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Abstract: Comprehending the pathogenesis of schizophrenia represents a challenge for global mental
health. To date, although it is evident that alterations in dopaminergic, serotonergic, and glutamater-
gic neurotransmission underlie the clinical expressiveness of the disease, neuronal disconnections
represent only an epiphenomenon. In recent years, several clinical studies have converged on the
hypothesis of microglia hyperactivation and a consequent neuroinflammatory state as a pathogenic
substrate of schizophrenia. Prenatal, perinatal, and postnatal factors can cause microglia to switch
from M2 anti-inflammatory to M1 pro-inflammatory states. A continuous mild neuroinflammatory
state progressively leads to neuronal loss, a reduction in dendritic spines, and myelin degeneration.
The augmentation of drugs that reduce neuroinflammation to antipsychotics could be an effective
therapeutic modality in managing schizophrenia. This review will consider studies in which drugs
with anti-inflammatory and neuroprotective properties have been used in addition to antipsychotic
treatment in patients with schizophrenia.

Keywords: schizophrenia; resistant schizophrenia; ultra-high-risk psychosis; neuroinflammation;
cytokines; IL-6; TNF-α; IL-1β; anti-inflammatory drugs; neuroprotective drugs

1. Introduction

Within psychotic disorders, schizophrenia represents a chronic illness with a poor
outcome. Identifying the causes and treatment of severe psychiatric illnesses, such as
schizophrenia, is a challenge for healthcare systems worldwide, as patients with severe
mental disorders have a higher mortality rate than the general population [1]. Although
atypical antipsychotics are effective in controlling the symptomatology of schizophrenia,
there are no drugs to date that can impact the pathogenetic core of schizophrenia, which ap-
pears uncertain. Above all, it is a challenge to treat patients with resistant schizophrenia, i.e.,
the condition in which two antipsychotic drug trials have failed to cause remission. In these
cases, the only effective and available drug remains clozapine [2]. Schizophrenia presents
positive symptoms such as delusions and hallucinations, and negative symptoms such as
poor thoughts, flat affect, apathy, social withdrawal, and cognitive and disorganized symp-
toms [3]. Although the causes of schizophrenia remain unclear, there is a growing interest
in exploring the neuroinflammatory and immune hypothesis as a potential contributor to
the disorder’s pathophysiology [4]. Mediators of neuroinflammation are cytokines that are
also implicated in neurons’ generation, differentiation, and maturation. Cytokine levels
under physiological conditions fluctuate at specific periods when significant changes occur
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in the prefrontal cortex. Specifically, a peak of Interleukins (IL) occurs in pre-school age and
another peak of tumor necrosis factor-α (TNF-α) and Interleukin-6 (IL-6) in adolescence [5].

Several noxious stimuli can trigger cytokines production by microglia (Table 1), which
can switch from an anti-inflammatory M2 phenotype to an M1 phenotype that fuels the
neuroinflammatory process [6]. Various risk factors are correlated with neuroinflammation
(Table 1). Prenatal (i.e., maternal immune activation, MIA, caused by infections during
pregnancy), perinatal (i.e., hypoxia at birth) [7], and postnatal stimuli (trauma, stress,
infections) can increase the immune system’s reactivity, which, through cytokines pro-
duction, produces hyperactivation of microglia and, in the long run, neuronal damage,
neurotransmission abnormalities, and neurodegeneration [8]. Patients with schizophrenia
show higher levels of proinflammatory cytokines such as Interleukin-1β (IL-1β), IL-6 in
the blood and cerebrospinal fluid of individuals with the disorder, TNF-α, and as well
as increased activation of microglia and astrocytes and an unspecific inflammatory blood
marker, the C-reactive protein (CRP) [9,10]. Particularly at the onset of schizophrenia and
during the recurrence of psychotic episodes, blood levels of proinflammatory cytokines
such as IL-1β, IL-6, and TNF-α tend to increase [11], and levels of IL-6 are associated
with poor schizophrenia prognosis [12]. In fact, microglia activation during psychotic
relapses results in an increased production of proinflammatory cytokines [11]. Intriguing
preclinical research found that animals exposed to MIA showed an increased expression
of the nod-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome. The
high expression of NLPR3, which is involved in the inflammatory pathway, is associated
with schizophrenia-like behavior [13]. Moreover, the activation of microglia induces in-
creased oxidative stress related to the increase in quinolinic acid produced by the kynurenic
acid pathway [14]. Indeed, tryptophan metabolism, in which the kynurenine pathway is
involved, is impaired in schizophrenia [15]. Thus, high levels of kynurenic acid can dam-
age dopaminergic and glutamatergic neurotransmission and lead to psychotic symptoms
and cognitive impairment [16,17]. Furthermore, the neuroinflammation-related state of
microglia activation leads to a reduction in brain-derived neurotrophic factor (BDNF), with
neuron loss, reduced synaptic plasticity, and consequent neurodegeneration [18].

