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Abstract: Thin-film solar cells enable a strong reduction of the amount of silicon needed to produce 
photovoltaic panels but their efficiency lowers. Placing metallic or dielectric nanoparticles over the 
silicon substrate increases the light trapping into the panel thanks to the plasmonic scattering from 
nanoparticles at the surface of the cell. The goal of this paper is to optimize the geometry of a thin-
film solar cell with silver and silica nanoparticles in order to improve its efficiency, taking into 
account the amount of silver. An efficient evolutionary algorithm is applied to perform the 
optimization with a reduced computing time. 
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1. Introduction 

Concerns about environmental safety and energy resource provision are driving towards an 
increasing diffusion of technologies based on renewable energy [1]. Therefore, a great effort in 
designing advanced and inexpensive renewable energy generators has been emphasized for 
decarbonizing electricity supplies [2]. In this perspective, solar energy technologies are very 
promising and can replace fossil fuels thanks to some advantages: unlimited primary energy 
resource, easy installation, no pollution, and so on [3]. Silicon technology is the most used one for 
solar cells, mainly due to a good efficiency-to-cost ratio and great reliability [4]. 

The development of thin-film solar cells significantly reduces the amount of silicon needed to 
produce photovoltaic systems and the cost of the fabrication process, too [5]. On the other hand, as 
the thickness of the absorption (or the active) layer decreases, the energy-conversion efficiency drops 
dramatically and this is the main drawback of thin-film solar cells. 

Recently, some researchers have shown that the scattering of solar radiation from nanoparticles, 
if suitably located and sized, may considerably improve the functioning of the thin-film cells [6–8]. 
The light is scattered and trapped into the silicon substrate by multiple and high-angle scattering, 
causing an increase of the effective optical path length in the cell and, consequently, enabling the 
improvement of its efficiency. Such a benefit is obtained thanks to the plasmon resonances [9], that is 
the intensification of the electromagnetic field around the nanoparticles placed over the top of the 
silicon substrate that look to be wider than their geometrical sizes [10,11]. Since the first work 
exploiting such an option [12], many papers have investigated thin-film solar cells enhanced by 
means of scattering from gold [13,14] and silver [15,16] nanoparticles. Similar improvements can also 
be obtained with dielectric nanoparticles [17,18]. In [19], it is shown that the placement of both 
metallic and dielectric nanoparticles is more advantageous than using only one type of nanoparticle. 
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Moreover, some structures with different nanoparticle radii and related distances between them are 
investigated to highlight their performances. 

This paper aims to the optimization of a thin-film silicon solar cell by optimally sizing and 
positioning silver and silica nanoparticles on the top of the cell, in order to maximize the efficiency 
and minimize the amount of silver per square meter. The “parallel self-adaptive low-high evaluation 
evolutionary algorithm (PSALHE-EA)” [20,21] is applied to such optimization. 

2. Finite Element Analysis of Light Scattering 

The structure of the solar cell is shown in Figure 1, where the spherical nanoparticles are centered 
on the top of the silicon substrate at plane z = 0. For the sake of simplicity, the solar cell is considered 
infinitely extended in the x and y directions. 

 
 

(a) (b) 

Figure 1. (a) Top view of the cell to be optimized. S stands for symmetric boundary condition and A 
for anti-symmetric. (b) 3D view of the analysis domain: the nanoparticles are placed at z = 0 and the 
domain is truncated at z = 500 nm and z = −500 nm by means of two Perfectly Matched Layers. 

A monochromatic electromagnetic wave at optical angular frequency ω, E-polarized along the 
x-axis, and travelling from the positive z-axis, radiates the cell: 

0 ˆjk z
maxE= E e x  (1)

The vector Helmholtz equation holds for this electromagnetic wave scattering problem: 

 1 2
0μ ε 0r rE k E     (2)

where µr and µ0 are the relative and free-space magnetic permeability, respectively, εr and ε0 are the 
relative and free-space electrical permittivity, respectively, and k0 is the free-space wavenumber given 
by: 

0 0 0ω ε μk   (3)

At optical frequencies, the metallic nanoparticles give rise to plasmon resonances, which are 
taken into account by modeling them by means of a complex relative electric permittivity, 
experimentally determined [22]. Note that at these frequencies, the real part of the relative electric 
permittivity is negative. 

