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Abstract
Community detection is a prominent research topic in Complex Network Analysis, and it constitutes an important research
field on all those areas where complex networks represent a powerful interpretation tool for describing and understanding
systems involved in neuroscience, biology, social science, economy, and many others. A challenging approach to uncover the
community structure in complex network, and then revealing the internal organization of nodes, is Modularity optimization.
In this research paper, we present an immune optimization algorithm (opt- IA) developed to detect community structures,
with the main aim to maximize the modularity produced by the discovered communities. In order to assess the performance
of opt- IA, we compared it with an overall of 20 heuristics and metaheuristics, among which one Hyper-Heuristic method,
using social and biological complex networks as data set. Unlike these algorithms, opt- IA is entirely based on a fully random
search process, which in turn is combined with purely stochastic operators. According to the obtained outcomes, opt- IA
shows strictly better performances than almost all heuristics and metaheuristics to which it was compared; whilst it turns out
to be comparable with the Hyper-Heuristic method. Overall, it can be claimed that opt- IA, even if driven by a purely random
process, proves to be reliable and with efficient performance. Furthermore, to prove the latter claim, a sensitivity analysis of
the functionality was conducted, using the classic metrics N M I , ARI and N V I .

Keywords Metaheuristics · Community detection · Immune-inspired algorithms · Random search algorithms · Combinatorial
optimization · Complex networks · Modularity optimization

1 Introduction

In the modern interdisciplinary sciences, the complex net-
works are a powerful interpretation tool useful for the
analysis and representation of a wide number of real-world
systems and are widely involved in many areas, such as for
instance neuroscience, biology, social sciences, economics,
and physics.With this graph-basedmodel it is possible to rep-
resent connections and interactions of the underlying entities,
where vertices are the elementary parts of the real systems,
whilst edges represent their mutual interactions (Newman
2003; Boccaletti et al. 2006). Complex networksmay contain
specific groups of highly interconnected vertices organized
in compartments or structure, where each of them has a role
and/or a function that satisfy a specific property of cohesion.
In terms of graph theory, compartments are represented by
partitions of the set of nodes with high internal links density,
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called communities or modules, which are loosely associ-
ated with other groups (Girvan andNewman 2002; Fortunato
2010).

Finding compartments in a graph-theoretic context is a
fundamental issue in the study of network systems, in which
often they exhibit significantly different functions and, there-
fore, a global analysis of the network would be inappropriate
and impractical. A detailed analysis of individual commu-
nities, instead, may shed some light on the organization of
systems and leads tomore significant insights into the roles of
individuals. This approach can also allow the visualization
and analysis of large and complex networks focused on a
new higher-level structure, in which each identified commu-
nity can be compressed in a node belonging to the latter. It is
important to emphasize that classical algorithms for graph
clustering are not suitable for revealing the properties of
community’s structures, as they are mainly based on optimal
subdivisions of graph in order to guarantee a minimum flow
cut. On the other hand, finding the properties of a commu-
nity’s structure requires a complex analysis on the linking
models and relationships. Community Detection (CD) has
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been shown meaningful structure in networks which identi-
fies groups of nodeswithinwhich connections are denser than
between them, in order to provide very important informa-
tion for detecting structural and functional relations between
objects, such as functional modules in protein-protein inter-
action networks, groups in online and contact-based social
networks, etc. Fortunato (2010) In the last decade, a growing
number of new methods and computational approaches have
been developed, and several different metrics for community
structure evaluation have been introduced, which are used for
community detection in graphs (Porter et al. 2009; Newman
2012; Coscia et al. 2011). Themost used and popular method
for community detection is to maximize the Modularity of
a complex network (Newman and Girvan 2004; Newman
2006, 2004), which measures the strength of the structure
of the communities detected: high modularity denotes dense
connections between the vertices inside a community, but
sparse among the nodes belonging to differentmodules.Basi-
cally, it measures the difference between the actual fraction
of edges within the community and the expected fraction in
a random graph with the same number of nodes and the same
degree sequence.

In this research work, an immune algorithm, called opt-
IA (Cutello et al. 2020; Stefano et al. 2016; Pavone et al.
2012), is presented, which has been designed for detecting
communities in complex networks. The proposed opt- IA
algorithm is a population-based metaheuristic that takes
inspiration from the dynamics and principles of the immune
system, and successfully applied in several optimization
problems (Cutello et al. 2019; Vitale et al. 2018; Strac-
quadanio et al. 2015). Three immunological operators are
the driving-force of opt- IA - (i) cloning, (i i) hypermuta-
tion, and (i i i) stochastic aging—which help the algorithm in
performing a careful exploration of the search space, avoid
getting trapped in local optima, and properly exploiting all
information learned during the evolution. It is important to
stress that all operators work in a purely randomwaywithout
any deterministic guide to refine and improve the solutions
neither taking advantage from features of the network. How-
ever, from the obtained outcomes, the combination of these
random operators allows opt- IA to be efficient and reliable.
Many computational experiments have been performed in
order to evaluate the efficiency and reliability of the pro-
posed algorithm in community detection, and different types
of complex networks have been taken into account, from
social to biological ones, included many synthetic networks
(around 80) in order to evaluate the algorithm in different
search scenarios. Overall, then, opt- IA was tested on a data
set of 103 instances, fromsmall networks (|V | = 28) to larger
ones (|V | = 3000), and a comparative analysis with 20 dif-
ferent optimization algorithms was also performed in order
to evaluate opt- IA’s robustness. Furthermore, an analysis on
the computational time of opt- IA has been performed using

the Time-To-Target plots (Aiex et al. 2002; Feo et al. 1994),
which are a standard graphical methodology for characteriz-
ing the running time of stochastic algorithms, comparing the
empirical and theoretical distributions. Although on the one
hand opt- IA needs more iterations with respect to the com-
pared algorithms, but always within acceptable times, on the
other hand it shows optimal performances relying basically
only on random search, and without using any determinis-
tic approach. In addition to the T T T − plots computational
time analysis, a study on the asymptotic computational com-
plexity of opt- IA has been conducted, aswell, fromwhich is
possible to claim that its upper bound running time isO(n3).

Finally, from the obtained outcomes it is possible to
assert that opt- IA finds almost always the best modularity
value, strictly outperforming most of the compared algo-
rithms. Indeed, analysing the comparisons through a ranking,
ordered from the best result to the worst one, it is possi-
ble to assert that opt- IA is always in one of the first two
positions and often in the first one. Also, on the biological
networks, opt- IA finds considerably better modularity than
the compared algorithms, especially with respect to H DS A
algorithm (Civicioglu 2012), which is aHyper-Heuristic, and
therefore based by definition on the use of different heuris-
tics. On the other hand, it is also important to note that due
to the randomness underlying the immunological operators
that guide the search process, and therefore to the lack of
any deterministic improvement/refinement approach, opt-
IA needs a greater number of iterations to find acceptable
solutions on the larger biological networks: the more the net-
work size grows, the more generations the algorithm needs.
To confirm the robustness and reliability of opt- IA, also
a functional sensitivity analysis was conducted on several
synthetic networks generated by the L F R algorithm (Lan-
cichinetti et al. 2008; Lancichinetti and Fortunato 2009),
and using the well-known community structure similarity
metrics, such as: N M I—Normalized Mutual Information
(Danon et al. 2005) (mostly used in community detection);
ARI—Adjusted Rand Index (Hubert and Arabic 1985); and
N V I—Normalized Variation of Information (Meilă 2007).

The rest of the paper is structured as follows: the commu-
nity detection problem andmodularitymeasure are presented
and formalized in Sect. 2. The description concerning the
proposed algorithm and modularity maximization approach
is given in Sect. 3. The description of the experiments con-
ducted on social and biological networks is given in Sect. 4.
In this section, the experimental protocol, parameters tuning,
convergence and learning analysis, as well as the computa-
tional complexity (T T T − plots and asymptotic analysis),
are also inspected and described. The effectiveness of the
Precompetition operator is also tested and inspected in this
section. Comparative analysis on the results of opt- IA
against those obtained by the past published algorithms is
reported in Sect. 5. Further, in this section a functional sensi-
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tivity analysis is also presented using N M I , ARI and N V I
as community structure similarity metrics. Finally, the con-
clusions are presented in Sect. 6.

2 Community detection andmodularity
maximization

Community, in a complex network level, represents a group
of nodes sharing common and similar properties in which
the obtained subgraph has a certain number of edges link-
ing a number of vertices of the community that are closer
each other, where edges inside community must be in greater
numbers within the community than those that connect com-
munity vertices with the rest of the network (Porter et al.
2009; Fortunato 2010; Newman 2012). The aim of CD in
graphs is to identify the modules and their hierarchical orga-
nization, by using only the information encoded in the graph
topology. In particular, it refers to the division of the nodes of
a network into groups such that connections are dense within
groups but sparser between them. In other words, a cluster
corresponds to a set of nodes with more edges inside the set
than to the rest of the graph. Although not all networks sup-
port such divisions, the existence of good divisions is often
taken as evidence of underlying structure or possible interac-
tive behaviours, making CD a useful tool to understand how
complex networks are structured and work.

CD problem gained the attention of scientist communities
to bring valuable explanations to complex networks analysis.
For example, in biology, applying graph clustering method
on relations among genes or proteins, modelled by networks
(Protein-Protein Interaction Network) is possible thanks to
group proteins having the same specific patterns and mech-
anisms operating within the cell (Chen and Yuan 2006), or
through analysis of the network produced by neuron interac-
tions, understanding the functional architecture of the brain
(Deco and Corbetta 2011). In the same way it is possible
to identify, in information networks, clusters of web pages
that share some common topics and similarity in a given
social network to find individuals with common interests
or friendship. A plethora of diverse algorithms and tech-
niques have been proposed for detection of the communities
in real-world networks. They differ from one to the other
in criteria implementations for solving CD problem. They
differ also in defining criteria of identification of commu-
nities. These approaches have been applied successfully in
different domains of applications and in the many real-world
areas (such as biological, chemical, ecological, economic,
political, social, etc.).

The opt- IA proposed was developed for the resolution
of CD problem through modularity maximization, the most
popular and widely accepted method for the community

detection. We begin by describing Modularity as a measure
the quality of a partitioning of a graph into communities.

2.1 Modularity

Modularity proposed by Newman and Girvan (2004) is a
benefit function that measures the quality of a particular par-
titioning of a graph into communities. Originally defined
for undirected graphs has been subsequently extended to
directed and weighted graphs (Newman 2004; Mucha et al.
2009; Bickel and Chen 2009). The modularity of a parti-
tion is a scalar value (where the maximum value can be 1)
used to evaluate the density of links within communities with
respect to links between communities (Girvan and Newman
2002; Newman 2006). A larger positive value of modularity
indicates better community structure.