Table 1. Risk factor of neuroinflammation in schizophrenia.

Risk Factor of Neuroinflammation in Schizophrenia (Hong, 2020 [11])

Infectious agents (i.e., toxoplasma gondii)
Maternal immune activation caused by prenatal infections

Pro-inflammatory genes (FOS, IL1B, CXCL8)
Stress inflammation correlated (psychosocial stress)

The gene expression of DNA sequences coding for proteins involved in TNF-α and
IL-17 signaling processes appears more pronounced in schizophrenia patients than in
healthy ones [19]. Multiple genes, such as FOS, IL1B, CXCL8, CASP1, CFL1, CAMP, ITPR2,
and ACTG1, implicated in immune response and inflammation, are more highly expressed
in schizophrenia than in the general population [19].

In light of this, a paradigm shift has been taking place in recent years regarding
psychiatric disorders. Emerging evidence brings schizophrenia closer to multiple sclerosis
relative to the pathogenetic basis, albeit with different anatomopathological and clinical
manifestations [20]. Whether the pathogenetic processes of schizophrenia are similar to the
neuroinflammation observed in multiple sclerosis, several clinical trials have investigated
the role of anti-inflammatory and immunomodulatory therapies in treating schizophrenia.
This finding is consistent with risperidone’s efficacy in reducing the blood concentration of
IL-6, which appears higher in patients with schizophrenia than in controls [21]. Recently,
lumateperone, an atypical antipsychotic, which modulates dopaminergic, serotoninergic,
and glutamatergic neurotransmission, has been shown to have anti-inflammatory activity,
reducing the levels of IL-1β, IL-6, and TNF-α and promoting the restoring of blood–
brain barrier (BBB) integrity [22]. In a study conducted by Fitton [23], the researchers
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examined the potential use of anti-inflammatory medication to treat mental disorders.
Their review involved analyzing existing literature, specifically emphasizing controlled
trials and systematic reviews.

The treatment of schizophrenia is a challenge for the clinician. A meta-analysis of
62 double-blind, randomized studies showed that different molecules with anti-inflammatory
action improved both positive and negative symptoms of schizophrenia [24]. Given these
findings, researchers have investigated the use of anti-inflammatory and monoclonal antibody
drugs as promising add-on treatments for schizophrenia. Due to their anti-inflammatory
properties and neuroprotective action [25], these drugs belong to different pharmacological
categories and can be defined as neuroinflammatory-reducing and neuroprotective drugs
(NRNDs). These drugs alleviate neuroinflammation, show a demonstrated neuroprotective
effect, and improve symptoms in patients with schizophrenia. As much as treatments with
second- and third-generation atypical antipsychotics are valuable tools in terms of efficacy
and tolerability, they do not affect the pathogenetic mechanisms of schizophrenia, but rather
the epiphenomena represented by neurotransmission abnormalities.