For symmetry reasons, the analysis domain is restricted to the dashed rectangle in the xy plane 
shown in Figure 1, whereas in the z-direction the domain is truncated by means of two perfectly 
matched layers (PMLs), placed at z = 500 nm and z = −500 nm. Since an objective of this work is to 
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improve thin-film cell efficiency by increasing the optical transmission, the optimization is performed 
considering the silicon is thick enough to absorb all light transmitted into the silicon material as in 
[19]. The resulting domain is discretized by means of tetrahedral edge elements and the finite element 
analysis is performed by means of the ELFIN code [23,24] for various optical angular frequencies ωm, 
m = 1, …, M. The related fluxes Wm of the Poynting vector are computed as: 

 1 *
2

ˆmW Re E H zdS


     (4)

where the surface Γ is the z = 0 plane, ẑ is the z-axis versor and H is the magnetic field. The domain is 
discretized by tetrahedral edge elements in such a way that the surface Γ is made of plane triangular 
patches. The generic k-th triangular patch Tk contributes to the integral in (4) with a value wk given 
by: 

       
1
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     (5)

where N is the number of edges of the tetrahedron to which Tk belongs (N = 6 for first-order edge 
elements), indices i and j refer to two edges of the tetrahedron, Ei and Ej are the average values of the 
electric field along these edges, and qij are geometrical scalar values given by: 

( ) ˆ(α α α α )
k

k
ij i j j i k

T
q n dS         (6)

in which ᾱi and ᾱj are the vector shape functions of the i-th and j-th edges, respectively. 

3. Multi-Objective Optimization Problem 

The geometrical parameters to be optimized are the silica nanoparticle radius r, the ratio η 
between the silver and silica nanoparticle radii, and the distance d between them. The objective 
function Fe(r,η,d) related to the efficiency to be maximized is obtained by computing the ratio between 
the number of photons absorbed per square meter per second and with respect to the incoming ones: 
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 (7)

in which Wm is the flux of the Poynting vector defined in (4); Winc is the flux of the Poynting vector of 
the incident wave; and pm is the number of incoming photons per square meter per second in the 
range [λm − Δ/2; λm + Δ/2], where Δ = (λm − λm−1). 

Note that Fe is a pure number in the range [0, 1], whose computation requires a considerable 
computing time. Therefore, the evaluation of the objective function for all the combinations of 
geometrical parameter values (exhaustive analysis) is impracticable. Consequently, the optimization 
algorithm must solve the optimization problem by using few computations of the objective function. 

The silver consumption objective function Fsc(r,η,d) is obtained for a given geometry by the ratio 
between the volume C of silver per square meter and the maximum consumption Cmax: 

( , η, )sc
max

C
F r d

C
  (8)

where 4 3 π / 27max maxC r  obtained when the maximum radius rmax of the silver nanoparticle and 
a distance d equal to 0 are considered. Also, this objective function is a pure number in the range [0, 
1], but, on the contrary of Fe, it is to be minimized. Consequently, maximizing the function 1 − Fsc 
enables reduction of the consumption of silver per square meter. 

A single objective function F can be obtained by weighting the two objective functions in order 
to simultaneously account for both targets: 
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   ( , η, ) ρ 1 ρ 1e scF r d F F     (9)

where ρ  is a weighting coefficient (0 < ρ  < 1) whose value is chosen by the designer according to 
the relevance of each target. For example: 

ρ  = 1 implies that only the efficiency is optimized; 
ρ  = 0 implies that only the silver consumption is optimized (in this case, the solution is trivial); 
ρ  = 0.5 implies that the two targets have the same relevance. 

