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Simple Summary: Cystic fibrosis (CF) is a genetic condition that affects the lungs, digestion, and
other body systems. People with CF have a higher chance of developing certain types of cancer. The
reason for this is related to a gene called CFTR, which is altered in CF patients. This gene normally
helps regulate the movement of substances in and out of cells. When it does not work properly, it
can lead to changes in cells that make them more likely to become cancerous. The cancers most
commonly associated with CF are colorectal, pancreatic, and respiratory cancers. By understanding
how CFTR and cancer are connected, doctors can develop better ways to screen for and treat these
cancers in people with CF. More research is needed to fully understand this link and improve care for
CF patients.

Abstract: Cystic fibrosis (CF) is a genetic disorder affecting multiple organs, primarily the lungs and
digestive system. Over the years, advancements in medical care and treatments have significantly
increased the life expectancy of individuals with CF. However, with this improved longevity, concerns
about the potential risk of developing certain types of cancers have arisen. This narrative review aims
to explore the relationship between CF, increased life expectancy, and the associated risk for cancers.
We discuss the potential mechanisms underlying this risk, including chronic inflammation, immune
system dysregulation, and genetic factors. Additionally, we review studies that have examined the
incidence and types of cancers seen in CF patients, with a focus on gastrointestinal, breast, and
respiratory malignancies. We also explore the impact of CFTR modulator therapies on cancer risk. In
the gastrointestinal tract, CF patients have an elevated risk of developing colorectal cancer, pancreatic
cancer, and possibly esophageal cancer. The underlying mechanisms contributing to these increased
risks are not fully understood, but chronic inflammation, altered gut microbiota, and genetic factors
are believed to play a role. Regular surveillance and colonoscopies are recommended for early detec-
tion and management of colorectal cancer in CF patients. Understanding the factors contributing to
cancer development in CF patients is crucial for implementing appropriate surveillance strategies and
improving long-term outcomes. Further research is needed to elucidate the molecular mechanisms
involved and develop targeted interventions to mitigate cancer risk in individuals with CF.

Keywords: cystic fibrosis; CFTR gene; cancer risk; life expectancy; genetic factors; colorectal cancer;
pancreatic cancer; breast cancer; respiratory cancers; CFTR modulator therapies

1. Introduction

Cystic fibrosis (CF) is a complex genetic disorder that primarily affects the respiratory
and digestive systems. It is caused by mutations in the cystic fibrosis transmembrane
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conductance regulator (CFTR) gene, resulting in dysfunctional CFTR protein [1,2]. CF’s
hallmark is its impact on the production of thick, sticky mucus, which obstructs airways,
leading to recurrent respiratory infections and impaired lung function. Additionally, the
digestive tract’s secretions are affected, causing challenges in nutrient absorption and
digestive processes [3].

While CF is well-known for its impact on lung function and digestive processes, the
increase in life expectancy with the introduction of new highly effective CFTR modulator
(HEMT) therapy and recent evidence suggests a potential association between CF and
an increased risk of developing certain types of cancers [4–9]. In recent years, research
efforts have focused on elucidating the underlying mechanisms and understanding the
implications of this relationship.

The genetic basis of CF lies in the CFTR gene, which regulates the flow of chloride
ions across cell membranes. Mutations in the CFTR gene lead to impaired ion transport,
resulting in the characteristic symptoms of CF. However, these mutations have also been
implicated in various cellular processes that influence cancer development and progres-
sion [10,11]. Recent studies have focused on the potential impact of CFTR dysfunction
on key pathways involved in carcinogenesis, such as cell proliferation, apoptosis, and
DNA repair mechanisms [7–9]. Understanding these molecular mechanisms is crucial for
unraveling the link between CF and cancer risk [12].

In addition to the genetic and molecular aspects, CF is characterized by chronic in-
flammation and dysregulated immune responses. The chronic inflammatory state in CF
is primarily driven by the dysfunctional CFTR protein and is evident in both the respira-
tory and digestive systems [13]. This chronic inflammation can create a pro-tumorigenic
microenvironment that promotes the initiation and progression of cancers [14]. Recent
research has shed light on the role of inflammatory mediators, immune cells, and altered im-
mune responses in the context of CF-related cancers [15,16]. Exploring the immunological
aspects of CF and their influence on cancer development is essential for a comprehensive
understanding of the disease.

