
UNIVERSITY OF CATANIA

DEPARTMENT OF ELECTRICAL, ELECTRONIC AND
COMPUTER ENGINEERING

PhD IN SYSTEM, ENERGY, COMPUTER AND
TELECOMMUNICATIONS ENGINEERING

XXXIII CYCLE

Network softwarization and smart
services in 5G ecosystems

CHRISTIAN GRASSO

Coordinator: Prof. Paolo Pietro Arena
Tutor: Prof. Giovanni Schembra

Company Tutor: Xenia Network Solutions

Contents

List of Terms and Abbreviations iii

List of Figures ix

List of Tables xiv

Abstract 1

1 Introduction 2

2 Enabling technologies for 5G networks 7
2.1 Network Function Virtualization (NFV) 7
2.2 Software Defined Networking (SDN) 14

2.2.1 SDN-NFV integration . 17
2.3 Network Slicing . 19
2.4 Cloud Technology . 23

2.4.1 Cloud vs Edge . 23
2.4.2 Multi-Access Edge Computing 29

3 Management and orchestration of network slices 35
3.1 5G-Hander for handover detection 36

3.1.1 Definition and implementation 39
3.1.2 Testbed description and results 41

3.2 UAV for Slice extension . 47
3.2.1 UAV for Monitoring System applications 48
3.2.2 Analytical System Model and results 53
3.2.3 Event-based Matlab simulation and results 59
3.2.4 MEC UAV managed with Reinforcement Learning 65

4 Network slicing for vertical applications 98
4.1 The TSE for Tactile Internet . 98

i

CONTENTS
4.1.1 Tactile Internet Architecture 99
4.1.2 TSE Implementation . 101

4.2 Multi-Layer Offloading in Vehicular Networks 114
4.2.1 Vehicular Networks . 114
4.2.2 Multi-Layer offloanding and RL 118

5 5G-enabled smart services 131
5.1 DiMoViS: Distributed Mobile Video Surveillance System 132

5.1.1 Triangle Testbed . 132
5.1.2 DiMoViS architecture and performance evaluation 135

5.2 TouristEyes: a 5G-based platform for blind Tourist 146
5.3 5Gamer: a 5G-assisted online game 160
5.4 VISION: a platform for smart-city video surveillance services . . . 167

5.4.1 Flame Project . 168
5.4.2 VISION architecture . 174

6 Conclusion 187

List of publications 189

References 191

Appendix 200
Appendix A: OpenFlow . 200
Appendix B: SDN Controllers . 203

ii

List of Terms and Abbreviations

AI Artificial Intelligence

ANDSF Access Network Discovery and Selection Function

AP Access Point

API Application Programming Interface

ASP Application Service Provider

BIP Backhaul Infrastructure provider

BBU BaseBand Unit

BS Base Station

CapEx CAPital EXpenditure

CE Computing Element

CFS Customer Facing Service

CLMC Cross-Layer Management and Control

CNIT National Inter-University Consortium for Telecommunication

CoMP Coordinated MultiPoint

C-RAN Centralized RAN

DC Docker Containers

DHCP Dynamic Host Configuration Protocol

DMC Digital Media Controller

DMS Digital Media Server

iii

LIST OF TERMS AND ABBREVIATIONS

DNS Domain Name System

DPI Deep Packet Inspection

D-RAN Distributed RAN

DT Digital Twin

e2e end-to-end

EA Edge Acquirer

eICIC Inter Cell Interference Coordination

eMMB Enhanced Mobile Broadband

EN Edge Node

eNB eNodeB

EPC Evolved Packet Core

EPDG Evolved Packet Data Gateway

ES Edge Storage

ETSI European Telecommunication Standards Institute

E-UTRAN Evolved Universal Terrestrial Radio Access Network

FANET Flying Ad-hoc NETwork

FCAPS Fault management, Configuration management, Accounting,
Per-formance monitoring and Security

FiaB Flame-in-a-Box

FIFO First-In-First-Out

FQDN Fully Qualified Domain Names

FR-EA FlowReplicator EA

FR-PA FlowReplicator PA

FW Firewall

GDPR General Data Protection Regulation

iv

LIST OF TERMS AND ABBREVIATIONS

GUI Graphic User Interface

GUMMEI Global Unique MME Identity

HSI Human-System Interface

HSS Home Subscriber Server

IaaS Infrastructure as a Service

IC Infrastructure SDN controller

IDS Intrusion Detection System

InP Infrastructure Provider

IoT Internet of Things

ISG Industry Specification Group

ITS Intelligent Transportation System

ITU-R International Telecommunication Union Radiocommunication
Sector

KPI Key Performance Indicators

LB Load Balancer

LOS Line-Of-Sight

LPR Lying Person Recognition

LSTM Long Short Term Memory

LTE Long Term Evolution

MANO NFV Management and Orchestration

MCC Mobile Country Code

MDP Markov Decision Process

MEAO MEC Application Orchestrator

MEC Multi-Access Edge Computing

MEO MEC Orchestrator

v

LIST OF TERMS AND ABBREVIATIONS

MEPM MEC Platform Manager

MEPM-V MEC platform manager-NFV

MIMO Multiple-input and Multiple-output

ML Machine Learning

MME Mobility Management Entity

MMORPG Mass Multiplayer Online Role-Play Game

mMTC Massive Machine Type Tommunications

MNC Mobile Network Code

MPS MEC Platform Server

NAT Network Address Translation

NF Network Function

NFV Network Function Virtualization

NFVI Network Function Virtualization Infrastructure

NFVI-POP Network Function Virtualization Infrastructure Point of Presence

NFVO NFV Orchestrator

NIST National Institute of Standards and Technology

NN Neural Network

NS Network Service

NSD Network Service Descriptor

NSO Network Service Orchestrator

OBU On Board Unit

ONF Open Network Foundation

ONOS Open Network Operating System

OpEx OPerating EXpenditure

vi

LIST OF TERMS AND ABBREVIATIONS

OSM Open Source MANO

OSS Operation/business support system

PA Personal Acquirer

PaaS Platform as a Service

PCRF Policy and Charging Rules Function

pdf Probability Density Function

PGW Packet Data Network Gateway

PIML Personalization, Interactivity, Mobility and Localisation

PLMN Public LandMobile Network

PNF Physical Network Function

PoI Point of Interests

PSNR Peak Signal-to-Noise Ratio

QoE Quality of Experience

QoS Quality of Service

RAN Radio Access Network

RL Reinforcement Learning

RMSP RAN/MEC Service Provider

RNN Recurrent Neural Network

RO Resource Orchestrator

RRH Remote Radio Head

RSRP Reference Signal Received Power

RSSI Received Signal Strength Indication

RSU Road Side Unit

SaaS Software as a Service

vii

LIST OF TERMS AND ABBREVIATIONS

SBBP Switched Batch Bernoulli Process

SC System Controller

SCTP Stream Control Transmission Protocol

SDN Software Defined Networking

SeV Service Vehicle

SFC Service Function Chain

SFEMC Service Function Endpoint Management and Control

SGW Security Gateway

SMF Session Management Function

TAP Test Automation Platform

TaV Task Vehicle

TC Tenant SDN Controller

TO Telco Operator

TSE Tactile Support Engine

UE User Equipment

UAV Unmanned Aerial Vehicles

URLLC Ultra-Reliable and Low Latency Communications

V2V Vehicular-to-Vehicular

V2X Vehicular-to-Everything

VC Virtualization Containers

VCC Vehicular Cloud Computing

VDI Virtual Decoder Interface

VEC Vehicular Edge Computing

VF Virtual Function

viii

LIST OF TERMS AND ABBREVIATIONS

VIM Virtualized Infrastructure Manager

VNFD Virtual Network Function Descriptor

VM Virtual Machine

VNF Virtual Network Function

VNF-FG VNF Forwarding Graph

VNFM VNF managers

VPS Vehicular Platform Server

vsSTB video-surveillance set-top box

WAN Wide Area Network

WIM WAN Infrastructure Manager

ix

List of Figures

1.1 Structure of this thesis . 6

2.1 Traditional network functions vs NFV paradigm [11] 8
2.2 ETSI high level NFV framework definition [12] 9
2.3 ETSI End-to-end Network Service definition [12] 11
2.4 ETSI NFV Architecture definition [12] 12
2.5 Traditional Networking vs SDN [19] 14
2.6 Software Defined Networking . 15
2.7 SDN and NFV integration [26] . 18
2.8 Network slice . 20
2.9 Network slice architecture [29] . 21
2.10 Network slicing deployment integrating SDN and NFV [27] 22
2.11 Cloud Architecture Model [30] . 24
2.12 Differences between a User Managed, IaaS, PaaS and SaaS deploy-

ment . 26
2.13 Cloud Computing and Edge Computing Architecture 28
2.14 ETSI MEC framework [38] . 30
2.15 ETSI MEC reference architecture [38] 31
2.16 ETSI MEC reference architecture in NFV [38] 33

3.1 5G-Hander. Distributed RAN scenario 38
3.2 5G-Hander. Centralized RAN scenario 38
3.3 5G-Hander. Algorithm 1: Handover Sniffer pseudo-code 40
3.4 SCTP packet structure . 41
3.5 SCTP Data chunk structure . 41
3.6 Header of the X2 and S1 packets 41
3.7 5G-Hander. Testbed infrastructure 42
3.8 5G-Hander. Network topology of Backhaul emulator 43
3.9 5G-Hander. Experiment scenario 44
3.10 5G-Hander. RSRP values throughout the duration of the experiment 46

x

LIST OF FIGURES

3.11 5G-Hander. RSRP values around the handover events 46
3.12 UAV for Video Surveillance. Proposed Architecture 49
3.13 Drone Functional Architecture . 50
3.14 Mutual Help Policy implementation algorithm 53
3.15 UAV for Video Surveillance. System Model diagrams 55
3.16 UAV for Video Surveillance. Numerical Results 59
3.17 FANET topology used in the use case 60
3.18 UAV for Video Surveillance. Application-level QoS parameters . . 62
3.19 UAV for Video Surveillance. Dependece of application-level QoS

parameters on the job arrival rate during alarm states 63
3.20 UAV for Video Surveillance. Performance parameters for a be-

haviour analysis of the proposed framework 64
3.21 UAV for Video Surveillance. Normalized histograms of the job

queue length . 65
3.22 An IoT network zone covered by MEC UAV 67
3.23 UAV and RL. Time diagram of the sequence of the events in a

state transition . 73
3.24 i7-2600K power consumption vs. clock speed for different numbers

of active CPUs . 77
3.25 Job loss probability for the IoT devices in LA state, against the

job service rate for each CPU . 79
3.26 Job processing latency for the IoT devices in LA state 80
3.27 Mean number of active CPUs for the IoT devices in LA state . . . 80
3.28 Job loss probability for the IoT devices in HA state, against the

job service rate for each CPU . 81
3.29 Job processing latency for the IoT devices in HA state 82
3.30 Mean number of active CPUs for the IoT devices in HA state . . 82
3.31 UAV cooperation scenario. Functional architecture of the helped

and helping MEC UAVs . 83
3.32 UAVs collaboration and RL. Time diagram of the sequence of the

events in a state transition . 85
3.33 UAVs cooperation and RL. Loss probability for L = 3 available

CPUs . 93
3.34 UAVs cooperation and RL. Mean delay for L = 3 available CPUs 93
3.35 UAVs cooperation and RL. Mean number of active CPUs for L = 3

available CPUs . 94

xi

LIST OF FIGURES

3.36 UAVs cooperation and RL. Loss probability (on both non-offloaded
and offloaded jobs) . 95

3.37 UAVs cooperation and RL. Mean delay 95
3.38 UAVs cooperation and RL. Power consumption gain 95
3.39 UAVs cooperation and RL. Reduction percentage of flight duration

for L = 3 . 96
3.40 UAVs cooperation and RL. Reduction percentage of flight duration

for L = 4 . 96

4.1 Tactile Internet scenario . 100
4.2 TSE Reference System . 101
4.3 TSE implementation. Network in Good state 102
4.4 TSE implementation. Network in Bad state 102
4.5 Architecture of the TSE . 103
4.6 A standard LSTM unit . 105
4.7 TSE. Diagram of AI Engine life cycle 106
4.8 TSE Use Case: Local Setup . 107
4.9 TSE Use Case: Distributed Setup 109
4.10 TSE. Obstacle positions drawn for the Level 1, Lap 1 110
4.11 TSE. Force and position traces during a game in the local setup . 111
4.12 TSE. Model comparison for different look_backs LB, at different

levels . 112
4.13 TSE Performance analysis . 113
4.14 Loss probability measured without TSE 114
4.15 VEC Network Architecture . 116
4.16 Vehicular Scenario: multy layer system architecture 119
4.17 Vehicular Scenario: job arrival process 122
4.18 Multi-layer offloading in a Vehicular Network: numerical results . 129

5.1 High level architecture of the Triangle testbed [81] 132
5.2 Transport layer in the Triangle testbed [81] 134
5.3 The vsSTB service chain . 136
5.4 DiMoViS deployment when user is at home 137
5.5 DiMoViS deployment when user is in mobility 138
5.6 DiMoViS in Triangle. Network level measurement scenario 139
5.7 DiMoViS in Triangle. Application level measurement scenario . . 140
5.8 DiMoViS in Triangle. VFs migration in 5 steps 141

xii

LIST OF FIGURES

5.9 DiMoViS in Triangle. Frame rate degradation when IP Camera
changing events during live video streaming 143

5.10 DiMoViS in Triangle. Frame rate vs time jumping on the seek bar
during playout of a pre-recorded event 143

5.11 DiMoViS in Triangle. RX Data Rate 144
5.12 DiMoViS in Triangle. TX Data Rate 144
5.13 DiMoViS in Triangle. RSRP and RSSI values 145
5.14 Tourist Eyes. State of the art . 147
5.15 Tourist Eyes. New testbed . 147
5.16 Tourist Eyes architecture . 148
5.17 Tourist Eyes Manager . 151
5.18 Tourist Eyes app . 152
5.19 Tourist Eyes. Data Flow . 153
5.20 Tourist Eyes. VNFD in OSM . 154
5.21 Tourist Eyes. NSD in OSM . 154
5.22 Tourist Eyes. Position of the installed camera in Millennium Square155
5.23 Tourist Eyes. Path during experiment execution 155
5.24 Tourist Eyes. Forward and backward patch during the experiment 156
5.25 Tourist Eyes Console Screen - High Quality Scenario 158
5.26 Tourist Eyes. Average transmission bitrate from IP Cams in P1 . 158
5.27 Tourist Eyes. Delay and Loss Percentage in P1 158
5.28 Tourist Eyes Console Screen - Poor Quality Scenario 159
5.29 Tourist Eyes. Average transmission bitrate in P2 159
5.30 Tourist Eyes. Delay and Loss Percentage in P2 159
5.31 Tourist Eyes Console Screen - Good Quality Scenario 161
5.32 Tourist Eyes. Average transmission bitrate in P3 161
5.33 Tourist Eyes. Delay and Loss Percentage in P3 161
5.34 5Gamer. Application scenario . 163
5.35 5Gamer. System Architecture . 164
5.36 5Gamer. Comparison with the state-of-the-art in case of malfunction167
5.37 Flame Platform Architecture [87] 169
5.38 FLAME: Possible node status and transitions from one status to

another . 171
5.39 Flame-in-a-Box architecture [88] 172
5.40 Topology of Sandpit with clusters (green), emulated UE (red) and

SDN switch (blue) [88] . 173
5.41 Bristol Flame platform topology [90] 174

xiii

LIST OF FIGURES

5.42 FLAME. Coverage area in Millennium Square [90] 175
5.43 VISION Architecture and interaction with the FLAME Platform . 176
5.44 VISION. DiMoViS service: cam registration 180
5.45 VISION. DiMoViS service: user access and cam selection 180
5.46 VISION. DiMoViS service: power on, if required, of the other com-

ponents . 180
5.47 VISION. DiMoViS service: video flow transmission 181
5.48 VISION: interactions between DiMoViS platform and Tourist Eyes

service . 182
5.49 VISION: interactions between DiMoViS platform and LPR service 183
5.50 Vision. System Architecture and Stakeholders 184

A.1 Structure of an OpenFlow switch [92] 201
A.2 Structure of the flow table [19] . 201
A.3 Pipeline process inside a OpenFlow switch [92] 202
A.4 ONOS architecture [93] . 203
A.5 ODL architecture [95] . 205

xiv

List of Tables

3.1 5G-Hander. Representative Time Instants and Events during Han-
dover Detection . 47

4.1 Comparison between Vehicular Edge Computing and Vehicular
Cloud Computing [72] . 115

5.1 DiMoViS in Triangle. Delay in the Personal Acquirer 139
5.2 DiMoViS in Triangle. Delay in the Edge Acquirer 139
5.3 DiMoViS in Triangle. Latency due to IP Camera changing events

during live video streaming . 142
5.4 DiMoViS in Triangle. Latency due to time jumping on the seek bar 143
5.5 Tourist Eyes. Distance between IP Cams and Access Point 153

xv

ABSTRACT

Internet data traffic will maintain its rapid growth in the next future due to the ever
increasing development of new application services and devices. The 4G network is not
able to meet this explosive growth in traffic demand. For this reason, 5G mobile network
represents an optimal solution due to its designed architecture, modifying the actual
ossified infrastructure thanks to the use of paradigms like NFV, SDN and MEC. A
key feature of 5G is Network Slicing, a technology that allows the creation of virtual
networks able to guarantee different applications requirements.
In this context, this thesis was realized with the aim of studying the main aspects of

network softwarization in 5G environment, from the management and orchestration of
network slices to their use for vertical services. In particular, as regards the management
and orchestration, a first work concerns the definition of a framework for the prediction
of handovers, aimed at optimizing resources in scenarios characterized by high variability
of the access point by the users. In the same context, the use of UAVs to extend network
slices is proposed, providing networking and computing resources at the edge of the
network. Using Reinforcement Learning, it is possible to offload part of the data to be
processed from one UAV to another nearby, optimizing parameters such as latency, loss
probability and energy consumption.
About the use of network slices for vertical services, two works are presented: the

first concerns the definition of the functional architecture of the Tactile Support Engine
in the Tactile Internet network slice. The second proposed work concerns hierarchical
offloading in vehicle networks based on Reinforcement Learning techniques.
Finally, thanks to the participation in European projects, it was possible to define

and implement some application scenarios characterizing a 5G ecosystem, taking care
of three areas that are now considered strategic: distributed video surveillance, develop-
ment of assistive technologies for patients suffering from various kinds of diseases and
online gaming.

Keywords: 5G, Network Slicing, MEC, Reinforcement Learning, Resources Orchestra-

tion.

1

Chapter 1

Introduction

Internet data traffic shows no decreasing signs and is expected to maintain its
rapid growth in the next future due to the ever increasing development of new
application services, and the proliferation of devices to support them. According
to [1], nearly two-thirds of the global population will have Internet access by 2023,
there will be 5.3 billion total Internet users (66 percent of global population) by
2023, up from 3.9 billion (51 percent of global population) in 2018. The number
of devices connected to IP networks will be more than three times the global
population by 2023. Due to the huge amounts of data traffic that is expected to
be produced by new applications like high-resolution games on line, 4K and 8K
video streaming, augmented reality and virtual reality, and the emerging “mission-
critical” scenarios, like traffic control, robotic control, production and automation,
robotic surgery, and autonomous driving cars [2], the 4G wireless communication
system is not able to meet this explosive growth in traffic demand. Consequently,
the development of a new telecommunications network has become necessary.
The 5G mobile network represents a revolution if compared with previous mo-

bile network generations due to its designed architecture. The main feature of
this new network is that it makes changes not only to the Radio Access Network
(RAN), but also to the fixed network. It is deployed with the aim of offering
greater use of Cloud, Edge and Fog solutions, softwarization of the hardware
and direct end-to-end (e2e) communication between devices. This allows 5G to
address the wide range of needs of the verticial industries and support new ser-
vices that are currently unthinkable (for example, telesurgery), but also services
already developed for current telecommunications networks which, thanks to the
introduction of new technologies, will be able to achieve a significant increase in
performance.
Even end users change: until nowadays, mobile networks had always the only

2

CHAPTER 1. INTRODUCTION

need to provide connectivity to human consumers, through the use of smart-
phones, tablets and personal computers. Thanks to an unlimited mobile broad-
band experience and with the progressive development of information technology,
the Internet of Things (IoT) [3] is emerging as a huge paradigm shift by connect-
ing a versatile and massive collection of smart objects to the Internet. The IoT
enables physical objects to see, hear, think and perform jobs by having them “talk”
together, to share information and to coordinate decisions, transforming them in
smart objects. This means that not only humans will exploit 5G technology to
be able to communicate or exchange data better than now, but there will be an
increase in communications between humans and objects, or between everything
from human-held smart devices to sensors and machines and, most importantly,
supporting critical machine communications with instant action and ultra-high
reliability [4].
Also telcom industry is changing, moving from a "horizontal" toward a "verti-

cal" service delivery model. The first one is characterized by the idea to define
services independent of their consumers’ needs, while in the vertical model the
services are tailored to specific industry sectors, each one with very diverse and
extreme requirements [5].
To achieve these challenges, network is modifying its ossified infrastructure

through some innovations [6]:

− New Radio, a new air interface designed to greatly improve the performance
of the access network;

− Network Softwarization Process, which will be supported by three main
paradigms that, although born in different contexts and for different pur-
poses, are converging together in the 5G system: Network Function Vir-
tualization (NFV), Software Defined Networking (SDN) and Multi-Access
Edge Computing (MEC);

− Network Slicing, that consists in the creation of a dedicated virtual network
architecture with the aim of providing specific functionalities for certain
services exploiting the real available physical network;

− full exploitation of in-network computing, following the recent trend that is
transforming the Internet in a network of data centres in which the prevail-
ing communication paradigm is becoming device-to-computing-to-device,
rather than device-to-device;

− a Service-Based Architecture, for which network control functions expose an

3

CHAPTER 1. INTRODUCTION

Application Programming Interface (API) based on HTTP/2 and RESTful
technologies, thus providing an unprecedented flexibility, simplifying the
deployment and the evolution of the network and harmonizing the entire
network control plane with Web technologies.

Due to the possibility of different types of communications and applications
requirements, the International Telecommunication Union Radiocommunication
Sector (ITU-R) has defined three usage scenarios to expand and support diverse
families of applications [7]:

− Enhanced Mobile Broadband (eMMB), addressing human-centric use cases
for access to multimedia content, services and data;

− Ultra-reliable and low latency communications (URLLC) with strict require-
ments, especially in terms of end-to-end latency and reliability;

− Massive machine type communications (mMTC) for a huge number of con-
nected devices, typically transmitting a relatively low volume of non-delay-
sensitive information.

This thesis work aims to analyze aspects related to the network softwarization
in the context of 5G ecosystems. In particular, the main objectives of this thesis
are:

− management and orchestration of network slices: in this context, the first
work regards the management of handover in the RAN portion of a network
slice, with the implementation of a network service that is able to detect
handover packets between physical and virtual base stations. The captured
messages are analyzed and communicated to the Network Orchestrator us-
ing publish/subscribe approach. In this way, the Orchestrator is able to
allocate resources to prepare the network to manage the handover, or block
this last one, sending an alert trigger to the Mobility Management Entity
block of the RAN, if the resources are limited or the network behind the
new access point presents congestion or faults. The second work is about
the use of Unmanned Aerial Vehicles (UAVs) to extend network slices to
provide computing and network facilities to IoT devices for area monitor-
ing applications. This problem is addressed proposing the analytical model
realized in a first step, then implemented in a Matlab simulator, and finally
improved with Reinforcement Learning techniques;

4

CHAPTER 1. INTRODUCTION

− network slicing for vertical applications: in this field, two different scenar-
ios are studied. The first regards the architectural definition of the Tactile
Support Engine (TSE), a component that supports the network to respect
application requirement in a Tactile Internet scenario, implementing Artifi-
cial Intelligence techniques. The second scenario regards Vehicular Networks
and the use of MEC servers installed along the roadway to provide facil-
ities to the vehicles during the processing of the data collected from the
environment in a context of a smart city.

− 5G-enabled smart services: in this part, four frameworks have been im-
plemented in the context of smart services for smart cities. In particular,
a distributed mobile video surveillance system was realized to allow end-
users to receive the video stream from cameras to which they are registered,
wherever they are. After that, two services for people with visual and mo-
tor disabilities have been deployed: TouristEyes and Vision: using machine
learning techniques, video flows coming from cameras are analyzed with the
aim of recognizing a blind person (helping him/her to walk in an unusual
city context) or laying person (helping him/her by sending alerts to rela-
tives and/or law enforcement agencies). Another use case regards a gaming
online scenario, where the 5Gamer application was realized: it is a revival
of the famous Pong game, with the addition of Artificial Intelligence that
trains according to the gaming habits of the physical player. It has made
possible to understand the necessary requirements to be able to guarantee
the user to play at best in an online context, even during network outage
periods.

This thesis work is structured as shown in Fig. 1.1. Chapter 2 will present an
overview about the enabling technologies for 5G networks: SDN, NFV, Cloud/Edge
Computing, MEC and Network Slicing. In Chapter 3, the management and or-
chestration of network slice will be addressed, and the 5G-Hander network service
and the use of UAVs to extend a network slice will be presented. The Network
Slicing technology for vertical applications will be described in Chapter 4. In
Chapter 5, four frameworks implemented in the context of European Projects
during the whole period of the Ph.D. course will be shown; they represent typi-
cal 5G-enabled smart services. These projects have allowed to work on the main
issues typical of the network softwarization and orchestration in 5G network, not
limiting the discussion to only the theoretical aspects, but also being able to ad-
dress them from a practical point of view. Finally, in Chapter 6 the conclusions
of this thesis will be drawn.

5

CHAPTER 1. INTRODUCTION

CHAPTER 1: Introduction

CHAPTER 2: Enabling technologies for 5G networks

SDN NFV
Cloud

Computing

Network

Slicing

CHAPTER 3: Management and orchestration

of network slice

5G-Hander for

handover detection

UAV for slice

extension

CHAPTER 4: Network slicing for vertical

applications

TSE for Tactile

Internet

Multi-Layer Offloading

in Vehicular Networks

CHAPTER 5: 5G-enabled smart services

DiMoViS Tourist Eyes 5Gamer Vision

MEC

CHAPTER 5: 5G-enabled smart services

CHAPTER 6: Conclusion

Figure 1.1: Structure of this thesis

6

Chapter 2

Enabling technologies for 5G
networks

2.1 Network Function Virtualization (NFV)

Traditionally, network operators have deployed physical proprietary equipment
and devices for every part and function of the network. However, with the in-
crease of user demands on network functions, they are required to acquire many
specialized network hardware (known as middleboxes or hardware appliances)
to satisfy the plethora of heterogeneous user requirements, and it is difficult to
manage these devices when integrated with the network.
Middleboxes embody a large variety of specialized functions (for example L2

Switching, Routing, Network Address Translation (NAT), Firewall (FW), Deep
Packet Inspection (DPI), Intrusion Detection System (IDS), Load Balancer (LB))
and recent studies [8] show that they are ubiquitous in enterprise networks and
their number is comparable with the number of routers and switches needed to
maintain the operation of the network. This results in high Capital Expenditure
(CapEx) and Operational Expenditure (OpEx). Another problem is that middle-
boxes have vendor-specific interfaces and, consequently, suffer of a slow protocol
standardization [9]. Deploying new network services (NSs) is also a tedious pro-
cess, as technicians are required to visit specific sites and place the middleboxes
in a pre-defined order to form the correct service function chains (SFCs).
One of the proposed solutions to deal with these difficulties is Network Functions

Virtualization (NFV). NFV is a term used to represent the implementation of
hardware appliances providing data-plane network functions (firewalls, gateways,
etc.) in software, executed in commodity hosts. To this purpose, it leverages on
virtualization technology, widely adopted in the recent past to data centers and

7

CHAPTER 2. ENABLING TECHNOLOGIES FOR 5G NETWORKS

v

ORCHESTRATION, AUTOMATION

& REMOTE INSTALL

DPI
BRAS

GGSN/

SGSN

Firewall

CG-NAT

PE Router

VIRTUAL

APPLIANCES

STANDARD

HIGH VOLUME

SERVERS

Virtualised Network Model:
VIRTUAL APPLIANCE APPROACHv

DPI

BRAS
GGSN/SGSN

Session Border

ControllerFirewall CG-NAT

PE Router

Traditional Network Model:
APPLIANCE APPROACH

Figure 2.1: Traditional network functions vs NFV paradigm [11]

clouds, offering a new way to design the networks and to provide flexible network
functions deployment [10].
An illustrative example contrasting NFV paradigm with traditional network is

shown in Fig. 2.1. Compared to the traditional service provisioning paradigm
based on hardware middleboxes, NFV manages to achieve cost-effectiveness by
consolidating multiple instances of VNFs on high-volume yet inexpensive servers,
routers, or storage. Service provisioning in NFV is also highly simplified as the pre-
vious troublesome tasks, such as middlebox deployment, monitoring, migration,
and scaling, can be optimally automated through software control mechanisms.
Thanks to the virtualization, traditional middleboxes are managed as single in-

dependent modules of software running into virtual machines (VMs), programmed
to play the role of a particular VNF, allowing modularity and isolation of each
function. Moreover, being VNFs deployed on general-purpose servers, dynamic
migration from one server to another one is possible, with the aim of “following
the users” or to be consolidated on few servers for energy saving purposes [12].
This makes the setup of the network more flexible based on the user needs as well
as making the process of scaling the network easier.
NFV promises many benefits to network operators. The most significant ones

are [12]:

− independence: software is no longer integrated with hardware in NFV. As
a result, their evolution will be independent from each other;

− flexibility : the decoupling of software from hardware helps to reassign and
share the same infrastructure resources, which allows to perform different
functions at various times. As a result, the deployment of network functions
and their connections becomes more flexible;

− scalability : NFV optimizes the NS provisioning and provides scalable and
elastic automation of services;

8

CHAPTER 2. ENABLING TECHNOLOGIES FOR 5G NETWORKS

NFV
Management

and
Orchestration

NFV Infrastructure (NFVI)

Virtual
Compute

Virtual
Storage

Virtual
Network

Virtualisation Layer

Hardware resources

Compute Storage Network

Virtualised Network Functions (VNFs)

VNF VNF VNF VNF VNF

Figure 2.2: ETSI high level NFV framework definition [12]

− reduced energy consumption: with the ability of scaling resources up and
down, it is possible to reduce the OpEx needed to run network devices;

− time-to-market and service instantiation reduction: the deployment time
becomes comparable with that of software tools, with a reduction from few
years to few months, with better integration and testing abilities;

− open-source: being software, development of network functions can be done
according to open-source paradigms, so simplifying dissemination and de-
ployment of network functions.

The main architectural components of the NFV model (see Fig. 2.2) are the
Network Function Virtualization Infrastructure (NFVI), the Virtualised Network
Functions (VNFs), and the Management and Network Orchestration (MANO)
[12].
The NFVI includes all hardware (a single computer or a computer cluster that

can be located in data centers, network nodes or close to end user premises) and
a software framework (offers functions that are commonly required by NFs, such
as NF placement, dynamic scaling, etc) on which to deploy, manage and execute
the VNFs, through the creation of a Virtualisation layer. It sits right above the
hardware with the objective of abstracting the hardware resources, so they can
be logically partitioned and provided to the VNFs to perform their functions. In
the case of NFVI-PoP located over several areas, the NFV Infrastructure has a
decentralized structure, being able to virtualize resources physically distant but
which appear to be located in the same point to the VNFs that use them. Ob-

9

CHAPTER 2. ENABLING TECHNOLOGIES FOR 5G NETWORKS

viously, the network resources that connect the various NFVI-PoPs will also be
part of the NFVI. The network resources are composed by switching functions
and wired/wireless links. NFV groups all networks into two classes: NFVI-PoP
network, to indicate the network that interconnects the computing and storage re-
sources inside a NFVI-PoP, and the Transport network, that interconnects NFVI-
PoP to other network appliances or terminal. The Virtualization layer abstracts
the hardware resources.Its aims are: abstract and logically partition the resources
in the physical layer, providing virtualised resources to the VNF, after enabling
the latter to use these resources.
The Virtualised Network Functions component performs the virtualization of a

network function (NF). A NF is a piece of software that implements data-plane
network functions ranging between basic packet forwarding to complex middlebox
functions, such as intrusion prevention systems. They are run on servers belonging
to the NFVI. It is worth highlighting that the general concept of decoupling NFs
from dedicated hardware does not necessarily require virtualization of resources.
This means that the network operator could provide software NFs running them
on physical machines not using virtualization. Nevertheless, running them in Vir-
tualization Containers (VC), e.g. in VMs or Docker Containers (DC), makes the
difference and realizes the gain of NFV. In fact, if NFs are virtualized, they can
be run on commodity servers, and present many advantages in terms of flexi-
bility, dynamic resource scaling, and energy efficiency [13]. Needless to mention,
it is also possible to have hybrid scenarios as it was said so far. When NFs are
executed on VMs, they are referred to as VNFs. In Fig. 2.3 there is an example of
NS, in which it is possible to see all the levels that take part to its deployment. A
NS is defined through a VNF Forwarding Graph (VNF-FG), that is the list of all
the VNFs that compose it, in the exact order in which the flow managed by the
NS must pass through them. In the figure it is represented the case of a nested
VNF-FG for the VNF2.
The third element constituting the NFV model is MANO, whose target is man-

agement and orchestration of the whole network. It includes functions as Fault
management, Configuration management, Accounting, Performance monitoring
and Security (FCAPS), and orchestrators, which manage service chains of mul-
tiple NFs [14]. Research regarding NFV in the last years has focused on MANO,
and specifically on its task of NF placement, also referred to as resource alloca-
tion, for optimally locating NFs in physical servers and/or VMs. The survey in
[15] focused on virtual network embedding, and reported on several optimization
techniques for ideal NF placement.

10

CHAPTER 2. ENABLING TECHNOLOGIES FOR 5G NETWORKS

VNF-GF

Figure 2.3: ETSI End-to-end Network Service definition [12]

Fig. 2.4 shows a more detailed view of the NFV architecture. Inside the com-
ponents already described, there are [12]:

− Element Management System (EMS): placed on top of VNF, manages the
functionality for one or more VNFs;

− Virtualised Infrastructure Manager (VIM): inside the MANO, it deals with
controlling and managing the interactions between VNF and computing,
storage and network resources;

− NFV Orchestrator (NFVO): inside the MANO, its rule is to orchestrate and
manage the NFV infrastructure and software resources, and realize NS on
NFVI;

− VNF Manager (VNFM): inside the MANO, it manager the VNF lifecycle,
from the instantiation to the termination, through update, query and scaling
phases;

− Service, VNF and Infrastructure Description: inside MANO, it provides
information about VNF deployment, VNF-FG, services information and
NFVI infrastructure information;

− Operation/business support system (OSS/BSS): the objective of this block
is to behave as a management system that allows the network providers to
deploy and manage various end-to-end telecom services like ordering, billing,
trouble-shooting, etc. OSS is in charge of functions of infrastructure plan-
ning, such as service provisioning, network inventory, network configuration,
and fault management. BSS, on the other hand, deals with operations like
ordering, billing, and revenue management aspects [16].

11

CHAPTER 2. ENABLING TECHNOLOGIES FOR 5G NETWORKS

Figure 2.4: ETSI NFV Architecture definition [12]

To carry out its task, the NFV Orchestrator also manages four catalogues:

− VNF Catalogue: it represents the repository of all the on-boarded VNF
Packages. The properties of each VNF are described using a VNF Descriptor
in which the resources needed by the VNF (in terms of virtual compute,
storage and networking) are listed. About the connectivity, it is possible
to specify external connection points, internal virtual links and internal
connection points of each VNF. The definition of these connection points
is important because, otherwise, the VNF will not be able to connect to
the Internet and to other VNFs of a NS. Also the image used to deploy
the VNF is specified, image that has to be available inside the VIM. Both
NFVO and VNFM can query the VNF Catalogue for finding and retrieving
a VNF descriptor, to support different operations;

− NS Catalogue: it represents the repository of all of the on-boarded NSs,
supporting the creation and management of the NS deployment templates.
Each NS is defined by a NS Descriptor, in which all the necessary VNFs that
compose the NS are listed, together with specifications about the virtual
links used to connect them (through the connection point of each VNF
described in the VNF descriptor). For each virtual link, if two different
communication channels are necessary, it is possible to specify if it is a
management virtual link or a data virtual link;

− NFV Instances Repository : it holds information of all VNF instances and
Network Service instances. Records saved on it are updated during the life-

12

CHAPTER 2. ENABLING TECHNOLOGIES FOR 5G NETWORKS

cycle of the respective instances, reflecting changes resulting from execution
of NS lifecycle management operations and/or VNF lifecycle management
operations. This supports NFVO’s and VNFM’s responsibilities in main-
taining the integrity and visibility of the NS instances, respectively VNF
instances, and the relationship between them;

− NFVI Resources Repository : it holds information about available/reserved/al-
located NFVI resources as abstracted by the VIMs across diffenent oper-
ator’s Infrastructure Domains, thus supporting information useful for re-
sources reservation, allocation and monitoring purposes. Therefore, this
repository plays an important role in supporting NFVO’s Resource Orches-
tration and governance role, by allowing NFVI reserved/allocated resources
to be tracked against the NS and VNF instances associated with those
resources.

Another important activity was carried out by the European Telecommunica-
tions Standards Institute (ETSI) in defining the following set of relevant use cases
[17], as described in [18]:

− Network Functions Virtualization as a service: NFV infrastructure, plat-
form and even a single VNF instance can be provided as a service by a
network operator, based on models similar to the cloud computing service
models;

− Virtualization of Mobile Core Network and IMS : mobile networks and the
IP Multimedia Subsystem are populated with a large variety of proprietary
hardware appliances, which costs and complexity can be reduced introduc-
ing NFV (specially for the coming 5G);

− Virtualization of Mobile Base Station: mobile operators can apply NFV in
order to reduce costs as well as continuously develop and provide better
service to their customers;

− Virtualization of the Home Environment : installation of new equipment
can be avoided in the home environment with the introduction of VNFs,
reducing maintenance and improving service provision;

− Virtualization of CDNs : Content Delivery Networks use cache node to im-
prove the quality of multimedia services, but it comes with lots of disad-
vantages (e.g., waste of dedicated resources) that could be mitigated by
NFV;

13

CHAPTER 2. ENABLING TECHNOLOGIES FOR 5G NETWORKS

(e.g., routing algorithms) very difficult, since it would

imply a modification of the control plane of all network

devicesVthrough the installation of new firmware and, in

some cases, hardware upgrades. Hence, the new network-

ing features are commonly introduced via expensive, spe-
cialized, and hard-to-configure equipment (also known as

middleboxes) such as load balancers, intrusion detection

systems (IDSs), and firewalls, among others. These mid-

dleboxes need to be placed strategically in the network,

making it even harder to later change the network topo-

logy, configuration, and functionality.

In contrast, SDN decouples the control plane from the

network devices and becomes an external entity: the NOS
or SDN controller. This approach has several advantages.

• It becomes easier to program these applications

since the abstractions provided by the control plat-

form and/or the network programming languages

can be shared.

• All applications can take advantage of the same

network information (the global network view),

leading (arguably) to more consistent and effective
policy decisions, while reusing control plane soft-

ware modules.

• These applications can take actions (i.e., reconfig-

ure forwarding devices) from any part of the net-

work. There is therefore no need to devise a precise

strategy about the location of the new functionality.

• The integration of different applications becomes

more straightforward [29]. For instance, load ba-

lancing and routing applications can be combined
sequentially, with load balancing decisions having

precedence over routing policies.

A. Terminology
To identify the different elements of an SDN as un-

equivocally as possible, we now present the essential

terminology used throughout this work.

1) Forwarding Devices (FD): These are hardware- or

software-based data plane devices that perform a set of

elementary operations. The forwarding devices have well-

defined instruction sets (e.g., flow rules) used to take ac-

tions on the incoming packets (e.g., forward to specific

ports, drop, forward to the controller, rewrite some

header). These instructions are defined by southbound

interfaces (e.g., OpenFlow [9], ForCES [30], protocol-
oblivious forwarding (POF) [31]) and are installed in the

forwarding devices by the SDN controllers implementing

the southbound protocols.

2) Data Plane (DP): Forwarding devices are intercon-

nected through wireless radio channels or wired cables.

The network infrastructure comprises the interconnected

forwarding devices, which represent the data plane.

3) Southbound Interface (SI): The instruction set of the

forwarding devices is defined by the southbound API,

which is part of the southbound interface. Furthermore,

the SI also defines the communication protocol between

forwarding devices and control plane elements. This pro-

tocol formalizes the way the control and data plane ele-

ments interact.

4) Control Plane (CP): Forwarding devices are prog-

rammed by control plane elements through well-defined

SI embodiments. The control plane can therefore be seen

as the ‘‘network brain.’’ All control logic rests in the appli-

cations and controllers, which form the control plane.

5) Northbound Interface (NI): The NOS can offer an API
to application developers. This API represents a north-

bound interface, i.e., a common interface for developing

applications. Typically, a northbound interface abstracts

the low-level instruction sets used by southbound inter-

faces to program forwarding devices.

6) Management Plane (MP): The management plane is

the set of applications that leverage the functions offered
by the NI to implement network control and operation

logic. This includes applications such as routing, fire-

walls, load balancers, monitoring, and so forth. Essen-

tially, a management application defines the policies,

which are ultimately translated to southbound-specific

instructions that program the behavior of the forwarding

devices.

Fig. 5. Traditional networking versus SDN. With SDN, management

becomes simpler and middleboxes services can be delivered as

SDN controller applications.

Kreutz et al. : Software-Defined Networking: A Comprehensive Survey

Vol. 103, No. 1, January 2015 | Proceedings of the IEEE 19
Authorized licensed use limited to: University of Catania. Downloaded on August 31,2020 at 07:23:41 UTC from IEEE Xplore. Restrictions apply.

(a) Conventional Networking

(e.g., routing algorithms) very difficult, since it would

imply a modification of the control plane of all network

devicesVthrough the installation of new firmware and, in

some cases, hardware upgrades. Hence, the new network-

ing features are commonly introduced via expensive, spe-
cialized, and hard-to-configure equipment (also known as

middleboxes) such as load balancers, intrusion detection

systems (IDSs), and firewalls, among others. These mid-

dleboxes need to be placed strategically in the network,

making it even harder to later change the network topo-

logy, configuration, and functionality.

In contrast, SDN decouples the control plane from the

network devices and becomes an external entity: the NOS
or SDN controller. This approach has several advantages.

• It becomes easier to program these applications

since the abstractions provided by the control plat-

form and/or the network programming languages

can be shared.

• All applications can take advantage of the same

network information (the global network view),

leading (arguably) to more consistent and effective
policy decisions, while reusing control plane soft-

ware modules.

• These applications can take actions (i.e., reconfig-

ure forwarding devices) from any part of the net-

work. There is therefore no need to devise a precise

strategy about the location of the new functionality.

• The integration of different applications becomes

more straightforward [29]. For instance, load ba-

lancing and routing applications can be combined
sequentially, with load balancing decisions having

precedence over routing policies.

A. Terminology
To identify the different elements of an SDN as un-

equivocally as possible, we now present the essential

terminology used throughout this work.

1) Forwarding Devices (FD): These are hardware- or

software-based data plane devices that perform a set of

elementary operations. The forwarding devices have well-

defined instruction sets (e.g., flow rules) used to take ac-

tions on the incoming packets (e.g., forward to specific

ports, drop, forward to the controller, rewrite some

header). These instructions are defined by southbound

interfaces (e.g., OpenFlow [9], ForCES [30], protocol-
oblivious forwarding (POF) [31]) and are installed in the

forwarding devices by the SDN controllers implementing

the southbound protocols.

2) Data Plane (DP): Forwarding devices are intercon-

nected through wireless radio channels or wired cables.

The network infrastructure comprises the interconnected

forwarding devices, which represent the data plane.

3) Southbound Interface (SI): The instruction set of the

forwarding devices is defined by the southbound API,

which is part of the southbound interface. Furthermore,

the SI also defines the communication protocol between

forwarding devices and control plane elements. This pro-

tocol formalizes the way the control and data plane ele-

ments interact.

4) Control Plane (CP): Forwarding devices are prog-

rammed by control plane elements through well-defined

SI embodiments. The control plane can therefore be seen

as the ‘‘network brain.’’ All control logic rests in the appli-

cations and controllers, which form the control plane.

5) Northbound Interface (NI): The NOS can offer an API
to application developers. This API represents a north-

bound interface, i.e., a common interface for developing

applications. Typically, a northbound interface abstracts

the low-level instruction sets used by southbound inter-

faces to program forwarding devices.

6) Management Plane (MP): The management plane is

the set of applications that leverage the functions offered
by the NI to implement network control and operation

logic. This includes applications such as routing, fire-

walls, load balancers, monitoring, and so forth. Essen-

tially, a management application defines the policies,

which are ultimately translated to southbound-specific

instructions that program the behavior of the forwarding

devices.

Fig. 5. Traditional networking versus SDN. With SDN, management

becomes simpler and middleboxes services can be delivered as

SDN controller applications.

Kreutz et al. : Software-Defined Networking: A Comprehensive Survey

Vol. 103, No. 1, January 2015 | Proceedings of the IEEE 19
Authorized licensed use limited to: University of Catania. Downloaded on August 31,2020 at 07:23:41 UTC from IEEE Xplore. Restrictions apply.

(b) SDN

Figure 2.5: Traditional Networking vs SDN [19]

− Fixed Access Network Functions Virtualization: virtualization supports mul-
tiple tenancy in access network equipment, whereby more than one organi-
zational entity can either be allocated, or given direct control of, a dedicated
partition of a virtual access node

2.2 Software Defined Networking (SDN)

The traditional IP network is complex and hard to manage: this is due to the
presence of control and transport protocols inside routers and switches, forcing
network operators to configure each device using the specific vendor protocol.
Another problem is the possible failures that occur within the network. Lacking
someone who has an overall view of the network, if a device stops working due
to a failure, the other components are not informed of the damage in time, but
must find out themselves, causing service disruptions and malfunctions [19].
SDN is a computer networking approach that allows network administrators

to manage services through the abstraction of low-level functionalities. This is
done by decoupling the system that makes decisions about where the traffic is
sent from the system that forwards the traffic to the selected destination. A
comparison between traditional and SDN networks is shown in Fig. 2.5.
Fig. 2.6 shows a simplified logical view of the SDN architecture. The lowest level

is the Infrastructure layer (or data plane), constituted by the physical structure of
the network. It includes software and hardware devices, such as routers, switches,
access points. It has the task of dealing with the various operations on the data,
such as reassembly and fragmentation, as well as forwarding. As the routing
control is removed from the devices, in this layer there are only programmable
switches [20]. These switches are characterized by one or more flow tables, a
secure channel for connection with the controller, and the OpenFlow protocol,

14

CHAPTER 2. ENABLING TECHNOLOGIES FOR 5G NETWORKS

Figure 2.6: Software Defined Networking

defined by Open Network Foundation (ONF), installed inside. As for hardware
switches, when an SDN switch receives a packet, it first checks in the flow tables
by matching its packet header. If it finds a flow entry against this matching, it
follows the policy described in the table entry (for example, forward the packet
through a specific port). Instead, if it does not find any entry, it forwards it to
an external controller, which can add a new entry in the switch table to manage
this type of packet. Each rule in the flow tables specifies an action (dropping,
forwarding, modifying, etc) for a subset of the traffic. Depending on the rules, an
OpenFlow switch can act like a router, switch, firewall, or perform roles like load
balancer, traffic shaper, and so on [19].
The central level is the Control layer, where is located the SDN controller. It

has the task of establishing flow tables and data management rules. It realizes
the abstraction of the network complexity and collects information through the
Southbound APIs; through the latter, the controller manages the network devices
and chooses the optimal path for the data to be transmitted. The SDN controller
allows dynamic management of the network to adapt the flow to the needs of
the moment. It is possible to say that a relevant part of the network intelligence
is located inside this component. It is the task of this level to have a global
and correct view of the network and how it is working in real-time. A logically
centralized programmatic model does not mean that the system is physically
centralized too: scalability and reliability are required and a centralized system is
not the better solution. For these reasons, a physically distributed control plane
can be implemented [19].
The communication between the SDN control layer and the Infrastructure layer

is entrusted to the OpenFlow. Through control messages, the controller can com-

15

CHAPTER 2. ENABLING TECHNOLOGIES FOR 5G NETWORKS

municate with the devices to send, for example, new flow entries for routing and
forwarding tables. There are two types of communications with Southbound APIs
[21]:

− in-band : control messages are sent on the same channel used to transport
data traffic;

− out-of-band : control messages are sent using a different channel than that
used for data.