Therefore, values of ρ  greater than 0.5 mean that maximizing the efficiency is considered more 
relevant than the silver reduction. Finally, in order to optimize the solar cell the weighted objective 
function, F must be maximized. 

Usually, an objective function weighting two conflicting objective functions is multimodal, i.e., 
there are several comparable good solutions. Moreover, in the specific optimization problem, an 
exhaustive search is impracticable due to the relevant time necessary to simulate numerically the 3D 
structure of Figure 1 in order to evaluate Fe. Consequently, it is very difficult to explore properly the 
multiple optima of the optimization problem by using a standard algorithm for global search, such 
as “simulated annealing (SA)” [25] or “genetic algorithm (GA)” [26]. Recently, the authors developed 
a coupled stochastic-deterministic algorithm [27] able to face this kind of optimization problem and 
an improved parallel version of the algorithm, PSALHE-EA [20], very useful when the objective 
function evaluation is time consuming. 

The stochastic section of PSALHE-EA is a niche-based evolutionary algorithm [28]. Its main 
steps are shown in Figure 2. For a given individual (that is for a geometric configuration), two fitness 
values FH and FL are defined directly and inversely proportional to the objective F, respectively. The 
FH value is penalized by a reduction factor if the individual falls inside a niche already associated 
with a maximum. Similarly, the FL value is penalized by an increase factor if the individual falls inside 
a niche already associated to a minimum. Moreover, both values FH and FL are further penalized when 
the individual is located in a crowed zone. A roulette wheel with slots proportional to FH is used to 
find the maxima of the multimodal function F, which are the optima of the optimization problem. 
Another roulette wheel with slots proportional to FL is used to find the minima. Minima are used to 
find the niche radius related to each maximum. In fact, for a given maximum, the niche radius is the 
distance from the closest minimum. 

A counter is associated with each individual, and when the individual, selected by means of the 
first roulette, generates a worse individual, the last one is rejected and the counter of the former is 
incremented by one. An individual of the current population is considered as a maximum when, for 
several consecutive times, it generates individuals with lower F (a threshold is considered for the 
counter), then it is stored in the “hypothetical” maxima database and replaced by a new individual 
randomly generated. On the other hand, it is replaced by the generated individual if it is better than 
the parent, and the counter of the new individual is set to the value of the parent reduced by one. 
Similar considerations hold for selection by means of the second roulette and new “hypothetical” 
minima. When at least one stop criterion is satisfied, the stochastic section stops. When a maximum 
A falls inside the niche of a maximum B, that is the distance between them is lower than the niche 
radius of B, and B falls inside the niche of A, the worst is considered as a “doublet” and it is removed 
from the database. 

After this, the doublets are deleted, the remaining maxima are passed to the deterministic 
section—that is a patter search (PS) [29]—and its main steps are reported in Figure 3. The PS is applied 
to each maximum in the database and then the niche radius is updated using the minima. The 
algorithm could move more than one maximum towards the same hill and this means that new 
doublets are found and therefore removed. 
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Figure 2. Main steps of the PSALHE-EA’s stochastic section. In the blocks filled with grey lines the 
ELFIN program executes the finite element analysis in order to evaluate Fe used to obtain F. PSALHE-
EA: parallel self-adaptive low-high evaluation-evolutionary algorithm. 

 
Figure 3. Main steps of the PSALHE-EA’s deterministic section. In the blocks filled with grey lines, 
the ELFIN program executes the finite element analysis in order to evaluate Fe used to obtain F. 

Finally, if the distance between two maxima is lower than the sum of their niche radii, the niche 
radii are reduced to make the niches tangent. The surviving maxima are the solutions that the 
algorithm supposes to be optima (global and local) of the multimodal function, and their niche radius 
can be considered as a measure of robustness with respect to the parameter variations. 