Several specific types of cancer have been associated with CF, including colorectal,
pancreatic, breast, and respiratory malignancies [7–9]. Epidemiological studies have con-
sistently shown an increased incidence of some of these cancers in individuals with CF
compared to the general population [17]. The specific mechanisms underlying the increased
risk remain the subject of ongoing research. Factors such as chronic inflammation, altered
immune response, gut microbiota dysbiosis, and CFTR dysfunction likely contribute to the
development of these cancers in individuals with CF [18].

The implications of these findings extend beyond understanding the association
between CF and cancer risk. They have significant clinical implications for the management
of individuals with CF, including screening, surveillance, and treatment strategies. Tailored
screening protocols are necessary to facilitate early detection, while surveillance for specific
cancers should be incorporated into routine CF care. Furthermore, collaborations between
CF care teams and oncology specialists are vital for providing comprehensive care to
individuals with CF-related cancers [19].

This comprehensive review aims to accomplish the following objectives:

• Synthesize Current Knowledge: Summarize and consolidate the existing literature on
the relationship between CF, the CFTR gene, and cancer susceptibility.

• Examine Specific Cancer Associations: Investigate the associations between CFTR
gene mutations and the risk of specific cancer types, including pancreatic, respiratory,
colorectal, breast, liver, esophageal, and gastric cancers.

• Explore Underlying Mechanisms: Explore the molecular and cellular mechanisms by
which CFTR gene mutations may influence cancer susceptibility, encompassing factors
such as chronic inflammation, impaired DNA repair, hormonal imbalances, and other
cellular processes.
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• Highlight Emerging Research: Highlight recent advancements and emerging research
that shed light on the complex interplay between CF, CFTR gene mutations, and
cancer development.

• Identify Knowledge Gaps: Identify gaps in the current understanding of the CFTR–
cancer relationship, pinpointing areas that require further research and investigation.

• Clinical Implications: Discuss the potential clinical implications of the CFTR–cancer
connection, including its impact on cancer surveillance, early detection, and potential
therapeutic interventions.

• Inform Future Research Directions: Propose future research directions and methodolo-
gies that could elucidate the intricate mechanisms underlying the association between
CFTR gene mutations and cancer susceptibility.

2. Methods

This comprehensive review of the association between CF and cancers was conducted
using a narrative approach to gather and analyze relevant literature over the past decade.
A comprehensive search of electronic databases, including PubMed, Scopus, and Web
of Science, was conducted to identify relevant articles published in English. The search
strategy incorporated keywords related to cystic fibrosis, cancer, malignancy, CFTR, and
associated terms. The search was limited to articles published from 1990.

The initial search yielded a large number of articles (>500). Duplicate articles were
removed, and titles and abstracts were screened for relevance. Full-text articles of poten-
tially relevant studies were retrieved and assessed for eligibility. The inclusion criteria
encompassed studies that investigated the association between CF and cancers. Review
articles, original research papers, and case reports were considered.

Data from selected articles were extracted systematically. The following information
was collected: author(s), publication year, study design, study population, cancer type,
sample size, methods used for data collection, and key findings related to the association
between CF and cancers. Additionally, data on the genetic, molecular, and immunological
aspects of CF that contribute to cancer risk were extracted.

The extracted data were synthesized to provide a comprehensive overview of recent
findings. The information was organized thematically, focusing on the genetic, molecular,
and immunological aspects of CF, as well as specific types of cancer associated with CF,
such as colorectal, pancreatic, breast, and respiratory malignancies. Key findings were
summarized, and relevant concepts were discussed in detail.

The included studies were critically evaluated for their methodological quality and
potential biases. Any limitations or gaps in the current literature were identified and
discussed. The strengths and weaknesses of the studies were taken into account during the
interpretation of the results.

The information gathered from the data synthesis and critical analysis was used to
develop the manuscript. The review was structured to provide a comprehensive overview
of recent findings regarding the association between CF and cancers. The introduction,
methods, results, and discussion sections were written, highlighting the key aspects and
implications of the findings.

3. Role of CFTR in Cancers

The role of CFTR in cancer is an intriguing area of investigation that has gained
substantial interest in recent years. Initially recognized for its involvement in CF, CFTR has
emerged as a potential player in cancer development and progression [20].

