `
3

r

dφ2

dr
“ f2pφ1, . . . φ5qφ2 ´ φ1|m

2
12| cos θ12 (7.39)

3Notice how the soft breaking term m2
12 in the potential prevents solutions of the minimisation

conditions of Eq. (7.9) with any of the vevs equal to zero.
4Notice however that we do not possess a full analytical demonstration of this property.
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Figure 7.1: Bounce solution (φ1, φ2, φ3, φ4) for the C2HDM. The fifth bounce for
φ5 is identical to that for φ4.

d2φ3

dr2 `
3

r

dφ3

dr
“ f3pφ1, . . . φ5qφ3 ` φ1|m

2
12| sin θ12 (7.40)

d2φ4

dr2 `
3

r

dφ4

dr
“ f4pφ1, . . . φ5qφ4 (7.41)

d2φ5

dr2 `
3

r

dφ5

dr
“ f5pφ1, . . . φ5qφ5 . (7.42)

Comparing the system of equations (7.33)-(7.37) with the corresponding system
(7.38)-(7.42) we observe that, while the two last equations remain unchanged, the
right hand side of the third equation contains an additional term that does not fac-
torize φ3 (further, the non-factorized terms in Eqs. (7.38)-(7.39) have also changed).
Thus, we no longer expect a trivial profile for the bounce solution φ3prq. Clearly, the
appearance of the additional term in the bounce equation for φ3, which we recall is
the complex neutral component of the second doublet, depends on the presence of
the explicitly CP breaking phase θ12: the different physics described by the C2HDM
induces a different structure in the bounce equations. At this point, we consider
many different choices for the parameters of the C2HDM potential in which coex-
isting minima occur. These points are chosen such that the false vacuum has real
vevs, while the vevs of the true minimum have a relative complex phase. Comput-
ing the bounce solution for this parameter space, our expectation for the bounce
profiles is fully confirmed: for this new model, φ1, φ2 and φ3 are non trivial profiles,
while φ4 and φ5 vanish as before. We see a particular example of this behaviour in
Fig. 7.1, where we plot the different fields of the bounce solution φi as a function of
r. We remind that in this plot the fields tend at r Ñ 8 to the false vacua vevs,
and thus φ3 in that limit vanishes, as expected. As opposed to what happened in
the CP conserving potential, however, φ3prq is no longer vanishing everywhere. In
particular, we observe that at r “ 0 it is taking a non-zero value, thus contributing
(as well as the other non-zero components of the bounce) to the evaluation of the
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tunneling time in Eq. (7.26).
It is worth stressing at this stage that this change in the behaviour of φ3prq

is due to the different physics described by the two potentials. Only due to the
explicit CP violation of the C2HDM can φ3 have a non-trivial profile, while explicit
CP conservation forces this component of the bounce to vanish for all values of r.
Further, we have to note that for both potentials φ4 and φ5 are always vanishing,
which is to be expected on physical grounds, since no charge breaking can occur in
either of the models when a normal minimum exists.

7.4 Tunneling to degenerate vacua

At this stage, and before we embark on scans of the 2HDM parameter space, let us
discuss a novel aspect of the tunneling calculations which arise in this model. As we
have emphasised previously, if the minimisations conditions (7.9) have a solution of
the form tv1 , v2u, they also include the solutions t´v1 , ´v2u. The same happens
for the second, non degenerate minimum N 1, which corresponds to vevs of the form
tv11 , v

1
2u.

Let now N ” tv1 , v2u and N ” t´v1 , ´v2u be the false vacua of the model,
and assume that “our” vacuum corresponds to N . The universe may now tunnel
to two degenerate true vacua, N 1

“ tv11 , v
1
2u and N 1

“ t´v11 , ´v
1
2u. Since N 1 and

N
1 describe exactly the same physics, but (as we will see soon) there are crucial

differences between the tunneling rates from N to either N 1 or N 1.
In order to understand this critical point, let us consider a specific example, for

which the parameters of the 2HDM potential (7.2) are chosen to be

m2
11 “ ´12305.9 , m2

22 “ ´7932.3 , m2
12 “ ´1047.5 pGeV2

q

λ1 “ 2.07544 , λ2 “ 0.377709 , λ3 “ 1.8562 ,

λ4 “ ´1.7028 , λ5 “ ´0.345453 . (7.43)

This choice of parameters yields a maximum M at field values M ” tφ1 , φ2u “

t0 , 0u and the following minima (all vevs in GeV),

N ” t97.3767 , 225.907u , N ” t´97.3767 , ´225.907u

N 1
” t162.491 , ´319.463u , N

1
” t´162.491 , 319.463u . (7.44)

We also have two couples of saddle points,

S1 ” t43.6574 , 221.06u , S1 ” t´43.6574 , ´221.06u

S2 ” t95.5578 , 48.8458u , S2 ” t´95.5578 , ´48.8458u . (7.45)

If we now calculate the bounce solutions for the transitions from N to N 1 and
from N to N 1, and assuming for the sake of argument that only one of these tran-

138



φ
1
 (GeV)

-300 -200 -100 0 100 200 300

φ
2
 (

G
e
V

)

-300

-200

-100

0

100

200

300
N

N

N
′

N
′

Figure 7.2: Location of all extrema of the 2HDM potential for the choice of param-
eters in (7.43). Saddle points are marked with “ˆ”, the maximum of the potential,
at p0, 0q, with a black triangle. The false minima are marked with red circles, the
true ones with green squares. The lines connecting N to N 1 and N 1 illustrate how
different the paths between these minima may be.

sitions was possible, we would obtain the following tunneling times (see Eq. (7.26)),

τpN Ñ N 1
q » 8ˆ 102131 TU ,

τpN Ñ N
1
q » 2ˆ 10´113 TU , (7.46)

where TU is the current age of the universe. If one were to only consider the transition
N Ñ N 1 one would conclude that the false vacuum N was absolutely stable, whereas
the second transition, N Ñ N

1, instead shows N to be incredibly unstable, having
decayed to N 1 almost immediately after the Big Bang. The discrepancy between the
tunneling times for both transitions is astonishing, all the more so because the lower
minima N 1 and N 1 are degenerate and describe exactly the same physics. Thus one
might naively expect that there should be no difference in the tunneling rate from
N to either of them: after all the difference in the value of the potential between
N and N 1 or between N and N 1 is exactly the same, and given by Eq. (7.17). The
fundamental reason of this difference is extremely simple to understand, and lies
in the landscape of minima and saddle points yielding very different possible paths
for tunneling between N and N 1 or N 1. This may be seen in Fig. 7.2, where it
is illustrated, in the tφ1 , φ2u plane, the locations of all extrema of the potential
listed above. Notice how N is not equally distant from N 1 and N

1; notice also,
and perhaps even more importantly, that the path from N to both of the lower
minima passes close to a different landscape of saddle points. Instead, from N to
N 1 there is a saddle point almost at the beginning, to N 1 the first saddle point is
further away. Also, the steepest descent from N to N 1 is possibly “deviated” by
the several remaining saddle points and the maximum along the way, which would
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Figure 7.3: Left panel: Plot of the potential V pφ1, φ2q of Eq. (7.2) for the parameters
given of Eq. (7.43). Right panel: The same potential rotated anticlockwise by 90
degrees. The left panel better shows the decay path from N to N 1; the right panel
from N to N 1. The path connecting N while N 1 is longer than the path connecting
N with N 1.
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Figure 7.4: Bounce solutions for fields φ1 and φ2 for the transitions from N to N 1

(B1) and from N to N 1 (B2). In both cases the fields φi tend to the same values at
r Ñ 8, i.e. the values of the fields at the false vacuum N , φfv

1 e φfv
2 . But at r “ 0

the fields assume different values, close to the vevs at each of the degenerate true
vacua.

explain the much larger tunneling time found, whereas the path to N 1 seems much
more “direct”. To further drive in this point, consider Fig. 7.3, where we show 3D
plots illustrating the shape of the potential along the (seemingly) shortest path from
N to both N 1 and N 1: these images show that, even though the difference in depth
of the potential is exactly the same between N and N 1 or between N and N

1, it
is quite clearly easier for the latter transition to occur than the former. In fact
the bounce solutions obtained in the transition from N to N 1 (which we now call
“B1”) and from N to N 1 (“B2”) are quite different, as can be appreciated in Fig. 7.4.
In this plot it is presented the evolution with the radial coordinate r of the two
bounce profiles for the fields φ1 and φ2 found for the specific example we have been
considering. Notice how the solutions, B1 and B2, converge for large values of r
to the same values, which are the values of the vevs at the false vacuum N , as was
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to be expected. However, the values of the fields φi at r “ 0 diverge significantly,
assuming even opposite signs. Recall that at r “ 0 the bounce solution is found for
values of the fields “close” to the true vacuum of the theory. Hence we find that,
for the bounce B1, φ1 assumes a large negative value, » ´130 GeV and φ2 a large
positive one, » 260 GeV. It is worth to note how these values for the bounce are
close to the vevs of the true vacuum N

1 („ ´162, „ 320 GeV). Likewise, the values
found for the bounce solution B2 are close to the vevs found for the other lower
vacuum, N 1. Thus, despite the fact that both N 1 and N 1 are degenerate and at the
same relative depth to N , the bounce solutions for the two possible transitions are
very different, and in fact lead to very different values for the bounce action Srφbs
from Eq. (7.25), and hence to the two extremely different lifetime values found.

