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Abstract
The objective of this work is to show an educational path for combinatorics and graph theory that has the aim, on one 
hand, of helping students understand some discrete mathematics properties, and on the other, of developing modelling 
skills through a robust understanding. In particular, for the path proposed to middle-school students, we used a connection 
between k-permutations and colourings of graphs: we indicated a way to solve problems related to counting all the possible 
arrangements of given objects in a k-tuple under given constraints. We solve this kind of problem by associating a graph 
with the constraints related to the k-tuple and by using graphs’ colourings, in which every colour is associated with one 
of the objects. The number of arrangements is given by finding the number of colourings through an algorithm called the 
Connection-Contraction Algorithm. The educational path is set within the Teaching for Robust Understanding framework 
and the goal, from the mathematical skills perspective, is to enhance modelling, passing from real situations (the fish prob-
lem in our experiment) to mathematical problems (the graph’s colouring in our experiment) and vice versa through the use 
of technology (the Connection-Contraction Algorithm with yEd editor, in our experiment), by using an extended modelling 
cycle. The meetings with students were videotaped and some results of the experimentation are given.

Keywords  Graph colourings · k-permutations · Graph theory algorithms · TRU framework · Modelling

1  Introduction

Graph theory is a relatively new branch of mathematics that 
has emerged increasingly often on the international research 
scene for its countless applications (Derrible & Kennedy, 
2011; Hart, 2008). However, it is also true that it can be used 
for a better understanding of mathematical concepts in the 
field of education: the understanding of combinatorics con-
cepts often presents itself as quite challenging for secondary 
school students (Hart & Martin, 2018), and some concepts 
from graph theory can help their understanding.

In this paper, after a review of relevant literature and 
introducing the research question, we present the theoreti-
cal framework to which we adhered and the mathematical 
content that led us to the innovative educational path that 

we brought to the classroom. We show some of the results 
obtained in the experimentation with students through a 
qualitative analysis, in terms of teaching for robust under-
standing (Schoenfeld, 2014, 2016). We also illustrate how 
these activities can foster mathematical skills such as model-
ling (Greefrath, 2011).

2 � Graph theory and combinatorics 
in mathematics education

Research in mathematics education includes studies on 
the teaching and learning of discrete mathematics. Let us 
consider this subject in papers of the 13th International 
Congress on Mathematical Education (Hart & Sandefur, 
2018). Topics of discrete mathematics can be useful in 
the study of disciplines like computer science or opera-
tions research (see, e.g., Beineke & Wilson, 1997), and 
even if “discrete mathematics is a robust field with many 
modern applications” (Hart & Martin, 2018), in the U.S., 
for example, as well as in many other countries, “the 
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Common Core State Standards for Mathematics essen-
tially excludes discrete mathematics” (Rosenstein, 2018).

In particular, graph theory, which is one of the topics 
of discrete mathematics (Hart, Sandefur, & Ouvrier-Buf-
fet, 2017), also plays a significant role in engineering and 
economics, and, of course, all of these topics are relevant 
for mathematics students (González, Muñoz-Escolano, & 
Oller-Marcén, 2019; Kolman, Zach, & Holoubek, 2013; 
Milková, 2009; Vidermanová & Melušová, 2011).

Despite its ‘recent’ birth (in the second half of the 
1700s) and the origin of its development (more closely 
related to games than to mathematical matters), graph 
theory is nowadays studied for both theoretical and prac-
tical reasons (Voloshin, 2009). In fact, graphs are useful 
tools for modelling real-life problems related to transpor-
tation networks, telecommunications, social networks, or 
big data (Derrible & Kennedy, 2011; Hart, 2008). Moreo-
ver, since some graph theory topics do not require prior 
knowledge to be mastered, several experiments involving 
these topics have been carried out in primary and sec-
ondary schools (Cartier, 2008; Ferrarello & Mammana, 
2018; Niman, 1975; Oller-Marcén & Muñoz-Escolano, 
2006; Santoso, 2018; Wasserman, 2017). Gonzàles, 
Muñoz-Escolano, and Oller-Marcén (2019) provided a 
theoretical analysis of the reasoning processes students 
used when solving graph-theory problems, in which they 
classified four levels of reasoning (recognition, use and 
formulation of definitions, classification, and proof), 
most of which are applicable also in primary and middle 
schools.

“Combinatorics might be considered the mathematical 
art of counting. Combinatorial reasoning is the skill of 
reasoning about the size of sets, the process of count-
ing, or the combinatorial setting to answer the question 
‘How many?’” (Hart & Sandefur, 2018, p. vi). Combi-
natorics does not depend on calculus, offers challenging 
problems that can be discussed with pupils, and can be 
used to train students in enumeration and generalisation 
and to present many applications (Kapur, 1970). At the 
same time, combinatorics is a field that most students 
find very difficult; most combinatorial problems do not 
have readily available solution methods (Batanero et al., 
1997). Students often have difficulties working with com-
binatorial problems (Eisenberg & Zaslavsky, 2003; Fisch-
bein & Gazit, 1988). Several studies over the years have 
promoted approaches to enhance students’ capabilities in 
solving combinatorial problems, from primary children 
(English, 1991; Hoeveler, 2018; Zak, 2020) to middle- 
and high-school students (Ďuriš et al., 2021). In our study, 
we aimed to address some difficulties with combinatorial 
problems by creating an educational path that takes graph 
theory into account as a support in solving the problems.

3 � Theoretical background

We chose to design the activity and record the results 
using the Teaching for Robust Understanding (TRU) 
framework proposed by Schoenfeld (2013, 2014, 2016) 
and the modelling cycle introduced by Blum and Leiß 
(2007) and extended by Greefrath (2011).