The out-of-band is easier to design than in-band solution because the controller
is directly connected to each switch. However, this solution requires an extra
physical port on each SDN device. In fact, in this case, OpenFlow defines a
virtual port (reserved) which enables remote entities to interact with the switch.
Note that, in addition to the Southbound APIs, there are also the Northbound

APIs (used for communications between applications and controllers), Eastbound
and Westbound APIs that allow multiple controllers to exchange information
about the data flow in the Data Plane. The functions of these last two interfaces
include import/export data between controllers, algorithms for data consistency
models, and monitoring/notification capabilities (e.g., check if a controller is up or
notify a take over on a set of forwarding devices) [19]. An important issue regard-
ing Eastbound and Westbound APIs is heterogeneity: an SDN controller has to
be able to communicate not only with peer controllers but also with subordinate
controllers (in the case of a hierarchy of controllers).
Some controllers like NOX and POX have centralized architecture, while con-

trollers like FloodLight, Open Network Operating System (ONOS) and Open-
Daylight are distributed. Compared to most controllers, OpenDaylight not only
supports OpenFlow but also other protocols (i.e. OvSDB, SNMP, NetConf) of
southbound interfaces [20].
The highest level, that is the Application layer (also called Application Plane),

has the task of establishing the rules. It also provides various services, such as
firewall, access control, security services for intrusion detection system and intru-
sion prevention system (used to identify unauthorized access), routing and proxy
services, balancing monitoring (i.e. load control and balancing). This level is re-
sponsible for the abstraction of the control management of SDN networks. In fact,
applications can build an abstract view of the network by collecting information
from the SDN controller, via the Northbound API, and can act on the physical
infrastructure by communicating with the control layer via the API. The ability
to use a network abstraction, leaving out the details of the topology, means that

16

CHAPTER 2. ENABLING TECHNOLOGIES FOR 5G NETWORKS

networks become application-customized and applications are network-capability-
aware.
The benefits brought about by the use of SDN technology are both in terms

of CapEx and OpEx thanks to a simplification of the network architecture and
management procedures.
SDN aims to make the control plane programmable, as well as the network

nodes (like routers and switches), by introducing appropriate levels of abstrac-
tion accessible through API control interfaces, as described before [22]. Business
applications and network services perceive the network as a logical entity; this
allows the definition of network services by abstracting from the specificity of the
single device. The decisions regarding switching and flow engineering, first imple-
mented according to a "monolithic" approach by the device itself, are now taken
by the SDN controller, that can create flow entry in such a way as to manage two
different flows in a different way, even if the source and destination are the same.
Application and network functions become independent from the vendors and
from the characteristics of each device. This results in a simplification of network
planning and operational management. Routers and switches become easier to
build and configure, having to perform only forwarding functions and having to
implement only the protocol to communicate with the SDN controller. In this way,
the innovation and automation processes are speeded up, allowing the creation of
new network functions and services, in a simpler and faster way without having
to configure individual devices or modify their firmware. The control plane can
be enriched with new functions more quickly. It is possible to apply policies with
different levels of granularity at the session, user, device and application levels
with a consequent increase in the reliability and security of the network. Further-
more, different applications can take advantage of the same network information
to take more consistent and effective policy decisions. Finally, the integration of
different applications becomes more straightforward: for instance, load balanc-
ing and routing applications can be combined sequentially, with load balancing
decisions having precedence over routing policies [19].
For the sake of completeness, the OpenFlow protocol and the two main SDN

Controllers (ONOS and OpenDaylight) are covered in the Appendix.

2.2.1 SDN-NFV integration

SDN and NFV, given their characteristics, are strongly linked and complemen-
tary, although they were born as completely independent protocols and have
distinct architectures and purposes. As described in [23], SDN aims to achieve a

17

CHAPTER 2. ENABLING TECHNOLOGIES FOR 5G NETWORKS

YOUSAF et al.: NFV AND SDN—KEY TECHNOLOGY ENABLERS FOR 5G NETWORKS 2475

Fig. 6. Different views of chains of command in the Cloud/DC/IT
world (left) and the telecommunication world (right). A joint view is shown
in the middle, offering a way forward. (VMM: virtual machine management,
NC: network controller).

suitable servers and spin up the virtual machines according
to the request. Then it will instruct a network controller
component to provide connectivity between the instantiated
virtual machines.

Contrary on the right side we show the typical telco view.
Telcos main piece of infrastructure is the network which
is controlled by the NC. Operation and business support
systems are responsible for offering a unified central point for
admins and customers to provision and monitor their services
which mainly consist of providing connectivity typically with
service level agreements. In these NFV times, several of
the more complex network elements, which were previously
managed by the network controller are now deployed as virtual
machines. Thus the network controller will instruct the virtual
machine management to instantiate a VNF.

To summarize, in both cases the network controller or the
virtual machine manager are just seen to provide a service
to the other. In order to bring these two worlds together
we need to put them on the same level and integrate them
further. This is shown in the middle and already implemented
in SONATA. The virtual machine manager and the network
controller will become components of a single infrastructure
resource controller. This is already supported by the ONF SDN
architecture [28], when assuming that the infrastructure can
include compute and storage resources beyond the typically
discussed network resources.

In order to fully utilize such a combined service controller,
we need to start developing holistic service descriptions for
Internet applications, that include all its components, sup-
ported deployment topology, hints on how to scale, require-
ments on network path properties, desired network functions,
as well as easy to program interfaces that abstract away
unnecessary complexity from the developer.

As described in the previous section, ONF takes a much
broader view of network systems, and thus the broad definition
of SDN that has developed over time within the ONF can be
translated into many different ways in terms of specifications
and implementations. ETSI NFV, on the other hand, provides a
very precise architectural framework for a very clear purpose,
and that is to manage and orchestrate NFV Infrastructure
resources, typically located in data centers, that are utilized
and consumed by telco related functions and services. In this
context ETSI NFV specifies features and functions it requires
from SDN. They then look into various possibilities of posi-
tioning SDN in the larger scope of NFV. From this perspective,
the ETSI NFV system as per today’s requirements uses the
services of SDN to provide a programmable platform for

Fig. 7. ETSI NFV perspective of interacing with the SDN domain [29].

Fig. 8. Possible options of positioning SDN Resources, SDN controller and
SDN Applications in NFV architectural framework.

establishing links between VNFs and VNF components, and to
support enhanced functions such as policy based management
of traffic between VNFs, or dynamic bandwidth management.
Thus the NFV system realizes a fully programmable end-to-
end network services within the NFV domain.

When integrating the SDN functional components within
the NFV infrastructure, it must take into consideration the
SDN interfaces relevant for its requirements. Figure 7 gives
a high level overview depicting ETSI NFV perspective on
interfacing with the SDN domain [29]. As shown, ETSI NFV
is in the process of specifying the orchestration interface(s) for
interfacing the SDN controller with the NFV MANO system.
These specifications take the interfaces internal to the SDN
domain into account. That is, the Application Control Inter-
face that provides to the VNFs an application programmatic
control of abstracted network resources [29], and the Resource
Control Interface for controlling the NFV Infrastructure net-
work resources (e.g, physical/virtual routers and switches, and
networks connecting VNFs).

In this context, ETSI NFV has published a detailed
report [29] describing the various possible options of SDN
federation in NFV. Figure 8 summarizes these possible options
of integrating SDN application, SDN resources and SDN
controller with different entities within the NFV MANO and

Authorized licensed use limited to: University of Catania. Downloaded on September 01,2020 at 09:27:52 UTC from IEEE Xplore. Restrictions apply.

Figure 2.7: SDN and NFV integration [26]

centrally controlled and programmable network architecture, providing network
abstractions by decoupling network control from the data forwarding plane, while
NFV was born to virtualize network functions, decoupling them from proprietary
hardware, reducing CapEx, OpEx and energy consumption as much as possible.
However, both can benefit from each other:

− the SDN controller, if interpreted as a network function, can be virtualized
through the NFV approach to adapt it more easily to a cloud context. By
becoming a VNF, its dynamic migration to optimal locations becomes much
easier and above all increases its performance, being able to be placed closer
to devices;

− the SDN paradigm, given its ability to control flow tables of network el-
ements and thus being able to manage traffic optimally, helps NFV by
providing programmable network connectivity between VNFs [24].

For these reasons, ETSI NFV has published a report [25] in which various
possible options of integration between SDN and NFV are proposed, trying to
place SDN elements inside NFV architecture. In [26], the Authors proposed some
solution, and the result is summarized in Fig. 2.7.
In particular, there are the following cases:

− the SDN Resources are located in four possible points, because they could be
physical switch or router (Network Hardware), virtual switch or router (Vir-

18

CHAPTER 2. ENABLING TECHNOLOGIES FOR 5G NETWORKS

tual Network), e-switch, software-based SDN enabled switch in a server NIC
(Computing Hardware) or switch/router implemented as VNF (VNF1);

− the SDN Controller is located in five points: merged with the VIM, virtu-
alized as a VNF (VNF3), part of the NFVI, part of the OSS/BSS, or it is
a Physical Network Function (PNF);

− the SDN Applications are located in five points: part of a PNF (Network
Hardware), part of the VIM, virtualised as a VNF (VNF3), part of an EM
(EM3) or part of the OSS/BSS.

For more details, the reader can refer to the technical report in [25].

2.3 Network Slicing

As mentioned in Chapter 1, the 5G network will provide innovation opportunities
for many sectors of common life, industries and communications between humans
and/or devices. Today’s networks use a "one size fits all" approach, which makes
them unsuitable to encounter the performance requirements of future use cases in
terms of latency, scalability, availability and reliability. This implies the need to
provide programmability, flexibility and modularity required by all these possible
use cases. For this purpose, 5G must be able to create multiple logical networks,
each capable of guaranteeing the requirements of a specific use case, on top of a
common network infrastructure. These logical networks are called network slices.
In [27], the Authors define network slices as e2e logical networks running on a
common underlying (physical or virtual) network, mutually isolated, with inde-
pendent control and management, and which can be created on-demand. Such
self-contained networks must be flexible enough to simultaneously accommodate
diverse business-driven use cases from multiple players on common network in-
frastructure.
In Fig. 2.8, there is an example of network slicing, in which it is possible to see

how the same elements of the physical infrastructure can be used as "virtual"
elements of each slice, depending of the requirements of the specific application
layer. Thanks to this structure, each particular type of application will be able to
"see" a network configured in the best way to manage its traffic. For example, a
self-driving car application will need to guarantee low-latency services but without
the need of high throughput. Instead, a streaming service will need both high
throughput and low latency.
A network slice is composed by two types of elements [27]:

19

CHAPTER 2. ENABLING TECHNOLOGIES FOR 5G NETWORKS

Figure 2.8: Network slice

− NFs : functional blocks aimed to provide network capabilities to encounter
the application requirements. Generally, NFs are implemented as software
running on infrastructure resources.

− Infrastructure Resources : heterogeneous hardware (wireless access network,
edge/cloud computing server, satellites, unmanned aerial vehicles, Wi-Fi
access, switches/routers, links) and necessary software for hosting and con-
necting NFs;

Generally, it is possible to consider a network slice architecture as composed of
two blocks [28] [29] (see Fig. 2.9): one for the slice implementation and the other
for the slice management and configuration. The first block is also composed of
a multi-tier architecture with three layers: service layer, network function layer
and infrastructure layer. More in details:

− the service layer interacts with the network business entity providing a
unified vision of the network. The actor of this layer are operators, verticals,
enterprise and third parties;

− the network function layer is in charge of the creation of each network slice
according to service instance requests coming from the upper layer. It is
composed of a set of network functions (characterized by a well-defined
behaviour and interface to exchange data with the others). An e2e net-
work slice instance can be composed by multiple network functions chained
together. The configuration of the network functions is performed using
a set of network operations that allow management of their full life-cycle

20

CHAPTER 2. ENABLING TECHNOLOGIES FOR 5G NETWORKS

IEEE Communications Magazine • May 201796

some network slicing architectures [5, 7] propose
a mix of central and edge cloud computing infra-
structures where resources can be allocated to
either of them, depending on the slice require-
ments.

On the other hand, the RAN comprising of
multiple base stations is expected to span diverse
radio access technologies (RATs) including LTE
and Wi-Fi. Moreover, since the slices are expect-
ed to be created dynamically with their service
requirements not known a priori, the RAN infra-
structure needs to be flexible enough to provide
support for various RATs on the fly, following a
RAN as a service (RaaS) paradigm. This is why
a large number of architectural proposals [4, 6,
7] for network slicing expect the deployment of
generic software-defined base stations composed
of centralized baseband processing units and
remote radio heads as the logical next step.

Infrastructure Virtualization: The ability to vir-
tualize the underlying infrastructure and provide
isolation among services is essential for network
slicing. This not only means virtualization and full
isolation of the underlying resources (processing,
storage, network, and radio) among slices but
also the ability to support different types of con-
trol operations over the resources in a virtualized
manner based on the service requirements. This
characteristic of providing a virtualized end-to-end
environment that can be potentially opened up
and fully controlled by third parties is one of the
key features that separates network slicing from
the already existing network sharing solutions [4,
5].

Considering the virtualization of the CN infra-
structure, research done in the context of cloud
computing can be leveraged. Specifically, technol-
ogies like kernel-based virtual machines (KVMs)
and Linux containers (LXC) can provide isolation
guarantees in terms of processing, storage, and
network resources at the operating system (OS)
or process level. These isolation guarantees com-
bined with the capabilities offered by platforms
like OpenStack for the pooling of resources can
greatly simplify the on-the-fly creation of virtual-
ized CNs. Due to the high maturity level of the
aforementioned technologies, concrete prototype
implementations of slicing frameworks are already
available, enabling the deployment of virtual core
network functions — virtual mobility management

entity (MME), virtual service gateway (SGW), and
so on — over cloud infrastructures (e.g., [7]).

On the other hand, virtualization approach-
es for the RAN are at an early stage. Applying
VM and container-based solutions in this domain
does not fully address the problem as they do not
deal with the additional dimension of virtualizing
and isolating radio resources (spectrum and radio
hardware). Existing RAN virtualization approaches
that account for this dimension fall into one of
two categories:
• Providing a dedicated chunk of spectrum for

each virtual base station (slice) to deploy a
full virtual network stack on top of it [7]

• Dynamically sharing the spectrum between
different virtual base station instances (slices)
by employing common underlying physical
and lower medium access control (MAC)
layers [8]
The dedicated spectrum approach is easier to

implement, especially with dedicated radio hard-
ware per slice, since isolation of radio resources
is guaranteed through the static fragmentation of
the spectrum, but it can result in inefficient use
of radio resources. The other approach of fine-
grained and dynamic spectrum sharing has the
opposite problem of making isolation between
slices challenging.

network functIon lAyer
Scope: The network function layer encapsu-

lates all the operations that are related to the
configuration and life cycle management of
the network functions that, after being optimal-
ly placed over the (virtual) infrastructure and
chained together, offer an end to end service
that meets certain constraints and requirements
described in the service design of the network
slice.

Existing work: The research interest in this
layer mainly revolves around the technologies
that can act as enablers for the deployment and
management of network functions, as well as
around issues regarding the granularity and type
of the deployed functions.

Enabling Technologies: There already seems
to be a consensus among researchers and the
industry about the role of SDN and NFV [5–7,
9]. NFV is an ideal technology for the life cycle
management and orchestration of the network
functions, while SDN can inherently act as an
enabler of NFV by allowing the configuration and
control of the routing and forwarding planes of
the underlying infrastructure through standardized
protocols (e.g., Openflow).

Granularity of Network Functions: One par-
ticularly interesting aspect of this layer that is
thoroughly discussed in various relevant works
is the granularity (scope) of the available virtu-
al network functions [5, 10]. On one end, we
have coarse grained functions, where each one
is responsible for a large portion of the network’s
operations (e.g., individual functions for LTE eNo-
deBs, MMEs, S-GWs). On the other end, we have
functions with very fine granularity, where each
of the coarse-grained functions mentioned above
is divided further into many sub-functions. For
example, in [11] the LTE Enhanced Packet Core
(EPC) is broken down into functions responsible
for mobility and forwarding traffic (MME, S-GW,

Figure 2. Generic framework representing various 5G architectural proposals.
We review and appraise the 5G network slicing literature with respect to
this framework.

Infrastructure layer

Operators Verticals Enterprise

Service layer

Third party

Network function layer

Control plane
functions

Radio
access

network

(Edge)
cloud

Core
network Control Allocation

User plane
functions Configuration Life cycle

M
apping

M
anagem

ent and orchestration
(M

ANO
)

Authorized licensed use limited to: University of Catania. Downloaded on August 24,2020 at 17:55:36 UTC from IEEE Xplore. Restrictions apply.

Figure 2.9: Network slice architecture [29]

(from their placement when a slice is created to their de-allocation when
the function provided is no longer needed). The same network function can
be simultaneously shared by different slices: this comports an increment in
resource usage efficiency, but an increase in the complexity of operations
management;

− the infrastructure layer represents the actual physical network topology
(radio access network, transport network and core network) upon which
every network slice is multiplexed and it provides the physical network
resources to host the several network functions composing each slice.

The network slice controller is a network orchestrator, which interfaces with the
various functionalities performed by each layer to manage each slice request. It
enables an efficient and flexible slice creation that can be reconfigured during its
life-cycle.
The characteristic of the slices of being mutually isolated from each other guar-

antees not only that there is maximum security of communications within the
slice, but also the possibility of modifying the operation of one slice without
impacting that of the others. This means, for example, that an operator can
drastically change an offered service to the customers by acting only on that in
a targeted way. In each layer described before, isolation of slice is managed in
three different ways: language-based isolation (at the network function layer and
service layer), physical-based isolation (applied at the infrastructure layer) and
virtual machine-based isolation (performed at the resource layer and network slice
instance layer).
A key role in the creation of network slices is played by SDN and NFV, and

21

CHAPTER 2. ENABLING TECHNOLOGIES FOR 5G NETWORKS

IEEE Communications Magazine • May 201786

tional blocks expose and that tenant’s RO con-
sumes. Indeed, we assume that VIMs and WIMs
support multi-tenancy. We also assume that WIMs
can communicate with each other according to
predefined business agreements. In this respect,
the interaction between a WIM and an RO might
be achieved indirectly through another WIM.

As Fig. 6 suggests, the resource management
must be performed at two levels: at the infra-
structure level, where a slice-agnostic VIM/WIM
provides the subscribed tenants with (virtualized)
infrastructure resources, and at the tenant level,
where the RO delivers its assigned resources to
the corresponding slices. Both the VIM(s)/WIM(s)
and the RO have to collect accurate resource
usage information (each at its domain) and in turn
to forecast resource availability in relatively short
timescales to satisfy tenant and slice demands,
respectively.

Please note that, with the exception of hard-
ware resources, the functional blocks (e.g., VIM,
RO, NSO, SDN controllers) are modeled as inde-
pendent software components. The need for
separate access, configuration, and management
suggests this modeling, wherein the software rela-
tionships are enabled with the help of the appli-
cation programming interfaces (APIs) that each
component provides.

To preserve security and privacy isolation
among slices, it is required to apply the compart-
mentalization principle at each virtualization level.
In addition, each functional block and manage-
able resource (e.g. VNF) within a given slice must
have its own security mechanisms, ensuring oper-
ation within expected parameters and preventing
access to unauthorized entities. This is intended to

guarantee that faults or attacks occurring in one
slice are confined to that slice, preventing their
propagation across slice boundaries.

Additionally, although recursion has not been
addressed in this example, it is readily applica-
ble to this scenario by simply assuming that some
of the slice’s users are tenants that in turn can
deploy and operate their own slices.

chAllenges And reseArch dIrectIons
In this section, we identify the main challenges
and future research arising from implementing
slicing in 5G systems.

performAnce Issues In A shAred InfrAstructure

When network slices are deployed over a com-
mon underlying substrate, the fulfillment of the
performance isolation requirement is not an easy
task. If a tenant’s RO only assigns dedicated
resources to network slices, their required per-
formance levels are always met at the cost of
preventing slices sharing resources. This leads to
overprovisioning, an undesired situation bearing
in mind that the tenant has a finite set of assigned
resources. One way to resolve this issue is to per-
mit resource sharing (see, e.g., [13]), although this
means slices are not yet completely decoupled
in terms of performance. Thus, it is required to
design adequate resource management mecha-
nisms that enable resource sharing among slices
when necessary without violating their required
performance levels. To accomplish the sharing
issue, the RO could use policies and strategies
similar to those used in VIMs (e.g., the OpenStack
Congress module or Enhanced Platform Aware-
ness attributes).

Figure 6. Network slicing deployment in a common framework, integrating both SDN and NFV.

IC: Infrastructure SDN controller TC: Tenant SDN controller

NFVI-
PoP 2

NFVI-
PoP 1

VMVMVMVM

VMVMVMVM

VMVMVMVM

VMVMVMVM

NetworkingComputingStorage

VNFs instantiated
in blue VMs

VNFs instantiated
in orange VMs

Forwarding
instructions

vRouter/
vSwitch

Forwarding
instructions

vRouter/
vSwitch

VNF

TC(VNF)TC(VNF)

Web portals
and APIs for
end users

O&M

Web portals
and APIs for
end users

O&M End users for slice 1End users for slice 1

VNF VNF

VIMVIM

ICIC

Virtualization layerVirtualization layer

Tenant 2Tenant 1

Slice 1Slice 1

VNF

OSSOSS

NSO NSO

RORO

WIM

InP3InP2InP1 InP1

WIM

WAN IC

Forwarding instructions

WAN IC

Networking StorageComputing

Authorized licensed use limited to: University of Catania. Downloaded on August 24,2020 at 17:59:33 UTC from IEEE Xplore. Restrictions apply.

Figure 2.10: Network slicing deployment integrating SDN and NFV [27]

techniques like edge computing, cloud computing that, combined appropriately,
help the network to guarantee application requirements.
Fig. 2.10 shows an example of deployment of a network slice [27], considering the

integration of NFV and SDN paradigms. There are three Infrastructure Providers
(InP), that own and manage physical network and its constituent resource. In this
case, InP1 provides compute and networking resources, while InP2 and InP3 make
available SDN-based Wide Area Network (WAN) as transport network. Inside the
InP1 block there are the following elements:

− VIM : it is in charge of controlling and managing the Network Functions
Virtualization Infrastructure, a set of resources used to host and connect
VNFs;

− Infrastructure SDN controller (IC): it manages the networking resources,
and is controlled by the VIM. It may modify the infrastructure behaviour
on demand according to VIM specifications.

About InP2 and InP3, also in these cases there are two blocks:

− WAN Infrastructure Manager (WIM): it plans, develops, and manages the
WAN and overall network infrastructure to deliver the required connectivity,
availability, and performance;

− WAN IC : with the same role of the previous IC, but in the WAN transport
network.

22

CHAPTER 2. ENABLING TECHNOLOGIES FOR 5G NETWORKS

At the top level there are the tenants. This entity leases virtual resources from
InP in the form of a virtual network that uses to realize, manage, and provide
network services to its users. A tenant can realize one or more network slices using
the underlying resources. Inside the tenant, there is one Resource Orchestrator
(RO) that communicates with VIM/WIM and orchestrates the resources in an
efficient way to satisfy the required performance of each slice. To do this, the RO
interacts with the Network Service Orchestrator (NSO). This component has the
role to perform the life cycle management of each network slice. This structure
helps the RO to maintain isolation among slices.
Finally, there are the OSS and the Tenant SDN Controller (TC). The OSS is an

element of the general Network Management System and represents a collection
of systems and management applications used by each NSO to provide services.
The TC manages the VNF life cycle and the composition of the VNF using the
capability of virtual switches/routers (in the southbound interface), based on the
instruction received by the OSS in the northbound interface.

2.4 Cloud Technology

2.4.1 Cloud vs Edge

The technological evolution of devices connected to the network, together with
their use in applications with very specific requirements, has created the need for
guarantee very stringent characteristics as regards the interaction and connection
between where the data are produced and where they are processed. The evo-
lution of modern IT systems has led to the deployment of the current reference
architecture for Cloud environments. The philosophy behind the Cloud establishes
that the resources needed by the users, from simple data storage capacity to the
provision of entire operating systems, must be on the network without knowing
how they are organized or where they physically reside. The National Institute
of Standards and Technology (NIST) has defined Cloud Computing as a model
for enabling ubiquitous, convenient, on-demand network access to a shared pool
of configurable computing resources that can be rapidly provisioned and released
with minimal management effort or service provider interaction [30].
The main architecture of Cloud systems derives from a general taxonomy, drawn

up by NIST, which lists all the interacting parts of the model completely. Al-
though it is not the only one [31], it comprehensively classifies all the main types
of Cloud. The reference framework that presents a high-level architecture that
serves as a model for developing cloud platforms is shown in Fig. 2.11.

23

CHAPTER 2. ENABLING TECHNOLOGIES FOR 5G NETWORKS

Figure 2.11: Cloud Architecture Model [30]

As shown in the figure, in a cloud environment it is possible to consider five
actors [30] [32]:

− Cloud Consumer : it is the principal stakeholder for the cloud computing
service. It could be either a person or an organization that can browse a
list of all the services available in a Cloud Provider and, through the use of
Service Level Agreements, specify the requirements (for example, in terms
of quality of service and security) that have to be met by this one, during the
use of a particular service. Each Cloud Consumer is different from another,
based on the type of required service. This means that the interactions
between Cloud Provider and Cloud Consumers may differ from each other;

− Cloud Broker : it deals with the relationship between the Cloud Provider
and Cloud Consumer, negotiating the agreement and managing the perfor-
mance and the delivery of services to Consumer. In this way, the Cloud
Consumer may request cloud services from the Broker, avoiding to contact
the Provider directly. In particular, the Cloud Broker can provide services in
three different ways: 1) service intermediation, when the Broker enhances a
service by improving specific capabilities in term of managing access, perfor-
mance reporting, etc; 2) service aggregation, in which the Broker combines
and integrates multiple services into one or more new service; 3) service
arbitrage, when a Broker provides a flexible composition of service chosen
possibly from multiple providers selected statically or dynamically based on
technical as well as cost aspects;

24

CHAPTER 2. ENABLING TECHNOLOGIES FOR 5G NETWORKS

− Cloud Carrier : it provides connectivity and transport of services between
the Provider and the Customers;

− Cloud Auditor : it can perform an independent examination of services of-
fered by the Provider, to verify conformance to standards in terms of secu-
rity controls, privacy impact, performance, etc;

− Cloud Provider : it acquires and manages the computing infrastructure needed
to provide services, choosing the necessary policies to deliver these services
to the Consumer through the network. Its main activities regard the fol-
lowing areas: Cloud Orchestration, Cloud Service Management, Security
and Privacy. More in detail, about the Cloud Orchestration, it is composed
by three layers: 1) Physical Resource Layer, that includes the computing
resources (hardware resources, network resources, storage components and
other physical computing infrastructure elements; 2) Resource Abstraction
and Control Layer, containing the system components needed to provide
and manage access to the Physical Resource Layer (hypervisor, virtual ma-
chines, etc); 3) Service Layer, where the interfaces to allow to Customers
to access the computing services are defined.

About the Service Layer, it is possible to define three different types of services
provisioning [33]:

− Infrastructure as a Service (IaaS): it provides virtualized computing re-
sources over the Internet. Instead of having to purchase the hardware out-
right, users can purchase IaaS based on consumption, similar to electricity or
other utility billing. They are responsible for managing applications, data,
runtime, middleware, and OS. What users gain with IaaS is infrastructure
on top of which they can install any required platform;

− Platform as a Service (PaaS): it provides a framework in which the user
can build upon to develop or customize applications. PaaS makes the de-
velopment, testing, and deployment of applications quick, simple, and cost-
effective;

− Software as a Service (SaaS): the Provider deploys, configures, maintains
and updates the software applications on cloud infrastructure so that the
services are provisioned at the expected service levels to Cloud Consumers
through a web browser.

25

CHAPTER 2. ENABLING TECHNOLOGIES FOR 5G NETWORKS

Application

Data

Run Time

Middleware

OS

Virtualization

Servers

Storage

Networking

USER

Application

Data

Run Time

Middleware

OS

Virtualization

Servers

Storage

Networking

Application

Data

Run Time

Middleware

OS

Virtualization

Servers

Storage

Networking

Application

Data

Run Time

Middleware

OS

Virtualization

Servers

Storage

Networking

Cloud Provider

In
fr

as
tr

u
ct

u
re

as
a

Se
rv

ic
e

U
SE

R
 M

A
N

A
G

ED

P
la

tf
o

rm
 a

s
a

Se
rv

ic
e

So
ft

w
ar

e
as

a
Se

rv
ic

e

Figure 2.12: Differences between a User Managed, IaaS, PaaS and SaaS deploy-
ment

In Fig. 2.12, a comparison between the above types of described service pro-
visioning and the case in which the user deploys the application without cloud
technology, is shown.
The increasing use of Cloud Computing is also to be associated with the con-

tinuous development of the IoT, of which the Cloud is the fundamental enabling
technology because it allows the execution of tasks otherwise impossible to com-
plete with the use of only the available resources on devices (both in human-held
smart devices and sensors/actuators).
Moving part of the computing to the Cloud is a fundamental application choice

to mitigate the negative effects of resource scarcity. However, IoT means also
continuous and fast real-time processing that concerns, in some cases, big data,
with very low response times requirements. This means that some limits of the
Cloud are highlighted [34]:

− latency: novel applications in the IoT scenario have high real-time require-
ments. Sending data to the Cloud and receiving a response increases the
system latency; furthermore, the Cloud acts on extended WAN that could
contain bottlenecks or interruptions along the path that connects the user
to the Cloud platform, due to both malfunctions and the presence of shared
access resources between multiple users. All these aspects cause an incre-
ment of the system latency;

26

CHAPTER 2. ENABLING TECHNOLOGIES FOR 5G NETWORKS

− bandwidth: some type of applications can produce huge amounts of data,
that have to be transmitted through the network, causing great pressure on
network bandwidth. Just as an example, Boeing 787 generates more than
5 GB/s of data, but the bandwidth between an aircraft and satellites is
insufficient to support real-time transmission;

− availability: more services are deployed on the Cloud, and users want to be
free to use it at any time of day. For example, let image if an application
like Siri or Google Maps is unavailable for a short time, the Quality of
Experience (QoE) of the users will decrease. Therefore, it is a big challenge
for Cloud Providers to keep the 24× 7 promise;

− energy: data centers consume a lot of energy and with the increasing amount
of computation processes and transmission, energy consumption will be-
come a relevant problem;

− security and privacy: data, having to travel to remote clouds, can be subject
to interception along the way. Being able to guarantee security and privacy
all along the path can represent a huge challenge for the Cloud Provider.
In applications such as video surveillance, this is a major problem that can
discourage the end-user from using a given application. The application of
the EU General Data Protection Regulation (GDPR) has introduced rules
and responsibilities on data processing that must be respected by the Cloud
Provider;

− mobility support: the Cloud is not suitable for mobile users who often
change access points to the network, with continuous handover to switch
from one base station to another, which involves managing the transfer of
big data that must be as accurate as possible, so as not to have data loss
[35].

These described limits lead to the impossibility of using some applications that
require stringent requirements of latency and available bandwidth on cloud plat-
forms. An example is augmented reality which, through sensors, microphones and
video cameras, requires a continuous sending of a flow of information to a cen-
tral server with unlimited resources, which, after having processed and enriched
them with further details, sends answers that allow the reconstruction of entire
real environments in the user’s device. Also telesurgery, assistive applications for
users with disabilities, autonomous driving in a vehicular network, are examples
of applications that require very low latency and high computational resource

27

CHAPTER 2. ENABLING TECHNOLOGIES FOR 5G NETWORKS

Cloud Computing
Level

Edge Computing
Level

Device level

Storage Networking Computing

Storage Networking Computing

INTERNET

Figure 2.13: Cloud Computing and Edge Computing Architecture

available. In [36] the Authors show, with numerical results, how an extension of
the Cloud towards the data production point, and therefore towards the users,
is a necessary and effective solution, which allows to significantly lower network
latency, increasing not only the Quality of Service (QoS) but also the QoE of the
end-users. This extension to the user is called Edge Computing.
Edge Computing refers to a wide range of techniques designed to move comput-

ing, processing and storage resources out of the remote cloud (public or private)
and closer to the user, decreasing latency and reducing the traffic load on the
core network. The edge of the network is usually located just one hop away from
end devices: for this reason, it is able to offer ideal placement for low-latency of-
fload infrastructure to support emerging applications such as augmented reality,
connected and autonomous driving, smart manufacturing, and healthcare. The
Edge Computing architecture is able to reduce the amount of data to be sent to
the Cloud as the data are processed by the device itself (smart device) or by edge
server, instead of being transmitted to the data center; the less ’time-sensitive’
data can instead be transmitted to the cloud infrastructure or to the company’s
data center, to allow more complex processing, such as big data analysis, training
activities to refine the learned model of machine learning (ML), long-term storage
and historical data analysis.
Fig. 2.13 shows the three-level architecture generated by the introduction of

Edge Computing.
It is important to underline that, in some cases, the same devices constituting

28

CHAPTER 2. ENABLING TECHNOLOGIES FOR 5G NETWORKS

the Device Level can provide edge computing functionality. For example, in a
vehicular scenario with vehicles equipped with sensors for the collection of in-
formation from the surrounding environment, a vehicle that is in difficulty in
processing all its data, could ask for help from a nearby vehicle, which providing
its available computing resources, behaves like an edge computing server. The
same thing can happen in the use of UAVs for particular application scenarios. If
a UAV is too loaded, it could exploit the resources of a nearby UAV. The ability
for devices to send all or part of the computational load to other nearby devices
or servers at the edge, gives rise to the need to implement appropriate offloading
policies. Some solutions about this aspect have been proposed in the UAV and
vehicular contexts, and will be presented in Chapters 3 and 4.

2.4.2 Multi-Access Edge Computing

In December 2014, ETSI initiated the standardization of Mobile Edge Computing
to promote and accelerate the advancement of Edge Computing in mobile net-
works by launching the MEC Industry Specification Group (ISG). Since Septem-
ber 2016, the ETSI ISG has removed "Mobile" from the name and renamed
Multi-access Edge Computing (MEC), with the aim of expanding its applicability
to heterogeneous networks, which not only concern mobile but also WiFi and
fixed access technologies [37].
ETSI ISG MEC aims to standardize a framework to run third-party applica-

tions at the edge of the network, providing a dynamic environment based on cloud
technology. Furthermore, by deploying applications at the edge level, it is possible
to also benefit from services provided locally such as knowledge of the network
access point and information on the radio network. Based on Edge computing,
the MEC can be thought of as a Cloud Server, installed near mobile devices, to
carry out specific operations that are not possible to complete with traditional
Cloud infrastructures. The technological development of the components installed
on the network equipment has allowed a considerable expansion of the number
and type of services that can be installed at the Edge. Furthermore, mobile op-
erators are able to open their infrastructure to third parties, such as developers
who want designing their applications aware of interfacing with an environment
characterized by low latency. For their part, the providers have to supply evolved
RAN devices, in order to increasingly enrich the functionality of the services.
The introduction of MEC is connected to the natural evolution of the mobile

base stations toward 5G systems, enabling software-based mobile edge applica-
tions and cloud computing services at the network edge. The MEC platform

29

CHAPTER 2. ENABLING TECHNOLOGIES FOR 5G NETWORKS

ETSI

ETSI GS MEC 003 V2.1.1 (2019-01) 8

5 Multi-access Edge Computing framework
Multi-access Edge Computing enables the implementation of MEC applications as software-only entities that run on top
of a virtualization infrastructure, which is located in or close to the network edge. The Multi-access Edge Computing
framework shows the general entities involved. These can be grouped into system level, host level and network level
entities.

Figure 5-1: Multi-access Edge Computing framework

Figure 5-1 illustrates the framework for Multi-access Edge Computing consisting of the following entities:

• MEC host, including the following:

- MEC platform;

- MEC applications;

- virtualization infrastructure;

• MEC system level management;

• MEC host level management;

• external related entities, i.e. network level entities.

Figure 2.14: ETSI MEC framework [38]

can provide cloud storage, caching, computing, proximity benefits of resource
provisioning, context and location awareness, agility and speed to the mobile
applications [37].
The enrichment of network functionalities is transparent to the end-user, who

benefits from it seeing an increase in QoS and QoE. In particular, thanks to
MEC technology, there is the possibility to offer a programmable ecosystem that
changes the user experience. The ability to customize the offered services based
on the context and network conditions allows applications to self-configure if and
when needed. The applications become software-only entities that run on top of
virtualized infrastructure.
In Fig. 2.14 there is the MEC framework proposed by ETSI, in which it is

possible to see how all the entities and functionalities of MEC are grouped in
three levels:

− MEC system Level : it provides an abstraction of the underline MEC envi-
ronment;

− MEC host Level : it is constituted by the core components of the MEC
framework;

− Network Level : it aims at providing the network resources to the top levels.

30

CHAPTER 2. ENABLING TECHNOLOGIES FOR 5G NETWORKS

ETSI

ETSI GS MEC 003 V2.1.1 (2019-01) 9

6 Reference architecture

6.1 Generic reference architecture
The reference architecture shows the functional elements that comprise the multi-access edge system and the reference
points between them.

Figure 6-1 depicts the generic multi-access edge system reference architecture. There are three groups of reference
points defined between the system entities:

• reference points regarding the MEC platform functionality (Mp);

• management reference points (Mm); and

• reference points connecting to external entities (Mx).

Figure 6-1: Multi-access edge system reference architecture

The multi-access edge system consists of the MEC hosts and the MEC management necessary to run MEC applications
within an operator network or a subset of an operator network.

The MEC host is an entity that contains a MEC platform and a virtualization infrastructure which provides compute,
storage, and network resources, for the purpose of running MEC applications. The MEC host is further described in
clause 7.1.1.

The MEC platform is the collection of essential functionality required to run MEC applications on a particular
virtualization infrastructure and enable them to provide and consume MEC services. The MEC platform can also
provide services. The MEC platform is further described in clause 7.1.2.

MEC applications are instantiated on the virtualization infrastructure of the MEC host based on configuration or
requests validated by the MEC management. MEC applications are further described in clause 7.1.3.

Figure 2.15: ETSI MEC reference architecture [38]

Let see that, following the definition of "multi-access", in this level different
types of networks are present.

The MEC reference architecture is shown in Fig. 2.15, in which more details
about the first two levels described before are presented [38]. In the figure also
the standardized interfaces (or reference points) are highlighted: the interface is
named Mp if it regards MEC platform functionalities, Mx if it allows communi-
cation with external entities, otherwise Mm if it is used to exchange management
information.
About the MEC system level, it is composed by the Multi-access edge orches-

trator (MEO) and the OSS.
The first one is responsible for: 1) maintaining an overall view of the MEC

system in terms of MEC hosts, topology, MEC services and available resources;
2) managing the entire life cycle of the applications, starting from the on-bording
of application packages (checking the integrity and authenticity of the packages,
validating application rules and requirements), then preparing the virtualization
infrastructure manager of the underline level (using the Mm4 interface) to handle
the applications, and selecting the MEC host(s) in which run the application
(based on constraints like latency, available resources and services), triggering
application instantiation and relocation (if needed) until its termination.
The OSS, as described before, is an operator’s block that receives requests about

the instantiation or termination of an application through the Customer Facing

31

CHAPTER 2. ENABLING TECHNOLOGIES FOR 5G NETWORKS

Service (CFS) portal and from device applications, decides if accept or not these
requests and, if so, forwards these to the MEO using the Mm1 interface.
In the MEC host layer there are the MEC host, and the MEC host level man-

agement that comprises the Virtualization Infrastructure Manager and the MEC
platform manager (MEPM). More in deep, the MEC host is composed by:

− MEC platform: it offers an environment where the MEC applications can
discover, use and offer MEC services, even if these services are available in
other platforms (through Mp3 reference point);

− Virtualization infrastructure: it provides compute, storage and network re-
sources for MEC applications and include a data plane that executes the
traffic rules received by the MEC platform;

− MEC applications : they run as VM on top of the virtualized infrastructure.
They interact with the MEC platform through the Mp1 reference point)
to offer or use services already deployed. Each application is characterized
by particular requirements as latency, required service and bandwidth: as
said before, the MEO of the top level validates these requirements based
on the available resources before to start the instantiation of the service in
a selected MEC host. Each MEC application can also provide services to
other MEC applications.

The MEPM manages the life cycle of applications and informs the Multi-access
edge orchestrator about particular events of these applications. Moreover, it man-
ages the application rule and requirements and provides management functions
to the MEC platform. It uses the Mm5 interface to communicate with MEC
Platform inside the MEC host, the MM2 to exchange information with the OSS
about fault, configurations and performance management purposes and the MM3
to communicate with MEO.
About the Virtualization Infrastructure Manager, it allocates and manages the

virtualized resources to run a software image, and collects and reports perfor-
mance and fault information about the applications that use these resources.
This information is communicated to the MEPM through the Mm6 interface. If
supported, this component performs application relocation and rapid provisioning
of new applications. When needed, it manages the release of the used resources.
In the MEC context just described, NFV technology plays an important role

in the management of virtualized MEC applications within the MEC host, con-
sidering also that these applications exploit the virtualized resources of the Vir-
tualization Infrastructure. NFV introduces the possibility to increase flexibility,

32

CHAPTER 2. ENABLING TECHNOLOGIES FOR 5G NETWORKS

ETSI

ETSI GS MEC 003 V2.1.1 (2019-01) 11

Figure 6-2: Multi-access edge system reference architecture variant for MEC in NFV

7 Functional elements and reference points

7.1 Functional elements

7.1.1 MEC host

The MEC host is an entity that contains the MEC platform and a virtualization infrastructure which provides compute,
storage, and network resources for the MEC applications. The virtualization infrastructure includes a data plane that
executes the traffic rules received by the MEC platform, and routes the traffic among applications, services, DNS
server/proxy, 3GPP network, other access networks, local networks and external networks.

7.1.2 MEC platform

The MEC platform is responsible for the following functions:

• offering an environment where the MEC applications can discover, advertise, consume and offer MEC
services (see clause 8), including, when supported, MEC services available via other platforms (that may be in
the same or a different MEC system);

Figure 2.16: ETSI MEC reference architecture in NFV [38]

scalability and to migrate the service, especially in contexts where the user who
asks for a service is moving from a MEC server to another. For this reasons,
ETSI in [38] also provides a MEC architecture variant (2.16). Thanks to this ar-
chitecture, MEC applications and NFV functions could be deployed on top of the
same virtualized infrastructure. This integration between MEC and NFV adds
the possibility to reuse ETSI NFV MANO components to fulfil part of the MEC
management and orchestration. NFV dynamic aspects that can benefit MEC ser-
vices include: 1) portability, because independent blocks of all services can be
easily moved to another cloud environment; 2) federation support, that allows
deploying portable functions over inter-operable geographically distributed vir-
tual networks; 3) slicing through partitioning of virtual network resources for
particular applications; 4) sharing a pool of configurable resources for on-demand
access [37].
In a comparison between Fig. 2.15 and Fig. 2.16, the following differences can

be highlighted [39]:

− MEC platform is deployed as a VNF;

− MEC applications appear as VNFs towards the ETSI NFV MANO compo-
nents. This allows re-use of ETSI NFV MANO functionality. It is, however,

33

CHAPTER 2. ENABLING TECHNOLOGIES FOR 5G NETWORKS

expected that ETSI MEC might not use the full set of MANO functionality,
and requires certain additional functionalities;

− the Virtualization infrastructure is deployed as an NFVI and is managed
by a VIM as defined by ETSI GS NFV 002 [12];

− the MEPM is replaced by a MEC platform manager-NFV (MEPM-V) that
delegates the VNF lifecycle management to one or more VNF managers
(VNFM);

− the MEO is replaced by aMEC application orchestrator (MEAO) that relies
on the NFV orchestrator (NFVO) for resource and MEC application VNFs
orchestration.

The reference points Mv1, Mv2 and Mv3 are introduced between elements of
the ETSI MEC architecture and the ETSI NFV architecture to support the man-
agement of MEC application VNFs.

34

Chapter 3

Management and orchestration of
network slices

In recent years, the IoT has transformed objects of everyday life into commu-
nicating devices. 5G networks design and develop new management capabilities
to meet the stringent requirements of future use cases. In a scenario in which
there will be an enormous number of antennas and a lot of new functionalities,
the management and orchestration of resources play a central role. Placing re-
sources on the edge of the network, extending the cloud computing paradigm,
is useful to deal with the eminent growth of connected devices [40]. Due to the
limited availability in the current deployments, computing power, storage and
memory capacity are moved closer to access nodes, sensors and actuators. All
this is possible only with a proper resource allocation performed by the Network
Orchestrator, but it is not an easy task.
Techniques of orchestration of the resources inside the data center are for a

long time studied and developed, reaching by now the optimal maturity. The
same cannot be said regarding the implementations of such techniques in the
edge nodes: the limited resources availability but the need to ensure a lot of
requirements and constraints (like ultra-low latency, delay, bandwidth, energy
efficiency and so on) complicate the application of the same data center techniques
in an edge scenario. In a smart city scenario, resources should be distributed
within the network ensuring that they are allocated and instantiated close to the
end device that is requesting an application.
This chapter addresses the problem of management and orchestration of network

slices. In particular, in Section 3.1 the handover management in the RAN portion
of a network slice is described. In this context, 5GHander was realized. It is a
NS that, with the aim of detecting handovers performed by the end-users or by

35

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

any device connected to the mobile network, can help the Network Orchestrator
to implement resource allocation technique in a preventive way, or block the
handover if there is a low availability of resources and the handover is not really
necessary, for example if the user measures a little higher receiving power from a
cell rather than the one in which he is currently located. In Section 3.2 the use of
UAV to extend a network slice is proposed. This solution will provide computing
and network facilities to IoT devices in area monitoring applications.

3.1 5G-Hander for handover detection

For 5G networks, as in 4G communications systems, one of the most challeng-
ing problems will be managing handovers and their consequences in the status
of the network. In fact, each handover event related to a mobile device causes a
redirection of both uplink and downlink traffic flows generated by and directed
to that device. In a softwarized network with a centralized control, knowing that
handover of a given flow is upcoming will allow the Network Orchestrator to
reorganize resources or deciding the allocation of new resources in terms of com-
puting, networking and storage. Alternatively, the Network Orchestrator, when
informed about an incoming handover, can split flows on different parallel paths
with different throughput performance or, if necessary and possible, delaying it by
intercepting messages between two base stations. Independently of the nature of
the RAN, which can be either Distributed (D-RAN) or Centralized (C-RAN), de-
tecting handover events without the cooperation of the involved devices will allow
Telco Operators to use legacy and vendor-independent self-consistent devices.
To this purpose, in the paper [41], accepted for publication on a Special Issue

on Internet Technology Letters (Wiley), a virtual NS called 5G-Hander (5G Han-
dover Detector) was presented. It is aimed at capturing autonomously, i.e. with
no cooperation with other physical or virtual devices, information relating to the
handover events in the RAN or Backhaul Network where it is running.
The system considered as reference is a 5G transport network consisting of

integrated fixed and wireless network infrastructures, as specified by ETSI-NFV-
Group [42]. The wireless part of the framework is constituted by the mobile core
network and a set of RANs deployed on the same geographic zone. On the other
hand, the fixed portion of the network comprises core, metro and fixed access
domains. While the fixed core network and the metro network are usually realized
with optical transport, the access network uses a heterogeneous set of transport
technologies.