If the potential has, from N , two possible “decay channels”, then its decay rate,
Γ, will be given by

Γ “ ΓpN Ñ N 1
q ` ΓpN Ñ N

1
q “

1

τpN Ñ N 1
q
`

1

τpN Ñ N
1
q

(7.47)

with the “partial” tunneling times from Eq. (7.46). Thus, the lifetime τ of the false
vacuum N will obviously be

τ “
1

Γ
“

˜

1

τpN Ñ N 1
q
`

1

τpN Ñ N
1
q

¸´1

» 2ˆ 10´113 TU (7.48)

where in analogy with nuclear decays, when one of the decay channels is much faster
than the other, it dominates over the total lifetime. The conclusion to draw from
this particular example is simple: both degenerate lower vacua must be considered
for the calculation of the tunneling time, and the stability of the false vacuum may
depend crucially on which of the true vacua it is decaying into. It was verified that
differences in tunneling times to true degenerate vacua can be as extreme as those
presented in Eq. (7.46) for many choices of parameters in the potential, though not
always. For many other regions of parameter space, though the two possible decay
rates may differ, they do not affect qualitatively the overall stability of the false
vacuum. Meaning, in many cases, if the tunneling time to one of the lower vacua
is, say, much larger (smaller) than TU , the other tunneling time, while possibly very
different, will also be much larger (smaller) than TU . Nonetheless, as we will shortly
see, for certain regions the computation of τ taking into account the existence of
both possible true vacua increased the number of dangerous false vacua by as much
as 50%.

7.5 2HDM Numerical Scans

The physics arguments of Section 7.3 show that the tunneling rate calculation can
be reduced, for the CP conserving potential of Eq. (7.2), to a two-field problem.
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Nonetheless extensive numerical checks were performed, comparing eight-field cal-
culations with two-field ones, and no differences were ever found. Also, in Section 7.4
it was shown the importance of computing the tunneling rates to both degenerate
true vacua. Armed with these two important theoretical insights, we can proceed
to an extensive scan of the 2HDM parameter space. The goal of this Section is to
ascertain how much of that parameter space should be avoided due to tunneling
times shorter than the age of the universe.

It was chosen to work in models type I and II (for the remaining types of Yukawa
interactions the conclusions reached would certainly be very similar). All parameter
scans presented in this Section are such that:

• They include at least one (CP conserving) minimum with v “ 246 GeV and
mh “ 125 GeV.

• All theoretical and experimental results mentioned in Section 7.1.3 are satis-
fied. In particular, we demanded that all µX ratios (defined in Eq. (7.12)) be
within 30% of their expected SM value of 1, which reproduces quite satisfac-
torily the current status of LHC results.

• 1 ď tan β ď 30 and ´π{2 ď α ď π{2.

• The mass of the heavier CP-even scalar H is chosen in the interval between
130 and 1000 GeV. The mass of the pseudoscalar A is chosen between 100
and 1000 GeV. For the charged mass, its lower bound is 100 GeV for model
type I and 580 GeV for model type II (the difference due to flavour physics
constraints described in Section 7.1.3). The upper bound for the charged mass
is again 1000 GeV.

• The soft breaking parameter m2
12 is taken with both signs, and magnitude

below roughly 500 GeV2.

These parameter scans are not meant to be exhaustive: representative regions of the
2HDM parameter space were merely sampled to illustrate the possible impact that
tunneling times to deeper vacua lower than the age of the universe may have. We
now consider different scenarios.

7.5.1 General scans for type I and II models

To illustrate the possible relevance of false vacua exclusion (due to low tunneling
times) in general, “blind”, scans of parameter space, we generated large datasets
(over 100000 different combinations of parameters) for models type I and II.

In Fig. 7.5 it is shown the result of the analysis, by plotting the values of λ5 vs
the pseudoscalar mass mA. The colour code in these plots is such that:
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Figure 7.5: Scatter plot of λ5 vs. mA for general scan on the parameter space of a
type I (left) and type II (right) 2HDM. In blue, all points generated which conform
to theoretical and experimental constraints; in green, the subset of those for which
two normal vacua are possible; in yellow, the subset of those for which D ă 0 and
thus the EW vacuum may be the false one; and in red, those points for which the
tunneling time to the true vacuum is smaller than the age of the universe.

• In blue we present all points generated which satisfy the theoretical and ex-
perimental constraints explained above. The other colours are superimposed
on top of the blue points. Or, in other words, the green, yellow, red points are
a subset of the blue ones.

• The green points correspond to the subset of the blue ones for which the two
CP-conserving minima conditions of Eqs. (7.19) and (7.20) are satisfied. Recall
that those conditions are necessary ones, but not sufficient, and therefore not
all green points will truly correspond to the existence of two minima. In fact,
that happens typically for only half of these points. Notice the disproportion
in size of the green region compared to the blue one: dual minima in the
2HDM potential are, in general, a rare occurrence.

• In yellow it is shown the subset of the green points for which the discriminant
D from Eq. (7.22) is negative, i.e. the points for which, if two minima exist,
“our” electroweak vacuum with v “ 246 GeV will not be the deeper one.

• Finally in red, the subset of the yellow points for which: (a) two minima exist,
(b) “our” electroweak vacuum is not the global minimum and (c) the tunneling
time from “our” vacuum to the deeper true vacuum is less than the age of the
universe.

The visible blue points in these figures are clearly safe combinations of parameters,
for which the EW vacuum is not only safe but also unique. Several comments are
in order to better interpret these plots. First, please take into account the fact that
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these plots are dense in each of the colours. In other words, in the middle of the
green, or yellow, or red points there are blue ones. Thus the red regions are not
wholly excluded: though dangerous tunneling times seem to be found for specific
areas in themA–λ5 plane, those areas will in general also include perfectly acceptable
blue (green, yellow) points for which there might not even be two minima. Second,
there is no obvious pattern to the green, yellow or red regions: the existence of two
minima, and dangerous tunneling times for the acceptable EW vacuum, depends
on non-trivial relations between the potential’s parameters, which are difficult to
visualize in this 2-dimensional slice of what is in truth an 8-dimensional parameter
space. Third, in general it seems easier to find two minima (and dangerous short-
lived vacua) in model type II than in I. This is a consequence of the hard bound on
the charged Higgs mass in model type II which arises from bÑ sγ constraints. This
bound tends to privilege higher, positive, values of m2

12, for which the discriminant
D is usually found to be positive (and thus “our” EW vacuum is the global minimum
of the model).

To illustrate the frequency with which dangerous vacua are found in this blind
scan, consider the results shown above for type I: the total number of generated
(blue) points conforming to all theory and experimental constraints was above
120000; of these, roughly 21500 (green) points were found which might have two
minima (satisfying Eqs. (7.19) and (7.20)): in fact, of those, two minima were found
only for over 11000 points. The (yellow) points with D ă 0, with possible local
EW vacua with v “ 246 GeV, totalled almost 9500, and out of these over 4200 were
found for which the tunneling time to the global (v ‰ 246 GeV) minimum is inferior
to TU . Thus the percentage of points of the initial parameter space excluded on
tunneling time arguments is about 3.5%. For model type II, a similar accounting
yields a percentage of excluded points of roughly 0.2%.

The distribution of dangerous (red) points in Fig. 7.5 is clearly not homogeneous,
and the percentages of excluded points found in the previous paragraph are therefore
not to be interpreted as, for instance, 3.5% of type I parameter space being ruled out
on low tunneling times grounds. In fact, while certain regions of 2HDM parameter
space are completely safe (the blue points visible in Fig. 7.5, for instance), others
may yield a far larger percentage of dangerous minima than the numbers quoted
above. To illustrate this let us now consider a few benchmark scenarios.

7.5.2 First benchmark scenarios: safe regions

As discussed above, the distribution of parameter space points for which dangerous
short-lived false vacua occur in the 2HDM is not uniform. The regions of parameter
space which conform to equations (7.19), (7.20) or have the discriminant (7.22)
negative are usually not easily visualized in 2-dimensional slices, and as explained in
Section 7.4, the tunneling time to lower vacua may depend crucially on the landscape
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of saddle points in field space, and this will also depend in a non-trivial manner on
the numerical values of the couplings, affecting the number of possible solutions of
the minimisation conditions of Eq. (7.9). In the present subsection, we will give two
examples of parameter choices for which, due to different reasons, the EW vacuum
is perfectly safe. In all cases to follow we study model type I, and fix six of the
parameters of the model, allowing two others to vary in such a manner as to comply
with all theory and experimental constraints. Since we wish to have a physically
interesting EW vacuum, we chose to specify the values of (in principle) observable
2HDM parameters, rather than the couplings of the potential in Eq. (7.2). To this
end, we of course chose the value of v “ 246 GeV and mh “ 125 GeV for the EW
vacuum, and then proceed to select, for each benchmark scenario, the masses mH

and m
H
˘ , the value of tan β and of sinpβ ´αq (thus, indirectly, the value of α). We

chose sinpβ ´ αq because this quantity is already quite constrained to be close to
unity by LHC data.