This systematic search followed the PRISMA guidelines. Two authors independently
searched the MEDLINE, Cochrane Central Register, EMBASE, and Mendeley databases
for the following entries: schizophrenia or patients with schizophrenia and celecoxib and
PUFA and omega-3-fatty acids and acetylsalicylic acid and minocycline and statins and
PPAR agonist and pioglitazone and rosiglitazone and ace-inhibitors and prednisolone
and immunomodulators and fingolimod and monoclonal antibody and rituximab. Only
English-written papers were considered (Figure 1).
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2. Polyunsaturated Fatty Acids

Omega-3 and omega-6 fatty acids belong to polyunsaturated fatty acids (PUFAs).
PUFAs are essential constituents of neuronal membranes and provide proper membrane
function. A large cross-national study showed a correlation between low levels of PUFAs
and an increased risk of schizophrenia [26]. PUFAs reduce neuroinflammation and, in
patients with schizophrenia, result in a reduction in proinflammatory cytokines, such as
IL-6 and TNF-α; a reduction in CRP; and an increase in BDNF, which, due to its neu-
rotrophic action, has positive effects on cognition function [27]. Given omega-3 fatty
acids’ neuroprotective and antioxidant effects, they have been proposed as a treatment in
first-episode psychotic patients or in ultra-high-risk state subjects (UHR), i.e., those with
subthreshold psychotic symptoms at risk of developing full-blown psychosis [28–31]. In
addition, some authors found that the reduction in omega-3 fatty acid in the erythrocyte
membrane (omega-3 index) could be a biomarker of risk in UHR individuals [32] and a risk
factor for drug treatment resistance [33]. The efficacy and safety of PUFAs augmentation to
antipsychotic therapy have been demonstrated in a meta-analysis of randomized controlled
trials [34]. Another meta-analysis of RCTs reported that the assumption of 1 g/day of
omega-3 fatty acid improved positive symptomatology [35]. Some authors in a randomized
clinical trial (RCT) reported a reduction in violent behavior in patients with schizophrenia
treated with PUFAs at twelve weeks [36]. However, another meta-analysis concluded that
although there are some efficacy data, these are of poor quality, and further studies would
be needed [37].

3. Statins

Like other molecules, statins, drugs that inhibit 3-hydroxy-3-methyl-glutaryl-coenzyme
A (HMG-CoA) reductase by inducing a lowering of cholesterol levels, used in hypercholes-
terolemia, also possess anti-inflammatory activity [38]. Statins can be distinguished into hy-
drophilic: pravastatin and rosuvastatin; and lipophilic: atorvastatin, fluvastatin, lovastatin,
pitavastatin, and simvastatin [39]. Two meta-analyses, which included six randomized clin-
ical trials (RCTs), observed in patients taking statins in addition to antipsychotics, showed a
reduction in positive and negative symptoms, compared with the control group not taking
them [40,41]. At a daily dose of 40 mg, simvastatin added to risperidone proved effective
in reducing negative symptoms of schizophrenia at eight weeks but did not show the same
effectiveness in controlling positive symptoms [42]. Nevertheless, not all studies agree:
some authors came to opposite conclusions of no efficacy [43,44], and in a meta-analysis,
statins were not reported to be effective in controlling the severity of schizophrenia symp-
toms, regardless of the molecule’s tendency to pass the BBB [18]. In a large retrospective
study performed on veterans with schizophrenia, the authors observed that the risk of
incurring hospitalization was lower in patients taking statins [45]. The effect of statins may
be due to their effect in reducing neuroinflammation [46], and decreasing blood values
of IL-1β, IL-6, TNF-α, and C-reactive protein (CRP) [46,47]. Within the prefrontal cortex
of patients with schizophrenia, the gene expression of the Toll-like receptors 4 (TLR4),
pivotal in the proinflammatory pathway, is altered [48]. In schizophrenia, statins have been
shown to effectively modulate both NLRP3 inflammasome and TLR pathways involved in
neuroinflammation [47]. However, it is necessary to remember that not all statins are the
same: some are lipophilic, while others are hydrophilic. Lipophilicity ensures their passage
through the blood–brain barrier (BBB); thus, in studies involving these drugs, one must
keep this in mind, as some may be biased by the ineffectiveness of statins that do not pass
the BBB.