36

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

Both kinds of handover are supported, that is, X2 [43] and S1 [44]. The X2
handover occurs when the involved eNodeBs (eNB) are connected to the same
Mobility Management Entity (MME) in the Core Network; the S1 handover oc-
curs when the eNBs are connected to either different MMEs, or to the same MME
but have not established the X2 interface.
Fig. 3.1 and Fig. 3.2 depict two relevant applications scenarios: a D-RAN, made

of a set of eNBs connected to each other and to the mobile core network through a
Backhaul Network, and a scenario constituted by a portion of C-RAN coexistent
with a D-RAN. While in a D-RAN the same eNB contains both a Remote Radio
Head (RRH) and a BaseBand Unit (BBU), in a C-RAN, the antenna sites of
the RRH elements are simplified given that base-band processing is performed
by virtualized instances running on servers centrally placed on a data center in
the C-RAN cloud. This allows C-RANs to achieve an easier installation of small
RRHs, also allowing reducing the overall base-band processing resources due to
the statistical gain of centralization.
In the first scenario shown in Fig. 3.1, there are three eNBs managed by the

MME1, while the fourth eNB is managed by the MME2. For this reason, eNB1,
eNB2 and eNB3 communicate to each other through their X2 interfaces, while
communicate with the eNB4 through their S1 interface.
The second scenario shown in Fig. 3.2, is similar to the previous one, but with the

first two base stations virtualized as RRH1/BBU1 and RRH2/BBU2. Therefore,
the first two base stations communicate to each other through X2, and with
eNB4 through S1. Let us notice that, although not in Fig. 3.2, this scenario also
captures the case of Coordinated MultiPoint (CoMP) transmission from more
than one RRH to the same BBU.
The 5G-Hander proposed in the paper is highlighted in Fig. 3.1 and Fig. 3.2 for

both the above scenarios. It is realized as a virtual NS constituted by the chain
of two VNFs, the Handover Sniffer and a Broker. We assume that the networks
inside the C-RAN data center and the Backhaul Network are SDN compliant.
In this way traffic flows can be routed programmatically in such a way that all
traffic carrying X2 and S1 information are also routed towards the 5G-Hander
installed in the same network.
In the case of the first scenario, the VNFs composing 5G-Hander are installed on

a server connected to the SDN network infrastructure of the Backhaul Network.
Instead, in the second scenario, besides their installation as in the first scenario,
two instances are run on a server of the C-RAN data center, which has been
installed together with the other servers of the BBU Pool. In this way, it is able

37

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

S1

Mobile
CN

MME1

MME2

eNodeB1

X2eNodeB2

S1

eNodeB3

eNodeB4 S1

Backhaul
Network

X2

X2

S1 5G‐Hander
(X2/S1)

Figure 3.1: 5G-Hander. Distributed RAN scenario

Mobile
CN

MME1

MME2
Backhaul
Network

RRH1

RRH2

Fronthaul
Network C‐RAN

E‐NodeB3

E‐NodeB4

S1

S1

BBU2

BBU1

X2

S1

5G‐Hander
(X2)

X2

X2

X2 S1 5G‐Hander
(X2/S1)

Figure 3.2: 5G-Hander. Centralized RAN scenario

to capture the X2 traffic flowing between BBUs running in the same C-RAN.
Instead, the 5G-Hander running in the Backhaul Network allows to capture two
types of traffic: all the S1 traffic among virtual and physical base stations managed
by different MMEs, and X2 traffic among the base stations virtualized in the C-
RAN, and the physical ones directly connected to the Backhaul Network.

38

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

3.1.1 Definition and implementation

As already said, the 5G-Hander network service has the goal of analyzing packets
generated by all the base stations in order to find packets reporting handover
events of both S1 and X2 handover types. This information is redirected, via
the Broker within the 5G-Hander, to the Network Orchestrator, which analyze
them and can decide whether to intervene by inhibiting the handover or not. The
Handover Sniffer works by analyzing all the traffic generated by the base stations
on their X2 and S1 interfaces. To this purpose, the SDN switches that are present
in both the backhaul and the C-RAN networks have to be configured by setting
up a specific rule on the local SDN Controller, in such a way that all the X2/S1
traffic is also routed to the Handover Sniffer.
The Handover Sniffer VNF captures data traffic packets by using the functions

of the pcap.h library [45]. More specifically, it works according to the algorithm
shown in Fig. 3.3. First (lines 1-2)), through the functions pcap_compile and
pcap_setfilter, a filter is applied in order that the Handover Sniffer VNF focuses
on Stream Control Transmission Protocol (SCTP) packets only, because SCTP is
the protocol used by the application-layer protocols S1 and X2 [43, 44, 46]. The
SCTP packet structure is shown in Fig. 3.4
For each SCTP packet, the Handover Sniffer needs to analyze the chunks con-

tained in its payload (lines 7-14). For all the chunks labeled as data chunks, that
is, identified by a chunk-type field equal to 0, the Payload protocol identifier field
is analyzed (lines 15-16). Its value gives the information regarding the specific
type of packet contained in the Data field: X2 handover packets are identified
with the number 452984832, while S1 handover packets with the number 18. The
data chunk structure is shown in Fig. 3.5
The handover packet is contained in the SCTP Data field. The information

regarding the handover phase during the complete handover cycle (from the han-
dover request to the context release) is contained in the message_type field in the
handover packet header (see Fig. 3.6 for both X2 and S1 packets), while the other
information elements are contained in its payload (lines 17-18). Detection of the
specific protocol message, i.e. Handover Request, Status Transfer and Context
Release for the X2 protocol, and Handover Preparation, Handover Notification
and Path Switch Request for the S1 protocol, is described in lines 19-30.
Finally, the last step is sending the results of the traffic analysis to the Broker

VNF. Specifically, the following list of information is sent: the User Equipment
(UE)-Id identifiers used by both the source base station and the target base
station of the handover event, the information elements regarding the cell (the

39

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

Begin

1. input interface

2. filter ← “sctp”

3. do

4. input packet

5. ih ← pointer to header of IP packet

6. sh ← pointer to header of SCTP packet

7. if chunk != null then

8. sc ← pointer to the chunk of SCTP packet

9. c_type ← chunk_type

10. if c_type = 0 then goto 15

11. else

12. chunk ← next_chunk

13. goto 7

14. else goto 32

15. sd ← pointer to chunk DATA

16. protocol ← sd.payload protocol identifier

17. m ← pointer to message header

18. mt ← m.message_type

19. if protocol = X2 then

20. if mt = 0 then output Handover Request Msg

21. else

22. if mt = 4 then output Status Transfer Msg

23. else

24. if mt =5 then output Context Release Msg

25. if protocol = S1 then

26. if mt = 0 then output Handover Preparation Msg

27. else

28. if mt = 2 then output Handover Notification Msg

29. else

30. if mt = 3 then output Path Switch Request Msg

31. packet ← next_packet

32. while next_packet != null

End

Figure 3: Handover Sniffer pseudo-code

Figure 3.3: 5G-Hander. Algorithm 1: Handover Sniffer pseudo-code

Evolved Universal Terrestrial Radio Access Network (E-UTRAN) cell identifier
and the Tracking Area Identifier), the Global Unique MME Identity (GUMMEI),
the Public Land Mobile Network (PLMN) identity, the Mobile Country Code
(MCC) and Mobile Network Code (MNC), and the User Equipment (UE) Con-
text Information. All the other information elements that are captured by the
Handover Sniffer are not sent to the Broker in the current implementation, but
can easily be included.
The Broker VNF works as a gateway at the application level by using a pub-

40

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

Bits Bits 0-7 8-15 16-23 24-31
+0 Source port Destination port
32 Verification tag
64 Checksum
96 Chunk 1 type Chunk 1 flags Chunk 1 length
128 Chunk 1 data
… …
… Chunk N type Chunk N flags Chunk N length
… Chunk N data

Figure 3.4: SCTP packet structure

Bits Bits 0-7 8-11 12 13 14 15 16-31
+0 Chunk

type = 0
Reserved I U B E Chunk

length
32 TSN
64 Stream Identifier Stream

Sequence
Number

96 Payload Protocol Identifier
128 Data

Figure 3.5: SCTP Data chunk structure

Bits Bits 0-7 8-15 16-23
+0 Flag Message

type
Criticality

Figure 3.6: Header of the X2 and S1 packets

lish/subscribe approach. More specifically, the Handover Sniffer sends information
retrieved during its analysis as messages to be published by the Broker. Then the
Broker sends this information to the Network Orchestrator running in the Core
Cloud, in such a way that it can allocate resources and take its decisions knowing
the current position of the entrance/exit points of all the flows. Thanks to this
approach, more than one Orchestrator can be registered to the same Broker to
receive information relating to handover events, and specific filters can be applied
to differentiate messages to be sent to each Orchestrator.

3.1.2 Testbed description and results

With the aim of verifying the behavior of the proposed 5G-Hander, it was realized
a testbed representing the D-RAN scenario described so far. It is constituted by

41

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

PC1:
Backhaul Network Emulator

Internet

192.168.1.16

eNB1: 192.168.70.85

eNB2: 192.168.70.86

Fixed Network

192.168.1.15

SW1

SW2

PC3: Mobile CN Emulator

PC4: Network
Orchestrator

PC2: Backhaul SDN Controller

192.168.1.1

Border Router

192.168.70.100
192.168.1.100

Figure 3.7: 5G-Hander. Testbed infrastructure

the following devices, as shown in Fig. 3.7:

− 2 4G Smartphones (Samsung Galaxy S5 with dummy sim card);

− 2 SmallCells Qualcomm LTE Band 3;

− 2 Computers (PC1 and PC2) INTEL NUKE miniPC, core I5, running re-
spectively the backhaul emulator realized through the Mininet network em-
ulator and OpenDaylight as the backhaul SDN Controller;

− 1 Computer (PC3) HP Laptop, core I5, with XCore tool emulating the
Evolved Packet Core (EPC) Mobile Core Network;

− 1 Computer (PC4) ACER Aspire 5755G, INTEL core I7, running the Net-
work Orchestrator;

− 1 Border Router for the connectivity from/to the Infrastructure Network;

− 2 network switches.

The two smartphones work as UE to realize the handover from one small cell to
the other one. Their IP addresses are directly assigned by the Border Router of
the Infrastructure Network. The two small cells work as eNBs to provide UEs with
cellular connectivity. As specified by the Long Term Evolution (LTE) standard
[47], they communicate to each other directly through the X2 protocol interface,
with no involvement of the MME block inside the Mobile Core Network. Instead,

42

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

vSwitch 1
VM1: Handover Sniffer

PC1: Backhaul Network Emulator

PC2: Backhaul SDN Controller

eNB1

eNB2

vSwitch 2 vSwitch 5

vSwitch 4

vSwitch 3

VM2: Broker

SW1

Figure 3.8: 5G-Hander. Network topology of Backhaul emulator

their communications with all the other components of the system follow the S1
protocol interface.
The PC1 node emulates the Backhaul Network. Its network topology, realized

with the Mininet network emulator, is shown in Fig. 3.8. All the switches are
based on OpenVSwitch, and are controlled by a SDN Controller through the
OpenFlow protocol. More specifically, five virtual SDN switches are used in order
to emulate the most general scenario where small cells, Handover Sniffer, Broker
and Controller are installed remotely to each other. Of course, easier scenarios can
be considered. Virtual Switches 1 and 2 are used to connect the small cells to the
network. The link between these virtual switches is used for message exchanges
between the small cells according to the X2 protocol.
Two Virtual Machines (VMs) are used: one running the Handover Sniffer VNF,

connected to the Virtual Switch 3, and the other running the Broker VNF, con-
nected to the Virtual Switch 4. Virtual Switch 5 is used to connect the Backhaul
Network to the SDN Controller, and to the rest of the network through the phys-
ical switch SW1.
In PC3, simultaneous IP connections of the same physical network interface

towards two different networks (i.e. 192.168.1.0 network of the Border Router
and 192.168.70.0 network of the small cells) are realized through Linux IP port
aliasing.
The Border Router allows the connection between the Mobile Core Network and

43

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

Open Space Lab

Office 1Office 2Office 3Office 4

eNB2

eNB2

eNB2
B

C

D

Exp. 2
Exp. 3Hallway

Exp. 1 eNB1

A

Figure 3.9: 5G-Hander. Experiment scenario

the Fixed Network. An important element of the Fixed Network is the Network
Orchestrator, which manages and orchestrates the whole Telco Operator network.
It is the destination of the information generated by the 5G-Hander network
service. As shown in Fig. 3.7, it runs in the PC4 node.
Three different experiments have been executed to test the proposed 5G-Hander

network service and, in particular, to highlight the behavior of the Handover
Sniffer. The considered scenario is shown in Fig. 3.9. It represents the CNIT Riltus
5G Lab in the Campus of the University of Catania. In all the experiments, it
was considered that eNB1 is placed in position A, while the position of the eNB2
is changed in the three cases, respectively in positions B, C and D. In these
experiments, eNBs are connected to the same MME because we have only one
EPC emulator, so next results are related to X2 handover type. In order to test
the functionality of our 5G-Hander with S1 handover, we set a firewall for the
X2-AP protocol, blocking communications on ports 36422 and 36423 used by
this protocol to establish X2 connection and exchange messages. In this way, the
eNBs were forced to communicate using S1 protocol even if connected to the same
MME.
The purpose of these experiments has been to measure, during user’s movements

from one eNB to the other one, the Reference Signal Received Power (RSRP) val-
ues and the time instants in which the signaling messages due to the handover
events are generated. RSRP represents one of the key measurement parameters
of signal quality for the modern networks. As defined in [48], RSRP is the linear
average over the power contributions (in W) of the resource elements that carry
cell-specific reference signals within the considered measurement frequency band-
width. During the experiments, a video transmission was started on the mobile

44

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

terminal via the YouTube app.
The smartphone continuously performs measurements relative to the channel

currently used and the neighboring channels it can receive, and sends these mea-
surements to the eNB where it is connected. This one analyzes the value of the
RSRP field and, if it detects that the UE is receiving a signal with higher power
from another cell, it starts the handover procedure with the eNB of that cell. Dur-
ing the experiments, the XCal software by Accuver was used to get the RSRP
measurements that smartphone performs continuously. At the same time, the
5G-Hander network service captures the handover messages, also providing the
time instants when these messages were exchanged among the eNBs and the EPC
through X2 and S1 interfaces.
Fig. 3.10 show the RSRP values captured in a range of 90 seconds, during which

a handover was performed by the UE. More in deep, in Fig. 3.10a it is possible
to note that the smartphone is able to measure the RSRP values of both the
cells since the beginning of the experiment. This is due to the fact that both
the eNBs are located in the same room. On the contrary, in the first part of
the other two experiments, the RSRP measurements of the eNB2 signal are not
available because the source is too far from the UE. Moreover, we can observe
that, as expected, the measured RSRP from the eNB1 (the starting point of the
UE path) decreases in time, while the one measured from the eNB2 (the end
point) increases.
Figa. 3.11a, 3.11b and 3.11c focus on the time period when the handover event

occurs, ranging between 5 seconds before and 5 seconds after it. The time instants
in which the handover messages are exchanged, sent by the VNF Hander to
the Broker VNF, are highlighted in the figure. In particular, the attention was
focused on four messages: Handover Request at t1, Status Transfer at t2, Path
Switch Request at t3 and UE Context Release at t4. For example, in Fig. 3.11a,
it is possible to notice the first instant (t1 = 28.38s) in which the UE detects a
stronger signal from the eNB2. This is notified to the eNB1, and the handover
procedure starts on the X2 interface.
The other messages are exchanged with the Broker (at the instants t1,1, t1,2,

t2,1, t2,2, t3,1, t3,2, t4,1 and t4,2), and this is done by using the publish/subscribe
approach. Although during the execution of this procedure there are some instants
in which the eNB1 signal is stronger than the signal coming from the eNB2, the
procedure goes on to the end, until the instant t4, when the eNB1 releases the
resources and the UE connects to the eNB2. A similar behavior characterizes the
other two experiments, as shown in Figs. 3.11b and 3.11c. In Table 3.1, messages

45

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

‐80

‐75

‐70

‐65

‐60

‐55

‐50

‐45

‐40

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

RS
RP

 [d
Bm

]

Time [s]

 eNodeB 1

 eNodeB 2

(a) Experiment 1

‐100

‐90

‐80

‐70

‐60

‐50

‐40

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

RS
RP

 [d
Bm

]

Time [s]

 eNodeB 1

 eNodeB 2

(b) Experiment 2

‐110

‐100

‐90

‐80

‐70

‐60

‐50

‐40

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

RS
RP

 [d
Bm

]

Time [s]

eNodeB 1

eNodeB 2

(c) Experiment 3

Figure 3.10: 5G-Hander. RSRP values throughout the duration of the experiment

‐80

‐75

‐70

‐65

‐60

‐55

‐50

‐45

‐40

26 27 28 29 30 31 32 33 34 35

RS
RP

 [d
Bm

]

Time [s]

 eNodeB 1

 eNodeB 2

t1

t2

t3

t4

(a) Experiment 1

‐85,00

‐80,00

‐75,00

‐70,00

‐65,00

‐60,00

‐55,00

‐50,00

‐45,00

‐40,00

41 42 43 44 45 46 47 48 49 50

RS
RP

 [d
Bm

]

Time [s]

 eNodeB 1

 eNodeB 2

t1

t2 t3

t4

(b) Experiment 2

‐90,00

‐85,00

‐80,00

‐75,00

‐70,00

‐65,00

‐60,00

‐55,00

‐50,00

‐45,00

‐40,00

78 79 80 81 82 83 84 85 86 87

RS
RP

 [d
Bm

]

Time [s]

 eNodeB 1

 eNodeB 2

t1

t2

t3

t4

(c) Experiment 3

Figure 3.11: 5G-Hander. RSRP values around the handover events

46

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

Time Event
t1 HandoverRequesteNB1→eNB2

t1,1 HandoverRequestInformationHandoverSniffer→Broker

t1,2 HandoverRequestInformationBroker→NetworkOrchestrator

t2 StatusTransfereNB1→eNB2

t2,1 StatusTransferInformationHandoverSniffer→Broker

t2,2 StatusTransferInformationBroker→NetworkOrchestrator

t3 PathSwitchRequesteNB2→MME

t3,1 PathSwitchRequestInformationHandoverSniffer→Broker

t3,2 PathSwitchRequestInformationBroker→NetworkOrchestrator

t4 UEContextReleaseeNB2→eNB1

t4,1 UEContextReleaseInformationHandoverSniffer→Broker

t4,2 UEContextReleaseInformationBroker→NetworkOrchestrator

Table 3.1: 5G-Hander. Representative Time Instants and Events during Handover
Detection

exchanged between the main components of the proposed testbed are reported.
The bold messages are the same shown in Fig. 3.11a, 3.11b and 3.11c. Among
the instants of time t1, t2, t3 and t4, the Handover Sniffer exchanges captured
information with the Broker which, subsequently, sends them to the Network
Orchestrator.
It is important to stress that the proposed network service is able to provide

the Orchestrator with information not only useful to timely allocate/deallocate
resources, but also to intervene for example to avoid handover events only by
blocking some signaling messages among eNBs through an opportune dynamic
configuration of the SDN switches in the radio access network.

3.2 UAV for Slice extension

This section describes the idea of using UAVs to extend a 5G network slice char-
acterized by low-latency constraint. The capacity of a network to guarantee very
severe application’s requirements, like ultra low-latency, does not only depend
on the length of the physical path that information should follow flowing from
sensors to actuators, but also on the size of each information.
For contexts in which a frequent or continuous check of an interest area is

required, small-scale UAVs can be used, thanks to their rapid deployment time
and their capability to perform low-altitude flights. For persistent monitoring
tasks when limited duration of batteries could limit the mission lifetime, use of
multiple small-scaled UAVs organized in flocks has been considered in [49].

47

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

The problem has been tackled from different perspectives. In particular, after a
study of the possible architecture that best suits the proposed idea (Subsection
3.2.1), the first step was the implementation of an analytical model of the single
UAV (Subsection 3.2.2) and then a Matlab simulator was realized to analyze the
performance considering a fleet of UAVs (Subsection 3.2.3). After that, Reinforce-
ment Learning (RL) was introduced to help the UAVs to take decisions with the
aim of managing the resources in an efficient way. For this reason, in Subsection
3.2.4 two cases are proposed: the first case concerns the use of the RL technique
applied to a single UAV while, in the second case, RL is applied to neighboring
UAVs.

3.2.1 UAV for Monitoring System applications

In the papers [50], presented at the IEEE Conference on Network Softwarization
in 2018, and [51], published on MDPI Special Issue on Softwarization at the
Network Edge for the Tactile Internet, the use of UAVs in a video surveillance
system scenario was addressed. In the last decade, thanks to a diffusion of cheap
small UAVs and a decrease in price of video camera devices, video monitoring has
become very popular especially in the context of surveillance. Since information
received from a surveillance UAV may include high-volume sensor data such as
live video, and since processing of these data is computationally expensive to
be performed locally by the same small-scaled UAVs, they should continuously
offload the information to an external data center that can process them. This
means that high uninterrupted communications bandwidth should be required,
but the maximum communication range is typically limited, especially in the
case of smaller and lower-cost UAVs, so they tend to require line-of-sight (LOS)
communications with a fixed network access point. The problem of achieving
LOS, especially in mountainous or urban areas, cannot be alleviated by increasing
altitude when small UAVs are used, because they are unable to ascend to sufficient
altitude to achieve LOS to both the target and the access point. This is why the
architecture shown in Fig. 3.12 was proposed in the context of network slice
extension.
Considering a large area that has to be monitored, it is possible to subdivide

it in zones, each monitored by a given set of Monitoring UAVs equipped with
cameras and sensors installed on ground. In the same zone a number of actuators
are installed to implement actions triggered by some alarm generated from the
analysis of data received by the monitoring devices. The set of data produced
by one or more monitoring devices that have to be processed together will be

48

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

Monitored
area

Monitoring
layer

5G Network Slice
Extension with
MEC facilities

MEC UAV

Set of Monitoring UAVs

Wireless connection
between 5G MEC UAVs

Wireless connection between
5G MEC UAVs and Monitoring
UAVs

Video‐surveilled zone

Figure 3.12: UAV for Video Surveillance. Proposed Architecture

referred in the sequel as job. The Monitoring UAVs provide very high quality video
monitoring, thanks to a camera installed on board of each drone that captures
thousands of images per second with 4K definition, like for example the Phantom’s
Flex4K camera. It is clear that this type of data cannot be sent to the cloud, but
not even to MEC servers installed on the ground, because this requires a lot
of transmission time, aspect incompatible with the requirements of low-latency
applications. In fact, assuming an average image size of 10 Mbytes, and an LTE
connection of 50 Mbit/s, a transmission time of TD→Cl = 1.6s should be necessary
to transmit each image from the drone to the cloud, on average.
For this reason, the 5G network slice is extended with a Flying Ad-hoc NETwork

(FANET) layer constituted by UAVs with MEC facilities (in the following referred
to as MEC UAVs), flying very close to the layer of UAVs monitoring the area of
interest, with the aim of extending the 5G network edge. The set of Monitoring
UAVs covering a given zone is assigned to one MEC UAV, defined as the primary
drone for that zone. The number of Monitoring UAVs assigned to one MEC UAV
depends on the load generated by each Monitoring UAV and the load that each
MEC UAV is able to manage with acceptable performance.
The considered scenario is the same shown in Fig. 4.1: the Controlled Domain is

constituted by the monitored geographic area in which sensors and actuators are
installed and by the cameras on board of Monitoring UAVs, while in the Master
Domain there is the human operator aims at accessing the video-surveillance
system through a graphic user interface (GUI).

49

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

Job Queue
Microcomputer

Microcontroller

Tx/Rx

12

Small‐scaled UAVs of
the monitoring layer

Actuators

Other MEC UAVs in the same FANET

Human
Operator

Figure 3.13: Drone Functional Architecture

The functional architecture of each drone is sketched in Fig. 3.13. It is consti-
tuted by:

− a Transmit/Receive (Tx/Rx) block equipped with multiple antennas for
sending and receiving more than one data signal simultaneously over the
same radio channel by exploiting Multiple-Input and Multiple-Output (MIMO)
technologies;

− a Microcontroller board to control processing of the monitoring informa-
tion coming from the Monitoring UAVs, and decide when sending trigger
commands to the actuators in case of alarm event detection; a reduced flow
of information is sent from the microcontroller to the remote operator in
the Master Domain to inform him of the most relevant captured data and
allow him to take decisions. In the case that decisions do not arrive from
the operator in time, the Microcontroller is in charge of trigger actions on
the actuators on the basis of the decisions suggested by the microcomputer;

− a Microcomputer to process jobs offloaded by the microcontroller.

The UAVs at the monitoring layer periodically capture images and send them
to the MEC UAV assigned to them. The image capturing frequency changes ac-
cording to feedback messages that Monitoring UAVs receive either from sensors
installed on ground (e.g. motion detection) or the MEC UAV upon processing
previous data. More specifically, different alarm levels can be set on the Mi-
crocontroller. Transitions between adjacent alarm levels are determined by the

50

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

information coming from the Monitoring UAVs and then processed: the higher
the alarm level, the higher the image capturing frequency.
Through the Tx/Rx block, the MEC UAV receives information from Monitoring

UAV and send them locally to the Microcontroller, that also could receive images
captured by ground cameras.
The Microcontroller combines images and data received as jobs that are en-

queued in a first-in-first-out (FIFO) job queue, waiting to be processed by the
local Microcomputer which, as soon as possible, has to decide if changing the
level of alarm in order to send an “action” message to the actuators installed on
the ground. Given the small size of messages received by the sensors and trans-
mitted to the actuators, and the small distance between sensors/actuators and
the drone, data transmission time from sensors to the drone and from the drone
to the actuators can be considered negligible.
The computing power of the Microcomputer has to be timely designed in such

a way that the Tactile Internet requirement on the e2e maximum delay of 1 ms
is not violated, considering that it is defined as:

Te2e = TS→D + TQ + TP + TD→A ≤ 1ms (3.1)

where TS→D and TD→A are the transmission times from the sensors to the drone
and from the drone to the actuators, which are considered negligible, while TQ
and TP are the times spent in the job queue and in the queue processing unit
(the microcontroller), respectively.
In the job queue two thresholds were introduced in order to reduce the queueing

time, TQ, and the job loss. Let Γ1 and Γ2 be these thresholds, with Γ1 ≤ Γ2 ≤
K−1, whereK−1 is the maximum size of the job queue. When the number of jobs
in the queue exceeds Γ2, local Microcomputer is not able to sustain the current job
load, so the support of an additional drone, assuming the role of secondary drone,
is required. The phase of the secondary drone selection starts with a broadcast
help request issued by the primary drone to the drones in proximity. These last
ones answer by sending their status to the primary drone, which will assign the
role of secondary drone on the basis of the received information. The drone that
is chosen as secondary drone is the one with the lowest queue among the ones
that are in proximity (i.e. with a distance not greater than δ), which are not yet
secondary drones, and which are not helped by any other drone to monitor the
zone where they are the primary drone. The choice of the distance δ is important
in this step: too-low values of δ reduce the number of candidates as secondary
drones, while with a too-high value of δ the secondary drone can be too far to

51

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

correctly video-monitor the zone monitored by the first drone. Obviously, if no
drones are available to assume the role of secondary drone, then the primary
drone will issue a new help requests at each new job arrival or service event, or at
a timeout event. If the job queue of the primary drone saturated with or without
the help of the secondary drone, some jobs are lost. After the selection of the
secondary drone, the primary sends a direct communication to the chosen drone,
and notifies it to the Monitoring UAVs in order that the data flow can be split
to the two drones currently monitoring its area. A similar signaling information
exchange occurs when the second drone has to finish its helping role. When the
job queue length decreases to a value less than Γ1, the secondary drone will not
be more needed, and the zone is again monitored by only the primary drone.
Fig. 3.14 shows how the search algorithm for a secondary drone works, carried

out by the generic i -th drone. Two possible events determine a queue length vari-
ation: a job arrives to the i -th drone or a job is served by the Microcomputer.
If the queue state of this drone, q, is greater than Γ2 and the drone is not still
helped, the need_for_help variable is set to 1 and a new Search thread is instan-
tiated. As soon as the <execute_s()> method is invoked in the Search thread, it
enters the Running_Search state and starts to execute the code of the Algorithm
1. At the same time, another thread, the Timeout thread, is also instantiated
with the aim of repeating this procedure periodically until a secondary drone is
not found. This last thread enters the Suspended state, waiting for receiving a
<resume_request_t()> message.
If secondary drone search procedure, at its end, was able to find a secondary

drone, the variable need_for_help is set to 0, the Id of the UAV chosen as
secondary drone is sent to the Microcontroller, and the Search thread receives
the <stop_s()> command to die. On the contrary, if no secondary drone has
been found, the <wait_s()> method is invoked, the Search thread enters the
Suspended state, and a <resume_request_t()> message is sent to the Time-
out thread. This one leaves the Suspended state, invokes the <resume_t()>
method and enters the Running_Timeout state where a countdown begins by
decreasing the timeout variable. At a time when timeout reaches the value 0,
if need_for_help is still equal to 1, the <resume_request_s()> method allows
the Search thread to exit from the Suspended state and, after invoking <re-
sume_s()>, returns to the Running_Search() state. Instead, if need_for_help is
equal to 0, because in the meanwhile the queue of the drone has reached a value
below the Γ2 threshold, the Timeout thread enters the Suspended state and waits
for next actions.

52

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

job_arrival || job_process in the
i-th droneStart need_for_help :=1

q>Γ2 &&
drone_no_helped?

Yes

No

Start new search for
Secondary drone Running_Search Secondary drone

found?
need_for_help :=0

Yes
Dead_Search

stop_s()

Start new
timeout

No

execute_t() Running_Timeout

execute_s()

timeout==0?

No

Yes

resume_request_s()

need_for_help ==1?
Yes

Suspended

wait_s()
resume_s()

resume_t()

wait_t()

No

SEARCH THREAD

TIMEOUT THREAD

resume_request_t()

Secondary drone Id

Microcontroller

Suspended

Figure 3.14: Mutual Help Policy implementation algorithm

Algorithm 1 Running Search execution code
1: begin
2: Send a help_request message in broadcast to UAVs within a distance δ
3: Receive queue-state from all the UAVs in proximity that are neither help-

ing other UAVs nor helped
4: if UAVs available ≥ 1 then
5: Secundary drone Id := drone Id of the drone with the smallest queue
6: else
7: Secundary drone Id := null
8: end if
9: return Secundary drone Id

10: end

3.2.2 Analytical System Model and results

A first analysis of the described system was conducted in [50], through the im-
plementation of an analytical model, focusing the attention to one drone as a
reference. The mean job arrival rate depends on the alarm level (in the following
referred to as alarm state) of the monitored zone. It can be represented by an
array Λ, whose generic z -th element, Λ[z], contains the mean arrival rate when
the zone covered by the considered drone is in the alarm state Z. Let Q(z) be
the state transition probability matrix of the alarm zone state process, which is
independent of the behavior of the drone we are modeling.
As regards the job queue serving rate µP , it depends on whether the drone we

are modeling here is working only for its zone, or it is helping, as a secondary
drone, another drone in proximity. So it is possible to write:

53

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

µP =

µ Drone works only for its zone

µ/2 Drone works as secondary drone
(3.2)

where µ indicates the mean job service rate provided by the microcomputer.
Since the considered drone can be chosen to help another drone depending on
the value q of its queue, and only if 1) it is not helped by another drone (i.e. the
number of drones monitoring its area is d = 1), and 2) it is not helping another
drone, its transition behavior will be characterized with a transition rate matrix,
Q(µP)(q, d), that depends on both q and d. This matrix is assumed as an input
of the problem.
The system is modeled as a 4-dimension continuous-time Markov chain defined

as follows:

S(Σ)(t) = (S(Z)(t), S(Q)(t), S(D)(t), S(µP)(t)) (3.3)

where:

− S(Z)(t) represents the state, i.e. the alarm level, of the area to be monitored.
Its value determines the job arrival rate to the job queue. In the sequel, two
states are assumed, L and H, representing a normal state and a pre-alarm
state, respectively. Therefore, we have that S(Z) ∈ =(Z) ≡ {L,H}. Let λ(L)

and λ(H) be the job arrival rates associated to these states, with λ(H) ≥ λ(L);

− S(Q)(t) represents the state of the job queueing system, that is, the number
of jobs that are present in the queue and in the server (i.e. the microcom-
puter) at the instant t. Its state space is =(Q) ≡ [0, K];

− S(D)(t) represents the condition whether the drone its monitoring the area
by itself, or there is a secondary drone helping it in monitoring the same
zone. Therefore, this variable can be modeled with the number of drones
that are monitoring the area of the considered drone, that is, its state space
is =(D) ≡ {1, 2};

− S(µP)(t) represents the actual service rate of the job queue, depending on
whether the considered drone is helping another drone to monitor its area,
or not. Therefore, it can be modeled with the amount of processor that the
considered drone is dedicating to the own area. Thus, indicating the total
job rate that can be served by the microprocessor as µ, then the state space
of S(µP)(t) is =(µP) ≡ {µ/2, µ}.

54

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

2 … … … … 110 1 1

 1 1… …… … 1 1

1 drone

2 drones

H 2⁄

 dqQ P ,)(
,2

 dqQ P ,)(
2,

)(

,
Z

HLQ

)(
,

Z
LHQ

(a) Zone State Model (b) Queue Service Rate

Λ Λ Λ Λ Λ Λ Λ Λ Λ

Λ /2

Λ

Λ /2 Λ /2 Λ /2 Λ /2 Λ /2 Λ /2 Λ /2

(c) Model of the evolution of the queue state and the drone state

Figure 3.15: UAV for Video Surveillance. System Model diagrams

Indicating the state space of the Markov chain (defined in equation 3.3) as =(Σ),
it is possible to consider two generic states sΣ1 ∈ =(Σ) and sΣ2 ∈ =(Σ), where:

sΣ1 = (z1, q1, d1, µP1) (3.4)

sΣ2 = (z2, q2, d2, µP2) (3.5)

Fig. 3.15 shows the Markov chain transition diagrams.
In particular, in Fig. 3.15a there is the Markov chain of the zone alarm. its

independence of the other chains is evident, it is governed by the matrix Q(Z)

only. On the contrary, the transition rates characterizing the state of the job queue
server (Fig. 3.15b), which are the elements of the matrix Q(µP)(q, d), depend on
the states of both the job queue, S(Q)(t), and the process S(D)(t).
The chain shown in Fig. 3.15c is constituted by two subchains: the upper one

representing the job queue states requiring only one drone to monitor the zone,
while the lower one containing the states where the primary drone is helped by
a secondary drone. The transition between these two sub-chains is shown in the
figure: when the cumulative number of jobs in the queue and in the server exceeds
the threshold Γ2, the state moves on the lowest sub-chain, where the job arrival
rate is halved because another drone is involved as secondary drone to monitor
the same zone and process the captured images. Only when the state decreases
under the threshold Γ1, monitoring is carried out by one drone only again. As-
suming, as usual, that two state-change events occur at the same instant with

55

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

zero probability, we can write the generic element of the global state transition
rate matrix as follows:

Q
(Σ)
[sΣ1,sΣ2] =

Λ[z1] if C
(Q,D)
1

Λ[z1]/2 if C
(Q,D)
2

µP1 if C
(Q,D)
3

Q
(µP)
[µP1,µP2](q1, d1) if µP2 6= µP1

Q
(Z)
[z1,z2] if z2 6= z1

0 otherwise

(3.6)

where:

− C
(Q,D)
1 is a Boolean variable defined as:

C
(Q,D)
1 = {0 ≤ q1 < Γ2 and q2 = q1 + 1 and d1 = 1} (3.7)

This means that the queue state increases by 1 job, and the transition starts
from a state with only 1 active drone. In this case, the job arrival rate to
the queue coincides with the whole rate of arrivals needed to monitor the
considered zone, i.e. Λ[z1];

− C
(Q,D)
2 is a Boolean variable defined as:

C
(Q,D)
2 = {Γ1 ≤ q1 < K and q2 = q1 + 1 and d1 = 2} (3.8)

This means that the queue state increases by 1 job, but now the transition
starts from a state with 2 active drones. In this case, the job arrival rate to
the queue of the first drone is half of the previous case;

− C
(Q,D)
3 is a Boolean variable defined as:

C
(Q,D)
3 = {q2 = q1 − 1} (3.9)

and represents the case in which the queue state decreases by 1 job.

At this point, it is possible to calculate the steady-state probability array, whose
generic element is defined as:

π
(Σ)
[z,q,d,µP] = lim

t→∞
Pr{S(Z)(t) = z, S(Q)(t) = q, S(D)(t) = d, S(µP)(t) = µP} (3.10)

and can be calculated by solving the following linear equation system, in which

56

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

π(Σ) is a row array containing the steady-state probabilities of all the state in
=(Σ): π(Σ) ·Q(Σ) = 0T

π(Σ) · 1T = 1
(3.11)

The second equation of (3.11) imposes that the sum of all the elements of array
π(Σ) is equal to 1. Solving the above system, the marginal steady-state probability
array of the job queue can be derived:

π
(Q)
[q] ≡ lim

t→∞
Pr{S(Q)(t) = q} =

∑
z

∑
d

∑
µP

π[z,q,d,µP](Σ) (3.12)

The mean number of jobs in the job queueing system (either in the queue or in
service) can be calculated as follow:

N =
∑
q

q · π(Q)
[q] (3.13)

Next, the mean arrival rate of jobs to the queue, λ, is calculated as:

λ =
∑
z

∑
q

∑
µP

{
Λ[z] · π(Σ)

[z,q,1,µP] +
1

2
Λ[z] · π(Σ)

[z,q,2,µP]

}
(3.14)

so the mean service time, defined as the mean time spent in the job queueing
system, can be calculated by the Little theorem as follows:

T
(Σ)

=
N

λ
(3.15)

About the job loss probability due to queue overflow, it is easy to demonstrate
that it coincides with the probability that the queueing system is full, that is:

P
(Job)
Loss = π

(Q)
[K] (3.16)

Finally, the probability that the system delay is greater than 1 ms (due to the
Tactile Internet requirements) is calculated as follows:

PTI = Pr{System Delay ≥ 1ms} =
K∑

q=qTI

π
(Q)
[q] (3.17)

with qTI the minimum queue value giving a queueing system delay greater than

57

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

1 ms. It is calculates as:
qTI = d1ms · µP e (3.18)

where µP is the mean service rate, given by:

µP =
∑
z

∑
q

∑
d

∑
µP

µP · π(Σ)
[z,q,d,µP] (3.19)

To evaluate the performance of this model, some experiments have been exe-
cuted. To this purpose, a drone with a job queue capacity of K = 300 jobs and
the two thresholds set as Γ1 = K/3 and Γ2 = 2Γ1 were considered. The job arrival
rate during the two zone alarm levels (i.e. “L” and “H”) is represented by the array
Λ = [10, 17h], where h is a parameter that will be varied in the range [1.0, 2.0] in
the numerical analysis. This allows to consider different frame rates during the
“H” alarm state. The zone state will be characterized by the following transition
rate matrix:

Q(Z) =

[
0.997 0.003

0.090 0.910

]
(3.20)

Results in Fig. 3.16 have been calculated by varying the job queue service rate,
µ , in the range [6, 40] job/ms, in order to evaluate the impact of the proces-
sor capacity on the system performance, and considering five cases have been
considered, one for each value of image capture rate during the pre-alarm phase
“H”.
Fig. 3.16a and 3.16b show the mean delay and the mean number of jobs in

the job queue. These two parameters decrease with the processor service rate
and are almost independent of λH . The job loss probability is depicted in Fig.
3.16c and, as expected, for the lowest values of job queue service rate, there are
important losses. However, the main problem of Tactile Internet applications is
the delays. For this reason, in Fig. 3.16d the probability that the delay exceeds
1 ms, calculated as in equation (3.17), is plotted. This graph helps to choose the
microcomputer that gives acceptable performance, keeping this probability less
than a given target value. For example, if the application requires a probability
of violating the 1 ms requirement not greater than 1 · 10−7, with a λH = 29.75

job/ms, a processor that is able to serve jobs with a rate of at least 33.2 job/ms
is necessary.

58

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

(a) Mean delay in the job queueing system (b) Mean number of jobs

(c) Job loss probability (d) Probability that delay is less than 1 ms

Figure 3.16: UAV for Video Surveillance. Numerical Results

3.2.3 Event-based Matlab simulation and results

The second step of this work was to implement an event-based Matlab simulator.
This allows to analyze the completed system with a fleet of simulated UAVs and
evaluate the performance of the proposed solution.
A 5G slice extension with N = 64 MEC UAVs was considered, organized in a

FANET with a regular grid topology, as shown in Fig. 3.17. In order to evaluate
the gain achieved by using the proposed Mutual Help Policy among MEC UAVs,
two different configurations were analyzed:

− “w/ help”: each UAV has a horizontal coverage range of δ = 1 km, and
therefore it is able to cooperate with all the other UAVs in the platform;

− “w/o help”: each UAV has a horizontal coverage range of δ = 70 m, and
therefore each zone is covered by the primary drone only. This case is equiv-
alent to the state-of-art case, in which the strategy of “mutual help among
MEC UAVs” is not applied.

59

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

100 m

700 m

Figure 3.17: FANET topology used in the use case

Two levels of alarm for each monitored zone were assumed, and an exponentially
distributed job arrival rate with a mean value depending on the current level.
More specifically, there is a mean arrival rate during no-alarm state of λL =
1 arrival/ms, while the arrival rate during an alarm state is increased with a
factor of 15, that is, λH = 15 arrivals/ms. As concerns the Microprocessor unit
on board of each MEC UAV, in this simulation it is able to process one job in
TJ = 769µs, so it has a job processing rate of µ = 13 jobs/ms. Moreover, the
alarm-level transitions is based on a 2-state Markov chain characterized by the
following transition rate matrix:

Q(A) =

[
−1.67 · 10−2 1.67 · 10−2

0.5 −0.5

]
(3.21)

In the numerical analysis the job queue size, K, varies in the range [100, 1000].
The two thresholds Γ1 and Γ2, after a huge number of simulations, have been
decided as follows:

Γ2 = 2K/3 and Γ1 = Γ2 − 10 (3.22)

Every set of experiments was repeated 30 times with different random seeds,
and the duration of simulation has been automatically chosen in such a way that
the 95% confidence interval is less than 1% of the average results. The seeds,

60

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

which affected all the random parameters in the experiments, were taken from
the default pseudo-random generator of Matlab.
The first two considered metrics, regarding application level QoS, are the mean

response time and the job loss rate. The mean response time is defined as the
mean value of the duration of the permanence for a job in the system and, due
to the fact that the transmission time between sensors and Monitoring UAV,
Monitoring UAV and MEC UAV and MEC UAV and actuators are negligible, as
already said it can be defined as:

T e2e = TQ + T µP (3.23)

where TQ is the mean time of permanence in the queue and can be derived
through the Little law as an average of the ratio between the expected value of
the number of jobs in the queue of each drone u, Qu, and the expected value of
the arrival rate to that drone, Λu, that is:

TQ =
1

N

N∑
u=1

E{Qu}
E{Λu}

(3.24)

T µP is the mean value of the time needed by a job to be processed in the
Microcomputer, and is an input of the problem.
If we indicate how much time the job queue of the UAV u stays with a job queue

length of q jobs in a period of duration t as τu,q(t), and the cumulative number of
arrivals in the same interval as Au(t), from Equation (3.24) it is possible to write:

TQ =
1

N

N∑
u=1

lim
t→∞

K∑
q=0

q · τu,q(t)
Au(t)

(3.25)

The job loss rate, as the previous metric, is averaged over all the UAVs and,
for each UAV u, it is calculated as the ratio between the number of jobs that
are lost for queue overflow in a period with a duration of t, J (L)

u (t), and the total
number of jobs created by the monitoring UAVs assigned to u in the same period,
Ju(A)(t). This means that:

PJL = lim
t→∞

∑N
u=1 J

(L)
u (t)∑N

u=1 J
(A)
u (t)

(3.26)

Fig. 3.18 plot these two application-level QoS parameters against the job queue
size K. In both Figs. 3.18a and 3.18b, it is shown the gain achieved by applying
the Mutual Help Policy among MEC UAVs. For example, it is easy to notice that,
for job buffer size of 300, the job loss probability is around 1 · 10−5 if the Mutual

61

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

100 200 300 400 500 600 700 800 900 1000
K

0

50

100

150

200

250

w/ help
w/o help

(a) Mean response time

Lo
ss

 p
ro

ba
bi

lit
y

(b) Job loss probability

Figure 3.18: UAV for Video Surveillance. Application-level QoS parameters

Help Policy is applied, with a mean response time of 88 ms. If a higher response
time is accepted, job losses can be further reduced by increasing the buffer size.
Another important analysis regarding the mean response time and the job loss

probability is the impact of the arrival rate parameter to the overall system
performance. Considering the arrival rate, during an alarm state, in the interval
[6, 24] arrival/ms and the arrival rate during a no-alarm state constant and equal
to 1 arrival/ms, Fig. 3.19 shows the behavior of two parameters.
It can be noticed that, although a gap between the “w/ help” and the “w/o help”

remains in the job loss probability (Fig. 3.19b), the mean response time shown
in Fig. 3.19a is improved by the Mutual Help Policy for intermediate values of
the arrival rate since. In fact, for low values of λH , the platform is underloaded,
and therefore MEC UAVs do not need any help, while, for high values of λH ,
the platform is so overloaded that it is unlikely to find MEC UAVs available for
helping.
The third parameter is the no-helped probability, it is averaged over all the UAVs

and, for each of them, it is defined as the ratio between the cumulative time
duration T

(NH|≥Γ2)
u calculated until the time instance t of the period in which

the UAV u, although with a job queue length higher than Γ2, is not helped by a
secondary drone because not available, and the overall time duration, T (≥Γ2)

u (t) ,
of the period, in the same interval, that the considered UAV has had a job queue
length higher than Γ2:

P
(NH)
≥Γ2

=
1

N

N∑
u=1

lim
t→∞

T
(NH|≥Γ2)
u (t)

T
(≥Γ2)
u (t)

(3.27)

Another parameter is the mean duration of no-helped periods, defined as:

62

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

6 8 10 12 14 16 18 20 22 24

h

0

20

40

60

80

100

120
w/ help
w/o help

(a) Mean responce time

6 8 10 12 14 16 18 20 22 24

h

10-5

10-4

10-3

10-2

10-1

100

w/ help
w/o help

(b) Job loss probability

Figure 3.19: UAV for Video Surveillance. Dependece of application-level QoS
parameters on the job arrival rate during alarm states

T
(NH|≥Γ2)

=
1

N

N∑
u=1

[
lim
t→∞

T
(NH|≥Γ2)
u (t)

CNH,u(t)

]
(3.28)

where CNH,u(t) is the number of no-helped occurrences when the UAV u needs
to be helped in t seconds. Finally, the last parameter represents the percentage
of time devoted to help another UAV. It can be calculated as the cumulative
time spent by each UAV in helping some other UAV in a period of duration t,
T

(Helping)
u , normalized over the time duration t, and averaged for all the UAVs in

the system:

R(H) =
1

N

N∑
u=1

[
lim
t→∞

T
(Helping)
u (t)

t

]
× 100% (3.29)

Fig. 5.36 presents the above three performance parameters. Of course, the curves
relating to the “w/o help case” in Figs. 3.20a and 3.20c are trivial, but have been
reported here for the sake of completeness.
For higher values ofK, and consequently of the two thresholds, the queue length

rarely exceeds Γ2, and therefore the gain of the Mutual Help Policy is low again.
This is the reason why in Figs. 3.20a and 3.20b the curves for the “w/ help” case
are not present for high values of K. Instead, for low values of K, the curves are
present and decrease because situations characterized by queue lengths higher
than Γ2 are less frequent for K increasing, and so the secondary drone search is
less invoked, and therefore more UAVs are available to help the few ones that
request some help. The curve of the “w/o help” case in Fig. 3.20b shown two
different behaviors of the system: it increases up to K = 650, because, as said,
for low values of K and K increasing, the loss probability decreases and the whole

63

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

N
o-

he
lp

ed
 p

ro
ba

bi
lit

y

(a) No-helped probability

M
ea

n
du

ra
tio

n
of

 n
o-

he
lp

ed
 p

er
io

ds
 [m

s]

(b) Mean duration of no-helped periods

100 200 300 400 500 600 700 800 900 1000
K

0

2

4

6

8

10

12
w/ help
w/o help

(c) Percentage of time devoted to help
another UAV

Figure 3.20: UAV for Video Surveillance. Performance parameters for a behaviour
analysis of the proposed framework

number of packets managed by the MEC platform at the same time increases, so
increasing the time to find a secondary UAV. Instead, the right part of the curve
is decreasing because the probability that the queue length is greater than Γ2

decreases, and therefore the system appears less loaded. This explains why the
curve in Fig. 3.20c for the “w/ help” case is decreasing in the whole range of K.
To better analyze the impact of the Mutual Help Policy, in Fig. 3.21 the nor-

malized histograms of the job queue length for K=200 and K=900, measured for
one of the drones in the FANET, and for both the configurations “w/o help” and
“w/ help”, are shown. It is clear that if the Mutual Help Policy is not applied,
the queue length spans in the whole range between 0 and K, also causing some
losses for K =200. On the contrary, application of the Mutual Help Policy allows
to maintain the queue rarely over 160 jobs for K = 200 and 600 jobs for K =
900, so strongly reducing losses.