Modularity maximization is one of the most popular and
mostwidely usedmethods for community partition. It detects
communities by searching over possible partitions of a graph,
over which modularity is maximized. In a given subgraph,
the modularity function is defined as the difference between
the actual density of edges inside the subgraph and the
expected density of such edges if the graph was randomly
conditioned on its degree distribution (Newman and Girvan
2004). This expected edge density depends on the chosen null
model, a random copy of the original graph thatmaintains the
structural properties but not those on the structure of the com-
munities. The idea behind modularity is that a network with
inherent community structure usually deviates from random
graphs, or rather random graph does not have a community
structure. Therefore, the edge density of a subgraph should
be greater than the expected density of a subgraph whose
nodes are randomly connected.

Given a graph G = (V , E) with |E | = m, and given
a partition of G with NC clusters, the benefit function of
modularity can be written as:

Q =
NC∑

c=1

[
lc
m

−
(

dc

2m

)2
]

(1)

where, for each cluster, i.e. subgraphs c,

• lc is the total number of edges and
• dc is the sum of the degrees of its vertices,

•
(

lc
m

)
represents the fraction of edges inside a certain clus-

ter and

•
(

dc
2m

)2
the fraction of the expected edges if the graph was

random (null model).

Although an important resolution limit of the measure of
modularity has been underlined byFortunato andBarthelemy
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(2007), modularity seems to be a useful measure of the com-
munity structures. In fact, algorithms that search for graph
partitions that offer optimal modularity are already proposed
and generally assert to be able to successfully find commu-
nities in very large and complex networks (Newman 2006,
2004).

Modularity defined in a heuristic way considers a good
division the one that places most of the edges of a network
within groups and only some of them between groups, in
which the relationships of the members among themselves
in the communities must be maximized and the relationships
of these members with members of other communities must
be minimized.

High values of modularity indicate better community
structure. We desire a quality function Q which, given a net-
work and a candidate division of that network into groups,
assigns a score to each partition of a graph, in order to classify
the partitions and evaluate when one partition is better than
another (in a graph the partition corresponding to its maxi-
mum value should be the best, or at least a very good one).
The maximization of modularity is therefore sought after at
all costs.

Obviously, a brute force search to optimize Q is impossi-
ble above all large and complex graph structures, due to the
enormous number of ways in which it is possible to parti-
tion a graph. Moreover, it has been proven that the problem
of determining communities by using modularity optimiza-
tion is an NP-complete problem (Brandes et al. 2007), so it
is highly unlikely to perform the optimization task and find
an optimal solution in polynomial time with respect to the
dimension of the graph. Several algorithms for community
detection in complex networks have been developed and have
yielded satisfactory results in some cases, but not in all situ-
ations (the performance of many methods available in large
complex networks is far below expectations). Therefore, we
need to move to approximate optimization methods, which
can find fairly good approximations of maximum modular-
ity in a reasonable time especially when an exhaustive brute
force search for the optimal solution is unfeasible, in a very
large solution space.

As described in detail in the section below, in our study
and in the development of the proposed algorithm, the func-
tion provided in Eq.1 was used as a fitness function on the
methods of modularity maximization for the resolution of
theCD problem for detecting communities within real-world
networks.

3 opt- IA: an immune algorithm for
community detection

Immune-inspired computation nowadays represents a large
and established family of successful algorithms that take

inspiration from the mechanisms and dynamics of the
immune system with which it protects the living organisms.
What makes the immune system source of inspiration from
an algorithmic perspective is its ability in detect, recognize,
and distinguish entities own to the organism from foreign
ones, together with its ability to learn new information and
remember those foreign entities already recognized. Three
principal theories are at the basis of the immune-inspired
algorithms: (1) clonal selection (Pavone et al. 2012; Scollo
et al. 2021); (2) negative selection (Fouladvand et al. 2017;
Poggiolini and Engelbrecht 2013); and (3) immune networks
(Smith and Timmis 2008). Among these, what has proven to
be quite efficient is the one based on the clonal selection prin-
ciple (called Clonal Selection Algorithms—CSA) (Cutello
et al. 2007, 2010) mostly in search and optimization appli-
cations.

The proposed immune algorithm, opt- IA, belongs then
to this last class of algorithms, and is based on three main
immune operators: (i) static cloning, whose aim is to gener-
ate a new population based on the highest fitness values; (i i)
hypermutation, which explores the neighbourhood of each
point of the search space; and (i i i) stochastic aging, which
removes solutions from the current population via a stochas-
tic law, helping then opt- IA in escaping from local optima.
In addition to these, some diversification strategies have been
also designed, whose aim is to keep high and proper diversity
into the population, and to perform an appropriate explo-
ration of the search space. The opt- IA algorithm is based on
two main concepts, following the biological metaphor: the
antigen (Ag), which represents the problem to be solved, and
the antibody (Ab), or B cell that is instead a solution for the
problem to be solved.

At each timestep t , opt- IAmaintains a population of size
d of B cells (P(t)), and each B cell Ab represents a subdivi-
sion of the vertices of the graph G = (V , E) in communities.
In details, if n is the cardinality of the set of vertices V , a
B cell �x = {x1, . . . , xn} will be a sequence of n integers,
between 1 and n, where xi = j indicates that the vertex
i belongs to the community j . A description of opt- IA is
summarized in the pseudocode shown in Algorithm 1. The
proposed algorithm takes as input: the network from which
to detect the communities (G); population size (d); number
of copies to be generated for each B cell (dup); the mutation
rate (M); probability that an element will be removed from
the population by the aging operator (Pdie), and maximum
number of generations allowed (Tmax ). It returns as output
the communities detected and the relative community num-
ber, as well as Best , Mean, W orst and standard deviation
(St D) values used for the comparisons.

As a first step, i.e. at the timestep t = 0,opt- IA randomly
generates d solutions using the uniform distribution, creating
then the initial population P(t=0) (line 2 of Algorithm 1): any
vertex is assigned to a community, randomly chosen in the
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range [1, n], with n = |V |. In this way, many communities
with fewassignedverticeswill be generated; itwill be the task
to of the developed hypermutation operator (see Sect. 3.2) to
compact the communities.

Once the population is initialized, the next step is to eval-
uate the fitness function for each B cell �x ∈ P(t) by the
function Compute_Fitness(P(t)) (line 3 of Algorithm 1). In
this research work, for each B cell �x , such function simply
computes the value given by Eq.1.

After the initialization of the population, and the compu-
tation of the fitness of each generated solution, the artificial
evolution process begins, where the key operators take place.
As in any evolutionary algorithms, opt- IA will end its evo-
lution process once a termination criterion is reached, which
has been fixed in our experiments to a maximum number of
generations allowed (Tmax ).

3.1 The cloning operator

The first immune operator to be performed is the cloning
operator (line 5 of Algorithm 1), which has the main goal
of producing a new population with higher affinities (i.e.
fitness values), and together with the hypermutation per-
form careful local search. Just as it happens in nature that
all those cells able to better recognize foreign entities will
generate more copies of them, the cloning operator dupli-
cates all those solutions that seems to be promising: simply
it copies/clones dup times each element of the population,
creating a new intermediate population P(clo) of dimensions
d × dup. It was developed a static version of the cloning
operator, unlike what really happens in biology,1 because
this last shows the disadvantage to guide easily and quickly
the algorithm towards local optima. Furthermore, to avoid a
premature convergence, we alsomade dup independent from

1 In nature, the number of clones produced for a B cell is proportional
to its ability in detect and recognize the Ag.

the fitness function value of the B cell. In a nutshell, if we
had chosen to increase the number of clones for high fitness
elements, we would have achieved quickly a very homoge-
neous population, causing in turn a poor exploration of the
search space.

3.2 The hypermutation operator

The hypermutation operator (line 6 of Algorithm 1) acts on
each element of the population P(clo) performing M muta-
tions with the main aim to explore the search space, and the
neighbourhood of all solutions found so far. Similarly to the
parameter dup, also the mutation rate M is a user-defined
parameter and is not related to the fitness function of the
solution, to avoid possible premature convergence. Impor-
tantly, unlike classical evolutionary algorithms, no mutation
probability was considered. Furthermore, the introduction of
blindmutations produces individualswith higher affinity (i.e.
higher fitness function values), which will be then selected
to form improved mature progenies. In this research work,
different types of mutation operators have been developed,
which can act on a single vertex in the solution, like a local
operator, or on a group of nodes, like a global operator: (i)
Equiprobability; (i i) Destroy; and (i i i) Fuse operators.

Equiprobability operator
This mutation operator is locally applied and tries to find
a better neighbour not still explored. Simply, it randomly
selects a vertex i , and a community c j among those existing at
that moment, and, of course, different from the one to which
i belongs (i.e. ci �= c j ), and then, the vertex i is moved into
the community c j .

Destroy operator
This operator works through a more global perspective than
the first operator, as it acts directly on the communities rather
than the single nodes. It is carried out as follows: two differ-
ent communities are randomly selected, cout and cin , which
are, respectively, the community fromwhere the vertices will
be moved; and the one that will receive such vertices. In
particular, cout is selected among the currently existing com-
munities, whilst cin is randomly assigned a value in the range
[1, n], with n = |V |. Note that this means that cin could have
a value that does not correspond to any existing community.
After that, a probability is randomly chosen between 1% and
50%, and based on this probability every vertex in cout will
move into cin . As already said, if cin is among the exist-
ing ones, then the new vertices will increase the community
itself; otherwise, a new community is created, and added to
the others.

Fuse operator
This last operator has the main aim to try to reduce and
compact the communities. Thus, it chooses randomly two
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Fig. 1 A comparative analysis on the performances of some mutation operators (Spampinato et al. 2019)

different communities ci and c j and moves all vertices
belonging to ci into the community c j , decreasing conse-
quently by one the number of communities.

The effectiveness and efficiency of these three operators
have already been proven in Spampinato et al. (2019) through
a comparative analysis (Fig. 1). In particular, the first two
have proven useful in improving the modularity function
value, and in escaping to local optima; the fuse operator,
instead, albeit doesn’t offer good results individually (see
Fig. 1), it also has been taken into account since its goal is to
aggregate communities. Trying then to take advantage on the
working of each operator, the Equiprobability and Destroy
operators are appliedwith the sameprobability,whilst the last
with low probability for the above reasons (around 49.5%,
49.5%, and 1%).

Finally, once the hypermutation was performed, and
then modify all the cloned solutions, for each mutated
B cell is computed its fitness value through the function
Compute_Fitness(P(hyp)).

