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Abstract: Tetraspanins are a conserved family of proteins involved in a number of biological
processes. We have previously shown that Tetraspanin-32 (TSPAN32) is significantly downregulated
upon activation of T helper cells via anti-CD3/CD28 stimulation. On the other hand, TSPAN32 is
marginally modulated in activated Treg cells. A role for TSPAN32 in controlling the development of
autoimmune responses is consistent with our observation that encephalitogenic T cells from myelin
oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE)
mice exhibit significantly lower levels of TSPAN32 as compared to naïve T cells. In the present study,
by making use of ex vivo and in silico analysis, we aimed to better characterize the pathophysiological
and diagnostic/prognostic role of TSPAN32 in T cell immunity and in multiple sclerosis (MS). We
first show that TSPAN32 is significantly downregulated in memory T cells as compared to naïve T
cells, and that it is further diminished upon ex vivo restimulation. Accordingly, following antigenic
stimulation, myelin-specific memory T cells from MS patients showed significantly lower expression
of TSPAN32 as compared to memory T cells from healthy donors (HD). The expression levels of
TSPAN32 was significantly downregulated in peripheral blood mononuclear cells (PBMCs) from
drug-naïve MS patients as compared to HD, irrespective of the disease state. Finally, when comparing
patients undergoing early relapses in comparison to patients with longer stable disease, moderate but
significantly lower levels of TSPAN32 expression were observed in PBMCs from the former group.
Our data suggest a role for TSPAN32 in the immune responses underlying the pathophysiology of MS
and represent a proof-of-concept for additional studies aiming at dissecting the eventual contribution
of TSPAN32 in other autoimmune diseases and its possible use of TSPAN32 as a diagnostic factor and
therapeutic target.
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1. Introduction

Tetraspanins are a conserved family of proteins involved in several biological processes, such as
the regulation of cellular adhesion, motility, cancer metastasis, signal transduction, and activation [1,2].
Tetraspanins comprise four transmembrane (TM) domains. TM domains 1 and 2 flank a small
extracellular loop (SEL), while TM3 and TM4 flank a large extracellular loop (LEL). TM domains are
typically involved in the interaction with non-tetraspanin molecules. The juxtamembrane cysteine
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residues in the cytoplasmic domains contribute to the formation of tetraspanin-enriched microdomains
(TEMs), while the cytoplasmic regions provide links to cytoskeletal and signaling molecules [3]. Several
immune-related proteins take part in TEMs, including pattern recognition receptors, co-stimulatory
molecules, Major Histocompatibility Complex molecules and T cell receptor-associated proteins
(reviewed in [2]). The tetraspanins Cluster of Differentiation 82 (CD82), CD9, CD63, CD81, and CD53
exert a co-stimulatory role in T cells [4,5], whereas cells deficient for CD37, CD151, and CD81 have been
shown to be hyperproliferative following stimulation [6–8]. Tarrant and colleagues [9] have shown that
T cells from Tssc6 Tetraspanin-32 (TSPAN32)-deficient mice have increased responses upon stimulation,
and have proposed that TSPAN32 may negatively regulate peripheral T-lymphocyte activation. Along
the same lines, we have previously shown that TSPAN32 expression is significantly reduced upon cell
activation, although in Treg cells, TSPAN32 levels undergo minor changes. Moreover, significantly lower
levels of TSPAN32 were found in encephalitogenic T cells from myelin oligodendrocyte glycoprotein
(MOG)-Induced experimental autoimmune encephalomyelitis (EAE) mice. Finally, ex vivo-activated
circulating CD4 T cells from MS patients showed lower levels of TSPAN32 as compared to cells from
healthy donors [10].