The 2HDM parameter scan we undertake therefore considers these six parameters
fixed and then proceeds to choosing random values for two others, which we chose
to be λ5 and mA

5. Each selection of parameters is then verified for theory and
experimental constraints, and if all are obeyed a satisfactory EW vacuum is found. A
posteriori the existence of a second minimum is checked, and if that second minimum
is the global one, the tunneling time to the true vacuum is computed.

• Decoupling scenario

As a first example, we have chosen mH “ 600 GeV, m
H
˘ “ 700 GeV, tan β “ 1

and sinpβ ´ αq “ 0.99. Though λ5 was allowed to vary between ´10 and 10, only
values in the window between „ ´6.3 and „ ´2.3 were found after all constraints
applied. Likewise, the pseudoscalar mass is found to be constrained between roughly
620 and 705 GeV. It is well known that the electroweak precision constraints (namely
the bounds on the Peskin-Takeushi parameters S, T and U) force the extra scalar
masses to be close in the high mass range, so these results are not surprising.

The high values for the extra scalar masses coupled with the fact that sinpβ´αq

is extremely close to 16, meaning that we are well within a decoupling regime for
the model. Of course, one of the possible explanations for the current LHC results
is the decoupling of all BSM particles, yielding a SM-like 125 GeV scalar. Thus the
benchmark scenario chosen herein is of experimental interest.

For all 200000 points generated complying with the choices above for the param-
eters and all constraints, we observe that the conditions for the possible existence
of two minima, Eqs. (7.19) and (7.20), are never satisfied. Thus, for this benchmark

5The reason for this is related to Eq. (7.11), which show it to be an efficient choice of parameters
to fully specify the 2HDM potential.

6This implies that the coupling of h to Z or W bosons and to fermions is very much SM-like.
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Figure 7.6: Scatter plots of λ5 vs. mA for the low mass stable benchmark scenario
considered. The colour code is the same as in fig. 7.5.

scenario, the EW vacuum is unique, and thus (at tree-level at least) entirely stable.
This does not mean that any choice of parameters in the decoupling regime will
always fall into this category, although, as explained above for the type II model,
large masses tend to yield stable EW vacua. Of course, there is no need to go into
the decoupling regime to find parameters for which no non-degenerate vacua do not
exist: the blue points in Fig. 7.5 show this to be true. Thus some regions of 2HDM
parameter space have EW vacua which are unique at tree-level. Therefore, apart
from the possibility of one-loop corrections to the potential originating deeper vacua
as seems to be the case in the SM, the stability of the EW vacuum in such 2HDM
parameter space regions is ensured and no tunneling calculations are needed.

• Low mass stable scenario

Consider now a different choice of parameters corresponding to much lower
masses for the extra scalars: mH “ 280 GeV, m

H
˘ “ 400 GeV, tan β “ 2.3 and

again sinpβ ´ αq “ 0.99. This last choice all but ensures h has SM-like behaviour.
The value of tan β is chosen such as to comply with the exclusion in the tan β–m

H
˘

plane stemming from B-physics constraints [143]. The low masses chosen for H and
H˘ are obviously interesting from the experimental point of view, as they raise the
possibility of new particles discovered at LHC. As before, electroweak precision con-
straints force the pseudoscalar to be close in mass to the charged scalar, as can be
appreciated from Fig. 7.6. In this plot it is shown a “phase diagram” of the 2HDM
parameter space. Unlike the plots in Fig. 7.5 (the colour code is the same here than
in those plots) the parameter space now being scanned is truly a two-dimensional
one, and thus Fig. 7.6 gives us a clearer picture of regions having different vacuum
structure.
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Figure 7.7: Scatter plots of λ5 (left) and m2
12 (right) vs. mA for the benchmark

scenario considered in Section 7.5.3. The colour code is the same as in fig. 7.5.

What we observe in Fig. 7.6 is the total absence of red points, and only a thin
yellow strip where the EW vacuum could be the false vacuum. Indeed, for all points
for which the EW vacuum is indeed a local minimum of the potential and not
the global one, tunneling time calculations have revealed that the lifetime of the
false vacuum is always far superior to the current age of the universe. Thus, even
though for this benchmark scenario there may be dual minima, and “our” vacuum
is not guaranteed to be the true vacuum of the model, it is nonetheless found to
be either stable or incredibly long lived. Hence one must be careful to not exclude
offhand regions of parameter space for which the discriminant D from Eq. (7.22) is
negative: D ą 0 is a necessary and sufficient condition for the EW vacuum with
v “ 246 GeV to be the global minimum of the theory, but as this example shows,
points with D ă 0 may be entirely acceptable, having lifetimes larger than TU .
One must therefore be cautious in excluding regions of parameter space using the
sign of discriminant D, as was made in refs. [129, 166]: if D ă 0, tunneling times
involving two-field bounce equations need to be computed, lest one is needlessly
refusing phenomenologically acceptable combinations of 2HDM parameters.

7.5.3 Second benchmark scenario: considerable exclusion

The vacuum stability of the 2HDM may however change dramatically even for seem-
ingly small variations in its parameters. Consider yet another choice of parameters,
still corresponding to low masses for the extra scalars: mH “ 200 GeV, m

H
˘ “ 400

GeV, tan β “ 2.5 and again sinpβ ´ αq “ 0.99. Though this choice of parameters
seems to be very similar to the previous benchmark considered, the allowed vacuum
structure of the model is now quite different, as may be appreciated from Fig. 7.7.
Notice how the region where two minima are in principle allowed (the yellow points)
is now much larger, and how many red points now occur. In fact, for this region of
parameter space, roughly 67% of all cases where “our” vacuum is the higher min-
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imum yield a tunneling time inferior to the age of the universe. Globally, we find
that for the points generated in this benchmark scenario which verify all theory and
experimental constraints, roughly 11% have dangerous tunneling times. This is a
much greater percentage than the one found for the blind parameter scan, showing
that specific regions of the parameter space may be much more prone to dangerous
false vacua than others. It is quite stunning how merely increasing by 0.2 the value of
tan β and reducing by 80 GeV the value of the heavier CP-even scalar may have such
a drastic effect in the vacuum structure of the 2HDM, but that simply reflects the
complicated and non-obvious dependence on these parameters in Eqs. (7.9), (7.19),
(7.20) and (7.22). This not to mention the susceptibility of the tunneling time calcu-
lations to the geometry of the potential (which may be heavily influenced by changes
in the potential’s couplings) as illustrated in Figs. 7.2 and 7.3. It is worth also to
consider the importance of calculating the tunneling rates to the degenerate true
vacua: as discussed in Section 7.4, despite that degeneracy originating physically
equivalent vacua, the lifetime of the false vacuum can change immensely if one does
not take into account the existence of two possible true vacua it can decay into. In
this present case, doing the lifetime calculation correctly taking into account both
lower vacua yielded roughly 50% more dangerous red points than if we considered
tunneling to only one of the lower vacua.

In the right of Fig. 7.7 we plot m2
12 against mA, illustrating nicely how all EW

false vacua can only occur for negative values of the soft breaking parameter. This
is a known feature of the 2HDM: negative discriminant D seems to only occur for
negative m2

12, though there is no demonstration of this property. It would imply a
correlation in the signs of the two last terms in the definition of the discriminant in
Eq. (7.22).
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Chapter 8

Conclusions and outlook

In this thesis we studied several aspects on the topic of the stability analysis of
the electroweak vacuum (where our entire Universe sits), using the formalism of the
computation of a metastable vacuum decay rate through the bounce solutions of the
euclidean equations of motion for scalar fields. In particular, we studied the impact
of physics beyond the Standard Model on the stability condition of our Universe,
considering both models in which we have new physics only around the Planck
scale MP , and models that provide new physics at lower scales. In this Chapter we
summarize the main results presented in Chapters 4, 5, 6 and 7 of this thesis, i.e.
the chapters based on the original works in Refs. [51, 83, 100, 114].

In Chapter 4 we studied the impact of very high energy NP (around the Planck
scale MP ) on the stability condition of the EW vacuum by carrying the analysis
in a curved spacetime background. In particular, we saw that taking into account
the presence of gravity does not modify qualitatively the results of previous stud-
ies [54, 65, 71, 72], where the same analysis was carried in a flat spacetime back-
ground. In fact, as for this latter case, the main result is that we have new bounce
solutions due to the New Physics modification to the RG improved Higgs effective
potential, and these can have an enormous impact on the EW vacuum lifetime, by
far dominating over the contribution that comes from the known solutions obtained
with the unmodified Standard Model potential.