3.3 Aging, precompetition, and selection operators

The aging operator has themain goal of helping the algorithm
in jumpingout of local optima andkeep ahighdiversity inside
the population. In this research work, the stochastic aging
operator (line 8 of Algorithm 1) has been developed that
guides opt- IA to reduce premature convergences as much
as possible. In details, the elements of the population are
removed at each iteration with a Pdie probability, which is
a user-defined parameter. Diversification of solutions in a
population is a crucial feature to avoid getting trapped into
local optima. However, this can also become a limitation
in carrying out a careful, and accurate exploration of their
neighbourhoods, which also plays a key role in the success of

the algorithm. Thus, in order to have a right balance between
these two key features, the stochastic aging is applied only on
the P(t) population. In this way, diversity will be introduced
in the population of the best current solutions,whichwill then
competewith their offspring ingenerating thenewpopulation
of the next generation, whilst the B cells in P(hyp) will have
the task of properly exploring the neighbourhoods.

After the aging operator, to strengthen heterogeneity in
the population P(t), a precompetition step (line 9 of Algo-
rithm 1) has been developed, which simply randomly selects
two different B cells from P(t): if the two solutions, although
different, have the samenumber of community, then the lower
fitness onewill be removed from P(t) with a 50%probability.
This strategy allows, thus, to maintain a more heterogeneous
population during the evolutionary cycle, maintaining solu-
tions with different number of community, in order to better
explore the search space.

The last operator before the end of the iteration is the cre-
ation of the new population for the next timestep t + 1. In
opt- IA, the (μ + λ)-selection operator (line 10 of Algo-
rithm 1) has been developed, which selects the best d B
cells from the two populations P(pre) and P(hyp), without
fitness repetitions. This selection operator, with μ ≤ d and
λ = (d × dup), identifies the best μ = d elements from
the offspring set (P(hyp)), and old parent B cells (P(pre)),
therefore ensuring monotonicity in the evolution dynamics.
If two selected elements have the same fitness, then only one
of them will be chosen randomly.

4 Benchmarks and behaviour analysis

In this section, we study the features of opt- IA and analyse
its behaviour in order to prove its efficiency and reliability.
We start by describing the data sets, i.e. the complex net-
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Table 1 Social and Biological
Network instances

Name Type |V | |E | � (%)

Grevy’s Zebras Social-ecological 28 111 29.37

Zachary’s Karate Club Social 34 78 13.90

Bottlenose Dolphins Social-ecological 62 159 8.41

Books about US Politics Social 105 441 8.08

American College Football Social 115 613 9.35

Jazz Musicians Social 198 2742 14.06

Cattle PPI Biological 268 303 0.85

E. coli TRN Biological 418 519 0.60

C. elegans MRN Biological 453 2025 1.98

Helicobacter pylori PPI Biological 724 1403 0.54

E. coli MRN Biological 1039 4741 0.88

S. cerevisiae PPI (1) Biological 2018 2705 0.13

S. cerevisiae PPI (2) Biological 2284 6646 0.25

works used for our studies and comparisons, along with the
experimental protocol adopted for all the performed tests.
Likewise, we show the experimental tuning on the population
size, mutation rate and aging probability. Then, once the best
setting of opt- IA’s parameters is determined, we show its
dynamics and learning abilities. Finally, we present the anal-
ysis of the time complexity of opt- IA via the well-known
Time-To-Target plots, which are a classical methodology for
the running time analysis for any stochastic algorithm.Exper-
imental results and comparisons are shown in Sect. 5.

4.1 Data sets and experimental protocol

The opt- IA algorithm, presented in Sect. 3, has been tested
and studied on eight different real-world networks, which
include three biological, and five social networks. These net-
works are related to two different areas and are obtained
from real-world systems. Features and size of each network
are detailed in Table 1.

More in details, we considered three social networks: a
small size network, called Zachary’s Karate Club, and two
larger ones, respectively, called Books about US politics
and American college football (Krebs 2008). The Zachary’s
Karate Club network represents the friendships between
members of a university’s karate club in the US over a period
of 2 years (Zachary 1977). It has come to be a standard test
network for clustering algorithms. Each node represents a
member of the club, and each edge represents the relation-
ship between the two corresponding members of the club.
The network called American college football was presented
in Girvan and Newman (2002) and represents the football
match schedule for the 2000 season.Vertices in the graph rep-
resent the teams,whilst edges represent regular season games
between the two corresponding teams. In theAmerican Polit-
ical Books network, the vertices represent the books on the

American politics purchased from amazon.com,whilst edges
connect pairs of books which are frequently co-purchased.
The books in this network, compiled by V. Krebs, were
classified by Newman (2012) into liberal or conservative
categories, with the exception of a small number of books
without a clear ideological bias.

We also took into consideration two different types of
networks, which identify social-ecological networks, called
respectively Bottlenose dolphins (Lusseau et al. 2003) and
Grevy’s Zebras (Sundaresan et al. 2007). Bottlenose dolphins
are aquatic mammals in the genus Tursiops. The network
is built from a community of bottlenose dolphin commu-
nity living in New Zealand and observed between 1994
and 2001.Edges denotes frequent association. In the Grevy’s
zebra network, edges represent the interactions between two
Equus grevyi (node in the network) if it existed between them
during the study.

Finally, six biological networks were also considered,
namely: E. coli transcriptional regulatory network (Shen-
Orr et al. 2002),C. elegans metabolic reaction network (Duch
andArenas 2005),Cattle protein-protein interaction network
(Cattle 2015), Helicobacter pylori protein-protein interac-
tion network (Xenarios et al. 2000; Rain et al. 2001), E. coli
metabolic reaction networ (Schellenberger et al. 2010), and
S. cerevisiae protein-protein interaction network (1) and (2)
(Yu et al. 2008; Bu et al. 2003). In particular, in the gene
expression E. coli regulation network, which is a commonly
used benchmark, the vertices represent operons, i.e. function-
ing units of DNA containing a cluster of genes, and edges
are directed from a gene that encodes a transcription factor
to a gene that it directly regulates it Shen-Orr et al. (2002).

Overall, all these networks, social and biological data
in real work systems, are well-known and commonly used
dataset for evaluating the efficacy and efficiency of designed
algorithms for the community detection problem.
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All the performed experiments were carried out on 30
independent runs, whilst the considered stopping criterion
was fixed at a maximum number of generations allowed
(Tmax = 4 × 103). Since opt- IA is basically a blind
search algorithm, it follows that without knowledge about
the domain andwithout inclusion of any deterministic refine-
ment approach, obviously opt- IA must evolve for more
generations than an any hybrid/memetic approach or a hyper-
heuristic. Nevertheless, the computational time of opt- IA
for reaching the overall best solution is, however, acceptable,
as it is shown in Sect. 4.4.

Finally, for each experiment, and then for each network,
the following outcomes were computed and shown: best
modularity found on all runs; mean value of the best solu-
tions found per each run; worst modularity value found on
the overall; standard deviation (St D); and number of com-
munities discovered (NC ).

4.2 Parameters tuning

As described in Sect. 3 (Algorithm 1), the crucial parameters
that affect the performances of opt- IA are, respectively: (i)
the population size (d); (i i) the duplication factor (dup);
(i i i) the mutation rate (M); and (iv) the probability to
remove a B cell at each iteration (Pdie). Therefore, we need
to find the best values for these parameters.

In a preliminary work (Spampinato et al. 2019), a small
and sparse network (almost_lattice network with 64 nodes)
was used to find the best setting for the parameter values.
The network was chosen since it shows a particular complex
landscape. From this preliminary study, the best parame-
ter combinations obtained were, respectively, d = 8, and
dup = 4, whilst mutation rate M varied between 1 to 3.
The efficacy of such a setting was also validated by the com-
parison of opt- IAwith the well-known greedy optimization
methodLouvain (Blondel et al. 2008), one of themost popu-
lar algorithms for the community detection. The comparison,
which for convenience is reported in Table 3 (Sect. 5), shows
that the proposed algorithm outperforms Louvain in all net-
works tested.

Following these very good results, we ran opt- IA on all
the networks which are shown in Table 1 using the same
parameter configuration. Although the algorithm was able to
find the optimal solutions for some of the social networks,
on the larger ones, such as for instance, on the biological net-
works, we obtained, instead, very poor results. In the light
of this, we performed a new study on the parameter tuning,
but this time we took into account the Cattle PPI biologi-
cal network as testbed, which is a large and sparse graph,
and consequently a hard enough testbed. It is important to
highlight, also, that all experiments we conducted for the
parameters tuning were performed on 30 independent runs,
so to have more robust and reliable outcomes.
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0.71

1 2 3 4 5
M

F
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ss

Fig. 2 Tuning the mutation rate M on the Cattle PPI network

Based on the knowledge acquired on opt- IA in previ-
ous research works (Pavone et al. 2012; Cutello et al. 2020,
2019), the population size was set to d = 100, since it is
mainly related to the dimension and complexity of the prob-
lem tackled. For all the other parameters, instead, the tuning
was determined by evaluating the fitness trend at their dif-
ferent values. The first step of this study was conducted
on the mutation rate parameter with five different values
(M = {1, 2, 3, 4, 5}), using the following parameter con-
figuration settings: population size d = 100, duplication
parameter dup = 4, probability of random aging operator
Pdie = 0.02 and Tmax = 4000.

The outcomes of these experiments are reported in Fig. 2
where we can see the distribution of fitness values over 30
independent runs at the varying of M on the Cattle PPI net-
work. By observing the graph in the figure, it is possible to
assert that by increasing the number of mutations the per-
formance of opt- IA decreases considerably with respect to
both the best modularity found and the mean. The best per-
formances are obtained using small mutation rate values, that
is M = {1, 2}. It is important to note that although for M = 1
opt- IA reaches a bettermedian, the performances for M = 1
and M = 2 are, however, equivalent when compared to the
best value found. For this reason, both these values for M
have been taken into account for the next experiments. The
good results obtained when performing a lower number of
mutations are primarily due to the effect of the aging and pre-
competition operators, which produce good heterogeneity,
and consequently require the perturbation operator to carry
out the search in the neighbourhood of the current solutions.
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Once the mutation rate M = {1, 2} was set, we per-
formed a second step of parameter tuning to determine the
best combination of (dup, Pdie). In particular, the duplica-
tion parameter was varied in the set {2, . . . , 10}, whilst Pdie

in {0, 0.01, 0.02, 0.05, 0.15, 0.3, 0.5}.
The results of these experiments are reported in Figs. 3

and 4.
From both figures, it is clear that better performances are

obtained when increasing the value of dup. In particular,
higher modularity values are obtained for dup = {8, 9, 10}
for both M values. In other words, having more copies of
each solution helps opt- IA in carrying out a careful and
more accurate search in its neighbourhood. Focusing further
the analysis only on these last three values, it is possible to
assert that for dup = 9 and dup = 10, opt- IA finds the best
modularity more often than for dup = 8.

