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Abstract
Risks associated to maximum drawdown have been recently formalized as the tail 
mean of the maximum drawdown distribution, called Conditional Expected Draw-
down (CED). In fact, the special case of average maximum drawdown is widely used 
in the fund management industry also in association to performance management. It 
lacks relevant information on worst case scenarios over a fixed horizon. Formulat-
ing a refined version of CED, we are able to add this piece of information to the risk 
measurement of drawdown, and then get a risk measure for processes that preserves 
all the good properties of CED but following more prudential regulatory and man-
agement assessments, also in term of marginal risk contribution attributed to factors. 
As a special application, we consider the conditioning information given by the all 
time minimum of cumulative returns.

Keywords  Intra-horizon risk · Risk measures for processes · Maximum drawdown · 
Running minimum · Conditional risk measures · Systemic risk

Introduction

The current paper introduces and studies properties of a conditional refinement of 
CED which only considers maximal drawdown, but fails to reflect other worst sce-
narios within horizon, such that the all time minimum of a return path. The latter 
might have serious consequences for fund management where the CED is often 
applied. The problem is that two return paths may share the same maximum draw-
down even though the all time minimum of one path is much higher than of the 
other, see Fig. 1.
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Thus the absolute risk, which also should be considered, is not fully captured by 
CED. With this aim in mind, we first propose a conditional path-dependent devia-
tion risk measure, referred to as Co-CED, and defined as the conditional Average 
Value-at-Risk ( AV@R ) of a cumulative return process over a given investment 
period. Then, we specialize to the computation of Co-CED when conditioning on 
the minimum of the same return process.

The maximum drawdown of a financial time series (viz. cumulative returns) aims 
to the quantification of the relative drop of a given trading strategy’s value. In con-
trast to typical volatility measures such as the tracking error, here the whole time 
evolution of the time series over a fixed horizon is a crucial ingredient in the defini-
tion of the corresponding risk measure. When large drawdowns occur, measuring 
the risk only at the end of the investment horizon possibly underestimates potential 
liquidation issues, especially if losses exceed a threshold. Indeed, investors are natu-
rally interested in the supremum and the infimum of stock prices, as well as in the 
maximum gain and the maximum loss over the horizon. This is because of market 
timing schemes involving the combination of purchases and short sales to ensure 
high gains. This obviously translates into the path behavior of cumulative returns. 
In the probabilistic terminology maximum loss means maximum drawdown, as a 
functional of the relevant path derived by the loss or drawdown process.1 The tail 
conditional expectation of the maximum drawdown random variable is suggested, 
for example, by Chekhlov et al. (2005) in the context of portfolio optimization. One 
way to cope intra-horizon large losses is the maximum drawdown control strategy, 
see Grossman and Zhou (1993) for the case of an economy with only two securities, 
and Cvitanic and Karatzas (1995) for the case of several risky securities. An appli-
cation to real estate is Hoesli and Hamelink (2004). More recent works are Pospisil 
and Vecer (2010) and Cherny and Obloj (2011). Outside the portfolio optimization 
realm, Magdon-Ismail and Atiya (2004) studied the link between the maximum 

Fig. 1   Running minimum and 
maximum drawdown of two 
simulated cumulative returns. 
Maximum drawdown remains 
the same, while running mini-
mum increases (dotted line)

1  The maximum gain is nothing but the maximum drawup, a measure of the maximum cumulative gain 
relative to the running minimum. It is studied in the probabilistic framework in connection with draw-
down. Thus, from a mathematical point of view there is a well established link between maximum draw-
down and running minimum. For a short survey on the subject see (Magdon-Ismail et al. 2004; Mijatović 
and Pistorius 2012; Vardar-Acar et al. 2013, 2020).
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drawdown and the mean return in the context of performance analysis. Vecer (2006) 
studied the expected maximum drawdown of a market in term of directional trading, 
for contracts which depend on the maximum drawdown. Insurance issues related to 
the maximum drawdown are treated in Carr et al. (2011), Vecer (2007) and Zhang 
et al. (2013), to cite a few.

Indeed, Goldberg and Mahmoud (2017) propose to apply the static AV@R to the 
random variable modelling the maximum drawdown of cumulative returns, and get 
just CED. The basic idea is to resort to the definition of monetary risk measures for 
processes as developed in Cheridito et al. (2004), and then translate it into the defi-
nition of generalized path-dependent risk measure using the concept of generalized 
deviation measure by Rockafellar et  al. (2006). Our first contribution is to extend 
this approach by considering the definition of static conditional risk measure, espe-
cially the conditional version of AV@R. Admittedly, it is beyond the scope of the 
present paper to treat dynamic risk measures and their consistency properties. For 
a recent analysis which use a stochastic process in the domain of the coherent risk 
functional � ∶ {0,… , T} ×D ×� → ℝ see (Bielecki et al. 2014), where D  is a set 
of adapted real-valued stochastic processes modelling cash flows. Instead, we argue 
that static conditional risk measures without consistency requirements might be jus-
tified by some literature on systemic risk measurement. Here we use a static condi-
tional risk functional applied to processes, in order to handle maximum drawdown. 
On the other hand, (Föllmer 2019, Chap. 2) provided consistency properties of sys-
temic risk measures. For a recent analysis of path-dependent risk and performance 
measures see (Kountzakis and Rossello 2020).