64

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

P
ro

ba
bi

lit
y

(a) K=200 - "w/o help"

P
ro

ba
bi

lit
y

(b) K=200 - "w/ help"

P
ro

ba
bi

lit
y

(c) K=900 - "w/o help"

P
ro

ba
bi

lit
y

(d) K=900 - "w/ help"

Figure 3.21: UAV for Video Surveillance. Normalized histograms of the job queue
length

3.2.4 MEC UAV managed with Reinforcement Learning

Another step in the application of UAVs for network slice extension was presented
in [52], published on ACM Transactions on Internet Technologies (TOIT), and
in [53], published in IEEE Journal on Selected Areas in Communication (JSAC),
and consists in the introduction of a System Controller (SC) with the target
of deciding the number of active CPUs at runtime (in the first paper) together
with the maximum number of offloaded job received by the ground devices (in the
second paper) by maximizing an objective function weighing power consumption,
job loss probability, and processing latency. Moreover, Reinforcement Learning
(RL) technique was implemented to support SC in its decisions, with the target of
maximizing a long-term reward function. Furthermore, in the considered scenario,
the devices positioned on the ground can decide whether to process the data
locally, or apply offloading policies. Offload can be either coarse-grained (also
referred to total offloading), in which full tasks are migrated to the UAV, or
fine-grained (also referred to as partial offloading), aimed at transmitting as little

65

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

code as possible, the one containing only the computation-hungry parts of the
application.
The idea of using RL is due to the fact that, in recent years, machine learn-

ing techniques are registering an increasing use in networks, and more and more
will have them in the 5G network and, even more so, in the future 6G network
[54]. Their ability to work in complex contexts allows them to implement deci-
sion making techniques to provide high performance in contexts such as resource
allocation, optimal routing policies associated with the prediction of network traf-
fic (due to congestion or possible failures) especially in contexts such as IoT in
which, given the limited availability of resources that sensors and actuators have.
To have an idea of the possible applications, in [55] and [56], the use of RL to
manage computational resources and to take decisions in cloud contexts with
environmental changes was presented by the authors.

Scenario without cooperation between UAVs

The idea proposed in [52] presents some differences as compared with other works,
differing both in the approach and in the target. In fact, most of the previous
works applied RL by simulation, trying an action and evaluating the consequent
reward, while RL approach used in this article is model-based: the system is mod-
eled by a Markov chain, and optimization is realized a priori. In this way, there
is the possibility to present numerical results analytically derived. Another dif-
ference is that RL is used to optimize an unique objective function that capture
the main performance indices regarding the application requirements (job loss
probability, processing latency) but also the duration of the flight (in this case,
the amount of battery consumed by the computing elements on board of UAVs).
This last element constitutes a specific peculiarity of this work, since, when using
a UAV to provide computing services, power consumption due to transmissions
UAV-2-UAV, and UAV-2-device on ground, becomes negligible, while consump-
tion due to the computing element must be taken into consideration, because it
becomes comparable with one of the UAV engines, thus strongly impacting the
flight duration. It has been preferred to use RL to supervised algorithms, since
RL does not rely strictly on set of “supervised” data (the training set), but relies
on being able to monitor the response of the actions taken and measures against
a definition of a “reward.” However, unsupervised learning was not use because
the expected reward is known upfront.
As shown in Fig. 3.22a, each UAV is equipped with computing elements that

provide MEC facilities. Also in this case, data generated by IoT devices are orga-

66

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

IoT Device Network

Active CPU

Inactive CPU

Computing
element

(a) MEC UAV covering a zone of IoT
network

PP

Q
ue

ue
 Q

SYSTEM
CONTROLLER (SC)

Model of Traffic
Generated by IoT Devices

1 2 R

Computing
Element

Active CPU

(b) Model of the MEC UAV

Figure 3.22: An IoT network zone covered by MEC UAV

nized in jobs that are offloaded to the UAV covering their area to be processed.
Securing data processing is an important aspect that must be considered in any
computing platform, but it is out of the scope of the considered work, where the
behavior of a single UAV is considered, without cooperation with other UAVs.
As described in the previous section, the behavior of each zone is modeled

with different states (in particular with a low activity state (LA) and a high
activity state (HA)). Each state is characterized by a specific emission rate process
of jobs and each job is assumed requiring the same computation complexity,
independently of the state of the zone. The basic idea is that, indicating the
number of available CPUs as L, the number of active CPUs is changed at runtime
to be able to manage time-variant situations while considering the above target
issues. So, when the assigned area is in high-activity state, the number of active
CPUs is increased, and this can be changed at runtime also when the priority of
the above target issues changes according to the current mission.
In any RL problem, the Agent, here represented by the SC, takes actions and

receives observations from the environment. An action a is one of all the possible
decisions the agent can take. In our case, an action consists of the choice of the
number of active CPUs. A policy ρ defines the action a to be taken for each
system state sΣ, i.e., a = ρ(sΣ). Received information consists of a reward for the
performed action and the new state of the environment. That reward informs the

67

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

Agent of how good or bad was the taken action. RL tries to figure out what to
do to maximize received rewards, and it does this by itself.
SC component takes this decision by applying a model-based RL to maximize

a reward function weighing the three above elements and representing the imme-
diate reward. The objective reward function is defined as follows:

FRW = −k1
ξ − ξMIN

ξMAX − ξMIN

− k2
λ− λMIN

λMAX − λMIN

− k3
δ − δMIN

δMAX − δMIN

(3.30)

where ξ represents the power consumption, λ the log10 of the job loss proba-
bility, and δ the mean job processing latency. These parameters are weighed by
the constants k1, k2, and k3, representing the importance that the three above
parameters have for the considered application scenario and normalized in the
interval [0, 1] to be comparable. Since the three parts of the objective reward
function weighed by the three constants are correlated to each other (for exam-
ple, privileging performance in terms of job loss probability will also privilege
performance in terms of processing latency), the impact on each performance
parameter is not linear with the value of the relevant constant. Therefore, it is
not possible to decide a priori a set of constants k1, k2, and k3 to directly achieve
the desired performance set. For this reason it is necessary the implementation
of an analytical model, in such a way as to run it a few times offline to achieve a
fine-tuning of the parameters.
Actions are taken by the SC periodically at the beginning of each time slot,

whose duration is indicated as ∆. As shown in Fig. 3.22b, after the offloading
phase, jobs are enqueued in the queue Q of the UAV, where they wait for some
available CPU according to a FIFO policy. LetK be the maximum number of jobs
that can be accommodated in the queue Q, and µP is the job service rate of each
active CPU. A key element is the Immediate Reward, R(n), a scalar feedback,
positive or negative, that the agent receives from the environment, which allows
to quantify the success or failure of its actions according to its specific goal. A
Cumulative Reward indicated as G(n), is the long-term reward, used by the agent
if it should not be greedy by taking actions associated with maximum reward at
the current time only, but it has to plan ahead. The cumulative reward is defined
as:

G(n) =
∞∑
k=0

γk ·R(n+ k + 1), γ ∈ [0, 1] (3.31)

68

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

where γ is the discount factor, an input parameter, that informs the agent of
how much it should care about rewards now as compared to rewards in the future.
If γ = 0 the agent only cares about the immediate reward. On the contrary, a
value of γ = 1 means that the agent cares about all future rewards.
For each state of the environment, a State-value Function and an Action-value

Function are defined to tell the agent how good it is to be in a particular state and
how good it is to take a particular action. In other words, they inform the agent
of how much reward to expect if it takes a particular action in a particular state,
being a prediction of expected future rewards used to evaluate goodness/badness
of states. For a given policy ρ, the State-value function for a state sΣ is defined
as:

vρ(sΣ) = Eρ{G(n)|S(n) = sΣ} (3.32)

where Eρ{} is the expected value given that the agent follows the policy ρ.
It represents the expected return when the system starts from the state sΣ and
follows the policy ρ. The Action-value function represents the value of taking the
action a in the state sΣ under a policy ρ, and is defined as follows:

qρ(sΣ, a) = Eρ{G(n)|S(n) = sΣ, A(n) = a} (3.33)

An MDP Σ that describes the environment, for a given policy ρ specifying an
action a for each state sΣ, is completely defined by the tuple

(=(Σ),=(A), P (Σ|ρ),Ψ(Σ|ρ), γ) (3.34)

where:

− =(Σ) is the system state space;

− =(A) is a finite set of action;

− P (Σ|ρ) is the state transition probability matrix. It depends on the policy
ρ that specifies the action for each starting state. Its generic element rep-
resents the transition probability from the state s′Σ to the state s′′Σ when,
according to the policy ρ, the action a is performed at the beginning of the
slot n. It is given by:

P
(Σ|a)

[s
′
Σ,s
′′
Σ]

= Pr{S(Σ)(n) = s
′′

Σ|S(Σ)(n− 1) = s
′

Σ, A(n) = a} (3.35)

69

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

− Ψ(Σ|ρ) is the immediate reward matrix. Its generic element, representing the
immediate reward received performing the action a at the slot n when the
system transits from s

′
Σ to s′′Σ, is given by:

Ψ
(Σ|a)

[s
′
Σ,s
′′
Σ]

= E{R(n)|S(Σ)(n− 1) = s
′

Σ, S
(Σ)(n) = s

′′

Σ, A(n) = a} (3.36)

− γ is the discount factor.

Substituting (3.31) in (3.32) and applying the theorem of total probability to all
the possible arrival states S(Σ)(n) = s

′′
Σ after the transition from the slot (n− 1)

to the slot n:

vρ(s
′

Σ) = Eρ{G(n− 1)|S(Σ)(n− 1) = s
′

Σ}

= Eρ

{
∞∑
k=0

γk ·R(n+ k)|S(Σ)(n− 1) = s
′

Σ

}

= Eρ

{
R(n) + γ ·

∞∑
k=0

γk ·R(n+ k + 1)|S(Σ)(n− 1) = s
′

Σ

} (3.37)

and applying the total probability theorem on the state S(n):

vρ(s
′

Σ) =
∑

∀s′′Σ∈=(Σ)

P
(Σ|a)

[s
′
Σ,s
′′
Σ]
· [Ψ(Σ|a)

[s
′
Σ,s
′′
Σ]

+ γ · Eρ{
∞∑
k=0

γk ·R(n+ k + 1)|S(Σ)(n) = s
′′

Σ}]

=
∑

∀s′′Σ∈=(Σ)

P
(Σ|a)

[s
′
Σ,s
′′
Σ]
· [Ψ(Σ|a)

[s
′
Σ,s
′′
Σ]

+ γ · vρ(s
′′

Σ)]

(3.38)

The expression in Equation (3.38) is the Bellman equation for the state s′Σ and
gives a relationship between the value of a state s′Σ and the values of its successive
states. The value of the start state must equal the value of the expected next state,
plus the reward expected along the way. The state-value function vρ(sΣ), for each
sΣ ∈ =(Σ), is the unique solution to the Bellman equation and its existence and
uniqueness are guaranteed as long as the discount factor is γ < 1.
Considering that ρ∗ ∈ =(ρ) represents an optimal policy if its state-value function

is better than or equal to the state-value function of all the other policies [57],
for all the states of the system, it is possible to write:

70

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

vρ∗(sΣ) = max
∀ρ∈=(ρ)

{vρ(sΣ)},∀sΣ ∈ =(Σ) (3.39)

where vρ∗(sΣ) is the state-value function for a policy and must satisfy the self-
consistency condition given by the Bellman equation. For this reason (applying
the definition of G(n) and the total probability theorem):

vρ∗(s
′

Σ) = max
∀a∈=(a)

Eρ∗{G(n− 1)|S(n− 1) = s
′

Σ, A(n) = a}

= max
∀a∈=(a)

Eρ∗

{
∞∑
k=0

γk ·R(n+ k)|S(n− 1) = s
′

Σ, A(n) = a

}

= max
∀a∈=(a)

Eρ∗

{
R(n) + γ ·

∞∑
k=0

γk ·R(n+ k + 1)|S(n− 1) = s
′

Σ, A(n) = a

}
= max
∀a∈=(a)

Eρ∗{R(n) + γv∗S(n)|S(n− 1) = s
′

Σ, A(n) = a}

= max
∀a∈=(a)

 ∑
∀s′′Σ∈=(Σ)

P
(Σ|a)

[s
′
Σ,s
′′
Σ]
·
[
R

(Σ|a)

[s
′
Σ,s
′′
Σ]

+ γ · v∗(s
′′

Σ)
]

(3.40)

The Bellman optimality equation for the state s′Σ under the optimal policy was
derived. It is a system of equation, one for each state. So, if there are N states,
then there are N equations in N unknowns. The solution of this system gives the
optimal state-value function vρ∗(sΣ), for each state sΣ ∈ =(Σ). Once the optimal
state-value function vρ∗(sΣ) is known for all the states, the optimal policy can
be determined. For each state sΣ there will be one or more actions at which
the maximum is obtained in the Bellman optimality equation. Any policy that
assigns non-zero probability only to these actions is an optimal policy. This can
be easily argued, because any policy that is greedy with respect to the optimal
evaluation function vρ∗(sΣ) is an optimal policy. Let note that, since vρ∗(sΣ)

already takes into account the reward consequences of all possible future behavior,
using vρ∗(sΣ), the optimal expected long-term return is turned into a quantity
that is locally and immediately available for each state. Hence, a one-step-ahead
search yields the (discounted) long-term optimal actions.
The proposed system was modeled with a discrete-time Markov chain. To this

purpose, the job arrival process from the device in the considered zone is modeled
as a Switched Batch Bernoulli Process (SBBP), the most general arrival process
in the discrete-time domain, able to capture both first- and second-order statistics

71

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

of any arrival process [58]. Let indicate this job arrival process with Z(n). Let
Ω(Z) be the set of all the possible numbers of job arrivals from a zone. The
number of arrivals follows a probability density function (pdf) modulated by the
state S(Z)(n) of the underlying Markov chain of the SBBP Z(n). Therefore, Z(n)

is characterized by the transition probability matrix of the underlying Markov
chain, P (Z) and the job emission probability matrix, B(Z), whose rows contain
the arrival pdf for each state of the underlying Markov chain. These parameters
are assumed as input of the problem.
The whole system is represented by a two-dimensional discrete-time Markov

chain, based on Fig. 3.22b, whose state is defined as:

S(Σ)(n) =
(
S(Z)(n), S(Q)(n)

)
(3.41)

where:

− S(Z)(n) is the state of the underlying Markov chain of the SBBP modeling
the job arrival process. If =(Z) = {1, 2, ..., R} is the set of states character-
izing the behavior of the zone, S(Z)(n) ∈ =(Z);

− S(Q)(n) is the state of the UAV queue Q, with S(Q)(n) ∈ [0, ..., K] the
number of jobs in the queue at the slot n; the term K is the maximum
number of jobs that can be buffered in the queue.

To derive the transition probability matrix of the MDP described so far, let
consider the following two generic states:

− s
′
Σ = (s

′
Z , s

′
Q) = S(Σ)(n− 1) at the slot n− 1

− s
′′
Σ = (s

′′
Z , s

′′
Q) = S(Σ)(n) at the slot n

Considering the Fig. 3.23, the following event sequence are performed to transit
from the slot n− 1 to the slot n:

− Decision of the new value a according to the best policy achieved by RL,
based on the value of the current system state S(Σ)(n− 1);

− Update of the zone state, with the transition from S(Z)(n − 1) = s
′
Z to

S(Z)(n) = s
′′
Z ;

− Dequeue of some jobs from the queue Q, according to the number a of CPUs
that have worked in the slot n;

72

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

 QZ sssnS
 ,)1()(

n

 TQZ ssssnS
 ,,)()(

SC action a

Update the zone state

Z
Z snS)()(

Enqueue in Q

1Slot n nSlot

Dequeue from Q

Figure 3.23: UAV and RL. Time diagram of the sequence of the events in a state
transition

− Enqueue of a number of jobs, σ = Z(n), according to the SBBP process
modeling job arrivals, whose underlying Markov chain state, S(Z)(n), has
been updated in the previous step;

− Update of the system state from S(Σ)(n − 1) to S(Σ)(n), according to the
evolution of each of its components, as described in all the previous steps.

The generic element of the transition probability matrix can be defined as fol-
lows:

P
(Σ|a)

[s
′
Σ,s
′′
Σ]

= P
(Z)

[s
′
Z ,s
′′
Z]
· P (Q|a)

[s
′
Q,s
′′
Q]

(s
′′

Z) (3.42)

where the matrix P (Z) was already defined, while P (Q|a)(s
′′
Z) represents the be-

havior of the queue Q. It depends on the arrival state of the underlying Markov
chain of the zone, and this dependence determines the number of job arrivals in
the queue, and the applied policy , and consequently the action a for each starting
state. Its generic element can be derived as follows:

P
(Q|a)

[s
′
Q,s
′′
Q]

(s
′′

Z) = Pr{S(Q)(n) = s
′′

Q|S(Q)(n− 1) = s
′

Q, A(n) = a} (3.43)

To evaluate this probability, let us indicate the number of jobs that can be
served in one slot by an active CPU as χp = µp ·∆, where µp is the job serving
rate expressed in job/s. If χp is not an integer, let model the service rate of an
active CPU by assuming that it serves:

− χ(+)
p = dχpe jobs with a probability pχ+ = χp − bχpc;

73

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

− χ(−)
p = bχpc jobs with a probability pχ− = 1− pχ+

Applying the total probability theorem to the number σ ∈ Ω(Z) of possible
arrivals and to the numer of departure ci ∈ {χ(−)

p , χ(+)
p } from the i-th active

CPU, with i ∈ {1, .., a}, we have:

P
(Q|a)

[s
′
Q,s
′′
Q]

(s
′′

Z) =
∑
∀σ∈Ω(Z)

a∑
i=1

∑
∀[c1,...,ca]

B
(Z)

[s
′′
Z ,σ]
· Pr{[c1, ..., ca]departures}·

· Pr
{
S(Q)(n) = s

′′

Q|S(Q)(n− 1) = s
′

Q, A(n) = a, Z(n) = σ, [c1, ..., ca]
}

(3.44)

The first probability term can be easily calculated assuming that the behaviors
of the queue servers are independent of each other. Therefore, the joint service
probability for all the CPUs is the product of marginal probability for each CPU
among the a that are active.
The second probability term in (3.44) can be calculated by remembering the

event sequence shown in Fig. 3.23 and considering that the queue state S(Q)(n)

can never become negative and never exceed K. Therefore, it is possible to con-
sider that the starting state of the queue, s′Q, is decreased by the departures,∑a

i=1 ci. Then, after imposing that this is not negative, the number of arrivals, σ,
is added and finally impose that the last result is not greater than the maximum
queue size K. This means that:

Pr
{
S(Q)(n) = s

′′

Q|S(Q)(n− 1) = s
′

Q, A(n) = a, Z(n) = σ, [c1, ..., ca]departures
}

=

(3.45)

=

1 if s′′Q = min{max{s′Q −
∑a

i=1 ci, 0}+ σ,K}

0 otherwise

Now, the expected value of the immediate reward for a given transition from
the generic state S(Σ)(n−1), to the generic state S(Σ)(n), and for a given action a
taken according to the state S(Σ)(n− 1), can be calculated by weighing the three
key parameters characterizing the system behavior. More in detail, from (3.30),
the reward is defined as:

74

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

Ψ
(Σ|a)

[s
′
Σ,s
′′
Σ]

= −k1
ξ(a)− ξMIN

ξMAX − ξMIN

− k2
λ(s

′
Σ, a)− λMIN

λMAX − λMIN

− k3
δ(s

′′
Σ, a)− δMIN

δMAX − δMIN

(3.46)

where:

− the first term, regarding the penalty (it becomes a reward, thanks to the
minus sign) due to the power consumption depending on the number of
CPUs switched on by the SC when the action a is performed according to
the starting state s′Σ, is defined as:

ξ(a) = a · ξµP (3.47)

with ξµP equal to the power consumption of each CPU;

− the second term, λ(s
′
Σ, a), is the penalty related to the job loss for queue

overflows. Starting from the knowledge of the starting and arrival states,
it is calculated as the log10 of the expected number of jobs lost in the
considered transition:

λ(s
′

Σ, a) = log10

∑
∀σ∈Ω(Z)

1

σ

a∑
i=1

∑
∀[c1,...,ca]

B
(Z)

[s
′′
Z ,σ]
· Pr{[c1, ..., ca]departures}·

·max

{
max

{
s
′

Q −
a∑
i=1

ci, 0

}
+ σ −K, 0

}
(3.48)

− the third term regards the processing latency, defined as the delay suffered
in the queueing system. To this purpose, assuming that conditions of this
queue remain constant in the future, the SC calculates its expected value
as follows:

δ(s
′

Σ, s
′′

Σ, a) =

⌈
s
′′
Q1

a · χp

⌉
(3.49)

where χp is the number of jobs that can be served in one slot by an active
CPU.

To evaluate the performance of this proposed framework, the next step is to
calculate the steady-state probability array, whose generic element is:

π
(Σ)
[sΣ] = lim

n→∞
Pr
{
S(Σ)(n) = sΣ

}
(3.50)

75

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

and can be calculated by solving the following linear equation system, in which
π(Σ) is a row array containing the steady-state probabilities of all the state in
=(Σ): π(Σ) · P (Σ) = πΣ

π(Σ) · 1T = 1
(3.51)

Finally, the three main performance parameters characterizing the reward func-
tion are formulated.
The mean power consumption, indicating a(s

′
Σ) as the number of CPUs acti-

vated by the SC in the system state s′Σ, is defined as:

ξ =
∑
∀s′Σ

a(s
′

Σ)π
(Σ)

[s
′
Σ]
· ξµP (3.52)

The mean processing latency is calculated through the Little law applied to the
queue:

δ =
NQ

ΛQ

(3.53)

with
NQ =

∑
∀sΣ

sQ · π(Σ)
[sΣ] (3.54)

ΛQ =
∑

∀s′Σ∈=(Σ)

∑
∀s′′Z∈=(Z)

∑
∀σ∈Ω(Z)

min{σ,K − s′Q1
} ·B(Z)

[s
′′
Z ,σ]
· P (Z)

[s
′
Z ,s
′′
Z]
· π(Σ)

[s
′
Σ]

(3.55)

About the per-slot loss probability, it can be calculated by averaging the number
of lost jobs when the system moves from the state s′Σ to the state s′′Σ and the SC
takes the action a:

λ =
∑

∀s′Σ∈=(Σ)

∑
∀s′′Z∈=(Z)

λ(s
′

Σ, a) · P (Σ|a)

[s
′
Σ,s
′′
Σ]
· π(Σ)

[s
′
Σ]

(3.56)

Now, it is possible to consider a case study to apply the proposed framework
and evaluate some numerical results, aimed at both showing how the proposed
framework behaves and the gain achieved in respect to the state-of-the-art.
An IoT network installed in a geographic area covered by a FANET of rotary-

wing UAVs moving at an average speed of 5m/s is considered. It is assumed
a power consumption of the engine of the UAV equal to P

(UAV)
E = 1 − 3kW

and that the UAV is equipped with a i7-2600K computer element with 32 GB
DDR4 SO-DIMM ram, six CPUs available to be used for computing services, and
Ubuntu Server 16.04 64 bit installed as operating system. Power consumption of

76

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

1.5 2 2.5 3 3.5 4 4.5 5
200

300

400

500

600

700

800

900
L=3
L=4
L=5
L=6

Figure 3.24: i7-2600K power consumption vs. clock speed for different numbers
of active CPUs

the computing element depends on the clock speed and is time variant according
to the current number of CPUs activated by the SC.
In Fig. 3.24, there is shown the variation of the power consumption when the

clock speed ranges in the interval [1.6, 4.8]GHz and a different number of CPUs
is active.
Let consider a slot duration of ∆ = 300ms and assume that each CPU is able

to serve one job when its clock speed is equal to 3.2GHz. Therefore, assuming a
linear job service rate as a function of the clock speed, when the CPU clock speed
ranges in the interval [1.6, 4.8]GHz, the job service rate of each CPU ranges in
the interval [0.5, 1.5] job/slot. Moreover, it is assumed that at most K = 15 jobs
can be accommodated in the queue of the UAV.
As far as the job arrival process is concerned, two cases, measured by a smart-

agriculture monitoring platform available on a big farmland near Catania (Italy),
are considered: the first case, LA, is characterized by a job arrival rate with an
average value of 4 jobs/slot while the second one, labeled as HA, is characterized
by a job arrival rate with an average value of 5 jobs/slot. Starting from the real
traces, and applying the inverse eigenvalue technique in the discrete-time domain
[58], the arrival processes in the two cases was modeled with the SBBPs ZLA(n)

and ZHA(n) characterized by the following matrices:

77

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

Q(ZLA) =

[
0.864 0.136

0.143 0.857

]
Q(ZHA) =

[
0.950 0.050

0.333 0.667

]
(3.57)

B(ZLA) =

〈
σ = 2

〉 〈
σ = 3

〉 〈
σ = 4

〉 〈
σ = 5

〉〈
sz = 1

〉
0.07 0.19 0.74 0〈

sz = 2
〉

0 0.21 0.25 0.54

B(ZHA) =

〈
σ = 4

〉 〈
σ = 5

〉 〈
σ = 6

〉 〈
σ = 7

〉〈
sz = 1

〉
0.27 0.66 0.07 0〈

sz = 2
〉

0 0.12 0.46 0.42

 (3.58)

During the experiments, three different scenarios were considered, each char-
acterized by different values of the configuration setup K = (k1, k2, k3) for the
equation (3.70). More specifically:

− K1 = (1, 1, 1), where all the performance parameters are weighed the same
way;

− K2 = (1, 3, 1), where higher weight to the loss probability was set;

− K3 = (1, 3, 3), where was also increased the weight of the processing latency.

A first analysis regards the performance, in terms of loss probability, processing
latency, and mean number of active CPUs, achieved in the three cases of available
CPUs L = 3, L = 4, and L = 6. Results are shown in Fig. 3.25, 3.26 and 3.27
for the LA scenario and Fig. 3.28, 3.29, and 3.30 for the HA scenario. Curves
compare the three configuration setups with the case in which RL is not applied
representing the state-of-the-art (realized by considering all the available CPUs
active).
As expected, the loss probability decreases with the job service rate. Its worst

case is for K1, since in this case the SC gives the least priority to the job loss
probability parameter, while the case K3 is the best one, since increasing k3,
although aimed at improving the processing latency, determines a queue length
decrease, and therefore loss probability decreases as well. Job loss probability
achieved for the no-RL case is, of course, better than the other cases, since no-RL
technique uses all the available CPUs not taking care of the current and future
states. Moreover, comparing the three cases of Fig. 3.25, let notice that curves
are lower for greater numbers of available CPUs, and comparing these figures
with the three cases of Fig. 3.28, it is possible to observe greater values of loss

78

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

(a) L=3 available CPUs (b) L=4 available CPUs

(c) L=6 available CPUs

Figure 3.25: Job loss probability for the IoT devices in LA state, against the job
service rate for each CPU

probability due to the higher load in HA state. In addition, Fig. 3.28 shows how
L = 3 active CPUs are not sufficient to support HA load, while L = 4 and L = 6

are able to provide acceptable loss probabilities but only for the considered setup
K3 and for high clock speed values.
Job processing latency is shown in Fig. 3.26 and 3.29 for the two considered zone

activity states, respectively. The non-monotonic behavior is due to the optimiza-
tion process applied by the SC, which aims at maximizing the reward function by
acting on the number of active CPUs. So, as expected, latency achieved for K1

is not less than delay achieved for K2, which is not less than the one achieved
for K3, while latency achieved when no-RL is applied is the best one. However,
the non-monotonic behavior and the fact that some values are shared by two or
more curves can be explained by the curves in Fig. 3.27 and 3.30, representing
the number of active CPUs chosen by the SC. More specifically, the SC tends to
activate all the CPUs in the central subrange of clock speed, while on the left
part of the curves this is not useful (the clock speed is too small to try to optimize
reward activating all the CPUs), and on the right part this is not necessary (the
clock speed is so high that it is not necessary to use all the CPUs).
The central range depends on the number L of available CPUs and on the

79

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

(a) L=3 available CPUs (b) L=4 available CPUs

(c) L=6 available CPUs

Figure 3.26: Job processing latency for the IoT devices in LA state

(a) L=3 available CPUs (b) L=4 available CPUs

(c) L=6 available CPUs

Figure 3.27: Mean number of active CPUs for the IoT devices in LA state

80

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

(a) L=3 available CPUs (b) L=4 available CPUs

(c) L=6 available CPUs

Figure 3.28: Job loss probability for the IoT devices in HA state, against the job
service rate for each CPU

configuration setup. Of course, the mean number of active CPUs in the HA state
is greater than the same number in the LA state. Moreover, looking at Figs. 3.27c
and 3.30c, it is possible to see the power saving achieved with our mechanism.
In fact, observing Fig. 3.25c and 3.26c, for higher clock speed and L = 6, loss
probability is negligible and mean delay is very low. Therefore, in that case the
SC can reduce the number of CPUs to be maintained active. This fact is more
evident for the configuration setups K1 and K2, where the SC takes better care
of power consumption.

Scenario with cooperation between UAV

In [53] was introduced the possibility of a cooperation between two nearby UAVs:
if a UAV is overloaded of jobs, and typically this occurs when the area assigned
to it is in the HA state, it asks for help to the closest UAV that is not stressed
at that time.
In Fig. 3.31, the MEC UAV 1 is monitoring a HA area and has obtained avail-

ability for help from MEC UAV 2. In this way, UAV 1 and UAV 2 cooperate
in order to optimize a common objective function weighing the power-saving re-
lated to CE power consumption, delay and loss probability experienced by both

81

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

(a) L=3 available CPUs (b) L=4 available CPUs

(c) L=6 available CPUs

Figure 3.29: Job processing latency for the IoT devices in HA state

(a) L=3 available CPUs (b) L=4 available CPUs

(c) L=6 available CPUs

Figure 3.30: Mean number of active CPUs for the IoT devices in HA state

82

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

PP

TFlow
Switch

 1,min

Q
ue

ue
 Q

1

Q
ue

ue
 Q

2

SYSTEM
CONTROLLER (SC)

Queue T

1 2

High Activity

1 2 RH 1 2 RL

Low Activity

MEC UAV 1

 1,b

 2b

 11 ,min

1 L 1 L

MEC UAV 2

Data
channel

Control
channel

Figure 3.31: UAV cooperation scenario. Functional architecture of the helped and
helping MEC UAVs

offloaded and non-offloaded jobs. The SC, in this case, has to decide not only how
many CEs activating on UAV 1, b1, but also the number of CPUs that has to be
active in UAV 2, b2, and the maximum number σ of jobs to be locally managed
by UAV1 among the ω1 jobs arrived by the HA area. The other (ω1− σ) jobs are
offloaded to UAV2. As in the previous case, the SC takes decisions using RL to
maximize the reward fucntion:

FRW = −c1
ξ − ξMIN

ξMAX − ξMIN

− c2
λ− λMIN

λMAX − λMIN

− c3
δ − δMIN

δMAX − δMIN

(3.59)

where ξ, λ and δ represents the three parameters already described.
As shown in Fig. 3.31, two communications channels are activated between

the UAVs: a data channel for transmission of offloaded jobs; a signaling channel
to exchange control information between the SC and UAV 2. Due to the very
low amount of information transmitted on the second channel,the delay on this
channel is negligible.
Jobs to be locally processed by UAV 1 are enqueued in the queue Q1, where they

will wait to be processed with a FIFO policy. The offloaded jobs are enqueued
in the transmission queue T to be transmitted to the other UAV, where will be
enqueued together with the jobs arriving from the area monitored by that UAV.

83

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

Queue T is served with a bitrate depending on the quality of the wireless channel
between UAV 1 and UAV 2. In the following, the job service rate of each CE is
indicated as µp , and the job transmission rate on the wireless channel between
UAVs as µT .
As before, it is possible to define a Cumulative RewardG(n) as in (3.31), a State-

value Function (3.32) and an Action-value Function (3.33). A MDP Σ model is
defined as already described in (3.34), with the same considerations about the
transition probability matrix P (Σ|ρ) (3.35) and the immediate reward matrix Ψ(Σ|ρ)

(3.36).
The Bellman equation (3.38) and the Bellman optimality equation (3.40) are

derived in the same way described in the previous case.
The proposed system was modeled with a three-dimensional discrete-time Markov

chain, whose state is defined as:

S(Σ)(n) =
(
S(Z)(n), S(Q)(n), S(T)(n)

)
(3.60)

It is different respect the case of UAVs working without cooperation because
now the model has to consider not only the state of the zone Z1 and of the queue
Q1, but also the state of Z2, the queue of UAV2 Q2, and the state of the data
channel T . More in detail:

− S(Z)(n) =
(
S(Z1)(n), S(Z2(n)

)
. Let =(Z1) = {1, 2, ..., RH} be the set of states

characterizing the behavior of area 1, being it in the HA state, and =(Z2) =

{1, 2, ..., RL} be the set of states characterizing the behavior of area 2, being
it in LA state. As in the previous case, S(Zi)(n) ∈ =(Zi), i ∈ {1, 2} is the
state of area i at the slot n and, defining Ω(Z) the set of all the possible
numbers of job arrivals from an area, it is characterized by the transition
probability matrix P (ZH) and P (ZL) and by the job emission probability
matrix B(Z1) and B(Z1) for area 1 and area 2 respectively;

− S(Q)(n) =
(
S(Q1)(n), S(Q2(n)

)
represents the state of UAV queues Q1 and

Q2, being S(Qi)(n) ∈ [0, ..., K], i ∈ {1, 2}. K is the maximum number of
jobs that can be buffered in each of these queue;

− S(T)(n) ∈ [0, ...,M] is the state of the transmission queue for offloading from
UAV 1 to UAV 2, where M is the maximum number of jobs that can be
accommodated in queue T .

Assuming that the time needed to process one job in one of the CEs is less than
the time tT = 1/µT needed to transmit one job from UAV 1 to UAV 2 , in the

84

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

 TQZ ssssnS
 ,,)1()(

n

 TQZ ssssnS
 ,,)()(

SC action (b1 , b2 ,

Update the zone state

Z
Z snS)()(

a. Enqueue in Q1

b. Dequeue from T
c. Enqueue jobs coming from Z2 in Q2

e. Enqueue in T
d. Enqueue jobs coming from T in Q2

1Slot n nSlot

a. Dequeue from Q1

b. Dequeue from Q2

Figure 3.32: UAVs collaboration and RL. Time diagram of the sequence of the
events in a state transition

following the average time needed to process one job in a CE is considered equal
to the action decision period, ∆, also used as the slot duration. The probability
to process one job in one slot is equal to 1, while the probability of transmitting
one job in one slot from UAV 1 to UAV 2 is pTX = ∆/tT .
To derive the transition probability matrix of the whole system constituted by

UAV 1 and UAV 2 and the transmission queue T , let consider again two generic
states s′Σ and s′′Σ defined as:

− s
′
Σ = (s

′
Z , s

′
Q, s

′
T) = S(Σ)(n− 1) at the slot n− 1

− s
′′
Σ = (s

′′
Z , s

′′
Q, s

′′
T) = S(Σ)(n) at the slot n

Considering the Fig. 3.32, the following event sequence are performed to transit
from the slot n− 1 to the slot n:

− Decision of the new value a = (b1, b2, σ), with bi ∈ [1, L], according to the
best policy achieved by RL, based on the value of the current system state
s
′
Σ = S(Σ)(n− 1);

− Update of the zone state, with the transition from S(Z)(n− 1) to S(Z)(n);

− Dequeue of some jobs from the queues Q1 and Q2, according to the number
bi of CPUs that have worked in the slot n in the i-th UAV;

85

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

− The arrival of some jobs, Z(n) = (ω1, ω2), according to the SBBP processes,
whose underlying Markov chain states, S(Z1)(n) and S(Z2)(n), have been
updated in the step 2;

− Enqueue of some jobs in queue Q1 equal to min{σ, ω1}, where σ has been
decided at step 1. These jobs will suffer a delay due to queue Q1;

− Dequeue of one job from the Transmission queue T (this occurs with the
job departure probability), and enqueue it in queue Q2 of UAV 2 after the
jobs arrived from area 2;

− Enqueue in queue T of the jobs arrived from area 1 and to be offloaded.
These jobs will suffer a delay that is the sum of the delay in T and the delay
in Q2;

− Update of the system state from S(Σ)(n − 1) to S(Σ)(n), according to the
evolution of each of its components, as described in all the previous steps.

The generic element of the transition probability matrix can be defined as fol-
lows:

P
(Σ|a)

[s
′
Σ,s
′′
Σ]

= P
(Z)

[s
′
Z ,s
′′
Z]
· P (Q,T |a)

[(s
′
Q,s
′
T),(s

′′
Q,s
′′
T)]

(s
′′

Z) (3.61)

Assuming that the behavior of each area is statistically independent of the
behavior of the other one, the generic element of the P (Z) matrix is given by:

P
(Z)

[s
′
Z ,s
′′
Z]

= P
(Z1)

[s
′
Z1
,s
′′
Z1

]
· P (Z2)

[s
′
Z2
,s
′′
Z2

]
(3.62)

The matrix P (Q,T |a)(s
′′
Z) models the behavior of the three queues Q1, Q2, and

T . Also in this scenario, it depends on the arrival process, characterized by the
states of the underlying Markov chain of the areas, which determine the number
of job arrivals in the queues and the action a for each starting state. Its generic
element is:

P
(Q,T |a)

[(s
′
Q,s
′
T),(s

′′
Q,s
′′
T)]

(s
′′

Z) =

= Pr
{
S(Q)(n) = s

′′

Q, S
(T)(n) = s

′′

T |S(Q)(n− 1) = s
′

Q, S
(T)(n− 1) = s

′

T , A(n) = a
}

(3.63)

To evaluate this probability, let apply the total probability theorem to the num-
ber of possible arrivals from the monitored areas, ω1 and ω2:

86

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

P
(Q,T |a)

[(s
′
Q,s
′
T),(s

′′
Q,s
′′
T)]

(s
′′

Z) =
∑

∀ω1∈Ω(Z)

∑
∀ω2∈Ω(Z)

B
(Z1)

[s
′′
Z1
,ω1]
·B(Z2)

[s
′′
Z2
,ω2]
·

Pr{S(Q)(n) = s
′′

Q, S
(T)(n) = s

′′

T |S(Q)(n− 1) = s
′

Q, S
(T)(n− 1) = s

′

T ,

A(n) = a, Z1(n) = ω1, Z2(n) = ω2}

(3.64)

The probability term of the previous equation can be evaluated by considering
that, choosing the slot duration equal to the mean job service time on a UAV
CE, b1 jobs will be served in queue Q1 and in queue Q2. Instead, the number
of jobs that leave the transmission queue T depends on the job size and the
throughput of the connection link from UAV 1 to UAV 2. Now, applying again
the theorem of total probability to the number of jobs that are transmitted from
the transmission queue, indicated as dT , with dT ∈ {0, 1}, the probability term
in the previous equation can be written as:

Pr{S(Q)(n) = s
′′

Q, S
(T)(n) = s

′′

T |S(Q)(n− 1) = s
′

Q, S
(T)(n− 1) = s

′

T ,

A(n) = a, Z1(n) = ω1, Z2(n) = ω2} =
1∑

dT=0

Pr{dT} · f (Q1)(s
′

Q1
, s
′′

Q1
, b1, ω1, σ)·

· f (Q2)(s
′

Q2
, s
′′

Q2
, s
′

T , b2, ω2, dT) · f (T)(s
′

T , s
′′

T , ω1, dT , σ)

(3.65)

The term Pr{dT} represents the probability that jobs leave queue T because
transmitted and is defined as:

Pr{dT} =

pTX if dT=1

1− pTX if dT=0
(3.66)

f (Q1)(·), f (Q2)(·) and f (T)(·) are functions providing the one-slot evolution prob-
abilities of the two UAV queues and the transmission queue, respectively. About
the first function, it is defined as:

f (Q1)(·) =

1 if s′′Q1
= min{max{s′Q1

− b1, 0}+min{σ, ω1}, K}

0 otherwise
(3.67)

To calculate the second function, let consider that the number of jobs in Q2,
after arrivals and departures, is the sum of the ω2 jobs arriving from area 2 and

87

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

the jobs arriving from queue T , which is dT if at least jobs are dT present in T .
Then, the derivation of the final number of jobs in Q2 at the end of the slot has
to account for the comparison with the maximum queue size K, and the number
of departures, b2. So f (Q2)(·) is equal to:

f (Q2)(·) =

1 if s′′Q2
= min{max{s′Q2

− b2, 0}+ ω2 +min{s′T , dT}, K}

0 otherwise
(3.68)

Finally, the function f (T)(·) can be easily derived considering that a number of
jobs equal to (ω1 −min{σ, ω1}) enter queue T , while dT jobs are dequeued:

f (T)(·) =

1 if s′′T = min{max{s′T − dT , 0}+ (ω1 −min{σ, ω1}),M}

0 otherwise
(3.69)

As in the previous case, let define the expected value of the immediate reward
by weighing the three key parameters characterizing the system behavior, that
is, power consumption, job loss probability, and delay. More in details:

Ψ
(Σ|a)

[s
′
Σ,s
′′
Σ]

= −c1
ξ(a)− ξMIN

ξMAX − ξMIN

− c2

λ(s
′
Σ, s

′′
Z2
, a)− λMIN

λMAX − λMIN

− c3
δ(s

′′
Σ, a)− δMIN

δMAX − δMIN

(3.70)
the meaning of the three terms is the same as in the previous case, but with

some changes due to the presence of area 2 and queue T - In particular:

− in the first term, regarding the penalty for power consumption, due to the
definition of a = (b1, b2, σ), ξ(a) is defined like:

ξ(a) = (b1 + b2) · ξµP (3.71)

− the second term is the penalty related to the job loss. It is calculated as the
log10 of the expected number of the fraction of jobs lost in the considered
transition, X(Σ)(n), over the mean number of arrivals, in the same slot,
Z(Σ)(n):

λ(s
′

Σ, s
′′

Z2
, a) = log10

X(Σ)(n)

Z(Σ)(n)
(3.72)

88

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

where

Z(Σ)(n) = E{Z(n)|S(Z) = s
′

Z} =

= E{Z1|S(Z1) = s
′

Z1
}+ E{Z2|S(Z2) = s

′

Z2
} =

=
∑

∀ω1∈Ω(Z1)

ω1 ·B(Z1)

[s
′′
Z1
,ω1]

+
∑

∀ω2∈Ω(Z2)

ω2 ·B(Z2)

[s
′′
Z2
,ω2]

(3.73)

while X(Σ)(n) is the sum of jobs lost in Q1,Q2 and T :

X(Σ)(n) =
∑

∀ω1∈Ω(Z)

B
(Z1)

[s
′′
Z1
,ω1]

∑
∀ω2∈Ω(Z)

B
(Z2)

[s
′′
Z2
,ω2]
·

· [max{max{s′Q1
− b1, 0}+ σ −K, 0}+

+
1∑

dT=0

max{max{s′T − dT , 0}+ (ω1 − σ)−M, 0}+

+max{max{s′Q2
− b2, 0}+ ω2 +min{dT , s

′

T} −K, 0}]

(3.74)

− the third element regards the delay suffered in the system queues. As already
said, the jobs arrived at UAV 1 can suffer either the delay in queue Q1, if
not offloaded, or the sum of the delays suffered in queue T and in queue
Q2, where also jobs coming from area 2 are buffered, which delay has to be
considered too. These three delays are weighed by the percentage of traffic
steered through these paths. To be more conservative, and assuming that
conditions of those queues remain constant in the future, the SC, for its
decision, considers the delay of the last job of the burst that is enqueued
at each slot. So, applying the total probability theorem to the number of
arrived jobs from both the areas, this term can be defined as:

δ(s
′

Σ, s
′′

Σ, a) =
∑

∀ω1∈Ω(Z)

B
(Z1)

[s
′′
Z1
,ω1]

∑
∀ω2∈Ω(Z)

B
(Z2)

[s
′′
Z2
,ω2]
· 1

ω1 + ω2

·

· [min{σ, ω1} · δ1,nOL + (ω1 −min{σ, ω1}) · δ1,OL + ω2 · δ2]

(3.75)

where δ1,nOL is the expected delay suffered by the last job enqueued in
the Q1, δ1,OL is the expected delay suffered by the last job offloaded along
the path T and Q2, while δ2 is the expected delay suffered by the last job
enqueued Q2 coming from area 2.

The generic element of the steady-state probability array can be defined as in
(3.50) and (3.51).

89

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

Let derive the three main performance parameters characterizing the reward
function. The mean power consumption is:

ξ = ξµP ·
∑

∀sΣ∈=(Σ)

[b1(sΣ) + b2(sΣ)] · π(Σ)
[sΣ] (3.76)

where b1(sΣ) and +b2(sΣ) are the number of CEs activated by Sc in the UAV1
and UAV2.
The mean delays suffered in the three queues can be calculated using Little

law. It was already defined in the previous case, considering only a queue in the
UAV1. In this case, it has to be calculated for Q1, Q2 and T . More specifically,
for Q1 it is:

δQ1 =
NQ1

ΛQ1

(3.77)

with:
NQ1 =

∑
∀sΣ∈=(Σ)

sQ1 · π
(Σ)
[sΣ] (3.78)

ΛQ1 =
∑

∀s′Σ∈=(Σ)

∑
∀s′′Z1

∈=(Z)

∑
∀ω1∈=(V)

min{σ, ω1, K − s
′

Q1
} ·B(Z1)

[s
′′
Z1
,ω1]
· P (Z1)

[s
′
Z1
,s
′′
Z1

]
· π(Σ)

[s
′
Σ]

(3.79)
For the queue T :

δT =
NT

ΛT

(3.80)

with:
NT =

∑
∀sΣ∈=(Σ)

sT · π(Σ)
[sΣ] (3.81)

ΛT =
∑

∀s′Σ∈=(Σ)

∑
∀s′′Z1

∈=(Z)

∑
∀ω1∈=(V)

min{max(ω1−σ, 0),M−s′T}·B
(Z1)

[s
′′
Z1
,ω1]
·P (Z1)

[s
′
Z1
,s
′′
Z1

]
·π(Σ)

[s
′
Σ]

(3.82)
For the queue Q2, as already said, the number of job arrivals in one slot is ω2

from the area 2 plus one if one job arrives from queue T , with probability Pr{dT}:

δQ2 =
NQ2

ΛQ2

(3.83)

with:
NQ2 =

∑
∀sΣ∈=(Σ)

sQ2 · π
(Σ)
[sΣ] (3.84)

90

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

ΛQ2 =
∑

∀s′Σ∈=(Σ)

∑
∀s′′Z2

∈=(Z)

∑
∀ω2∈=(V)

1∑
dt=0

Pr{dT}min{ω2 +min(dT , s
′

T), K − s′Q2
}·

·B(Z2)

[s
′′
Z2
,ω2]
· P (Z2)

[s
′
Z2
,s
′′
Z2

]
· π(Σ)

[s
′
Σ]

(3.85)

Finally, the per-slot loss probability can be calculated by averaging the number
of lost jobs when the system moves from the state s′Σ to the state s′′Σ and the SC
takes the action a:

λ =
∑

∀s′Σ∈=(Σ)

∑
∀s′′Z∈=(Z)

λ(s
′

Σ, s
′′

Z2
, a) · P (Σ|a)

[s
′
Σ,s
′′
Σ]
· π(Σ)

[s
′
Σ]

(3.86)

Now, it is possible to consider a case study to apply the proposed framework
and evaluate some numerical results, aimed at both showing how the proposed
framework behaves and the gain achieved in respect to the state-of-the-art. A
FANET of rotary-wing UAVs is considered, with a power consumption of 150

W on average. Let assume that CEs installed onboard each UAV are Computer
Processor Units (CPUs) Intel R© CoreTM i7-10510U Processors, 8MB Cache, 4.80
GHz, and 32GB DDR4 SO-DIMM ram. The cases in which L = 3 and L = 4

CPUs are available onboard of UAV to provide the slice extension service is
consider. The system power consumption for computation with no active CPUs
is ξS = 10W , while each active CPU absorbs ξµP = 25W . So, the instantaneous
power consumption when b(n) CPUs are active is:

ξProc(n) = ξS + b(n) · ξµP (3.87)

Each UAV has a job queue that can contain, at most, K = 15 jobs, and a
transmission queue where at most M = 5 jobs can be enqueued to wait for
transmission. We consider jobs having, on average, a size of 7 MB, and requiring
a mean processing time of ∆ = 300 ms, also chosen as the slot duration.
The same Q and B matrix of the previous case has been used as input of the

problem. The presented analysis is done against the transmission bitrate, in the
following also referred to as job offloading bitrate, on the radio channel from UAV
1 to UAV 2, ranging in the interval [28, 180] Mbit/s. For example, let assume that
four UAVs are used to monitor an area of 1,000 square meters, and that the area
covered by each UAV is in the HA state for the 6% of the time (pH = 0.06),
while it is in LA state in the remaining time (pL = 0.94). Moreover, let assume
that each UAV transmits with a power of 0.5 W using a carrier frequency of 2

91

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

GHz on a channel characterized by noise power spectral N0 = −170 dBm/Hz
with an additional path loss to free space in loss of 3 dB. In this case, the job
offloading bitrate ranges in the considered interval [28, 180] Mbit/s by using a
channel bandwidth ranging between 975 kHz and 6.2 MHz.
To evaluate the gain introduced by the proposed strategy, in the following re-

ferred to as “RL ALL”, it is compared with the following three strategies:

− “No RL”: all the available CPUs are maintained on, and offload is not used,
so UAV 1 is not helped by UAV 2. This represents the state-of-art strategy;

− “RL CPU”: RL is applied to decide the number of CPUs, while offload is
not applied;

− “RL OL”: RL is applied to decide how many jobs have to be offloaded in
each slot, whilst all the available CPUs are maintained on.