Inspecting now the plots from the perspective of parameter
Pdie and considering these last two values for dup, we can
see that the better performances of opt- IA were obtained
for Pdie = 0.02. With this value, indeed, the algorithm was
able to find a better mean, and a lower standard deviation.
Each candidate solution will have a 0.02 probability to be
removed from thepopulation and such a lowprobability value
is enough to produce a good heterogeneity in the population
(when, of course, combined with the precompetition oper-
ator). From these last experiments, it also emerges that for
M = 1 the performances of opt- IA are considerably better
than for M = 2, since the algorithm reaches the best solu-
tion more often, with a better mean and standard deviation,
proving in turn greater robustness and soundness.

In conclusion, from the overall experimental analysis,
the best obtained parameter combination is the following:
d = 100, dup = {9, 10}; M = 1 and Pdie = 0.02. Note that,
although dup = 10 showed slightly better performances on
the considered network, we took into consideration both val-
ues, because their effect is also related to the network density
(see results in Sect. 5).

4.3 Convergence behaviour

A right convergence behaviour together with a good learn-
ing ability is the key factor for any successful stochastic
search algorithm. Thus, we conducted a deep analysis on
the dynamic behaviour of opt- IA as reported in this section.
We used the networksAmerican College Football,Cattle PPI
and C. elegans MRN because, being different in types, sizes,
density (� in Table 1), and mainly complexity, they allow
a more robust analysis. As described above (Sect. 4.1), all
these experiments were averaged over 30 independent runs.

Figure 5 shows the convergence curves of opt- IA, and, in
particular, the best fitness, average fitness of the population,
and average fitness of the hypermutated population. In partic-
ular, one can see how in all three plots opt- IA shows a very

good convergence towards the optimal solution. Indeed, the
three curves grow slowly and improve step by step until they
reach the best solution. It is important to note that initially
the three curves are very close, and then begin to differentiate
as they approach the optimal solution (see inset plots). This
is due to the diversification of the solutions whose crucial
impact happens mainly when the improvements are limited,
and consequently when opt- IA needs to get out of local
optima.

Simply put, all three curves keep a right distance from
each other, confirming the existence of a good degree of
diversity among the solutions, which is useful for avoiding
and/or escaping from local optima. Furthermore, it is also
important to highlight that the curve of the best fitness does
not increase monotonically: for some generations, the curve
decreases slightly, and this corresponds to the discovery of
better fitness values, right in the next generations.

Since opt- IA is driven by random process, together to
the analysis of the convergence behaviour becomes impor-
tant also understand its learning ability, that is the information
amount it is able to discover during the search process. The
information learned during the evolutionary process clearly
affects the overall performance of the algorithm. The infor-
mation gain, also known as Kullback–Leibler divergence, is
a well-known metric for analysing the amount of informa-
tion gained by an algorithmwhilst searching for the solution,
i.e. during the learning phase (Kullback 1959; Cutello et al.
2007). Basically, it measures the reduction of entropy with
respect to an initial distribution function (timestep t = 0);
that is, generalizing, the entropy reduction from a prior state
to a given next state. A good randomness measure is also
given by the Shannon’s entropy (Shannon 1948), which is
among themost used in Information Theory because it is able
to measure the uncertainty of a random process. It defines
the entropy of a random value in terms of its distribution
probability. It follows that the Kullback–Leibler divergence
(Kullback 1959) measures the “distance” between two prob-
ability distributions and how different they are.

In order to compute the information gain in opt- IA, we
indicate with Bt

m the number of all those solutions (B cells)
having fitness value m at the time t , and we define the distri-
bution function of solutions ( f (t)

m ) as the ratio between Bt
m

and d, that is the total number of the solutions:

f (t)
m = Bt

m∑h
m=0 Bt

m

= Bt
m

d
. (2)

It follows then that the definitions of the information gain
K (t, t0), and the entropy, E(t) are given, respectively, by:

K (t, t0) =
∑

m

f (t)
m log( f (t)

m / f (t0)
m ), (3)

E(t) = −
∑

m

f (t)
m log f (t)

m . (4)
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Fig. 3 Experimental tuning of Pdie parameter with M = 1 on the Cattle PPI network

Equation3 indicates therefore the amount of the informa-
tion discovered by opt- IA during the convergence process
with respect the initial population P(t=0). The maximum
information-gain principle (Jaynes 2003) tells us that once
the search process begins the information gain curve mono-
tonically increases until to reach a peak,which corresponds to

the maximum quantity of information discovered. Just after
this peak, the curve transitions to a (roughly) steady-state, or
in case it is fluctuating, however it will not reach values close
to the maximum peak point:

d K

dt
≥ 0. (5)
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Fig. 4 Experimental tuning of Pdie parameter with M = 2 on the Cattle PPI network

Overall, the maximum information-gain principle makes it a
suitable tool to perform an appropriate parameter tuning and,
at the same time, understand the convergence behaviour of
the algorithm both on-line and at run-time.

As for the convergence analysis, the same three networks
were also used to evaluate the learning ability of opt- IA. Fig-
ure6 displays the information gain curves, respectively, on

the American College Football in plot (a), Cattle PPI in plot
(b) andC. elegans MRN in plot (c). Inspecting all three plots,
we can clearly see how opt- IA quickly gains enough infor-
mation during the first iterations, reaching regions of search
space with a good average, which proves the efficiency of
the mutation operators designed to explore the search space.
After that, due to the fully random search process and with-
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Fig. 5 Convergence behaviour of opt- IA on a American College Football, b Cattle PPI and c C. elegans MRN networks. The figures show the
average fitness function values and the best B cell versus generations

out any guided search specific to the problem, the learning
process alternates in gaining or losing information, until it
reaches the highest peak that corresponds to having reached
the best overall solution. The insert plot shows the relative
standard deviations. In plot (a) of Fig. 6 it is possible to see
the learning behaviour of opt- IA on the American College
Football network. In this plot, the algorithm shows a differ-
ent learning behaviour compared to the other two considered
networks, because this network is a little simpler in size and
network density. Indeed, once the highest peak is reached
(in the generations range [20, 30]), opt- IA begins to lose
information until around the 200th iteration when the curve
begins to increase again, and therefore it starts to gain again
information. In the inset plot, we show the relative deviation
standard (σ ) of opt- IA, which measures the amount of dis-
persion (uncertainty) inside the population. It is interesting

to note, indeed, that the iteration point where the algorithm
reaches the maximum information gain corresponds exactly
to the standard deviation lowest point. Correctly, then, to
themaximum information gain correspondsminimumuncer-
tainty. Similarly, at the point of the lowest information gain,
reached before 200th generations, there is the highest stan-
dard deviation value. The information gain curves displayed
in plots (b) and (c) show, instead, a steadier state behaviour
once the higher information value is reached. Interestingly,
we can see in both plots that after 1000 generations opt- IA
begins to discover new information, and particularly in the
plot (b) it reaches even the highest information gain value.
This is consistent with the standard deviation curves, which
reach lowest values just after the 1000 generations.

In conclusion, both analyses (convergence and learning)
prove the efficiency and robustness of opt- IA in community
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Fig. 6 Information gain curves of opt- IA on a American College Football, b Cattle PPI and c C. elegans MRN networks. The inset plots show
the relative standard deviations

detection task. More importantly, they highlight and prove
how opt- IA needs more iterations to discover high-quality
solutions due to the strong randomness present in the devel-
oped operators.

4.4 Computational time complexity

The running time of opt- IA for reaching the best solution
is another crucial measure to take into account for proving
the efficiency of the proposed immune algorithm. We used
the Time–To–Target plots (Aiex et al. 2002; Feo et al. 1994)
(T T T − plots) which are a standard graphical methodology
for data analysis and for characterizing the running time of
stochastic algorithms in order to solve a specific optimiza-
tion problem. They measure the CPU times to find the target

of the problem instance tackled. The basic idea behind of
T T T − plots is to compare the empirical and theoretical dis-
tributions, i.e. it displays the probability that an algorithmwill
find a solution as good as a target within a given running time.
A Perl program has been proposed by Resende et al. in Aiex
et al. (2007) for automatically generating the T T T − plots,
which produces two different plots: (i) theoretical Quantile–
Quantile plot (Q Q − plot) with superimposed variability
information, and (i i) superimposed empirical and theoreti-
cal distributions.2

In order to perform such an analysis, the opt- IA algo-
rithm is run n times on a given instance using the achieving
of a target value (i.e. achieve global optimum) as a stopping

2 The perl program can be downloaded at http://mauricio.resende.info/
tttplots/tttplots.zip.
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criterion. Obviously, for each single run, a different seed is
considered for the random number generator so to have inde-
pendent runs. Note that the larger the number n considered,
the closer the empirical distribution will be to the theoretical
one. Therefore, following the suggestions given in Aiex et al.
(2007), we set n = 200 because it has been proven that this
value gives very good approximations of the theoretical dis-
tributions. This analysis has been conducted on five different
networks in size and complexity: Grevy’s Zebras, Zachary’s
Karate Club, Bottlenose Dolphins, Books about US Politics
and C. elegans MRN. For a proper analysis, it is important
to consider not easy instances, since the exponential distri-
bution would degenerate to a step function, due to the very
small CPU times in almost all runs, as asserted in Aiex et al.
(2007). Furthermore, these networks have been considered
also because the new stopping criterion requires that in the
tackled networks/instances the success rate is 100%.

In Figs. 7, 8, and 9, the T T T − plots produced on the
cited networks are shown. In each figure, the left plot shows
the empirical versus theoretical distribution, whilst in right
plots show the Q Q − plots with variability information.

It is important to point out that the T T T − plots exper-
iments on the Books about US Politics network were per-
formed considering the best solution found (t = 0.5272) as
target value for the stopping criterion, and opt- IA was able
to find it in all 200 runs, although in Table 6 (Sect. 5) the best
and mean values are not the same. This confirms that with
a larger number of iterations the developed search process is
able to discover even better solutions until it reaches the opti-
mal ones, of course, with higher computational complexity
time. However, from the relative T T T − plots (bottom plots
in Fig. 8), the empirical curve follows the same behaviour
of the theoretical one, proving consequently the efficacy of
opt- IA on this network. For the C. elegans MRN network—
one of the larger networks in the dataset—two different target
values were, instead, considered as stopping criteria, since
opt- IA found better modularity than the compared algo-
rithms (see Table 6), either as best , mean and worst values.
The first experiment was then conducted considering 0.4185
as target value (upper plots, Fig. 9), which corresponds to the
best modularity found among all compared algorithms, and
specifically by H DS A. Moreover, because the worst modu-
larity computed by opt- IA is still better than the one found
by H DS A, a second T T T − plots experiment was per-
formed setting the stopping target to 0.4221 (bottom plots in
Fig. 9), i.e. the worst solution of opt- IA on such a network
(see Table 6).