The TRU framework consists of five dimensions for 
powerful classrooms, described in Table 1.

The framework identifies these five dimensions, which 
raise a truly effective teaching/learning context and foster 
deep student understanding, thereby achieving ambitious, 
robust teaching. Briefly, “if the content is rich, the stu-
dents get to engage, they get powerful ideas, they build on 
each other’s ideas, they can build positive identities with 
the teacher adjusting the level of instruction so that it is 
right for the students to engage productively” (Schoenfeld, 
video in https://​trufr​amewo​rk.​org/).

The content we choose can provide opportunities to 
learn; in particular, it can support the important discipli-
nary idea of mathematical modelling.

As mentioned, we refer to the modelling cycle intro-
duced by Blum and Leiß (2007) and extended by Greefrath 
(2011) (Fig. 1). Other modelling cycles were presented by 
Vorhölter et al. (2019). The modelling process is divided 
into various phases: there is the pole of reality (on the 
left), the one of mathematics (in the middle), and the one 
of technology (on the right). The real situation, given in 
the original problem, is translated into a real model and 
transferred into the mathematics realm in a mathematical 
model. The mathematical model is then technologically 
modelled and solved in the technology realm. Once the 
technological results are obtained, they are translated into 
mathematical solutions, re-interpreted in terms of real 
results, and given back to the rest of the world. The use of 
the technological realm could be useful for all students, 
and could aid students with difficulties, thereby aiming 
for an Equitable Access to Content. In the passage from 
the problem to the mathematical solution, the argumenta-
tion (Toulmin, 1958) plays an important role. It consists 
of one or more linked steps of reasoning that lead from 
an initial input to a conclusion by means of guaranteed 
rules. During this process, students realise not only that 
“the property is true”, but also “why it is true”; it contrib-
utes not only to knowledge construction (Mariotti, 2008, 
p. 189), but also to explaining already-acquired knowledge 
to others. Personal knowledge construction makes students 
able to acquire Ownership of the content, even if Cogni-
tive Demand is challenging. Argumentation is useful for a 
Formative Assessment, because the teacher can give stu-
dents opportunities to deepen understanding by listening 
to and analysing their reasoning, rather than judging only 

https://truframework.org/
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the final results. At this point, students are ready to solve 
problems and use their acquired abilities and knowledge 
in different contexts, eventually making abstractions and 
generalisations, as well as connections to different topics.

4 � Research question

The motivations for this work are based on the idea that 
difficulties often encountered in understanding and deal-
ing with certain topics, may originate not only in the lack 
of prerequisites, but also in the teaching method of the 
teacher. In fact, we want to show that in order to teach 
certain topics, it is insufficient merely to know the sub-
ject matter, but, taking into account the knowledge and 
peculiarities of the students, it is also necessary to know 
what cognitive mechanisms may or may not lead to under-
standing of a particular topic, along with some appropriate 
teaching methods to deal with it. In practice, we want to 
show that what you teach, how you teach, and to whom you 
teach are all equally important. In particular, we wanted to 
test whether the robust understanding framework (TRU, 
see Sect. 3) could be useful in how to reach those topics 
perceived as difficult, such as combinatorial ones (what), 
with middle school pupils (to whom). To accomplish this 
goal, we wanted to use graph theory and technological 
tools, aiming to translate combinatorial problems into 
graph problems that can be solved algorithmically, follow-
ing the Extended modelling cycle (see Sect. 3). Thus we 
posed the following research question (RQ): “Is it possible 
for 8th grade students to reach a Robust Understanding 
of challenging combinatorial topics, using graph theory 
and technological tools, to enhance modelling skills?” 
We divided this question into the following sub-ques-
tions, each one regarding one the five dimensions of the 
Robust Understanding framework. RQ1:“Is it possible for 
8th grade students to understand rich Content, in our case 
graph theory, combinatorics, and the connection between 
them?” RQ2: “Would 8th grade students be able to posi-
tively answer such challenging Cognitive Demand?” RQ3: 
“Could a path aimed at challenging demand be for all the 
students, thanks to the use of technology, guaranteeing an 
Equitable Access to Content?” RQ4: “Could an approach 
using ‘real objects’ to represent ‘mathematical objects’ 
have an impact on Agency, Ownership, and Identity in stu-
dents?” RQ5: “Is an approach based on Formative Assess-
ment useful to help students in understanding?”. In order 
to answer the research question RQ we report on our anal-
ysis of data in Sect. 8, according to the five dimensions 
of the TRU model, and taking into account, in several of 
the investigated dimensions, also the development of the 
Extended Modelling Cycle.Ta
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5 � Mathematical content

Combinatorics is one of the arch enemies of students in the 
high-school mathematics curriculum, and a new approach 
to teaching and learning it could be useful. There are several 
interesting connections between graph theory and combina-
torics; the one expressed by Gionfriddo (2011) inspired the 
educational path that is the focus of this work.

We briefly mention here some definitions and properties 
of graph theory that we used in our work with students. (For 
more details, see Voloshin, 2009).

A graph is a pair G = (V ,E) , where V  is a nonempty set 
of n elements called vertices and E is a set of pairs of distinct 
elements of V called edges. If x, y are two vertices such that {x, 
y} is an edge of G , then x, y are said to be adjacent. A graph 
with n vertices Kn is complete if E is the set of all pairs of dis-
tinct elements of V . A graph with n vertices Ωn is empty if E is 
the empty set. A vertex colouring (or simply a colouring) of a 
graph G is a mapping f ∶ V → C , where C is a set of colours, 
such that f (x) ≠ f (y) for every pair of adjacent vertices x, y . 