Moreover, two different scenarios are considered, each characterized by different
importance assigned to power saving, loss probability, and delay. This is achieved
by considering two different configurations C = (c1, c2, c3). More specifically, the
cases C1 = (1, 1, 1), where all the parameters are weighed in the same way, and
C2 = (1, 3, 3), where loss and delay take a higher priority than power consump-
tion, were considered. Finally, a discount factor γ = 0.8 was used by the SC to
apply RL.
First, results in the case of L = 3 available CPUs, that is when UAV 1 is strongly

stressed, are presented. Loss probability, mean delay and mean number of used
CPUs are shown in Figs. 3.33, 3.34 and 3.35 for all the three queueing systems,
as a function of the job offloading bitrate.
Referring to Fig. 3.33b, some curves listed in the legend are not present since

they have negligible values, less than the lower limit of the y-axis. Moreover,
curves related to the cases not applying RL on the number of active CPUs are
not shown in Fig. 3.35 since trivial, given that they use all the 3 available CPUs.
In Fig. 3.33, the reference cases “RL CPU” and “No RL”, are constant against the

job offloading bitrate since they do not use offload. The loss probability achieved
with the other two policies, that is, “RL OL” and “RL ALL”, rapidly decreases
in Q1 w.r.t. the offloading bitrate, and is lower for the C2 configuration, since
this configuration privileges loss and delay. Instead, in queue Q2, loss probability
increases for these two last policies, except for the “RL ALL” policy with C2
configuration. Increasing is motivated by the fact that the higher the offloading
bitrate, the higher the number of offloaded jobs, and therefore the higher the Q2

92

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

-8

-6

-4

-2

0

RL ALL - C1
RL ALL - C2
RL OL - C1
RL OL - C2
RL CPU - C1
RL CPU - C2
No RL

(a) Q1 queue (b) Q2 queue

(c) T queue

Figure 3.33: UAVs cooperation and RL. Loss probability for L = 3 available CPUs

(a) Q1 queue (b) Q2 queue

(c) T queue

Figure 3.34: UAVs cooperation and RL. Mean delay for L = 3 available CPUs

93

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

(a) Q1 queue (b) Q2 queue

Figure 3.35: UAVs cooperation and RL. Mean number of active CPUs for L = 3
available CPUs

input rate; on the other hand, the decreasing behavior for the C2 configuration
is because, to privilege loss probability even when UAV 2 receives more offload
from UAV 1, the SC decides to use a higher number of CPUs, as shown in Fig.
3.35b. The strategy “RL CPU” suffers from a high amount of losses with the
C1 configuration in both Q1 and Q2 since the SC aims at also saving energy, as
shown in Fig. 3.35b. again, characterized by the lowest mean number of active
CPUs. This is not true only in Q2 for job offloading bitrates less than 45 Mbit/s
because, in this case, offload is not so much useful for the "RL ALL" policy with
the C1 configuration, behaving the offloading link as a system bottleneck. This
last statement is also supported by the curves in Figs. 3.33.c and 3.34.c, where
high values of loss probability and delay in queue T are obtained for low values
of job offloading bitrate, especially in cases of C1 configuration, i.e. when the
privileged target is energy saving.
As far as the mean delay is concerned, the best performance in Q1 is achieved

with the “RL OL” policy, since it uses job offload while maintaining all the CPUs
active. Instead, the “RL CPU” policy with the C1 configuration performs worse
than “No RL” since it aims at saving some energy by switching off some CPU.
Now, to also evaluate the impact of the number of available CPUs on system

performance and flight duration, the case of L = 4 available CPUs is included.
Figs. 3.36 and 3.37 present the overall loss probability and mean delay for all the
considered strategies. Instead, Fig. 3.38 shows the power consumption gain of the
“RL ALL” strategy as compared with the other ones for both the configurations
C1 and C2. In these figures, let appreciate the higher flexibility of the proposed
“RL ALL” policy as compared to the other ones. Indeed, the “RL ALL” policy in-
troduces more losses and higher delays when these parameters are not of primary
importance (C1 configuration), but in this case, it is able to obtain a positive

94

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

(a) L = 3 available CPUs (b) L = 4 available CPUs

Figure 3.36: UAVs cooperation and RL. Loss probability (on both non-offloaded
and offloaded jobs)

(a) L = 3 available CPUs (b) L = 4 available CPUs

Figure 3.37: UAVs cooperation and RL. Mean delay

(a) L = 3 available CPUs (b) L = 4 available CPUs

Figure 3.38: UAVs cooperation and RL. Power consumption gain

power consumption gain with high values. On the contrary, if loss probability
and delay are more important, “RL ALL” is able to achieve very low values for
them, although with lower power consumption gain than all the other policies,
even if this gain remains positive. Of course, the highest power consumption gain
for “RL ALL” is obtained against the “RL OL” and the “No RL” policies, since
these maintain all the available CPUs active. Moreover, this gain is higher when

95

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

(a) UAV1 (b) UAV2

Figure 3.39: UAVs cooperation and RL. Reduction percentage of flight duration
for L = 3

(a) UAV1 (b) UAV2

Figure 3.40: UAVs cooperation and RL. Reduction percentage of flight duration
for L = 4

a higher number of CPUs is available onboard UAV (L = 4 rather than L = 3).
Finally, Figs. 3.39 and 3.40 present the impact of the considered four strategies

on the flight duration, for both the UAVs and in both the cases of L = 3 and
L = 4. To this purpose, the percentage of flight duration reduction caused by
supplying CPUs is compared to the power consumption needed to supply UAV
engines. Both the “RL CPU” and “No RL” policies are considered as a reference
because they maintain all available CPUs active, and this is the reason why their
curves are constant w.r.t. the job offloading bitrate. They have not been reported
for UAV 2 since obtained values are the same as UAV 1. From these figures
let observe how the strategies using RL to decide the number of active CPUs
outperform the previous ones. Moreover, when the “RL ALL” strategy is applied,
the flight duration of UAV 1 is maximized, and this is more evident for high
values of job offloading bitrate and, of course, when the C1 configuration is used.
On the other side, the reduction of UAV 2 flight duration due to CPUs is very
small, even if increasing, as expected, with the job offloading bitrate. The same

96

CHAPTER 3. MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

considerations can be done with L = 4 but, of course, with a higher impact on
the flight duration reduction.
In conclusion, the experimental results show the flexibility of “RL ALL” and its

ability to satisfy network slice requirements by varying configuration parameters.
Thus, the SC using “RL ALL” can adapt its behavior to the application scenario
at runtime with great flexibility.

97

Chapter 4

Network slicing for vertical
applications

This chapter introduces the use of network slicing for vertical applications. In
particular, two different scenarios are presented: the first concerns the Tactile
Internet network slice and an implementation of its main component, the TSE
(Section 4.1), while the second refers to the Vehicular network slice, in which a
multi-offloading strategy between vehicles and MEC server is proposed (Section
4.2).

4.1 The TSE for Tactile Internet

The network slice providing guarantees of e2e delay not greater than 1 ms is
called Tactile Internet. Due to this stringent requirement, it is necessary to insert
a component, at the edge of the network, that can compensate for any malfunc-
tions of the core network, in order to guarantee the requested requirements to
the applications that use this slice. The Tactile Support Engine (TSE) has pre-
cisely this goal, thanks also to the Artificial Intelligence (AI) techniques that are
implemented within it.
Despite the importance of the TSE, the literature lacks a definition of the ar-

chitecture of this component and how it integrates with the rest of the actors
of the Tactile Internet network slice. For this reason, in the paper [59] submit-
ted to the Special Issue on Network Intelligence (Computer Communication), a
TSE architecture was proposed and the integration with the other components
presented.
In Subsection 4.1.1, the general architecture of the Tactile Internet network slice

in described, while Subsection 4.1.2 proposes a structure of the TSE. It is then

98

CHAPTER 4. NETWORK SLICING FOR VERTICAL APPLICATIONS

applied to a real scenario, to obtain measures to evaluate its performance.

4.1.1 Tactile Internet Architecture

The term Tactile Internet was first coined by G. P. Fettweis in early 2014 [60]
to provide services with interaction latency typically required for tactile steering
and control of real and virtual objects without creating cyber-sickness. More
specifically, its definition agreed within the IEEE 1918.1 WG [61], is: “A network
(or network of networks) for remotely accessing, perceiving, manipulating, or
controlling real or virtual objects or processes in perceived real-time by humans
or machines.”
The idea is to provide applications with real-time interaction of human beings,

with response time to the environment in the order of milliseconds. Therefore,
the Tactile Internet aims at defining a new human-machine interaction where
the network provides a physiological latency of human beings to build real-time
interactive systems. The primary goal is to provide the necessary infrastructure,
given that not only content does need to be transported in the future Internet, but
also control information with a maximum round-trip time in which a sensor reads
information and a connected system reacts with actuators within few milliseconds.
Another key challenge of the Tactile Internet is to be able to provide carrier-grade
access reliability and robustness, e.g., an uptime of the system of so-called seven
nines (99.99999 %), i.e., a failure rate of 10−7 [62].
In [63] it has been observed that, considering the propagation delay due to

the speed of light, the maximum distance between a steering and control server
and the point of tactile interaction by the users is of 150-750 km (considering
an e2e delay between 1-5 milliseconds). However, let us note that, if sensors
produce big data, their transmission introduces an additional delay that depends
on the link capacity where these data have to be transmitted. For this reason, and
due to the numerous applications ranging from tele-operation, automotive, and
immersive virtual reality to the Internet of drones, interpersonal communications,
live haptic-enabled broadcast and cooperative automated driving [64], a lot of
research activities and investments from industrial and academic entities have
been devoted to the study of Tactile Internet.
The general architecture for a Tactile Internet network slice is shown in Fig.

4.1. It is constituted by three different domains:

− theMaster Domain, consisting of an operator, either human or machine, and
a human-system interface (HSI). This interface is a master robot/controlling

99

CHAPTER 4. NETWORK SLICING FOR VERTICAL APPLICATIONS

Master Domain Controlled DomainNetwork Domain

TSE

Figure 4.1: Tactile Internet scenario

device (e.g. a haptic device) that converts the operator’s input to a “Tactile
Internet input” through various coding techniques;

− the Controlled Domain, consisting of several devices (e.g. robots or objects)
located in a real environment, constituted by several components, each char-
acterized by specific parameters. These components are controlled directly
by the Master Domain through various command signals for interaction in
a remote environment;

− the Network Domain, which is the telecommunications infrastructure con-
necting the aforementioned two domains. It provides the Tactile Internet
network slice.

The role of the Network Domain is crucial in a scenario with very low latency
requirements. A delay in the transmission of the state of controlled devices from
the Controlled Domain to the Master Domain would cause an incorrect synchro-
nization between the state of device components in the real environment and
what the operator perceives through the display. In the same way, a delay in
the transmission of control values (e.g. the current to be applied to a motor of a
robot) in the opposite direction would cause a control of the remote device not
synchronized with the operator’s decisions.
For this reason, the presence of the TSE is fundamental. Its goal is to enhance

the capacity of the network by providing the required level of QoS to the end-
users. In other words, when the network presents some time-limited problems,
the TSE intervenes to substitute/integrate information generated by the Master
Domain that are not arrived in time, so that the Controlled Domain remains
unaware of these problems. The behavior of the TSE is based on techniques of
AI [65]. The task of the TSE is enabled by the application of the MEC paradigm,
allowing cloud computing proximity to host the tools of AI in the service of mobile
devices.

100

CHAPTER 4. NETWORK SLICING FOR VERTICAL APPLICATIONS

Master Domain Controlled DomainNetwork Domain

Traffic Sniffer

TSE 1 TSE N…TSE 2 TSE 3

ReferenceSystem.pdf

Figure 4.2: TSE Reference System

4.1.2 TSE Implementation

Starting from Fig. 4.1, the proposed system is shown in Fig. 4.2. Two VNFs run-
ning at the edge node connected to the Controlled Domain site were considered:

− the Traffic Sniffer that collects data from the network. It uses the pcap
library [45] already described in Chapter 3 to capture packets from the
network and analyze them;

− the TSE that implements AI at the network edge to close the loop of the
Controlled domain when the Network domain is not respecting the declared
maximum tolerated end-to-end delay; this is achieved by applying AI on the
data received by the Traffic Sniffer.

As seen in Fig. 4.2, there is one Traffic Sniffer for each edge node of the Network
Domain, and one or more TSEs, depending on the number of controlled devices
placed in the Controlled Domain that access through that edge node. The traffic
flow transmitted by each controlled device is characterized by an ID that allows
the Traffic Sniffer to know the TSE which has to receive that information.
The TSE, thanks to its position very close to the Controlled Domain, always

receives, through the Traffic Sniffer VNF, data generated by the devices in the
Controlled Domain. When the response from the Master Domain is not received
from the TSE by a given ∆t time, which is an application-based time constraint
(e.g. it is equal to 5 ms for remote gaming), it forecasts the missing values and
sends them directly to the Controlled Domain.
About the Network domain, its behavior is classified into two states: 1) Good

state, when the round-trip time, also including the processing time at the Master
Domain, is less than the required threshold ∆t; 2) Bad state, when this latency
requirement is not satisfied, or some data are lost. The behavior of the Tactile
Internet components in the two states is sketched in Fig. 4.3 and Fig. 4.4.

101

CHAPTER 4. NETWORK SLICING FOR VERTICAL APPLICATIONS

Controlled
Domain

Network
Domain

𝑥(𝑛) 𝑥(𝑛)

𝑦(𝑛) 𝑦(𝑛)

𝑥(𝑛)𝑦(𝑛)

𝑥(𝑛)𝑦(𝑛)

TRAFFIC
SNIFFER

Master
Domain

TSE

Figure 4.3: TSE implementation. Network in Good state

Controlled
Domain

Network
Domain

𝑥(𝑛) 𝑥(𝑛)

𝑦(𝑛)

𝑥(𝑛)

𝑥(𝑛)

TRAFFIC
SNIFFER

Master
Domain

TSE

𝑦 (𝑛)

𝑦 (𝑛)

Figure 4.4: TSE implementation. Network in Bad state

At every slot n, the Controlled Domain sends an information element with a
value x(n) to the Master Domain, regarding some parameters of the controlled
device. When the edge access node (for instance, an SDN switch) receives this
information, it forwards this element to both the Master Domain through the
network and to the Traffic Sniffer. The latter reads the ID of the device that
has generated the information element, and forwards the x(n) value to the TSE
controlling that device. The TSE receives this information and stores it. On the
other side of the network, the user application in the Master Domain receives x(n),
and a human operator can see the controlled device and its state on a display.
Based on the application, the human operator can remotely control a particular
aspect of the device using a haptic device, by sending a reply value y(n) to the
remote Controlled Domain. If the network is working in good condition (Good
state), i.e. there are no delay or loss problems, this value arrives at the edge access
node on the Controlled Domain side in time. That access edge node forwards that
information element to both the controlled device and the Traffic Sniffer. This
latter reads the ID of the device associated with y(n) (it is the same of the ID
carried out by x(n)) and sends the value y(n) to the respective TSE, which also

102

CHAPTER 4. NETWORK SLICING FOR VERTICAL APPLICATIONS

Traffic Sniffer

Data Collector

1
2

…

1
2

…

TACTILE SUPPORT ENGINE (TSE)

Network
Monitor

Master Domain
Behavior Analyzer

TSE Controller

AI Engine

To the Controlled Domain

From Controlled
Domain

From Master
Domain/AI Engine

Data messages Signaling messages

Figure 4.5: Architecture of the TSE

stores it. Instead, if the TSE does not receive y(n) before the expiration of the
timeout for the corresponding x(n) received so far, it deduces that the Tactile
Internet requirements in the network are not satisfied. This triggers the TSE
to enter the forecasting phase and calculate the ỹ(n) value to be sent to the
Controlled Domain.
Referring to Fig. 4.5, it is possible to analyze the components inside the proposed

TSE: a Data Collector, a Network Monitor, a Master Domain Behavior Analyzer,
a TSE Controller and an AI Engine.
The Data Collector is a database where the x(n), received from the Controlled

Domain, y(n), received from the Master Domain, and ỹ(n), forecasted by the AI
Engine, are stored. The Network Monitor has the role of monitoring the state
of the Network Domain and communicating to the TSE Controller if any state
change is experienced. To achieve this monitoring task, the Network Monitor
starts a timeout lasting ∆t, based on the requirements of the application layer,
whenever a new sample of x(n) is received and stored in the Data Collector. If the
relevant sample y(n) is received before the timeout expires, the Network Monitor
deduces that the network is in the Good state, otherwise the network is considered
in the Bad state. In this last case, the Network Monitor sends a trigger message
to the TSE Controller to alert it of this event. When the TSE Controller receives
this message, it starts the forecasting procedure by sending a message to the AI

103

CHAPTER 4. NETWORK SLICING FOR VERTICAL APPLICATIONS

Engine, a block implementing a Machine Learning (ML) technique for forecasting
samples when needed. The above message contains the number N of samples to
be predicted, and a reference to the model to be used according to the current
behavior detected by the Master Domain Behavior Analyzer.
Another component inside the TSE is the Master Domain Behavior Analyzer.

Its task is to discover changes in the behavior of the human operator by analyzing
the y(n) trace generated by the Master Domain. In this implementation, it is
used a deep learning architecture inspired by recent advances in image and video
processing, which exploits correlations typical of gaming behaviors in the short-
term timescale. The Master Domain Behavior Analyzer acts as a typical deep
learning system: it properly formats input data sequences received from the Data
Collector when the network is in Good state; such input is fed to a deep neural
network that extrapolates and processes input features to provide information
regarding whether the game behavior is changed as compared to the behavior
detected during the last analysis. This is an important aspect of the TSE because,
if a variation in the Master Domain behavior is registered as a new never modelled
behavior, the TSE Controller has to trigger the AI Engine for a new training
phase. This is required as the previous model has become outdated to forecast
the future values, and no models are stored in the Model Database (DB) with the
revealed features. In this case, as said so far, the TSE Controller sends a message
to the AI Engine to start to work.
The AI Engine block is implemented by adopting an efficient, gradient-based

prediction and forecasting technique called Long Short Term Memory (LSTM)
[66] to forecast missed samples. This technique outperforms the other models
in terms of learning from long term dependencies. Further, it operates indepen-
dently of the gap length which makes it an ideal choice over Recurrent Neural
Network (RNN) for the considered system. The LSTM comes under supervised
learning, which makes use of an algorithm to learn the mapping function from the
input variables to the output variables by determining the relationship between
a dependent and an independent variable. The objective is to approximate the
mapping function so well that, when the model encounters a new input variable,
it can predict the output variables for the respective inputs. LSTM networks are
used for classifying, processing, and making predictions based on time series data.
A standard LSTM unit (Fig. 4.6) is composed of a cell that remembers values
over random time intervals and input, output and forget gates that regulate the
flow of information into and out of the cell as described in [66]. This unit con-
trasts with standard RNN in having only a single tanh layer. LSTMs also have a

104

CHAPTER 4. NETWORK SLICING FOR VERTICAL APPLICATIONS

Figure 4.6: A standard LSTM unit

chain-like structure similar to the RNN, but the repeating module has a different
structure compared to standard RNN. To be specific, instead of having a single
neural network layer, there are four layers that interact in a very special way.
In the proposed implementation, at the beginning, the TSE starts with a basic

version of an LSTM model that has been trained using data representing a typical
Master Domain behavior scenario and stored inside the AI Engine. New models
and updating of the models previously stored are included at runtime when the
AI Engine receives trigger messages from the TSE Controller and the network is
in Good state.
The behavior of the AI Engine is explained in Fig. 4.7. The AI Engine remains in

Idle state until it does not receive any trigger message from the TSE Controller.
As already said, it can receive two types of messages that correspond to: M1) a
generation of N forecasted samples, using the model that better represents the
current Master Domain behavior; M2) a request for calculating a new forecasting
model to be included in the Model Database DB.
The first type of message denotes a change of the state of the network. In this

case, the TSE Controller requests the forecasting of a certain number of future
values, so that the AI Engine enters the Forecasting state. It contacts the Data
Collector to obtain the last look_back (LB) values received by the Controlled
Domain, loads the most appropriate behavior model from the database, and uses
it to forecast a number N of values, as indicated by the TSE Controller. The
LB parameter is used during the training and forecasting phases to organize the
input data, i.e., it indicates how many samples are to be read to predict/forecast
the next one. The N forecasted values are sent to both the Data Collector and
the Controlled Domain: the former saves the needed forecasted values in its table

105

CHAPTER 4. NETWORK SLICING FOR VERTICAL APPLICATIONS

Idle

Training

Prediction DB

Model
Updating/Adding

Forecasting

Model
Retrieval

If the network is
in Good state

After forecasting
N samples

After the
Training phase

After the
Prediction
phase

N samples

)(~ ny

Trigger from the
TSE Controller

If the network is
in Bad state

Figure 4.7: TSE. Diagram of AI Engine life cycle

in such a way to maintain a perfect match between x(n) and its corresponding
y(n); the latter uses them to manage the controlled device. After that, the AI
Engine returns in the Idle state.
The second type of message represents a change of the Master Domain behavior,

triggered by the Master Domain Behavior Analyzer. In this case, the AI Engine
changes its state by entering into the Training state in order to create a new model
that better forecasts possible future values. For this reason, in this message, the
TSE Controller includes the size of the dataset that has to be used. Consequently,
the AI engine contacts the Data Collector to receive the dataset sample and starts
the training phase and then the prediction phase to generate the new model.
Models are also compared by considering different values of LB, in order to find
the best model and the associated value of LB. At the end of the prediction phase,
AI engine saves the obtained model in the Model Database DB, together with
the associated LB, or overwrites a previously-calculated less-accurate model, and
comes back to the Idle state. From this instant, it will use this new model as long
as it remains in the Forecasting state, until another change of the Master Domain
behavior is detected. In the Model Database, a mapping between the behavior of
the Master Domain and a particular model is set. As a result, in the future, it is
not necessary to train a model again if the Master Domain behaves like in some

106

CHAPTER 4. NETWORK SLICING FOR VERTICAL APPLICATIONS

Motor

L1 - 1024

Linear Actuator

0

Motor Controller
Arduino-based
Hapkit Board

)(nF

)(niC)(n

)(niH

)(nF

)(nx)(nx

Hapkit Device

)(nx

)(nx

Figure 4.8: TSE Use Case: Local Setup

period of the past. In this case, a stored model corresponding to that behavior
can be invoked and used in the forecasting phase.

Experiment scenario and results

An experiment characterized by a maximum tolerated latency of 5ms was realized
in order to test the proposed framework. It does not have the same time and failure
rate constraints as that of other Tactile Internet applications, i.e. 1 ms, but it
is useful to deduce general guidelines. The experiment consists of two steps: the
first one is an implementation of a car racing game played locally; the second step
involves simulating a system, containing Master, Network and Control domains to
realize the Tactile-Internet like scenario. This is done with the help of a Matlab-
based tool that allows simulating the network behavior, by introducing delay and
losses, and thereby calculating the performance.
The setup for the first step is depicted in Fig. 4.8. It consists of a game appli-

cation for Android devices, where the player has to ride a car along a concave
road by avoiding obstacles. The presence of obstacles (holes, walls or pedestrians)
on the road becomes more frequent as the difficulty of the game level increases,
forcing the player to change the trajectory repeatedly. Given the concavity of the
road, if the user does not give any input, the car comes to a steady-state position
in the middle of the road.
In the basic game, user actions are performed by moving the finger of the user

across the screen of an Android tablet or a phone, where the game is running, to
apply the desired trajectory changes. In this case, to realize an experiment where
the time constraints could be highlighted, the player’s finger was substituted by
a mini-stylus touch pen moved with the help of a Linear Actuator, attached with
a motor controlled by a Motor Controller. In this scenario an Arduino Microcon-

107

CHAPTER 4. NETWORK SLICING FOR VERTICAL APPLICATIONS

troller was used to control the motor: it modulates the current iC(n) at the input
of the motor according to the force F (n) imposed by the player. The measure of
the road concavity is obtained with the help of a spring. The spring is in a state
of rest when the car is at the center of the road i.e. when the stylus pen is at the
center of the touch bar. Farther the car moves away from the center, higher is
the force applied by the spring to bring it back to its original state. The position
of the touch pen is represented by x(n).
To avoid obstacles, the player can modify the trajectory of the car with the

aid of a Hapkit device. Hapkit is an open-hardware device designed by the Stan-
ford University [67] to impose forces on a remote object with only one degree
of freedom. It has a joystick-like handle that interacts with the Hapkit Board,
an Arduino-based circuit board with functionalities allowing to read data from a
magneto-resistive sensor, and a power amplifier that drives the motor connected
to it.
With the assistance of the Hapkit device, the player can feel the force relating

to the position of the car on the road (i.e. null when the car is in the middle,
maximum when the car is at a farther distance from the middle of the lane). The
user then imposes an additional force (apart from the force needed to maintain
the current position considering the concave shape of the road) to change the tra-
jectory and thereby avoid obstacles. The Hapkit Board gives a torsion moment to
the joystick-like handle with a time-variant current iH(n), and the player changes
the angle θ(n) to modify the car trajectory. Then the Hapkit Board calculates
the applied force F (n) from the angle θ(n). This information is then sent to the
RaspberryPi interfaced through a USB cable.
The second step of the experiment is achieved by simulating the system shown

in Fig. 4.9, to realize a Tactile-Internet scenario as the one shown in Fig. 4.2.
The simulation is realized in a Matlab-based tool, with the help of real traces
obtained from the local setup of the first step as inputs.
As shown in Fig. 4.9, the game environment constitutes the Controlled Domain,

with the Motor Controller, Motor, Linear Actuator, spring, mini-stylus touch pen
and the tablet where the game is running. Two RaspberryPis are connected in
both edge sites of the network amd are used to transmit data to the Network
Domain, and receive data in the opposite direction. The Master Domain is realized
with the Hapkit device, a RaspberryPi that is used to communicate with the
remote RaspberryPi to exchange messages, and a User display (monitor or a TV)
connected to the HDMI port of the RaspberryPi to view the game remotely.
Lastly, the Network Domain is a typical network infrastructure implementing the

108

CHAPTER 4. NETWORK SLICING FOR VERTICAL APPLICATIONS

5G Network Slice for Tactile
applications

Controlled Domain

Tactile Support
Engine

Network DomainMaster Domain

Game EnvironmentPlayer Environment

Traffic
Sniffer

)(nF

)(nx

)(nF)(nx

)(nx

User Display

)(nF)(nx

)(nF

)(nx

)(nF

Figure 4.9: TSE Use Case: Distributed Setup

SDN paradigm with two edge access nodes in the considered scenario, one towards
the Master Domain and the other towards the Controlled Domain. It is simulated
using a two-state Markov model that alternates the state of the network between
Good and Bad. An implementation of the TSE is also included according to the
architecture presented in Fig. 4.2. Since there is only one controlled device, it is
sufficient to have only one TSE deployed inside the Network Domain.
When the Master Domain receives x(n), the car position is updated on the User

display. Accordingly, the player moves the joystick-like handle to change the car
trajectory. The Hapkit Board, in turn, generates F (n), which is the force to be
applied to the remote spring in the Controlled Domain. This force is then sent
to the remote Motor Controller through the RaspberryPi in the Master Domain,
the Network Domain, and the RaspberryPi in the Controlled Domain.
If the network is in Good state, the information arrives at the edge node and sub-

sequently to the Traffic Sniffer and TSE on one side and to the Motor Controller
on the other side. TSE stores and uses the received information from Controlled
and Master Domains as described before. The F (n) arrived at the Motor Con-
troller is converted into electric current iC(n) that controls the Linear Actuator
in such a way that it can move the stylus on the tablet screen. On the flip side,
if the network is in the Bad state, the F (n) value does not arrive in time to the

109

CHAPTER 4. NETWORK SLICING FOR VERTICAL APPLICATIONS

21 31 49 59 64 68 76 86 91 96 101 105 116 123 132 139109

Player 1

0 t150

Figure 4.10: TSE. Obstacle positions drawn for the Level 1, Lap 1

edge node at the Controlled Domain side, causing the TSE to forecast and send
it to the Motor Controller.
About the game, each level is characterized by a different car speed: v1 for the

level 1, v2 = 1.5 · v1 for the level 2, and v3 = 2 · v1 for the level 3. Consequently,
the game duration is of 150 s for level 1, 100 s for level 2, and 75 s for level 3.
First of all, the game route was generated, constituted by three laps, each with

four obstacles in the middle of the road, two on the left and two on the right. The
exact placement of the obstacles is randomly chosen accordingly. As an example,
Fig. 4.10 shows the obstacle placement drawn for the first lap of level 1.
According to step 1, the three levels of the game were played locally, by using the

setup presented in Fig. 4.8, that is, acting on the joystick-like handle, but watching
the tablet directly, with no delays and losses between the Master Domain and
the Controlled Domain. During this phase, the traces of the position, x(n), of
the touch pen on the tablet screen, and the subsequent force F (n) applied by the
player and sent by the Hapkit Board to the Motor Controller were saved. The
measured traces F (n) and x(n) are shown in Fig. 4.11. Since the force applied to
a spring follows the Hook law, i.e. F (n) = −KS ·x(n), and considering that in this
case all messages containing the force arrive at the Motor Controller, each value
x(n) is always proportional to the force F (n) applied by the player, and hence
this is represented by a single curve in Fig. 4.11. The proportionality constant is
−1/KS, KS = 4 N/cm being the spring constant used in our experiment.
Moreover, during this phase, the TSE is fed with the obtained traces for training.

The Master Domain Behavior Analyzer, as expected, has detected two behavior
changes at the time instances t2 = 150 s and t3 = 250 s, i.e. at the beginning of
the levels 2 and 3, respectively, represented by an evident change in car speed.
For each revealed player behavior, the AI Engine has calculated some trajectory
models applied by the player, for different values of LB. The achieved models have
been compared in terms of Peak Signal-to-Noise Ratio (PSNR), defined as the
ratio between the peak power of the real signal x(n) and the mean power of the

110

CHAPTER 4. NETWORK SLICING FOR VERTICAL APPLICATIONS

Figure 4.11: TSE. Force and position traces during a game in the local setup

error made on its estimation, i.e. E(n) = x(n)− x̂(n), to find the best model for
each game level (i.e. for each player behavior). Based on their comparison, shown
in Fig. 4.12, at the end of each model computation, the TSE updates the Model
Database DB if the found model exhibits a higher PSNR than its predecessor.
The best models found during the training phase were the models calculated with
LB = 120 samples for level 1, LB = 60 samples for level 2, and LB = 100 samples
for level 3.
After that, step 2 sketched in Fig. 4.9 starts. As anticipated so far, a discrete-

time Matlab simulator to generate the network behavior, and traces and models
found and saved during step 1 were used. The slot duration has been assumed
equal to the maximum tolerated end-to-end latency, i.e. 5 ms.
The network behavior is modelled with a two-state Markov model, described by

the transition probability matrix given below:

P (N) =

[
1− 1/T̂Good 1/T̂Good

1/T̂Bad 1− 1/T̂Bad

]
(4.1)

where T̂Good is the mean duration of the network during the good state, set to
10 s, equivalent to 2000 slots, while T̂Bad is the mean duration of the network
during the bad state. This latter value has been varied in the range [10, 200] ms,
that is equivalent to [2, 40] slots, in order to evaluate the ability of the proposed
system to hide network problems for different durations of them.
The first analysis is aimed at evaluating the impact of the car speed on the TSE

prediction ability. For this purpose, the PSNR of the x(n) trace sent from the

111

CHAPTER 4. NETWORK SLICING FOR VERTICAL APPLICATIONS

Figure 4.12: TSE. Model comparison for different look_backs LB, at different
levels

Controlled Domain was measured, considering noise the difference between the
value x(n) achieved with the force actually sent by the Master Domain, and the
value x̂(n) derived by prediction by the TSE whenever samples have not arrived in
time. The PSNR measured for the three levels and expressed in decibel is shown
in Fig. 4.13a. Since the curves are very close to each other, the figure demonstrates
the ability of the model in capturing the player behavior is independent of the
car speed. Of course, this depends on the timescale: in this case, the network
downtime is of the order of few dozens of milliseconds; in this period the player
behavior is strongly autocorrelated because relevant changes in the player actions
are visible in a time horizon of the second, as deducible from Figs. 4.10 and 4.11.
Then, in order to evaluate the gain achieved by the proposed TSE with respect

to the state of art, i.e., without TSE, the system is simulated with the same traces,
but without TSE. In this case, all the skipped values of F (n) determine that the
spring will not be updated sometimes, so causing the touch pen to remain idle.
Of course, as soon as the network comes back to the Good state, the first value of
F (n) that arrives in time at the Controlled domain will cause a discontinuity in
the position of the spring and, consequently, of the touch pen. Fig. 4.13b presents
the PSNR measured for each game level on the trace x(n), in the case TSE is
not used. In this case, the noise is the difference between the x(n) value that
would have been if F (n) have arrived at the destination, and the actual value of
x(n) measured on the spring. To better appreciate the gain achieved by using the
TSE, in Fig. 4.13c the mean PSNR obtained in the two above cases (with and
without TSE) is compared by averaging the PSNR measured during the three

112

CHAPTER 4. NETWORK SLICING FOR VERTICAL APPLICATIONS

(a) PSNR measured with TSE. (b) PSNR measured without TSE.

(c) Comparison of the PSNR averaged
on the three skill levels

Figure 4.13: TSE Performance analysis

game levels.
Finally, another figure of merit that has to be considered is loss probability

that, for example in a Tactile Internet network slice must be less than 1 · 10−7.
We have presented its measurement in Fig. 4.14 for the case of no TSE while,
for the opposite case, i.e. in the presence of TSE, it is not shown because of the
absence of such losses.
Finally, from the plots shown so far, it is possible to observe how performance

depends on the network behavior: the worse the network, the lower the PSNR
and the higher the loss probability. However, network performance, in terms of
both the percentage and the mean duration of the bad state, are not absolute, but
depend on the latency constraint imposed by the specific low-latency application
scenario. In fact, the variables T̂Good and T̂Bad are how the network appears to the
TSE and the considered system, when the latency constraint is known. If another
system has a lenient latency constraint, it monitors the network better, with a
higher T̂Good and a lower T̂Bad. Consequently, both PSNR and loss probability
result better.

113

CHAPTER 4. NETWORK SLICING FOR VERTICAL APPLICATIONS

Figure 4.14: Loss probability measured without TSE

4.2 Multi-Layer Offloading in Vehicular Networks

In this section, the problem of implementing an optimal offloading technique in
a vehicular network slice scenario is addressed. After a first description of the
architecture, the characteristics and the requirements of a Vehicular Network in
Subsection 4.2.1, the proposed Multi-Layer Offloading technique with the use of
the RL is described in Subsection 4.2.2.

4.2.1 Vehicular Networks

Vehicular Networks will play a crucial role in future Intelligent Transportation
Systems (ITS) [68] in which, thanks to the innovations of information and com-
munication technologies, there will be an improvement of aspects like road safety,
traffic efficiency and QoS, with a better QoE achieved by the users. The term Ve-
hicular Networks includes not only vehicular-to-vehicular (V2V) communications,
but all types of interactions between vehicles and devices placed in the environ-
ment in which vehicles move (Vehicular-to-Everything, V2X). The autonomous
driving applications is an example of V2X scenario [69] in which vehicles, using
devices called On Board Unit (OBU), communicate with each other and with
everything around them (pedestrians, traffic lights and infrastructure in general),
receiving and processing data continuously.
The nature of this type of applications makes parameters like latency and band-

width very important, in particular very low latency and high bandwidth avail-
ability are required. Also, computational resources are fundamental in this field,

114

CHAPTER 4. NETWORK SLICING FOR VERTICAL APPLICATIONS

Vehicular Edge Computing Vehicular Cloud Computing
Location At user’s proximity Remote location
Latency Low High

Mobility support High Limited
Decision Process Local Remote
Communication Real Time Constraints in bandwidth
Storage Capacity Limited Highly Scalable
Context Awareness Yes No
Device Heterogeneity Highly Supported Limited Supported
Computing capability Medium High
Cost of Development Low High

Table 4.1: Comparison between Vehicular Edge Computing and Vehicular Cloud
Computing [72]

because they allow processing of the received data. Another aspect that has to be
considered is the complexity of possible scenarios: vehicles could move with differ-
ent speeds according to the environment (urban or extra-urban) and the number
and type of "objects" with which to communicate could vary in time. All these
aspects explain why Vehicular Networks represent one of the most challenging
network slices in 5G networks.
As said before, a primary role is played by the computational resources that

allow vehicles to process received data locally. To reduce packet loss and latency,
each vehicle could offload a certain number of data jobs to external servers. Due
to latency requirements, it is impossible to use a typical Vehicular Cloud Comput-
ing (VCC) approach, based on a two-level client-server architecture with servers
placed in remote clouds, away from the network access point of the vehicle. The
solution provided by 5G network technology for this problem is MEC [70] [71]: it
represents a low latency solution based on the idea of placing part of computing
and storage resources at the edge of the network, near to the end-users. From
the combination of Vehicular Networks and MEC derives Vehicular Edge Com-
puting (VEC). Table 4.1 highlights the main differences between VCC and VEC
paradigms.
VEC is a three-layer architecture (Fig. 4.15) constituted by:

• User (Vehicular) Layer : it is constituted by groups of geographically close
smart vehicles which share storage and computing resources through V2V
links. It is responsible for recovering information from integrated sensors,
GPS, cameras, radar and other devices that can be installed on board of the
vehicle. This information can be used as input data for applications that
run locally or sent to the top layer for processing or storage;

115

CHAPTER 4. NETWORK SLICING FOR VERTICAL APPLICATIONS

V2V Link

V2X Link

Backhaul Link

Figure 4.15: VEC Network Architecture

• MEC Layer : it acts as an intermediary between the User Layer and the
Cloud Layer, guaranteeing communication between the two levels. It is con-
stituted by servers distributed along the road, which act as edge servers and
which are characterized by high communication, computing and storage re-
sources when compared with those of vehicles. These servers are integrated
with the existing network infrastructure, i.e. Base Station (BSs), Road Side
Units (RSUs) or other Access Point (APs). It processes data regarding ap-
plications with very strict latency requirements;

• Cloud Layer : it consists of a cloud infrastructure that includes both the com-
putational and storage part. It receives information from the lower MEC
layer and provides significantly higher computing power and a wider cov-
erage area. The main features provided by this layer are data aggregation,
data mining, archiving and computation of complex data regarding appli-
cations with no strict latency requirements.

The VEC framework is characterized by several advantages [73] in terms of:

− response time, thanks to the greater proximity of the servers if compared
to an only cloud-based solution;

− bandwidth: moving storage resources from cloud to the edge, a VEC net-
work could reduce the enormous stress of the backhaul network due to the
possibility of processing data at the edge;

− storage capacity: data can be stored directly on the edge servers and,

116

CHAPTER 4. NETWORK SLICING FOR VERTICAL APPLICATIONS

through efficient caching techniques, vehicles can access them, guaranteeing
time constraints;

− better QoS and QoE: the edge servers placed near the vehicles, could im-
prove these two parameters. For example, by receiving real-time information
on the location, vehicle behavior and the surrounding environment, the VEC
servers could use them to create high-definition maps or to send content to
users based on their interests.

However, there are also some critical aspects:

− high mobility of the vehicles, so the network topology is extremely variable,
due also to the frequent handovers that are performed; this causes variations
of the mutual position between vehicles and their access points on which
the MEC servers are installed;

− hostile communication environment, especially in an urban scenario, in
which numerous obstacles can make communication difficult;

− resources management, if compared with the cloud server, the resources
in an edge server are limited, so techniques for dynamic allocation and
orchestration become fundamental;

− task migration: due to the limited vehicle capacity, there is a need to per-
form offloading operations towards the MEC servers. The dynamism of the
environment and of the network topology makes decision making a funda-
mental aspect;

− security and privacy: if, on the one hand, the idea of moving the cloud to the
edge of the network introduces the numerous benefits described so far, from
a security point of view the edge servers could be easily attacked; moreover,
they may receive offloaded tasks containing private and sensitive data.

The use of these technologies makes it necessary to implement efficient models
to carry out offloading operations between vehicles and MEC servers, considering
the dynamism of the environment and of the network topology. Performing or not
offloading becomes a critical problem in which it is necessary to take into account
features that constrain its feasibility. Research on computation offloading [74]
divides the general problem into three macro-areas: Decision Making, Allocation
of resources at MEC level and Mobility management.

117

CHAPTER 4. NETWORK SLICING FOR VERTICAL APPLICATIONS

In particular, at the Vehicular Level, the offloading policies, which deal with
managing the spectral and computational resources for the execution of the tasks,
can be of three types [72]:

• Local Computing : the vehicle generates tasks itself and processes them lo-
cally, without offloading procedure;

• Partial Offloading : some tasks are offloaded to the MEC servers, the others
are processed locally. This is the most difficult offloading procedure because
the vehicle has to implement an intelligence to understand if a group of
tasks, based on the particular application, could be managed separately or
not;

• Total Offloading : the simplest offloading technique, because the vehicle
sends all the tasks to the MEC server.

Furthermore, each vehicle can be both a Task Vehicle (TaV), so it can make a
service request, by delegating the execution of tasks to the MEC servers, and a
Service Vehicle (SeV) or relay node, that is, in a cooperative context, it can be
itself to help in the execution of tasks, providing its computational resources to
the network. Each vehicle can dynamically change its role during the moving and
this depends on factors such as the request for the development of services or the
availability of sufficient and shareable resources [75].
The Computation Offloading process can be divided into the following phases:

• Service discovery : the vehicles identify the surrounding infrastructures within
their operating range;

• Task upload : vehicles send tasks to be processed to the service provider
discovered in the previous phase, though V2X communications;

• Task processing : the service provider, following their policies, manage the
task or can choose to offload it to other service providers;

• Result return: service providers send results of the task processing phase to
the source vehicles.

4.2.2 Multi-Layer offloanding and RL

In the context described before, it has been proposed a multi-layer platform for
job offloading. This work can be found in the paper [76], presented at 18th Med-
ComNet2020. The considered scenario is shown in Fig. 4.16 where a portion of the

118

CHAPTER 4. NETWORK SLICING FOR VERTICAL APPLICATIONS

Vehicular
Domain

MEC Domain

Backhaul Network Domain

OFs

Rd

MUX

Rd
MEC Platform
Server (MPS)1Q 2Q

MEC1 MEC2

 ,, 21 bb

RM
SP

ASP
BIP

OFs

Job
Generator

Vehicular Platform
Server (VPS)

LQ
CAR q

Figure 4.16: Vehicular Scenario: multy layer system architecture

road is depicted, highlighting the presence of APs equipped with MEC Servers
to provide vehicles with computing facilities at the edge of the 5G network. It
is assumed that one network slice is used for each travel direction and, in the
following, vehicles flowing from the left to the right are considered. This means
that, for each slice, jobs can be offloaded only to the next MEC Server along the
pathway.
It is assumed the presence of three different stakeholders:

− Application Service Provider (ASP): it is the owner and the manager of the
application service. Its role is to provide and manage devices to be installed
on the vehicles;

− RAN/MEC Service Provider (RMSP): it installs BSs along the road to
provide vehicles with connectivity and MEC services;

− Backhaul Infrastructure Provider (BPI): it provides high-speed connection
links between BSs. These links can be realized with fiber optical cables, or
even with UAV [77].

The relationships between the above providers are structured as client/server:
the ASP receives a service from the RMSP, and the latter receives a service
from the BIP. Each of them implements an independent optimization strategy to
maximize its revenue by optimizing the tradeoff between costs and performance.
Each provider is in charge of a specific domain (see Fig. 4.16). The ASP works

119

CHAPTER 4. NETWORK SLICING FOR VERTICAL APPLICATIONS

in the Vehicular Domain, where smart vehicles flowing on the road generate jobs
to be processed for a given application. The smart vehicles are equipped with
a computing station, provided by the ASP, which allows processing these jobs
locally.
When the computing station is busy for processing a job, the other incoming

jobs are queued and managed with a FIFO policy, with a delay problem in the
processing phase. In order to reduce these delays, each vehicle will offload a per-
centage q of its job flow to the MEC Domain, percentage that depends on both
the requirements of the specific application and the costs that the ASP is available
to sustain, due to the price applied by the RMSP to process jobs offloaded by the
Vehicular Domain. For the sake of simplicity, we will assume that q is equal for all
the vehicles. The decision of this q value is demanded to the Vehicular Platform
Server (VPS), an entity that is in charge of management and orchestration of the
applications at the Vehicular Domain.
The MEC Domain is the edge of a 5G network, where APs in the RAN are

equipped with a MEC Server that is able to process jobs offloaded by vehicles.
Each MEC Server may be installed in a self-consistent station, which is able
to work even in conditions of lack of the power grid, so each MEC Server is
equipped with an autonomous power generator and a battery. This means that
the energy consumption of this element is a critical aspect to evaluate to guarantee
the continuity of the service. Moreover, let each MEC Server be equipped with
Computing Elements (CEs), such as CPUs, for processing jobs offloaded by the
vehicles. The higher the number of active CEs, the smaller is the MEC processing
delay for the jobs, but more processing power implies higher energy consumption.
These two parameters play an important role in the MEC Domain: depending on
the kind of application, a job may require small processing latencies; on the other
hand, increasing the energy consumption could represent a threat for the whole
system, since this could drain the batteries of the MEC Servers.
Offloading jobs between adjacent MEC Server is a solution to reduce MEC

processing delay [78]. For this reason, referring to Fig. 4.16, MEC Server 1 could
offload a fraction of the received jobs to the MEC Server 2. A MEC Platform
Server (MPS) is entitled to decide, for each MEC Server of the MEC Domain,
whether to offload jobs or perform local computations. In addition, given the
limited availability of energy at each MEC Server, the MPS is also in charge of
choosing how many CEs should be activated on each MEC Server at runtime.
The choice of the amount of jobs to be offloaded from one MEC Server to the
next one, (1 − σ), and the number of active CEs bi for each server i is done by

120

CHAPTER 4. NETWORK SLICING FOR VERTICAL APPLICATIONS

the MPS considering the queueing delay in the queues where jobs are queued,
the power consumption due to the active CEs, and the cost of offloading jobs
from one MEC Server to the next one, due to the price applied by the BIP at the
Backhaul Network Domain.
To choose the q value, the VPS performs some numerical steps. First of all,

the local computing station of each vehicle is model as a B/B/1/KV queueing
system (Bernoulli arrivals, Bernoulli departures, and only one service facility).
The parameter KV represents the maximum number of jobs that can be accom-
modated in the local computing station, considering that KV − 1 jobs are in the
queue and one job in the service facility. Let pV be the per-slot job generation
probability for one vehicle, and ξV the departure probability in the service facility.
Considering that a percentage q of the flow is offloaded to the MEC Domain, the
per-slot arrival probability of a job to the queueing system is (1−q)pV . The state
of the Markov chain modeling the behavior of this system is defined as S(QV)(n),
representing the number of jobs that are present in the slot n in the whole local
computing station. Calculate, for each q, the mean delay φL suffered in the local
computing stations, following the discrete-time queueing system theory, consti-
tutes the first step of the VPS workflow. After that, the VPS receives the φM
delay calculated by the MPS for a given q. In this way, the mean delay φV suffered
by jobs offloaded from the Vehicular Domain can be obtained by averaging φL
and φM :

φV = qφM + (1− q)φL (4.2)

Then, it can calculate the reward function 4.3, weighing the cost for offloading,
µ, and the mean delay suffered by jobs to be served by either the local computing
station or the MEC Domain:

F
(V PS)
RW = −γ1

µ− µMIN

µMAX − µMIN

− γ2

φV − φV,MIN

φV,MAX − φV,MIN

(4.3)

The term µ represents a penalty and depends on the per-job offloading price
applied by the RMSP, and is proportional to the amount of offloaded jobs to
the MEC Domain. The constants γ1 and γ2 are weighing parameters that can
be properly tuned according to some system management criteria defined by
the ASP. The parameters µ ∈ [µMIN , µMAX] and φV ∈ [φV,MIN , φV,MAX], are
normalized in the interval [0, 1] in order to be comparable.
Finally, the VPS decides the offloading percentage q∗ as the best value of q that

maximizes the function F (V PS)
RW .