Multiple sclerosis (MS) is the most frequent immuno-inflammatory disorder of the central nervous
system, characterized by immune cell infiltration, microglia activation and progressive demyelination,
with consequent neurological deficits. It is well-known that increased conversion from naïve to memory
cells can be observed in MS [11] and that most of the myelin-reactive T cells are present in the memory
T cell subset [12]. It has been also shown that memory T cells are activated independently of CD28
co-stimulation [13,14]. In the present paper, we aimed to better characterize the pathophysiological role
of TSPAN32 in cellular immunity and in MS. To this aim, by making use of ex vivo and in silico analysis,
we have evaluated the expression levels of TSPAN32 in memory T cells from healthy donors and MS
patients, both in inactive state and upon activation. Next, we determined the diagnostic and prognostic
value of TSPAN32 in the peripheral blood mononuclear cells (PBMCs) of MS patients. Our analysis
demonstrates that TSPAN32 is significantly downregulated in memory T cells as compared to naïve T
cells, and that it is further diminished upon ex vivo restimulation. In addition, following antigenic
stimulation, myelin-specific memory T cells from MS patients exhibited significantly lower expression
of TSPAN32 as compared to memory T cells from healthy donors (HD). Further, the expression levels
of TSPAN32 was significantly downregulated in PBMCs from drug-naïve MS patients as compared
to HD, irrespective of the disease state. Finally, we observed a moderate but significantly reduced
expression of TSPAN32 in PBMCs from MS patients undergoing early relapses in comparison to those
from patients with a longer course of stable disease.

2. Materials and Methods

2.1. Ex Vivo Study

2.1.1. Cell Isolation and Real-Time PCR

Mononuclear cells were obtained from the peripheral blood of healthy donors (HD) (n = 7) by
step-gradient centrifugation, using the Ficoll−Hypaque medium (Sigma Aldrich, Milano, Italy), as per
manufacturer’s instructions. CD4 + CD45RA + CD45RO − CD25 + CD127low cells (naive Treg cells),
CD4 + CD45RA − CD45RO + CD25 + CD127low cells (memory Treg cells), CD4 + CD45RA − CD45RO
+ CD25 − CD127 + cells (memory Teff cells), and CD4 + CD45RA + CD45RO − CD25 − CD127 + cells
(naive Teff cells) were enriched by magnetic beads sorting, obtaining a cell purity of at least 95%. In
another set of experiments, memory Teff cells from 3 healthy donors were activated by plate-bound
anti-CD3 (10 µg/mL) and anti-CD28 (5 µg/mL) for 12 h.
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2.1.2. Real-Time PCR

Total RNA was extracted and gene expression levels were determined by real-time PCR. 2 µg of
total RNA were reverse-transcribed with a High-Capacity cDNA Reverse Transcription Kit (Applied
Biosystems, Monza, Italy) in a 20 µL reaction volume, and real-time PCR was performed using the
SYBR Green PCR Master Mix (Applied Biosystems, Monza, Italy), 200 nM forward and 200 nM reverse
primers, and 20 µg cDNA. Relative gene expression levels were obtained using the formula: 2−∆∆Ct,
where ∆∆Ct = (Cttarget gene − Ctbeta-actin) stimulated cells – (Cttarget gene − Ctbeta-actin) control cells.

2.2. In Silico Analysis

The Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/gds) browser was
interrogated using the MeSH (Medical Subject Headings) term “Multiple Sclerosis”. Datasets were
manually excluded if the studies were not performed on human subjects, if the patients enrolled were
under immunosuppressive/immunomodulatory treatment, and if the cell types analyzed were not
immune cells. For the evaluation of the expression levels of TSPAN32 in encephalitogenic memory T
cells, and the evaluation of the diagnostic role of TSPAN32, datasets carried out only on one cohort of
subjects (i.e., MS patients and healthy donors) were excluded. For the afore-mentioned reasons, the
analysis was then carried out on the GSE66763 and the GSE138064, respectively. For the determination
of the prognostic properties of TSPAN32 in predicting MS relapses, the GSE15245 was selected as
it is the only dataset including prospective data on disease evolution. A flowchart of the in silico
study design is provided as Figure 1. The characteristics of the datasets used are described in the
following sections.
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Figure 1. Flowchart of the in silico study.