Two colourings f ∶ V → C and g ∶ V → C of G are said to 
be distinct if there exists at least one vertex x ∈ V  such that 
f (x) ≠ g(x) . The chromatic polynomial of G is defined to be 
a function P(G, �) that expresses the number of distinct col-
ourings of G by at most � colours for each positive integer � . 
The chromatic number of G is the smallest number of colours 
necessary to colour a graph.

It is possible to represent a graph graphically by associating 
each vertex with a point on the plane and each edge with a line 
joining adjacent vertices (Table 2). Graph G in the table has 
been vertex-coloured.

Note that, when colouring a complete graph Kn , all verti-
ces must have different colours and that n colours are needed. 
Moreover, P

(

Kn, k
)

= Pk,n = k(k − 1)… (k − n + 1), where 
Pk,n is the number of simple permutations of k objects in n 
places, with n ≤ k.

Two vertices x and y are connected if there exists an ordered 
( 2L + 1)-tuple

C(x, y) =
(

x = x1, s1, x2, s2,… , xL, sL, xL+1 = y
)

Fig. 1   Extended modelling cycle

Table 2   A null graph, a 
complete graph, and a coloured 
graph

Ω5 K4 Graph G
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s u c h  t h a t :  xi ∈ V ,∀i = 1, 2,… , L + 1,  a n d 
si ∈ E, si =

{

xi, xi+1
}

,∀i = 1, 2, … ,L.
A graph is said to be connected if any pair of vertices 

is connected.
For our purposes, we used only connected graphs.
In the following, we introduce two graphs, connection 

graph and contraction graph, that will be used in the Connec-
tion-Contraction Algorithm: this algorithm provides all pos-
sible colourings of a graph with a given number of colours.

Let G = (V ,E) be a graph that is not a complete graph, i.e., 
G ≠ Kn . Let x, y ∈ V be such that x and y are not adjacent verti-
ces. We define the following two graphs (Table 3):

•	 connection graph: G + xy = (V ,E ∪ {x, y});

•	 contraction graph: G∖xy , obtained from the graph G by 
substituting the vertices x and y with one vertex z = x = y 
that is adjacent to all the vertices adjacent to x and all the 
vertices adjacent to y in the graph G.
We are now ready for the Connection-Contraction Algo-

rithm (C–C A):

1.	 Suppose G is not a complete graph and let x and y be two 
non-adjacent vertices.

2.	 Generate the graphs

(a)	 G + xy, connected, and
(b)	 G∖xy , contracted.

3.	 If G + xy (or G�xy) is complete, we stop.
If G + xy (or G�xy) is not complete, we generate two new 

graphs from G + xy (or G�xy) as in 1. and 2.
We stop only when we obtain complete graphs.
This algorithm produces the chromatic polynomial of a 

graph (giving all possible colourings of a graph with a given 
number of colours) and the chromatic number of the graph 
(the fewest number of colours needed to colour the graph). 
To understand why this is so, see the example below and 
consider the following reasoning.

Let f be a colouring of a graph G , and x and y be two non-
adjacent vertices of G . If f (x) ≠ f (y) . Then f is a colouring 

of G + xy , while if f (x) = f (y) then f is a colouring of G∖xy. 
Therefore, if G is not a complete graph, and x and y are non-
adjacent vertices, then P(G, �) = P(G + xy, �) + P(G�xy, �). 
Now, since the algorithm ends when both G + xy and G∖xy 
have been transformed into complete graphs, we get the 
chromatic polynomial of G to be:

P(G, �) = P
(

K1, �
)

+ P
(

K2, �
)

+…+ P
(

Kt, �
)

 , where 
K1 , K2 , …, Kt are the complete graphs obtained from the 
previous algorithm.

The chromatic number of the graph (the fewest number 
of colours needed to colour the graph), is then given by 
the smallest n such that Kn is one of the complete graphs 
obtained at the end of the algorithm.

As an example, we can apply the Connection Contraction 
Algorithm in order to know the number of different colour-
ings of the graph in Fig. 2, with, for example, 4 colours 
(Fig. 3). 

The chromatic polynomial of the graph G then turns out 
to be

from which

P(G, �) = P
(

K5, �
)

+ 4P
(

K4, �
)

+ 2P
(

K3, �
)

,

P(G, 4) = P
(

K5, 4
)

+ 4P
(

K4, 4
)

+ 2P
(

K3, 4
)

= 0 + 4P
(

K4, 4
)

+ 2P
(

K3, 4
)

= 4 ⋅ (4 ⋅ 3 ⋅ 2 ⋅ 1) + 2 ⋅ (4 ⋅ 3 ⋅ 2) = 144.

Table 3   Graphs G, G + xy, and 
G\xy

 
  

G G + xy G∖xy

Fig. 2   A graph
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6 � Method

6.1 � Study design

The authors proposed the activity in an 8th grade class 
(in the ‘Padre Pio da Pietralcina’ school in Misterbianco, 
Italy); our challenge was to experiment with such topics in 
middle school, even if it is not in the regular curriculum, 
in order to start with some important ideas and habits of 
mind of mathematics, such as modelling. We were not 
acquainted with the students. We proposed the path to the 
teacher, who helped us set the activity up in a was that 

was suitable for her students. We assert that it is important 
to maintain a very close collaboration between research-
ers and teachers because “the results of the research will 
be directly applicable (instead of merely potentially rel-
evant) to practice”, as argued by Stylianides and Stylia-
nides (2013, p. 334). Bishop (1998) posed the problem that 
the research community had not sufficiently answered real 
problems in real classrooms and claimed that “research-
ers need to engage more with practitioners’ knowledge, 
perspectives, and work and activity situations, with actual 
materials and actual constraints and within actual social 
and institutional contexts” (p. 36). Other researchers have 

Fig. 3   The Connection-Contrac-
tion Algorithm
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since made similar observations. For instance, Wiliam and 
Lester (2008) claimed that research needed a radical shift 
towards interventions taken by researchers and teachers 
directly, which have been taken into account increasingly 
in recent years. For example, Ferrara and Ferrari (2020) 
designed and experimented an intervention, studying the 
impact of such an intervention when learners are engaged 
with new situations by thinking mathematically, while fur-
thering and planning the activities with the regular class-
room teacher.