121

CHAPTER 4. NETWORK SLICING FOR VERTICAL APPLICATIONS

MEC Server

AREA 1 AREA 2

)(1 n)(2 n)(n
)()1(nS N)()2(nS N

)(1 n)(2 n

MEC Domain
MEC Server

Figure 4.17: Vehicular Scenario: job arrival process

Decisions at the MEC Domain are taken periodically at the beginning of each
slot time ∆, by MPS using a model-based RL technique. In the sequel, to simplify
notation, we will consider a MEC Domain constituted by only two MEC Servers,
as depicted in Fig. 4.17.
As said so far, its task is to decide the number of CEs to be active during the

time slot for each MEC Server, b1 and b2, and the maximum number of jobs, σ,
to be locally managed. Due to the correlation between the number of vehicles in
each area, the job arrival process from the Vehicular Domain can be model as
a bi-dimensional Markov modulated process Λ(n) = (Λ1(n),Λ2(n)), where Λ1(n)

and Λ2(n) represent the number of jobs offloaded by the vehicles in the area 1
and in the area 2, respectively.
Assuming that there is a maximum number of vehicles, NMAXi, i ∈ {1, 2},

that can stay in the same area, simultaneously, vehicles can enter the next area
as long as there is enough room; otherwise, they will stay in the previous one.
Also, let =(Λi) be the set of possible values that the arrival process Λi(n) can
assume. Due to the assumption that each vehicle can generate at most one job
per slot, it is possible to say that =(Λi) ≡ [0, NMAXi]. Referring to Fig. 4.17, the
process representing the number of vehicles that arrive to the area 1 is defined
as a SBBP [58] Ω(n) modulated by a Markov chain S(Ω)(n) with a transition
probability matrix P (Ω), and the arrival-process probability matrix B(Ω), whose
generic elements are defined as follows:

P
(Ω)

[s
′
Ω,s
′′
Ω]

= Pr{S(Ω)(n) = s
′′

Ω|S(Ω)(n− 1) = s
′

Ω} (4.4)

122

CHAPTER 4. NETWORK SLICING FOR VERTICAL APPLICATIONS

B
(Ω)

[s
′′
Ω,ω]

= Pr{Ω(n) = ω|S(Ω)(n) = s
′′

Ω} (4.5)

In the same way, the number of vehicles that can leave the area 1 to enter
the area 2, and of the vehicles that can leave the area 2, is modelled as two
SBBP processes, µ1(n) and µ2(n), modulated by the Markov chains S(µ1)(n) and
S(µ2)(n), respectively. Also in this case, it is possible to characterize these two
process with the matrices P (µi) and B(µi), two inputs of the problem. =(Ω), =(µ1

and =(µ2) are the sets of possible values for the processes Ω(n), µ1(n) and µ2(n).
Each area can be modeled with a bi-dimensional Markov chain defined as follows:

S(Ai)(n) = (S(Ni)(n), S(µi)(n)), i ∈ {1, 2} (4.6)

S(Ni)(n) is the process that represents the number of vehicles in the area i in
the slot n, while S(µi)(n) represents the state of the vehicle departure process
from the same area. The whole state of the underlying Markov chain of the whole
bi-dimensional job emission process Λ(n) can be defined as follows:

S(Λ)(n) = (S(Ω)(n), S(A1)(n), S(A2)(n)) (4.7)

After that, it is possible to model the system at the MEC Domain with a
Markov Decision Process (MDP) Σ, defining a three-dimensional discrete-time
Markov chain:

S(Σ)(n) = (S(Λ)(n), S(Q1)(n), S(Q2)(n)) (4.8)

where S(Q1)(n) and S(Q1)(n) are the states of the queues Q1 and Q2 located
in the two MEC Servers and used to access their CEs. Let K be the maximum
number of jobs that can be buffered in each of those queues, this means that
S(Qi)(n) ∈ [0, ..., K].
In order to calculate the optimal policy ρ that specifies an action a for each

state of Σ, the transition probability matrix P (Σ|ρ) and the immediate reward
matrix Ψ(Σ|ρ) are needed. The generic element of P (Σ|ρ) represents the transition
probability from the state s′Σ to the state s′′Σ when, according to the policy ρ,
the action a is performed at the beginning of the slot n according to the starting
state s′Σ. It is defined by:

P
(Σ|a)

[s
′
Σ,s
′′
Σ]

= Pr{S(Σ)(n) = s
′′

Σ|S(Σ)(n− 1) = s
′

Σ, A(n) = a} (4.9)

It can be derived as in [79] considering here that the arrival processes to Q1 and

123

CHAPTER 4. NETWORK SLICING FOR VERTICAL APPLICATIONS

Q2 are correlated to each other and modeled with the process Λ(n).
The generic element of Ψ(Σ|ρ), representing the immediate reward received per-

forming the action a at the slot n when the system transits from s
′
Σ to s′′Σ, is

defined as follows:

Ψ
(Σ|a)

[s
′
Σ,s
′′
Σ]

= E{R(n)|S(Σ)(n− 1) = s
′

Σ, S
(Σ)(n) = s

′′

Σ, A(n) = a} (4.10)

To calculate it, the expected value of the immediate reward for a given transi-
tion from s

′
Σ to s′′Σ, and for a given action a taken according to the state initial

state, is necessary to be defined. It is calculated by weighing the three key param-
eters characterizing the MEC Domain behavior: power consumption, cost/gain
for offloading, and delay. The following reward function can be defined as the
immediate reward of the implemented decisions:

F
(MPS)
RW = −c1

ξ − ξMIN

ξMAX − ξMIN

− c2
ϑ− ϑMIN

ϑMAX − ϑMIN

− c3

φM − φM,MIN

φM,MAX − φM,MIN

(4.11)

with ξ proportional to the mean number of active CEs and representing the
mean power consumed by these ones; ϑ considers the mean cost applied by the
BIP for offloading towards another MEC Server through the backhaul network,
and the mean gain received by accepting offload from the vehicles based on the
price applied to the Vehicular Domain; φM is the mean delay for a job processed
by the MEC Domain, depending on the mean number of jobs in the queues. The
parameters c1, c2 and c3 can be properly tuned by the RMSP according to some
system management criteria (e.g. if energy saving is the priority, c1 is chosen
greater than c2 and c3).
After that, the immediate reward associated to that transition is given by:

Ψ
(Σ|a)

[s
′
Σ,s
′′
Σ]

= −c1
ξ(s

′
Σ, a)− ξMIN

ξMAX − ξMIN

+

−c2
ϑ(s

′
Σ, a)− ϑMIN

ϑMAX − ϑMIN

− c3

φM(s
′
Σ, s

′′
Σ, a)− φM,MIN

φM,MAX − φM,MIN

(4.12)

The first term regards the penalty (it becomes a reward thanks to the minus
sign) received for power consumption due to the active CEs, when the action
a = (b1, b2, σ) is performed according to the starting state s′Σ. It is

ξ(a) = (b1 + b2) · ℘CE (4.13)

124

CHAPTER 4. NETWORK SLICING FOR VERTICAL APPLICATIONS

where ℘CE is the power consumption of each active CE. The terms b1 and b2

are the actual numbers of CEs that have been decided, as part of the action a,
to be active in the current slot.
The second term is the reward due to offloading.It is constituted by two parts: a)

a revenue proportional to the amount of received jobs offloaded by the Vehicular
Domain, i.e. E{Λ}, with a proportional constant Θ

(OL)
V→M representing the price

applied by the RMSP to process one job at the MEC layer; b) a penalty pro-
portional to the mean number of offloaded jobs to another MEC Server, E{Φ|a},
with a proportional constant Θ

(OL)
M→M representing the per-job offload cost from

the MEC1 server to the MEC2 server:

θ(a) = −Θ
(OL)
V→M · E{Λ1 + Λ2}+ Θ

(OL)
M→M · E{Φ|a} (4.14)

where

E{Λ} =
∑

∀sΛ∈=(Λ)

∑
∀1∈=(Λ1)

∑
∀λ2∈=(Λ2)

(λ1 + λ2) · π(Λ)
[sΛ] ·B

(Λ)
[sΛ,λ1,λ2] (4.15)

E{Φ|a} =
∑

∀1∈=(Λ1)

∑
∀λ2∈=(Λ2)

(λ1 −min{σ, λ1}) ·B(Λ)

[s
′′
N1,s

′′
N2,λ1,λ2]

(4.16)

Finally, the third term in 4.12 regards the delays suffered in the MEC1 and
MEC2 queues. To this end, let define the number of jobs arriving from the areas
1 and 2 and not lost, as λ̃1 and λ̃2, respectively. In order to calculate λ̃1, due
to the assumption that departures occur before arrivals, arrivals find the Q1

queue state, whose value at the beginning of the slot n was s′Q1, to the value
s
′′
Q1,INT = max{s′Q1 − b1, 0}. Therefore, considering that the final state of this
queue at the slot n will be s′′Q1, it is possible to define:

λ̃1 = s
′′

Q1 − s
′′

Q1,INT (4.17)

Likewise, in order to calculate λ̃2, we have to account that the Q2 queue state
goes through two different steps before the arrival of the offloaded jobs coming
from MEC1: starting from the state s′Q2, after the departures it reaches the state
s
′′
Q2,INT1 = max{s′Q2 − b2, 0}; then, after the arrivals from the area 2, it reaches
the state s′′Q2,INT2 = min{s′′Q2,INT1 +λ2, K}. Therefore, the number of job arrivals
from the area 2 is:

λ̃2 = s
′′

Q2,INT2 − s
′′

Q2,INT1 (4.18)

125

CHAPTER 4. NETWORK SLICING FOR VERTICAL APPLICATIONS

Finally, the number of offloaded jobs that enter the queue Q2 is:

λ̃OL = min{λOL, K − s
′′

Q2,INT} (4.19)

where λOL = λ1 − minσ, λ1 is the number of jobs offloaded by the MEC1.
Assuming that conditions of those queues remain constant, and applying the
total probability theorem to the number of jobs arriving from both the areas, φM
is defined as:

φM(s
′

Σ, s
′′

Σ, a) =
∑

∀1∈=(Λ1)

∑
∀λ2∈=(Λ2)

B
(Λ)

[s
′′
N1,s

′′
N2,λ1,λ2]

· 1

λ̃1 + λ̃2 + λ̃OL
·

·[λ̃1/b1 · [s
′′

Q1 + (s
′′

Q1,INT + 1)]/2 + λ̃2/b2 · [s
′′

Q2,INT2 + (s
′′

Q2,INT1 + 1)]/2+

+λ̃OL/b2 · [s
′′

Q2 + (s
′′

Q2,INT2 + 1)]/2]

(4.20)

where the first addendum inside the squared brackets is the mean delay suffered
by the jobs queued in the Q1 queue, the second one is the mean delay suffered by
the jobs generated by the area 2, while the third one is the mean delay suffered
by the jobs generated by the area 1 and offloaded to Q2.
The optimal policy ρ∗ is calculated by solving the Bellman optimality equation

system applying the function 4.3 as the Immediate Reward R(n). The Cumulative
Reward, indicated as G(n), is defined as follows:

G(n) =
∞∑
k=0

γk ·R(n+ k + 1), γ ∈ [0, 1] (4.21)

where γ is the discount factor, as explained in the previous section.
In the end, the steady-state probability array of the MEC Domain state defined

in 4.8 and the main performance parameters characterizing the reward function in
4.12 can be calculated. More specifically, the mean delay suffered by jobs offloaded
to the MEC Domain is defined as:

φM =
E{λ̃1} · δQ1 + E{λ̃2} · δQ2

E{λ̃1}+ E{λ̃2}
(4.22)

where the first addendum inside the squared brackets is the mean delay suffered
by the jobs queued in the Q1 queue, the second one is the mean delay suffered by
the jobs generated by the area 2, while the third one is the mean delay suffered
by the jobs generated by the area 1 and offloaded to Q2.
The optimal policy ρ∗ is calculated by solving the Bellman optimality equation

system applying the function 4.3 as the Immediate Reward R(n). The Cumulative

126

CHAPTER 4. NETWORK SLICING FOR VERTICAL APPLICATIONS

Reward, indicated as G(n), is defined as follows:

G(n) =
∞∑
k=0

γk ·R(n+ k + 1), γ ∈ [0, 1] (4.23)

where γ is the discount factor, as explained in the previous section.
In the end, the steady-state probability array of the MEC Domain state defined

in 4.8 and the main performance parameters characterizing the reward function in
4.12 can be calculated. More specifically, the mean delay suffered by jobs offloaded
to the MEC Domain is defined as:

δQ1 = NQ1/ΛQ1 (4.24)

with NQ1 (mean number of jobs in the Q1) and ΛQ1 (mean number of jobs
arrived to Q1) respectively :

NQ1 =
∑

∀sΣ∈=(Σ)

sQ1 · π(Σ)
[sΣ] (4.25)

ΛQ1 =
∑

∀s′Σ∈=(Σ)

∑
∀s′′Λ∈=(Λ)

∑
∀λ1∈Ω(Λ1)

∑
∀λ2∈Ω(Λ2)

min{σ, λ1, K − s
′

Q1} · π
(Σ)

[s
′
Σ]
·

·P (Λ)

[s
′
Λ,s
′′
Λ]
·B(Λ)

[(s
′′
N1,s

′′
N2),λ1,λ2]

(4.26)

The mean delay in the queue Q2 can be calculated as in 4.24, considering that
the number of job arrivals in one slot to this queue is λ2 from the area 2, plus
the jobs arriving from the area 1 for offloading. So, it is possible to define:

NQ2 =
∑

∀sΣ∈=(Σ)

sQ2 · π(Σ)
[sΣ] (4.27)

ΛQ2 =
∑

∀s′Σ∈=(Σ)

∑
∀s′′Λ∈=(Λ)

∑
∀λ1∈Ω(Λ1)

∑
∀λ2∈Ω(Λ2)

π
(Σ)

[s
′
Σ]
· P (Λ)

[s
′
Λ,s
′′
Λ]
·

·B(Λ)

[(s
′′
N1,s

′′
N2),λ1,λ2]

·min{λ2 + (λ1 −min{σ, λ1}), K − s
′

Q2}
(4.28)

To show how the proposed multi-layer offloading platform works, in the following
an use case is presented with some numerical results. As already said, only two
wireless cells are considered and is assumed that, at most, six vehicles can stay
simultaneously in each cell. This means that NMAX1 = NMAX1 = 6.
About the vehicle arrival process in the first cell, these two matrices are defined

as input parameters for the SBBP Ω(n):

127

CHAPTER 4. NETWORK SLICING FOR VERTICAL APPLICATIONS

P (Ω) =

[
0.864 0.136

0.143 0.857

]
(4.29)

B(Ω) =

[
0.02 0.03 0.04 0.10 0.43 0.18 0.20

0.02 0.02 0.01 0.06 0.26 0.24 0.40

]
(4.30)

Regarding the transition of the vehicles from the first cell to the second, and
from the second cell to outside, these matrix are considered:

P (µ1) =

[
0.95 0.05

0.25 0.75

]
P (µ2) =

[
0.85 0.15

0.17 0.83

]
(4.31)

B(µ1) =

[
0.19 0.52 0.08 0.06 0.09 0.03 0.03

0.01 0.43 0.44 0.05 0.04 0.02 0.01

]

B(µ2) =

[
0.07 0.15 0.10 0.18 0.25 0.23 0.02

0.01 0.02 0.11 0.07 0.24 0.33 0.22

]
(4.32)

In the Vehicular Domain, each vehicle generates one job in a slot with a proba-
bility pV = 0.9, the maximum length of the local queue is KV = 4 and the prob-
ability of serving one job with the local computing station is equal to ζV = 0.5.
In the MEC Domain, each MEC Server is equipped with L = 4 CEs and has a
queue length equal to K = 6. The chosen discount factor for the equation 4.23
is γ = 0.8. The MEC Domain applies a job offloading price Θ

(OL)
V→M = 0.2 PUs,

where PU is the unit of price, for job coming from the Vehicular Domain, while
sets a price Θ

(OL)
M→M = 3 PU to offload job from a MEC server to the other.

To evaluate the performance of this platform, three different strategies have
been applied by the MPS, each one characterized by particular values of c1, c2

and c3 in the rewart function F (MPS)
RW :

− MS1, sets the same weights for the three terms, that is, c1 = c2 = c3 = 1;

− MS2, provides a little more importance to the mean delay, by using c2 = 2,
while c1 = c3 = 1;

− MS3, that gives a strong importance to the gained revenue and again a
little more importance to the delay, by using c1 = 1, c2 = 3, c3 = 6.

Regarding the Vehicular Domain, two different strategies, each characterized by
a different set of weights in the reward function F (V PS)

RW , were considered: the first,
V S1, with γ1 = γ2 = 1, and the second, V S2, with γ1 = 1 and γ2 = 2.

128

CHAPTER 4. NETWORK SLICING FOR VERTICAL APPLICATIONS

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.5

2

2.5
MS1: (c1,c2,c3)=(1,1,1)

MS2: (c1,c2,c3)=(1,2,1)

MS3: (c1,c2,c3)=(1,3,6)

(a) Mean delay in the MEC Domain

N
um

be
r o

f a
ct

iv
e

pr
oc

es
so

rs

(b) Mean number of active CEs in the
MEC Domain

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

q

1

1.5

2

2.5

3

3.5
MS1: (c1,c2,c3)=(1,1,1)

MS2: (c1,c2,c3)=(1,2,1)

MS3: (c1,c2,c3)=(1,3,6)

(c) Overall Delay suffered by jobs gen-
erated by vehicles

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

q

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

MS1:(1,1,1) - VS1:(1,1)

MS1:(1,1,1) - VS2:(1,2)

MS2:(1,2,1) - VS1:(1,1)

MS2:(1,2,1) - VS2:(1,2)

MS1:(1,3,6) - VS1:(1,1)

MS1:(1,3,6) - VS1:(1,2)

(d) Reward Function used by the VPS
to decide the q∗ values

Figure 4.18: Multi-layer offloading in a Vehicular Network: numerical results

Using a Matlab-based tool, the MDP Σ was solved, calculating the best policy
ρ∗.
After that, in Fig. 4.18a, the mean delay δM suffered by jobs offloaded to the

MEC Domain, for the three different strategies and with the offload rate q ∈
[0.3, 1] range is shown. As expected, an increasing trend against q is observed for
all the curves since the mean job arrival rate to the MEC Domain increases with
q. The increasing trend is more accentuated for the MS1 strategy with which the
mean delay is taken into consideration less than the other two strategies. On the
contrary, with the third strategy, MS3, which takes extra care of the delay, there
is the best delay performance. However, as shown in Fig. 4.18b, MS1 maintains
the mean number of active processors low, while the other strategies achieve the
best performance by activating a higher number of processors.
Fig. 4.18c shows the mean delay φ suffered by all the jobs generated from the

Vehicular Domain, obtained by averaging δM and φL. There is a non-monotonic

129

CHAPTER 4. NETWORK SLICING FOR VERTICAL APPLICATIONS

behavior for the curves calculated for the MS1 and MS2 strategies because, for
low values of q, the delay is high since the most of traffic overloads local vehicular
resources, while high values of q give higher delays as shown in Fig. 4.18a.
Finally, the reward function used by the VPS to decide the best value of of-

floading rate, q∗, is shown in Fig. 4.18d, for all the strategies applied by the MPS
and the VPS. More specifically, knowing which is the strategy used by the MPS,
the VPS decides the q value that maximizes the function F (V PS)

RW for the specific
strategy it is using.

130

Chapter 5

5G-enabled smart services

During the PhD course, thanks to the participation in European projects, in
collaboration with the National Inter-University Consortium for Telecommunica-
tions (CNIT), vEyes and Healthcare Technology Lab (HTLAB), it was possible
to work on the main issues typical of the 5G network, not limiting the discus-
sion to only the theoretical aspects, but also being able to address them from a
practical point of view. Topics such as the softwarization of functions and appli-
cations, orchestration of resources and positioning of applications at the edge of
the network, were the basis of the proposed projects and subsequent implemen-
tations. This also made it possible to carry out performance measurements on
5G networks implemented by the consortia in charge of the projects and analyze
the benefits that this technology will provide to future Smart Services in a smart
city context.
Each of the proposed projects represents a typical example of smart services that

could be deployed in a smart city context and that, thank to the functionality of
the 5G network, will be able to express their full potential. The possibility to test
them in 5G platforms developed by the different consortia, allowed discovering
both the possible limits of the proposed projects and the requirements that 5G
has to guarantee to allow deploying of smart services.
In the following sections, each project will be described, with an overview of

the platform in which it was tested and, in two cases, the results of the final
measurement campaigns. More in deep, in Section 5.1, the DiMoViS framework
is presented and the underlying Triangle platform described. Sections 5.2 and 5.3
present TouristEyes and 5Gamer, two frameworks realized in the context of the
5GINFIRE Project. Finally, Section 5.4 describes VISION, a framework proposed
for the Flame Project and currently in its final phase.

131

CHAPTER 5. 5G-ENABLED SMART SERVICES

Figure 5.1: High level architecture of the Triangle testbed [81]

5.1 DiMoViS: Distributed Mobile Video Surveil-

lance System

The DiMoViS framework provides customers of a Telco Operator (TO) with a
video surveillance service both in mobility and at home. It consists of the vir-
tualization of a video-surveillance set-top box (vsSTB), allowing the end-user to
receive video flow both on smartphone and DLNA compliant devices at home.
It was implemented in the context of the Triangle Project. Using the Triangle
testbed, it was possible to achieve measurements of DiMoViS and this work was
presented in [80], accepted at 2019 IEEE International Symposium on Measure-
ments and Networking.
In Subsection 5.1.1, the architecture of the 5G testbed, realized by Triangle Con-

sortium, is described. Next, in Subsection 5.1.2 the implementation of DiMoViS
and its performance evaluation are reported.

5.1.1 Triangle Testbed

The Triangle Project was an European Fire Horizon2020 project [81]. Its main
objective was to promote the testing and benchmarking of mobile applications
and devices in Europe and also provides a path towards certification of qualified
mobile developments. Triangle’s testbed is the result of studies that have identified
the requirements to providing testing means to increase the quality and reliability
of mobile communications and applications across multiple domains, with the aim
of deploying an e2e test architecture.
An overview of the Triangle testing architecture is shown in Fig. 5.1. The entry

132

CHAPTER 5. 5G-ENABLED SMART SERVICES

point to the testbed was the Triangle Portal, a web interface offered to the end
users, designed to adapt to the requests of the latter. The complexity of testing
was contained in high-level scenarios that represented the network conditions in
terms of cell power, channel model, noise/interference, uplink/downlink band-
width, modulation and so on, and prevented users from having to manage the
entire series of these configurable parameters. Typical high-level scenarios were
Urban, SubUrban, HighSpeedTrain, and their subcases. Based on the chosen sce-
narios, the Orchestration block configured the physical components, scheduled
the execution of tests and managed the Measurements and data collection block
to execute and storage the required measurements, with the aim of verifying the
performance of the applications and devices under test. The testbed provided
detailed reports to the user, based on information gathered by the reporting and
automation tools running on both the testbed and the device. The Orchestration
block implemented in the testbed was the Keysight’s Test Automation Platform
(TAP). Each component of the testbed was controlled via a TAP driver, which
acted as a bridge between the TAP engine and the interface of the real component.
One of the most important plugin inside the Orchestration was the MANO TAP
plugin, that allowed the Orchestration block to interact with the MANO Cloud
orchestrator. In particular, one of the project partner, TNO organisation, realized
and integrated in the original testbed, a cloud environment based on VIM Open-
stack (to allow the deployment of virtual functions) and Open Source MANO
(to manage the life cycle of the deployed functions). An important role, during
the execution of the experiments, was played by the Quamotion’s automation
tool [82]. Quamotion is a test automation framework for use with native, hybrid
and mobile web apps. Quamotion WebDriver is able to automate the actions of
users, allowing to manage the entire life cycle of the app (installation, start and
execution) using the WebDriver protocol. It automates apps on real devices (iOS,
Android), simulators (iOS) and emulators (Android). Only a valid application
package (apk or ipa file) and, in the case of iOS, a valid DeveloperProfile and
an iOS DeveloperDisks, are needed. Furthermore, a license needs to be requested
and uploaded in order to use all Quamotion features. The Quamotion WebDriver
design follows the W3C Web Driver specifications. Quamotion WebDriver is an
extension of the Web Driver specifications, and adds specific support for man-
aging mobile devices and mobile applications. Scripts can be written in multiple
languages (PowerShell, Java, C#). More details on the steps to be performed in
order to create a valid app user flow using Quamotion, are present in the paper
[83], presented at the 15th Internation Symposium on Wireless Communication

133

CHAPTER 5. 5G-ENABLED SMART SERVICES

Figure 5.2: Transport layer in the Triangle testbed [81]

Systems in 2018.
About the Measurements and data collection block, the testbed provided several

probes to extract the required measurements: software probes running in the UE
that included AT4 Agents and the TestlDroid toll of UMA, while hardware probes
included a power analyzer connected to the UE to measure energy consumption.
Triangle gave the possibility to app developers to use an instrumentation library
in order to perform additional measurements.
The RAN obviously played a major role in the Triangle testbed. It was provided

by Keysight’s UXM Wireless Test Set, a mobile network emulator. Some of its
key features for testing included Inter Cell Interference Coordination (eICIC)
schemes, WLAN offloading, IMS/e2e VoLTE communications between multiple
devices. This Keysight emulator was capable of emulating a 2G, 3G, 4G and NB-
IOT base station. In order to provide an e2e system, an EPC by Polaris Networks
was integrated into the testbed, with the main elements of the standard core
network: Mobility Management Entity (MME), Security Gateway (SGW), Packet
Data Network Gateway (PGW), Home Subscriber Server (HSS), and Policy and
Charging Rules Function (PCRF). The EPC also includes the EPDG (Evolved
Packet Data Gateway) and ANDSF (Access Network Discovery and Selection
Function) components.
The transport layer was composed by three network domains, connected each

other through a virtualized routing environment managed by SDN elements: RAN
or Access network, Distribution Network and Core Network. The interconnections
between elements of the three domains was provided by three components: Open-
vSwitch, Quagga (a software router) and ONOS (a SDN network orchestrator).

134

CHAPTER 5. 5G-ENABLED SMART SERVICES

5.1.2 DiMoViS architecture and performance evaluation

The DiMoViS framework has three main capabilities:

− real-time streaming of video flows captured by IP cameras installed on ge-
ographically remote sites to either a smartphone or a smart TV at home;

− recording of video flows;

− playout of recorded video flows.

The main difference from the plethora of today video surveillance systems is that
these last ones send video streams to a centralized control station, while DiMoViS
allows to have a distributed control station. Users can decide dynamically the
video cameras they are interested to, and each IP camera can be selected by
all the users that are authorized to use it. Video flows can be received both in
mobility on a smartphone or a tablet, or by any DLNA compliant device, like a
smart TV, at home. The underlying network infrastructure allows a multipoint-
to-multipoint communication and the deployment of the service chains to realize
the service.
The vsSTB is constituted by four main parts: UE, Video Players, vsSTB Engine

and vsSTB Shared Chain.
The UE provides the user with the following functionalities:

− Remote Controller : it allows the user to remotely control the vsSTB. It
enables access to a selected IP camera for live transmission, or to a recorded
video flow from his personal storage. Moreover, it allows to create virtual
connections between the vsSTB and the DLNA-compliant smart TV in the
user home network;

− Mobile Player : it allows the user to watch live or stored video flows directly
on a smartphone or tablet.

The Video Players are the devices where watching video flows coming from IP
cameras or the video library of registered flows. They can be either a mobile user
device (smartphone or tablet), or a DLNA-compliant smart TV.
The vsSTB Engine, whose service chain is represented in Fig. 5.3, implements

a personal instance of the vsSTB. An instance of the vsSTB Engine service chain
is deployed for each customer of the DiMoViS service. The vsSTB Engine is the
core element of the vsSTB, and represents the virtualization of the physical STB
device for video surveillance; it is composed by four Virtual Functions (VFs):

135

CHAPTER 5. 5G-ENABLED SMART SERVICES

Video Player

Mobile Device
Remote

Controller
Smart TV

Virtual Decoder
Interface

Digital Media
Controller

Digital Media
Server

Shared
chainvsSTB Engine 1

Shared chain

Edge Storage

IP Cameras

Edge Acquirer

vsSTB Engine N

Remote
Controller

Smart TV

Personal Acquirer

Video Player

Mobile Device
Remote

Controller

Figure 5.3: The vsSTB service chain

− Virtual Decoder Interface (VDI): it represents the interface between the
vsSTB app running on the user mobile device and the vsSTB Engine. The
VDI communicates with the Digital Media Controller to select the player
which reproduce the video flows, and with the Personal Acquirer, with the
objective of either selecting one of the available contents to be played out
(live or recorded) or enabling the recording of a selected event;

− Digital Media Controller (DMC): according to the DLNA standard, it main-
tains the list of the DLNA players that are active in the user home network,
and communicates with the Digital Media Server to know the list of the
available video contents (both the live streams from IP cameras or the
recorded ones);

− Digital Media Server (DMS): it is DLNA-compliant, too; it maintains and
updates the list of the available video flows exposed by both the Personal
Acquirer (live streams coming from IP cameras) and the Edge Storage where
the recorded video flows are stored;

− Personal Acquirer (PA): it receives commands from the VDI to enable the
live streaming from an IP camera or the recording of a selected flow. It
communicates with the Edge Acquirer in the shared chain, requiring a video
flow from a specific IP camera selected by the user or indicating that a
specified flow has to be forwarded to the Edge Storage to be recorded.

The vsSTB Shared Chain is a service chain implementing services shared among

136

CHAPTER 5. 5G-ENABLED SMART SERVICES

IP Camera 1

Figure 5.4: DiMoViS deployment when user is at home

different users, specifically, the users accessing the network through the edge node
whose MEC facilities are supporting this service chain. The vsSTB Shared Chain
is constituted by the following VFs:

− Edge Storage (ES): it is in charge of saving the recorded video flows;

− Edge Acquirer (EA): it receives video flows from the cameras and replicates
each of them to the associated user’s PA.

In Fig. 5.3 the internal interactions among VFs are shown. More specifically,
continuous lines (red) represent video flow transmissions, while dotted lines (blue)
indicate signaling communications among entities composing the chains.
As said before, there are two most relevant scenarios for the DiMoViS platform:

service access from devices at home and service access in mobility. In the first
scenario the user mobile device accesses the Telco Operator network from the
user home network, that is, flows generated by the user mobile device enters the
network through the softwarized router of the home network. In this case, the
service chain deployment is realized as shown in Fig. 5.4. In this case, in order
to achieve low latency in accessing the DiMoViS service, the vsSTB Engine is
deployed on the Home Router, leveraging on its MEC capabilities. Moreover, the
vsSTB Engine is connected to the vsSTB Shared Chain deployed on the edge
node with MEC facilities used as ingress node for the considered home network.
The second scenario, on the other hand, is characterized by the user in mobility.

In this case, his mobile device accesses the Internet through a 4G/5G cellular
connection towards a RAN of the Telco Operator. The service chain deployment
for this scenario is shown in Fig. 5.5. With the aim of achieving also in this case
low latency in the interaction between the vsSTB app on the mobile device and
the video surveillance platform, the vsSTB Engine is deployed on the same edge

137

CHAPTER 5. 5G-ENABLED SMART SERVICES

IP Camera 1

Figure 5.5: DiMoViS deployment when user is in mobility

node used as entrance node, leveraging on its MEC facilities. The vsSTB Engine
is connected to the vsSTB Shared Chain deployed on the same edge node.
The scenario considered during the testing and measurements phases is the

second described before. As already said, in the Triangle testbed different high-
level scenarios are implemented to change the configuration of the network during
an experiment. In this case, the “Urban-Office” scenario was used to test. “Urban-
Office” scenarios are characterized by a very dense urban network, in which in
addition to the macro sites at a reduced distance from each other, it is also possible
to find small cells. This dense structure arises from the need to transport a high
amount of traffic. In this scenario, users will be static, with internal network
access points that can be either WiFi or small cells. The characteristics of the
channel and the level of interference experienced will also depend on the signals
coming from the external macro cells.
As already said at the beginning of this section, after the implementation of

DiMoViS inside the Triangle platform, some measurement campaigns were con-
ducted to evaluate the performance of the proposed framework. The main Key
Performance Indicators (KPI) to evaluate performance of the DiMoViS vsSTB
were defined at three levels: the network level, in terms of mean delay, the ap-
plication level, in terms of dependence of the frame rate degradation on the VFs
placement in the NFVI-PoP, and at the RAN level in terms of RSRP, Received
Signal Strength Indication (RSSI), RX and TX Data Rate. All these indicators
directly affect the quality of experience perceived by the end user.
About the network level, the crossing delay through the two VFs of the vsSTB

chain, PA and EA, was monitored. Two Wireshark-based monitoring points, each
at the output point of the above VMs, were placed (Fig. 5.6) and a Linux stress

138

CHAPTER 5. 5G-ENABLED SMART SERVICES

Virtual Decoder
InterfaceCommands from

the Smartphone

Digital Media
Server

Video
to the Smartphone

Video
from IP Cameras

Edge Storage

Personal Acquirer Edge Acquirer

Figure 5.6: DiMoViS in Triangle. Network level measurement scenario

Delay to cross the Personal Acquirer
No background
computational load

High background
computational load

Minimum Delay [ms] 0,137 0,25323
Mean Delay [ms] 1,275709 4,135432

Maximum Delay [ms] 11,276 21,07634

Table 5.1: DiMoViS in Triangle. Delay in the Personal Acquirer

tool was used in order to determine the impact of the background computational
load of each host. This tool was run with the two options “cpu” and “io”. The
first option runs N parallel threads that perform mathematical calculation of
the sqrt() function. Instead, the second option has been used to generate an
amount of computational load. Combining the two options the case of “High
background computational load” was considered and compared with the case of
“No background computational load”. Results in terms of minimum, medium and
maximum delay are summarized in Tables 5.1 and 5.2.

Delay to cross the Edge Acquirer
No background
computational load

High background
computational load

Minimum Delay [ms] 0,003823 0,004912
Mean Delay [ms] 0,02578434 0,053264

Maximum Delay [ms] 0,089943 0,149145

Table 5.2: DiMoViS in Triangle. Delay in the Edge Acquirer

In the second set of measurements, the impact of the positioning of the VFs
composing the vsSTB service was evaluated. To this purpose, the network topol-
ogy shown in Fig. 5.7 was considered, where a video surveillance camera provider
shares its IP cameras providing the related video streams to the requesting users.
In Fig. 5.7, there are three NFVI-PoP nodes, associated to three different edge

139

CHAPTER 5. 5G-ENABLED SMART SERVICES

Figure 5.7: DiMoViS in Triangle. Application level measurement scenario

nodes (EN):

− EN1: the ingress node of the video surveillance camera provider;

− EN3: the ingress node of the mobile user at the beginning of the experiment;

− EN2; the ingress node of the mobile user at the end of the experiment.

Each link has been realized with a transmission bandwidth of 50 Mbit/s, while
the link latency, also shown in Fig. 5.7, has been achieved by using VMs running
the Linux Traffic Control tool, timely configured. The study has been carried out
according to the following 5 steps:

− STEP 1: Initial configuration of the experiment, with the user accessing the
network through the edge node EN3, and all the VFs placed on the same
node (Fig. 5.8a);

− STEP 2: The user has changed his access node, now being the node EN2,
but all the VFs composing the vsSTB are still on EN3 (Fig. 5.8b);

− STEP 3: The VFs VDI and DMS deployed in the edge node EN2 substitute
the ones deployed in EN3, according to the new position of the user (Fig.
5.8c);

− STEP 4: Also the VF PA in EN3 is substituted with the one in EN2 (Fig.
5.8d);

140

CHAPTER 5. 5G-ENABLED SMART SERVICES

(a) Initial experiment configuration (b) The mobile user accesses the plat-
form from the node EN3

(c) VDI and DMS in EN3 are substi-
tuted with the ones in EN2

(d) PA in EN3 is substituted with the
one in EN2

(e) The whole chain is in EN2

Figure 5.8: DiMoViS in Triangle. VFs migration in 5 steps

141

CHAPTER 5. 5G-ENABLED SMART SERVICES

User position Latency Mean Value [s] 95% Confidence Interval [s]
Step1 1.16 0.51
Step2 1.19 0.52
Step3 1.30 0.57
Step4 1.28 0.56
Step5 1.27 0.56

Table 5.3: DiMoViS in Triangle. Latency due to IP Camera changing events
during live video streaming

− STEP 5: The whole vsSTB is deployed on EN2, very close to the user (Fig.
5.8e),

In order to evaluate the impact of the position of the VFs on the perceived
performance, two different ways to access and use the DiMoViS vsSTB were
considered:

− watching live video streams from IP cameras transmitted from a remote IP
camera provider; in this scenario, the user changes video stream, jumping
from one IP camera to another one;

− playout of a pre-recorded event; in this scenario, the user performs the action
of time jumping on the seek bar to change the playout instant of the event
being watched.

In both the above cases, some frames can be lost, causing a QoE degradation,
in the first case while waiting for the new video stream, in the second case while
waiting video related to the new playout point. Frame rate reduction during both
the events of changing IP camera and jumping on the seek bar will be considered
as KPI.
To this purpose, by using Wireshark, the time occurred between the transmis-

sion of the first packet sent by the smartphone to start the action, and the last
packet received by the smartphone reporting the successful action completion,
was measured. In the presented analysis, the same action has been repeated for
twenty times in order to estimate the mean value and the standard deviation of
the latencies during the total measurement periods, so providing results with a
95% confidence interval. Numerical results are listed in Tables 5.3 and 5.4.
Considering again the network topology shown in Fig. 5.7, the next step was

to analyze the frame rate degradation due to IP Camera changing events during
live video streaming and Time-jumping events on the seek bar during an event
video playout. Two cases were compared, according to the above list: the first

142

CHAPTER 5. 5G-ENABLED SMART SERVICES

User position Latency Mean Value [s] 95% Confidence Interval [s]
Step1 1.36 0.510.38
Step2 395.24 71.75
Step4 383.65 68.24
Step5 1.33 0.37

Table 5.4: DiMoViS in Triangle. Latency due to time jumping on the seek bar

one at the STEP 2 and the second one at the STEP 5. Frame rate degradation is
reported in Fig. 5.9 and 5.10 as a function of the interval between two consecutive
IP camera change events.

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

10 20 30 40 50 60

Step 2 Step 5

IP camera change interval [s]

Fr
am

e
ra

te
 d

eg
ra

da
tio

n

Figure 5.9: DiMoViS in Triangle. Frame rate degradation when IP Camera chang-
ing events during live video streaming

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

10 20 30 40 50 60

Step 2 Step 5

Fr
am

e
ra

te
 d

eg
ra

da
tio

n

Time jumping interval [s]

Figure 5.10: DiMoViS in Triangle. Frame rate vs time jumping on the seek bar
during playout of a pre-recorded event

143

CHAPTER 5. 5G-ENABLED SMART SERVICES

0,0

0,5

1,0

1,5

2,0

2,5

3,0

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210

R
X
 D
at
a
R
at
e
(k
B
p
s)

Time (s)

Figure 5.11: DiMoViS in Triangle. RX Data Rate

Finally, it was possible to test also the RAN of the Triangle platform. The
duration of the experiment was 210 seconds, during which the vsSTB app started,
the Provider and one of its IP cameras were chosen, and finally the video was
displayed on the UE. The measures regarded in particular :

− RX data rate and TX data rate (Fig. 5.11 and 5.12);

− RSRP and RSSI (Fig. 5.13).

0
0,01
0,02
0,03
0,04
0,05
0,06
0,07
0,08
0,09
0,1

0 10 20 30 40 50 60 70 80 90 100110120130140150160170180190200210

TX
 D
at
a
R
at
e
(k
B
p
s)

Time (s)

Figure 5.12: DiMoViS in Triangle. TX Data Rate

Fig. 5.11 shows the downstream (RX) data rate, while in Fig. 5.12 the upstream
(TX) data rate is represented. In the first one hundred and ten seconds, the RX

144

CHAPTER 5. 5G-ENABLED SMART SERVICES

‐100
‐98
‐96
‐94
‐92
‐90
‐88
‐86
‐84
‐82
‐80
‐78
‐76

0 10 20 30 40 50 60 70 80 90 100110120130140150160170180190200210

d
B
m

Time (s)

RSRP (dBm) RSSI (dBm)

Figure 5.13: DiMoViS in Triangle. RSRP and RSSI values

data rate is very low, because there is only a few information that arrive from
the RAN to the smartphone, information that regards only the list of Providers
in the system and, after the user selects one Provider, the list of IP cameras
that it controls. Starting from one hundred and ten seconds, the RX data rate is
increased because the video streaming flow begins to arrive in the user device.
The TX data rate has a behavior similar to the RX data rate. Also in this case,

in the first one hundred and ten seconds TX data rate takes on low values but,
as shown in Fig. 5.12, there are some instances in which it has peak values due
to the transmission of information from the UE to the network. Starting from
one hundred and ten seconds the traffic increases due to ACK messages that the
app sends to the network. In fact, to receive the video flow, an HTTP connection
is established between the UE and PA VM. The HTTP protocol uses the TCP
at the transport layer, which requires the use of ACK messages to confirm the
receipt of data.
In Fig. 5.13 it is possible to see the RSRP and RSSI values to evaluate per-

formance on the radio channel. RSRP was already described in Chapter 3 while
RSSI is defined as the linear average of the total received power observed only in
OFDM symbols carrying reference symbols by UE from all sources, including co-
channel non-serving and serving cells, adjacent channel interference and thermal
noise.
For RSRP, to evaluate signal quality, if it is in the interval [−65,−80] dBm, the

signal is good, while if it is in the range [−80,−95] dBm, the signal is satisfactory.

145

CHAPTER 5. 5G-ENABLED SMART SERVICES

As depicted in Fig. 5.13, in the considered scenario, RSRP values are between
-89 dBm and -97 dBm, so signal level can be considered satisfactory. For RSSI,
a good channel is characterized by higher values than RSRP, of at least 25 dB.
In the figure, it is possible to observe that RSSI values are 11 dBm higher than
RSRP, so this confirms the satisfactory level of the signal.

5.2 TouristEyes: a 5G-based platform for blind

Tourist

Blind people encounter enormous difficulties in visiting unknown places, even if
they have traditional supports like a white stick and a guide dog (if they are not
allergic to animal), or some Tactile Ground Surface Indicators installed in the
visited places. A possible solution that has been adopted in the last few years is
to run a GPS-based application on the smartphone of the blind person; however,
this does not give a sufficiently high-precision (to guarantee safety for the blind
person when he/she moves in the city) and does not work indoor. In addition,
orientation and point-of-interest (PoI) finding result very difficult operations with
the currently available technologies.
The Tourist Eyes platform has the objective of providing blind tourists, visiting

a smart city, with a framework for supporting their activities and demonstrat-
ing how 5G technologies are enablers of everyday life services also for impaired
persons. Tourist Eyes was realized in the context of the 5GINFIRE Project in
collaboration with vEyes, a non-profit organization whose mission is to realize
assistive technologies for blind people.
5GINFIRE was a three years Research and Innovation action/project under the

EU programme Horizon 2020 [84]. The main 5GINFIRE objective was to build
and operate an Open and Extensible 5G NFV-based Reference (Open5G-NFV)
ecosystem of Experimental Facilities that not only integrates existing FIRE facili-
ties with new vertical-specific but also lays down the foundations for instantiating
fully softwarised architectures of vertical industries and experimenting with them.
In particular, to execute the experiments, the infrastructure provided by the Uni-
versity of Bristol replica site was used.
Tourist Eyes is an enhancement of Poseidon 2.0 [85] testbed, developed by

vEyes, but with the possibility of using 5G technology to work with more complex
scenarios in a smart city. The advantages of that testbed with respect to the
current technologies are evident because it provides a very useful support to blind
tourists, both outdoor, when guide dogs are not available, and indoor, where GPS

146

CHAPTER 5. 5G-ENABLED SMART SERVICES

Figure 5.14: Tourist Eyes. State of the art

Figure 5.15: Tourist Eyes. New testbed

does not work. Now, considering this testbed as the state-of-the-art system (Fig.
5.14), a comparison between it and the Tourist Eyes framework (Fig. 5.15) shows
the advancements achieved through the proposed experiment.
In particular:

− deployment of the Tourist Eyes framework in a smart city is strongly simpli-
fied. Furthermore, no cabling, no hardware for computing, and no wearable
devices are needed. IP cameras can be easily placed anywhere and can also
be added when the service is already running. Each IP camera will be eas-
ily connected to the platform automatically thanks to the WiFi/LTE/5G
coverage, and their flows will be automatically redirected to the desired
chain thanks to the SDN infrastructure. Users, i.e. blind tourists, can join
the platform very easily because it is only needed that they have the app
installed on their smartphone, and wear a coloured hat or T-shirt, in such
a way he can be tracked by the platform;

147

CHAPTER 5. 5G-ENABLED SMART SERVICES

SERVICE PLATFORM COORDINATOR

Figure 5.16: Tourist Eyes architecture

− thanks to the underlying softwarization paradigms (SDN/NFV/MEC), the
Tourist Eyes service can be extended or easily integrated with other services.

To describe the Tourist Eyes platform, it is possible to refer to Fig. 5.16. For each
blind person, an instance of the Tourist Eyes Service is created and connected to
the Service Platform Coordinator that:

− manages the database of user and the database of IPcams;

− coordinates all the instances of the personal Tourist Eyes service;

− manages the database of service users and the database of IPcams.

Thanks to the SDN/NFV paradigm available in the Bristol testbed, the personal
Tourist Eyes service is realized as a set of elementary VxFs, as shown in the
bottom part of Fig. 5.16. In this way, each service component can be migrated
from one NFVI-PoP node to another one, in order to follow the blind person in
his movements, or can reside inside the same NFVI-PoP node.
When a blind tourist needs to be guide in a particular path, runs the Tourist

Eye app on his/her smartphone thanks to the vocal assistant. In this way, the user
will just have to log in to be associated to a Personal Tourist Eyes Service chain.
Now the user has to specify his/her starting point and where he/she wants to go,
so the system is aware of his/her presence in a specific point of the city (in the
case of the experiment, the Millennium Square in Bristol), activates an instance
of the Personal Tourist Eyes service chain and associates it to the requesting
user. Blind users can also send voice commands to request help regarding some
PoI, like restaurants, restrooms, museums, and ATM machines. The Personal

148

CHAPTER 5. 5G-ENABLED SMART SERVICES

Tourist Eyes Service chain is then migrated to the MEC server at the closest
edge node or otherwise run from the scratch. Execution of service chain instances
is achieved thanks to the OSM orchestration platform. At this point, the blind
tourist can start to move following the sound signals received by the application
in the headphones connected to his/her smartphone. To support the complete
path, a set of IP cameras need to be installed at a distance of approximately 10
m from each other, in such a way that the blind tourist is always monitored by
one IP camera. The IP cameras are connected to the network access points (WiFi
APs or LTE/5G) deployed in the city.
The software parts of the Tourist Eyes testbed are basically four: the Tourist

Eyes Console, the Tourist Eyes Manager, the Tourist Eyes Training App and the
Tourist Eyes App.
The Tourist Eyes Console (briefly Console) is implemented as a C# application

and aims at simplifying the set-up process of the experiment by providing an
intuitive graphical user interface that enables the creation of new routes and the
configuration of the route parameters. Therefore, the Console drastically reduces
the set-up time of the experiment while enabling the management of the system
set-up without directly interacting with the database. The operations that must
be performed to create and set the route parameters are two:

− insertion of a new camera in the list of the system cameras, specifying an ID,
the IP address and port used to send video flow requests, and the username
and password needed to access the camera in a security way;

− route creation and parameters setup: a route is made up of several modules,
each one associated to one camera.