4. Peroxisome Proliferator-Activated Receptors’ Agonists

The peroxisome proliferator-activated receptors (PPARs) are intranuclear receptors,
which act as transcription factors, binding to DNA and thus regulating gene expression [49].
In inflammatory processes, a key role is played by the nuclear factor kappa-light-chain-
enhancer of activated B cells (NFkB), a transcription factor that stimulates the expression of



Brain Sci. 2023, 13, 957 5 of 14

enzymes involved in the prostaglandin pathway by inducing COX-2 gene expression [50].
The pro-inflammatory action of NFkB is inhibited by the PPARs, which comprise three
isoforms, PPAR-α, PPAR-β/δ, and PPAR-γ [50]. PPAR-γ is widely expressed in microglia
and exhibits a potent anti-inflammatory activity, influencing multiple pathways through
inhibiting cytokine gene expression and prostaglandins and inducing apoptosis in activated
microglia cells [51]. On the other hand, the main effect of PPAR-α is to facilitate neuro-
transmission processes and have a neuroprotective effect, while the action of PPAR-β/δ is
unknown [52].

Because NFkB and PPARs are dysregulated in schizophrenia and are associated with
higher levels of neuroinflammation [50], the agonist of PPARs can reduce inflammatory
processes, reducing TNF-α and IL-6 levels [50,53]. PPARs not only inhibit NFkB gene
expression, but also modulate the action of TLRs, which, as already mentioned, play a key
role in the production of proinflammatory cytokines and the triggering of the neuroinflam-
matory process [54]. The PPARs agonists approved to date for the treatment of diabetes
are rosiglitazone and pioglitazone. In preclinical studies, rosiglitazone improved memory
because of its positive effect on BDNF gene expression [55].

The use of pioglitazone has been studied in patients with schizophrenia, and at a
dosage of 30 mg per day for eight weeks resulted in a reduction in the severity of symptoms
of the disorder [18]. It would also appear that pioglitazone, in addition to antipsychotics,
improves negative symptomatology [56]. In view of the broad action of PPARs in neurons,
it would be opportune to investigate PPARs agonists extensively, as also suggested in a
recent review on the potential use of PPARs agonists in psychopharmacology [57].

5. AT1 Antagonists and ACE Inhibitors

Interestingly, the renin–angiotensin system (RAS) and angiotensin-converting enzyme
(ACE), primarily involved in blood pressure regulation, appear to modulate PPARs and
neuroinflammation and regulate GABAergic and dopaminergic neurotransmission, which
are involved in schizophrenia [58,59]. According to recent evidence, RAS and ACE appear
to be linked to neurodegenerative diseases and schizophrenia [60], and reduced ACE levels
have been found in patients with schizophrenia [61]. Thus, using drugs that modulate RAS,
such as angiotensin 1 receptor (AT1) antagonists and angiotensin-converting enzyme (ACE)
inhibitors, could help treat the neuroinflammatory processes underlying the pathogenesis
of schizophrenia. The pleiotropic activity of AT1 antagonists, which contributes to reducing
neuroinflammation, modulating the immune response and the coagulation cascade, and
protecting endothelial cells and mitochondria, can explain the role of AT1 antagonists
in preventing neurodegeneration observed in schizophrenia [62]. The anti-inflammatory
properties of AT1 antagonists are likely to be related to the decrease in pro-inflammatory
cytokines, mediated by the reduction in gene expression of NLPR3 and NF-κB [62]. The
disruption of the BBB, which is related to neuroinflammation, is increased by AT1 receptors,
so the use of AT1 antagonists lowers the permeability of the BBB, thereby preventing
harmful agents from penetrating the brain [62,63].

Telmisartan, an AT1 antagonist, has been shown to effectively reduce the neurotoxic
effect of IL-1β that can result in neurodegeneration [64]. Moreover, the use of telmisar-
tan appears to be efficacious, in addition to clozapine or olanzapine, in improving the
symptomatology of schizophrenia [65].

Preclinical studies observed that AT1 antagonists, particularly irbesartan, losartan, and
telmisartan, reduce levels of kynurenic acid, which at high levels results in the blockade of
NMDA glutamate receptors, associated to the onset of psychotic symptoms [66]. In mice
models, candesartan reduces hippocampal microglia activation [67].