One of the key aspects of CFTR’s role in cancer is its influence on ion transport and
cellular homeostasis. CFTR acts as a chloride channel, regulating the movement of chloride
ions and water across cell membranes. Dysregulation of CFTR can disrupt ion transport,
leading to altered cellular homeostasis. This disruption has been associated with changes
in cellular pH regulation and metabolism, both of which have significant implications for
cancer cell growth and survival [21]. For example, CFTR dysfunction may disturb the
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balance of intracellular chloride and bicarbonate ions, affecting pH levels and influencing
critical metabolic processes in cancer cells [22]. Furthermore, CFTR has been implicated in
the regulation of epithelial-mesenchymal transition (EMT), a fundamental process involved
in cancer metastasis. EMT is characterized by the loss of epithelial cell characteristics and the
acquisition of a more mesenchymal-like phenotype, enabling cells to invade surrounding
tissues and metastasize to distant sites. CFTR has been shown to modulate EMT through
various mechanisms. CFTR dysfunction can lead to alterations in ion transport, calcium
signaling, and the activity of signaling pathways such as transforming growth factor-beta
(TGF-β) and Wnt/β-catenin, all of which play crucial roles in EMT regulation [23]. These
changes in EMT-related pathways can contribute to increased invasiveness and metastatic
potential of cancer cells.

Inflammation is a well-established driver of cancer development, and CFTR dysfunc-
tion has been associated with elevated levels of inflammation in various tissues. CFTR mu-
tations can result in increased production of pro-inflammatory cytokines and chemokines,
creating a pro-tumorigenic microenvironment [24]. Moreover, CFTR dysfunction may im-
pact immune responses, influencing the infiltration and activation of immune cells within
the tumor microenvironment. The dysregulated immune response in the presence of CFTR
dysfunction may further contribute to cancer progression [25].

CFTR also appears to be involved in cellular proliferation and survival pathways.
CFTR dysfunction can modulate the activity of signaling pathways such as phospho-
inositide 3-kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK), which are
crucial for cell growth and survival [23,26]. Additionally, CFTR may interact with other
proteins involved in cell cycle regulation and apoptosis, influencing the behavior and
survival of cancer cells [27]. These molecular interactions and alterations in signaling
pathways can contribute to uncontrolled cellular proliferation and resistance to cell
death mechanisms.

Furthermore, CFTR has been implicated in drug resistance in certain cancers [28].
The activity of CFTR can affect the response of cancer cells to chemotherapeutic agents
by influencing drug uptake, efflux, and intracellular concentration. CFTR-mediated drug
resistance can impact the effectiveness of cancer treatment and pose challenges in achieving
successful outcomes.

In summary, CFTR plays a multifaceted role in cancer, influencing various aspects
of tumor biology, including ion transport, EMT, inflammation, cellular proliferation,
and drug response (Figure 1). Dysregulation of CFTR can have profound effects on
cancer development and progression, further elucidating the molecular mechanisms
underlying CF.
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Figure 1. CFTR dysfunction and mechanisms related to predisposition to cancers. CFTR dysfunction
in CF triggers chronic inflammation, impaired DNA repair, and hormonal imbalances. These mech-
anisms collectively predispose individuals to various cancers, highlighting the intricate interplay
between CF and cancer susceptibility.

4. CF and Gastrointestinal Cancers

Gastrointestinal cancers encompass a range of malignancies affecting the digestive
tract, including the esophagus, stomach, small intestine, colon, rectum, pancreas, and
liver. Understanding the link between CF and gastrointestinal cancers is important for
improving patient care, implementing appropriate surveillance and screening measures,
and identifying potential therapeutic interventions.

4.1. Esophageal Cancer

Esophageal cancer is a relatively rare but aggressive malignancy that poses significant
challenges to patients and healthcare providers. While the exact molecular mechanisms
linking CF and esophageal cancers are not yet fully understood, several factors have been
proposed to contribute to this association [7].

One potential mechanism is chronic inflammation resulting from CFTR dysfunction.
The thickened mucus and impaired clearance in the respiratory and digestive systems of CF
patients create an environment conducive to chronic inflammation. Chronic inflammation
is known to play a key role in carcinogenesis, and it has been suggested that long-term
inflammation in the esophagus may increase the risk of developing esophageal cancer in
individuals with CF [29].

Additionally, CFTR mutations may impact the composition of the esophageal micro-
biota. Dysbiosis, an imbalance of bacterial species in the esophagus, has been associated
with an increased risk of esophageal diseases, including esophageal cancer. CF patients
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may have altered esophageal microbiota due to the effects of CFTR dysfunction, and this
dysbiosis could potentially contribute to the development of esophageal malignancies [30].

Moreover, CF patients often face nutritional challenges due to malabsorption and
malnutrition. These nutritional issues may lead to deficiencies in key vitamins and minerals,
which are essential for maintaining cellular health and DNA repair mechanisms. Such
deficiencies could increase the susceptibility to cellular damage and the risk of developing
esophageal cancers [31].