A second issue we study is the computation of our refined version of CED, when the 
conditioning is given by the running minimum of the same cumulative return’s path. 
While the theory and practice of drawdown is well developed, there is a small amount 
of academic contributions concerning the intra-horizon risk measured by the Value-
at-Risk ( V@R ). Market risk measured by V@R can be subject to underestimation, 
regardless the size of the probability of a loss, but rather due to the inability to capture 
diversification effects. In fact, the AV@R has been proposed to improve on V@R in the 
state space dimension, but still focusing on the expected loss at the end of the horizon. 
More recently, as already suggested by the Basel Committee on Banking Supervision 
in 1996 and subsequently in 2006 for for regulatory purposes, see Basel Committee on 
Banking Supervision (2006), some authors analyzed the consequences of considering 
also the magnitude of potential losses before the end of the horizon in the risk measure-
ment process, see for example (Stulz 1996; Traynor 2005; Boudoukh et al. 2004; Ros-
sello 2008; Bakshi and Panayotov 2010), and the more recent (Leippold and Vasiljević 
2016). These authors analyze intra-horizon risk with V@R applied to the random 
variable modelling the running minimum of cumulative returns over a fixed horizon, 
being able to capture jump or drift effects. In a marking-to-market environment, sud-
den losses may lead to margin calls or trigger rebalancing of the trading position during 
the holding period. Moreover, when trading strategies based on entry, exit or stop-loss 
levels, losses that exceed a specified level within the horizon bring more adverse events 
and eventually lead to counter-party risks. Hence intra-horizon risk measurement with 
running minimum is a relevant issue in a market-to-market world, because huge trad-
ing losses in short times may trigger margin calls and similar provisions. The recent 
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market risk framework of the Basel Accords admits the AV@R as an adequate risk 
measure because of its ability in providing sufficiently conservative risk estimates. As 
byproduct, Farkas et al. (2021) studied intra-horizon risk based on running minimum 
and AV@R to better account for all extremes in a trading horizon since V@R does 
not account for the whole magnitude of potential losses within it. Thus the literate on 
quantitative risk assessment devotes increasing interest in developing indices defined in 
term of the whole path of returns rather than point-in-time at the end of horizon.

The paper is organized as follows. Section 2 reviews the definitions of intra-hori-
zon V@R as a static risk measure for processes based on the running minimum. 
Thus, it recalls the definition of classical CED. Section 3 provides the new defini-
tion of conditional path-dependent risk measure for processes modelling cumulative 
returns. In Sect. 4 this definition leads to Co-CED, for which the axioms of a con-
ditional path-dependent deviation measure are studied. Section 5 analyzes Co-CED 
of a portfolio and establishes the conditional marginal risk contributions. Sections 6 
and 7 are devoted to computing Co-CED in the special case of conditioning given by 
the relevant event of a running minimum below the associated intra-horizon V@R. 
A basic result is that Co-CED can correct underestimation suffered by classical 
CED. Section 8 presents an empirical analysis of Co-CED conditioned on the run-
ning minimum, using real world data. Section 9 concludes.

Review of unconditional path‑dependent risks

For those processes X = (Xt)t∈[0,T] such that the pointwise infimum inft∈[0,T] Xt is 
measurable with respect to a fixed probability space (�,F, �), the within-horizon 
Value-at-Risk risk is given by

where the negative of the �-quantile inf {x ∈ ℝ ∶ �(�(X) ⩽ x) ⩾ �} is the static 
V@R of the running minimum �(X) = inft∈[0,T] Xt of X. Throughout the current 
paper we use the notation �(X) to emphasize a functional acting on the paths of the 
underlying process, which provides the random variable relevant for our purpose. 
The risk measure for processes in (1) is an unconditional path-dependent risk meas-
ure based on forecasting the possible path of X over the whole investment horizon, 
whenever events of huge losses can occur. Some financial institutions use actively 
iV@R for its ability to capture the time dimension of market risk: the quantile of the 
first-passage distribution over a fixed time horizon intrinsically provides the prob-
ability of incurring a loss at any point in time before and including the end of the 
given period. Indeed, the iV@R risk measure resembles the ruin probability

where 𝜏c ∶= inf{t ⩾ 0 ∶ c + Xt < 0} is an hitting time of the process X. Taking the 
infimum infc∈ℝ �(c,T) in such a way the ruin probability is bounded above by the 
tail probability � ∈ (0, 1) we get V@R�

(
inf

t∈[0,T] Xt

)
 , and whence � is related to the 

(1)iV@R�(X) ∶= V@R�(�(X)), � ∈ (0, 1),

𝜓(c,T) ∶= �

(
c + inf

t∈[0,T]
Xt < 0

)
= �(𝜏c > T), c ∈ ℝ,
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first-passage probability for the process X. This yields a crucial piece of information 
in risk management for the survivorship of business. iV@R is not a coherent path-
dependent risk measure: � is monotone but the one-time step V@R is not subaddi-
tive, neither convex. From the perspective of portfolio management, it is the lack 
of convexity the main disadvantage for optimization problems. As a remedy for the 
lack of coherence, one might use instead the static AV@R as suggested by Farkas 
et al. (2021).