2.2.1. TSPAN32 in Memory T Cells from MS Patients

The GSE66763 dataset was used to investigate the expression levels of TSPAN32 in circulating
memory T cells from MS patients [15]. The dataset included whole-genome RNA sequencing data of
C-C Motif Chemokine Receptor 6 (CCR6)+ memory (CD45RA − CD45RO + CD25 − CCR6+) CD4+ T
from 3 Human Leukocyte Antigen – DR isotype (HLA-DR)4+ healthy subjects and 5 HLA-DR4+ MS
patients. Cells were amplified by PhytoHaemAgglutinin (PHA) and Interleukin (IL)-2 and stimulated
by irradiated autologous monocytes and DR4 myelin peptides Myelin Oligodendrocyte Glycoprotein
((MOG)97–109 and ProteoLipid Protein (PLP)180–199). Patients were immunotherapeutic naïve or had not
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received treatment for at least 12 months. Cell proliferation was determined and the highest proliferated
wells were chosen for DR4 tetramers staining (MOG97–109-tetramers and PLP180–199-tetramers). Then,
myelin tetramer+ and tetramer− cells were sorted and lysed for the extraction of RNA and subsequent
RNA sequencing. Gene expression is shown as log2 Fragments Per Kilobase of transcript per Million
mapped (FPKM) values.

2.2.2. TSPAN32 in PBMCs from MS Patients

In order to investigate the expression levels of TSPAN32 in PBMCs from MS patients in both
stable and active disease, as compared to healthy donors, we interrogated the GSE138064 dataset [16].
The dataset included transcriptomic data from therapy-naïve Relapse-Remitting (RR) MS patients (10
with stable MS, age 45.2 ± 2.6, 8/2 female/male, and 9 during relapse, age 46.3 ± 3.5, 8/2 female/male).
Eight healthy controls were included, age 42.3 ± 4.8, 5/3 female/male.

2.2.3. Predictive Analysis of TSPAN32 in MS

In order to evaluate the relationship between expression levels of TSPAN32 and the time to relapse
in MS patients, we interrogated the GSE15245 dataset that included whole-genome transcriptomic
profiles of PMBCs from 51 drug-naïve MS patients [17]. The patient’s age was 38.5 ± 1.4, with a mean
Expanded Disability Status Scale (EDSS) score of 2.4 ± 0.2. The Affymetrix Human Genome U133A 2.0
Array was used for the generation of the dataset and raw data were preprocessed using the robust
multi-array average (RMA) algorithm. Sample population was sorted based on the expression levels of
TSPAN32 and log-rank test was applied to evaluate differences in the percentage of patients developing
acute relapses in a 1500-day time frame.

2.3. Statistical Analysis

Data are shown as mean ± SD and statistical analysis was performed using either a Student’s t-test
or one-way ANOVA followed by Fisher’s Least Significant Difference test. Correlation analysis was
performed using the non-parametric Spearman’s test. Hierarchical clustering was used to determine the
relative distance of samples using Pearson's correlation as similarity comparison. The self organizing
map (SOM) algorithm was used for the unsupervised identification of clusters of commonly modulated
genes [18]. Distance metric for SOM was Pearson’s correlation, with random genes initialization,
Gaussian neighborhood, and 2000 iterations. The linear model for microarray (LIMMA) algorithm was
used to evaluate statistical significance for differences in RNA sequencing data [19]. As the experimental
design and the information provided are different for the three whole-genome transcriptomic datasets
here analyzed, and in consideration that no additional datasets with overlapping experimental layouts
are currently available in publicly available databases, a meta-analysis cannot be performed. Gene
ontology and gene term enrichment analysis was conducted using the web-based utility, Metascape [20].
GraphPad Prism 8 and MeV (version 4.9) software programs were used for the statistical analysis and
the generation of the graphs.