As in [54, 65, 71] we first performed the analysis by adding to the SM potential
higher powers of the Higgs field, more precisely terms as φ6

{M2
P and φ8

{M4
P that

are certainly generated in a quantum gravity context [167]. Then, following [73], we
parametrized high energy new physics in a different manner, namely by adding to the
SM potential a boson S and a fermion ψ, with very large massesMS andMf , coupled
to the Higgs boson. As for the analysis carried in flat spacetime, in both models we
actually find that the presence of new physics can have an enormous impact on the
EW vacuum stability condition. In particular, these results definitely show that,
irrespectively of the parametrization used to describe high energy new physics, it is
not possible to ignore its presence when the stability analysis is performed. Then,
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such analysis could be of the greatest importance for current studies and for model
building of Beyond Standard Model physics, where we often have to take into account
new physics at very high (Planckian and/or trans-Planckian) scales.

To be more specific, from the result obtained in the flat spacetime [54, 65, 71, 72],
we know that New Physics introduced via this kind of models tends to destabilize
the electroweak vacuum, even making the tunneling time less than the age of the
Universe, and thus to move the instability line of the phase diagram in Fig. 4.1
towards the point corresponding to the central values of the masses of the Higgs
boson and of the top quark, that is the point corresponding to our Universe. The
results illustrated in this Chapter with the inclusion a minimal coupling of gravity
with matter (i.e. considering a curved spacetime background with the only inclusion
of the Einstein-Hilbert term) show that this destabilization effect of New Physics is
still present and turns out to be dominant, although gravity tends to stabilize the
electroweak vacuum, i.e. to suppress the nucleation of true vacuum bubbles [51].

In Chapter 5 we studied the impact of a direct coupling of the Higgs field φ with
gravity on the stability of the electroweak vacuum when we include New Physics
at high energy scales, describing this latter adding the higher order operator at
the Planck scale φ6

{M2
P and φ8

{M4
P to the Higgs potential. In fact, in view of the

destabilization effect induced by this kind of New Physics models, we want to search
for a stabilization mechanism for the electroweak vacuum, and we showed that this
direct coupling between gravity and matter could provide such a mechanism. This
non minimal coupling is described adding to the lagrangian a term ξφ2R, where
R is the Ricci scalar and ξ is the coupling constant. The impact of this coupling
considering only the Standard Model was studied in [77]: a part for a small region
around the conformal value ξ “ 1{6, this coupling tends to increase the electroweak
vacuum lifetime τ value, respect to the minimal coupling case ξ “ 0.

Once we include New Physics beyond Standard Model, the results presented in
this Chapter show that the electroweak vacuum stability continue to strongly depend
from the value of the coupling ξ: in fact, taking into account specific New Physics
cases, i.e. fixing the values of the NP couplings, we find a behaviour of the tunneling
time τ that presents a minimum as shown in Fig. 5.2, while moving away from this
minimum, the τpξq curve has a monotonous increasing behavior. Depending on the
values of NP couplings, in a small interval around the minimum of τpξq (which can
include also the minimal coupling case ξ “ 0), we can have values of the tunneling
time less than the age of the Universe τ ă TU , then a situation that can not describe
our Universe.

However, for sufficiently large values of the coupling, but of the order of unity
|ξ| „ 1, the tunneling time becomes greater than the age of the Universe τ ą TU

(a situation consistent with our Universe), i.e. the non minimal coupling solves the
instability due to the presence of New Physics. If this were not enough, gravity with
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non minimal coupling can have such a strong stabilizing effect that it completely
washes out the effects of New Physics: this effect is shown in Fig. 5.2 where we see
that the curve for τpξq obtained with the inclusion of NP (with a specific values of
the coupling) collapses on the corresponding SM curve for “large” values of |ξ|. This
washing out effect of the non minimal coupling is present for a large region of the
parameter space of the NP coupling, as can be seen in Figs. 5.3 and 5.4 [83].

In view of this enormous stabilizing effect induced by the term ξφ2R for values
of ξ outside the small range around the minimum of τpξq, and under the assumption
that the physical value (still unknown) of ξ lies outside this range, we are led to
formulate the following conjecture, which we call “Direct Coupling Stability Con-
jecture”. An intrinsic stabilization mechanism that protects our Universe from any
possible destabilization that could come from unknown New Physics beyond SM is
provided by three simple and primordial ingredients: the quantum nature of the
laws that govern the Universe, and the very existence of gravity and of the Higgs
boson. This is all that is needed to require the presence of the direct coupling term
between the Higgs field and the Ricci scalar.

It is worth to note that the results illustrated in this Chapter show how the
washing out effect due to gravity is strictly related to the fact that for values of |ξ|
sufficiently large the center of the bounces, and therefore their maximum value, tends
to be smaller and smaller, and this leads the bounce solutions obtained by including
the New Physics to coincide with those obtained with the Standard Model only.
Therefore, we can say that this electroweak vacuum stabilization mechanism could
be due to a gravitational mechanism that tends to “flatten” the bounce solutions,
i.e. to obtain solutions with an ever smaller center and an ever larger size.

In Chapter 6 we have studied the stability of the EW vacuum in the presence
of Planck-scale suppressed operators of the form φ2n

{M2n´4, where M is of order
the Planck mass MP, then a generalization of the higher order operators models
considered in the previous chapters. As said above, such operators can no longer
be excluded in the presence of gravity, as they could in principle be generated by
quantum gravity effects. If these operators contribute with a negative sign to the SM
effective potential, they will in general have a destabilizing effect on the EW vacuum,
and therefore we have called them harmful. We have then evaluated the lifetime τ
of the EW vacuum both in a flat and in a gravitational background for simple
scenarios of Planckian NP with convex potentials in the presence of these harmful
operators. Obviously, for n “ 3 and M “ MP we recover the results quoted in
Chapter 4 [51]. For such scenarios, we have found that longevity of the EW vacuum
requires n ě 4, leading to a EW vacuum lifetime greater of the one obtained with
the SM alone, τ ą„ τSM. Most remarkably, for theories with relatively lower scale M
of quantum gravity, e.g. M “ MP{10, a safely stable EW vacuum implies that all
harmful operators up to n “ 6 need to be either accidentally suppressed or naturally
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eliminated by the action of some symmetry.

Besides resorting to ad hoc accidental suppressions, in this Chapter we have
explored the possibility whether the harmful Planck-scale operators of the form
φ2n
{M2n´4 could be eliminated naturally to leading order because of the action of

some symmetry. In this context, we have shown how minimal embeddings of the
SM in SUGRA can stabilize the EW vacuum against these harmful operators up
to very high values of the induced SUSY-violating A-couplings and the soft SUSY-
breaking scale MS . The scale MS may even lie above the so-called SM instability
scale of 1011 GeV. In particular, we have explicitly demonstrated how discrete R
symmetries, such as ZR

2n´2, could be invoked to suppress the harmful operators to
arbitrary higher powers of n. In this minimal SUGRA framework, we have analyzed
different scenarios of Planck-scale gravitational physics and derived lower limits on
the power n that will be needed in order to render the EW vacuum sufficiently long-
lived. We have presented numerical estimates for a few representative scenarios
realising a low and high soft SUSY-breaking scale MS , i.e. for MS “ 10 TeV and
MS “ 109 TeV [100].

The results presented in this Chapter have revealed the severity of the stability
problem for theories with low-scale quantum gravity. In particular, we have illus-
trated that such theories face serious difficulties in ensuring adequate longevity of
our EW vacuum. These theories may have a string-theoretic origin [168] giving
rise to realizations with a lower effective Planck mass, including models with large
compact dimensions [169, 170]. It would be interesting to analyse the restrictions
that can be derived from the evaluation of τ on the fundamental parameters of such
theories.

In Chapter 7 we studied the EW vacuum stability condition in one of the most
simple extension of the SM, the Two Higgs Doublet Model. This model presents a
richer phenomenology than the SM, providing extra scalar particles. In particular it
has a very rich vacuum structure, providing the possibility of the formation of a elec-
troweak breaking, CP conserving true vacuum different from “our” vacuum also at
the tree level, whereas in SM the EW vacuum metastability occurs due to radiative
corrections to the potential. However, for the 2HDM we consider the stability analy-
sis only for a flat spacetime background, postponing the study in a curved spacetime
background in future works. We analysed in depth the possibility of using the life-
time of false vacua as an exclusion tool of regions of parameter space in 2HDM.
The gauge freedom of the model allowed us to reduce the complexity of an a priori
8-field problem, and the physics of the models under discussion, coupled with the
shape of the bounce equations describing the tunneling trajectories between vacua,
permitted a further simplification. This is the first main result that we obtained
in this Chapter: we have shown that, in the CP-conserving 2HDM potential the
tunneling time calculation is reduced to a 2-field problem. The remaining fields do
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not contribute, their bounce equations only allowing for trivial, vanishing solutions
when the appropriate boundary conditions are taken into account.

However, the 2-field case produces a bizarre consequence, that is the second
main result obtained in this Chapter. The 2HDM is invariant under a simultaneous
sign redefinition for both scalar doublets, and no physical consequences should in
principle arise from such a sign swap. Indeed, for any pair of solutions of the
minimisation conditions of the potential, its symmetric is also a solution. This is a
well-known, and trivial, property of 2HDM vacuum solutions. Any minimum found
is in fact a “pair of minim”, degenerate, separate in field space, each producing exactly
the same physics. We showed that this may have significant impact in the lifetime of
false vacua: indeed, the false vacuum can decay to a pair of degenerate true vacua,
separated in field space, and the trajectory to each of the true vacua will not be, in
general, the same. Hence the partial decay rates to each of the deeper vacua will in
general be different, and the landscape of maxima and saddle points found along the
trajectories to each true vacuum can indeed yield vastly different tunneling rates.
We find many instances where considering both tunneling possibilities yielded false
vacua with lifetimes shorter than the age of the universe, whereas considering only
one of the decaying possibilities seemed to indicate a stable false vacuum.