The drawdown of X up to time t ∈ [0, T] is DX
t
∶= MX

t
− Xt, i.e. the drop of X 

from its running maximum MX
t
∶= supu∈[0,t] Xu. The maximum drawdown is the 

largest among all drawdowns over the whole investment horizon, thus now we have 
�(X) = supt∈[0,T] D

X
t
. Be warned that the drawdown process (DX

t
)t∈[0,T] has not in 

general the same law of (|Xt|)t∈[0,T], that is the process reflected at zero. From the 
practitioners perspective, the maximum loss have to be disclosed by fund manag-
ers and investment advisors since they face drawdown limits in quantifying their 
investment strategies. Indeed, drawdown as a risk indicator is very popular in 
the hedge funds, where maximum drawdown adjusted measures such as the Cal-
mar ratio are typically employed for performance measurement. In Goldberg and 
Mahmoud (2017), the conditional expected drawdown risk measure is for all X such 
that �(X) ∈ L∞ defined as

where the right-hand side in equation (2) is equal to the tail-mean

of the probability distribution of the maximum drawdown random variable �(X) ⩾ 0. 
By equation 1 and the nonnegativity of the maximum drawdown random variable, 
we have that the integrand above can be written

For example, if � = 0.95 then it is the average of the worst (1 − �) ⋅ 100% draw-
downs in the right tail of the probability distribution of supt∈[0,T] DX

t
. We can set 

CED1(X) = 0, while CED0(X) = �(�(X)) is the average maximum drawdown. The 
path-transformation �(X) given by the maximum drawdown is composed with the 
one-time step AV@R, and although the latter is a coherent risk measure for random 
variables it is well known that � is not monotone. As a consequence, we can have 
CED�(Y) ⩾ CED�(X) though X ⩽ Y . Nevertheless, the conditional maximum draw-
down satisfies all the properties of a generalized path-dependent risk measure, see 
Goldberg and Mahmoud (2017, Definition 3.1). In particular, CED is always con-
vex and degree-one positive homogeneous, hence is suitable as a tool for measuring 
path-dependent risk in association to portfolio’s contribution problems.

Remark 1  Albeit we adhere to the convention in Goldberg and Mahmoud (2017) 
and use the term path-dependent, this emphasis on processes rather than terminal 

(2)CED�(X) ∶= AV@R1−�(�(X)), � ∈ (0, 1),

1

1−� ∫
1

�

−V@Rc(�(X))dc

inf {x ∈ ℝ ∶ �(𝜋(X) > x) ⩽ 1 − 𝛼}.
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returns can be misleading for certain audience dealing with dynamic risk measures 
or SPDEs, pricing and optimal exercising of American style options or even solving 
path-dependent PDEs.

Measuring conditional path‑dependent risk

We are given a stochastic base (�,F, (Ft)t∈[0,T], �) satisfying the usual conditions, 
i.e., the probability space (�,F, �) is complete, the filtration (Ft)t∈[0,T] is right-
continuous, and the initial information F0 contains all the �-null events of F. Here 
T > 0 is a non-random time representing the horizon. Almost surely (a.s.) random 
variables are identified as well as indistinguishable processes on the filtered space. 
Inequalities involving processes are meant as Xt ⩽ Yt �-a.s. for all 0 ⩽ t ⩽ T  and so 
on. The process X = (Xt)t∈[0,T] models the cumulative returns over the whole invest-
ment horizon [0,  T]. It can be picked from a subset S ⊂ R

0 of all (Ft)-adapted 
càdlàg stochastic processes. For the risk measure we will develop later we choose 
S = R

1, the Banach space of (Ft)-adapted càdlàg processes with norm

Definition 1  Given a sub-sigma-algebra G ⊂ FT = F, a conditional path-depend-
ent risk measure is a mapping �( ⋅ |G) ∶ R

1
→ L1, with L1 ∶= L1(�,G, �) modulo 

the equivalence classes of �-a.s. equal random variables, given by the following 
composition

where � acts as a path-transformation, and 𝜌̃ is a conditional one-time step risk 
functional.

The interpretation is straightforward: One selects a random cumulative return 
X describing the possible paths of an investment strategy, hence the risk measure-
ment is given in such a way all the information flow is encapsulated into the random 
variable �(X), and finally a conditional risk measure is applied to incorporate some 
more observable information. Thus, the resulting quantification is random itself, and 
is affected by the conditioning information. In this sense, the above is a refinement 
of the definition of path-dependent risk measure given in Goldberg and Mahmoud 
(2017). Except for the codomain, Definition 1 can be considered as a restricted con-
ditional version of risk measures for unbounded processes as studied in Cheridito 
et al. (2006), for the subspace R1

⊂ R
0, where the latter (with the appropriate met-

ric) is a complete but not locally convex space. The modelling choice based on R1 is 
not so reductive, since we can accommodate for stochastic models such as Brownian 
motion with drift, and some other Lévy (and in particular jump) processes.

‖X‖
R

1 = �

�
sup

t∈[0,T]

�Xt�
�

< ∞.

R
1

𝜋

�������������������→ L1
𝜌̃

������������������→ L1,
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Remark 2  We work with processes from the class R1, thus the measurability of the 
pointwise supremum supt∈[0,T] |Xt| is guaranteed by definition. On the other hand, 
sine for every x ∈ ℝ the event

is the disjoint union of the events

and

we can deduce the measurability of the pointwise supremum supt∈[0,T] Xt for every 
process lying in R1. A similar argument applies to the pointwise infimum. As a con-
sequence, all the risk measures for processes described in the subsequent Sections 
are well defined. In particular, From the measurability of both supt∈[0,T] |Xt| and 
supt∈[0,T] Xt it follows the measurability of the maximum drawdown. Moreover, from 
the inequality

together with the integrability of the latter random variable we also deduce that 
unconditional (also conditional, see Sect. 4) CED is well defined.