3. Results

3.1. TSPAN32 in Memory T Cells

When analyzing the expression levels of TSPAN32 in memory CD4+ T cells from healthy donors,
we observed significantly lower levels of TSPAN32 in memory T effector cells as compared to naïve T
cells (p < 0.01) (Figure 2A). On the other hand, no modulation was observed in memory Treg cells
(Figure 2A). We also wanted to determine whether a modulation of TSPAN32 could be found upon
restimulation. As shown in Figure 2B, restimulation of memory T cells is associated to a significant
down regulation in TSPAN32 levels (p < 0.001) (Figure 2B). Similar data have been obtained from the
analysis of the GSE22886 dataset (Table S1).
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Figure 2. (A) Basal expression levels of Tetraspanin-32 (TSPAN32) in naïve T effector, Treg, memory
T effector, and memory Treg cells from healthy donors; (B) modulation of TSPAN32 expression in
memory T cells upon reactivation. ** p < 0.01, *** p < 0.001.

Next, we wanted to determine the expression of TSPAN32 in memory CD4+ T cells from HLA-DR4+

MS patients, following amplification by PHA and IL-2 and stimulation by irradiated autologous
monocytes and DR4 myelin peptides. As shown in Figure 3A, significant lower levels of TSPAN32
were observed in tetramer+ memory T cells from MS patients as compared to tetramer- memory T cells
from HD (p < 0.05). Similarly, comparable levels of TSPAN32 were observed in tetramer+ memory T
cells from HD (Figure 3A). SOM analysis identified 599 genes that clustered together with TSPAN32
(Cluster 5) (Figure 3B). Gene ontology revealed that the most significant enriched terms were “Small
GTPase-mediated signal transduction”, “Meiosis”, “DNA repair”, “BARD1 pathway” and “Membrane
lipid biosynthetic process” (Figure 3B–D). Interestingly, significantly lower TSPAN32 levels were also
observed in tetramer- memory T cells from MS patients (Figure 3A). As LIMMA analysis revealed
significant transcriptomic differences between tetramer- MS memory T cells and tetramer- HD memory
T cells, with enrichment of several immune-related biological processes (Figure S1A,B), and HCL
analysis clustered together tetramer- and tetramer+ memory T cells from MS patients (Figure S1C), the
reduced TSPAN32 levels may be associated to a reduced activation threshold of memory T cells from
MS patients, and could explain the underlying autoimmune process.
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Figure 3. (A) TSPAN32 expression in memory T cells from healthy donors and multiple sclerosis (MS)
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SOM analysis; (D) network showing the interconnection among the most enriched biological processes
by genes commonly regulated with TSPAN32, obtained from SOM analysis.

3.2. TSPAN32 Expression in PBMCs from MS Patients

In order to evaluate whether a modulation in TSPAN32 levels could be observed in peripheral
immune cells from MS patients, we interrogated the GSE138064 dataset. As shown in Figure 4A,
a significant reduction in TSPAN32 expression was observed in PBMCs from MS patients in both
stable and relapsing disease (p < 0.001) (Figure 4A). Receiver operating characteristic (ROC) analysis
confirmed the diagnostic ability of TSPAN32 to discriminate MS from HD, entailing a p < 0.001
(Figure 4B,C). No significant differences were instead observed when comparing TSPAN32 levels in
PBMCs from patients in stable disease as compared to PBMCs from patients in exacerbation (Figure 4A).
Accordingly, ROC curve area was 0.6889, entailing a p = 0.1651 (Figure 4D). This is in accordance with
data from the GSE19224 dataset, that show an adjusted p value > 0.99 and a log2(fold) change of 0.276
for TSPAN32 expression levels when comparing PBMCs from MS patients in stable versus relapsing
disease (https://www.ncbi.nlm.nih.gov/geo/geo2r/?acc=GSE19224).

