
Citation: Giallongo, S.; Longhitano,

L.; Denaro, S.; D’Aprile, S.; Torrisi, F.;

La Spina, E.; Giallongo, C.; Mannino,

G.; Lo Furno, D.; Zappalà, A.; et al.

The Role of Epigenetics in

Neuroinflammatory-Driven Diseases.

Int. J. Mol. Sci. 2022, 23, 15218.

https://doi.org/10.3390/

ijms232315218

Academic Editor: Anuska V.

Andjelkovic

Received: 1 November 2022

Accepted: 29 November 2022

Published: 2 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

The Role of Epigenetics in Neuroinflammatory-Driven Diseases
Sebastiano Giallongo 1 , Lucia Longhitano 1, Simona Denaro 2 , Simona D’Aprile 2, Filippo Torrisi 2 ,
Enrico La Spina 1, Cesarina Giallongo 3, Giuliana Mannino 4 , Debora Lo Furno 2 , Agata Zappalà 2,
Rosario Giuffrida 2 , Rosalba Parenti 2 , Giovanni Li Volti 1 , Daniele Tibullo 1,* and Nunzio Vicario 2,*

1 Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania,
95123 Catania, Italy

2 Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania,
95123 Catania, Italy

3 Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania,
95123 Catania, Italy

4 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina,
98166 Messina, Italy

* Correspondence: daniele.tibullo@unict.it (D.T.); nunzio.vicario@unict.it (N.V.)

Abstract: Neurodegenerative disorders are characterized by the progressive loss of central and/or
peripheral nervous system neurons. Within this context, neuroinflammation comes up as one of
the main factors linked to neurodegeneration progression. In fact, neuroinflammation has been
recognized as an outstanding factor for Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS),
Parkinson’s disease (PD), and multiple sclerosis (MS). Interestingly, neuroinflammatory diseases are
characterized by dramatic changes in the epigenetic profile, which might provide novel prognostic
and therapeutic factors towards neuroinflammatory treatment. Deep changes in DNA and histone
methylation, along with histone acetylation and altered non-coding RNA expression, have been
reported at the onset of inflammatory diseases. The aim of this work is to review the current
knowledge on this field.

Keywords: neurodegeneration; epigenetics; chronic neuroinflammation; Alzheimer’s disease; amy-
otrophic lateral sclerosis; Parkinson’s disease; multiple sclerosis

1. Introduction

Neurodegenerative disorders are defined by the progressive loss of the neuronal pop-
ulation of the central nervous system (CNS) and/or peripheral nervous system (PNS),
eventually impairing pyramidal or extrapyramidal tracts and cognitive and behavioral
abilities [1]. The progressive neurological impairment is triggered by accumulation of
molecules, ultimately resulting in (i) proteotoxic stress, (ii) enhanced oxidative stress,
(iii) increased cell death, and (iv) neuroinflammation [1]. The latter is referring to an inflam-
matory state affecting the CNS, following insults such as infections, trauma, ischemia, and
toxins and resulting in release of neurotoxic mediators including interleukin-1beta (IL-1β),
IL-6, IL-8, IL-33, tumor necrosis factor (TNF), chemokine (C-C motif) ligand 2 (CCL2), CCL5,
and other molecules which are mainly secreted by astrocytes and microglia [2,3]. Upon a
chronic exposure to these molecules, neuroinflammation becomes detrimental, eventually
becoming a critical point for the onset of neurodegenerative disorders. Neuroinflammation
has been highlighted as an outstanding factor for Alzheimer’s disease (AD), amyotrophic
lateral sclerosis (ALS), Parkinson’s disease (PD), and multiple sclerosis (MS) progression. In
this regard, the main histopathological feature characterizing neurodegenerative disorders
is an aberrant protein conformation resulting in its abnormal intercellular communication,
impaired cell differentiation, and neuroanatomical distribution [4–17]. Depending on the
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nature of the accumulated protein, neurodegenerative diseases have been defined as amy-
loidosis, tauopathies, α-synucleinopathies, and transactivation response DNA binding
protein 43 (TDP-43) proteinopathies [1].