Refined version of CED

To introduce our variant of CED, first let us provide the following conditional ver-
sion of a generalized path-dependent deviation measure.

Definition 2  A conditional path-dependent deviation measure with observable 
information structure G ⊂ FT ∶= F, is a conditional path-dependent risk measure 
�( ⋅ |G) ∶ R

1
→ L1 satisfying the following properties: 

	(C1)	 Normalization: �(C |G) = 0, for all constant path C ∈ S.

	(C2)	 Positivity: �(X |G) ⩾ 0, for all X ∈ S.

	(C3)	 Conditional shift invariance: �(X + C |G) = �(X |G), for all X ∈ S  and all �
-a.s. constant path C ∈ S.

{
sup

t∈[0,T]

|Xt| ⩽ x
}
= A∗ ∪ B∗ ∈ F

A∗ ∶=
{
� ∈ � ∶ sup

t∈[0,T]

Xt(�) ⩽ x, Xt(�) ⩾ 0 for all t
}

B∗ ∶=
{
𝜔 ∈ 𝛺 ∶ sup

t∈[0,T]

(−Xt(𝜔)) ⩽ x, Xt(𝜔) < 0 for all t
}
,

||| sup
t∈[0,T]

Xt
||| ⩽ sup

t∈[0,T]

|Xt|
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	(C4)	 Convexity: �(�X + (1 − �)Y |G) ⩽ ��(X |G) + (1 − �)�(Y |G), for all X, Y ∈ S  
and all � ∈ [0, 1].

	(C5)	 Positive homogeneity: �(�X |G) = ��(X |G), for all X ∈ S  and 𝜆 > 0.

From now on, we write �1(X) for the maximum drawdown of X over the appropri-
ate horizon, and �2(X) for the running minimum over the same horizon. Next, we 
give the new definition of CED, namely co-CED ∶

Definition 3  (Co-CED) Given a random path X ∈ S  over a fixed time horizon 
T ∈ (0,∞), the refined CED risk measure dependent on the information structure G  
is the mapping CED�( ⋅ |G) ∶ R

1
→ L

1 given by

This version is law invariant, because CED� is essentially applied to the condi-
tional distribution of �1(X) given G, i.e. ��1(X) |G. Observe that V@R inside the tail-
mean is in conditional form, i.e. is the V@R of �1(X) conditional on the information 
induced by G. Thus CED�(X |G) is nothing but AV@R1−�(�1(C) |G). This represen-
tation is based on the notion of conditional quantile, which can be defined using reg-
ular conditional probability and the corresponding conditional distribution function 
(see Acciaio and Goldammer 2013 and Acciaio and Penner 2011), or alternatively 
using the notions of G -upper envelope of a random variable and of adjusted indica-
tor function (see Hirz 2015). In the current setting, we refer to these approaches but 
assuming a constant deterministic � ∈ (0, 1). We see that co-CED is indeed a condi-
tional path-dependent deviation measure.

Lemma 1  (Properties of Co-CED) For all cumulative returns X, Y ∈ S  and all �
-a.s. constant paths C ∈ S, the co-CED risk measure satisfies properties (C1)–(C5) 
of Definition 2, for every � ∈ (0, 1).

Proof  Set �(C |G) = AV@R1−�(�1(C) |G). The maximum drawdown of a 
path C ∈ S  of constant deterministic value is always zero, �1(C) = 0. Thus, 
�(C |G) = AV@R1−�(0 |G) = 0 regardless the tail probability � ∈ (0, 1), and 
(C1) is satisfied. Because the maximum drawdown random variable �1(X) is by 
definition non-negative for any � ∈ �, then condition (C2) is fulfilled due to the 
monotonicity of the conditional AV@R (see Pflug and Römisch (2007),  Proposi-
tion 2.57, (iv)). By combining the convexity of the path-transformation given by 
the maximum drawdown (see (Goldberg and Mahmoud (2017),  Proposition 3.3) 
with the convexity of the conditional AV@R (see, after a change in sign, Pflug and 
Römisch (2007), Proposition 2.57, (ii)), also condition (C4) is satisfied. To verify 
condition (C3), we observe that by the shift invariance of the maximum draw-
down (see Goldberg and Mahmoud (2017, Lemma 3.2) AV@R1−�(�1(X + C) |G) 
equals AV@R1−�(�1(X) |G), then �(X + C |G) = �(X |G). Finally, since the maxi-
mum drawdown is positive homogeneous (see the proof of Goldberg and Mahmoud 
(2017, Proposition 3.5) as well as the conditional AV@R (see Pflug and Römisch 

(3)CED�(X |G) ∶= 1

1−� ∫
1

�

−V@Rc(�1(X) |G)dc, � ∈ (0, 1).
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(2007), Proposition 2.57, (iii)) when 𝛬 = 𝜆 > 0 is just a positive constant) we have 
that �(�X |G) is equal to ��(X |G), for any 𝜆 > 0 and condition (C5) is satisfied. 	�  ◻

Remark 3  We treat random paths X belonging to the larger class R1
⊃ R

∞, to 
account for not necessarily bounded càdlàg processes. On the other hand, if we 
choose G = {∅,�} then we obtain the unconditional CED now defined on R1.