https://www.ncbi.nlm.nih.gov/geo/geo2r/?acc=GSE19224
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Finally, we evaluated whether the different transcriptional levels of TSPAN32 in PBMCs from MS
patients could promote disease exacerbation or protect MS patients from acute relapses. Non-parametric
correlation between TSPAN32 and the time-to-relapse revealed a trend of direct correlation, which did
not reach the statistical significance (p = 0.0856) (Figure 5A). ROC curve area was 0.6036, entailing a
p = 0.3695 (Figure 5B). However, Log-rank analysis performed on patients divided into two groups
based on the expression level of TSPAN32 in PBMCs (referred as High and Low TSPAN32) showed that
a trend of protection from acute relapses was observed in patients expressing higher TSPAN32 levels
(Figure 5C). In addition, significantly lower levels of TSPAN32 were found in PBMCs from MS patients
developing exacerbation of the disease before 300 days as compared with patients who underwent
relapses later than 1500 days (Figure 5D).
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exacerbation of the disease (<300 days) or with longer stable disease (relapse > 1500 days).

4. Discussion

Diverse members of the TSPAN family have been shown to be involved in the regulation of both
the innate and adaptive immune responses. For instance, CD81 is involved in the formation of the
immune synapse, providing a link between the Antigen Presenting Cells and the T cells [21,22], while
CD37 and CD151 promote antigen presentation and regulate the costimulatory signaling pathways [23].

In a TSPAN32 (Tssc6)-deficient mouse model, despite normal hemopoiesis, T cell proliferation and
responses are significantly augmented [9]. It has also been observed that the activity of T cells from
mice double knockout for CD37 and TSPAN32 are upregulated, and that the dendritic cell stimulation
capacity is increased as compared to single knockout, suggesting a cooperative role for these two
tetraspanins in controlling T cell-mediated immunity [24]. These findings suggest that TSPAN32 might
contribute to shape cellular immunity. In our previous work, we have described that T cells express a
baseline level of TSPAN32, favoring the maintenance of an inactive state, which is decreased following
CD3-mediated signaling [10].

By means of in silico and ex vivo analyses, in this study we wanted to gain further insights into the
role of TSPAN in the biology and physiology of memory T cells and evaluated whether its expression
was altered in memory T cells from MS patients as compared to HD. We also studied the possible
diagnostic and prognostic value of TSPAN32 expression in PBMC of MS patients, on the course of
the disease. The use of whole-genome expression databases has been largely exploited [25–28] for the
characterization of pathogenic pathways and to identify therapeutic targets for a variety of disorders,
including immunoinflammatory and autoimmune diseases [29–36], cancer [37–39], and has allowed
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dismantling pathogenetic pathways [40–42], along with the identification of novel tailored therapeutic
targets [43–46].

MS is an autoimmune/immunoinflammatory disorder sustained by activated, myelin-specific T
cells that migrate into the central nervous system (CNS), promoting inflammation. The characterization
of the phenotype of myelin-specific immune cells is, therefore, crucial for the elucidation of MS
pathogenesis [47–49].

In the present study, we have first analyzed the expression levels of TSPAN32 in circulating
memory T cells from HD and we show that significantly lower levels of TSPAN32 can be observed in
memory T effector cells but not in memory Treg cells. This is in line with our previous observation that
only a marginal downregulation of TSPAN32 occurs in Treg cells, upon activation [10]. Interestingly,
following the in vitro reactivation of memory T effector cells, TSPAN32 expression levels further
decreased. The differential pattern of expression and modulation of TSPAN32 in Treg cells has yet to
be deciphered.