Moreover, ACE inhibitors alter the metabolism of kynurenic acid. In vitro studies on
rat cortex showed that among the various ace inhibitors, while lisinopril tends to increase
kynurenic acid levels, ramipril conversely reduces them. In contrast, perindopril appears
to have a neutral action on kynurenic acid levels [68].
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6. Acetylsalicylic Acid and Other Nonsteroidal Anti-Inflammatory Drugs

Acetylsalicylic acid, a non-selective COX inhibitor, modulates cy-cyclooxygenase-
2 (COX-2) and inhibits cyclooxygenase-1 (COX-1) irreversibly. The anti-inflammatory
action of acetylsalicylic acid is achieved by inhibiting the production of thromboxanes
and prostaglandins [69] and has proven effective in addition to antipsychotic therapy in
reducing both positive and negative symptoms of schizophrenia [18,70,71]. The dosage of
acetylsalicylic acid used in patients with schizophrenia ranged from 325 mg up to 1000 mg
daily. Acetylsalicylic acid is effective in reducing the production of IL-6 and TNF-α and
protecting against oxidative stress damage [72]. In a meta-analysis that considered different
nonsteroidal anti-inflammatory drugs (NSAIDs), such as ibuprofen, diclofenac, naproxen
sodium, and acetylsalicylic acid, it was observed that the augmentation of NSAIDs to
antipsychotics was effective in reducing the severity of symptoms of schizophrenia [73].

7. Celecoxib

Celecoxib, a drug that inhibits the enzyme cyclooxygenase-2 (COX-2), has been in-
vestigated as an additional treatment option for schizophrenia. COX-2, unlike the other
isoform of the enzyme COX-1, plays a specific role in the pathogenesis of inflammation [74].
COX-2 is also expressed in nervous tissue, and through the production of prostaglandin
E2 modulates immune action in the central nervous system (CNS) and plays a crucial
role in neuroinflammatory processes [75], with specific involvement of the hippocampus
as well [76]. Various researchers have reviewed randomized clinical trials that assessed
using celecoxib as an add-on treatment for schizophrenia [77]. The action of celecoxib
manifests through its neuroprotective and immunomodulatory effects [78]. In a double-
blind study, the combination of 400 mg/day of celecoxib with risperidone at standard
dosages (2–6 mg/day), regardless of sex, age, and duration of illness, was more effective in
improving positive and negative symptomatology in schizophrenia [79,80]; the same effect
was observed with the association of celecoxib and amisulpride [81]. The cognitive function
of patients with schizophrenia also improved following the addition of celecoxib [82].
However, other authors using 400 mg/day of celecoxib combined with an antipsychotic
found no difference from using an antipsychotic [83]. It is likely that the effectiveness of
celecoxib would depend on the stage of schizophrenia, being more useful in the early rather
than later stages [77,84]. This datum is confirmed by a meta-analysis that concluded that
further use of celecoxib is more effective in the first episode of schizophrenia [85].

8. Minocycline

Minocycline, a tetracycline antibiotic, has been investigated for its potential anti-
inflammatory effects in treating schizophrenia. Preclinical studies in mice have shown
that minocycline can reduce microglia activation at the hippocampal and prefrontal lev-
els [18,86]. Many authors have conducted meta-analyses of randomized controlled tri-
als [87–90]. They found that minocycline significantly improved negative symptoms of
schizophrenia and general psychopathology and reduced inflammation markers, especially
in studies where the treatment lasted longer. However, the authors did not report differ-
ences regarding positive symptoms. Minocycline combined with clozapine was an optimal
treatment strategy in resistant schizophrenia. The treatment’s efficacy in the add-on can also
be an effect of increased clozapine plasma levels caused by minocycline [91]. Specifically,
in resistant patients with schizophrenia, improvement was mostly observed in cognitive
function and in reducing avolition [92]. These findings suggest that minocycline may be a
promising additional treatment for schizophrenia, particularly for patients experiencing
cognitive impairment and negative symptoms [93–96]. The improvement of cognitive func-
tion was associated with a reduction in a marker of neuroinflammation interleukin-6 [97],
and greater efficacy of minocycline appears to be related to higher neuroinflammation [98].
Due to its neuroprotective and anti-inflammatory properties, minocycline reduces microglia
activation observed in patients with schizophrenia [99]. Minocycline may facilitate the
transition from M1 to M2 by inhibiting microglia hyperactivation and related neuroinflam-
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mation [100]. The inactivation of microglia, and consequently the reduction in IL-1β, IL-6,
and TNF-α levels, is mediated by the suppression of TLR4 signaling [101].