Diagnostic biomarkers are available only for neurodegenerative diseases linked to a
causative genetic mutation [18–21]. Otherwise, the gold standard diagnostic strategy is
based on the neuropathological evaluation at autopsy [22]. Moreover, pharmacological
strategies treating the most common neurodegenerative diseases show limited therapeutic
effectiveness, merely slowing down the disease progressions. To improve this outcome,
a better characterization of molecular mechanisms behind neurodegeneration is needed.
For this reason, the latest studies have also focused on the epigenetic profile characterizing
these neuropathologies. Epigenetic changes include a plethora of modifications affecting
gene expression without altering the DNA sequence, in turn determined by age, diet,
stress, and disease state [23,24]. They include changes in chromatin architecture mediated
either by chemical modifications affecting DNA nucleobases and histones (Figure 1) [25] or
exchange of histone non-canonical isoforms on the nucleosome itself [23,26,27].
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As a result, epigenetics drives chromatin from a loose, transcriptionally active euchro-
matin state towards a transcriptionally repressed heterochromatin and vice versa [26,27].
Not only epigenetics but also modifications affecting the chromatin 3D structure might
be a determinant factor in this context. As it has been reported recently, elements of 3D
architecture such as compartments, frequently interacting regions (FIREs), and loops might
address the cell-type-specific gene regulation, providing hints on understanding the cellular
etiology of brain diseases [28]. In this scenario, regulating gene expression in a tissue- and
cell-specific way emerged as a critical level of control, eventually playing an important
part also in cell differentiation, highly inducing the exploration of potential cell-based ap-
proaches [29–36]. While the classical epigenetic profile is usually propagated to the progeny,
neuroepigenetics, referred to as epigenetic changes affecting CNS cell populations, involve
modifications that cannot be inherited, since neurons do not divide [37]. For instance,
DNA methylation plays a pivotal role in brain development, as DNA methyltransferases
(DNMT1, DNMT3A, and DNMT3B) mediate memory acquisition and storage [38,39].
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DNMT1 and DNMT3A deletion in mice exploits hippocampus-based learning and memory,
eventually also blocking fear conditioning [38,40]. The latter promotes DNMT activity,
ultimately suppressing the gene encoding the catalytic subunit of memory suppressor
protein phosphatase 1 (PP1), in synergy with Reelin expression, encoding a plasticity-
associated protein [38]. DNA is also affected by hydroxylation, a family of modifications
involving the introduction of hydroxyl group(s) catalyzed by multiple types of hydroxy-
lases [41]. Notably, the activity of this family of proteins relies on key nutrients, including
Fe(II), 2-oxoglutarate (2OG), and ascorbate. Hydroxylation is gaining an important role
in signaling, as it has been reported that 5-hydroxymethyl cytosine (5hmC) accumulation
may recruit reader proteins towards specific genomic regions [42]. DNA demethylation
is mediated by a family of proteins known as ten-eleven translocation protein (TET), in-
cluding TET1, TET2, and TET3, which convert the DNMT product 5-methylcytosine in
5-hydroxymethylcytosine [43]. In mice, TET1 promotes demethylation of genes involved in
memory formation and consolidation including brain-derived neurotrophic factor (BDNF),
fibroblast growth factor (FGF), activity-regulated cytoskeletal-associated protein (ARC),
early growth response protein 1 (EGR1), the transcription factor FOS, the scaffolding protein
HOMER1, and nuclear receptor subfamily 4 group A member 2 (NR4A2). Indeed, TET1
depletion in mice models disrupts long-term contextual fear memory [44]. Furthermore,
DNA methylation might be defined as an epigenetic clock, which has been modeled by
Horvath [45], Hannum [46], and PhenoAge [47], and eventually strongly correlating with
aging-related outcomes, physical functioning, and aging-related pathologies, including
cognitive decline [47,48]. Of note, the cortical clock has been trained on samples from
non-diseased individuals, using elastic net regression for the identification of relevant
CpGs, showing a strong predictive value and outperforming Horvath’s clock in cortical
bulk brain specimens [49,50].

Epigenetic modifications include histone modifications. Within this context, histone
acetylation, mediated by histone acetyltransferases (HATs), covers a key role in autophagy
and memory regulation. Of particular relevance is the evidence that histone acetylation
in hippocampal neurons activates autophagy and inhibits NLRP3 inflammasome com-
plex, which acts as an upstream activator of NF-κB signaling and induces NLRP3, cleaved
caspase-1, and IL-1β [51,52]. Such a mechanism exerts protective effects on neuroinflamma-
tory chronicization, and decreased levels of histone acetylation in aged neurons are likely
triggering significant inflammatory responses via NLRP3 inflammasome complex [52]. The
link between such a phenomenon and resident CNS immune cells activation still needs to
be fully elucidated, even if it established the role of NLRP3 activation in AD and contributes
to the progression of multiple inflammatory disorders [53–55]. It has been indeed shown
that novel taste learning in mice triggers mitogen-activated protein kinase/extracellular
signal-reduced kinases (MAPK/ERK) signaling, eventually leading to HATs activation [56].
As a result, there is an increase in the acetylation of genes located in the insular cortex,
which is crucial for the formation of novel taste memories. In a contextual fear-conditioning
experiment, an increase in mice of long-term potentiation at CA1 synapses in the hip-
pocampus upon histone deacetylase inhibition has been reported [57]. Further studies
supporting the outstanding role of histone acetylation in modulating synaptic plasticity
used a mouse model where p25, a protein implicated in neurodegeneration, is condition-
ally expressed. Here, administration of HDAC inhibitors mitigated memory loss, even
after neuronal impairment and brain atrophy [56]. Finally, human mutations impairing
cAMP response element-binding protein (CREB)-binding protein (CBP; a HAT and crucial
binding partner of CREB) are part of Rubenstein–Taybi syndrome and show an autosomal
dominant disease characterized by severe learning disabilities [58]. Recent reports also
included micro- and long non-coding RNA (miRNA and lncRNA) within the epigenetic
modifications that may affect gene regulation of cell fate and differentiation, inflamma-
tion, and cancer [59–66]. Of note, miRNAs are small non-coding nucleotide sequences
functioning by post-transcriptional regulation of gene expression. LncRNAs, on the other
hand, are usually composed of >200 nucleobases, serving as scaffold for transcriptional
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factors [37]. The former is implicated in synapse formation, maturation, and dendritoge-
nesis [67,68]. It has been reported that miR-9 and miR-9* are targets of the transcription
factor RE1-silencing transcription factor (REST) [69]. This is an important factor eventually
regulating neuronal development and differentiation by orchestrating TET3, the prominent
neuronal TET isoform [70]. As for miRNA, lncRNAs are also in charge for modulating
REST, as reported in a recent work describing the synergistic activity between REST and
EZH2 in silencing target genes. EXH2 is in turn recruited by HOX transcript antisense RNA
(HOTAIR), whose transcription is under control of an lncRNA [71].

As described above, epigenetics plays a key role in neuronal development and in
neurodegenerative diseases. Herein, we will focus on the dysregulation of these epigenetic
factors in Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis
(ALS), and multiple sclerosis (MS), which share as common hallmarks neuroinflammation
and a remarkable role of innate and adaptive immune cell populations in converging
mechanisms of degeneration.