Applying the theoretical insights gained on generic scans of the 2HDM parameter
space, we analysed which regions of that parameter space might be excluded on
grounds of short EW vacuum lifetime. Generic scans over all allowed (under theory
and experimental constraints) parameters show that the existence of non-degenerate
minima is rare in the 2HDM, and that even when a false vacuum occurs, its lifetime
is often found to be superior to the age of the universe. The percentage of 2HDM
parameter space points excluded in generic scans is then found to be of the order of a
few percent. However, care must be exercised in reading this result, since the regions
of 2HDM parameter space where non-degenerate minima occur are not uniformly
distributed, and neither is the subset of those for which short-lived false vacua occur.

We therefore proceeded to considering specific benchmark scenarios, illustrating
how three very different regimes might occur. First we considered a choice for extra
scalar masses and angles α and β (see Eqs. (7.7) and (7.8)) that pushed the theory
well into the decoupling regime. Such a choice corresponds to a region of parameter
space for which no non-degenerate minima exist in the potential, and as such the
model is entirely stable at tree-level. The decoupling regime, of course, is not the
only case where no non-degenerate vacua do not occur, the same does happen for
smaller masses of the extra scalars. The second scenario considered studied a low-
mass case for the extra scalars, and for which the possibility of a false EW vacuum
now arises: certain regions of the considered parameter space had D ă 0, the
discriminant which characterizes false vacua (see Eq. (7.22)). However, for all such
false vacua, the tunneling times towards the true vacuum were always found to be
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larger than TU , and therefore stability is ensured. Thus the mere existence of a false
vacuum should not be used per se to exclude regions of parameter space for which
D ă 0: tunneling times should and must be computed, and parameter exclusion
should only be decided after that calculation.

Finally, we considered a low-mass scenario for which a large swath of parameter
space is excluded on grounds of the short lifetime of the false vacuum found. The
importance of a proper lifetime calculation (taking into account the existence of
a pair of lower true vacua, related by sign changes in the values of the vevs) was
emphasised. In fact, the number of dangerous vacua found can increase by as much
as 50% when the full vacuum structure is taken into account. Though dangerous
vacua are hard to pinpoint in terms of relations between potential couplings or
physical observables, we observed that a negative discriminant only seems to occur
for a negative soft breaking term m2

12 in the potential [114].
The overall conclusion of this work is that 2HDM vacuum instability at tree-

level can have significant impact on parameter exclusion for certain regions of the
parameter space, but that requires an appropriate calculation of the bounce solu-
tions, taking into account the 2-field dynamics that CP-conservation allows us to
study. Of crucial importance is also the seemingly trivial existence of pairs of de-
generate, sign-swap-related, true vacua, since the lifetime of the false vacua may
depend enormously on that fact. Generic blind scans of 2HDM parameters may
suggest that the frequency of dangerous vacua is very small, but the results pre-
sented in this Chapter show that these vacua may be quite abundant for specific,
experimentally-interesting, regions of parameter space. Though the current analysis
was performed at tree-level, the significance of the results found is undeniable. Of
course, from the existing SM studies, we can expect that radiative corrections will
further complicate matters and bring more possibilities of vacuum instability. Thus
a one-loop extension of the work presented in this Chapter should be undertaken.
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Appendix A

Standard Model β and γ functions

Usually the β and γ function are computed diagrammatically and now we simply
state it, as their computations are not a goal of this thesis. Here we want only to see
how the Higgs scalar β and γm functions can be obtained from the effective potential
(2.105) and from Eq. (2.107).

In fact we can write Veff pφq “ V0pφq`Vcpφq, where V0pφq is the classical part of
the Higgs effective potential, while

Vcpφq “ Vspφcq ` Vgpφcq ` Vf pφcq (A.1)

is the radiative part. Then the Callan-Symanzik equation can be written as:

µ
B

Bµ
Vcpφq `

ˆ

β
B

Bλ
`m2 γm

B

Bm2 ` φ γ
B

Bφ

˙

V0pφq

“
1

2
m2

ˆ

γm ` 2γ ´
24λ

32π2

˙

φ2

`
1

4

ˆ

β ` 4λγ ´
1

16π2

„

24λ2
`

3

4
g4
`

4

8

`

g2
` g12

˘2
´ 6y4

t

˙

φ4
“ 0 . (A.2)

Hence we can read off

β ` 4λγ “
1

16π2

ˆ

24λ2
`

3

4
g4
`

4

8

`

g2
` g12

˘2
´ 6y4

t

˙

(A.3)

γm ` 2γ “
12λ

16π2 . (A.4)

The anomalous dimension have to be computed diagrammatically. In fact we know
that the renormalized field φ and the bare field φ0 (independent from the renormal-
ization scale µ, but dependent on the cut-off scale Λ) are related

φ “ Z pgi; Λ{µq´
1
2 φ0 , (A.5)

where the field strength renormalization Z is dimensionless, and then can depend
on Λ and µ only through the ratio Λ{µ. Then substituting (A.5) in Eq. (2.109-a) we
obtain:

γ “ ´
1

2
µ
d

dµ
lnZ . (A.6)
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The field strength renormalization Z can be computed diagrammatically from the
external momentum p dependent part of the Higgs self-energy Σpp2

q as:

Z “ 1`
B

Bp2 Σpp2
q

ˇ

ˇ

ˇ

ˇ

ˇ

p
2
“m

2
H

, (A.7)

giving for the anomalous dimension:

γ “
1

16π2

ˆ

3

4

`

3g2
` g12

˘

´ 3y2
t

˙

. (A.8)

Substituting into Eqs. (A.3) and (A.4) then yields

β “
1

16π2

ˆ

λ
`

24λ` 12y2
t ´ 9g2

´ 3g12
˘

`
3

4
g4
`

3

8

`

g2
` g12

˘2
´ 6y4

t

˙

(A.9)

γm “
1

16π2

ˆ

12λ´
3

2

`

3g2
` g12

˘

` 6y2
t

˙

. (A.10)

It should be noted that the negative terms in Eq. (A.9), in particular the quartic
Yukawa term y4

t , will have a reducing effect on the value of the coupling λ and could
be responsible for causing any vacuum instability.

Finally, from the self-energy of the W and Z bosons, of the gluon boson and
of the quark top, we can compute diagrammatically the respective field strength
renormalizations Zgi and the coupling counterterms to relate the bare gi to the
renormalized ones, and then use Eq. (2.108) to compute the beta functions:

βg “ ´
19

6

g3

16π2 βg1 “
141

6

g13

16π2 βgs “ ´
7g3

s

16π2 (A.11)

βyt “
1

16π2

ˆ

9

2
y3
t ´

ˆ

8g2
s `

9

2
g2
`

17

12
g12

˙

yt

˙

. (A.12)

In conclusion, using Eqs. (A.9), (A.11) and (A.12), we can solve the differential
equations in (2.117-a) with boundary conditions given by the value of the coupling
gi measured, for instance, at the EW scale v. The solution of this set of differential
equations are the running coupling constant of the Standard Model. In particular,
in Fig. 2.1 we have the Higgs scalar running coupling constant λpµq.
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Appendix B

Potential with a single minimum:
computation of the functional
determinant

We consider a potential with a single minimum as those shown in the left panel
of Fig. B.1, in which the minimum is located in q “ q0 and for which we suppose
V pq0q “ 0.

We want to compute the probability amplitude:

xq0|e
´ 1

~ ĤT |q0y “ N
ż

Dqpτq exp

"

´
1

~
SErqpτqs

*

. (B.1)

The solution to the euclidean equation of motion that satisfies to the boundary
conditions qp´T

2
q “ q0 “ qpT

2
q is given by the constant solution q̄pτq “ q0, shown in

the right panel of Fig. B.1.
In this case, we have that SErq0s “ 0: in fact V pq0q “ 0 by hypothesis, while

9q0 “ 0 as q0 is a constant. Then, using Eq. (3.26), we obtain

xq0|e
´ 1

~ ĤT |q0y “ N
“

detS2Epq0q
‰´ 1

2 “ N
ź

n

λ
´ 1

2
n . (B.2)

As a consequence, we have to compute the eigenvalues λn of the operator S2Epq0q.
Defining ω2

“
V
2
pq0q
m

and using Eqs. (3.17) and (3.20), to obtain λn we have to solve
the eigenvalues equation:

„

´m
d2

dτ 2 `mω
2



ψn “ λnψn (B.3)

whose boundary conditions ψnp˘T {2q “ 0 are given by Eq. (3.22). The solution to
this equation is:

ψnpτq “ An cos

˜

c

λn
m
´ ω2 τ

¸

.
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Figure B.1: Left panel: potential with a second minimum in q0. Right panel: trivial
solution qpτq “ q0.