6.2 � Sample

The class we dealt with was composed of 26 students, many 
of whom were attentive and well-disposed towards learning 
mathematics, often actively participating during the lectures. 
However, a few students had some cognitive difficulties, and 
we wanted to propose to all the students a non-trivial topic, 
indeed a very rich, potentially difficult one.

6.3 � Study method

To achieve our goal, we designed several activities based 
on the TRU framework, involving the use of bodies, paper, 
pencils, technological devices (interactive whiteboard and 
tablets), and specific software to draw graphs (yEd, a graph 
editor). The classroom was arranged in ‘islands’ (Fig. 4) 
where students sat in circles so that they could collaborate 
and help each other.

The intervention was short. We agree with Stylianides and 
Stylianides (2013), who argued it is possible to design inter-
ventions of short duration in mathematics education that can 
alleviate typical problems of classroom practice: teachers 
can benefit from the observed methodology without messing 
up their curriculum structures. The whole path consisted of 

three meetings: the first two were held by the researchers 
and lasted 2 h each; the third one, to consolidate the con-
cepts, was held by the teacher of the class. The researchers 
were present during the activities to introduce problems and 
lead collective discussion, but also to observe and interact 
with students. They video-taped and took pictures of most 
of the activities with a camera. Students’ parents agreed to 
have their children video-taped by signing a consent form. 
In particular, the researchers videotaped all their interven-
tions (there were two researchers in the classroom: if one 
of us was talking, the other one or the regular class teacher 
videotaped) with special attention to the mathematical dis-
cussion and to any speech arising from students. Moreover, 
they went around the classroom when students were working 
and videotaped students, paying particular attention to those 
having some difficulties and/or some good intuitions. With 
three of us (two researchers and the teacher), we could have 
a look at each ‘island’ (Fig. 4), to see how each group was 
working. The researchers then collected the video data to 
analysed them later on. Data for our analyses come from the 
transcriptions of videos and the pictures of students’ produc-
tions in their exercise books and/or on devices: the authors 
conducted a content analysis with a directed approach, as a 
qualitative research technique, to support the theory chosen 
as a theoretical framework (TRU framework with Extended 
modelling cycle). Since we used a directed approach, the 
analysis starts with the chosen theory as guidance for cod-
ing. In the qualitative content analysis, in fact, the interpreta-
tion of the content of text data (transcriptions from videos, 
in our case) was done through the classification process of 
coding. We proceeded as follows: the authors viewed all the 
videos and selected those most interesting for the research, 
with open coding, and as a result of this process categories 
were formulated and revised. This ongoing method aims at 
a true description of the investigated phenomenon, without 

Fig. 4   Classroom disposition
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preconceptions of the researcher, to really understand the 
data, as explained by Mayring (2014, p. 79). One of the 
authors tagged each video with an initial code containing 
information with the following six tags: Content_modelling; 
Content_generalization; Cognitive demand; Equity; Owner-
ship; Formative assessment. In this way, 12 of the 28 initial 
videos were selected. Then a second author viewed the 12 
videos, tagging again each one with one of the six codes. 
Once the authors agreed on the tags and the videos were 
definitively selected and tagged, two authors viewed again 
them, commented on them, and caused transcripts of them 
to be made. The comments that arose from the authors are 
reported in Sect. 8, in order to acertain whether the five 
dimensions of the TRU framework, together with the Model-
ling cycle, were satisfied.

7 � The educational path

As mentioned, the educational path was supported using the 
yEd software. Concerning the choice of this software, yEd 
is free software designed to create and manipulate diagrams, 
and therefore also graphs, supported by most operating sys-
tems. It is easy to use; one can decide how to draw each 
vertex (shape node, Fig. 5), the type of line for an edge, or 
rearrangement by dragging.

The software seemed especially useful to the researchers in 
explaining the C–C Algorithm on the interactive whiteboard, 
and to the students in practicing the algorithm on the tablets, as 
connected and contracted graphs are easily created using Copy 
and Paste commands, and ‘dragging’ one vertex to another, or 

connecting two vertices, is done easily and quickly. The soft-
ware dynamically manages the space on the virtual sheet (that 
is, the user has a potentially infinite sheet), which is especially 
useful considering that the complete evolution of the steps of 
the algorithm is not known a priori; moreover, it is easy to 
modify the colour of the vertices, helpful for explaining the 
colouring on the interactive whiteboard.

7.1 � First meeting

In the first meeting, we dealt with three activities: Who 
is on the podium?, The fish problem, and Draw the 
relationship.

The first one, Who is on the podium?, was designed to 
increase understanding of the mathematical concept of a 
simple k-permutation (useful, as shown in the following, 
for calculating the chromatic polynomial). The activity con-
sisted of counting the arrangement of n students in k places. 
This was done using the classroom’s chairs and the students. 
To start with, the number of chairs was 2, representing a 
podium with gold and silver medals; we counted how many 
possible podiums can be obtained with 3 classmates. We then 
added another classmate, and afterward, another chair: math-
ematically speaking, we required simple 2-permutations of 
3 objects, simple 2-permutations of 4 objects, and simple 
3-permutations of 4 objects, respectively.