Our interest in the co-CED is due to the possible specification of (3) when the 
information structure G  is the stress scenario induced by G ∶= 𝜎(𝜋2(X)) ⊂ F, i.e. it 
is represented by conditioning on the running minimum. The joint treatment of the 
worst case scenario associated to the running minimum, and the percentage/vola-
tility risk associated to the maximum drawdown is relevant from the management 
point of view. Hence, using CED�(X | �(�2(X))) we try to predict the risk associated 
to the maximum drawdown of a portfolio, given specific economic conditions on its 
worst behavior within the horizon (see Sect. 6).

Remark 4  Observe that the running minimum of C ∈ S  is just C. When in condi-
tion (C3) co-CED given by equation (3) is specified through �(�2(X)) we have that 
CED�(X + C | �(�2(X))) is equal to CED�(X | �(�2(X + C))). We also note that the 
events {�2(X) ∈ B} and {�2(X + C) ∈ B} = {�2(X) + C ∈ B} are in general differ-
ent for any Borel set B ⊂ ℝ, thus the conditional maximum drawdown risk meas-
ure retains the path modification, in the sense that deterministically shifting the 
path X up or down left the maximum drawdown unchanged while might increase 
(decrease) the running minimum for positive (negative) C. In condition (C5) we 
have �2(�X) = ��2(X).

Conditional Euler allocation

The analysis of portfolio risk through marginal risk contributions is well developed, 
and when integrated with drawdown risk measurement enable us to estimate the 
impact of a trade to the overall portfolio’s drawdown risk. Let P = (Pt)t∈[0,T] be the 
cumulative portfolio return over the horizon, whit time-t value Pt =

∑n

i=1
wiRi,t, and 

constant weight wi attributed to the i-th asset’s return Ri = (Ri,t)t∈[0,T] ∈ S  over the 
same period, for a fixed number n ∈ ℕ of assets. It is possible to extend the defini-
tion of marginal risk contribution to the current conditional framework, and then 
to conceive the change rate of the co-dependent maximum drawdown risk measure 
when the holding wi of the portfolio is increased or decreased within the horizon. 
Observe that the convex combination defining the path of portfolio return belongs to 
S  too. Afterwards we write −V@Rc(⋅ |G) = qG,c(⋅).

Lemma 2  The conditional marginal risk contribution of Ri ∈ S  to the overall port-
folio P ∈ S  over [0, T] is given by
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given the information structure G ⊂ F, and for all � ∈ (0, 1), provided that 
�1(P),�1(P + �kRi), for k ∈ ℕ and i = 1,… , n, have �-a.s. finite conditional AV@R, 
for a suitable sequence (�k)k∈ℕ of G -measurable real-valued random variables con-
verging to zero �-a.s., and in addition requiring that

while �1(P) is �-a.s. constant over the event 
{
�1(P) = qG,c(�1(P))

}
.

Proof  Let CED�(P |G) = AV@R1−�(�1(P) |G), and recall representation (3). By 
Definition 7.3 of Hirz (2015), the conditional AV@R of a portfolio P is a spe-
cial case of the weighted conditional AV@R of the same portfolio. Thus, (Hirz 
2015,  Lemma 7.7(l)) applies and we have that co-CED contributions of Ri to the 
portfolio cumulative return P is given by the directional derivative

for every sequence (�k)k∈ℕ of G -measurable real-valued random variables converg-
ing to zero �-a.s., and such that �(∪k{�k = 0}) = 0. Now, by portfolio translation 
invariance, (Hirz 2015, Lemma 7.7(d)), and conditional translation invariance, (Hirz 
2015, Lemma 7.7(f)), and by defining MRCi(P |G) ∶= CED�(P,Ri |G) we are done. 	
� ◻

The proof of Lemma 2 is an application of the results for spatial conditional risk 
measures in Hirz (2015), and similar results apply to conditional dynamic risk meas-
ures in Acciaio and Goldammer (2013), Acciaio and Penner (2011) and Filipović 
et al. (2012). In particular they are proved in Hoffmann et al. (2016) from the per-
spective of systemic risk measurement (see also Sect. 6). Due to positive homogene-
ity (C5) of Definition 2, together with Lemma 2 and Corollary 7.8 of Hirz (2015), 
we have that the overall portfolio conditional drawdown risk can be decomposed as:

This is the conditional Euler’s principle of allocating coherently the risk induced by 
portfolio’s components to the overall portfolio.

Application of Co‑CED

Nowadays, there exists an extensive literature on systemic risk centered on the 
conditional versions of basic risk measures such as V@R and AV@R. In fact, the 
starting point of this body of research is the notion of CoVaR which stands for 

(4)MRCi(P |G) =
�CED�(P |G)

�wi

, �-a.s.

�
(
�1(P) ⩽ qG,c(�1(P)) |G

)
= �, �-a.s.