2. Epigenetic Alterations in Alzheimer’s Disease (AD)

AD has been classified as a primary amyloidosis. This family of diseases is char-
acterized by accumulating fibrous proteins enriched with β-sheet secondary structures,
generated by proteolysis of the amyloid precursor protein, encoded by a gene located
on chromosome 21, and generally named β-amyloid or Aβ [72]. In AD, dense-core Aβ
deposits have been detected on primary motors and visual cortices [73]. These account for
the strong neuroinflammatory state depicted in AD, since Aβ plaques are recognized by mi-
croglia through pattern-recognition receptors (TLR1, TLR2, TLR4, and TLR6), CD14, CD47,
α6β1 integrin, and scavenger receptors, eventually eliciting a strong glial activation and
pro-inflammatory cytokines accumulation [74]. AD is also considered the most prevalent
tauopathy, a term referring to neurodegenerative disorders associated with neuro- and glia-
accumulating tau, a microtubule-associated phosphoprotein, promoting their stabilization
and polymerization in axons [75]. Indeed, AD is classified as a secondary tauopathy, as the
mutations characterizing AD mainly affect the presenilin genes (PSEN1 and PSEN2) and
the amyloid precursor protein gene (APP), resulting in an altered amyloid metabolism [76].
Overall, macroscopic AD changes in frontal, temporal, and parietal lobes strictly corre-
late with the density of tau plaques, mainly composing the neurofibrillary tangles (NFTs)
accumulated in neurons [77]. It is worth noticing a significant inflammatory response in
AD is now established, which includes amoeboid reactive microglia and reactive astroglio-
sis surrounding the senile plaques [78]. Particularly, astrocytes are suggested as critical
players in AD neuroinflammation and as master regulators of synapses formation, ion
homeostasis, and neurovascular coupling [79–81]. Moreover, a substantial heterogeneity
among astroglial cells in the CNS has been reported, suggesting region-specific profiles
that further increase the complexity of the neuroinflammatory microenvironment [82].

Several studies have been carried out to investigate the role played by neuroinflam-
mation in AD progression. In this regard, increased levels of IL-1β, IL-6, IL-8, IL-12,
IL-18, TNF, and transforming growth factor-β (TGFβ) have been reported in AD patients
compared to healthy subjects [2,83]. In general, two main concerns arise: (i) given the
discrepancies of the studies regarding their inflammatory role, the value of these markers
is questionable, and (ii) their concentration is also affected by systemic inflammation [2].
For this reason, recent research focused on the microglial activation markers chitinase-
3-like protein 1 (YKL40), monocyte chemotactic protein 1 (MCP1), visinin-like protein-1
(VILIP1), and glial fibrillary acidic protein (GFAP) has found them to be upregulated in
the cerebrospinal fluids (CSF) of AD patients [84]. Further strategies involve the use of
positron emission tomography (PET) targeting translocator protein (TSPO), which is a
marker of activated glial cells [85]. However, the development of a new generation of TSPO
tracers has improved the signal-to-noise ratio but failed in distinguishing the contribution
of different glial phenotypes responsible for neuroinflammation [2]. For this reason, new
targets for PET tracers, including specific intracellular enzymes or molecules, are currently
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under investigation to achieve better information about different glial cell phenotypes
involved in neuroinflammation [86,87]. It is worthy to mention that AD development
is strictly correlated to changes in apolipoprotein E (APOE) expression, a lipid-binding
protein regulating cholesterol transport in the brain. APOE is encoded as three different
isoforms, namely ε2, ε3, and ε4 [88]. In the AD population, patients carrying one ε4 al-
lele have a two–threefold increased AD risk, while those carrying two ε4 alleles have a
10–15-fold increased AD risk [88]. As already described, the expression of single isoforms
may be related to epigenetic modifications. For this reason, epigenetic changes affecting
APOE expression have been deeply investigated. While some reports did not describe
any difference in APOE methylome in AD [89], other studies showed a decrease in APOE
methylation [90,91]. Furthermore, other genes were investigated, including BDNF [92],
glycogen synthase kinase 3 beta (GSK3β) [93], triggering receptor expressed on myeloid
cells 2 (TREM2) [94], and ankyrin 1 (ANK1) [95]. However, these studies indicated that
specific changes in gene methylation could be ruled out as the prominent factor driving
AD pathology, overall prompting for the investigation of broader alteration. Corroborating
this hypothesis, next-generation sequencing (NGS) analysis described a significant increase
in CpG methylation within the hippocampus, temporal gyrus, entorhinal, dorsolateral
prefrontal, and temporal cortex of AD patients [96–98]. Similarly, a significant decrease in
methylation was reported in the prefrontal cortex and locus coeruleus [99]. Further analysis,
performed by immunohistochemistry, revealed an enhanced DNA methylation in astro-
cytes, pyramidal neurons, and hippocampal CA1 neurons [100]. Interestingly, supporting
the crucial role played by epigenetics in AD pathogenesis, Fetahu et al. identified 27 AD
region-specific and 39 CpG site-specific epigenetic signatures which were independently
validated across a clinical cohort. These modifications involve 5-methyl cytosine (5mC),
5-hydroxymethyl-cytosine (5hmC), and 5-formyl/carboxy-cytosine distribution in AD or
AD-related genes or on genomic regions that are critical for proper neurodevelopment [101].
These findings might thus provide a first hint on the role of epigenetics modifications as a
possible diagnostic marker for AD etiology.