Imposing the boundary conditions, we obtain the eigenvalues λn:

cos

˜

c

λn
m
´ ω2 T

2

¸

“ 0 ñ

c

λn
m
´ ω2 T

2
“ n

π

2
ñ

λn “ m

„

ω2
`

´nπ

T

¯2


. (B.4)

Consequently, Eq. (B.2) becomes:

N
„

det

ˆ

´m
d2

dt2
`mω2

˙´1{2

“ N
8
ź

n“1

1
c

m
”

ω2
`
`

nπ
T

˘2
ı

“ N
8
ź

n“1

1
b

m
`

nπ
T

˘2

8
ź

n“1

1
b

1`
`

ωT
nπ

˘2
.

The first product is independent from ω, so that we denote with N 1 the entire
prefactor independent from ω

N
8
ź

n“1

1
b

m
`

nπ
T

˘2
” N 1 .

Instead, to compute the second product we use (see the demonstration behind):

8
ź

n“1

ˆ

1`
y2

n2

˙

“
sinhπy

πy
. (B.5)

Using Eq. (B.5), we have:

8
ź

n“1

1
b

1`
`

ωT
nπ

˘2
“

#

8
ź

n“1

«

1`

ˆ

ωT

nπ

˙2
ff+´1{2

“

ˆ

sinhωT

ωT

˙´1{2

.

In conclusion, we find that the functional determinant is given by:

N
„

det

ˆ

´m
d2

dt2
`mω2

˙´1{2

“ N 1

ˆ

sinhωT

ωT

˙´1{2

.
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In the limit ω Ñ 0, this transition amplitude have to reduce to the corresponding
amplitude for the euclidean free particle

Kpq0, q0;´T {2, T {2q “

c

m

2π~T
e´

1
~Scl

where Scl is the classical euclidean action of the free particle: however, once again,
the action vanish, Scl “ 0, since the solution qpτq “ q0 is a constant. Then, since in
the limit ω Ñ 0, we have that

`

sinhωT
ωT

˘

tends to 1:

N 1
“

c

m

2π~T
.

In conclusion:

N
„

det

ˆ

´m
d2

dt2
`mω2

˙´1{2

“

´mω

2π~

¯1{2 1
?

sinhωT
. (B.6)

Now, in the limit ωT " 1 we have:

psinhωT q´1{2
“

˜

eωT ´ e´ωT

2

¸´1{2

Ñ
?

2 e´
1
2
ωT ,

and then we obtain the result presented in Eq. (3.28)

N
„

det

ˆ

´m
d2

dt2
`mω2

˙´1{2

“

´mω

π~

¯1{2

e´
1
2
ωT .

Product

To demonstrate Eq. (B.5), we start from the Fourier expansion of the function
cospzxq in the variable x P p´π, πq:

cospzxq “
a0

2
`

8
ÿ

k“1

ak cospkxq

where the Fourier coefficient ak are given by:

a0 “

ż π

0

cospzxqdx “
2 sinpπzq

πz
ak “

2

π

ż π

0

cospzxq cospkxqdx .

Since cospzxq is a function even in x, it is clear that in the Fourier expansion the
terms with sinpkxq are not present, as the corresponding coefficient vanishes. At
this point, using the sum formula of the cosine we have

cospzxq cospkxq “
1

2
rcosppz ` kqxq ` cosppz ´ kqxqs .

Then we can compute explicitly the Fourier coefficients ak:

ak “
2

π

ż π

0

cospzxq cospkxqdx “
1

π

„

sinppz ` kqxq

z ` k
`

sinppz ´ kqxq

z ´ k

π

0

“
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“ p´1qk
2z sinpπzq

πpz2
´ k2

q
.

As a consequence, for ´π ă z ă π, we can expand cospzxq as:

cospzxq “
2z sinpπzq

π

«

1

2z2 `

8
ÿ

k“1

p´1qk
cospkxq

z2
´ k2

ff

.

Setting x “ π, we have p´1qk cospkπq “ p´1qk p´1qk “ p´1q2k “ 1. Moreover, we
have that:

2z

z2
´ k2 “

1

z ´ k
`

1

z ` k
.

In conclusion, we can write the expansion for the function π cotpπzq:

π cotpπzq “
1

z
`

8
ÿ

k“1

ˆ

1

z ´ k
`

1

z ` k

˙

.

Such an expansion puts in evidence as the function π cot πz has simple poles of the
first order for z “ 0,˘1,˘2, ... with all the residues equal to 1. Now, we compute
the following derivative:

d

dz
ln

ˆ

sin πz

πz

˙

“ π cotπz ´
1

z
“

8
ÿ

n“1

ˆ

1

z ´ n
`

1

z ` n

˙

,

where in the last step we used the expansion of π cot πz that we have just obtained.
At this point, integrating terms by terms in the interval 0 ď z ď 1 (chosen in such
a way that the series is uniformly convergent), we obtain:

ln

ˆ

sin πz

πz

˙

“

8
ÿ

n“1

„

ln

ˆ

z ´ n

´n

˙

` ln
´z ` n

n

¯



“

8
ÿ

n“1

ln

ˆ

1´
z2

n2

˙

ñ

sin πz

πz
“

8
ź

n“1

ˆ

1´
z2

n2

˙

.

Finally, setting z “ iy we obtain Eq. (B.5).
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Appendix C

Mathematical appendix to the
instanton computation

Computation of the instanton action SI

Let us compute the action of the insanton in the double-well using Eq. (3.38):

SI “

ż `T
2

´T
2

m 9q2
I dτ “

ż `T
2

´T
2

2mV pqIq dτ .

To compute V pqIq we use Eqs. (3.30) and (3.34):

V pqIq “ λpq2
I ´ a

2
q
2
“ λa4

!

tanh2
”ω

2
pτ ´ τcq

ı

´ 1
)2

.

being ω2
“ 8λa2

{m ñ a4
“ m2ω4

{64λ2. Moreover, denoting u “ ω
2
pτ ´ τcq we have

du “ ω
2
dτ . Then, in the limit T Ñ ˘8

SI “
4mλ

ω

m2ω4

64λ2

ż `8

´8

du
`

tanh2 u´ 1
˘2
.

We use the change of variables t “ tanhu, so that:

dt “
d

du

sinhu

coshu
du “

cosh2 u´ sinh2 u

cosh2 u
du “ p1´ tanh2 uqdu .

Then, the integral in SI becomes

SI “
m3ω3

16λ

ż 1

´1

dt p1´ t2q “
4

3

m3ω3

16λ
ñ SI “

m3ω3

12λ
. (C.1)

This result put in evidence as the action computed in the instanton solution is
translation invariant, since it does not depend of the centroid τc.
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Computation of K

To compute K:

K “

ˆ

SI
2π~m

˙1{2 „
det1 S2pqIq

det S2paq

´ 1
2

(C.2)

it is necessary to solve the eigenvalues equation for the operator S2pqIq, where ω
2
“

8λa2
{m, while SI is given by Eq. (C.1). The eigenvalue equation has the form:

´
d2xnpτq

dτn
`

1

m
V 2pqIpτqqxnpτq “ εnxnpτq , (C.3)

where using Eqs. (3.30) and (3.34) it is easy to see

V 2pqIq “ mω2

˜

1´
3

2 cosh2
“

ω
2
pτ ´ τcq

‰

¸

. (C.4)

It is clear that Eq. (C.3) is a Schroedinger equation with a potential Upτq “ 1
m
V 2pqpτqq.

From the form of this potential it is clear that that there are discrete as well as con-
tinuous spectra.

The explicit form of the eigenvalues equation is:

B
2
τxn ´ pω

2
´ εnqxn `

3ω2

2 cosh2 u
xn “ 0 (C.5)

where u “ ω
2
pτ ´ τcq. To simplify this equation we make a change of variable:

ξ “
qIpτq

a
“ tanhu .

Then:
1

cosh2 u
“ 1´ ξ2 .

dξ

dτ
“
ω

2
p1´ ξ2

q ñ Bτ “
ω

2
p1´ ξ2

qBξ ,

In terms of ξ the equation becomes:

d

dξ
p1´ ξ2

q
d

dξ
xn `

ˆ

a`
b

1´ ξ2

˙

xn “ 0 , (C.6)

where

a “ 6 b “
4pεn ´ ω

2
q

ω2 .

Let be c a constant and set xn “ p1 ´ ξ2
q
cχ (c will be chosen appropriately later).

Then, after a simple algebra, we get:

p1´ ξ2
q
d2χ

dξ2 ´ p4c` 2qξ
dχ

dξ
`

ˆ

a´ 2c´ 4c2
`
b` 4c2

1´ ξ2

˙

χ “ 0 . (C.7)

We make a further change of variable:

z “
1

2
p1´ ξq (C.8)
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1´ z “
1

2
p1` ξq 1´ ξ2

“ 4zp1´ zq .

There is a correspondence in the asymptotic values of the variables:

τ Ñ 8 ô ξ Ñ 1 ô z Ñ 0

τ Ñ ´8 ô ξ Ñ ´1 ô z Ñ 1 .