CED�(P,Ri |G) = lim
k→∞

CED�(P + �kRi |G)
�k

in L1,

n∑

i=1

wiMRCi(P |G) = CED�(P |G), �-a.s.
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conditional Value-at-Risk. The idea behind CoVaR is to use the conditional distribu-
tion of a random variable (representing a particular financial institution) given that 
another random variable (representing a different institution) is in stress. Also, the 
conditional Expected Shortfall, CoES for short, is nothing but the AV@R of the first 
random variable conditional on the second, and can be represented as the tail-mean 
of the former given the CoVaR of the latter. In the path-dependent setting the defi-
nition of CoES for a portfolio process P ∈ S  is a specification of Definition 3, i.e. 
when CED�(P | �(�2(P))) is evaluated at the event A� = {�2(P) ⩽ iV@R�(P)} for 
� ∈ (0, 1). Assuming from now on that both the running minimum and the maxi-
mum drawdown have continuous marginals, we then can write:

where qA� ,�
(�1(P)) is the conditional quantile of the portfolio maximum drawdown’s 

distribution F�1(P) |A�
. The structure of this conditional path-dependent risk measure 

rests as in the unconditional case in Goldberg and Mahmoud (2017) on characteriz-
ing certain thresholds that possible losses may exceed. In the current settings crucial 
levels concern the running minimum and the maximum drawdown together, where 
(in contrast to the reasoning developed in the systemic risk literature) the former is 
not the system and the latter is not a part of it. Instead they are embodied in the same 
random mechanism distilled by the path-dependency considered over the horizon. 
The main result of this section is the following:

Proposition 1  Let assume that �2(P) ⩽ �1(P), for �1(P),�2(P) ∈ L1. Moreo-
ver, assume the same notation as in equation (5). Then, there exist versions of 
�1(P),�2(P) having the same distributions with corresponding portfolio P̃ such that

Proposition  1 says that unconditional CED� underestimates the path-dependent 
risk associated to a portfolio P̃, unless one considers the additional information on a 
worst case scenario induced by the all time minimum of P̃ based on a second prob-
ability threshold �. But this is true only if the effect of a worst case scenario due 
to the running minimum of cumulative returns is smaller than the maximum draw-
down. Empirically, this effect comes into play whenever we restrict the estimation of 
unconditional and conditional CED to those portfolio’s cumulative returns for which 
the minimum is less than the corresponding maximum drawdown, over a fixed time 
window. Under this restriction is possible that an increase in the magnitude of the 
minimum entails an almost unchanged maximum drawdown, and as a consequence 
the risk measurement of the latter becomes more informative provided that we add 
the information on the worst case scenario concerning the former. To prove Proposi-
tion 1, we essentially use results on stochastic orders and the corresponding com-
parison arguments studied in Sordo et al. (2018).

(5)
CED𝛼(P |A𝛽) = �

(
𝜋1(P) |𝜋1(P) > qA𝛽 ,𝛼

(𝜋1(P)),A𝛽

)
, for all 𝛼, 𝛽 ∈ (0, 1),

CED𝛼

(
P̃
)
⩽ CED𝛼

(
P̃ |A𝛽

)
, for all 𝛼, 𝛽 ∈ (0, 1).
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Proof  1 By assumption �2(P) ⩽ �1(P), then there exist two versions D
d
=�1(P) and 

X
d
=�2(P) such that X ⩽st D in the usual stochastic order, i.e. FX(t) ⩾ F

D
(t) for all 

reals t. But ⩽st implies ⩽icx, the increasing convex order, see Definition 1.5.1(ii) in 
Müller and Stoyan (2002). Thus, by Corollary 1.5.21 of Müller and Stoyan (2002), 
there exist random variables W

d
=X and Z

d
=D such that the conditional random vari-

able {Z |W = t} is stochastically increasing in t,  i.e.

We are in position to apply Theorem  12 in Sordo et  al. (2018), by identifying 
CED𝛼

(
P̃
)
 with CoES�,�(Z | Z) and CED𝛼

(
P̃ |A𝛽

)
 with CoES�,�(Z |W). Assume with-

out loss of generality that x ⩽ y, for reals x, y. The last condition required bySordo 
et al. (2018, Theorem 12) that the copula

is smaller than the copula

for all u, v ∈ (0, 1), written C ≺ C′, is easily verified, just observe that

also that FW (y) ⩾ FZ(y), and any copula function is increasing in both variables. 
Coming back to the original versions of all the involved random variables, (Sordo 
et al. 2018, Theorem 12) entails the desired result. 	�  ◻

Application of conditional Euler allocations

It is well known that whatever the framework is (static, path-dependent, dynamic) 
portfolio risk is never the weighted sum of individual risk contributions. The tool 
of risk contribution as employed for management or allocation purposes enable us 
to measure the approximate change in portfolio risk, when increasing the individual 
exposure by a small amount while keeping the remaining exposures fixed. Under the 
assumption of continuous marginal distributions for the running minimum and the 
maximum drawdown, we resort to representation (5) given in Sect. 6 and set

to give a special application of Lemma  2 by assuming, additionally, that 
𝜎(𝜋2(P)) ⊂ G. Thus we have:

{Z |W = s} ⩽st {Z |W = t} for all reals s ⩽ t.

C(u, v) = �(Z ⩽ x, Z ⩽ y) = �(Z ⩽ x) = FZ(x)

C�(u, v) = �(Z ⩽ x,W ⩽ y) = FW,Z(x, y),

�(W ⩽ y) = FW (y) ⩾ FW (x) ⩾ FZ(x),

B =
{
𝜋1(P) > qA𝛽𝛼

(𝜋1(P))
}
,
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Lemma 3  Let’s assume that �(A𝛽 ∩ B) > 0. For a cumulative portfolio return 
P ∈ S  with strictly positive maximum drawdown, 𝜋1(P) > 0, and two random times 
𝜏1 < 𝜏2 ⩽ T  such that

the marginal risk contribution of Ri ∈ S  given the portfolio’s intra-horizon V@R 
at the level � ∈ (0, 1) is

for a level � ∈ (0, 1) of the co-CED of the i-th security’s cumulative return.