AD pathogenesis is strictly related to a decline in mitochondrial fitness, resulting in an
impaired reactive oxygen species (ROS) balance and increased apoptotic rate [102]. The
epigenetic modifications affecting mitochondria, named “mitoepigentics”, turned out to be
an interesting field of research, corroborated by results describing DNMT1 mitochondrial
translocation, where DNMT3a, DNMT3b, TET1, and TET2 were already detected [103].
In this context, altered ROS levels have been linked to nuclear erythroid factor 2 (NRF2)
activation, in turn inducing DNA demethylation [104].

Two independent studies reported that mitochondrial DNA (mtDNA), isolated from
peripheral blood, showed an increase in CpG methylation in AD patients, eventually
showing also DNMT3a A448G polymorphism [105,106].

As already discussed, epigenetics also includes a plethora of chemical modifications
affecting nucleosome composition (Figure 2).

Interestingly, several reports have been published describing a loss of heterochromatin
rate in the tau transgenic animal model, also mirrored in AD patients [107,108]. This
outcome is strictly related to a decrease in histone acetylation rate, as described by two in-
dependent studies performing epigenome-wide association studies (EWAS) on postmortem
AD brains [109,110]. As a result, 4162 different H3K27-acetylated peaks were identified
comparing healthy and AD brain samples. Of note, these changes involve genes taking part
in AD pathogenesis including APP, PSEN1, PSEN2, and MAPT, together with genes affect-
ing neuronal activity such as GABA receptors activity and synaptic proteins [109]. H3K9
histone acetylation profiling, on the other hand, depicted an epigenome profile profoundly
changed upon tau burdening. As a result, 5990 out of 26384 H3K9ac domains were changed
in the dorsolateral prefrontal cortex of AD patients [110]. Besides these, some other epige-
netic markers were also identified: lower levels of H4K16ac were identified in AD patients’
cortex [111], while an increase in H4K12ac has been linked to memory impairment [112].
Corroborating these data, further evidence supporting an increase in H3 and H4 acetylation
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in AD postmortem brains has been described [112]. As already discussed in the first section,
chromatin acetylation level is orchestrated by HACs and HDAC activities. Interestingly,
increased levels of class I HDAC2 and HDAC3 have been detected in brain regions related
to the impairment in cognitive and synaptic functions [113]. In AD, enhanced levels of
the class II HDAC6 have been described, in turn affecting the tubulin acetylation, eventu-
ally also orchestrating tau phosphorylation and the upcoming AD-linked inflammatory
phenotype [114]. In agreement with these data, HDAC6 silencing rescues tau aggregation,
thus helping neuronal survival [114]. Recent reports also focused on HDAC4, which may
turn out to be an important player for memory formation and learning, as supported by
data showing that HDAC4 overexpression enhances neuronal apoptotic phenomena [115].
Finally, class III HDACs, named sirtuins, have also been proven to be decreased in the AD
parietal cortex, eventually accounting for Aβ accumulation [116,117].
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Figure 2. Accumulation of abnormal neurotic plaques and neurofibrillary tangles are the main
pathological traits of AD. The first is related to the incorrect sequential cleavage of the amyloid
precursor generating the fibrous protein enriched of β-sheet secondary structures. The second is
the result of hyperphosphorylation of microtubule-associated tau protein in neurons leading to
cytoskeletal changes. Among epigenetic changes, the acetylation processes lead to several effects.
The reduction of Sirt1, a class III HDAC, determines a lack of histone deacetylation with downstream
effects resulting in the development of Aβ plaques. However, inflammatory processes triggered
by reactive microglia in plaques orchestrates tau hyperphosphorylation, where H3K9 acetylation
by HDAC6 activity has been found to be implicated in the epigenic changes. Moreover, aberrant
DNA methylation, especially DNMTs and TET, are associated to mitochondrial dysfunction causing
the homeostatic loss of ROS balance which in turn is responsible for the apoptotic death of neurons.
Finally, epigenetic changes also drive the formation of apolipoprotein E isoforms that show increased
production and reduced degradation capacity of Aβ plaques; miR-9 is one the main miRNAs involved
in AD pathogenesis, since its reduction determines a decrease of BACE1 and the activation of
CAMKK2 which are responsible for Aβ plaques and p-tau, respectively. On the other hand, its
upregulation control SIRT1 activity proves the correlation between miRNA and chromatin remodeling
in AD pathological traits; MAPK/ERK activation is related to miR-125b for p-tau formation, whereas
miR-146 expression is strictly linked to NF-κB. Other miRNAs, such as miR-132/-212 and the
interaction between miR-29 and miR-107, directly correlate with Aβ plaques and p-tau accumulation.
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It is worth noting that histone modifications also include the addition of methyl
groups, operated by histone methyltransferases and histone demethylases, which have been
reported to be dysregulated in the AD context [118]. An increase in H3K9 trimethylation,
in synergy with euchromatic histone lysine methyltransferase 1 (EHMT1), has been found
in postmortem AD brains. The outstanding role covered by histone methylation in AD
pathogenesis has also been depicted in animal models, where histone methyltransferase
G9a (HMT G9a) has been linked to mice cognitive features [119].