Overall, by inspecting all plots in the three figures
(Figs. 7, 8, and 9), it emerges how the empirical curve per-
fectly fits the theoretical one in all the four social networks,
whilst opt- IA improves the theoretical trend in the biologi-
cal one. In the Q Q − plots, instead, the opt- IA algorithm
shows how its results are in most of the cases equal or better

than the theoretical ones, and the empirical curve is much
faster than the theoretical one. Focusing the analysis only on
the plots of Fig. 9, that is the two different targets consid-
ered for the biological network, it appears clear how opt- IA
easily achieves the same maximum modularity of H DS A,
whilst (obviously) needs more time to reach larger values of
modularity. However, the empirical curve fits perfectly the
theoretical one. Even on the Q Q − plot (Fig. 9b) the empir-
ical curve almost always fits the estimated one, also showing
a better behaviour than in that shown in Fig. 9d.

4.5 The asymptotic computational analysis

To compute the upper bound of the computational cost
of opt- IA, it is important to recall that being opt- IA
a population-based algorithm, any computational analysis
must be do with respect to the size of the input problem
and implementation features, but also with respect the choice
of the key parameters, such as population size (d), maxi-
mum iteration numbers Tmax , hypermutation operators, etc.
Below, all these issues are properly discussed.

Inspecting the pseudocode of opt- IA (Algorithm 1) it is
possible to assert that:

• any solution is represented by an array of length n,where
n is the number of vertices of the input graph;

• the procedure I ni tiali zePopulation(d) has the aim to
randomly create a population of d solutions. It follows
then that the total cost isO(d×n).Note that the parameter
d is a constant experimentally set (it is user defined), and
therefore it is independent from the size of the input.
Besides, in all presented experiments it was set to the
value 100, therefore, is possible to assert that the cost of
the procedure is actually O(n);

• the procedure ComputeFitness() simply evaluates the
quality, i.e. the fitness, of all 100 solutions of the popu-
lation using the Eq.1. It follows then that the cost of the
procedure is O(n2);

• the aims of the procedure Cloning() is to create dup
copies of each element of the population. Looking to the
experimental setting, also dup is a fixed parameter and
then independent from the input size as well. This allows
us to say that the cost of Cloning() is O(n);

• the H ypermutation() procedure mutates each element
of the population with constant probability M, and it
is based on three different implementations. As each of
these is based on the random selection of either a vertex
or a cluster, it can happen having to reallocate several
vertices in the twomost consuming implementations, that
is destroy and fuse. It follows then that the procedure has
an upper bound O(n);

• in the Precompeti tion() procedure, two vertices are
randomly selected, and their community number is
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Fig. 7 Empirical versus theoretical distributions a, b and Q Q − plots with variability information c, d, obtained on the Grevy’s Zebras and
Zachary’s Karate Club networks

checked. If the number is the same (i.e. they belong to the
same community), then the vertex with lower fitness is
deleted with probability 1/2. Considering that the fitness
was already computed, the overall cost is then O(1);

• the procedure StochasticAging() inspects all elements
of the population and each one is removed with a Pdie

probability. Since Pdie is a user-defined parameter and
then constant, we can assert that the overall cost of the
procedure is O(n);

• finally, Selection() is the last procedure that is per-
formed,which chooses the best d solutions among P(pre)

a

and P(hyp). Recalling that the number of elements (d) in
both populations is constant and independent of the size
of the input, it follows that the cost of the procedure is
therefore O(1).

Then, summing up, from the computational analysis done
for each procedure, it is possible to assert that the cost of
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Fig. 8 Empirical versus theoretical distributions a–c and Q Q − plots with variability information b–d, obtained on the Bottlenose Dolphins and
Books about US Politics networks

one iteration of opt- IA has a computational upper bound
O(n2 + n) = O(n2).

Let now us consider the number of iterations. It is worth to
highlighting that, unlike to the other parameters, the number
of generations is instead related with the size of the input:
the bigger the input, the bigger is the number of generations
that we expect to need. But how does it grow with respect
to n? Taking into account that the number of iterations is,
however, an input parameter, then a constant number also on
large networks, and looking to the results of the presented
experiments, it is possible to assert that in the worst case its

growth is linear with respect to n. It follows that we can assert
that opt- IA needs at most c × n generations to obtain good
results, wanting to be very cautious. Indeed, inspecting the
convergence behaviours in Fig. 5, for instance plot (b), it is
possible to see that after around 1200 iterations (∼ 4.48 ×
|V |) the algorithm reaches the best solution. The same can
be said for the other plots in Figure. In the light of this,
adding such bound to the overall computational analysis, it is
possible to claim that the upper bound of the opt- IA running
time is O(n3).
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Fig. 9 Empirical versus theoretical distributions a, c and Q Q − plots with variability information b–d, obtained on the Books about US Politics
and C. elegans MRN networks

4.6 Precompetition operator effectiveness

The precompetition operator, in addition to the aging oper-
ator, plays a key role on the performances of opt- IA since
it allows the algorithm to jump away from local optima by
introducing heterogeneity in the population. This, of course,
is a crucial characteristic especially when addressing hard
and complex problem. Although the usefulness and effi-
ciency of the aging operator is well known Jansen and Zarges
(2011a, b), little instead is possible to assert on the efficacy

of the precompetition operator, and how it affects the perfor-
mance of opt- IA.

In the light of this, in this section, an analysis on the overall
effectiveness of the precompetition operator is presented, and
it is shown in Table 2. For this analysis, four biological net-
works were considered (Cattle PPI, E. coli TRN, C. elegans
MRN, and Helicobacter pylori PPI), and used for inspect-
ing the convergence behaviour of opt- IA, by enabling or
disabling such an operator.
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Table 2 The experimental results of opt- IAwith and without the Pre-
competition operator on biological networks

I nstance Precompetition operator

Enabled Disabled

Cattle PPI Best 0.7195 0.7195

Mean 0.7156 0.7151

StD 0.0036 0.0044

E. coli TRN Best 0.7796 0.7776

Mean 0.7711 0.7701

StD 0.0051 0.0055

C. elegans MRN Best 0.4490 0.4470

Mean 0.4369 0.4340

StD 0.0053 0.0081

Helicobacter pylori PPI Best 0.5416 0.5329

Mean 0.5249 0.5235

StD 0.0063 0.0055

Looking at the outcomes reported in table, the usefulness
and efficacy of the precompetition operator is clearly evi-
dent: it allows opt- IA to reach better modularity values not
only with respect the maximum value found, but also with
respect to the mean of the best found values in all indepen-
dent runs, with the consequence of allowing the algorithm
to obtain lower standard deviation values. It is important to
highlight that, except for the Cattle PPI network where the
bestmodularity is the same for both versions, the precompeti-
tion operator allows opt- IA to produce considerably higher
modularity values, proving the successful effect of this oper-
ator.

The precompetition operator, in combination with the
stochastic aging compensates the indirect elitism provided
by the selection operator; therefore, it helps to maintain a
right balance of diversity in the population.

5 Results

We will discuss now the overall experimental results and
compared them with the results obtained by state-of-the-art
algorithms. It is important to stress first that, in a prelimi-
nary work (Spampinato et al. 2019), opt- IA was compared
to Louvain algorithm on a set of different, simple, and small
networks, which for simplicity are reported in Table 3. By
inspecting this table, it becomes clear how opt- IA, based on
a pure random search, outperforms one of the best determin-
istic approach on community detection, which is Louvain
algorithm. However, given the low of complexity of these
tested networks, a deeply and detailed analysis must be con-
ducted in order to evaluate the real performance of opt- IA.
Therefore, for these new experiments, all networks in the data

Table 3 opt- IA versus Louvain

Louvain opt- IA

Instance |V | Q NC Q NC

Dolphins 62 0.5188 5 0.5285 5

Karate 34 0.4156 4 0.4198 4

Ukfaculty 81 0.4488 4 0.4488 4

Miserables 77 0.5583 6 0.5600 6

Huckleberry 69 0.5346 4 0.5346 4

GN_benchmark2 128 0.4336 2 0.4336 2

GN_benchmark4 128 0.5393 4 0.5393 4

LFR_benchmark 128 0.1560 6 0.1980 5

Almost_lattice 64 0.5279 8 0.5576 8

3mixed 128 0.3682 5 0.4297 3

set in Table 1 were considered, and the experimental proto-
col described in Sect. 4.1 was used. The main goal of these
experiments, as well as all comparisons made, is to prove the
competitiveness and reliability of opt- IA in terms of solu-
tion quality found, i.e. maximizing the modularity function
(Eq.1).

To this end, the proposedopt- IA algorithmwas compared
to several different heuristics and metaheuristics (20 in the
overall), each of them designed and developed as a modular-
ity optimization approach (Atay et al. 2017; Li et al. 2020;
Doush et al. 2020). Specifically, the algorithms considered
for the comparisons, in addition to the Louvain’s one, are:

B A—Bat Algorithm, a metaheuristic method based on the
echolocation behaviour of bats (Yang 2010);

GS A—Gravitational Search Algorithm, a metaheuristic
optimization algorithm based on the law of gravity and mass
interactions (Rashedi et al. 2009);

B B−BC—Big Bang-Big Crunch algorithm, an algorithm
inspired by the theories of the universe evolution in which,
during the main phase, energy dissipation produces disorder
and randomness, whilst in a second stage the randomly dis-
tributed particles are drawn into an order, i.e. the values in
the vectors of the function to be optimized are determined
(Erol and Eksin 2006);

B ADE—improved Bat algorithm based on Differential
Evolutionary, an improved version based on the combination
(hybridization) of Bat Algorithm, and Differential Evolution
(DE) algorithm (Storn 1995; Storn and Price 1997), where
this latter is used in population regeneration process. Both
algorithms are used together for the selection of adjacent
nodes;

SSG A—Scatter Search algorithm based on Genetic Algo-
rithm, a Scatter Search (SS) approach (Glover 1977; Martí
et al. 2006) of the best chromosomes provided by Genetic
Algorithm (GA) (Holland 1975;Goldberg 1989) and subject-
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ing thepopulation to the crossover and themutationprocesses
around the best solutions;

H DS A—Hyper-heuristic Differential Search Algorithm,
a hyper-heuristics based on the migration of artificial super-
organisms (Civicioglu 2012), where each of them in the
population migrates between the maximum or minimum
solution of the problem using the Differential Search Algo-
rithm (DSA) in the process of regeneration of individuals;