Then the equation further simplifies to

zp1´ zq
d2ξ

dz2 ` p2c` 1´ p4c` 2qzq
dχ

dz
`

ˆ

a´ 2c´ 4c2
`

b` 4c2

4zp1´ zq

˙

χ “ 0 .

Now if we choose c such that b ` 4c2
“ 0, we obtain the familiar hypergeometric

equation

zp1´ zq
d2χ

dz2 ` pγ ´ pα ` β ` 1qzq
dχ

dz
´ αβχ “ 0 (C.9)

with
γ “ 2c` 1 α ` β “ 4c` 1 αβ “ 4c2

` 2c´ a .

In our case with a “ 6, these parameters simplify to:

α “ 2c´ 2 β “ 2c` 3 γ “ 2c` 1 . (C.10)

The solution to Eq. (C.9) is the hypergeometric function F pα, β, γ; zq, which near
z “ 0 has the expansion:

F pα, β, γ; zq “ 1`
αβ

γ

z

1!
`
αpα ` 1qβpβ ` 1q

γpγ ` 1q

z2

2!
` . . . . (C.11)

- Continuous spectrum

For ε ě ω2, if we do not impose any asymptotic conditions, the spectrum is contin-
uous, and it can be parametrized by the real positive momentum

p ”
a

ε´ ω2
ô k ”

p

ω
. (C.12)

Since there is no barrier for ε ą ω2, we expect that the particle does not get reflected
at all as it travels from τ “ ´8 to τ “ 8. This means that all the scattering
dynamics is contained in the knowledge of the phase shift δp defined here as (setting
τc “ 0):

xppτ Ñ 8q “ eipτ

xppτ Ñ ´8q “ eipτ`iδp .

As it will be shown, to compute the contribution to the determinant, the knowledge
of δp will be enough.
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Now for ε ą ω2, we have

b “
4pεn ´ ω

2
q

ω2 b` 4c2
“ 0 ñ

b “ ´4c2
“ 4k2

ñ c2
“ ´k2 .

The solution which has asymptotic behaviour eipτ as τ Ñ 8 (i.e. z Ñ 0) is, choosing
c “ ´ik

x “ p1´ ξ2
q
´ikF pα, β, γ; zq . (C.13)

In fact, using u “ 1
2
ωτ and hence 2uk “ ωτk “ pτ , in the limit τ Ñ 8 we have:

p1´ ξ2
q
´ik
“ pcosh2 uqik »

`

4e´2u
˘´ik

“ 4´ikeipτ . (C.14)

To find the phase shift, we must analytically continue this solution to the one
valid around z “ 1, i.e. for τ Ñ ´8. In this limit, for the front factor we have:

p1´ ξ2
q
´ik
»
`

4e2u
˘´ik

“ 4´ike´ipτ . (C.15)

Thus, this factor alone represents the reflected wave. On the other hand, the hyper-
geometric function must be rewritten as:

F pα, β, γ; zq “ F1p1´ zq ` F2p1´ zq (C.16)

where

F1p1´ zq ”
ΓpγqΓpγ ´ α ´ βq

Γpγ ´ αqΓpγ ´ βq
F pα, β, α ` β ´ γ ` 1; 1´ zq (C.17)

F2p1´ zq ”
ΓpγqΓpα ` β ´ γq

ΓpαqΓpβq
p1´ zqγ´α´β

ˆ F pγ ´ α, γ ´ β, γ ` 1´ α ´ β; 1´ zq (C.18)

with
α “ ´2ik ´ 2 β “ ´2ik ` 3 γ “ ´2ik ` 1 . (C.19)

It is easy to see that F1p1 ´ zq vanishes due to the denominator factor Γpγ ´ βq “

Γp´2q which diverges. This shows that indeed there is no reflected wave. The
remaining part p1´ ξ2

q
´ikF2p1´ zq becomes

p1´ ξ2
q
´ikF2p1´ zq “

Γp´2ik ` 1qΓp´2ikq

Γp´2ik ` 3qΓp´2ik ´ 2q
p1´ zq2ik

ˆ p1´ ξ2
q
´ik
p1`Op1´ zqq

“
p1` 2ikqp1` ikq

p1´ 2ikqp1´ ikq
p1´ ξ2

q
ik4´2ik

ˆ p1`Op1´ zqq

»
p1` 2ikqp1` ikq

p1´ 2ikqp1´ ikq
4´ikeipτ . (C.20)

Comparing with (C.14), we can red off the phase shift as

eiδp “
p1` 2ikqp1` ikq

p1´ 2ikqp1´ ikq
. (C.21)
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- Discretization of the continuous spectrum

To compute the contribution to the determinant, we must regularize the continuous
spectrum. The simplest way is to put the system in a box of interval ´T {2 ă τ ă

T {2. As boundary conditions we take

xp´T {2q “ xpT {2q “ 0 .

Because of this boundary conditions, there will be a reflected wave (which vanishes
at T Ñ 8) and we must consider the general solution. Since xpp´τq is obviously a
solution independent of xppτq, such a solution is:

x “ Axppτq `Bxpp´τq . (C.22)

Applying the boundary conditions above, we get

AxppT {2q `Bxpp´T {2q “ 0

Axpp´T {2q `BxppT {2q “ 0 .

Non-trivial solution exists if and only if A “ ˘B. this means

xppT {2q

xpp´T {2q
“ ˘1 . (C.23)

Using the asymptotic form of the solution, the left hand side become eipT´iδp “ ˘1.
Hence the solutions are given by:

p̃n “
nπ ` δp
T

, n “ 0, 1, 2, . . . (C.24)

where we denote by p̃n the (by definition positive) parameter p satisfying the above
condition.

We now compute the contribution of these modes to the ratio of the determinant.
We recall that for the harmonic oscillator case, the spectrum is

pn “
nπ

T
.

It is clear that in the limit T Ñ 8, contribution from a finite number of eigenvalues
with n „ Op1q cancel against the contribution from the harmonic oscillator states as
they both become ω2. Thus, the ratio to be computed can be taken as (by shifting
a few levels and recalling p “

a

ε´ ω2
ñ ε “ ω2

` p2):

R ”
8
ź

n“1

ω2
` p̃2

n

ω2
` p2

n

. (C.25)

As T Ñ 8, the difference ∆̄pn ” p̃n ´ pn “ δp{T Ñ 0. Thus, we can expand in
powers of ∆̄pn to the first order. Hence

R “ exp

˜

8
ÿ

n“1

ln
ω2
` p̃2

n

ω2
` p2

n

¸

» exp

˜

8
ÿ

n“1

2pn∆̄pn

ω2
` p2

n

¸

. (C.26)
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Moreover, the interval π{T goes to zero and we may convert Eq. (C.26) into the
integral by noting

∆̄pn “
δp
T
“
δp
π

π

T
“
δp
π
ppn`1 ´ pnq “

δp
π

∆pn .

So we get

R » exp

ˆ

1

π

ż 8

0

δp
2p

ω2
` p2dp

˙

“ exp

ˆ

1

π

ż 8

0

δp
d

dp
ln

ˆ

1`
p2

ω2

˙

dp

˙

“ exp

ˆ

´
1

π

ż 8

0

δp
dδk
dk

ln
`

1` k2
˘

dk

˙

(C.27)

where in the last step we used we integrate by parts. From Eq. (C.21) for the phase
shift, we easily get

dδk
dk

“
2

1` k2 `
4

1` 4k2 . (C.28)

Now we use the formula
ż 8

0

lnp1` k2
q

1` a2k2 dk “
π

a
ln

ˆ

1`
1

a

˙

, (C.29)

to easily get:

R “ e´ ln 9
“

1

9
. (C.30)

Remarkably, we have been able to compute the ratio of the determinant exactly.

- Discrete spectrum

Now we consider the discrete part of the spectrum in the case ω2
´ εn ą 0. Thus,

we should set

c “ k ”

a

ω2
´ εn
ω

ą 0 . (C.31)

The solution to the Schroedinger equation which is finite near z “ 0 (i.e. τ Ñ 8) is

xn “ p1´ ξ
2
q
kF pα, β, γ; zq (C.32)

where F pα, β, γ; zq is given by (C.11), with

α “ 2k ´ 2 β “ 2k ` 3 γ “ 2k ` 1 . (C.33)

In order for this equation to be finite at z “ 1 (i.e. as τ Ñ ´8), the series must
terminate at finite terms. Since β, γ, k ą 0 and α “ 2k ´ 2 ą ´2, it can occur only
when

α “ 2k ´ 2 “ ´n , n “ 0, 1 ñ

k “ 2 k “
1

2
. (C.34)
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Recalling the definition of k, this means that there are two discrete energy levels
(bound states):

ε0 “ 0 ε1 “
3

4
ω2 . (C.35)

The corresponding wave functions can be obtained using the form of the (trun-
cated) hypergeometric function:

x0pτq „
1

cosh2
“

ω
2
pτ ´ τcq

‰

τÑ8
ÝÝÝÑ e´ωpτ´τcq (C.36)

x1pτq „
sinh

“

ω
2
pτ ´ τcq

‰

cosh2
“

ω
2
pτ ´ τcq

‰

τÑ8
ÝÝÝÑ e´

ω
2
pτ´τcq (C.37)

It is easy to see that x0pτq, i.e. the eigenfunction corresponding to the zero eigenvalue
ε0, is proportional to dqIpτq{dτ . Then, we have found the zero mode that we have
encountered and treated in Chapter 3.