As mentioned above, a further layer of epigenetic modifications includes micro-RNA
(miRNA). The goal of research plans, aiming at detecting miRNA regulation in AD patho-
genesis, was mainly focused on their attractiveness as biomarkers, which may be detected
either in the CNS or in the periphery [118]. To date, 61 different miRNAs targeting AD-
related genes have been reported, eventually contributing to APP cleavage, Aβmetabolism,
microtubule-associated protein tau (MAPT) regulation, and synaptic plasticity [120]. Re-
gardless, data describing specific miRNAs are usually controversial, mostly due to the
cohort heterogeneity. miR-9 downregulation, for instance, has been reported to be corre-
lated to BACE1 downregulation, in turn promoting Aβ production and aggregation [121].
Furthermore, miR-9 is also in charge for calcium/calmodulin-dependent protein kinase 2
(CAMKK2) regulation [122]. As a result, the adenosine monophosphate-activated protein
kinase (AMPK) pathway becomes active, enhancing the p-tau level. miR-9 upregulation,
on the other hand, modulates transforming growth factor, β-induced (TGFBI), tripartite
motif-containing 2 (TRIM2), and SIRT1 expression [123]. Similarly, there are several reports
claiming the significative role covered by miR-146 in AD pathogenesis, which is unfortu-
nately controversial [118]. It seems that miR-146 expression is strictly linked to nuclear
factor kappa-B (NF-κB), in turn mitigating CNS inflammatory response by promoting
miR-146 expression. In AD, a dysregulation of this loop leads to increased inflammation
and degeneration. However, the amount of data produced so far described a general
downregulation and upregulation of this miRNA in the serum, plasma, CSF, and CNS of
AD subjects [124]. Despite the controversial evidence, several works have been aiming to
investigate the role of different miRNAs in AD etiopathogenesis. Shioya and colleagues
reported an interesting correlation standing in between miR-29 expression and BACE1 [125].
This gene is also regulated by the interaction with miR-107, as shown by Wang and col-
leagues [126]. Furthermore, miR-29 has been reported to target neuron navigator 3 (NAV3),
whose role in AD pathogenesis is yet unknown, but it is upregulated in the frontal cortex
of AD patients [125]. Further insights have linked miR-29 expression to B-cell lymphoma 2
(Bcl-2) Homology 3 (BH3)-only protein family activity. A decrease in miR-29, as reported
in AD subjects, may eventually contribute to the increased apoptotic rate described in
this neurodegenerative disease [127]. Bcl-2 also emerged as a possible miR-34a target.
Enhanced expression of this miRNA could hamper Bcl-2 downstream, ultimately triggering
neuronal apoptosis [128]. Further miRNAs in charge for orchestrating AD-related apop-
totic events have been reported. miR-125b orchestrates the anti-apoptotic protein B-cell
lymphoma-W (Bcl-W) expression, according to the work by Banzhaf-Strathmann and col-
leagues, eventually also affecting tau phosphorylation [129]. Corroborating this, elevated
miR-125b expression correlates with tau hyperphosphorylation, following MAPK/ERK
signaling activation [129]. Interestingly, in mice, miR-132/-212 deficiency also correlates
with tau hyperphosphorylation [130]. MAPK cascade might also be affected by miR-181
expression, in turn mostly downregulated in AD CNS. Interestingly, a decrease in miR-181
expression, also targeting serine palmitoyl transferase long chain base subunit 1 (SPTLC1)
positively correlates with Aβ accumulation [131]. Accumulation of Aβ and APP, typical of
AD pathogenesis, has been reported to enhance the expression of inflammatory-associated
miRNAs, including miR-155 in exosomes derived from AD subjects [132].

3. Epigenetic Alterations in Parkinson’s Disease (PD)

PD has been depicted as a neurodegenerative disorder affecting the dopaminergic
nigrostriatal system, mainly disrupting dopaminergic neurons, eventually resulting in a
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defective dopamine transmission from the substantia nigra pars compacta to the caudate
putamen. Therefore, the main symptoms characterizing this disease include tremor at
rest, rigidity, bradykinesia, and postural instability. In addition, PD pathogenesis involves
extra-nigral dopaminergic, serotoninergic, and cholinergic neurons, eventually resulting
in further symptoms such as anosmia, sleep disorders, dementia, and depression [133].
The etiopathology of the disease is strictly linked to mutations affecting PARK in 5- to
10% of PD cases, the gene encoding for alpha-synuclein (α-Syn). Additional risk fac-
tors accounting for PD onset include toxins, pesticides, heavy metals, traumatic lesions,
and bacterial or viral infections [134]. Interestingly, the inflammatory component within
this context turns out to play a crucial role, since there have been reports claiming that
neurotrophic pathogens may reach the basal ganglia, exploiting the nasal and intestinal
mucosa, eventually triggering a consistent inflammatory response driving PD pathogene-
sis [135]. Moreover, PD progression involves damage-associated molecular pattern (DAMP)
released by neurons, proinflammatory mediators secreted by astrocytes, misfolded or
aggregated proteins including α-Syn trigger microglia polarization towards a proinflam-
matory phenotype [136]. Of note, DAMP release may be responsible for the NADPH
oxidase (NOX)-enhanced expression along with an increase in ROS and nitric oxide species
generation. Together with this, reactive microglia are characterized by a proinflammatory
secretome depicted by release of cytokines, i.e., IL-1β, IL-6, TNF, with chemokines and
bioactive lipids eventually reinforcing the already inflamed microenvironment. As a result,
such a cellular state might impair the blood–brain barrier (BBB), eventually resulting in
an increased leukocyte infiltration further boosting the local inflammatory response [137].
Supporting this scenario, two independent studies showed an increase in cellular death
rate of cultured dopaminergic neurons upon exposure to a conditioned media derived
either from M1-like microglia and lipopolysaccharide (LPS)-treated glial cells [138,139].
Furthermore, several in vivo studies have been reported in agreement with the previously
described models: strial injection of the catecholaminergic neurotoxin 6-hydroxydopamine
(6-OHDA) triggers microgliosis, characterized by an increase of IL-1β, IL-6, TNF, and
IFNγ and eventually leading to astrogliosis and dopaminergic cell death [140]. Similarly,
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is used to recapitulate PD pathogen-
esis triggering dopaminergic neuronal death in primates and mice by ATP depletion and
enhancing ROS levels [141]. Despite the induction of the neuronal death, both 6-OHDA
and MPTP fail in mimicking the main feature of PD: the accumulation of α-Syn in Lewy
bodies. For this reason, recent advances in preclinical models of PD have used direct
nigrostriatal inoculation of preformed fibrils of α-Syn or by delivery of α-Syn-expressing
adeno-associated viral vectors [142,143]. As previously mentioned, the inflammatory
microenvironment characterizing PD also involves different cellular species including astro-
cytes, which express high levels of the PD-related genes PARK7, SNCA, PLA2G6, ATP13A2,
LRRK2, GBA, PINK1, and PARK2 [144]. Furthermore, α-Syn inclusions have been reported
to also accumulate in astrocytes, probably as a consequence of neuronal transmission [145].
Here, α-Syn accumulates within lysosomes, where it might drive autophagic degradation.
Moreover, further processes involve the acquisition of a senescent-associated secretory phe-
notype by astrocytes along PD progression, eventually enhancing the microenvironmental
inflammatory profile, as supported by data showing that conditioned media, isolated by
senescent astrocytes, trigger dopaminergic neuronal death in an in vitro model [146]. The
mechanistic process behind this effect may be linked to TNF, in turn released by activated
astrocytes and binding specific receptors on dopaminergic neurons such as TNFR1 and 2,
ultimately triggering apoptosis [147].