M A−Net (Naeni et al. 2015), amemetic algorithm based
on the combination of a genetic algorithmwith a local search;

G AC D (Shi et al. 2009), a genetic algorithm that takes
advantage of the efficiency of the locus-based adjacency
encoding scheme to represent a community partition;

CC − G A—Clustering Coefficient-based Genetic Algo-
rithm (Said et al. 2018), a genetic algorithm that uses the
clustering coefficient (CC), which is a social networks anal-
ysis measure, to generate a better initial population;

M SI G—Multi-Start Iterated Greedy algorithm (Sánchez-
Oro andDuarte 2018),which uses a newgreedyprocedure for
generating the initial solutions and reconstruct the solutions,
but has the disadvantage of being computationally expensive;

I D P SO−RO—Improved Discrete Particle Swarm Opti-
mization with Redefined Operator (Cao et al. 2015), based
on particle swarm optimization, in which the update formu-
las of velocity and position are redefined according to the
locus-based adjacency representation;

I G—Iterated greedy algorithm (Li et al. 2020) based on
an iterative process that combines a destruction phase and a
reconstruction phase: a complete candidate solution is par-
tially destructed, and afterwards a new complete candidate
solution is reconstructed via a greedy constructive heuristic;

M O B A—Multi-Objective Bat Algorithm (Doush et al.
2020), which is a multi-objective bat algorithm adapted to
model and solve the community detection problem;

and, finally, the following heuristics and metaheuristics
E F F (Enhancement FireFly Algorithm), RB (Rosvall and
Bergstrom Algorithm), Blondel Algorithm, RN (Ronhovde
and Nussinov Algorithm) (Ronhovde and Nussinov 2009),
C N M (Newman and Girvan 2004) and M OG A− Net algo-
rithm (Pizzuti 2008),which eachwas taken from (Doush et al.
2020).

In accordance with what previously described, the param-
eters setting of opt- IA, in all the performed experiments,
are: d = 100 as population size; Pdie = 0.02 the proba-
bility of random aging operator; mutation rate M set to 1;
and Tmax = 4000 as the maximum number of generations
used as stopping criterion. The duplication parameter dup
in according with the parameters tuning reported in Sect. 4.2
has been set to 4 (dup = 4) for all those instances with
|V | < 100 (small social networks), whereas for the larger
ones (|V | ≥ 100) the experiments were performed with
dup = 9 and dup = 10. Every experiment has been per-

Table 4 The experimental results of opt- IA on social networks with
dup = 4

Network Best Mean Worst StD NC

Grevy’s Zebras 0.2768 0.2768 0.2768 0.0000 4

Zachary’s Karate Club 0.4198 0.4198 0.4198 0.0000 4

Bottlenose Dolphins 0.5285 0.5285 0.5285 0.0000 5

formed on 30 independent runs. The obtained outcomes are
summarized in Tables 4 and 5.

Table 4 reports the results of the proposed algorithm on
small social networks, whilst in Table 5 we show the results
on larger social networks, and on biological networks. In this
last table, the best results obtained for dup = 9 or dup = 10
are also highlighted in boldface.

This different setting of the duplication parameter is obvi-
ously due to the simplicity of the first networks (dup = 4)
compared to the last ones (dup = 9 or dup = 10), which
consequently require a more targeted search, and a less wide
exploration of the solution space. Larger networks with a
density � ≥ 1% (see Table 1) do not require a great vari-
ability in the population, and for this reason dup = 9 seems
to be the most appropriate value. Indeed, although in the
social networks there is little difference in the results between
the two dup values (dup = 9 vs dup = 10), in C. ele-
gans MRN, where � = 1.98%, a significant improvement is
instead obtained in terms of best modularity found (Best),
and average of values (Mean). On the other hand, for all net-
works with a low density (� < 1%) the parameter dup = 10
ensures good average values (Mean) in Cattle PPI instance
and best modularity (Best) for E. coli TRN network. In these
cases, a small increase in the dup parameter, i.e. having a
larger number of duplicates, allows to produce higher vari-
ability, and consequently enables to work well on very sparse
networks.

Tables 6, 7, 8, 9 report the comparisons of opt- IA with
other heuristics and metaheuristics. The results shown are
averaged on 30 independent runs for all algorithms. Note
that, unlike other algorithms that use a maximum number of
generations fixed, M A − Net stops running just only when
30 generations are performed without any improvement. For
each table, the best modularity values (Best), average val-
ues (Mean), worst modularity (W orst), standard deviation
(St D), and number of communities discovered (NC ) are
showed, respectively.

By analysing Table 6, it is clear how the proposed opt- IA
considerably outperforms all compared algorithms, excepts
for H DS A hyper-heuristics.Regarding this latter, however, it
is possible to note howboth algorithms (opt- IA and H DS A)
show identical performances on the first two networks in the
table reaching the same values of Best and Mean, whilst on
the last two, H DS A outperforms opt- IA only with respect
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Table 5 The experimental
results of opt- IA on social and
biological networks with
dup = {9, 10}

Network dup Best Mean Worst StD NC

Books about US Politics 9 0.5272 0.5270 0.5208 0.0012 5

10 0.5272 0.5268 0.5208 0.0016 5

American College Football 9 0.6046 0.6011 0.5848 0.0052 10

10 0.6046 0.5999 0.5891 0.0050 10

Cattle PPI 9 0.7195 0.7148 0.7018 0.0044 40

10 0.7195 0.7161 0.7049 0.0039 40

E-Coli TRN 9 0.7734 0.7660 0.7486 0.0050 27

10 0.7795 0.7670 0.7589 0.0049 32

C-Elegans MRN 9 0.4487 0.4366 0.4221 0.0070 8

10 0.4464 0.4377 0.4231 0.0061 10

Table 6 Comparison of opt- IA on social networks

Networks opt- IA Louvain HDSA BADE SSGA BB- BC BA GSA MA- Net

Grevy’s Zebras Best 0.2768 0.2768 0.2768 0.2768 0.2768 0.2768 0.2768 0.2768 –

Mean 0.2768 – 0.2768 0.2768 0.2768 0.2766 0.2768 0.2768 –

Worst 0.2768 – 0.2768 0.2768 0.2768 0.2761 0.2768 0.2768 –

StD 0.0000 – 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000 –

NC 4 4 4 4 4 4 4 4 –

Zachary’s Karate Club Best 0.4198 0.4189 0.4198 0.4198 0.4198 0.4198 0.4198 0.4198 0.420

Mean 0.4198 – 0.4198 0.4188 0.4198 0.4196 0.4133 0.4170 0.419

Worst 0.4198 – 0.4198 0.4156 0.4198 0.4188 0.3946 0.4107 –

StD 0.0000 – 0.0000 0.0018 0.0000 0.0004 0.0105 0.0037 0.002

NC 4 4 4 4 4 4 4 4 4

Bottlenose Dolphins Best 0.5285 0.5285 0.5285 0.5268 0.5257 0.5220 0.5157 0.4891 0.529

Mean 0.5285 – 0.5282 0.5129 0.5200 0.5141 0.4919 0.4677 0.523

Worst 0.5285 – 0.5276 0.4940 0.5156 0.5049 0.4427 0.4517 –

StD 0.0000 – 0.0005 0.0120 0.0040 0.0068 0.0289 0.0155 0.004

NC 5 5 5 4 5 5 4 6 5

Books about US Politics Best 0.5272 0.5205 0.5272 0.5239 0.5221 0.4992 0.5211 0.4775 0.527

Mean 0.5270 – 0.5272 0.5178 0.5203 0.4914 0.5020 0.4661 0.526

Worst 0.5208 – 0.5272 0.5137 0.5167 0.4799 0.4815 0.4558 –

StD 0.0012 – 0.0000 0.0042 0.0024 0.0084 0.0149 0.0079 0.002

NC 5 4 5 4 5 9 3 5 5

American College Football Best 0.6046 0.6046 0.6046 0.5646 0.5330 0.5171 0.5523 0.4175 0.605

Mean 0.6011 – 0.6033 0.5513 0.5277 0.5061 0.5272 0.4032 0.601

Worst 0.5848 – 0.6019 0.5430 0.5189 0.4986 0.4742 0.3905 –

StD 0.0052 – 0.0009 0.0085 0.0057 0.0069 0.0325 0.0109 0.003

NC 10 10 10 11 6 10 7 5 10

Jazz Musicians Best 0.4451 0.4451 – – – – – – 0.445

Mean 0.4449 – – – – – – – 0.445

Worst 0.4449 – – – – – – – –

StD 0.0001 – – – – – – – 0.000

NC 4 4 – – – – – – 4
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the average values (both reach the same Best values). On the
networkBottlenose Dolphins, insteadopt- IA strictly outper-
forms H DS A reaching a better mean value, and a standard
deviation value equal to zero. It is important to emphasize that
H DS A is a hyper-heuristic and then by conception exploits
different type of appropriate heuristics: in each generation
it considers the one that returns the best result. It follows
obviously that this method is potentially more robust from
a Mean value perspective. However, the difference between
the values obtained by both heuristics, as Best and Mean,

is almost irrelevant, demonstrating that the two algorithms
opt- IA and H DS A can be considered comparable in the
overall.

In Table 7, opt- IA is compared with a second group
of more recent metaheuristics methods. Also on this com-
parison, the proposed algorithm outperforms the compared
algorithms in all networks. Indeed, if the comparison is
inspected from a ranking perspectivewith respect to the Best
values, opt- IA is always at the top, whilst if it is analysed
with respect to the Mean values, it is easy, instead, to assert
that it is always among the first two positions and very often
in the first one. It is worth emphasizing once again that,
whilst these compared algorithms include deterministic and
sophisticated strategies, opt- IA is fully random both in the
generation of the initial population and in the solutions search
process into the search space. Therefore, having shown bet-
ter performances, it confirms the robustness and efficiency
of all designed random operators.

In Table 8,opt- IA is comparedwith the last heuristics and
metaheuristics group, which also includes a multi-objective
approach. Here as well, opt- IA outperforms all compared
algorithms excepts for EFF, with which instead it alternates
in the first position. Indeed, opt- IA outperforms EFF and it
is in the first rank on the Bottlenose Dolphins and American
College Football networks, whilst it is outperformed by EFF
on the Zachary’s Karate Club and Books about US Politics
networks, resulting in second position. Also on this com-
parison, therefore, it is possible to assert that the proposed
algorithm is ranked always among the first two positions con-
firming its reliability and efficiency.