About the route creation, first of all it is necessary to select the starting PoI
from which the user will be tracked the specific route. Then it is possible to
configure the orientation, the direction and the message type of the Starting
Module. The orientation can be both horizontal or vertical, the direction depends
on the orientation and can be both right or left for horizontal modules and up
or down for vertical modules. Finally, the camera associated to the module must
be selected. The message type represents the audio signal that will be sent to the
user when he/she crosses a specific guideline. There are two types of guidelines:
yellow and red. The yellow lines delimit the virtual track in which the blind user
must walk: when the user crosses one of these two lines, a message is sent from
the Manager to prompt the user (e.g make a step on the side) to re-enter the
route. The red lines define the prompted message that the Manager will send to

149

CHAPTER 5. 5G-ENABLED SMART SERVICES

the user when he/she is approaching the next camera. In this way, the user is
prompted to make a right/left turn or just to keep going straight. The next step
is to set the position of the red and yellow lines. This is done by right-clicking
on the module that has just been created and by selecting "show". In this way,
the console shows the real time video streamed by the camera, thus facilitating
the setting of guidelines position. Finally, it is necessary to specify the radius
of the hat, which needs to be reconfigured for each camera, since each camera
can be set at different heights w.r.t. the ground. It is also possible to set the
radius for the umbrella, since it can be used as an option to the hat. This last
step concludes the configuration of the starting module. As already said before,
a route is made up of several modules; two of them must be the starting and
the arrival module. A new module can be added to an existing route by clicking
on one of the already-created modules and by selecting "add new module". The
operations to be performed are those just described, with the only addition of
having to specify whether the module just added is the last of the route (the
arrival) or not. It is important to note that the outward and return journeys are
created in two different routes since there are touristic sites like museums where
the routes are unidirectional.
The Tourist Eyes Manager (briefly Manager) is the core of the entire system.

After the system boot, the Manager listens for connections on a certain port.
Through the Tourist Eyes App the user sends a request to the Manager to be
tracked and guided to safely arrive at the desired destination. After selecting the
starting point and the ending point from the Tourist Eyes app, a connection re-
quest is sent to the Manager. The Manager then executes a query in the database
to retrieve the appropriate route (for each starting point and ending point there
is only one route). Afterwards, the first two cameras of the route begin to send
video streams to the Manager, as shown in Fig. 5.17: the tracking algorithm is
performed on the first camera, while the second one is ready to welcome the blind
user.
In this way, while the user leaves the first cam, the second one is already sending

its video stream to the Manager, which then “shifts” its tracking algorithm from
the video stream of the first camera to the stream of the second one while guaran-
teeing a soft handover procedure. When the blind user leaves the first camera and
enters the second one, the first camera stops sending video streams and the third
camera simultaneously starts its transmission. The tracking algorithm searches
for a pseudo-spherical object of colour previously chosen by the user through the
app; moreover, to reduce interference from external objects of the same colour

150

CHAPTER 5. 5G-ENABLED SMART SERVICES

Figure 5.17: Tourist Eyes Manager

in the surrounding environment, a greyscale filter is applied to each frame of the
video, grayscaling everything but a squared area near the user. Another filter can
be applied to enhance certain colours, so that the system will be able to recognize
the hat more easily. When the user crosses one of the guidelines described before,
the Manager sends a message to the app. This message is decoded by the app and
transduced into an acoustic signal. The user, after receiving the acoustic beep, will
change direction to re-enter the route. Once at the destination, another acoustic
beep is sent to the user, and the Manager starts listening for new connections.
The Tourist Eyes Training App is used to “train" the user to recognize the

actions to be performed for each acoustic signal. The "Sound SX" and "Sound
DX" signals tell the user to take a sidestep respectively to the right and to the left.
The "Turn to SX" and "Turn to DX" signals tell the user to make respectively
a 90◦ leftwards or rightwards rotation. When the user arrives at destination,
he/she will be notified with the "Destination Hit" sound. The “Lost tracking”
sound indicates instead that the user is currently not being monitored by any
camera. This last signal has been particularly useful to successfully set up both
cameras and guidelines.
The Tourist Eyes app is the only software component that each user of the

system must have installed on his/her smartphone. Through the app, the user
sends a request to the Manager to be tracked and guided to safely arrive at
the desired destination. The blind user can easily interact with the application
thanks to the support of the smartphone’s voice assistant. The first step is select
the "Places" bottom from the main screen of the app to display the list of places
where the Tourist Eyes system is active. From the received list (Fig. 5.18a), by
selecting, for example, Millenium Square, a list of PoI is displayed (Fig. 5.18b);

151

CHAPTER 5. 5G-ENABLED SMART SERVICES

(a) List of places covered by Tourist
Eyes

(b) Point of interest of a specific place

Figure 5.18: Tourist Eyes app

after selecting the starting point, a second list shows the possible points of arrival.
Note that the retrieval of all this information is done via Web Services, which are
used by the Tourist Eyes app to receive the lists of available places and relevant
points of interest from the SQL Server. After selecting the point of departure
and arrival, a request is sent to the Manager. Afterwards, the user will only have
to select GO!. The Manager will query the database to retrieve the route that
connects the starting point to the destination point, the modules of the route,
and the list of cameras associated with the modules. Afterwards, the Manager
will send a video request to the first and second camera of the route and starts the
tracking algorithm. Finally, the Manager will begin to send messages to the app;
these messages will be transduced by the app into acoustic beeps that the user
will receive through his/her headphones. When the user arrives at the destination,
tracking ends and new connections can be accepted by the Manager. In Fig. 5.19,
it is possible to see the data flows of the messages exchanged between the system
components.
About the setup-up of the experiment, the first step regarded the upload in the

5GINFIRE portal of the image containing all the software components required
to execute the experiment. After that, the VNFD (Fig. 5.20) and the NSD (Fig.
5.21) were uploaded in the OSM portal.
The second phase of the setup of the experiment was carried out at Millennium

152

CHAPTER 5. 5G-ENABLED SMART SERVICES

Figure 5.19: Tourist Eyes. Data Flow

IP Cam Access Point Distance
1 6 12.3 m
2 6 16.5 m
3 6 19 m
4 5 14.4 m
5 5 14.7 m

Table 5.5: Tourist Eyes. Distance between IP Cams and Access Point

Square, where IP cameras have been installed. A preliminary check involved the
test of the connectivity between the IP cameras and the VNF running in the
MEC server. Every IP camera that has been used for the experiment could only
support the 2.4 GHz band option. There were TWO access points at Millennium
Square to get connected to the Tourist Eyes network. The first AP was fixed on
top of “Tower 5” of Millennium Square, while the second one was deployed on top
of “Tower 6”.
To better understand the position of the cameras with respect to the access

points, see Fig. 5.22. Table 5.5 shows the distance of each IP camera from the
access point. The installation and configuration of the cameras was carried out
through the Console, that allowed to create the routes from Grant Statue and
640East (Fig. 5.23) and configure the 5 modules of which the route was composed.
The creation of the forward route (from the Grant Statue to 640East - Fig.
5.24a) and the return route (from the 640East to the Grant Statue - Fig. 5.24b)
concluded the experiment set-up phase.
During the experiment phase, three different working regions were identified:

153

CHAPTER 5. 5G-ENABLED SMART SERVICES

Figure 5.20: Tourist Eyes. VNFD in OSM

Figure 5.21: Tourist Eyes. NSD in OSM

154

CHAPTER 5. 5G-ENABLED SMART SERVICES

Figure 5.22: Tourist Eyes. Position of the installed camera in Millennium Square

Figure 5.23: Tourist Eyes. Path during experiment execution

155

CHAPTER 5. 5G-ENABLED SMART SERVICES

(a) Forward path (b) Backward path

Figure 5.24: Tourist Eyes. Forward and backward patch during the experiment

− Time Interval P1 (Tuesday, October 22nd, from 10:45 to 11.55 am): the
system experienced high quality performance, since the video was flowing
smoothly through the system;

− Time Interval P2 (Wednesday, October 23rd, from 12:45 to 1.45 pm): the
system performed poorly in terms of quality of service, with recurring image
freezing events and consequent system non-responsiveness, as detected by
the user. Even though the blind user was diverting from his path, the system
gave no feedback to correct the trajectory, or gave feedback with a very long
(unacceptable) delay;

− Time Interval P3 (Wednesday, October 23rd, from 4:45 to 5.45 pm): the
system worked with rather good quality. All the experiments during this
time interval were successful, the user was able to receive all the expected
feedback and complete his/her path. In fact, when his/her diversions from
the established path resulted in deviations from the planned trajectory, the
feedback worked properly, although with short but still acceptable delay.

Note that the distinction of these working regions comes from problems which
were external to the Tourist Eyes experiment and mainly related to traffic and
users accessing the network, considering that the Millennium Square area in Bris-
tol was very crowded at certain day time and many users at the time of the
experiment execution were using their own applications and accessing the Inter-
net. Also the weather conditions were very variable and unstable, and thus our
experiment suffered of the bad propagation conditions.
For each of the above time interval, some numerical results in terms of CPU

156

CHAPTER 5. 5G-ENABLED SMART SERVICES

and memory utilization in the VM, and delay and message loss percentage for
the network layer, will be shown.
As regards the CPU and the memory, the measurements in the three scenarios

considered showed that both of these parameters are absolutely not influenced by
the quality of the radio access link. Moreover, varying the bitrate used to encode
the video flows, during the analysis phase of them both CPU and memory does
not result overloaded in any case.
About P1 scenario, referring to Fig. 5.25 it is possible to see that at the be-

ginning (a) the user is halfway through the path section visible to CAM3. The
user keeps on walking, leaves the section visible through CAM3 (b) and enters
the section of the path under coverage of CAM4; finally, the user is captured by
CAM4 (c). By observing the circle in the black rectangle representing the user as
tracked by the system, it is possible to note that the system perfectly works and
allows promptly making handover between different cameras.
As shown in Fig. 5.26, upon increasing the encoding bit rate, a higher bit rate

is measured. In particular, when the encoding rate is not more than 512 kbit/s,
the bit rate is very close to the encoding target. Instead, when the target is too
high, i.e. 2 Mbit/s, the maximum bitrate is generated, which is not higher than
87% of the target encoding rate.
Moreover, two highly significant parameters like the average delay and the loss

percentage are shown in Fig. 5.27. In particular, note that in Fig. 5.27a the average
delay of CAM3 and CAM4 are significantly higher than the average delay of all
the other cams. This specific behavior was also detected for CAM3 in the loss
percentage graph (Fig. 5.27b). Thanks to the help of the Millennium Square
Network Staff, was discovered that this behavior was due to a poor quality of the
wireless link between these cameras and the WiFi access points.
Regarding P2 scenario, in Fig. 5.28 is shown the monitoring of user’s movement.

In particular, at the beginning (a), the user is halfway through the path section
visible to CAM3. The user keeps on walking but suddenly the video freezes (b).
Therefore, the system perceives the user as if he/she has stopped. At the same
time the video from CAM4 flows regularly (c). Since the algorithm is applied to
CAM3 (freezed), the user receives a false feedback, because he/she is still moving
as shown in CAM4 (d) but the system detects it inside CAM3 coverage area. The
reason for the algorithm still relaying to CAM3 is that the user has not entirely
left CAM3 but CAM3 is freezed; therefore, the system has not realized that the
user left CAM3 and entered the region served by CAM4.
The average transmission bitrate, the average delay and the loss percentage

157

CHAPTER 5. 5G-ENABLED SMART SERVICES

(a) CAM 3 (b) User leaving CAM 3

(c) User entering CAM 4

Figure 5.25: Tourist Eyes Console Screen - High Quality Scenario

(a) Encoding bitrate: 128 kbit/s (b) Encoding bitrate: 256 kbit/s

(c) Encoding bitrate: 512 kbit/s (d) Encoding bitrate: 2 Mbit/s

Figure 5.26: Tourist Eyes. Average transmission bitrate from IP Cams in P1

(a) Average Delay (b) Loss Percentage

Figure 5.27: Tourist Eyes. Delay and Loss Percentage in P1
158

CHAPTER 5. 5G-ENABLED SMART SERVICES

(a) CAM 3 (b) CAM 3 video freezen – CAM 4 video flows regularly

(d) CAM 3 video still frozen – User still walking(c) CAM 3 video still frozen – User keeps walking

Figure 5.28: Tourist Eyes Console Screen - Poor Quality Scenario

Figure 5.29: Tourist Eyes. Average transmission bitrate in P2

(a) Average Delay (b) Loss Percentage

Figure 5.30: Tourist Eyes. Delay and Loss Percentage in P2
159

CHAPTER 5. 5G-ENABLED SMART SERVICES

are reported in Fig. 5.29, Fig. 5.30a and Fig. 5.30b. Each IP camera presents
a different average transmission rate, that depends on the current scene it is
focusing, the movements of the user in the covered area, and the presence of
other persons in the same area. As regards average delay and loss percentage, it is
observed a similar behavior of the previous scenario. In fact, although with higher
values, CAM3 and CAM4 present the worst values, again due to the badness of
the wireless link used for connection to the structured network. The too high value
of both delay and loss percentage, especially for CAM3 and CAM4, motivate why
the experiment is not working in this case.
Finally, about the P3 scenario Fig. 5.31 shows that at the beginning (a), the user

is halfway through the path section visible to CAM3. The user keeps on walking;
the user (b) leaves the section visible by CAM3 and enters the section of the path
under coverage of CAM4. The network delay affects the commutation process
from CAM3 to CAM4; as evident in (c) unfortunately some delay is experienced
from when the user entered the area served by CAM4 and when his new position
was identified.
The average bitrate generated by each CAM is presented in Fig. 5.32. Here,

again, it is observed that each camera has a different behavior, and CAM4 is
the one more stressing the network. The average delay and the loss percentage
are shown in Fig. 5.33, respectively. In Fig. 5.33a the average delays of CAM3
and CAM4 are significantly higher than the average delay of CAMs 1, 2 and 5.
This specific behavior of CAM3 and CAM4 compared to the behavior of CAM1,
CAM2 and CAM5 was also detected in the loss percentage graph shown in Fig.
5.33b.
The results carried out during the experimentation show that there are a number

of critical and unexpected issues which need to be taken into account and that
are related to traffic conditions, delay, weather conditions, possible temporal mis-
functioning of certain cameras which strongly impact on the performance of the
system. However, the Tourist Eyes system is very robust and reliable and showed
to well absorb these unexpected features.

5.3 5Gamer: a 5G-assisted online game

Online gaming represents a very large portion of today’s videogame scene, as most
players like to compete against other players online. Online games are gaining
more and more popularity thanks to many online games being released for free
and made available to everybody (e.g. Fortnite, Apex Legends, League of Legends,

160

CHAPTER 5. 5G-ENABLED SMART SERVICES

(a) CAM 3

(c) Algorithm still applied to CAM 3

(b) User leaving CAM 3

(d) User entering CAM 4

Figure 5.31: Tourist Eyes Console Screen - Good Quality Scenario

Figure 5.32: Tourist Eyes. Average transmission bitrate in P3

(a) Average Delay (b) Loss Percentage

Figure 5.33: Tourist Eyes. Delay and Loss Percentage in P3

161

CHAPTER 5. 5G-ENABLED SMART SERVICES

etc.). Furthermore, competitive games have been recently officially recognized as
sports (E-Sports), with national and international tournaments taking place all
over the world, making online games of great importance even in fields outside
the gaming industry.
One of the most critical issues in realizing new generations of online games

is that these games are affected with all sorts of network problems: the most
common is lag, the delay between the performing of an action by the player and
the actual happening of the action online caused by the command arriving late
to the hosting server. Other problems are represented by accidental connection
interruptions, delays introduced by NATs, excessive queueing waiting in network
device, etc. Most games, in case of an accidental disconnection by a player, simply
remove that player from the match (in some cases, the entire game is interrupted),
or use a pre-scripted bot to control the former character left uncontrolled by the
player. Scripted AI hardly have skills comparable to that of a human player (they
usually are way weaker or sometimes way stronger), and in team games, having
an ally player being substituted by a bot is always seen as a huge handicap for
the whole team. Furthermore, the AI is often the same for all players, meaning
that a bot can raise or drop the overall skill level of a team depending of the
human player’s original skill level. An additional problem is that game servers
are run on remote clouds, and this is braking the diffusion of a new generation
of online games with very high interactivity among two or more players that, on
the other hand, require ultra-low latency guarantees.
5G network will constitute an enabler technology for the bootstrap of such kind

of online games. Videogames providers can run servers at the edge, so assuring
ultra-low latency in the interaction between players playing together the same
game. A fundamental role will be played by AI tools placed at the edge, which
are able to substitute remote control when the network is not able to guarantee
the required quality, in such a way that these malfunctions will be hidden to the
final users.
To demonstrate the gain received by online games thanks to the 5G technologies

support, 5Gamer was deployed inside 5GINFIRE project. The experiment is a
Pong reproduction (see Fig. 5.34) with the addition of network and ML function-
alities. The idea is to have a 1 vs 1 online game. The application object of this
experiment can be easily extended, as a future work, to a multi-player scenario
with high transmission bitrate to sustain high-quality video transmission, even
including virtual-reality interaction among the players.
At the edge of the network, close to each player, a virtual machine hosting an

162

CHAPTER 5. 5G-ENABLED SMART SERVICES

5G NETWORK

Player 1 Player 2

P1 P1 P2P2

Figure 5.34: 5Gamer. Application scenario

entity called Digital Twin (DT) is in running state in order to add stability to
the connection among players, reducing the impact of random network problems,
which can make the difference in an online match, and improving the overall QoS
of the game as a result. Each DT observes the game, trains a Neural Network
(NN) model by imitating the opponent’s movements and actions, and applies
techniques of ML. If the player app senses a slow or faulty connection from his
opponent, the near DT enters the game as opponent, in order to hidden this net-
work malfunctioning to the human player. When the connection regains stability,
the DT leaves the game, and the remote human player is re-enabled. The human
opponent has no awareness of being substituted. This is feasible only thanks to
the computing facilities that the 5G network, in this case given by the Bristol
testbed, are able to provide at the edge of the network.
In particular, the workflow of this experiment is presented in Fig. 5.35: it needs

four machines, two for the real players and two for the DTs. All these machines
(both physical and virtual) need to have installed some components: the Unity
Engine, Anaconda 3.4 (including the setup of a virtual environment with all
required Python libraries installed, such as TensorFlow) and the Unity ML-Agents
Toolkit.
Two remote users are connected through a 5G network and play to the same

game: one player hosts the game (as if it were a server) and the other one connects
to him as a client. Shortly after the beginning of the game, the DTs connect to
the ongoing game. The DT1, running on the network edge close to the player 2,
aims at learning the behavior of the player 1. DT2 works in a symmetric way. To
this purpose, each DT runs an Imitation Learning algorithm, realized using the
experimental Unity’s ML-Agents Framework, in order to train a Deep NN model
(made with TensorFlow) to behave like the opponent of the player which is close
to. The trained model is constantly updated and sent to the close player, which

163

CHAPTER 5. 5G-ENABLED SMART SERVICES

Player 1 (Client) Player 2 (Host)

DT2

Client connects to Host

DT1

Player 2’s Digital Twin Player 1’s Digital Twin

Player 1’s Inputs

Player 2’s Inputs

5G NETWORK

Figure 5.35: 5Gamer. System Architecture

uses it to generate a bot in case of network malfunctions from his opponent. As
the training continues, the model will be more and more well trained in imitating
the original player’s actions and, in the ideal scenario of a very long training, the
bot becomes impossible to be distinguished from the human.
The Imitation Learning is realized by two game “Brain” objects: Follower and

Trainer. The Follower has the objective to recognize the player to imitate and
start following it, copying its inputs. The Follower acts as a “Teacher” to the
Trainer (which represents the “Student” Brain), which uses the Follower’s control
signals as inputs during the training process. During the experiment, the training
progress can be seen on the command prompt, specifying the current training step,
the reward value (as this is a special kind of Reinforcement Learning Algorithm)
and when the .nn file (containing the trained model) is saved and updated.
Direct communication between DTs and Players is used to update the file of

the models as they are generated and updated. Every time a new .nn file is
generated, is then sent to the player. Each player game project comes with a bot
prefab, which is instantiated every time the quality of connection drops below a
set threshold. The bot uses the .nn file as a Brain in order to make decisions in
game.
To test the application, some network malfunctions can be introduced, like

traffic, lag, and other problems. At this point, communication from Player 1 is
completely blocked, Player 2 senses a disconnection and enables the bot, to guar-
antee the quality of the game. The bot will use data provided by the DT1 at the
edge of the network corresponding to the results of the imitation learning algo-
rithm performed on the movement of Player 1. The bot is spawned immediately
and in the same exact position of the Player right before disconnecting, making
the whole process completely transparent for both Players, as Player 1 will keep
playing as normal (because connection from Player 2 is still functioning properly)
and Player 2 will play with the bot. The whole scenario returns seamlessly to the

164

CHAPTER 5. 5G-ENABLED SMART SERVICES

normal behaviour as the communication problems from Player 1 are solved.
One of the most important peculiarities of this experiment is that, taken away

the modelling of the smart agent, this system can be potentially applicable to
any kind of online game. In the case of the current experiment, there is only one
degree of freedom, as the Pong paddle can only move in one direction. In most
complex games, more degrees of freedom, control signals and observations need to
be considered, and this can be easily done with Unity’s ML-Agents Toolkit. The
challenge of the 5Gamer experiment is to demonstrate how 5G technologies are
enablers of everyday life services, before unthinkable due to the severe limitations
of the current technologies. 5G provides all active nodes with:

− ultra-low latency, here needed for real-time interaction between each player
and the instance of his personal DT virtualized at the edge of the network;

− huge transmission rates, here needed by the DT to both retrieve large
amount of data critical for training and to continuously send the model
to the Players

− a huge number of connected devices, because even if not in this case, in a
more realistic scenario of an online multiplayer game, there can be thou-
sands of Players simultaneously connected, and it has to be considered that,
in this scenario, the number of actual connected devices is more than dou-
bled, because each Player has at least one DT.

As it is possible to observe from the comparison between the state-of-the-art
system depicted in Fig. 5.36a, and the framework of the proposed experiment,
shown in Fig. 5.36b, the gains achieved with the proposed experiment can be
synthesized as follows:

− the simple fact that the game is running on a 5G network grants the overall
QoS of the game a sharp raise, with much less lag, less disconnections, and
a far higher potential number of interconnected players at the same time;

− 5G technologies enable heavy computing in the network as well, here rep-
resented by several training algorithms running at the same time. It goes
without saying that the use of an AI modelled on the playstyle of a certain
player that overtakes control of the situation if that specific player dis-
connects is a gigantic step forward in comparison of standard, pre-scripted
bots;

165

CHAPTER 5. 5G-ENABLED SMART SERVICES

− another enhancement, even if it may seem unimportant at a first glance,
is represented by the overall improvement of the players’ mood and de-
gree of satisfaction while playing. Although the proposed experiment aims
to sharply decrease, if not completely eliminate, the negative impact of
accidental disconnections during an online game, which can be caused by
malfunctions in the network, in the hardware or in the electrical system,
some players use to disconnect from the game on purpose (usually, when the
game is going bad for them), resulting in a handicap for the entire team,
that snowballs to the worsening in the players’ mood and liking of the
game, to a drop of the game’s popularity as a result. The proposed system
eliminates the negative effect of these disconnections as well, making the so-
called “rage-quitters” completely unoffensive to other players, which won’t
notice the difference before and after the rage-quitting. Hopefully, this can
cause other beneficial effects, like discouraging negative behaviours such as
these, making the online community less “toxic” and capable of attracting
new players, with great advantage of both players and software houses. It
goes without saying that, despite the proposed prototype eliminates its ef-
fects, rage-quitting is still a bad habit that has to be detected and punished
nonetheless, as most online games already do.

Results coming from this experiment had been exploited in several ways. It has
to be noticed that the nodes of this prototype can be strategically moved and
modified to adapt to different situations. In fact, the proposed service has enor-
mous potentialities when applied to much more complex architectures and more
realistic scenarios: for example, consider a classic situation where ten players start
a 5 vs 5 team match, all of them are connected to a central server, that hosts the
game. The DT of each player can be placed physically near to the player itself, at
the edge of the network, learning his movements while playing, and finally storing
the trained model in the server. Therefore, the game’s servers can collect informa-
tion on the playstyle of each player, update it at every match, and use it in case
of bad connection to control their entities locally (as the server is the host of the
match, the bot control is performed with zero delay). Another realistic scenario to
be considered is that of a Battle Royale game, where there are a hundred or more
players connected, or a MMORPG (Mass Multiplayer Online Role-Play Game),
where the number of simultaneously connected players normally exceeds the order
of thousands (for example, a World of Warcraft server can hold up to 7000-7500
players at the same time) and where the use of 5G technologies can really make
an enormous difference. Not only it makes the implementation of Imitating AIs

166

CHAPTER 5. 5G-ENABLED SMART SERVICES

CLASSIC NETWORK

Player 1 Player 2

P1 P1 P2P2

X

X
Malfunction

Game stops working P1 stays idle

!?@#§$&!!! !?

(a) State-of-the-art system

5G NETWORK

Player 1 Player 2

P1 P1 P2P2

X
Malfunction

Keeps playing
AI plays on behalf of P1

DT1

(b) New proposed system

Figure 5.36: 5Gamer. Comparison with the state-of-the-art in case of malfunction

possible, but it opens a lot of possibilities for these kinds of games, that are used
to a “quantity over quality” approach: for example, games like Fortnite or Final
Fantasy XIV still exhibit poor graphics compared to the standards, because the
computational power used to process graphics is kept to a minimum in order to
maintain the large amount of users reliably connected.

5.4 VISION: a platform for smart-city video

surveillance services

The VISION (VIdeo Surveillance for Impaired persONs) platform was realized
in collaboration with HTLab, an innovative startup originated by the previous
described vEyes. The mission of HTLab is targeted to all kinds of impairments
and any application of technology to healthcare.
The objective of VISION is to develop a video surveillance framework for smart

cities, aimed at providing a social and shared video surveillance tool to help im-
paired people (blind people, people with limited-mobility, deaf people, old people)
which could need to be guided/monitored safely within the city. VISION deals

167

CHAPTER 5. 5G-ENABLED SMART SERVICES

with the application of 5G network softwarization for verticals with differentiated
QoS requirements. It was presented to the 3rd Flame Project Open Call and it
is currently implemented in the replica site of Bristol.
In Subsection 5.4.1, the architecture of the 5G testbed, realized by Flame Con-

sortium, is described. Next, Subsection 5.4.2 presents the implementation of VI-
SION and all its components.

5.4.1 Flame Project

The Flame project is a Research and Innovation action/project under the EU pro-
gramme Horizon 2020 [86]. The objective of the FLAME platform is to provide a
system characterized by low latency distributed computing as well as content over
a 5G-enabled programmable infrastructure, providing the user with faster access
to media and services. Through the platform’s fast and dynamic service request
routing capability, media service providers will have fine-grained control over load
and therefore costs across the network. This offers the potential to significantly
reduce the overall costs while ensuring fast availability of services towards end
users. Another important capability of FLAME platform is the possibility of a
cheaply broadcast content to multiple users without any need for adopting clients
and services to specific multicast protocols, significantly reducing the predicted
cost increase for video delivery.
In Fig. 5.37, it is showns the FLAME platform architecture [87], operating on

top of an infrastructure exposing an ETSI MANO compliant interface, that al-
lows FLAME platform to reserve compute, storage and networking resources.
The definition of experiment API (compatible with HTTP/IP standard) through
the implementation of management and monitoring interfaces, allows the place-
ment of compute, storage and network resourses during the experiment. In fact
the Flame platform orchestrates the deployment of media components consider-
ing them like internal service function because the same resources provided by
the infrastructure layer, are in turn provided by Flame as retail resources to the
media services at the top of the platform through management interfaces. There
is also a monitoring interface the allows information to be exchanged between
the media services and the platform. Based on these information, it is possible
to configure some alerts used to trigger actions insider the service function. This
aspect is important, because allows the experimenters to discover particular re-
lations between the service under test and the resource specifications. All that
said, the unique requirement of the media service deployed on FLAME platform
is that it is composed by a set of media components, communicating each other

168

CHAPTER 5. 5G-ENABLED SMART SERVICES

Figure 5.37: Flame Platform Architecture [87]

through an HTTP/IP compliant data plane interface. As shown in Fig. 5.37, the
FLAME platform is able to support the realization of 5G control plane services,
such as the Session Management Function (SMF), for vertical control planes as
envisioned for, e.g., vehicular or industrial scenarios.
The different components of the FLAME platform are: Orchestrator, that inter-

faces with the infrastructure resource management through the aforementioned
ETSI MANO compliant interface. Its objective is managing the compute/stor-
age/network resources towards the media service provider, while it utilizes the
surrogate policy control interface towards the Service Function Endpoint Manage-
ment and Control (SFEMC) component to realize the orchestration-level man-
agement policies as well as to set suitable shorter-term control policies for service
function endpoints.
The Cross-Layer Management and Control (CLMC) component gathers infor-

mation across various layers. Data are collected at various levels [88]: metrics
from the SDN level describing routes and latencies; metrics from the container
of each deployed service function (service function endpoint or SFE) describing
the memory, disc, CPU and network; metrics describing the performance of ap-
plication containers or web servers such as Tomcat or Nginx if they are used; and
application-specific metrics where they are implemented. These data are useful
and needed for control-level decisions, such as the activation of service endpoints,
but they also provides a rich pool of data for media service providers. The CLMC
brings together timeseries and graph analytics to understand demand, resourcing
and performance properties of media service function chains deployed within the
FLAME platform
For the realization of the configured service function endpoint policies, the

SFEMC layer utilizes the FQDN registration interface to control the registra-

169

CHAPTER 5. 5G-ENABLED SMART SERVICES

tion and deregistration of the service endpoints towards the Service Function
Routing component. The service routing layer will use the OpenFlow interface
to suitably configure the switching fabric of the underlying infrastructure. More
details about the interfaces of each component and the connections between these
ones are available in [87].
The file descriptors used to specify the deployment of media services are based on

TOSCA YAML and TOSCA NFV descriptors [89]. The idea is to take advantage
of these standard specifications and definitions provided by them. TOSCA offers
the possibility to define virtual instance templates and their nodes to be deployed
using the Orchestrator, which is in in charge of to collect the requirements of the
templates, interpret these requirements and to leave ready these requirements..
Characteristics of these machines can be defined in the TOSCA template (e.g.,
nodes, properties, hardware and software requirements, policies, machine status,
etc.).
To run the experiment, two TOSCA files are needed. One includes a descrip-

tion of the machines that compose the NS, in terms of name and computational
resources (memory and disk), the hypervisor used to create the machine (kvm or
lxc), the URL where is located the image that has to be used to run the machine,
and the Fully Qualified Domain Names (FQDN). This last one is needed to to
assign one or more unique DNS alias to the node. In this same file a section about
the policies is present. More policies can be defined, but the init policy is the only
one that has to be always defined, because specifies the initial state of the node.
In particular a node can be in one of these states (Fig. 5.38):

− Not_Placed : the node is not deployed in any cluster. The image for a sub-
sequent launch is not loaded and the Orchestrator does not reserve the
necessary resources. A node placed in this state is unusable in the start-up
state of the NS;

− Placed : the node is instantiated, but it is off and without connection. In
this case the Orchestrator reserves in the cluster the resources needed to
power-on the node in a second moment;

− Booted : the node is on, but without an assigned IP address;

− Connected : the node is on and connected.

There are other policies regarding the change of the node states during the
experiment whose activation depends on some triggers. These triggers are defined
in the second TOSCA file. This file is sent to the CLMC that manages these events

170

CHAPTER 5. 5G-ENABLED SMART SERVICES

Figure 5.38: FLAME: Possible node status and transitions from one status to
another

and the related alert messages. When certain conditions occur, the state of one
or more machines within the cluster could be change.
FLAME provides a pipeline of increasing complexity and realism to support

experiments and trials. In particular, before to deploy the experiment in the
Replica site (Bristol for VISION project), is needed to try it on Flame-in-a-Box
(FiaB) and Sandpit [88].
FiaB (Fig. 5.39) is a VirtualBox-base mini Flame platform, with the aim of

allowing a first interaction between the media service and the complete platform
deployed in the Replica. In particular the experimenter can test SFC orchestration
templates (the first TOSCA file needed to deploy the service), SF provisioning
and basic communications between the service and the other elements of the
platform.
As show in Fig. 5.39a, FiaB is composed by eight VMs:

− UE : an emulated client used by the experimenters to test the application.
It represents a bridge between FiaB and external systems;

− Cluster : the cluster in which the SFC is deployed;

− SR-UE : a service router for UE and Cluster;

− SR-PS : a service router that works like GW for all the other IP endpoind
in the platform;

− PCE-SFEMC : the path computation and service function management and
control instance;

− NM : The SR manager allowing you to configure TLS certificates enable
service function routing for HTTPS;

− Floodlight : the SDN controller;

− PS : the instance that hosts DHCP server. DNS, IP GW and SF repository.

171

CHAPTER 5. 5G-ENABLED SMART SERVICES

(a) Physical topology of the VMs inside FiaB

(b) Logical topology of the VMs inside FiaB

Figure 5.39: Flame-in-a-Box architecture [88]

The CLMC component is not present in FiaB implementation: for this reason
only the first TOSCA file can be tested in this first step of the experiment.
Furthermore, the presence of only one cluster reduces the possibility to deploy
the experiment in more than one cluster.
The next step is the deployment of the experiment on Sandpit. IT Innovation

provides a server (givry.it-innovation.soton.ac.uk) which has the FLAME plat-
form deployed in a combination of containers and virtual machines to emulate a
replica with multiple small data centres such as Bristol. The principal difference
with FiaB is the presence of CLMC component and the possibility to use more
resources, due to the four "cluster" that can be used to deploy and test the SF.
Thanks to the CLMC and SFEMC, in the Sandpit step is possible to test also

the second TOSCA file with triggers and alerts: this allows the experimenters to
test the SF in a complete version, but it is not possible to test its performance.

172

CHAPTER 5. 5G-ENABLED SMART SERVICES

Figure 5.40: Topology of Sandpit with clusters (green), emulated UE (red) and
SDN switch (blue) [88]

Finally, the experiment has to be test in the Replica site [88]. The performance
(network and hardware resources) in the Replica will be different to the sand-
pit. The connectivity of mobile phones must be also tested (in terms ofsignal
strength, bandwidth and which access point is used in different locations). All
the data collected during the experiment, as in Sandpit, can be explored through
the CLMC interface. As said before, the chosen Relica site for the experiment
was Bristol, where the FLAME infrastructure is spread over Univerity of Bristol,
Millennium Square, We The Curious Museum, and Multimedia Shed. The sites
are interconnected via a 10km long fibre link across the city. The Flame platform
topology is shown in Fig. 5.41.
Millenium Square is about 75m by 75m and each of the six towers is roughly

3m wide. Due to the close proximity of all WiFi access points on the square two
options are available to experimenters (Fig. 5.42):

− a single SSID across the entire square where all traffic is served by a single

173

CHAPTER 5. 5G-ENABLED SMART SERVICES

Figure 5.41: Bristol Flame platform topology [90]

SR located at Tower 2. TheWiFi access points perform some sort of mobility
to let clients connect to the strongest acces point - but fully transparent to
the clients in case of a "handover";

− a dedicated SSID per across all towers (except Tower 2) which allows ex-
perimenters to use some sort of location beacon (QR code, tower selection
by user, etc) to determine which SSID to be used. Each access point uses a
sector antenna to lower interference across all APs.

5.4.2 VISION architecture

VISION is composed of three architectural elements (see Fig. 5.43), specifically
the DiMoVis platform and Tourist Eyes (described in the previous section) and
the Lying Person Recognition (LPR). So, the VISION project represents the
possibility of integrating the three components together and inside the FLAME
platform. In addition, user-provided video sources and mobile devices, that will
be connected to the Flame Access Network, complete the system.
The DiMoVis platform runs over the FLAME platform to provide basic video

surveillance services and the possibility of customizing them with additional fea-
tures. This platform allows development of a multitude of new services for smart
cities. In this project it is used to support two third-parties services for impaired
persons: persons that need some help because lying on the ground and are not
able to request help autonomously, and blind tourists. The way in which DiMoViS
considers third party applications should be emphasized: these applications are

174

CHAPTER 5. 5G-ENABLED SMART SERVICES

(a) Single SSID across the square

(b) Dedicated SSID per across all towers

Figure 5.42: FLAME. Coverage area in Millennium Square [90]

175

CHAPTER 5. 5G-ENABLED SMART SERVICES

Figure 5.43: VISION Architecture and interaction with the FLAME Platform

seen as DiMoViS users. This means that, for example, when Tourist Eyes decides
to use the services offered by DiMoViS, it will have to log in to the platform as
if it were a normal end-user and only then can it register its own cameras on
DiMoViS and/or request access to cameras managed by the latter.
Each user of the platform can easily share his own video source device (e.g.

webcam, IP cam, smartphone or tablet) by connecting it to the network (with
either a WiFi or a cellular connection), and register it to the DiMoVis platform
through an Android app or a web portal. During registration, the owner of the
video source device can specify one or more access profiles to restrict access to
different groups of users. Each user, on the other side, through the same Android
app or web portal, has a map of the area covered by the DiMoVis platform service
(e.g. a smart city), with all the active cameras. Association of one or more cameras
is done by a registered user in a very easy way, by clicking on the map viewed on
the screen, or through a QR-code that is available in proximity of the camera. The
user can then customize the received video flows and the events associated with
each camera by adding optional functions running in the underlying softwarized
network as VF (for example, motion detection, mosaic view, video transcoding,
and so on). These functions will be automatically included in the chains between

176

CHAPTER 5. 5G-ENABLED SMART SERVICES

video sources and the device of the requesting users.
The Impaired Person Support element, proposed specifically for the VISION

experiment, aims at providing support to impaired persons to be remotely guided
by a relative or a friend (in the following called remote guide), for example when
he/she has lost his spatial reference points or if he/she wants to reach an unknown
place. More specifically, the impaired person, walking in an area covered by the
VISION service, can request a remote visual guide. So he/she starts a phone call
with the remote guide, informing him/her about his approximate position and
the remote guide activates the VISION app. By browsing on the map, the remote
guide selects all the cameras that are available in the zone where the impaired
person might be and, looking at the video flows received by these cameras, starts
to guide the person by speaking on the phone. The remote guide can follow the
person during his path by means of different video flows transmitted by various
cameras. This service is complementary to the Tourist Eyes block, since it can be
invoked either when the impaired tourist is on a path registered in the Tourist
Eyes platform and needs to reach a place not included in the PoI list, or when
he needs to reach a Tourist Eyes path from an external place. All the IP cameras
that are installed for the Tourist Eyes service can be associated with the DiMoVis
platform, and so can be used by all the services provided by it. The Impaired
Person Support element, thanks to the installed cameras, can also automatically
recognize if a person is lying on the ground in indoor or outdoor environments,
and send an alert to someone (e.g. a friend or a relative of that person, or to
the local emergency or healthcare provider). For example, this service can be
activated by a relative of an old person if he/she wants to monitor the old person.
In this case, video flows generated by all the IP cameras installed close to the
places where the impaired person moves, are sent to an artificial intelligence tool
running inside the network as VF, which is able to recognize persons lying on
the ground through an image recognition algorithm. If a person is realized to lay
down in an area served by a camera where the person monitored also through the
Impaired Person Support element is located, an alert will be sent to the relative
who requested to monitor the impaired person.
Finally, the proposed platform is completed with the external devices, repre-

sented by the user-provided IP cameras and the mobile devices, both connected
via WiFi/LTE/5G to the FLAME platform. Video sources, on the one hand, are
any kind of video transmitting devices (like IP cameras, action cams, cameras
installed on-board drones, etc) transmitting HTTP-based flows or, alternatively,
any kind of cameras whose flows are transcoded to this format with a software

177

CHAPTER 5. 5G-ENABLED SMART SERVICES

running on a Raspberry Pi board attached to the IP camera. Mobile devices, on
the other hand, are Android smartphones or tablets where the VISION app will
be installed.
The architectural structure of DiMoViS, in this project, differs from the one

mentioned in the section 5.1. It is constituted by the following elements:

− Front-end DiMoViS : this component represents the interface between the
users/third-part applications and the other internal components of DiMo-
ViS. It maintains a database with the tables of registered users of the Di-
MoViS service, of the cameras, and of all the security groups that allow to
add a level of security in accessing the cameras. Thanks to these security
groups, when a user wants to view the list of cameras to be accessed, the
results of this query will be conditioned by the security group settings made.
Cameras that will be set with "Open" access, will be directly accessible by
each user, while cameras set with particular security groups, will require
a first step in which the user interested in that stream owes the camera
owner the possibility of access it. The DiMoViS Front-end, in addition to
managing the database and providing an interface to users, also manages
the exchange of basic information between the other components inside the
system.

− Digital Twin (DT): the presence of this component is necessary depending
on the type of camera that is installed in the system. Based on the mecha-
nism used to send the video stream, we can identify two types of cameras:
those that send the stream only on specific request, and those configured in
such a way as to continuously send the stream to an external server. The
use of the DT is necessary with the first type of cameras: its task is in fact to
send the request to the camera and forward the received video stream to the
FlowReplicator-EA. To do this, it uses FFMPEG [91], a complete, cross-
platform solution for recording, converting and stream audio and video.
Specifically, it will behave as a client towards the FlowReplicator-EA. For
the cameras used in this project, the request uses the Real Time Streaming
Protocol (RTSP));

− FlowReplicator EA (FR-EA): this component also implements FFMPEG.
It acts as ffserver for the DT and the FlowReplicatorPA, since from the first
it receives the video stream coming from the camera while from the second
it receives the requests for the retransmission of the stream. Inside it uses a
configuration file to encode the stream according to what is specified in the

178

CHAPTER 5. 5G-ENABLED SMART SERVICES

request received from the DT: the stream coming from the same source can
therefore be treated with different qualities in terms of audio and video. It
is launched in the edge node near the DT and camera, in such a way to
reduce latency in the video flow in ingress to the network;

− FlowReplicator PA (FR-PA): it is launched in the user’s network access
edge node. Precisely because of its proximity to the user, it takes care
of managing user’s requests for receiving a video stream. This component
also implements FFMEG and, as the FR-EA, uses a configuration file for
retransmission of the stream to the user who requested it.

and it works according to the following steps:

1. IP Camera registration: Each IP Camera is connected to a WiFi/LTE/5G
access point and then registered to the database of the Front-end DiMoViS.
Since now, they can be used by both the DiMoViS mobile and fixed users
(Fig. 5.44);

2. a user logs into the DiMoViS service through the app, contacting the Front-
end, receives a list of available cameras and chooses which one he want to
see (Fig. 5.45);

3. if not yet active so far, a DT and a FR-EA are run at the edge of the
network near the camera, on the MEC server closest to its access point,
while a FR-PA is run on the MEC server closest to the user. The Front-
end communicates to the DT the IP of the camera to which to request the
video stream and the IP of the FR-EA to which to send the video, the
user communicates the IP of the FR-PA to which to send the request and
FR-PA starts the IP of the FR-EA to which to forward the flow request. If
these three components are already in running state and are transmitting
the requested video flow, the Front-end immediately communicates the IP
of the FR-EA to the user (Fig. 5.46);

4. if not yet active, the communication between DT, FR-EA and FR-PA starts
and the user receives the video flow in the app (Fig. 5.47).

When a Blind User requests a Tourist Eyes service for a given path, the following
steps, will be performed (Fig. 5.48: the request of the Tourist Eyes user arrives
to the Tourist Eyes server; if some cameras of the required path is managed by
DiMoViS platform, Tourist Eyes server starts a connection with the Front-end

179

CHAPTER 5. 5G-ENABLED SMART SERVICES

1 2 3

Front‐end
DiMoViS

Registrazione delle camere di DiMoViS

1

2
3

Attualmente,
immaginiamo di
inserire le camere di
interesse nel db del
Frontend direttamente.

Le cam sono registrate
con indirizzo IP,
essendo comunque
elementi esterni alla
piattaforma.

Figure 5.44: VISION. DiMoViS service: cam registration

1 2 3

Front‐end
DiMoViS

Registrazione dell’utente a DiMoViS
L’utente, accedendo all’ap
DiMoViS, effettua il login c
FE DiMoViS, ricevendo le
informazioni sulle telecam
alle quali è registrato o alle
può registrarsi

L’utente sceglie la t
che vuole visualizz
momento

Figure 5.45: VISION. DiMoViS service: user access and cam selection

1 2 3

Front‐end
DiMoViS

Vengono lanciati Digital Twin, Flow
Replicator EA e Dlow Replicator PA nei
punti di accesso alla rete, lato camera
e lato utente.
Questi tre componenti si interfacciano
con il FE.

FR ‐ EA

Utilizzo di DiMoViS

DT

FR ‐ PA

I tre componenti contattano il
FE, il quale memorizza nel db la
presenza di un DT associato ad
una camera (tramite IP), oltre a
mantenere memoria della
presenza di un FR_EA e di un
FR_PA.

Al DT viene dato l’IP della
camera da contattare per il
flusso

Figure 5.46: VISION. DiMoViS service: power on, if required, of the other com-
ponents

DiMoViS. As said before, Tourist Eyes server connects to DiMoViS with username
and password, because for DiMoViS service it appears like a user. The Tourist
Eyes server requests a set of video flows to the Front-end DiMoViS, exactly using

180

CHAPTER 5. 5G-ENABLED SMART SERVICES

1 2 3

Front‐end
DiMoViS

FR ‐ EA

Utilizzo di DiMoViS

DT

FR ‐ PA

1

2
3

4

5

6

7

Il DT farà la richiesta del video
alla camera e inoltrerà il flusso al
FR_EA.

L’utente invierà una richiesta al
FR_PA, in quale contatta il FR_EA,
dal quale riceverà il flusso e lo
inoltrerà verso l’utente

Figure 5.47: VISION. DiMoViS service: video flow transmission

the same steps listed above for a user of the basic DiMoViS service. At this point,
the same procedure described in the above steps 3 and 4 are executed, with the
difference that the request for a specific video flow is performed by the Tourist
Eyes server and not by the final user. The video flow received by the Tourist Eyes
server is analyzed as described in section ??.
When a User requests a LPR service for a given relative who is moving, the same

steps described above for the Tourist Eyes case are performed. Also in this case,
LPR server has to connect to the Front-end DiMoViS as an user with username
and password, and finally it will receives the video flow directly. The LPR server
starts to analyze video it is receiving and, as soon as it recognizes a lying person
in one of the monitored areas, it sends an alert message on the smartphone of the
requesting user as a notification, including the position of the relevant IP camera
and a picture captured by that camera (Fig. 5.49).
Fig. 5.50 shows the interaction between each level of the whole system and the

key stakeholders. The Infrastructure Operator and the FLAME platform provider
coincide with the stakeholders defined in the official FLAME documentation,
specifically in Deliverable D3.2 [87]. More specifically, the Infrastructure Operator
deploys the FLAME platform on the infrastructure in a smart city, and is able to
manage specific resource requirements that deployment and usage of the FLAME
platform brings. The FLAME platform provider is the provider of the software
platform, including all the software components required to support the VISION
service (e.g. orchestration and deployment of services, networking technologies,
and configuration, planning, monitoring and control systems).
Another stakeholder is the DiMoVis-based Service Developer, whose task is the

deployment of new services using the distributed video surveillance service pro-

181

CHAPTER 5. 5G-ENABLED SMART SERVICES

1 2 3

Front‐end
DiMoViS

TouristEyes/LPR

TouristEyes

Il server di TouristEyes/LPR,
manderà una richiesta al
Frontend Dimovis per avere
la lista delle camere da lui
gestite e alle quali è possibile
accedere come «Utente»
TouristEyes.