From an epigenetic point of view, most of the efforts focused on evaluating the methy-
lome profile of the α-Syn-encoding gene (SNCA) have been so far contradictory. However,
important data emerged by application of DNA methyl transferase (DNMT) inhibitors,
eventually repressing SNCA expression, which is hypomethylated during neuronal differ-
entiation towards the dopaminergic phenotype [148]. Globally, a 30% reduction in DNA
methylation has been observed as a consequence of the reduction in nuclear DNMT1, but,
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to date, further inquiries investigating the link between changes in DNA methylome and
PD progression are needed (Figure 3) [149].
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Histone acetylation, on the other hand, has been widely discussed over the past years.
Indeed, an increase in HAT activity over HDAC has been reported, eventually drawing a
scenario in which PD-associated genes might turn out to be hyperacetylated. This is sup-
ported by two studies reporting a decrease of p300 acetylating mediated by α-Syn. In partic-
ular, in vitro cellular studies reported an increase in histone acetylation following cytotoxic
stress mediated by LPS, α-Syn, and MPTP. Furthermore, it has been reported that single
nucleotide polymorphism (SNP) on intron 4 of SNCA leads to a lack of EMX2/NKX6.1
recruitment, in turn mediating SNCA repression and triggering a hyperacetylation of
H3K27, otherwise methylated as a consequence of HDAC recruitment [150,151]. This
hypothesis was further corroborated by Mittal et al., eventually showing a repression of
SNCA as a consequence of β2-Adrenoreceptor (β2AR) administration in vitro, in turn
promoting HDAC association to SNCA [152]. Further evidence has been reported recently
by Toker and colleagues. Their work described a significant increase in H3K27 acetylation
in the prefrontal cortex of individuals with PD. This marker of active transcription was
also strongly associated to PD hallmarks including SNCA, MAPT, APP, PRKN, PARK7,
FBOX7, and POLG [153]. The opposite mechanism, H3K27 methylation, is mediated also
by Ezh 1/2. Interestingly, the loss of these proteins leads to degeneration of dopaminergic
neurons [151]. Further evidence has been reported about Sirt1, a class III HDAC, in charge
of deacetylation of the NfKB gene, thus proposing the epigenetics drift as a possible player
promoting the proinflammatory microenvironment [154]. To date, further studies are still
required in order to investigate this interconnection, which could lead to new therapeutic
approaches towards PD neurodegeneration.