Furthermore, recent studies have implicated specific molecular pathways in the associ-
ation between CFTR dysfunction and esophageal cancer development. For example, it has
been suggested that CFTR mutations may lead to alterations in calcium signaling pathways,
which play a critical role in cell proliferation, differentiation, and apoptosis. Dysregulation
of calcium signaling can contribute to uncontrolled cell growth and the development of
cancer [32].

Another potential molecular mechanism involves the disruption of epithelial cell
homeostasis in the esophagus. CFTR dysfunction may impair the transport of bicarbonate
ions, which are important for maintaining the proper pH balance in the esophageal epithe-
lium. This disruption can lead to cellular stress, DNA damage, and increased susceptibility
to carcinogenesis [33,34].

Finally, adults with CF have a higher risk of developing Barret’s esophagus, which is a
precursor for esophageal cancer [35].

Despite these potential associations and molecular mechanisms, the exact link be-
tween CF and esophageal cancers remains an active area of research. The relative risk of
esophageal cancer in patients with CF is not well-established due to limited available data.
As of now, there is a lack of consensus on the specific relative risk values for esophageal
cancer in CF patients. The rarity of esophageal cancer in CF patients and the complexity
of its underlying mechanisms make it challenging to draw definitive conclusions. Fur-
ther studies are needed to elucidate the precise molecular pathways connecting CFTR
dysfunction and the development of esophageal malignancies.

4.2. Gastric Cancer

Gastric cancer, also known as stomach cancer, is a malignant tumor that develops in
the stomach lining. CFTR dysfunction in the stomach can lead to the accumulation of thick
mucus, impairing mucociliary clearance. The retained mucus creates a favorable environ-
ment for bacterial colonization, resulting in chronic gastritis and inflammation. Chronic
inflammation, characterized by the release of pro-inflammatory cytokines, chemokines,
and growth factors, can promote genetic mutations, stimulate cellular proliferation, and
enhance angiogenesis, ultimately contributing to the development and progression of
gastric cancer [36,37].

CFTR plays a role in regulating chloride and bicarbonate ion transport, which im-
pacts gastric acid secretion. CFTR dysfunction can lead to altered gastric acid production
and pH levels. Reduced gastric acid secretion may increase the risk of gastric cancer
by impairing microbial defense mechanisms and promoting the growth of Helicobacter
pylori, a bacterium implicated in gastric cancer development. Moreover, altered gastric
pH can affect the digestion and absorption of dietary factors that may modulate gastric
carcinogenesis [38,39].

In addition to CFTR mutations, CF-related genetic variations may contribute to the
increased risk of gastric cancer. Genome-wide association studies have identified certain
genetic variants associated with both CF and gastric cancer susceptibility. These genetic
variations may affect immune response, DNA repair mechanisms, or other processes
involved in gastric carcinogenesis, highlighting potential shared genetic pathways between
CF and gastric cancer [40,41].

Various other molecular pathways have been implicated in the association between
CFTR dysfunction and gastric cancer development. For instance, CFTR dysfunction may
lead to altered calcium signaling, affecting cell proliferation, differentiation, and apoptosis,
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which are critical processes in gastric carcinogenesis. Disruption of epithelial cell homeosta-
sis, impaired bicarbonate ion transport, and subsequent cellular stress and DNA damage
may also contribute to the development of gastric cancer in CF [42,43].

Therefore, the association between CF, CFTR, and gastric cancer involves complex
molecular mechanisms. Chronic inflammation, altered gastric acid secretion, CF-related
malnutrition, genetic variations, and disrupted cellular pathways collectively contribute to
the increased risk of gastric cancer in individuals with CF.

Similar to esophageal cancer, the relative risk of gastric cancer in patients with CF
is not well-defined. The available data on the association between CF and gastric cancer
are limited, making it challenging to estimate precise relative risk values for this specific
cancer type.

Further research is needed to fully elucidate these mechanisms and their interplay in
the development and progression of gastric cancer in CF patients.

4.3. Pancreatic Cancer

Pancreatic cancer is a devastating disease characterized by its aggressiveness and poor
prognosis. CF patients have an increased relative risk of developing pancreatic cancer.
Studies have reported relative risk values ranging from 5 to 10 times higher in CF patients
compared to the general population [17,19,44,45]. CFTR dysfunction caused by mutations
in the CFTR gene leads to abnormal ion transport across epithelial cells, including those
lining the pancreatic ducts. The resulting impaired CFTR function leads to altered fluid
secretion and increased viscosity of pancreatic secretions, ultimately leading to ductal ob-
struction. The accumulation of thickened secretions creates a microenvironment conducive
to inflammation, fibrosis, and cellular damage, potentially predisposing individuals with
CF to pancreatic cancer [44,45].