4. Numerical Results 
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The ranges of the geometrical parameters to be optimized are reported in Table 1. A weighting 
coefficient ρ  equal to 0.5 is considered for the objective function F in Equation (9). The efficiency 
objective function Fe in Equation (7) is computed for M = 8 different wavelengths in the range [400, 
1100] nm, with a step of 100 nm. The number of generations is set to 100 and the population size is 
set to 20. At each generation, four selections are carried out using a roulette with slots proportional 
to FH and other four using a roulette with slots proportional to FL. Then the objective functions F of 
the mutated individuals are computed simultaneously thanks to the parallelism of the algorithm. The 
thresholds related to the hypothetical maxima and minima are set to 10 and 7, respectively. In each 
generation, the crowding factor related to each individual in the population is computed by using 
the four individuals closest to it. Finally, each individual generating offspring with an objective 
function similar to its value for three consecutive times is considered to be placed in a flat area and it 
is substituted by a new randomly-generated individual. 

Table 1. Ranges of the geometrical parameters to be optimized. 

Parameter Minimum Maximum 
r 20 nm 200 nm 
η 0.05 1 
d 0 nm 50 nm 

The stochastic section performed a total number of 827 objective function evaluations, finding 
four hypothetical maxima. Since there was no doublet, the PS algorithm was applied starting from 
each of the four maxima. The starting step was set to 1/10 of the niche radius, the reduction degree of 
the step was set to a quarter of the last value and not more than three further reductions were 
considered to stop the PS. Since, for each optimization parameter, the PS explores two directions, by 
increasing and decreasing the parameter value, the minimum number of objective function 
evaluations performed by PS for each maximum is equal to 18. The PS performed a total of 177 
objective functions evaluations. Note that one of the four hypothetical maxima found in the stochastic 
section, was considered by the algorithm as equivalent to another one and, as a consequence, it was 
eliminated. Table 2 reports the doublet and the hypothetical maximum held. The optimization was 
performed on a PC HP Pavillon h8-1551it, 2 Intel Core i7 2600 4 cores 3.4 GHz, 8 Gb RAM exploiting 
eight cores. The computing time reduced to less a quarter of that required for a serial execution. 

The global optimum (max_1) and the two local maxima (max_2 and max_3) found by PSALHE-
EA are reported in Table 2. 

Table 2. Maxima found by means of PSALHE-EA. 

Section Parameter max_1 max_2 max_3 

Stochastic 

r 155.96 71.31 29.72 
η 0.4393 0.0658 0.0663 
d 30.73 46.52 12.60 
F 0.8844 0.8810 0.8570 

 PS evaluations 33 24 22 

Deterministic 

r 129.75 89.59 30.04 
η 0.4163 0.0658 0.0663 
d 30.73 41.55 12.60 
F 0.8947 0.8922 0.8584 
Fe 0.868 0.785 0.717 
Fsc 0.078 0.0003 0.0001 

niche radius 0.3299 0.4638 0.4844 

The maxima are located in different regions of the optimization variable search space. The 
maximum max_1 enables to obtain an average efficiency (Fe) greater than the others but it requires a 
greater silver consumption. The silver consumptions related to max_2 and max_3 are very small. The 
former reaches such a desired result by considering small silver nanoparticles far among them, the 
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latter by using smaller silver nanoparticles although their distance is reduced with respect to max_2. 
Finally, the niche radius of each solution is large enough to expect little performance degradation due 
to the fabrication process. Figure 4 shows the expected efficiency of the optimized cell at various 
wavelengths for the global optimum. The efficiency is significantly improved at all wavelengths with 
respect to the solar cell without nanoparticles. Moreover, these results confirm that the use of both 
kinds of nanoparticles enable us to reach better performances with respect to the cases where only 
one kind of nanoparticle is considered. 

The number of photons per second per square meter has been computed by means of AM 1.5 
(global-tilt) solar spectrum [30], obtaining 2.40 × 1021, 2.17 × 1021 and 1.98 × 1021 respectively for max_1, 
max_2 and max_3. The number of photons per second per square meter related to max_1 is similar 
to the optimum (2.38 × 1021) reported in [19], that was obtained for r = 100 nm, η = 0.5 and d = 8 nm. 
The related Fsc is equal to 0.111, consequently, the optimum in [19] requires much more silver 
compared to the maximum found in this paper (+42%). 