Proof  The conditional CED of the portfolio P at level � can be written

We get the following chain of equivalences

where in the last line we used Ri,�2
− Ri,�1

= �1(Ri), thus obtaining the desired result. 	
� ◻

More important, under the hypotheses of a running minimum observable in 
the i-th risk factor being smaller than the corresponding maximum drawdown, 
�2(Ri) ⩽ �1(Ri), an application of Proposition  1 reveals the potential underesti-
mation issue also for the marginal risk contributions: since

�1(P) = P�2
− P�1

=

n∑

i=1

wiRi,�2
−

n∑

i=1

wiRi,�1
,

(6)MRCi(P |A�) = �
(
Ri,�2

− Ri,�1
|A� ∩ B

)
= CED�(Ri |A�),

CED�(P |A�) =�
(
�1(P) |A� ∩ B

)

=

�

(
�1(P)�A�∩B

)

�(A� ∩ B)
.

�CED�(P �A�)

�wi

=
�

�wi

�

�
�1(P)�A�∩B

�

�(A� ∩ B)

=
�

�wi

�

�
(P�2

− P�1
)�A�∩B

�

�(A� ∩ B)

=

�

�
�

�wi

∑n

i=1
wi

�
Ri,�2

− Ri,�1

�
�A�∩B

�

�(A� ∩ B)

=

�

��
Ri,�2

− Ri,�1

�
�A�∩B

�

�(A� ∩ B)

=�
�
Ri,�2

− Ri,�1
�A� ∩ B

�

=CED�(Ri �A�),
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our refined version should recover the problem by adding more information on 
the worst case scenarios over the horizon, with respect to the unconditional one. If 
�2(Ri) ⩽ �1(Ri) is true only for some outcomes, one can turn to versions P̃, R̃i of the 
portfolio and the corresponding i-th risk factor.

Empirical comparison: CED Vs Co‑CED

In this Section we essentially try to test the claim of Proposition 1. We propose 
using an atypical dataset comprising four cryptocurrencies, namely Bitcoin, 
Ethereum, XRP and Stellar which are the best in term of market capitalization. 
This should be considered as an “emerging market” with very high volatility. We 
use a total of 1558 × 4 data points for the daily time series starting from February 
23, 2017 to May 30, 2021. In addition, we form a fixed equally weighted portfolio 
(no-leverage, long) assuming no transaction costs or market frictions. The sum-
mary statistics of the four indices together with the portfolio are listed in Table 1. 
Observe that all the securities are asymmetrically distributed, also with different 

MRCi(P) = CED�(Ri) ⩽ CED�(Ri |A�) = MRCi(P |A�),

Table 1   Summary statistics of 
daily Returns �̂��� �̂� �̂� �̂��

(%) (%)

Bitcoin 0.221603 4.359315 −0.910666 14.570653
Ethereum 0.336397 5.902605 −0.645108 28.128951
XRP 0.321497 8.034026 1.879927 4.995802
Stellar 0.338379 8.198895 1.644591 4.999557
Portfolio 

(equally 
weighted)

0.003372 0.049738 0.093646 7.746815

Fig. 2   Historical returns of Bitcoin
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Fig. 3   Historical returns of Ethereum

Fig. 4   Historical returns of XRP

Fig. 5   Historical returns of Stellar
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magnitude and sign of skewness and kurtosis. On the other hand, their portfolio 
has a “more normal” empirical distribution.

A check of the cryptocurrencies’ plots in Figs.  2, 3, 4, and 5 suggests that 
extreme negative returns can affect higher positive changes as represented by 
maximum drawdowns, especially for the first three time series. We transform the 
original portfolio’s return series into a cumulative return series. On the latter we 
perform a historical simulation of running minimums and maximum drawdowns, 
using a 5-days moving window: we scroll down the portfolio’s cumulative return 
series one day per time keeping fixed the length of five data points. The resulting 
pair of empirical distributions has now 1553 × 2 data points. Further, we need to 
extract a sub-sample corresponding to the condition stated in Proposition 1, that 
the distribution of the running minimum random variable contains values smaller 
than those of the maximum drawdown distribution. We point out how this is the 
main limitation of our suggested estimation procedure. To implement our refined 
risk measure, we derive two empirical distributions of maximum drawdown con-
ditioned on the simulated values of the running minimum being less than or equal 
to the plug-in estimators of the corresponding V@R0.01 and V@R0.05, respectively. 
Then, we compute four plug-in estimators of the AV@R0.01 and AV@R0.05 of the 
empirical conditional distribution of the maximum drawdown. These represent 
non-parametric estimates of CED𝛼(P̃ |A𝛽) for possible combination of probability 
thresholds � = 0.99, 0.95 and � = 0.01, 0.05, respectively. The results are summa-
rized in Table 2, where they are compared with two non-parametric estimates of 
CED𝛼(P̃).