CFTR dysfunction and pancreatic duct obstruction trigger chronic inflammation in
the pancreas. Inflammatory processes involve the release of pro-inflammatory cytokines,
chemokines, and reactive oxygen species, leading to cellular damage and genetic mutations.
Prolonged inflammation can induce DNA damage, dysregulate cellular signaling pathways,
and disturb cell growth and survival mechanisms, all of which are implicated in pancreatic
cancer development [46].

CF-related pancreatic insufficiency often coexists with bile duct abnormalities and
impaired bile flow. These conditions can result in increased exposure of pancreatic tissue to
bile acids, digestive enzymes, and duodenal reflux. The duodenal refluxate, consisting of
bile acids and other duodenal contents, can cause cellular injury, inflammation, and oxida-
tive stress in the pancreas. Sustained exposure to these damaging factors may contribute to
the initiation and progression of pancreatic cancer [47,48].

In addition to CFTR mutations, CF-related genetic factors have been implicated in
pancreatic cancer development. Genome-wide association studies have identified specific
genetic variants associated with both CF and pancreatic cancer susceptibility. These variants
may affect immune response, cellular metabolism, or other pathways involved in pancreatic
carcinogenesis. Investigating these shared genetic factors can provide valuable insights
into the molecular mechanisms connecting CF and pancreatic cancer [49,50].

Growing evidence suggests that alterations in the gut microbiota, known as dysbiosis,
may play a role in pancreatic cancer development. CF-related pancreatic insufficiency,
altered bile flow, and impaired digestive processes can disrupt the gut microbial ecosystem.
Dysbiosis in CF patients may result in the production of harmful metabolites, chronic
inflammation, and perturbation of the host–microbiota interaction, which may contribute
to pancreatic carcinogenesis [51,52].

In conclusion, the association between CF, CFTR, and pancreatic cancer involves
intricate molecular mechanisms. CFTR dysfunction, pancreatic duct obstruction, chronic
inflammation, altered bile flow, CFTR-related genetic factors, impaired nutrient absorption,
and microbiota dysbiosis collectively contribute to the increased risk of pancreatic cancer
in individuals with CF. Further research is necessary to fully elucidate these molecular
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mechanisms and their interplay in the development and progression of pancreatic cancer
in CF patients.

4.4. Liver Cancer

CFTR dysfunction resulting from CF-associated mutations disrupts chloride and
bicarbonate transport, leading to impaired bile secretion and altered bile composition.
This disturbance in bile flow can cause cholestasis and subsequent hepatic fibrosis [53].
Prolonged fibrotic changes in the liver microenvironment create a pro-inflammatory milieu
and promote cellular proliferation, thereby increasing the risk of hepatocellular carcinoma
(HCC). Studies have shown that CF patients with liver cirrhosis have an increased risk of
developing HCC [54,55].

CFTR dysfunction contributes to chronic inflammation and oxidative stress in the liver.
Impaired CFTR function leads to the accumulation of bile acids, which can induce oxida-
tive damage and activate inflammatory pathways. Chronic inflammation and oxidative
stress create a favorable environment for the development of hepatic cancer by promoting
DNA damage, genomic instability, and cellular proliferation. Studies have demonstrated
increased levels of pro-inflammatory markers and oxidative stress in CF-related liver
disease [56,57].

CFTR has been shown to play a role in liver regeneration. During liver injury, CFTR
expression is upregulated, suggesting its involvement in the regenerative process. CFTR-
deficient mice exhibit impaired liver regeneration, suggesting that altered CFTR expression
and function may disrupt the regenerative capacity of liver cells. Impaired liver regenera-
tion can contribute to the development of hepatic cancer [58,59].

In addition to CFTR mutations, other CF-related genetic factors have been associated
with an increased risk of hepatic cancer. Genetic variations in CFTR modifier genes, such
as the Solute Carrier Organic Anion Transporter (SLCO) family, have been implicated in
hepatocarcinogenesis. These variations may affect drug metabolism, transport, and cellular
pathways involved in liver cancer development. Studies have identified associations
between CFTR-related genetic variations and increased susceptibility to liver cancer in CF
patients [60,61].

CF patients may have a slightly elevated risk of developing liver cancer, although the
relative risk values vary across studies. Relative risk values around 1.5 to 2.0 have been
suggested [17,19].