 
Figure 4. Efficiency of the optimized cell (max_1). 

Figure 5 shows the magnitude of the modulus of the electrical field E at the silicon surface (plane 
z = 0) for the nanoparticle layout of max_1 at λ = 500 nm. The intensification of the electromagnetic 
field around the silver nanoparticles shown in Figure 5 highlights that they look to be wider than 
their geometrical sizes thanks to the plasmon resonance and, consequently, the light is scattered and 
trapped into the silicon substrate, improving the solar cell efficiency [10,11]. 
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Figure 5. Magnitude of the electrical field, E, at plane z = 0 of the analysis domain when max_1 and λ 
= 500 nm are considered. The two semicircles represent the top view of the silver nanoparticles in the 
analysis domain. 

To test the goodness of the optimal geometrical configuration found considering a real thin-film 
layer of silica instead of an infinite one, a simulation has been performed for the max_1 configuration 
considering a silica thickness of 1 µm. The calculated number of photons per second per square meter 
was 0.859 × 1021, which is about one-third of the value obtained considering an infinite silica layer. 

Then, a further optimization has been performed considering a solar cell of 1 µm thickness in 
order to search for solutions with better efficiency, taking into account the silver consumption, too. 
Also in this case the optimization algorithm found three maxima, which are reported in Table 3. The 
number of photons per second per square meter is equal to 1.07 × 1021, 1.16 × 1021, and 1.21 × 1021 
respectively for max_a, max_b, and max_c. An increment of about 40% is obtained with respect to the 
thin-film solar cell with nanoparticles placed atop of it as in max_1 and, furthermore, with a reduced 
silver quantity. 

Table 3. Maxima found by means of PSALHE-EA considering a 1 µm-thin-film solar cell. 

Parameter max_a max_b max_c 
r 65.5 155 144 
η 0.199 0.349 0.485 
d 37 2.63 33.9 
F 0.693 0.666 0.658 
Fe 0.389 0.422 0.438 
Fsc 0.004 0.081 0.122 

niche radius 0.463 0.644 0.32 

Finally, the efficiency of a solar cell with infinite thickness has been computed considering the 
nanoparticles configuration related to max_a, obtaining 2.04 × 1021 photons per second per square 
meter. Thus, the comparison of the maxima found in the two cases confirms that the optimal solution 
for a solar cell with very large thickness is not the best one for a thin-film solar cell and vice versa. 
Nevertheless, PSALHE-EA was able to optimize the solar cell with very large thickness obtaining an 
efficiency value similar to that reported in [19] with the advantage of a strong reduction of silver and 
to also optimize the thin-film solar cell obtaining an acceptable number of photons with small silver 
consumption. 

5. Conclusions 

In this paper, the optimization of a thin-film silicon solar cell has been performed by optimally 
sizing and positioning silver and silica nanoparticles on the top of the cell. The optimization aims at 
maximizing the cell efficiency and minimizing the silver amount. 

The optimization has been carried out by means of PSALHE-EA, a parallel self-adaptive low-
high-evaluation evolutionary algorithm, developed by the authors for multimodal optimizations. In 
the optimizations performed, the algorithm has found three optima with an acceptable number of 
FEM simulations. Moreover, the parallelism of the PSALHE-EA notably reduces the overall 
computing time. 

If an infinite thickness is considered, the optimum found by PSALHE-EA enables an efficiency 
similar to that reported in [19] with the advantage of a strong reduction of silver. The optimization 
has been performed also considering a thin-film solar cell with a thickness equal to 1 µm. The 
comparison of the maxima found in the two cases has confirmed that the optimal solution for a solar 
cell with very large thickness is not the best one for a thin-film solar cell and vice versa. Nevertheless, 
PSALHE-EA was able to optimize both solar cells obtaining good efficiency with small silver 
consumption. 
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