4. Epigenetics in Amyotrophic Lateral Sclerosis (ALS)

ALS has been characterized as a fatal neurodegenerative disease leading to a pro-
gressive loss of the upper and lower motoneurons eventually occurring in middle to late
age and resulting in death within three to five years [155]. This neuropathology can be
distinguished based on the involvement of upper or lower motoneurons, while further
classifications involve ALS neuroanatomical distribution (i.e., spinal and bulbar ALS) and
sporadic (s)ALS versus familiar (f)ALS [1]. ALS patients display atrophy of the anterior
spinal nerve roots, motor cortex, and spinal cord, while ALS patients showing clinical
signs of dementia also suffer from focal atrophy of the temporal and frontal lobes [156].
Interestingly, these morbidity factors are also characterized by TDP-43 inclusions, even-
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tually evaluated by immunohistochemistry assay [157]. Current treatments have limited
effects, and despite intensive effort, the pathogenic mechanisms underlying this disease
are still poorly understood [158,159], although new imaging and neuropathological data
have indicated the involvement of the non-motor neuroaxis in the pathophysiology of the
disease. Interestingly, it has been reported that damaged motoneurons in ALS may release
several misfolded proteins, including SOD1, in turn eliciting microglia-mediated inflamma-
tory response, as showed by PET analysis on SOD1-mutated mice models [160]. Recent
reports also describe ATP release upon neuronal death as one of the factors activating
microglia through the activation of the ionotropic P2X and metabotropic P2Y purinergic
receptors [161]. In line with this evidence, increased P2X7 levels have been detected in
postmortem ALS spinal cord, and upregulation of P2X4, P2X7, and P2Y7 has been reported
in SOD1-mutated microglia. Consequently, ATP hydrolysis impairment triggers TNF
and cyclooxygenase-2 (COX-2) production [161]. Apolloni and colleagues, on the other
hand, depicted a more complex scenario involving P2X7 [162]. Their work reported a
worsening ALS progression following constitutive P2X7 depletion in end-stage (23-week)
SOD1-mutated mice. As a result, they recorded an increased motoneuronal loss in parallel
with an increase in nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) and
inducible nitric oxide synthase in the lumbar spinal cord of SOD1 mutated mice [162].
In agreement with these data, the usage of P2X7 antagonist Brilliant Blue G enhanced
motoneuron survival [163]. Overall, it seems that P2X7 plays a dual action depending on a
time window along ALS progression. Like microglia, astrocytes are also involved in ALS
pathogenesis. However, it is still unclear how ALS-related misfolded or mutated proteins
are linked to astrocytes dysfunction [164]. In this respect, it has been described that in sALS
and fALS, astrocytes are no longer efficient in clearing excess glutamate [164]. Moreover,
several astrocyte metabolic dysfunctions have been observed, including mitochondrial
defects and lactate efflux dysfunctions. The deficiency in mitochondrial respiration may
be linked to epigenetic changes affecting mitochondrial DNA (mtDNA) [165]. Increasing
evidence suggests that changes in DNA methylation and hydroxylation affect both mtDNA
replication and gene expression levels. It was noted that the mtDNA copy number was
increased in SOD1- or C9orf72-mutated ALS patients [166]. Consequently, these defects
exacerbate motoneuronal death through a caspase-independent form of programmed cell
death called necroptosis. For this reason, targeting the main proteins orchestrating necrop-
tosis may represent a promising strategy towards development of efficient ALS drugs [167].
The pathological processes that lead to neuronal death in ALS are not yet completely
understood, but oxidative stress, impaired axonal transport, protein and RNA aggregation,
excitotoxicity, neuroinflammation, and mitochondrial dysfunction have been reported as
critical degenerative processes characterizing its neuropathology. In fact, recent evidence
suggests that epigenetic modifications to the mitochondrial genome could also contribute
to neurodegeneration [165].

A subset of ALS patients harbors mutations in their genes that play different roles
in neuronal functioning [168,169]. Within this context, the first gene associated with ALS
was SOD1, identified in 1993. Furthermore, by early 2014, more than 20 genes including
C9orf72, TARDBP, and FUS have been identified as further causative or highly associated
with ALS pathogenesis. However, mutations in these genes account for approximately
two-thirds of all fALS patients and approximately 10% of sALS, where genetic factors can
only explain a small proportion of patients. In addition to genetic factors, several studies
suggested that environmental factors may account for ALS progression [170–172]. As a
result, these factors may drive epigenetic modifications, eventually explaining disease onset
and progression. Several authors reported the identification of alterations in global 5hmC
rate associated with ALS [173]. Moreover, the 5mC rate was also affected in spinal cord
genes exhibiting concordant mRNA expression overrepresented in functional categories
implicated in ALS. Moreover, 34 significant differentially methylated positions (DMPs) in
whole blood from sALS patients were recently identified [174]. These included 13 genes:
while TAD3B and BLK were hypermethylated, DDO, IQCE, ABCB1, DNAH9, FIGN, NRP1,
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TMEM87B, CCSAP, ST6GALNAC5, MYOM2, and RUSC1-AS1 were hypomethylated.
These authors also identified 12 differentially methylated regions (DMRs) related to 12 genes
(NWD1, LDHD, CIS, IQCE, TNF, PDE1C, LGALS1, CSNK1E, LRRC23, ENO2, ELOVL2,
and ELOVL2-AS1) (Figure 4) [174].
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Figure 4. Mutations in several genes that have been implicated in the pathophysiology of amy-
otrophic lateral sclerosis (ALS) have been reported as triggers for disease neuroinflammation and
neurodegeneration. TDP-43 inclusions, SOD1, C9orf72, TARDBP, and FUS gene mutations have been
identified as further causative or highly associated with ALS pathogenesis. Moreover, differentially
methylated positions (DMPs) and differentially methylated regions (DMRs) of specific genes have
been suggested as ALS contributors. Other mechanisms are largely correlated with ALS: for instance,
microglia-mediated inflammatory response can directly contribute to motor neuron dysfunction and
death, producing inflammatory mediators and reactive oxygen and nitrogen species.

Furthermore, ALS patients also displayed decreased SOD1, FUS, and VEGF methy-
lation on promoter regions [175], synergistically with hypermethylation of promoters of
human glutamate transporter EAAT2, which has been suggested as an ALS contribu-
tor [176]. SOD1-mutated patients also showed a decrease in D-loop methylation levels
suggesting a compensatory mechanism for mtDNA, eventually showing a hypermethy-
lated profile [177]. Taken together, these epigenetic changes identify key disease pathways
that are therapeutically testable, which could potentially lead to the development of better
treatments for ALS patients.

5. Epigenetics in Multiple Sclerosis (MS)

MS is an inflammatory autoimmune disorder of the CNS with a significant increased
incidence in women, with a female to male ratio of 3:1 [178]. A number of factors ac-
counting for MS onset must be considered. For instance, increasing prevalence of MS with
equator distance and the incidence of it being related to a given geographic area [179].
Evidence revealed that immigrants who move later in life conserved the risk of the original
geographic area, and the change in risk level may not appear until the next generation.
Importantly, those who move in early childhood tend to acquire the new geographic risk
themselves [179]. MS also has a familiar recurrence rate, with 3% risk in first-degree rel-
atives (siblings, 5%; parents, 2%; and children, 2%) and 1% risk in second-degree and
third-degree relatives, suggesting genetic factors in determining familiar clustering and
susceptibility [180]. Similarly, active smoking seems to play a role with a 1.8 ratio for men
and 1.4 ratio for women with MS versus healthy individuals [181].