In summary, there has been growing evidence supporting a link between CF, CFTR
dysfunction, and the development of hepatic cancer. The molecular mechanisms under-
lying this association involve CFTR dysfunction-related hepatic fibrosis, chronic inflam-
mation, oxidative stress, impaired liver regeneration, CFTR-related genetic factors, and
nutritional deficiencies.

4.5. Intestinal Cancers
4.5.1. Colorectal Cancer

Colorectal cancer (CRC) is a malignant neoplasm that arises from the epithelial cells
lining the colon or rectum. Patients with CF are at a 6-fold higher risk for CRC [19,37,62].
The mechanisms underlying this association are not yet fully understood, but several
factors have been implicated.

CFTR dysfunction in the intestinal epithelium leads to persistent inflammation and
oxidative stress. The impaired CFTR function affects ion transport, mucus clearance, and the
integrity of the intestinal barrier [63,64]. These disruptions create an environment conducive
to chronic inflammation and oxidative stress, which can promote the development of CRC.
Inflammation and oxidative stress induce DNA damage, genomic instability, and cellular
proliferation, key factors in carcinogenesis.

Recent studies have highlighted the role of pro-inflammatory cytokines, such as
interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), in CRC development. In-
creased expression of these cytokines has been observed in CF patients, indicating a po-
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tential link between CF-associated inflammation and CRC [65,66]. Additionally, oxidative
stress resulting from impaired CFTR function can lead to the accumulation of reactive
oxygen species (ROS), causing DNA damage and favoring the initiation and progression of
CRC [67,68].

CF patients often exhibit dysbiosis, an imbalance in the composition and function of
the gut microbiota. Dysbiosis in CF is characterized by a reduction in beneficial bacteria,
such as Bifidobacterium and Lactobacillus species, and an increase in potentially harmful
bacteria, including Enterobacteriaceae and Pseudomonas aeruginosa. Dysbiosis can con-
tribute to inflammation, impaired intestinal barrier function, and increased susceptibility
to CRC. The specific dysbiosis patterns associated with CRC in CF patients warrant further
investigation [69,70].

Recent studies have highlighted the potential role of specific bacterial species in CRC
development. For example, Fusobacterium nucleatum, a common member of the gut micro-
biota, has been associated with CRC progression by promoting inflammation and impairing
immune surveillance [71,72]. In CF patients, dysbiosis and altered microbial composition
may create a microenvironment conducive to the growth of pathogenic bacteria, further
contributing to the development of CRC.

In addition to CFTR mutations, CF-related genetic factors may influence the risk of
CRC development in CF patients. Modifier genes that interact with CFTR, such as those
involved in inflammation, immune response, and cellular proliferation, may play a role
in CRC susceptibility. Variations in these genes can modify the disease phenotype and
influence the development of CRC in CF patients [73,74].

Recent studies have identified genetic polymorphisms associated with both CF and
CRC, suggesting a potential genetic link between the two conditions. For example, the
TNF-α gene polymorphism has been implicated in both CF and CRC susceptibility [75].
These genetic factors may modulate the inflammatory response, alter immune cell function,
and contribute to the development of CRC in CF patients.

Current guidelines recommend CRC surveillance for CF patients starting at the age
of 40 or 10 years before the youngest affected relative’s diagnosis (whichever comes first).
The surveillance typically involves periodic colonoscopies with the aim of detecting pre-
cancerous polyps or early-stage CRC. Additionally, individuals with CF who present with
concerning symptoms such as unexplained gastrointestinal bleeding or persistent change
in bowel habits should undergo timely evaluation [76,77].

4.5.2. Small Bowel Adenocarcinoma

Small bowel adenocarcinoma (SBA) is a rare but aggressive form of intestinal cancer
that can occur in CF patients. The underlying mechanisms linking CF and SBA are not yet
fully elucidated, but several factors may contribute to its development.

Several tumor suppressor genes have been implicated in SBA development, including
TP53, APC, and SMAD4. TP53, commonly known as the “guardian of the genome”, plays
a crucial role in DNA repair and cell cycle regulation. CFTR dysfunction could potentially
affect TP53 function, compromising its ability to suppress tumor formation and progression
in the small intestine [78,79]. Further studies are needed to elucidate the specific molecular
interactions between CFTR and tumor suppressor genes in the context of SBA development.

5. Breast Cancer

The prevalence of breast cancer in CF patients is generally not higher than that in the
general population. However, with advancements in CF treatments, individuals with CF
are living longer, and there is a growing population of women with CF reaching the age at
which breast cancer becomes more common [9].