In the end, we asked the students to generalise the 
results to obtain the number of simple k-permutations of 
n objects.

In the second activity, The fish problem, we introduced 
the leitmotiv of the whole path:

Fig. 5   The yEd overview
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The fish problem

The owner of an aquarium store received the new fish he had ordered and now must arrange 

them in empty tanks. At the moment, there are only 4 empty tanks in the store, all with a coloured 

lid. The newly arrived fish are of 4 different varieties: regal tang, magnificent fire fish, 

clownfish, octopus. The shopkeeper knows very well that some of these fish cannot stay together 

in the same tank, as it would create a prey-predator relationship. In fact:

1. Regal tang fish cannot stay together with magnificent fire fish and octopuses

2. Magnificent fire fish cannot stay together with regal tang fish and octopuses

3. Clownfish cannot stay together with octopuses

4. Octopuses cannot stay together with regal tang fish, magnificent fire fish and clown 

fish

Keeping in mind that the owner does not have to use all the tanks, in how many ways can he 

put the fish inside them? Remember: the shopkeeper wants the fish of the same kind to stay 

together in the same tank!

Students tried to solve the problem by using the newly 
discovered rules on k-permutations, but they immediately 
realised that the rules were not suitable for the problem, and 
that while simple permutations are useful, they cannot be 
used to solve every kind of problem involving arrangements.

Then we started with the apparently separate topic of 
a graph with the third activity, Draw the relationship. We 
presented graphs of several situations representing relation-
ships among people (brothers, friends practicing the same 
sport, etc.), asking students, “How can you draw this situ-
ation graphically?" Students started drawing the situation 
on paper. Afterwards, the researchers started using the yEd 
editor, giving an opportunity to use several images of peo-
ple as vertices, as well as an opportunity to use any picture 
as a vertex by simply dragging it into the sheet. In Fig. 6, 
we show the graph representing the relationships between 
Homer Simpson and his sisters-in-law, defined by ‘being in 
conflict’: Homer is connected by an edge to each one of the 
sisters-in-law because they do not get along together, while 

Fig. 6   Simpsons’ graph
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there is no edge between the two women because they are 
not in conflict. We decided to use this example because we 
found it useful to imagine that two people in conflict want 
to stay in different places (or different colours, in term of the 
graphs’ colourings), as in our fish problem (keeping fish in 
different tanks). If we have to colour the Simpsons’ graph we 
should use at least two colours, one for Homer and a differ-
ent one for the women. In general, graphs are used to model 
relationships and graph colouring is primarily used to model 
the conflict relationship, to help solve problems where you 
want to manage conflicts, as in this simple example.

7.2 � Second meeting

In the second meeting, after recalling the graph’s topic, we 
dealt with vertex colourings of graphs. We pointed out how 
easy it is to find the number of all possible n-colourings of 
a complete graph: it suffices to count the number k of ver-
tices of the graph, then the number of k-permutations of n 
objects. Then, by using yEd at the interactive whiteboard, we 
explained the C–C A starting from a specific graph, together 
with the representations of all the steps of the algorithm, 
(Fig. 7).

The class was invited to practice the algorithm, applying 
it to some graphs we provided. Each student chose to prac-
tice in the way he/she personally thought best: some used the 
yEd software installed on their tablets, others used pen and 
paper, another used clipped paper. All of them managed to 
master the use of the passages sufficiently.

Afterwards, we discussed the usefulness of the algorithm, 
emphasising that, thanks to the resulting complete graphs, we 
can determine the chromatic number of each graph exactly, but 
above all, we are able to determine the chromatic polynomial 

of each graph. We also discussed the advantages of using the 
algorithm to obtain absolute certainty of having exhausted 
all possible colourings, as opposed to solving the problems 
by repeated attempts. Finally, students were guided to model 
The fish problem in terms of graphs and to see the connec-
tion between the two topics (combinatorics and graphs). They 
easily determined the particular chromatic polynomial asso-
ciated with the graph of The fish problem (Fig. 8), obtain-
ing as a result the value 72 as the total number of colourings 
of the graph with 4 colours from the chromatic polynomial 
n4 − 4n3 + 5n2 − 2.

Now the class was able to solve the problem easily, taking 
very little time, and succeeding, without too much effort, in 
carrying out the generalisation of the result to find the chro-
matic polynomial.

Fig. 7   Example of the Connec-
tion-Contraction Algorithm

Fig. 8   Graph associated with The fish problem 
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In the third meeting, the general concept of the chromatic 
polynomial was consolidated and the path ended with a con-
nection to algebra topics (polynomials) that students had been 
working on before starting this path.

8 � Analysis of the educational path

Our activity is in the TRU framework because we pro-
posed a rich topic (The Content) with several connections 
and realistic examples that foster modelling and conduct 
students to a productive struggle (Cognitive Demand). All 
students had personal devices, could work in groups, and 
had access to different ways of working, according to what 
was most suitable to them (Equitable Access). In this situ-
ation, there was active participation by students who were 
free to model the problem as they preferred and to argue 
for their choices (Agency, Ownership, Identity). The teach-
ers (here, the researchers) played a central role: they met 
students ‘where they were’, collected their ideas, built on 
their beginnings, and addressed their misunderstandings 
(Formative Assessment).