(a) VISION. Tourist Eyes service: connection to Front-end
and cam selection

1 2 3

Front‐end
DiMoViS

FR ‐ EA

TouristEyes/LPR

DT

1

2
3

TouristEyes

Nel momento i
di Tourist Eyes/
necessità di acc
cam di Dimovis
descritto (slide
lancio delle tre
inizia la comun
mostrata in figu

FR ‐ PA
4

5

6

7

(b) VISION. Tourist Eyes service: video flow transmission

Figure 5.48: VISION: interactions between DiMoViS platform and Tourist Eyes
service

vided by DiMoViS. Two examples of these services are Tourist Eyes and LPR,
included in this experiment as user-level services.
Stakeholders of the Tourist Eyes service are Blind Tourists, who are the Tourist

Eyes service recipients, and the Tourist Office, who is in charge of managing the
Tourist Eye service, defining the tourist paths for blind people, and deciding the
IP cameras to be included in the service.
On the other side, stakeholders of the LPR service are: Relatives of impaired

persons, who start and configure the service indicating the IP cameras to be used
to monitor the lifetime of the relatives and Old/Impaired persons, who are the
monitored persons. Additional stakeholders may be Hospital personnel that are
automatically alerted when the system has deduced that there is a person lying

182

CHAPTER 5. 5G-ENABLED SMART SERVICES

1 2 3

Front‐end
DiMoViS

TouristEyes/LPR

LPR

Il server di TouristEyes/LPR,
manderà una richiesta al
Frontend Dimovis per avere
la lista delle camere da lui
gestite e alle quali è possibile
accedere come «Utente»
TouristEyes.

(a) VISION. LPR service: connection to Front-end and cam
selection

1 2 3

Front‐end
DiMoViS

FR ‐ EA

TouristEyes/LPR

DT

1

2
3

LPR

Nel momento in cui il server
di Tourist Eyes/LPR ha
necessità di accedere ad una
cam di Dimovis, come prima
descritto (slide 4) si effettua il
lancio delle tre macchine e
inizia la comunicazione
mostrata in figura.

FR ‐ PA
4

5

6

7

(b) VISION. LPR service: video flow transmission

Figure 5.49: VISION: interactions between DiMoViS platform and LPR service

on the ground.
Finally, additional stakeholders at the user level, directly connected to the Di-

MoVis platform, are any stakeholder of the smart city, like for example Law
Enforcement, or simple citizens that request for monitoring of some areas of the
city.
Thanks to the exploitation of the FLAME technology, a number of key advan-

tages are achieved, mainly aimed at assessing the effectiveness of the proposed
platform. Advantages are:

− reduction of network traffic, with consequent performance improvements. In
fact, thanks to the usage of some patterns made available by the FLAME
platform, the data stream generated by each video-flow source is automat-
ically rerouted to the “interested receiver(s)” only, in a point-to-multipoint

183

CHAPTER 5. 5G-ENABLED SMART SERVICES

Figure 5.50: Vision. System Architecture and Stakeholders

fashion, within the network. The gain is more evident when destination
users access the network through the same ingress node and, even more, if
this node is the same access node also for the selected video sources;

− scalability: network traffic does not increase when a user requesting a given
data flow accesses the network from an access node where at least another
user is receiving the same flow;

− low end-to-end latency. There are two reasons for this: on the one hand,
the fact that video flows are directly managed inside the network instead
of being forwarded to external servers providers; on the other hand, the
application of the MEC paradigm will maintain end-to-end latency low even
in presence of function offloading, given that time-critical VFs are provided
to the users directly by their access nodes.

− OpEx and CapEx reduction;

− general advantage related to the softwarization of services usually imple-
mented in hardware. The use of software tools running on general-purpose
hardware allows to decrease costs incurred for installing and maintaining
hardware;

− ease in service deployment: installation of new cameras or other video-flow
sources is trivial because they do not need to be configured. Destinations
of video streams are automatically decided and located according to the
requests coming from the users;

184

CHAPTER 5. 5G-ENABLED SMART SERVICES

− ease in VISION platform extension. Platform is able to support a large
number of personalized services (e.g. video cryptography, area monitoring,
area obscuring, target follower, mosaic) installed as VFs, and included in
the service chains according to the users’ requirements.

The target of the VISION experiment is to achieve a high degree of innovation
by taking into account multiple features such as personalization, interactivity,
mobility and localisation (PIML). A high level of personalization can be deter-
mines thanks to the diversity of offered and customized services that each user
can compose as building blocks by choosing not only IP cameras but also ad-
ditional services. This comports an increasing of the users satisfaction. About
interactivity, it concerns the ability of the service to follow and respond to user
requests in real time. Interactivity relies on mobility, intended as the ability to
enable a service provider to meet user’s requests in an efficient way by exploiting
the fact that the content delivery system must know and exploit user location. Fi-
nally, localisation is regarded as the awareness of actual user location to guarantee
context-aware content delivery and caching strategy. More specifically, according
to the VISION experiment execution, the following PIML will be achieved:

− personalisation: the set of cameras each user can request to receive the re-
quired video flows varies according to the user profile. For example, law en-
forcement officers might be allowed to access all public cameras and plenty of
private cameras. Another aspect of personalisation for the VISION project
regards the simplification of IP camera selection based on suggestion for per-
user experience. This is based on the introduction of easy strategies that
store IP camera selection habits by each users, and the additional service
selection habits (e.g. on the basis of the selected cameras by the same user
or users with a similar profile), in order to automatically propose default
IP cameras and additional services;

− interactivity : the users will interact with VISION in multiple ways. On one
hand, some users behave as video service providers, as they will be able
to connect IP cameras to the network platform, register the cameras using
the Vision app and assign them to a specific security group. On the other
side, the user behaving as Vision client, will be able to explore the map of
a smart city, choose the video cameras of interest and additional services
for each video flow;

− mobility : the user will be enabled to receive video flows in real-time, regard-
less of his/her location, and also in mobility. Mobility is also supported for

185

CHAPTER 5. 5G-ENABLED SMART SERVICES

IP cameras that can be installed on mobile vehicles. In fact, the system,
thanks to some elements available inside the FLAME platform, is able to
recognize changes in the access point used by IP cameras and users, and
automatically reconfigure routing to maintain the multipoint-to-multipoint
connection at the application level;

− localisation: in a scenario of Impaired Person Support, localisation is a key
feature, as long as it allows the parent / relatives / friends of the impaired
person who, for any reason, gets lost or needs help in a smart city, to localize
him/her using the Vision app. In addition, another aspect of localisation
included in the VISION project regards the possibility of automatically
changing selected cameras (or proposing alternative cameras) according to
the context around each user, his/her current position and his/her behavior.
For example, if a user is travelling a road, and thanks to a track of his/her
position the system has clue that he/she is moving along a given route, the
VISION system will change the IP camera selection automatically to allow
him/her to monitor the streets where the user is arriving to.

186

Chapter 6

Conclusion

This thesis aimed to analyze aspects related to the network softwarization in the
context of 5G ecosystems. In particular, three main activity were addressed in
this field.
The first regarded the management and orchestration of network slices, and

two different works were presented in this thesis: one about the handover man-
agement in the RAN portion of a network slice, with the implementation of a
network service that is able to detect handover packets between physical and vir-
tual base stations. The captured messages are analyzed and communicated to the
Network Orchestrator using publisher/subscribe approach. The implementation
of this solution and the numerical results showed the potentiality of the proposed
framework, allowing the Orchestrator to allocate resources to prepare the network
to manage the handover, or to block this last one, sending an alert trigger to the
Mobility Management Entity block of the RAN, if the resources are limited or the
network behind the RAN of the new area presents congestion or faults. The other
work regards the use of UAVs to extend network slice to provide computing and
network facilities to IoT devices for area monitoring applications. Cases with and
without collaboration between UAVs were analyzed. In particular, the study was
conducted in four steps: first, an analytical model was proposed; then, a simulator
was implemented in Matlab to evaluate the behaviour of a fleet of UAV. Next,
the Reinforcement Learning technique was introduces considering with and col-
laboration cases. The numerical results, for each step, compared with the state of
the art, had always highlighted the advantages of the proposed solution, allowing
to identify the optimal values of the key parameters of the problem addressed.
The second activity involved the use of network slice for vertical applications.

More in deep, a work was proposed about the implementation of the Tactile
Support Engine (TSE) inside a Tactile Internet network slice. It is the compo-

187

CHAPTER 6. CONCLUSION

nent that implementing Artificial Intelligence techniques, supports the network
to respect application requirements in case of problems. A use case regarding a
remote control of a game inspired to the famous video game "Subway Princess
Runner" was set up to show how the proposed TSE works and the achieved
performance. Another work regarding Vehicular Networks and the use of MEC
servers installed along the roadway. This solution aims at providing facilities to
the vehicles during the processing of the data collected from the environment in
a context of a smart city. The first results showed the capability of the proposed
framework, with improvement of the job management performed by vehicles. In
this context, a future work will be the implementation of collaboration between
vehicles, selecting one vehicle as leader with the aim of processing data received
by the normal vehicles and, in case of overload, implement an offloading policy
toward MEC server installed along the road.
In the context of the European Projects, the following framework were pro-

posed: DiMoViS in the Triangle Project, Tourist Eyes and 5Gamer in 5GINFIRE
Project and Vision in Flame Project. Regarding DiMoViS, it was possible to im-
plement a distributed video surveillance system in a 5G environment, discovering
all the criticalities that a service like this can have and what are the require-
ments that the network must meet in order to guarantee optimal QoS and QoE
to the end user. Even 5Gamer, a revival of the famous Pong with the addition
of Artificial Intelligence that trains according to the gaming habits of the phys-
ical player, has made possible to explore the field of video games, with all the
necessary requirements to be able to guarantee the user to play at best, without
noticing any delays or other problems in the network. TouristEyes and Vision are
two experiments that have had a double value. On the one hand, the possibility
of building increasingly advanced video distribution platforms in a 5G network
context, introducing Artificial Intelligence to analyze video streams in real time
and carry out people recognition. On the other hand, it was possible to develop
two services aimed at people with disabilities by exploiting the potential offered
by the 5G network. With Tourist Eyes, it was proposed a platform to allow blind
people to be able to move in city contexts that are unfamiliar to them, without
any support (such as a guide dog, either because not available or due to allergies
of the subject), not only in outdoor contexts but also indoors, where GPS tech-
nology doesn’t work. In Vision, the presence of the LPR service allows, through
the analysis of the video coming from internal and external cameras, to recognize
lying people, in order to give them help by sending alerts to relatives and/or law
enforcement agencies.

188

List of publications

1. A. Lombardo, C. Rametta and C. Grasso, “A Network-Assisted Platform
for Multipoint Remote Learning,” 28th International Tyrrhenian Workshop
(TIWDC), Palermo, Italy, 2017, pp 183-196.

2. G. Baldoni, C. Grasso, A. Lombardo, C. Rametta, A. Scala and S. Sot-
tile, “Set-top box virtualization as a personal cloud server for 5G users,”
2018 21st Conference on Innovation in Clouds, Internet and Networks and
Workshops (ICIN), Paris, 2018, pp. 1-3.

3. C. Grasso and G. Schembra, “Design of a UAV-Based Videosurveillance Sys-
tem with Tactile Internet Constraints in a 5G Ecosystem,” 2018 4th IEEE
Conference on Network Softwarization and Workshops (NetSoft), Montreal,
QC, Canada, 2018, pp. 449-455.

4. F. D’Urso, C. Grasso, C. Santoro, F. F. Santoro and G. Schembra, “The
Tactile Internet for the flight control of UAV flocks,” 2018 4th IEEE Con-
ference on Network Softwarization andWorkshops (NetSoft), Montreal, QC,
Canada, 2018, pp. 470-475.

5. C. Grasso, R. Raftopoulos and G. Schembra, “The Triangle Platform for
End-to-End Performance Analysis of a 5G Video Transmission Network
Slice,” 15th International Symposium on Wireless Communication Systems
(ISWCS), Lisbon, Portugal, 2018.

6. L. Galluccio, C. Grasso, S. Milardo, G. Schembra and E. Sciacca, “An Exper-
imental Testbed for Managing BAN Services at the Network Edge,” 14th
International Conference on Network and Service Management (CNSM),
Rome, Italy, 2018.

7. C. Grasso and G. Schembra, “A Fleet of MEC UAVs to Extend a 5G Network
Slice for Video Monitoring with Low-Latency Constraints,” Published in

189

LIST OF PUBLICATIONS

MDPI Special Issue on Softwarization at the Network Edge for the Tactile
Internet, January 2019, Volume 8, Issue 1,3.

8. G. Faraci, C. Grasso and G. Schembra, “Reinforcement Learning for Man-
agement of a 5G Network Slice Extension with UAV’s,” 2019 IEEE INFO-
COMWorkshops: SMILING 2019: Sustainable networking through Machine
Learning and Internet of Things, Paris, 2019.

9. C. Grasso and G. Schembra, “5G-Hander: A Network Service for Handover
Detection in 5G Networks,” Special issue article on Internet Technology
Letters, Wiley Online Library.

10. L. Galluccio, C. Grasso, M. Grasso, R. Raftopoulos and G. Schembra, “Mea-
suring QoS and QoE for a Softwarized Video Surveillance System in a 5G
Network,” 2019 IEEE International Symposium on Measurements and Net-
working, Catania, 2019.

11. G. Faraci, C. Grasso and G. Schembra, “Fog in the Clouds: UAVs to Provide
Edge Computing to IoT Devices,” AMC Transactions on Internet Technol-
ogy, Special issue on Evolution of IoT Networking Architectures.

12. G. Faraci, C. Grasso and G. Schembra, “Design of a 5G Network Slice
Extension with MEC UAVs Managed with Reinforcement Learning,” to
appear on IEEE JSAC, Special Issue on Advances in Artificial Intelligence
and Machine Learning for Networking.

13. F. Busacca, C. Cirino, G. Faraci, C. Grasso, S. Palazzo and G. Schembra,
“Multi-Layer Offloading at the Edge for Vehicular Networks,” 2020 IEEE
MedComNet, Arona, 2020.

14. C. Grasso, K. Eswar, P. Nagaradjane, M. Ramesh and G. Schembra, “De-
signing the Tactile Support Engine to Assist Time-Critical Applications
at the Edge of a 5G Network,” Submitted to Computer Communications,
Special Issue on Network Intelligence.

190

References

[1] Cisco. White paper: Cisco Annual Internet Report (2018-2023). Tech. rep.
Mar. 2020. url: https : / / www . cisco . com / c / en / us / solutions /

collateral/executive-perspectives/annual-internet-report/white-

paper-c11-741490.html.

[2] G. A. Akpakwu et al. “A Survey on 5G Networks for the Internet of Things:
Communication Technologies and Challenges”. In: IEEE Access 6 (2018),
pp. 3619–3647.

[3] A. Al-Fuqaha et al. “Internet of Things: A Survey on Enabling Technologies,
Protocols, and Applications”. In: IEEE Communications Surveys Tutorials
17.4 (2015), pp. 2347–2376.

[4] 5G PPP Architecture Working Group. White paper: View on 5G Architec-
ture. Tech. rep. Feb. 2020. doi: 10.5281/zenodo.3265031. url: https:
//zenodo.org/record/3265031#.Xyu3yK9xeMo.

[5] A. Banchs et al. “A 5G Mobile Network Architecture to Support Vertical
Industries”. In: IEEE Communications Magazine 57.12 (2019), pp. 38–44.

[6] CNIT. The 5G Italy Book 2019: a Multiperspective View of 5G. CNIT, 2019.

[7] ETSI 3GPP. 5G; Study on Scenarios and Requirements for Next Genera-
tion Access Technologies. Tech. rep. May 2017. url: https://www.etsi.
org/deliver/etsi_tr/138900_138999/138913/14.02.00_60/tr_

138913v140200p.pdf.

[8] Justine Sherry et al. “Making Middleboxes Someone Else’s Problem: Net-
work Processing as a Cloud Service”. In: Proceedings of the ACM SIG-
COMM 2012 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication. Helsinki, Finland: Association for
Computing Machinery, 2012, pp. 13–24. isbn: 9781450314190. doi: 10.
1145/2342356.2342359. url: https://doi.org/10.1145/2342356.
2342359.

191

REFERENCES

[9] NFV White Paper. “Network Functions Virtualisation: An Introduction,
Benefits, Enablers, Challenges Call for Action. Issue 1”. Oct. 2012.

[10] B. Han et al. “Network function virtualization: Challenges and opportu-
nities for innovations”. In: IEEE Communications Magazine 53.2 (2015),
pp. 90–97.

[11] Hyuncheol Kim et al. “Service platform and monitoring architecture for
network function virtualization (NFV)”. In: Cluster Computing 19 (Sept.
2016). doi: 10.1007/s10586-016-0640-3.

[12] ETSI ISG. Network Function Virtualisation (NFV); Architectural Frame-
work. Tech. rep. Oct. 2013. url: https://www.etsi.org/deliver/etsi_
gs/NFV/001_099/002/01.01.01_60/gs_NFV002v010101p.pdf.

[13] Margaret Chiosi et al. “Network Functions Virtualisation (NFV) Network
Operator Perspectives on Industry Progress”. In: (Oct. 2013). doi: 10.
13140/RG.2.1.4110.2883.

[14] M. Veeraraghavan et al. “Network Function Virtualization: A Survey”. In:
IEICE Trans. Commun. 100-B (2017), pp. 1978–1991.

[15] A. Fischer et al. “Virtual Network Embedding: A Survey”. In: IEEE Com-
munications Surveys Tutorials 15.4 (2013), pp. 1888–1906.

[16] P. v. Anvith et al. “A Survey on Network Functions Virtualization for Tele-
com Paradigm”. In: 2019 TEQIP III Sponsored International Conference
on Microwave Integrated Circuits, Photonics and Wireless Networks (IM-
ICPW). 2019, pp. 302–306.

[17] ETSI ISG. Network Function Virtualisation (NFV); Use Cases. Tech. rep.
May 2017. url: https://www.etsi.org/deliver/etsi_gr/NFV/001_
099/001/01.02.01_60/gr_nfv001v010201p.pdf.

[18] J. Gil Herrera and J. F. Botero. “Resource Allocation in NFV: A Compre-
hensive Survey”. In: IEEE Transactions on Network and Service Manage-
ment 13.3 (2016), pp. 518–532.

[19] D. Kreutz et al. “Software-Defined Networking: A Comprehensive Survey”.
In: Proceedings of the IEEE 103.1 (2015), pp. 14–76.

[20] Zohaib Latif et al. “A comprehensive survey of interface protocols for soft-
ware defined networks”. In: Journal of Network and Computer Applications
156 (2020), p. 102563. issn: 1084-8045. doi: https://doi.org/10.1016/
j.jnca.2020.102563. url: http://www.sciencedirect.com/science/
article/pii/S1084804520300370.

192

REFERENCES

[21] Sachin Sharma et al. “Automatic bootstrapping of OpenFlow networks”. In:
Apr. 2013, pp. 1–6. isbn: 978-1-4673-4984-0. doi: 10.1109/LANMAN.2013.
6528283.

[22] Antonio Manzalini et al. “Software-Defined Networks for Future Networks
and Services: Main Technical Challenges and Business Implications”. In:
http://sites.ieee.org/sdn4fns/whitepaper/ (Feb. 2014).

[23] Y. Li and M. Chen. “Software-Defined Network Function Virtualization: A
Survey”. In: IEEE Access 3 (2015), pp. 2542–2553.

[24] D. Drutskoy, E. Keller, and J. Rexford. “Scalable Network Virtualization
in Software-Defined Networks”. In: IEEE Internet Computing 17.2 (2013),
pp. 20–27.

[25] ETSI ISG. Network Functions Virtualisation (NFV); Ecosystem; Report on
SDN Usage in NFV Architectural Framework. Tech. rep. Dec. 2015. url:
https://www.etsi.org/deliver/etsi_gs/NFV-EVE/001_099/005/01.

01.01_60/gs_NFV-EVE005v010101p.pdf.

[26] F. Z. Yousaf et al. “NFV and SDN—Key Technology Enablers for 5G
Networks”. In: IEEE Journal on Selected Areas in Communications 35.11
(2017), pp. 2468–2478.

[27] J. Ordonez-Lucena et al. “Network Slicing for 5G with SDN/NFV: Con-
cepts, Architectures, and Challenges”. In: IEEE Communications Magazine
55.5 (2017), pp. 80–87.

[28] L. U. Khan et al. “Network Slicing: Recent Advances, Taxonomy, Require-
ments, and Open Research Challenges”. In: IEEE Access 8 (2020), pp. 36009–
36028.

[29] X. Foukas et al. “Network Slicing in 5G: Survey and Challenges”. In: IEEE
Communications Magazine 55.5 (2017), pp. 94–100.

[30] P. Mell and T. Grance. The NIST Definition of Cloud Computing. Tech.
rep. Sept. 2011. url: http://faculty.winthrop.edu/domanm/csci411/
Handouts/NIST.pdf.

[31] F. Polash, A. Abuhussein, and S. Shiva. “A survey of cloud computing
taxonomies: Rationale and overview”. In: The 9th International Conference
for Internet Technology and Secured Transactions (ICITST-2014). 2014,
pp. 459–465.

193

REFERENCES

[32] F. Fowley et al. “A Classification and Comparison Framework for Cloud
Service Brokerage Architectures”. In: IEEE Transactions on Cloud Com-
puting 6.2 (2018), pp. 358–371.

[33] Y. Chen, X. Li, and F. Chen. “Overview and analysis of cloud computing
research and application”. In: 2011 International Conference on E-Business
and E-Government (ICEE). 2011, pp. 1–4.

[34] W. Shi, G. Pallis, and Z. Xu. “Edge Computing [Scanning the Issue]”. In:
Proceedings of the IEEE 107.8 (2019), pp. 1474–1481.

[35] A. Papageorgiou, B. Cheng, and E. Kovacs. “Real-time data reduction at
the network edge of Internet-of-Things systems”. In: 2015 11th International
Conference on Network and Service Management (CNSM). 2015, pp. 284–
291.

[36] Ying Gao et al. “Are Cloudlets Necessary”. In: 2015.

[37] T. Taleb et al. “On Multi-Access Edge Computing: A Survey of the Emerg-
ing 5G Network Edge Cloud Architecture and Orchestration”. In: IEEE
Communications Surveys Tutorials 19.3 (2017), pp. 1657–1681.

[38] ETSI ISG.Multi-access Edge Computing (MEC); Framework and Reference
Architecture. Tech. rep. Jan. 2019. url: https://www.etsi.org/deliver/
etsi_gs/MEC/001_099/003/02.01.01_60/gs_MEC003v020101p.pdf.

[39] ETSI ISG. Mobile Edge Computing (MEC); Deployment of Mobile Edge
Computing in an NFV environment. Tech. rep. Feb. 2018. url: https:
//www.etsi.org/deliver/etsi_gr/MEC/001_099/017/01.01.01_60/

gr_MEC017v010101p.pdf.

[40] “Fog Computing: Enabling the Management and Orchestration of Smart
City Applications in 5G Networks”. In: Entropy 20.1 (Dec. 2017), p. 4.
issn: 1099-4300. doi: 10.3390/e20010004. url: http://dx.doi.org/10.
3390/e20010004.

[41] Christian Grasso and Giovanni Schembra. “5G-Hander: A network service
for handover detection in 5G networks”. In: Internet Technology Letters 2.4
(2019), e110. doi: 10.1002/itl2.110. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1002/itl2.110. url: https://onlinelibrary.
wiley.com/doi/abs/10.1002/itl2.110.

[42] ETSI-NFV-Group-Spec. Network Functions Virtualisation (NFV); Man-
agement and Orchestr. Tech. rep. ETSI, 2014.

194

REFERENCES

[43] ETSI 3GPP. LTE; Evolved Universal Terrestrial Radio Access Network (E-
UTRAN); X2 Application Protocol (X2AP). Tech. rep. Sept. 2014. url:
https://www.etsi.org/deliver/etsi_ts/136400_136499/136423/12.

03.00_60/ts_136423v120300p.pdf.

[44] ETSI 3GPP. LTE; Evolved Universal Terrestrial Radio Access Network (E-
UTRAN); S1 Application Protocol (S1AP). Tech. rep. Sept. 2014. url:
https://www.etsi.org/deliver/etsi_ts/136400_136499/136413/12.

03.00_60/ts_136413v120300p.pdf.

[45] PCAP. Manpage of PCAP. https://www.tcpdump.org/manpages/pcap.
3pcap.html. Accessed August 2020.

[46] IETF-RFC-2960. Stream Control Transmission Protocol. https://tools.
ietf.org/html/rfc2960. Accessed August 2020.

[47] ETSI 3GPP. LTE; Evolved Universal Terrestrial Radio Access (E-UTRA)
and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Over-
all description; Stage 2 (3GPP TS 36.300 version 9.4.0 Release 9). https:
//www.etsi.org/deliver/etsi_ts/136300_136399/136300/09.04.00_

60/ts_136300v090400p.pdf. Accessed August 2020.

[48] ETSI 3GPP. LTE; Evolved Universal Terrestrial Radio Access (E-UTRA);
Physical layer - Measurements (3GPP TS 36.214 version 9.1.0 Release 9).
https://www.etsi.org/deliver/etsi_ts/136200_136299/136214/09.

01.00_60/ts_136214v090100p.pdf. Accessed August 2020.

[49] C. Rametta and G. Schembra. “Designing a Softwarized Network Deployed
on a Fleet of Drones for Rural Zone Monitoring”. In: Future Internet 9.1
(Mar. 2017), p. 8. issn: 1999-5903. doi: 10.3390/fi9010008. url: http:
//dx.doi.org/10.3390/fi9010008.

[50] C. Grasso and G. Schembra. “Design of a UAV-Based Videosurveillance
System with Tactile Internet Constraints in a 5G Ecosystem”. In: 2018
4th IEEE Conference on Network Softwarization and Workshops (NetSoft).
2018, pp. 449–455.

[51] C. Grasso and G. Schembra. “A Fleet of MEC UAVs to Extend a 5G Net-
work Slice for Video Monitoring with Low-Latency Constraints”. In: Journal
of Sensor and Actuator Networks 8.1 (Jan. 2019), p. 3. issn: 2224-2708. doi:
10.3390/jsan8010003. url: http://dx.doi.org/10.3390/jsan8010003.

195

REFERENCES

[52] Giovanni Schembra, Giuseppe Faraci, and Christian Grasso. “Fog in the
Clouds: UAVs to Provide Edge Computing to IoT Devices”. In: ACM Trans.
Internet Technol. 0.ja (). issn: 1533-5399. doi: 10.1145/3382756. url:
https://doi.org/10.1145/3382756.

[53] G. Faraci, C. Grasso, and G. Schembra. “Design of a 5G Network Slice
Extension with MEC UAVs Managed with Reinforcement Learning”. In:
IEEE Journal on Selected Areas in Communications (2020), pp. 1–1.

[54] I. F. Akyildiz, A. Kak, and S. Nie. “6G and Beyond: The Future of Wireless
Communications Systems”. In: IEEE Access 8 (2020), pp. 133995–134030.

[55] D. Nemirovsky et al. “A Machine Learning Approach for Performance Pre-
diction and Scheduling on Heterogeneous CPUs”. In: 2017 29th Interna-
tional Symposium on Computer Architecture and High Performance Com-
puting (SBAC-PAD). 2017, pp. 121–128.

[56] Y. Yan, B. Zhang, and J. Guo. “An Adaptive Decision Making Approach
Based on Reinforcement Learning for Self-Managed Cloud Applications”.
In: 2016 IEEE International Conference on Web Services (ICWS). 2016,
pp. 720–723.

[57] Richard Sutton and Andrew Barto. Reinforcement Learning: An Introduc-
tion. MIT Press, 2014-2015.

[58] A. Lombardo, G. Morabito, and G. Schembra. “Modeling intramedia and
intermedia relationships in multimedia network analysis through multi-
ple timescale statistics”. In: IEEE Transactions on Multimedia 6.1 (2004),
pp. 142–157.

[59] C.Grasso et al. “Designing the Tactile Support Engine to Assist Time-
Critical Applications at the Edge of a 5G Network”. In: Submitted to Special
Issue on Network Intelligence, Computer Communications (2020).

[60] G. Fettweis and S. Alamouti. “5G: Personal mobile internet beyond what
cellular did to telephony”. In: IEEE Communications Magazine 52.2 (2014),
pp. 140–145.

[61] O. Holland et al. “The IEEE 1918.1 “Tactile Internet” Standards Work-
ing Group and its Standards”. In: Proceedings of the IEEE 107.2 (2019),
pp. 256–279.

[62] C. E. McPhail. “Respond, restore, resolve: Achieving 7-nines availability
telecommunications systems in the field”. In: Bell Labs Technical Journal
11.3 (2006), pp. 173–189.

196

REFERENCES

[63] ITU-T. The Tactile Internet. ITU-T Technology Watch Report. https://
www.itu.int/dms_pub/itu-t/opb/gen/T-GEN-TWATCH-2014-1-PDF-

E.pdf. Accessed August 2020.

[64] M. Simsek et al. “The 5G-Enabled Tactile Internet: Applications, require-
ments, and architecture”. In: 2016 IEEE Wireless Communications and Net-
working Conference. 2016, pp. 1–6.

[65] Adnan Aijaz et al. Toward a Tactile Internet Reference Architecture: Vision
and Progress of the IEEE P1918.1 Standard. July 2018.

[66] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In:
Neural computation 9.8 (1997), pp. 1735–1780.

[67] Stanford-University. Hapkit. https://hapkit.stanford.edu/. Accessed
August 2020.

[68] K. Zheng et al. “Heterogeneous Vehicular Networking: A Survey on Ar-
chitecture, Challenges, and Solutions”. In: IEEE Communications Surveys
Tutorials 17.4 (2015), pp. 2377–2396.

[69] C. Campolo et al. “5G Network Slicing for Vehicle-to-Everything Services”.
In: IEEE Wireless Communications 24.6 (2017), pp. 38–45.

[70] R. Yu et al. “Optimal Resource Sharing in 5G-Enabled Vehicular Networks:
A Matrix Game Approach”. In: IEEE Transactions on Vehicular Technology
65.10 (2016), pp. 7844–7856.

[71] X. Hou et al. “Vehicular Fog Computing: A Viewpoint of Vehicles as the In-
frastructures”. In: IEEE Transactions on Vehicular Technology 65.6 (2016),
pp. 3860–3873.

[72] S. Raza et al. “A Survey on Vehicular Edge Computing: Architecture, Ap-
plications, Technical Issues, and Future Directions”. In: Wirel. Commun.
Mob. Comput. 2019 (2019), 3159762:1–3159762:19.

[73] L. Liu et al. “Vehicular Edge Computing and Networking: A Survey”. In:
arXiv: Signal Processing (2019).

[74] P. Mach and Z. Becvar. “Mobile Edge Computing: A Survey on Architecture
and Computation Offloading”. In: IEEE Communications Surveys Tutorials
19.3 (2017), pp. 1628–1656.

[75] Y. Sun et al. “Learning-Based Task Offloading for Vehicular Cloud Comput-
ing Systems”. In: 2018 IEEE International Conference on Communications
(ICC) (2018), pp. 1–7.

197

REFERENCES

[76] F. Busacca et al. “Multi-Layer Offloading at the Edge for Vehicular Net-
works”. In: 18th IEEE - Mediterranean Communication and Computer Net-
working Conference (MedComNet 2020) (2020).

[77] M. Mozaffari et al. “Mobile Unmanned Aerial Vehicles (UAVs) for Energy-
Efficient Internet of Things Communications”. In: IEEE Transactions on
Wireless Communications 16.11 (2017), pp. 7574–7589.

[78] Q. Liu, Z. Su, and Y. Hui. “Computation Offloading Scheme to Improve
QoE in Vehicular Networks with Mobile Edge Computing”. In: 2018 10th
International Conference on Wireless Communications and Signal Process-
ing (WCSP). 2018, pp. 1–5.

[79] G. Faraci, C. Grasso, and G. Schembra. “Reinforcement-Learning for Man-
agement of a 5G Network Slice Extension with UAVs”. In: IEEE INFOCOM
2019 - IEEE Conference on Computer Communications Workshops (INFO-
COM WKSHPS). 2019, pp. 732–737.

[80] L. Galluccio et al. “Measuring QoS and QoE for a Softwarized Video Surveil-
lance System in a 5G Network”. In: 2019 IEEE International Symposium
on Measurements Networking (M N). 2019, pp. 1–6.

[81] Triangle Consortium.Deliverable D3.1 - Progress report on the testing frame-
work Rel 1. Tech. rep. Nov. 2016. url: https://www.triangle-project.
eu / wp - content / uploads / 2017 / 02 / TRIANGLE _ Deliverable _ D3 . 1 -

FINAL.pdf.

[82] Quamotion.Quamotion - Mobile App Test Automation. http://quamotion.
mobi/Mwc/Index. Accessed August 2020.

[83] C. Grasso, R. Raftopoulos, and G. Schembra. “The Triangle Platform for
End-to-End Performance Analysis of a 5G Video Transmission Network
Slice”. In: 15th International Symposium on Wireless Communication Sys-
tems (ISWCS). 2018.

[84] 5GINFIRE Consortium. 5GINFIRE Project. https://5ginfire.eu/. Ac-
cessed August 2020.

[85] vEyes. Poseidon 2.0. http://www.veyes.it/poseidon-2-0/. Accessed
August 2020.

[86] Flame Consortium. Flame. https://www.ict-flame.eu/. Accessed Au-
gust 2020.

198

REFERENCES

[87] Flame Consortium. Flame D3.1: FMI Vision, Use Cases and Scenarios.
Tech. rep. Mar. 2017. url: https://www.ict-flame.eu/wp-content/
uploads / sites / 3 / 2017 / 10 / D3 . 1 - FMI - Vision - Use - Cases - and -

Scenarios-v1.1.pdf.

[88] Flame Consortium. From the desktop to user trials. https://www.ict-
flame.eu/blog-post/from-the-desktop-to-user-trials/. Accessed
August 2020.

[89] K. Hansge, S. Robitzsch, and N. Stanchev and M. Boniface. TOSCA tem-
plating in FLAME. https://gitlab.it- innovation.soton.ac.uk/
FLAME/consortium/3rdparties/flame-tosca. Accessed August 2020.

[90] Hamid Falaki. University of Bristol - 5GUK Test Network – FLAME Infras-
tructure Urban Hacking in 5G. https://www.ict-flame.eu/wp-content/
uploads / sites / 3 / 2019 / 11 / Urban - Hacking - UoB - Infrastucture -

compressed.pdf. Accessed August 2020.

[91] FFMPEG. https://ffmpeg.org/. Accessed August 2020.

[92] Open Networking Foundation. OpenFlow Switch Specification. Tech. rep.
Mar. 2015. url: https : / / www . opennetworking . org / wp - content /

uploads/2014/10/openflow-switch-v1.5.1.pdf.

[93] Open Networking Foundation. ONOS - Open Network Operating System.
https://www.opennetworking.org/onos/. Accessed August 2020.

[94] Open Networking Foundation. ONOS. https://wiki.onosproject.org/
display/ONOS/ONOS. Accessed August 2020.

[95] OpenDaylight Project. OpenDaylight. https://www.opendaylight.org/.
Accessed August 2020.

199

Appendix

Appendix A: OpenFlow

OpenFlow [92] arises from the need to establish a standard protocol for commu-
nication between control plane and data plane, guaranteeing the decentralization
of network control at the SDN controller level and not at the single device level.
The standard allows access to the forwarding plane of the devices in the infras-
tructure layer by controlling the flow entries. The controller, having an overview
of the entire network topology, can modify the flow entries in order to guarantee
a more sophisticated and updated packet forwarding management according to
the network status.
The idea behind the OpenFlow protocol is to make the routing and forward-

ing tables inserted into routers and switches, totally programmable by external
applications through an SDN controller. This involves the removal of all those
control functions typical of these devices, such as discovery, path setup, and so
on.
The concept of flow is introduced, which is a sequence of packets that, according

to some policies, are labelled and treated in the same way. Policies can range
from simpler ones (packets directed to the same recipient, packets from the same
source, etc.) to more complex policies that can affect the application layer that
generated the packets. This means that despite two streams (for example one
that transmits video and one that transmits email) are generated by the same
source, and are directed to the same recipient, the network can be configured in
such a way as to make them follow two totally different paths.
As shown in Fig. A.1, an OpenFlow Switch is composed by a Datapath part,

with one or more flow tables, a group table (to perform packet lookups and
forwarding) and a meter table, and a Control Channel part, with one or more
OpenFlow channels to external controllers. Each entry of the flow table contains a
series of rules that allow identifying the packets, an action to be taken to forward
the packets along the network, and statistics relating to the count of packets

200

APPENDIX

OpenFlow Switch Specification Version 1.5.1

1 Introduction

This document describes the requirements of an OpenFlow Logical Switch. Additional information
describing OpenFlow and Software Defined Networking is available on the Open Networking Foundation
website (https://www.opennetworking.org/). This specification covers the components and the basic
functions of the switch, and the OpenFlow switch protocol to manage an OpenFlow switch from a
remote OpenFlow controller.

Port

Port

Port

Port

OpenFlow
Channel

Flow
Table

Flow
Table

Flow
Table

Controller

Pipeline

OpenFlow Switch

OpenFlow
Channel Group

Table
Meter
TableControl Channel

Controller

Datapath

Protocol

Figure 1: Main components of an OpenFlow switch.

2 Switch Components

An OpenFlow Logical Switch consists of one or more flow tables and a group table, which perform packet
lookups and forwarding, and one or more OpenFlow channels to an external controller (Figure 1). The
switch communicates with the controller and the controller manages the switch via the OpenFlow switch
protocol.

Using the OpenFlow switch protocol, the controller can add, update, and delete flow entries in flow
tables, both reactively (in response to packets) and proactively. Each flow table in the switch contains
a set of flow entries; each flow entry consists of match fields, counters, and a set of instructions to apply
to matching packets (see 5.2).

Matching starts at the first flow table and may continue to additional flow tables of the pipeline (see
5.1). Flow entries match packets in priority order, with the first matching entry in each table being
used (see 5.3). If a matching entry is found, the instructions associated with the specific flow entry are
executed (see 5.5). If no match is found in a flow table, the outcome depends on configuration of the

11 © 2015; The Open Networking Foundation

Figure A.1: Structure of an OpenFlow switch [92]

of open and standard interfaces (e.g., OpenFlow), a crucial

approach for ensuring configuration and communication

compatibility and interoperability among different data

and control plane devices. In other words, these open in-

terfaces enable controller entities to dynamically program

heterogeneous forwarding devices, something difficult in

traditional networks, due to the large variety of proprietary

and closed interfaces and the distributed nature of the
control plane.

In an SDN/OpenFlow architecture, there are two main

elements, the controllers and the forwarding devices, as

shown in Fig. 7. A data plane device is a hardware or

software element specialized in packet forwarding, while a

controller is a software stack (the ‘‘network brain’’) run-

ning on a commodity hardware platform. An OpenFlow-

enabled forwarding device is based on a pipeline of flow
tables where each entry of a flow table has three parts: 1) a

matching rule; 2) actions to be executed on matching

packets; and 3) counters that keep statistics of matching

packets. This high-level and simplified model derived from

OpenFlow is currently the most widespread design of SDN

data plane devices. Nevertheless, other specifications of

SDN-enabled forwarding devices are being pursued,

including POF [31], [120] and the negotiable datapath

models (NDMs) from the ONF Forwarding Abstractions

Working Group (FAWG) [121].

Inside an OpenFlow device, a path through a sequence

of flow tables defines how packets should be handled.
When a new packet arrives, the lookup process starts in the

first table and ends either with a match in one of the tables

of the pipeline or with a miss (when no rule is found for

that packet). A flow rule can be defined by combining

different matching fields, as illustrated in Fig. 7. If there is

no default rule, the packet will be discarded. However,

the common case is to install a default rule which tells

the switch to send the packet to the controller (or to the
normal non-OpenFlow pipeline of the switch). The

priority of the rules follows the natural sequence number

of the tables and the row order in a flow table. Possible

actions include: 1) forward the packet to outgoing port(s);

Fig. 6. Software-Defined Networks in (a) planes, (b) layers, and (c) system design architecture.

Fig. 7. OpenFlow-enabled SDN devices.

Kreutz et al.: Software-Defined Networking: A Comprehensive Survey

24 Proceedings of the IEEE | Vol. 103, No. 1, January 2015
Authorized licensed use limited to: University of Catania. Downloaded on August 31,2020 at 07:23:41 UTC from IEEE Xplore. Restrictions apply.

Figure A.2: Structure of the flow table [19]

corresponding to each rule (see Fig. A.2).
For each received packet, the Openflow switch can perform three possible ac-

tions:

− forward the packet to one or more ports according to the rules written in
the flow table;

− deliver the packet to secure channel to send it to the Controller. This hap-
pens when the switch has not found any entry referring to this packet.
Rather than discarding it, it is sent to the Controller who will decide
whether or not to add a rule related to this packet (and therefore to all
those of the same flow) in the flow table;

− eliminate the packet: thanks to programmability, it is possible to set policies

201

APPENDIX
OpenFlow Switch Specification Version 1.5.1

Ingress
Port

Packet +
pipeline fields
(ingress port,
metadata...)Flow

Table
0

Flow
Table

1

Flow
Table

n

Execute
Action

SetAction
Set

Action
Set = {}

Ingress processing
Set

Ingress
Port

Group
Table

Packet +
pipeline fields

(output port,
metadata...)Flow

Table
e

Flow
Table
e+1

Flow
Table
e+m

Execute
Action

SetAction
Set

Action
Set =

{output}

Egress processing
Set

Output
Port

Output
Port

Packet
In

Packet
Out

e = first egress table-id

Figure 2: Packet flow through the processing pipeline.

5.1 Pipeline Processing

OpenFlow-compliant switches come in two types: OpenFlow-only, and OpenFlow-hybrid. OpenFlow-
only switches support only OpenFlow operation, in those switches all packets are processed by the
OpenFlow pipeline, and can not be processed otherwise.

OpenFlow-hybrid switches support both OpenFlow operation and normal Ethernet switching opera-
tion, i.e. traditional L2 Ethernet switching, VLAN isolation, L3 routing (IPv4 routing, IPv6 routing...),
ACL and QoS processing. Those switches should provide a classification mechanism outside of Open-
Flow that routes traffic to either the OpenFlow pipeline or the normal pipeline. For example, a switch
may use the VLAN tag or input port of the packet to decide whether to process the packet using one
pipeline or the other, or it may direct all packets to the OpenFlow pipeline. This classification mech-
anism is outside the scope of this specification. An OpenFlow-hybrid switch may also allow a packet
to go from the OpenFlow pipeline to the normal pipeline through the NORMAL and FLOOD reserved
ports (see 4.5).

The OpenFlow pipeline of every OpenFlow Logical Switch contains one or more flow tables, each flow
table containing multiple flow entries. The OpenFlow pipeline processing defines how packets interact
with those flow tables (see Figure 2). An OpenFlow switch is required to have at least one ingress flow
table, and can optionally have more flow tables. An OpenFlow switch with only a single flow table is
valid, in this case pipeline processing is greatly simplified.

The flow tables of an OpenFlow switch are numbered in the order they can be traversed by packets,

19 © 2015; The Open Networking Foundation

Figure A.3: Pipeline process inside a OpenFlow switch [92]

for managing security in the network, to avoid Denial of Service attacks, or
simply to reduce traffic in the case of broadcast packets.

In Fig. A.3, the OpenFlow pipeline is shown [92]. It contains one or more flow
tables and defines how ingress packets interact with those flow tables. Each Open-
Flow switch has at least one ingress flow table, and can optionally have more flow
tables. The flow tables are numbered in the order the packets have to traversed
them, starting at 0. There are two stages in the pipeline process: ingress pro-
cessing and egress processing. Pipeline processing starts with ingress processing
at the first flow table 0, where flow entry that matches with the ingress packet
is searched. If the outcome of ingress processing is to forward the packet to an
output port, the OpenFlow switch may perform egress processing in the context
of that output port. This is an optional procedure because some switch could not
support egress tables. In this case, the packet is processed by the output port. If
a valid egress table is configured as the first egress table, the egress processing
start and a match between the packet and one flow entry of the egress table is
looked for.
When a flow entry is found, the instruction set specified for that flow entry is

executed on the packet. These instructions may explicitly direct the packet to a
flow table (using the GotoTable Instruction) with a greater flow entry number.
This is because the pipeline processing can only go forward and not backward.

202

APPENDIX

Figure A.4: ONOS architecture [93]

Appendix B: SDN Controllers

Many implementations of SDN Controller are available, like NOX, POX, Flood-
light and Ryu Controller. However, the most widely used today are ONOS and
OpenDayLight.
The ONOS [93] controller is written in Java. It is the only SDN controller plat-

form that supports the transition from legacy “brown field” networks to SDN
“green field” networks. This enables exciting new capabilities, disruptive deploy-
ment and operational cost points for network operators. It is designed to allow
the creation of highly scalable networks and is widely used both in Local Area
Networks and in data center networks, which need to have great connectivity
available. ONOS has a three-tier architecture (see Fig. A.4):

− Tier 1 contains modules related to protocols which communicate with the
network devices (Southbound interface);

− Tier 2 is the core of ONOS and provides network state without relying on
any particular protocol;

− Tier 3 contains applications, i.e. ONOS apps, which use network state in-
formation presented by Tier 2;

ONOS presents the following peculiarities [94]:

− modularity and extensibility : being the project comprised of a set of sub-
projects, each with their source tree that can be built independently, it
should be possible to introduce new functionalities as self-contained units.

203

APPENDIX

ONOS allows users to easily customize, read, test and maintain network
topologies;

− scalability : it is possible to modify the resources available according to the
needs of the network. ONOS is designed specifically to horizontally scale for
performance and geo-redundancy across small regions, being characterized
by both Cluster Scalability and Architectural Scalability;

− interfaces : in the Southbound interface, it supports an extensive list of
interfaces including OpenFlow, P4, NETCONF, TL1, SNMP, BGP, REST-
CONF and PCEP; in the Northbound interface, ONOS offers a very large
set of interfaces with gRPC and RESTful APIs. Also, ONOS presents an
advanced GUI that is a single-page web-application, providing a visual in-
terface to the ONOS controller (or cluster of controllers);

− intent-based framework : ONOS has the implementation of the inbuilt intent-
based framework. By abstracting a network service into a set of criteria
a flow should meet, the generation of the underlying OpenFlow (or P4)
configuration is handled internally, with the client system specifying only
what the functional outcome should be.

About resilience, ONOS provides high availability to carry out the most critical
and crucial tasks within the network and this allows customers not to be faced
with problems such as network downtime or failures of various kinds: one of the
objectives of ONOS is have many mechanisms to secure the network and therefore
have a high degree of reliability. Fault tolerance is achieved in the system with an
odd number of SDN controllers. In the event of Master node failure, a new leader
is selected to take control of the network. Moreover, the support of traditional
and new-generation devices is guaranteed as, with ONOS, it is possible to add or
configure both classic and modern devices within the same SDN network.
The other described SDN controller is OpenDaylight (ODL) [95]. In Fig. A.5,

it is possible to see the architecture of ODL. As for ONOS, also in this case a
three-layer architecture is shown:

− Southbound Interface and Protocol Plugin with APIs and plugin used to
manage the components of the Data Plane Elements layer;

− OpenDaylight Core, composed by three blocks: OpenDaylight Platform,
Platform Services (containing pluggable oriented services which perform
specific networking tasks and other extensions to enhance the SDN func-
tionality), and Network Services and Applications;

204

APPENDIX

Figure A.5: ODL architecture [95]

− Northbound Interface with the APIs used to interact with Third Party Ap-
plications.

The characteristics of ODL are:

− modularity : built-in mechanisms provided by ODL simplify the connection
of code modules to add extra functionalities inside the network;

− scalability : ODL uses a model-based approach, which implies a global in-
memory view of the network required to perform logic calculations. ODL’s
latest release further advances the platform’s scalability and robustness,
with new capabilities supporting multi-site deployments for geographic reach;

− interfaces : as already said, it uses Southbound and Northbound interfaces
to interact with other components. In particular the Southbound Interface
supports an extensive list of protocols including OpenFlow, P4, NETCONF,
SNMP, BGP, RESTCONF and PCEP. This means that ODL controller is
able to manage more type of devices at the same time;

− resilience and fault tolerance: ODL fault tolerance mechanism is similar to
ONOS, with an odd number of SDN controllers required to provide fault
tolerance in the system. In the event of a master node failure, a new leader
would be selected to take control of the network. The mechanism of choosing
a leader is slightly different in these controllers: while ONOS focuses on
eventually consistent, ODL focuses on high availability.

205