Estrogens play a significant role in both the pathophysiology of CF and breast cancer.
However, their effects on these two conditions are distinct and require separate consider-
ations. In the context of CF, estrogen has been shown to exert beneficial effects on lung
function and disease progression. CF is characterized by abnormal ion transport due to mu-
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tations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Estrogen
has been found to enhance CFTR function and increase chloride secretion in the airways,
leading to improved mucus clearance and lung function [80,81]. Estrogen’s protective
effects on lung function may be attributed to its ability to stimulate CFTR expression and
activity through various signaling pathways, including cyclic adenosine monophosphate
(cAMP)-dependent mechanisms [82].

In contrast, estrogen plays a complex role in the pathophysiology of breast cancer.
Estrogen receptor (ER) signaling is known to promote the growth and proliferation of
breast cancer cells. In hormone receptor-positive breast cancers, estrogen binds to ERs,
leading to the activation of downstream signaling pathways that drive tumor cell growth
and survival. Estrogen also promotes angiogenesis, the formation of new blood vessels,
which is crucial for tumor growth and metastasis [83–85].

It is worth noting that the use of hormone replacement therapy (HRT) in CF patients
needs careful consideration. While HRT may have potential benefits for improving lung
function and bone health in postmenopausal CF women, it also carries potential risks,
including the promotion of hormone-sensitive cancers such as breast cancer [86]. The
decision to use HRT should be made on an individual basis, taking into account the
patient’s overall health status and the potential benefits and risks.

While there is limited data on breast cancer risk specifically in CF, it is important to
consider appropriate screening strategies for CF patients. Following general breast cancer
screening guidelines is recommended, including regular clinical breast exams, mammog-
raphy, and breast self-examinations (American Cancer Society). Screening mammograms
typically begin at age 40 and continue annually for women at average risk of breast
cancer [87].

CF-related factors may present challenges in breast cancer screening and management.
CF-related lung disease can make it difficult for patients to undergo mammography due
to positioning and breathing difficulties. In such cases, alternative imaging modalities
such as breast ultrasound or magnetic resonance imaging (MRI) may be considered [88].
Collaborating with healthcare providers experienced in managing breast cancer screening
in individuals with CF can help develop appropriate and effective screening strategies.

Breast cancer screening and management should be integrated into the comprehensive
care of CF patients. A multidisciplinary approach involving CF specialists, oncologists,
genetic counselors, and other healthcare providers is crucial to address the unique needs
and challenges of CF patients regarding breast cancer. Close coordination and commu-
nication among the different healthcare professionals involved are important to ensure
comprehensive and coordinated care.

Psychosocial support should also be provided throughout the breast cancer screening
and management process. CF patients may already face significant physical and emotional
burdens related to their condition, and breast cancer screening and potential diagnosis
can add additional emotional challenges. Counseling services, support groups, and re-
sources can help CF patients navigate the emotional aspects of breast cancer screening and
potential diagnosis.

6. Lung Cancers

Lung cancer is one of the most common malignancies worldwide, and individuals
with CF have an increased, although still not quantifiable, risk of developing certain types
of lung cancers. The role of the CFTR in CF and its relationship to lung cancer have
been the focus of scientific investigation. Epidemiologic data reveal that individuals with
CF have an increased risk of developing certain types of lung cancers compared to the
general population [89,90]. One notable subtype of lung cancer that is more prevalent in CF
patients is bronchial gland carcinoma, which arises from the mucous glands in the airways.
While bronchial gland carcinomas are relatively rare in the general population, they occur
more frequently in CF patients [91,92]. The specific mechanisms underlying this increased
susceptibility to bronchial gland carcinomas in CF are still being investigated.
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In addition to bronchial gland carcinomas, CF patients also have a heightened risk of
other lung malignancies, such as squamous cell carcinoma and adenocarcinoma [17,93].
These types of lung cancers are commonly associated with smoking, and CF patients who
smoke face an even higher risk of developing lung cancer compared to non-smoking CF
patients. Therefore, smoking cessation is strongly encouraged in CF patients to reduce the
risk of lung cancer and other smoking-related health complications [94,95].

Several factors contribute to the increased risk of lung cancer in CF patients. Chronic
inflammation and tissue damage in the lungs, often caused by chronic bacterial infections
like Pseudomonas aeruginosa, play a crucial role. These infections lead to persistent inflam-
mation and oxidative stress, creating an environment that promotes tumor development.
Moreover, the genetic mutations in the CFTR gene, resulting in CFTR dysfunction, may
also contribute to an altered cellular environment that favors the development of lung
cancer [90,93].