In Table 9, opt- IA is compared with the first group of
algorithms on biological networks. Unfortunately, no results
were found by the other considered algorithms on these
networks. Thus, inspecting this table, it is possible to see
how opt- IA strictly outperforms all algorithms, included
H DS A, on the C. elegans MRN and Helicobacter pylori PPI
networks compared to all evaluation metrics (Best , Mean,
worst and St D), and detecting a smaller community value.
However, on the other two networks, opt- IA and H DS A
are comparable in Cattle PPI with respect to the best value
reached, but opt- IA is outperformed by H DS Awith respect
to the mean values. Also, on the E. coli TRN instance H DS A
outperforms opt- IA in all assessment values. It is important

to highlight that opt- IA performs better than H DS A on
the larger networks. Focusing, finally, the inspection only
on the comparison between opt- IA and Louvain it is easy
to assert that the first considerably outperforms the latter,
excepts for the Helicobacter pylori PPI network. Overall,
then, analysing all outcomes and comparisons performed,
it is possible to assert that the proposed algorithm opt-
IA outperforms all the compared metaheuristics, and shows
comparable performances with respect to hyper-heuristic
H DS A. It is important to highlight once again that whilst
H DS A, being a hyper-heuristic, takes advantage of several
efficient heuristics, and each time chooses the best solu-
tion among all the ones found by them, opt- IA, instead,
is entirely blind to the features of the problem, and it is based
only on random search without any deterministic guide.
Therefore, taking into account these main differences and
features, and, primarily, having found results comparable
with those of H DS A, it is possible to confirm the efficiency
and reliability of the proposed random search algorithm opt-
IA.

In order to study opt- IA on large networks, i.e. with
more than 1000 nodes, a further set of networks was con-
sidered and tested, and the results are reported in Table 10.
Of course, being opt- IA fully based on random search, for
these experiments a larger number of iterations was needed
(Tmax = 103). During these experiments, we saw that,
increasing the network size, the combination of the devel-
oped operators guided the algorithm towards useless search,
disregarding to properly and deeply exploring specific neigh-
bourhoods. However, such behaviour did not happen on all
previous tested networks. In the light of this, to indirectly
guide the search to explore promising regions in the search
spacemore intensively, a simple modification in opt- IAwas
made: allow the selection operator to also choose elements
having the same fitness. This modified version, reported in
Table 10, is labelled as opt- IA2, whilst the previous one
is called opt- IA1. Both versions are compared with the
well-known Louvain’s algorithm. By comparing the two
versions, it appears clear how such a simple change allows
opt- IA to improve the modularity values in the overall. At
any rate, the results obtained by the best version of opt- IA
still remain a bit far than the results obtained by Louvain.
This is explainable with the features of opt- IA to be fully
based on random search and without any simple determinis-
tic approach. It is very likely that by further increasing the
number of generations the gap with Louvain’s results will
be substantially narrowed. As expected, this is the main lim-
itation of our proposed random search algorithm.

To produce an as large as possible comparison, three other
different real networks and 13 other optimizationmethodolo-
gies were considered, in order to evaluate the efficiency of
the two variants of opt- IA from the perspective of the qual-
ity of the modularity found and are reported in Table 11.
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Table 7 Comparison of opt- IA
on social networks

Networks opt- IA GACD CC- GA MSIG IDPSO- RO IG

Zachary’s Karate Club Best 0.4198 0.4198 0.4198 0.4198 0.4198 0.4198

Mean 0.4198 0.4198 0.4198 0.4198 0.4198 0.4198

Worst 0.4198 0.4198 0.4198 0.4198 0.4198 0.4198

StD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

NC 4 – – – – –

Bottlenose Dolphins Best 0.5285 0.5285 0.5285 0.5201 0.5285 0.5285

Mean 0.5285 0.5272 0.5275 0.5189 0.5271 0.5268

Worst 0.5285 – – – – –

StD 0.0000 0.0020 0.0019 0.0017 0.0010 0.0014

NC 5 – – – – –

Books about US Politics Best 0.5272 0.5272 0.52729 0.5232 0.5272 0.5269

Mean 0.5270 0.5257 0.5271 0.5149 0.5261 0.5269

Worst 0.5208 – – – – –

StD 0.0012 0.0002 0.0002 0.0070 0.0021 0.0000

NC 5 – – – – –

American College Football Best 0.6046 0.5879 0.5787 0.6033 0.6044 0.6046

Mean 0.6011 0.5777 0.5640 0.5954 0.5900 0.6017

Worst 0.5848 – – – – –

StD 0.0052 0.0069 0.0093 0.0084 0.0129 0.0033

NC 10 – – – – –

Table 8 Comparison of opt- IA on social networks

Networks opt- IA MOBA EFF RB Blondel RN CNM MOGA- Net

Zachary’s Karate Club Best 0.4198 0.4186 0.4201 0.4187 0.4186 0.4177 0.4176 0.4151

Mean 0.4198 0.4176 0.4201 0.4187 0.4175 0.4157 0.4067 0.4149

Worst 0.4198 0.4167 0.4201 0.4187 0.4164 0.4137 0.3948 0.4148

StD 0.0000 0.0004 0.0000 0.0000 0.0011 0.002 0.011 0.001

NC 4 – – – – – – –

Bottlenose Dolphins Best 0.5285 0.5238 0.5242 0.5149 0.5162 0.5186 0.4961 0.5048

Mean 0.5285 0.5234 0.5233 0.5146 0.5152 0.5166 0.4853 0.5038

Worst 0.5285 0.5230 0.5231 0.5143 0.5142 0.5146 0.4774 0.5029

StD 0.0000 0.0001 0.0001 0.0003 0.0010 0.0020 0.0120 0.0090

NC 5 – – – – – – –

Books about US Politics Best 0.5272 0.5198 0.5285 0.5199 0.5207 0.5221 0.5024 0.5176

Mean 0.5270 0.5183 0.5285 0.5197 0.5206 0.5215 0.4818 0.5136

Worst 0.5208 0.5168 0.5285 0.5195 0.5205 0.5209 0.5011 0.5075

StD 0.0012 0.0015 0.0000 0.0002 0.0001 0.0006 0.0177 0.0039

NC 5 – – – – – – –

American College Football Best 0.6046 0.6102 0.6045 0.5999 0.6017 0.6028 0.5766 0.5148

Mean 0.6011 0.6083 0.6023 0.5938 0.5991 0.5988 0.5474 0.4978

Worst 0.5848 0.6064 0.6011 0.5877 0.5965 0.5948 0.5283 0.4784

StD 0.0052 0.0041 0.0018 0.0061 0.0026 0.0040 0.0294 0.0158

NC 10 – – – – – – –
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Table 9 Comparison of opt- IA on biological networks

Networks opt- IA Louvain HDSA BADE SSGA BB- BC BA GSA

Cattle PPI Best 0.7195 0.7195 0.7195 0.7183 0.7118 0.7095 0.7143 0.7053

Mean 0.7161 – 0.7195 0.7138 0.7079 0.7084 0.7100 0.6983

Worst 0.7049 – 0.7194 0.7059 0.7052 0.7079 0.7063 0.6949

StD 0.0039 – 0.0001 0.0051 0.0025 0.0007 0.0035 0.0041

NC 40 40 40 41 40 48 42 43

E-Coli TRN Best 0.7795 0.7786 0.7822 0.7680 0.7507 0.7520 0.7629 0.7416

Mean 0.7670 – 0.7815 0.7621 0.7457 0.7485 0.7599 0.7375

Worst 0.7589 – 0.7808 0.7560 0.7412 0.7452 0.7542 0.7328

StD 0.0049 – 0.0006 0.0043 0.0035 0.0026 0.0034 0.0034

NC 32 40 47 58 61 71 56 61

C-Elegans MRN Best 0.4487 0.4263 0.4185 0.3473 0.3336 0.3374 0.3514 0.3063

Mean 0.4366 – 0.4074 0.3385 0.3220 0.3266 0.3438 0.3039

Worst 0.4221 – 0.3962 0.3335 0.3124 0.3194 0.3356 0.2974

StD 0.0070 – 0.0010 0.0054 0.0077 0.0074 0.0073 0.0037

NC 8 9 13 25 22 21 22 24

Helicobacter pylori PPI Best 0.5416 0.5450 0.5086 0.4926 0.4726 0.4681 0.4900 0.4600

Mean 0.5249 – 0.5078 0.4854 0.4695 0.4660 0.4814 0.4567

Worst 0.5116 – 0.5048 0.4809 0.4659 0.4642 0.4738 0.4549

StD 0.0063 – 0.0017 0.0047 0.0021 0.0018 0.0073 0.0020

NC 19 23 52 69 70 75 62 77

Table 10 Experimental results
of two variant of opt- IA
compared to the Louvain
algorithm on larger biological
networks

Instance Alg. Best Mean W orst St D NC

E. coli MRN opt- IA1 0.3287 0.3141 0.3026 0.0074 31

Louvain 0.3569 − − − 9

opt- IA2 0.3629 0.3437 0.3282 0.0064 9

S. cerevisiae PPI (1) opt- IA1 0.6387 0.6145 0.5955 0.0100 257

Louvain 0.7638 − − − 216

opt- IA2 0.6516 0.6344 0.6178 0.0089 386

S. cerevisiae PPI (2) opt- IA1 0.4753 0.4606 0.4405 0.0082 288

Louvain 0.5905 − − − 46

opt- IA2 0.4879 0.4746 0.4473 0.0085 317

Networks and algorithms considered for comparisons were
taken from (Wang et al. 2020). In particular, the consid-
ered algorithms are: Physarum-Inspired Markov Clustering
algorithm (PMCL) and its Evolutionary variant (ePMCL);
Regularized Markov Clustering algorithm (RCML); two
well-known efficient search algorithms, such as Combo
and MNDP (Modelling with Node Degree Preservation);
stochastic model-based algorithm (Karrer); page rank-
based algorithm (PPC); genetic algorithm based on a novel
coding scheme (NGACD); multi-objective genetic algorithm
(MOGA/N); two multi-objective evolutionary algorithms
(MOEA/D and RMOEA); and two embedding-based algo-
rithms (GEMSEC andDANMF). It is worth to underline that
no details are provided in the cited paper about the exper-

imental protocol adopted, with particular reference to the
fixed generations number.