In addition to its effects on microglia, minocycline exerts neuroprotective and an-
tiapoptotic actions [102]. The hippocampus, a formation involved in schizophrenia, is
one of the targets of minocycline, which stimulates neurogenesis and reduces microglia
activation [103]. Exciting speculation hypothesizes that minocycline acts on microglia and
regulates the remodeling synapses and circuits involved in the “social brain” [104]. Several
pieces of evidence have shown that the NMDA glutamate receptor plays a key role in the
pathogenesis of schizophrenia [105]; in fact, molecules that antagonize the NMDA receptor
cause the onset of psychotic symptoms. Minocycline inhibits the neurotoxicity of NMDA
receptor antagonists [106].

As with other molecules considered in add on, there are conflicting studies for minocy-
cline. In RCTs, the authors found no difference between patients taking an antipsychotic
and minocycline at 200 mg/day and the group taking a placebo [107–109]. Nevertheless,
given the amount of positive data on the use of minocycline and considering some con-
flicting data to date, it cannot be completely ruled out that minocycline may find efficacy
in patients with the positivity of inflammatory biomarkers. Some studies do not consider
patients with more severe symptoms, relapses, and the presence of negative symptoms
before the start of minocycline treatment [110]. More homogeneous studies by disease
duration and severity, differentiated by symptom cluster, and considering neuroinflamma-
tory profile would be needed to clarify the usefulness of minocycline in the treatment of
schizophrenia in combination with antipsychotics.

9. Prednisolone

Prednisolone, a corticosteroid, has also been studied as an adjunctive treatment for
schizophrenia. Nitta [111] conducted a meta-analysis of randomized controlled trials inves-
tigating prednisolone use in schizophrenia and found some evidence for its effectiveness.
However, the study had methodological limitations, and the overall effect size was small.
Nevertheless, it must be considered that high cortisol levels are associated with psychotic
symptoms, so the use of prednisolone may be risky [112].

10. Immunomodulator Drugs

The new frontier in treatment studies of schizophrenia is the use of immunomod-
ulators. Among them, fingolimod, used in treating multiple sclerosis, which possesses
marked anti-inflammatory and neuroprotective activity, appears effective in improving the
cognitive symptoms of schizophrenia. Preclinical studies showed that fingolimod reduces
microglial activation and levels of proinflammatory cytokines such as IL-6, while increasing
BDNF [113]. The effect of fingolimod is expressed in the increase in white matter at the
level of the corpus callosum and superior longitudinal fasciculus, and the reduction in
lymphocyte counts [114]. The protective action of fingolimod would be related to the direct
effect of the molecule on oligodendrocytes [115]. In an RCT, some authors found a significa-
tive improvement in negative symptomatology and global functioning in 80 patients with
schizophrenia taking fingolimod, compared with as many patients taking a placebo [116].

Another drug used to treat rheumatoid arthritis is methotrexate. This drug, used once
weekly at 10 mg, effectively reduces positive symptoms while remaining ineffective on
negative ones [117]. However, methotrexate, which has antagonistic effects on folic acid
synthesis, is burdened by severe side effects on the immune system that make it hardly usable.