Next, we analyzed the expression of TSPAN32 in autoreactive T cells from MS patients. As shown
by Cao et al., myelin-reactive T cells from MS patients are prevalently from the memory CCR6+ T cell
population, and are characterized by the secretion of larger amounts of proinflammatory cytokines
as compared to T cells from HD. As expected, the expression levels of TSPAN32 in myelin-reactive
MS tetramer-positive T cells resulted significantly lower than those in tetramer-negative memory
T cells from HD. On the other hand, a significant lower expression of TSPAN32 was found in MS
tetramer-negative memory T cells, comparable to that of MS tetramer-positive T cells. Although this
may be counterintuitive, the observation that the transcriptomic features of the MS tetramer-negative
memory T cells are more closely related to those of the MS tetramer-positive memory T cells than
those of HD tetramer-negative memory T cells suggests that a lower activation threshold characterizes
memory T cells from MS patients. Notably, a similar trend of reduced TSPAN32 levels was also
observed in myelin-reactive HD tetramer-positive T cells. It is already known that MS patients and
healthy subjects share a similar number of circulating myelin-reactive T cells. The lower levels of
TSPAN32 in these cells suggest that regardless of the activation state of the T cells, the engagement
of the TCR with the cognate ligand is sufficient to modulate the expression of TSPAN32. This is
in accordance with our previous data, showing that the CD3-mediated signaling is sufficient to
downregulate TSPAN32 gene expression.

Finally, we found diminished TSPAN32 levels in PBMCs from MS patients, both in stable and
active disease, as compared to HD. No differences were however found between patients in stable
versus relapsing disease. In addition, only a moderate reduction in the time-to-relapse was observed
in patients expressing higher levels of TSPAN32 when MS patients were divided into two groups on
the basis of their level of TSPAN32 expression in PBMC (referred as High and Low TSPAN32).

However, it was possible to observe that those with high expression had a moderate but significant
protection from acute relapses. In agreement with this observation, significantly lower levels of
TSPAN32 were found in PBMCs from MS patients developing exacerbation of the disease before 300
days, as compared with patients who underwent relapses later than 1500 days. Overall, our data suggest
that the defective expression of TSPAN32 may characterize different T cell subsets of MS patients,
including memory T cells, and that this may contribute to trigger anti-myelin immune responses.
Along with our previous publication [10], this new transcriptomic analysis strengthens our hypothesis
that defective TSPAN32 expression may represent an additional important immunopathogenetic
abnormality that may play a role in the pathogenesis of at least some cases of MS.

It should also be pointed out that, although all of the in silico data have been generated from
third-party reanalysis of whole-genome transcriptomic datasets previously validated by the respective
original authors, the number of biological replicates in each of these datasets is relatively low. Therefore,
although statistical significance has been achieved in most cases of our analyses, the data warrant to be
confirmed from a larger population of MS patients. Along this line of research, it will be interesting
to study if and how the current disease modifying therapies influence the course of the disease by
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modulating TSPAN32 expression. In a similar manner, the expression profile of TSPAN32 in secondary
progressive and primary progressive MS seems of interest. Additional studies may also be warranted
to dismantle whether defective expression of TSPAN32 is also observed in other T cell-mediated
autoimmune diseases.

Moreover, further effort is required to understand the molecular pathways involved in the
regulation of the immune responses exerted by TSPAN32. Up to now, no drugs targeting tetraspanins
have received approval for the use in the clinical setting, but many strategies have been explored,
including the use of monoclonal antibodies, recombinant soluble large extracellular loops or
RNA interference (RNAi) (reviewed in [50]). Therefore, it is reasonable that several chances for
tailored-specific intervention will be available in the future. Additionally, a deeper understanding
of the mechanisms that control TSPAN32 expression could be pursued for their possible efficacy in
patients suffering from MS.

5. Conclusions

Our data suggest a role for TSPAN32 in the immune responses underlying the pathophysiology
of MS and represent a proof-of-concept for additional studies aiming at dissecting the eventual
contribution of TSPAN32 in other autoimmune diseases and its possible use of TSPAN32 as a diagnostic
factor and therapeutic target.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3425/10/1/52/s1,
Figure S1: Comparative transcriptomic profile of MS tetramer- memory T cells; Table S1: Significant genes in the
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