Before going into the details of the analysis, we want 
to describe the class environment fostered by the teacher, 
Maria, to help explain how the class was prepared for the 
experiment. As mentioned, the students were attentive and 
active. This is also due to Maria, who got her students 
used to thinking about, arguing, and practicing mathemati-
cal concepts, rather than explaining prepared mathemati-
cal topics. During her lectures, Maria often asks students 
what they thought, to give their ideas, and to share pos-
sible solutions of tasks with their classmates. The content 

of the experiment was very rich and potentially difficult, 
and we had doubts about obtaining helpful results. Dur-
ing the experimentation in class, we videotaped the meet-
ings and, in the end, used the videos to categorise the 
results that were obtained in terms of the efficacy of the 
TRU framework, considering also the extended modelling 
cycle (Greefrath, 2011). Here we deal with the five dimen-
sions of TRU, making our considerations with respect to 
each one, answering each sub-research question, which is 
reported at the beginning of each subsection. In the fol-
lowing, quotes of students or researchers are written in 
italics in the text.

8.1 � Dimension 1: the content

RQ1: ‘Is it possible for 8th grade students to understand rich 
Content, in our case graph theory, combinatorics, and the 
connection between them?’.

Too often, at least in Italy, mathematics is presented as a 
set of separate chapters, and rarely do teachers work on con-
nections among mathematical topics. The content we dealt 
with, instead, is rich in connections among topics and with 
the theme the class was working on before our experiment, 
namely, early algebra. We arrived at algebraic concepts only 
at the end of the path, passing over two apparently separated 
topics (combinatorics and graphs). Rather than being super-
ficial, our content is rich indeed (it can be taught at the uni-
versity level). Moreover, it can provide one of the important 
mathematical skills, namely, modelling. We helped students 
with modelling using a mathematical concept that is easy to 
grasp, namely, a graph. So easy, in fact, that when we posed 
The fish problem (activity 2), a student had already drawn 
a graph before knowing the mathematical concept (Fig. 9).

The student Dario drew the scheme shown in Fig. 9. Here 
is a dialog between Dario (D) and the researcher (R), which 
anticipates the vertex-colouring topic:

D: “If the clownfish can stay together with magnificent fire 
fish, they are no more 4, but 3. It is like we have 3 varieties 
of fish in 4 tanks.”

R: “And if, instead, I leave them separated, they are 4.”
D: “Yes.”
R: “So, I can do this: I can consider them equals, right? 

… or I can consider them separated. Very good. This will be 
very useful, especially next time.”

Dario’s scheme is the complement of the graph we 
then used to solve The fish problem (he joined the fish that 
can stay together instead of the fish that cannot), but the 
researcher here was focused only on how to draw the situa-
tion given by relationships using a graph. The researchers, 
at this point, were happy to see the choice made to use the 
correct way (graphs) to grasp potentially difficult content.

As for modelling, here Dario is still in the rest of the 
world realm (Fig. 1), handling the real situation & problem. Fig. 9   Dario’s ‘scheme’ of the fish problem
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In fact, he talks about fish and tanks, but he is starting to 
face the problem in a mathematical way by schematising 
the problem on paper.

8.2 � Dimension 2: cognitive demand

RQ2: ‘Could 8th grade students be able to positively answer 
such a challenging Cognitive Demand?’.

Even if we discussed only the usefulness of an intuitive 
object, like a graph, we emphasise that the posed task was 
not trivial to solve. It requires a struggle. It was a challenge. 
At the beginning, when we asked how many possibilities 
the owner of an aquarium had wherewith to arrange the 
fish, students were not able to answer correctly. They tried 
to use what we had just explained: simple k-permutations 
(Table 4).

In particular, two students, Alice and Giulia, counted 24 
ways to arrange the 4 fish varieties in 4 tanks (simple 4-per-
mutations of 4 objects) and 12 ways (6 + 6) to arrange 3 fish 
varieties (identifying two varieties that can stay in the same 

tanks) in 3 tanks (simple 3-permutations of 3 objects). In 
this last calculation, they should have counted two simple 
3-permutations of 4 objects instead.

By the end of the path, the students understood how to 
count all possible arrangements, winning the challenge. We 
relate a discussion after dealing with vertex colourings and 
the algorithm, as recorded by the researcher in class:

R: “How did we solve the fish problem? Do you 
remember?”.

Student: “Yes, we have 4 empty tanks and 4 varieties of 
fish.”

R: “Yes. So, how is the graph? We have 4 tanks, which 
means … What does it mean to have 4 tanks?”.

Student: “4 … 4 colours”. (Several students said, together, 
“4 colours”.)

R: “4 colours: red tank, green tank, …. And the fish are: 
octopus, magnificent fire fish, clownfish and regal tang fish 
(drawing on the blackboard 4 points with the names of fish) 
and what about the links? We joined … whom?”.

Student: “Who cannot stay in the same tank.”

Table 4   Alice’s and Giulia’s attempts

Alice 
tries to solve the fish problem

Giulia 
tries to solve the fish problem

Fig. 10   Students guide the 
researchers to draw the ‘fish 
graph’
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R: “Who cannot stay in the same tank, in such a way that 
they have a different colour.”

Students were able to pass from a real model & problem 
to a mathematical model & problem (as in the Blum and 
Leiß cycle, shown in Fig. 1). In fact, they easily translated 
real objects (fish and tanks) into mathematical objects (ver-
tices of a graph and colours of vertices) and a real relation-
ship (a food chain) into a mathematical relationship (edges 
of the graph). While one of the researchers drew the graph 
suggested by students with the fish names (Fig. 10), another 
one drew the graph with the yEd editor, anticipating the 
application of the C-CAlgorithm, arriving at the computer 
model & problem in the technology realm (Fig. 1), mak-
ing sure that students understood that, when colouring a 
graph, two unconnected vertices can have different colours 
(connection) or the same colour (contraction). After using 
the algorithm, students were invited to observe the com-
plete graphs obtained (Fig. 11) and count the arrangements. 
The researcher invited students to move from the computer 

Fig. 11   Complete graphs at the 
end of the Connection-Contrac-
tion Algorithm

Fig. 12   Final counting for the fish problem

Fig. 13   Asia contracts a graph using physical movements
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results of the technology realm to the mathematical results 
of the mathematics one (Fig. 1):

R: “What have we obtained?”.
Student: “2, 2 C3 and 1 C4” (students called complete 

graphs Cn, instead of Kn, as we did in Sect. 5, because ‘C’ is 
the first letter of the Italian word for ‘complete’).