The empirical test confirm the possible underestimation of CED with respect 
to Co-CED. Repeating the above calculations for different portfolio weights does 
not alter so much these results (Table  3). We instead repeat the above statisti-
cal procedure with a different dataset of 3 stock indices and the corresponding 

Table 2   Point estimators of 
Co-CED and CED

Conditioned on co-ĈED
0.99

Co-ĈED
0.95

ĈED
0.99

ĈED
0.95

(%) (%) (%) (%)

Runn. min ⩽ ̂V@R
0.01

187.145 83.227 27.032 18.927

Runn. min ⩽ ̂V@R
0.05

37.429 19.763 27.032 18.927

Table 3   Summary statistics of 
daily Returns �̂��� (%) �̂� (%) �̂� �̂��

Dow Jones 0.044689 1.102420 −1.132234 27.561025
MSCI World 0.034189 0.899339 −1.540223 25.763626
Euro Stoxx 50 0.017865 1.220809 −0.979554 12.083820
Portfolio 

(equally 
weighted)

0.024186 0.467534 −0.648101 7.194582
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equally weighted portfolio: Dow Jones, MSCI World and Euro Stoxx 50 for a 
total of 2116 × 3 data points from January 2 2013 to May 28 2021. The new pair 
of empirical distributions (running minimum and maximum drawdown) has 
2111 × 2 data points.

Fig. 6   Historical returns of Dow Jones

Fig. 7   Historical returns of MSCI World

Fig. 8   Historical returns of Euro Stoxx 50
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The stock indices’ plots in Figs. 6, 7,  8 show a similar behavior as that of the 
cryptocurrencies’ return series.

The empirical results from a different dataset of total return indices again con-
firm our theoretical finds as shown in Table 4.

Conclusions

The practical relevance of path-dependent deviation measures such as the unconditional 
mean of the maximum drawdown attached to a traded position, or its CED at a given 
probability threshold is well established. Nevertheless, these measures are intrinsically 
relative indices of risk associated to the whole time evolution of cumulative returns over 
a fixed horizon such as the one-time step volatility. Potential worst case scenarios may 
cause abrupt change in a traded position and trigger liquidation or margin calls, even if 
the measurement done by the CED does not account for this. We develop a new con-
ditional framework for deviation measures, firstly for general information set and then 
as a special case when the information is given by events concerning the running mini-
mum of cumulative returns. We apply these results also for the analysis of conditional 
risk contributions, i.e. Euler’s allocation rules. The new framework is able to correct 
the underestimation experienced by CED, providing a more prudent risk measurement 
paradigm based on Co-CED. From the point of view of systematic risk, this can be 
viewed as a sort of aggregation criterion for the separate risk indices based either on the 
maximum drawdown or the running minimum, then translating the probabilistic link 
between the two into the realm of financial economics. In a sense, our refined version 
of conditional maximum drawdown (when conditioned on the running minimum) par-
allels the definition of a flash crash: a sudden and extreme price movement occurring 
in a short time horizon and reverting to its initial value. In the current context we can 
though of Co-CED as a measure of “medium” crash, since we adjust CED computed 
over maximum drawdown of cumulative returns (which is an estimate of the expected 
maximum possible cumulative drop in net asset value over the horizon), by a more 
informative signal of the worst case scenario representing the bottom of the market that 
may force investors to liquidate. So we may talk about a large downtick in the original 
price’s time series sometime over the horizon, not necessarily over a short time span.

The usefulness of path dependent measures as early warnings (coherently with 
the literature on systemic risk) is evident when these are combined with approaches 
aimed to catch the changing level of market rationality. The explanation of the 2008 
GFC is far from being done, not even a description of facts is consistent among 

Table 4   Point estimators of Co-CED and CED

Conditioned on Co-ĈED
0.99

Co-ĈED
0.95

ĈED
0.99

ĈED
0.95

(%) (%) (%) (%)

Runn. min ⩽ ̂V@R
0.01

102.391 43.547 22.458 11.742

Runn. min ⩽ ̂V@R
0.05

22.478 13.906 22.458 11.742
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all authors writing about the crisis. However, the bubble story is surprising for the 
asymmetry, with prevailing irrationality of investors not taking profits out of the 
crowd. After the GFC, the extend to which politicians and regulators may trust 
financial economics theories and models has been questioned. First academic reac-
tion to these critics was that financial firms used wrong input data (too optimistic, 
a “view of the world far more benign than it was reasonable to take” according 
to M. Sholes) with correct models. But data came from subjective valuation and 
their updates should be part of a dynamic market model. The optimal solution may 
become a satisfactory solution in line with the concept of bounded rationality; so 
far this concept has got little empirical testing for practical and theoretical reasons; 
an application to financial markets behavior will likely revive researcher interest, as 
the error margins or different valuation which may coexist are explainable through 
price changes, trading volumes and volatilities of both prices and volumes. Prospect 
Theory and Mental Accounting have provided model structures studying the inter-
action between stock turnover and returns, after psychologically motivated strate-
gies. Momentum strategy is one of the strongest and most widely known selection 
anomalies. Unlike other anomalies, momentum did not weaken after being revealed. 
Prospect Theory generates a selling pressure on potential gains and a correspond-
ing lower offer of stocks that have produced potential losses (disposal effect); this 
occurrence, connected with the process of Mental Accounting to update reference 
points, may well induce a widening gap between returns of past winners and of past 
losers. A common aspect of more recent studies is the tendency to look for con-
nections between volume and a number of variables and markets. We believe that 
trading volume is an observable signal of the investors’ average time horizon and 
investors’ perceptions agreement, both governing the market. A possible approach 
(and a future research agenda) to cope with complex models with changing market 
rationality can be to explore the dynamics of path dependent indices constructed not 
only on prices. This may lead to useful information as early warning of bubbles and 
crisis and for behavioral models not easy to test with traditional methods.
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