Derrick theorem

In the computation of the exponent B of the vacuum decay amplitude we have used
the Derrick theorem [34, 39]: we consider a vector of scalar fields in D`1 dimensions
φ “ pφaq, whose dynamics is described by the scalar lagrangian

L “ 1

2
BµφB

µφ´ Upφq “
1

2
BµφaB

µφa ´ Upφaq , (C.38)

where U is a non-negative function that vanishes in the ground states of the theory.
The theorem establishes that for D ě 2 the unique non-singular, static and finite
energy solutions are the ground states.

To demonstrate the theorem, we define the two functionals

IK “
1

2

ż

dDx p∇φaq2 IV “

ż

dDx Upφaq . (C.39)

The two functionals IK and IV are non-negative and vanish simultaneously only on
the ground states. We consider a solution of the equations of motion φSpxq: since this
function is a stationary point for the lagrangian in all the possible configurations
space, then it will be a fortiori a stationary point for all the configuration sub-
spaces to which it belongs. As a consequence, we define a set of functions through
a parameter that defines a scaling of the lengths:

φSpx;λq “ φSpλxq λ ą 0 . (C.40)

The energy functional, in general, is given by the sum of the functionals in Eq. (C.39):
computed in the solutions of Eq. (C.40), after the change of variables due to the
scaling, we obtain

ESpλq “ ES rφSpλxqs “ λ2´DIK ` λ
´DIV . (C.41)
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Since φSpxq is a solution, the function ESpλq has to be stationary for λ “ 1: differ-
entiating respect to the parameter λ we obtain

pD ´ 2qIK `DIV “ 0 . (C.42)

If D ą 2, since IK ě 0 and IV ě 0, Eq. (C.42) can be satisfied only by IK “ 0 and
IV “ 0. This implies that φSpxq “ const, that is φS is a ground state. Instead,
if D “ 2 Eq. (C.42) implies that IV “ 0, so that the static solutions given by
δESrφs{δφ “ 0 can be obtained also from δIKrφs{δφ “ 0. The resulting equation is

∇2φ “ 0 . (C.43)

Then, an harmonic function in all the space RD is necessarily a constant function
also in this case, φSpxq “ const. This complete the demonstration of the theorem.
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Appendix D

Numerical computation of the
bounce solution

The search for the bounce solution is a boundary-value problem specified by the
values of ϕ1p0q and ϕp8q. This can be turned into an initial-value problem using
the shooting method, whereby ϕp8q is replaced by ϕp0q, and the appropriate value
for the latter quantity is found iteratively, solving Eq. (4.12) (or its curved-space
generalization) for different initial values until the desired ϕp8q is obtained.

As will be clear below, knowledge of the asymptotic behavior of ϕpxq for xÑ 0

and x Ñ 8 is a crucial ingredient for the efficiency of the shooting algorithm. To
find the expected behavior of ϕpxq in the relevant regimes, we begin by expanding
ϕpxq around x “ 0:

ϕpxq “ B0 `B2x
2
`B3x

3
` ... (D.1)

where the linear term is missing due to the condition ϕ1p0q “ 0. Inserting this
expansion in (4.12), with Upϕq given by (4.14) we find that the coefficients of the
odd-power terms vanish, B2n`1 “ 0, while all the coefficients of the even-power terms
B2n are functions of the first coefficient B0 (called B from now on). Truncating the
expansion to the x2 term:

ϕpxq “ B `
B3

8

´

λ˚ `
α

2
lnB ` α ln2B ` β ln3B ` β ln4B

¯

x2
` ... (D.2)

The coefficient of x2 turns out to be negative, so near the origin the bounce profile
behaves as an upside-down parabola.

As for the behavior of ϕpxq for xÑ 8, we note that Upϕq Ñ 0 for xÑ 8, and
ϕpxq Ñ 0 for xÑ 8. Asymptotically Eq.(4.12) and the corresponding solution are
then:

ϕ2pxq `
3

x
ϕ1pxq “ 0 ñ ϕpxq “

A

x2 , (D.3)

where A is one of the integration constants, while the second additive integration
constant vanishes due to the condition ϕp8q “ 0. In other words, for the bounce
solution x2ϕpxq has to reach a plateau for xÑ 8.
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Numerically, we have implemented a fully adaptive algorithm designed to: (i)
pick an initial guess (ϕp0q “ B, ϕ1p0q “ 0), (ii) integrate Eq. (4.12) numerically
while monitoring the behavior of ϕpxq, and (iii) iteratively restart the procedure
with a suitably corrected B until the condition ϕp8q “ 0 is satisfied up to a pre-
scribed tolerance. In practice, the numerical integration is carried out in the range
rxmin, xmaxs, where we have chosen xmin “ 10´10 and xmax “ 109, so that the initial
conditions for ϕ and ϕ1 are given at x “ xmin using Eq. (D.2). With this boundary
conditions, we find a class of solutions ϕBpxq, parametrized by B. Following the
overshoot-undershoot argument of Coleman [38], we want to tune the parameter B
until we converge to the solution which reaches a plateau for xÑ 8.

We found that the characterization of the final state is of crucial importance
to the effectiveness of the search. In particular, introducing the reference point
xref “ xmax´103 and a tolerance ε “ 10´10, we found that the following three criteria
are sufficient to lead the algorithm to the bounce solution in all cases (denoting
ϕ̃pxq “ x2ϕpxq):

1. If ϕ̃pxmaxq ´ ϕ̃pxrefq ą ε, the scalar field has reversed its direction before
reaching ϕ “ 0, and is returning towards its initial position. The initial guess
for ϕpxminq was therefore too low, and B is correspondingly increased by a
quantity δ.

2. If ϕ̃pxmaxq ´ ϕ̃pxrefq ă ´ε, the scalar field is overshooting the top of the hill.
The initial guess for ϕpxminq was therefore too high, and B is correspondingly
decreased by a quantity δ.

3. If |ϕ̃pxmaxq ´ ϕ̃pxrefq| ă ε, we consider that the plateau has been reached, i.e.
that the bounce solution is found within the required precision.

Furthermore, the algorithm stores a state consisting of both B and its value for
the two preceding iterations. It is therefore possible to detect oscillations in B and
bisect (or otherwise decrease) δ. We found that decreasing δ to δ{10 each time B
changes trend leads to a particularly efficient search, that converges exponentially
to the solution, as will be illustrated below.

The inclusion of gravity does not modify our algorithm, as we found that, for
xÑ 8, the areal radius goes as a „ x` c (see Chapter 4), i.e. the curvature tends
asymptotically to zero (the value of the constant c is given by apxq ´ x when the
plateau is reached).

For this reason, the criteria for tuning the initial value of ϕ, introduced in the flat
case, can also be used on a curved spacetime. Again, we implemented the boundary
condition in xmin:

ϕpxminq “ B ϕ1pxminq “ 0 apxminq “ ε1 a1pxminq “ 1 , (D.4)
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with ε1 ! 1 (clearly we cannot use apxminq “ 0 due to the factor a´1 in (4.17-a)).
After solving the equations, the size R of the bounce solution is obtained and

we can compute the integral in Eq. (4.19).
We go now back to the flat spacetime case and include the NP terms of (4.21),

thus obtaining the (dimensionless) potential (4.22). The bonus for our analysis is
that this potential does not modify the asymptotic behavior of the bounce solution
ϕbpxq for xÑ 8, as in this limit we still have Upϕpxqq Ñ 0. Therefore the inclusion
of NP does not lead to any substantial change in our numerical method. The only
modification with respect to the flat spacetime case concerns the expansion of the
bounce solution around the origin x “ 0. In the flat case, by considering the
integration range rxmin, xmaxs, we found that the initial values for solving Eq. (4.12)
with the shooting method are obtained once we take the expansion (D.2) of ϕpxq
and its first derivative at xmin. Repeating the same analysis for the potential (4.22),
we find that NP simply leads to additional terms in these expressions. Thus, the
new expansion for ϕpxq is given by (again up to Opx2

q):

ϕpxq “ B `
B3

8

´

λ˚ ` λ6B
2
` λ8B

4
`
α

2
lnB ` α ln2B ` β ln3B ` β ln4B

¯

x2
` ¨ ¨ ¨

(D.5)
which we use to set initial conditions for ϕpxminq and ϕ1pxminq. An analogous ap-
proach is followed when we consider the alternative parametrization of NP given in
Eq. (4.25). Just like in the case without new physics, when we include gravity we
use the initial values (D.4), and the numerical integration of the equations of motion
is reduced to the tuning of the parameter B.

Fig.D.1 illustrates the exponential convergence of our algorithm in the four cases
presented in this appendix.
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Figure D.1: Convergence of ϕpxminq to its final value (left column), as well as of
ϕ1pxmaxq ` 2ϕpxmaxq{xmax to zero (right column), in the four cases (flat and curved,
with and without new physics) discussed in the appendix.
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