R.: “And then how many ways do we have to colour, i.e., 
to put the fish in the tanks?”.

Students correctly counted, together, “for every C3 with 
4 colours, 4 ∙ 3 ∙ 2, twice, plus 4 ∙ 3 ∙ 2 ∙ 1 .” The researcher 
wrote what they suggested on the blackboard (Fig. 12). By 
the end, students had arrived at the rest of the world realm 
for the final real results (Fig. 1), after struggling in the 
beginning with a non trivial task.

8.3 � Dimension 3: equitable access to mathematics

RQ3: ‘Could a path aimed at challenging demand be for 
all the students, thanks to the use of technology, guarantee 
Equitable Access to Content?’.

The class was composed of students with different apti-
tudes, but all very accustomed to technology. So, we decided 
to set up the educational path with an emphasis on technol-
ogy, but we also wanted to leave students free to use the 
approach they felt would be best. We supported students 
in their method of choice, both in posing the problem and 
in practicing the algorithm. Some of them preferred tech-
nological devices; others, paper and pencil; still others cut 
the paper to create vertices and edges. Moreover, we let stu-
dents work and went around the desks to support them in the 
mathematical activities. Here we show Asia’s behaviour: she 
decided to cut the paper, emphasising how technology could 
be useful in such cases; the student decided to contract and 
connect graphs by using and rearranging physical objects 
she created herself with coloured paper (Fig. 13).

The researcher aided Asia with the task, but noticed that 
she had some difficulties, beginning with the first steps of the 
algorithm. The girl correctly understood the algorithm, but 
in moving the vertices she could represent only one situation 
(the one in which she was presently working), losing track 
of any previous steps. In fact, from the second step forward, 

she always connected vertices not yet joined, but forgot to 
contract them. Passing from the mathematical model to 
the computer model (Fig. 1) can help in solving the task, 
because technology, in this case, could have been used as 
an extension of memory: the software does not think for the 
person, but can leave the person’s mind free from remember-
ing previous steps and free to focus on the important math-
ematical concepts. Indeed, we asked Giulia, another student, 
how she preferred to work and why. She answered: “Using 
the software, because it is more usable and quicker (than 
using paper and pen). Because you can do more in less time.”

We noticed, moreover, that in each step, one can pass 
from a specific graph to a more general set of generated 
graphs, using the Zoom command in the software, keeping 
the whole algorithm under control. This is what Dario and 
Giulia did, for instance. See Fig. 14 for the Zoom command 
used by Dario.

Another technological feature that can help students 
access mathematical activities is the virtual approach: the 
software gives the opportunity to manipulate the vertices 
as if they were real objects, taking advantage of the ease 
in obtaining and dragging copies. This is evident in what 
Dario, who used yEd, said: “We start from this one, the main 
(graph), where the square is joined to the octagon and the 
circle is alone. I copied it and overlapped the circle and 
the square, obtaining a complete graph. Instead, this side I 
joined the circle and the square.” Dario talked about move-
ments—“I overlapped” and “I joined”—referring to virtual, 
not physical, objects.

8.4 � Dimension 4: agency, ownership, and identity

RQ4: ‘Could an approach using ‘real objects’ to represent 
‘mathematical objects’ facilitate Agency, Ownership, and 
Identity in students?’.

We wanted the students to be the main actors in the edu-
cational path; we wanted them to be active with their minds, 
hands, and entire bodies. This is why we engaged them from 
the beginning with activities involving their bodies, real 
objects that they can touch, instead of mathematical abstract 
objects, as in the first task, used for simple k-permutations 

Fig. 14   Dario uses the Zoom 
command to focus on the gen-
eral and the specific
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(Who is on the podium?). Being active in both mind and 
body was useful in generalising simple k-permutations, as 
shown in the following dialogue between Graziano (G) and 
the researcher:

G: “If we have 5 people in 3 places, we have 5 ∙ 4 ∙ 3.”
R: “Good! That’s right. Could you tell me 

‘mathematically?’”.
G: “The number of factors depends on the number of 

places.”
R: “And why do you start from 5?”.
G: “Because if we add a person, we have 5 possibilities 

from which to choose for the first place, and in the second 
place we will put 4, and in the third, 3.”

Graziano talked in terms of people and also used gestures 
to simulate the movements of a person added to the group of 
classmates on the;podium’. Dario and other students referred 
to the activity using physical bodies in the second meeting, 
during a discussion on graph colouring:

R: “If I have a complete graph with 2 vertices, and I have 
5 colours, how many colourings can I have?”.

D: “20, because we have to compute 5 ∙ 4.”
R: “How did you come up with it so quickly?”.
G: “Because we remember the example from our last 

meeting, concerning first and second place.”
In the second and third activities (The fish problem and 

Draw the relationship), students dealt with fish, friends, and 
cartoons, rather than with ‘abstract’ points (this choice was 
helpful to promote students' ownership). They were invited 
to avoid considering already-proven mathematics and to 
think and learn by their own ‘creations’. They showed own-
ership of the content, easily passing from one representation 
of the topic to another. We relate a discussion that empha-
sises this ability to pass between real and mathematical top-
ics and move easily within the realm of the extended model-
ling cycle (Fig. 1):

R: “We have a complete graph with 2 vertices and 5 col-
ours. How many colours do we have?”.