It is important to note that despite the increased risk, the overall incidence of lung
cancer in CF patients remains relatively low compared to the general population. The
improved survival and enhanced quality of life in CF patients due to advancements in
CF treatments and therapies may contribute to the increased likelihood of reaching an
age where lung cancer becomes more common. Regular monitoring and screening for
lung cancer are crucial in CF patients, particularly those with additional risk factors like
smoking, as early detection can lead to improved outcomes.

7. Other Emerging Cancers

Although rare, cases of thyroid tumors, melanomas, ovarian cancers, and brain tumors
have been reported [17,62,90,96].

Other emerging cancers in CF, including bone cancer, soft tissue sarcoma, bladder
cancer, prostate cancer, and uterine cancer, have limited data available [91]. The potential
impact of CFTR dysfunction on these cancers requires more comprehensive studies to
establish a clearer association.

It is important to note that the epidemiologic data for emerging cancers in CF are
limited, and further research is necessary to better understand the prevalence and molecular
mechanisms involved. Advancements in research will contribute to improved screening,
prevention, and management strategies for cancer in patients with CF.

8. Highly Effective CFTR Modulator Therapy (HEMT) and Cancers

CFTR modulator therapy has revolutionized the treatment landscape for CF by tar-
geting the underlying defect in the CFTR gene [97,98]. However, little is known about the
possible long-term effects and their potential impact on cancer risk. At present, the avail-
able data on the long-term effects of modulator therapies on cancer risk in CF patients are
limited due to the relatively recent introduction of these drugs and the need for long-term
follow-up studies. However, based on the current knowledge and studies conducted thus
far, there is no conclusive evidence to suggest that modulator therapy increases the overall
risk of cancer in CF patients [99–104].

9. Conclusions

The role of the CFTR gene in the development and progression of cancers in patients
with CF is an emerging area of research (Table 1). Although CF primarily affects the
respiratory and gastrointestinal systems, evidence suggests that CFTR gene mutations may
also increase the risk of specific cancers in CF patients.
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Table 1. Main cancers associated with cystic fibrosis.

Cancer Type Molecular Mechanisms Relative Risk

Esophageal cancer

• Chronic inflammation
• Altered composition of esophageal

microbiota
• Alterations in calcium signaling pathways
• Disruption of epithelial cell homeostasis
• Higher risk of developing Barret’s

esophagus

not well-established

Gastric cancer

• Chronic inflammation
• Altered gastric acid production and pH

levels
• Alterations in calcium signaling pathways
• Disruption of epithelial cell homeostasis

not well-established

Pancreatic cancer

• Chronic inflammation
• Altered bile flow
• Oxidative stress

5–10

Liver cancer

• Chronic inflammation
• Altered bile flow
• Impaired liver regeneration
• Genetic variations in modifier genes, such

as the Solute Carrier Organic Anion
Transporter (SLCO) family

1.5–2

Intestinal cancers

• Chronic inflammation
• Oxidative stress
• Altered composition of intestinal

microbiota
• Genetic polymorphisms
• Implications of tumor suppressor genes

6

Breast cancer
• Hormonal imbalances, such as increased

estrogen levels not well-established

Lung cancer
• Chronic inflammation
• Altered mucociliary clearance not well-established

In the gastrointestinal tract, CF patients have an elevated risk of developing colorectal
cancer, pancreatic cancer, and possibly esophageal cancer. The underlying mechanisms
contributing to these increased risks are not fully understood, but chronic inflammation,
altered gut microbiota, and genetic factors are believed to play a role. Regular surveillance
and colonoscopies are recommended for early detection and management of colorectal
cancer in CF patients.

The advent of CFTR modulator therapies has significantly improved the clinical
outcomes of CF patients by correcting CFTR dysfunction. However, concerns have been
raised about the potential long-term effects of CFTR modulator therapy on cancer risk.
Further research is needed to clarify the relationship between CFTR modulator therapy
and cancer development in CF patients.

In conclusion, the CFTR gene, responsible for the pathogenesis of CF, may also play a
role in the development and progression of certain cancers in CF patients. Understanding
the molecular mechanisms underlying these associations and identifying effective surveil-
lance and management strategies are crucial for optimizing the care of CF patients and
mitigating cancer risks. Continued research in this field will contribute to the development
of personalized approaches to cancer prevention, screening, and treatment in individuals
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with CF. The possible clinical implications of these observations are profound, as they
pave the way for enhanced cancer surveillance, tailored early detection strategies, and
potential targeted therapies, ensuring comprehensive care for individuals with both CF and
cancer predisposition.
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