11. Monoclonal Antibodies

According to emerging studies, monoclonal antibodies may also play a role in treating
some psychopathological domains of schizophrenia. Monoclonal antibodies are a class of
molecules that act by antagonizing the cytokines. The main field of use of this category
of drugs is oncological disease. Several monoclonal antibodies exist, among which adali-
mumab has proven to be significantly superior to placebo in combination with risperidone
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in treating the negative symptoms of schizophrenia [118]. Among the many molecules, adal-
imumab selectively binds to TNF-α by preventing its action on the receptor [119]. Another
piece of research showed an improvement in the general symptomatology of schizophre-
nia with efficacy in improving global functioning in a small group of resistant patients
treated with rituximab [120], which targets CD20, a transmembrane protein present on B
lymphocytes whose proliferation it inhibits. Cognitive improvement was observed with
the administration of tocilizumab, an IL-6 antagonist [121]; this datum was not confirmed
in trial, however, which did not attribute the ineffectiveness to the molecule itself, but to the
fact that tocilizumab passes BBB with difficulty [122]. In a recent review, the investigation
of the efficacy of rituximab and ocrelizumab on the cognitive function of patients with
schizophrenia yielded controversial results. However, the use of adalimumab has been
shown to be effective in controlling negative and positive symptoms of schizophrenia [123].

12. Conclusions

Although the use of anti-inflammatory drugs as supplementary treatments for schizophre-
nia shows potential, more research is necessary to determine their ideal usage and safety.
According to the neuroinflammatory hypothesis of schizophrenia, inflammation plays a critical
role in the etiology and neuro-progression of the disorder. Thus, neuroinflammation-reducing
and neuroprotective drugs (NRNDs) hold promise as a potential treatment option. How-
ever, the complexity of schizophrenia and the interaction between inflammation and other
biological and psychosocial factors make it challenging to identify patient groups that could
benefit from NRNDs (Table 2). Therefore, future research should strive to identify biomarkers
that could aid in predicting treatment response and explore the optimal dosing and duration.
NRNDs could be used as an add-on to antipsychotics in some forms of schizophrenia in
which the neuroinflammatory component is more significant, or in predominantly negative
or cognitively impaired schizophrenia, in resistant form, and specific internist comorbidity
(Tables 2 and 3). In this regard, in patients with schizophrenia, it would be desirable for
neuroinflammatory screening to be carried out, allowing patients with neuroinflammatory
schizophrenia to be identified and treated appropriately.

Table 2. Possible indications to use NRNDs in schizophrenia.

Early state of psychosis
Resistant schizophrenia

Schizophrenia with neuroinflammation (CRP, cytokines, L/N ratio)
Schizophrenia with prevalent negative and cognitive symptoms

PET neuroimaging signs of microgliosis

In this regard, to improve and individualize the pharmacological treatment of schizophre-
nia, some authors have proposed using pro-inflammatory cytokines as a biomarker to stage
schizophrenia from the prodromal stages, the first episode, to chronic forms in relation also to
the predominance of negative or positive symptoms [124]. Patients with treatment-resistant
forms of schizophrenia, who account for 30% of patients with schizophrenia, could benefit
from a staging involving pro-inflammatory cytokines dosage to tailor therapy, using drugs
that act on neuroinflammatory mechanisms [125].

NRNDs represent a new therapeutic option for patients with schizophrenia. Future
research should involve case-control studies differentiated by the subtype of schizophrenia,
evaluating the presence of forms with a high neuroinflammatory component versus forms
of schizophrenia with a low neuroinflammatory component, as inferred from serological
biomarkers. In addition, the use of NRNDs should be investigated in schizophrenia
variants with the prevalence of negative or positive symptomatology and a possible impact
on cognitive function.
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Table 3. Utilization of NRNDs in different cluster symptoms of the schizophrenia and in relation to
the comorbidity.

Positive
Symptoms

Negative
Symptoms

Cognitive
Symptoms FEP/UHR GF RS Diabetes Ch/Tri. AH RD

PUFAs
√ √ √ √

Statins
√ √ √

PPARs
agonists

√ √

Minocycline
√ √ √

Celecoxib
√ √ √ √

MAb
√ √ √

Fingolimod
√ √

Prednisolone
√ √

AT1 antago-
nists/ACE
inhibitors

√ √ √

MAb: monoclonal antibodies; FEP/UHR: first episode of psychosis/ultra-high risk; GF: global functioning; RS:
resistant schizophrenia; Ch/Tri: cholesterol and triglycerides levels; AH: arterial hypertension; RD: rheumatologic
diseases.

√
: drug action on specific symptoms of diseases.
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