By inspecting the results shown in the Table 11, it emerges
that the two algorithms PMCL and ePMCL outperform all
compared algorithms and with a considerable gap in terms of
modularity found. These better performances are due to the
combination between an evolutionary method and Markov
chain-based dynamic process, both well known to be effi-
cient search methodologies. In particular in ePMCL, along
with an evolutionary approach to optimize the iterative updat-
ing, pruning and transition process of the Markov Clustering
(MCL) algorithm, a genetic algorithm is also used to find
the best parameter combination. At any rate, opt- IA always
stays on the top three ranking, on the Les Miserables and
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Table 11 Comparison of the
two variants of opt- IA on three
real networks. Networks and
algorithms were taken from
(Wang et al. 2020)

Algorithms Les Miserables Word adjacencies Network science

opt- IA1 0.567 0.313 0.6281

opt- IA2 0.567 0.310 0.6713

Louvain 0.565 0.289 0.9597

ePMCL 0.634 0.440 0.9820

PMCL 0.615 0.376 0.971

RMCL 0.465 −0.112 0.962

Combo 0.560 0.302 0.959

MNDP 0.543 0.271 0.833

Karrer 0.457 −0.104 0.640

PPC 0.454 0.255 0.779

NGACD 0.555 0.224 −
MOGA/N 0.546 0.069 0.881

MOEA/D 0.547 0.269 0.906

RMOEA 0.443 0.080 0.954

GEMSEC 0.476 0.190 0.758

DANMF 0.285 0.041 0.556

Word Adjacencies networks, finding higher modularity val-
ues than Louvain and Combo, for instances. As expected,
however, the performances of opt- IA decrease on the last
network, which is larger than the first two, and this is due,
as highlighted many times, to the randomness of the algo-
rithm that would require larger number of generations. By
increasing the number of generations, very likely, the gap
with the other algorithms would narrow considerably. Fur-
thermore, these experiments confirm to us how the variant
of opt- IA that allows to select elements with same fitness
(opt- IA2)works better on large networks. It isworth to stress
once again that although opt- IA is fully guided by random
rules and operators, without any deterministic and solution
improvement approach, all presented results have shown and
proved its efficiency, its robustness, and its competitiveness
with respect to many optimization algorithms, which instead
are much more sophisticated and refined in terms of search
strategy.

In Fig. 10, finally, are displayed the communities detected
by opt- IA on the American College Football (plot a), Books
about US Politics (plot b) and C. elegans MRN (plot c) net-
works, respectively.

5.1 Functional sensitivity analysis

Although modularity is the commonly used evaluation met-
ric, it tells very little about how similar the detected com-
munities are when compared to the original/target ones.
Furthermore, an important limitation inmodularity optimiza-
tion is that it can fail in identifying smaller communities, due
to the degree of interconnectivity of the communities (For-
tunato and Barthelemy 2007). To this end, we conducted

a second experimental step, using synthetic networks gen-
erated by L F R algorithm proposed in Lancichinetti et al.
(2008); Lancichinetti and Fortunato (2009). The aims of this
second experiment are to analyse the convergence behaviour
of opt- IA in different complexity scenarios, thanks to the
diverse network features which can be generated, and, most
importantly, by inspecting how good and similar are the com-
munities uncovered by opt- IA with respect to the target
ones. Obviously, since all networks are artificially generated,
their community structures are known. It is important to stress
how this benchmark faithfully reproduces the key features of
real graphs communities, affirming therefore its validation.

The networks generated for this experiment were, respec-
tively, created with 300, 500, 1000, 2000 and 3000 nodes,
each of them with average degree 15 and 20, and the maxi-
mum degree equal to 50. Furthermore, for each instance, we
set: τ1 = 2 as exponent of the degree distribution; τ2 = 1
as the distribution of community sizes; minc = 10 and
maxc = 50, respectively, as minimum, and maximum of
the communities’ size. All experiments were conducted at
the varying of the mixing parameter μt , which identifies the
relationship between the node’s external and internal degree
with respect to its community: the greater the value ofμt , the
greater is number of edges that a node shares with nodes out-
side of its communities. In order to analyse the performances
of opt- IA on several scenarios, the mixing parameter was
made to vary in the range {0.1, 0.2, · · · , 0.8}.

Once the synthetic networks were generated, each with
different features, a functional sensitivity analysis was con-
ducted using the well-known community structure similarity
metrics, such as: (1) Normalized Mutual Information (N M I )
(Danon et al. 2005) that measures the amount of information
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Fig. 10 Communities obtained
from American College Football
(a), Books about US Politics (b)
and C. elegans MRN (c)

correctly extracted, and allows for assessing how similar the
detected communities are to real ones; (2) Adjusted Rand
Index (ARI ) (Hubert and Arabic 1985), which focuses on
pairwise agreement, that is for each possible pair of ele-
ments it evaluates how similarly the two partitions treat
them; and, finally, (3) Normalized Variation of Information
(N V I ) (Meilă 2007), expressed using the Shannon entropy,
which measures the amount of information lost and gained
in changing from one clustering to another one: sum of the
information needed to describe C , given C ′, and the infor-
mation needed to describe C ′ given C . Note that N M I is
the mostly used in community detection tasks. It is impor-
tant also to point out that the closer to 1 the N M I and ARI
values are (closer to 0 for the N V I value, instead), the more
similar the uncovered communities are to the target ones.

In Fig. 11 we can see the graphics of N M I (top plots),
ARI (middle plot) and N V I (bottom plot) indexes for the

L F R benchmarks with 300, 500 and 1000 vertices. By
analysing each plot, it is possible to note how the N M I and
ARI curves remain on high values (> 0.70) for μt ≤ 0.6
and μt ≤ 0.5, respectively, whilst the N V I curve remains
on low values for μt ≤ 0.5. This proves that opt- IA is able
to uncover communities roughly closer to the original ones.
The two N M I and ARI curves instead begin to decrease,
and the N V I curve increases, as the graph begins to get more
dense (μt > 0.6); in this case opt- IA detects community
structures not well defined.

In Fig. 12, instead, it is displayed the functional sensitivity
analysis conducted on the synthetic networks with 2000 (left
column), 3000 (middle column) and 5000 (right column) ver-
tices. By inspecting these plots, it is possible to assert that
the N M I curves still continue to remain high for μt ≤ 0.5,
whilst decrease at the increasing of themixed parameter, cor-
responding then to more dense networks. It is important to

123



8086 A. G. Spampinato et al.

300 500 1000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.25

0.50

0.75

1.00

Mixing parameter

N
M
I

Average degree 15 20

300 500 1000

0.00

0.25

0.50

0.75

1.00

Mixing parameter

A
R
I

300 500 1000

0.80.80.80.80.80.80.80.80.80.80.80.8
0.00

0.25

0.50

0.75

1.00

Mixing parameter

N
V
I

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fig. 11 The curves of the Normalized Mutual Information (top), Adjusted Rand Index (middle) and Normalized Variation of Information (bottom)
indexes, performed on 300, 500 and 1000 nodes synthetic networks

note that the behaviour of the N M I curves on themiddle and
right plots, that is on 3000 and 5000 vertices, where the N M I
curve values are on average high (≥ 0.58), highlight the limit
of opt- IA due to its randomness, and, consequently, point-
ing out the need to have longer iterations for solving larger
networks. Same statements can also bemade for the ARI and
N V I plots for 3000 and 5000 vertices. On the other hand,
however, these high N M I curve values obtained by opt- IA
prove the ability of the algorithm to detect communities as
similar to the target ones as possible. The ARI curve values
(middle plot, left column) remain acceptable for allμt ≤ 0.4
whilst decrease at higher values ofμt . As we have repeatedly
said, this is obviously caused by the fully random search at

the basis of the algorithm that requires longer time to con-
vergence towards good solutions. Same analysis can be also
done for the N V I curves (bottom plot, left column). This is
confirmed by looking at the convergence behaviours shown
in Sect. 4.3 (Fig. 5), where in each of them the relative con-
vergence is represented by a monotonically increasing curve
with respect to the number of generations.

6 Conclusions

A novel immune algorithm was designed and developed
for community detection, which represents one of the most
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Fig. 12 The curves of the Normalized Mutual Information (top), Adjusted Rand Index (middle) and Normalized Variation of Information (bottom)
indexes, performed on 2000, 3000 and 5000 nodes synthetic networks

influential problems in many research areas. The proposed
algorithm, called opt- IA, is inspired by the clonal selection
principle, and consequently is based on three main immune
operators, such as cloning, hypermutation and stochastic
aging, whose combination allows the algorithm to perform
in a proper way the exploration and exploitation of the search
space. The presented algorithm is entirely blind to the fea-
tures of the problem being mainly based on a pure random
search of the solutions combined with stochastic operators.
In this way, the algorithm can easily jump out from local opti-
mal and perform an extensive exploration thanks to the high

diversity in the population produced by the several stochastic
strategies developed.

The reliability and efficiency of opt- IA in community
detection has been tested on several social and biological
networks, each of them showing different complexity and
dimensions. By inspecting the results of all the performed
experiments, it clearly emerges the efficiency and reliability
of opt- IA, as well as its robustness as proven in the analy-
sis of the convergence quality and learning capability. Having
included a random search strategy in opt- IA along with sev-
eral stochastic operators, it allows the algorithm to carry out
a careful and at the same time vast exploration of the search
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space. An analysis on the computational time complexity has
been also conducted by making use of the Time–To–Target
plots (T T T − plots), which confirm that opt- IA albeit it
needs more iterations compared to other algorithms (due to
its pure randomness), it reaches, however, the best solutions
in acceptable times. Indeed, an asymptotic complexity analy-
sis has been also presented, fromwhich it is possible to claim
that the upper bound for its running time is O(n3).

In order to assess opt- IA with respect to the state of the
art in community detection, the algorithm was compared
against about twenty different heuristics and metaheuris-
tics, included one Hyper-Heuristic methodology. From these
comparisons, it appears very clear how the proposed algo-
rithm strictly outperforms most of the compared algorithms,
except for the Hyper-Heuristic where instead the perfor-
mances can be considered comparable in the overall. In
particular, the main difference of the performances between
the Hyper-Heuristic and opt- IA is given on the values of the
average of the best solutions found on 30 independent runs.
However, this is reasonably foreseeable since the main fea-
ture ofHyper-Heuristicmethods is the combinationof several
heuristics, efficient on the problem to be tackled, in order to
exploit the strength of one to overcome the weaknesses of
the others, whilst opt- IA is an algorithm entirely based on
random search combined with pure stochastic operators.

In conclusion, all the outcomes and the analysis con-
ducted prove the reliability of the proposed random search,
making opt- IA comparable with sophisticated algorithms,
especially on networks that are not too much dense, such as
biological networks for instance. Obviously, the limit of the
random search, and therefore of opt- IA, is the need to have
a large number of generations to converge to acceptable solu-
tions when tackling with wide networks (e.g. |V | ≥ 3000).
However, since the solution search process is entirely guided
by randomness and stochastic operators, and therefore with-
out anydeterministic approachneither any information on the
features of the network (opt- IA is fully blind algorithm), it
allows on the other hand to be easily adapted and applied in
dynamic network scenarios and in situations of high uncer-
tainty.
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