Student: “20, because we have 2 tanks and 5 varieties 
of fish.”

Even if the student is confused about tanks (which should 
be the number of colours, 5) and varieties of fish (which 
should be the number of vertices, 2), he realises that the 
boundary between math and real topics is porous. The 
researcher asked about graphs, and they answered in terms 
of tanks and fish. Students had no problem assigning equal/
different colourings to equal/different tanks in the fish prob-
lem. They showed ownership of the topic, seeing it from 
different points of view.

8.5 � Dimension 5: formative assessment

RQ5: ‘Is an approach based on a Formative Assessment, 
useful to help students in understanding?’.

We met the students ‘where they were’, leaving them time 
and space to think and produce according to their own ideas. 
For such a teaching method, it is neither easy nor helpful to 
provide a summative assessment. We did not want a quick, 
accurate answer from students, but rather questions, ideas, 
and strategies. To encourage students, it can be useful to 
accompany them in their current path, suggesting ways to set 
up and/or fix the steps in such a way as to guide them in the 
right direction. We have some videos showing students who 
applied the C–C Algorithm correctly and quickly, making 

Fig. 15   Roberta applies the algorithm with paper and pencil

Fig. 16   Roberta reports 2 copies of an edge in the contracted graph
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use of the yEd software. Here, however, we want to relate 
what happened with Roberta, who decided to work on paper 
and needed some suggestions. First of all, we noticed that, 
as shown in the third picture of Fig. 15, Roberta filled the 
whole sheet before completing the algorithm. This problem 
could have been avoided by using the potentially infinite 
sheet in the yEd editor. However, the researcher did not want 
to force the student to use the software, because of our pref-
erence to respect the method students chose to use. This 
led the researcher to accompany the girl, helping her fix the 
problem, by essentially discarding graphs.

In particular, she often forgot the connected graph. More-
over, in the contracted graph, whenever she overlapped two 
vertices, she tended to draw 2 copies of the edges (Fig. 16).

Again, it would have been helpful to suggest the use of the 
software, because it would have made all the steps ‘automatic’, 
but the researcher respected Roberta’s choice. She needed the 
constant presence of the researcher to guide her in various steps, 
even if she understood all the steps of the algorithm. All the cor-
rections were made to help her keep the steps in mind, rather than 
to assign her a grade. Moreover, the help and interaction in class 
was not only between students and researchers, but also among 
classmates arranged in ‘islands’ (Fig. 4).

We want to emphasise that although no grades were given 
to the students, they remembered in the second meeting what 
they had done and learned the previous week. Their aim was 
not related to a performance goal, but rather to a mastery goal. 
Students were genuinely interested in solving the fish problem 
and engaged in the whole activity, while also having fun.

9 � Conclusions

The educational path presented in this paper was designed 
with inspiration taken from Gionfriddo (2011). The mathe-
matical content was aimed at linking combinatorics and graph 
theory. While neither topic is part of the school curriculum, 
arguments can be made for including both topics (Sandefur, 
Lockwood, Hart, & Greefrath, 2022), and we were convinced 
to embrace this challenging task. Moreover, we also con-
nected the topics to algorithms, computer use and modelling.

The educational path is divided into phases marked by 
three activities (Who is on the podium?, The fish problem, 
and Draw the relationship) and a meeting on vertex col-
ouring and the C–C Algorithm. The activities were config-
ured as a tool to introduce the topic to students and initiate 
knowledge processes that would unfold through discussions, 
comparisons, and reasoning, with the help of digital and 
non-digital technologies. The modelling activity was preva-
lent throughout the entire process. In the first activity, Who 
is on the podium?, the modelling activity occured through 
consultation with peers. Subsequently, in The fish problem, 

students immediately modelled the problem using graph 
theory and solved the question with the help of technology 
(yEd), then returned to the solution of the problem by imple-
menting the extended modelling cycle of Greefrath (2011).

Upon finally solving The fish problem, the researcher 
asked, "What are the tanks?" Students immediately answered 
“the colours:” not only was the modelling implemented, 
but there was also an awareness of the analogy between the 
problem posed and the mathematical tool used to solve it. 
The educational path in the classroom was carried out in the 
spirit of learning by doing: by doing, I discover, I think, I 
verify, I try, I argue my position. The evolution of the stu-
dents' argumentative competence (Toulmin, 1958) is evident 
from their productions. Dario supported his thesis with con-
viction by exposing the different possibilities of colouring 
the graph, first with three, then with two colours, indicating 
the vertices he can colour in red and those he can colour in 
green.

Students were able to apply the algorithm and justify 
why the algorithm works, observing contracting two verti-
ces means to make them of the same colour, and connecting 
two vertices by an edge means they are coloured with dif-
ferent colours.

The dimensions of the TRU found application in this 
pathway, in which, as we saw in a previous section, content, 
involvement, challenges, and new problems combined to cre-
ate that mathematical identity appropriate for each student, 
also enhancing modelling skills, since students were able to 
pass among Rest of the world, Mathematics and Technology 
realms of the Extended Modelling cycle.

With activities of this type, one has the opportunity to 
give meaning to mathematical concepts that often remain 
abstract and generally considered difficult; all students can 
be creative and small mathematicians. In the end of the 
experimentation, when asking to students what graphs might 
be useful for, Giulia answered “We need them to solve prob-
lems. When we have a schema represented by a graph, we 
understand what we have to do. We were asked to work on 
the fish problem and we could not solve it at first. Today, with 
the graphs, we completed it.” In Giulia’s response we see 
the evolution of the whole activity: modelling (by graphs), 
solving problems (with the algorithm), and the possibility to 
re-use what they learned (to solve other problems).
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