The major early driver of tissue damage in MS lesions is the migration of autoreactive
lymphocytes from the periphery, which cross the BBB to invade the CNS. Accumulation
of T and B lymphocytes, plasma cells, and activated mononuclear phagocytes triggers the
secretion of pro-inflammatory cytokines, amplifying the immune response through the
recruitment of naïve microglia [179]. Inflammatory mediators such as cytokines (i.e., IL-12,
IFN-γ, and TNF), nitric oxide, and free radicals, produced by infiltrating cells and resident
microglia, play a critical role in demyelination, contributing to oligodendrocyte loss and
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degenerative axonal pathology. Demyelination observed in MS patients is typically the
completion of a direct insult to the oligodendrocytes (OLs) [182,183]. In physiological
conditions, OLs wrap segments of axons and produce myelin. Neurons, taking advantages
from this intimate contact with OLs, can rapidly conduct stimuli via saltatory conduction
of action potentials that propagate throughout the so-called nodes of Ranvier. In demyeli-
nating conditions, the disruption of these structures impairs the conductivity but also
affects axonal trophism, leading to neurodegeneration as a chronic condition [179]. While
axonal loss and neurodegeneration coexist with demyelination in the progressive stage
of the disease, compensatory mechanisms are initiated to overcome the chronic damage.
Among these, oligodendrocyte precursor cells (OPCs) recruiting is important as these cells
can migrate into a demyelinated area and differentiate into mature myelinating OLs [184].
However, these mechanisms seem largely inadequate, and remyelination is less successful
after cycles of demyelination and remyelination, probably due to the exhaustion of tissue
repair capacity. Such a phenomenon led to the hypothesis of potential age-dependent
mechanisms hampering successful regenerative mechanisms in progressive (P)-MS. Indeed,
the ability to recover from the relapse decreases with age, with a concomitant increased
risk to develop the progressive form of the disease [185–188].

Despite the therapeutic effects of disease-modifying agents in relapsing–remitting
(RR)-MS patients, P-MS still lacks effective treatments. Such a stark contrast is partially
dependent on the difficulties in clarifying the complex neuroinflammatory processes of MS,
which couple demyelination and neurodegeneration. Interestingly, important hints have
been reported about vitamin D as a protective factor in large epidemiologic studies. Healthy
controls exhibit higher serum levels of 25(OH)D3 and 1,25(OH)2D3 (the active form of
vitamin D) than RR-MS patients. Moreover, these patients present lower serum levels
of vitamin D during relapses compared to the levels during remissions. The molecular
mechanisms underlying this evidence still need to be fully elucidated, but it has been
reported that 1,25(OH)2D3 supports the induction of CD4+ factor forkhead box P3 (FOXP3+)
regulatory T cells by rendering of tolerogenic dendritic cells [189]. Taken together, this
body of evidence suggests an interplay between environmental and genetic factors in the
pathogenesis of MS.

Although the etiology of the disease is unknown, an epigenetic component appears to
influence the onset and progression of the disease, and in addition to DNA methylation and
miRNA-based gene expression regulation, histone modification has also been implicated in
MS pathogenesis. Four hypomethylated sites in the ATXN1 genomic sequence of B cells
at the clinical onset of the disease have been recently described. These changes might be
mediated by TET1, whose mRNA has been found to be upregulated following RNA-seq
analysis [190]. These data were further supported by studies on preclinical models showing
an increase in ataxin-1 level, resulting from an enhanced ATXN1 mRNA [191]. Mechanistic
insights have been gained showing that the RNA-binding protein PUMILO1 (PUM1)
orchestrates ataxin-1 levels by increasing Atxn1 mRNA stability through its interaction
with mRNA 3′UTR, along with miR-19 and miR-130, in turn proposed to mediate Atxn1
mRNA stability as well (Figure 5) [192,193].

Since DNA methylation has been widely reported to be linked to cell division and
is likely to replicative senescence potential [194,195], it has been investigated whether
accelerated aging in MS glia could be attributed to increased proliferation. Recent publica-
tions indicate a form of exhausted glial cells which are sustained by repeated damage to
oligodendrocytes and myelin [196,197] and by the elevated demand for debris uptake by
microglia [198], tissue repair by astrocytes, and remyelination by oligodendrocytes [199].
In the MS context, it has been recently described that glial cells of normal-appearing white
matter (NAWM) in MS patients undergo genome-wide DNA methylation changes, corre-
lating with transcriptional differences in genes involved in cytoskeleton organization, cell
signaling, molecule transports, neuroinflammation, cell motility, and metabolic processes
compared to controls [200]. This is possibly a consequence of KDM1A (LSD1) action, a
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flavin adenine dinucleotide-dependent amine oxidase located in the nucleus, acting as a
histone-modifying enzyme [1], eventually recruited to repressive transcription complexes.
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Taken together, these works force future research lines to consider the epigenetic
component in the MS scenario, which could play a pivotal role to develop new therapeu-
tic approaches.

6. Perspectives

This work was intended to review the current literature about the epigenetic changes
so far reported about neuroinflammatory disorders. Unfortunately, few works today have
been carried out to identify a potential epigenetic marker that could represent either a new
target for the development of novel drugs or to improve the current diagnostic strategies.
For this reason, further studies are needed in order to discriminate further epigenetic
players that could become discriminating in these neuropathologies.
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