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Abstract

Tuberculosis (TB) has existed for millennia and remains a major global health

problem. It causes ill-health in millions of people each year and in 2015 was one

of the top 10 causes of death worldwide, ranking above HIV/AIDS as one of the

leading causes of death from an infectious disease. TB is a contagious airborne

disease caused by the bacillus Mycobacterium tuberculosis (MTB). It typically af-

fects the lungs (pulmonary TB) but also affects other sites (extrapulmonary TB).

Approximately 1/3 of the world’s population is affected by the disease but without

any symptoms (known as latent TB infection (LTBI)), and approximately 10% of

these people will likely develop active disease during their lifetime and become ca-

pable of transmitting the mycobacterium. TB can be treated through the selection

of four standards (first-line) drugs. However, there is currently no effective vaccine

in preventing TB disease in adults, either before or after exposure to TB infection.

In biomedical, pharmaceutical, and toxicology research, the safety and efficacy of

biomedical products are ultimately tested on humans via clinical trials after prior

laboratory testing in vitro and/or in vivo on animals. The complete development

chain of a new biomedical product and its introduction to the market is very long

and expensive. Alternative methodologies to reduce animal and human testing are

needed to address the safety and efficacy issues of human clinical trials, the ethical

ones, and the imperfection of predictions issued from laboratory and animal studies

when applied to humans. Computer modeling and simulation are currently used to a

certain degree in pharmacokinetics, pharmacodynamics, or mechanistic simulations.

A research and technological roadmap on in-silico trials that use individualized com-

puter simulations in testing interventional strategies is currently available, showing
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both strong interest and potential benefit of expanding the computer modeling in

drugs and other biomedical products research.

Most of the work carried out during the Ph.D. project falls under the main objectives

of the STriTuVaD project. In this Ph.D. thesis, it has been extended the Universal

Immune System Simulator (UISS) to simulate the dynamics of tuberculosis and its

interactions (physiological model), i.e., the behavior of the Mycobacterium within

the host organism and its interactions with the immune system (active and latent

form scenario) (disease model). In addition, the mechanisms of action of isoniazid

and RUTI® vaccine were developed (treatment model).
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Chapter 1

Aim of the thesis

In Silico Trial for Tuberculosis Vaccine Development (STriTuVaD) is a Horizon 2020

project funded by the European Commission for the development of a computational

model to test, predict and verify the in silico specific vaccination strategies against

tuberculosis.

The project started on 1st February 2018 and will end on 31st January 2023. Within

the consortium, there are seven international partners:

• ETNA BIOTECH: Etna Biotech is one of the two vaccine research centre

of Zydus Group, which is part of Cadila Healthcare, the fourth largest phar-

maceutical company in India. Dr Fichera is the coordinator of the STriTuVaD

project.

• University of Catania (UniCT): Prof Pappalardo is the scientific coordi-

nator of the project and the research team supervised by him is developing,

through the Universal Immune System Simulator (UISS), the predictive model

consdiered the main core of the augmented in silico trial that will be tested

in the STriTuVaD project.
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• University of Sheffield (USFD): Dr Juarez in close collaboration with Prof

Viceconti and Prof Pappalardo’s team, is developing the Bayesian model to

be used to combine digital and physical patients, along with the necessary

criteria for avoiding any bias. Dr Richmond is collaborating with Prof Pap-

palardo’s team to speed up the execution of the UISS framework, and to enable

stochastic explorations using Monte Carlo methods.

• Alma Mater Studiorum - University of Bologna: Prof Viceconti’s re-

search group will take care of internal and external communication about any

project news, results and achievements, along with the potential exploitation

activities. Prof Viceconti in close collaboration with Prof Pappalardo and Dr

Juarez, is focusing on the in silico model validation from a regulatory point

of view.

• Archivel Farma: Archivel Farma is a R&D biotech company that devel-

ops immunotherapeutic agents to respond to unmet medical needs, such as in

multidrug-resistant tuberculosis (MDR-TB). The RUTI® vaccine was devel-

oped and produced by Archivel Farma. Within the STriTuVaD project, the

company role is to design and run the clinical trial necessary to validate the

in silico trial technology.

• TuBerculosis Vaccine Initiative (TBVI): is a non-profit foundation that

facilitates the discovery and development of new, safe and effective TB vaccines

that are accessible and affordable for the whole population. In particular,

TBVI provides support and knowledge about TB vaccine clinical development.

• All India Institute Of Medical Sciences (AIIMS): is a medical college

and medical research public University based in New Delhi, India. Within the
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project, AIIMS will conduct a Phase II clinical trial to assess the safety, im-

munogenicity and efficacy of RUTI® therapeutic vaccine against drug-sensitive

and multi-drug resistant TB for the validation of in silico trial.

The StriTuVaD multidisciplinary consortium is co-working to deliver UISS in silico

trial platform (see chapter 4) to simulate the relevant individual human physiology

and physiopathology in patients affected by Mycobacterium tuberculosis.

Digital twins cohorts were generated to study the effects of specific treatments

against tuberculosis as agreed within the proposal, allowing the simulation of RUTI®

mechanism of action, and predicting its treatment outcomes in a personalized medicine

approach. Figure 1.1 briefly sketches the month-by-month main phases and concepts

of the STriTuVaD proposal.
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Months 1 – 18

Months 18 – 30

Months 30 – 42

Months 42 – 54

1) Patient enrollment and
analysis

2) Realization of digital twins
pool  

1) Start of phase 2b clinical
trial

2) In silico trial 

3) In silico predictions 1) Follow-up of phase 2b
clinical trial

2) In silico-augmented
adaptive bayesian clinical

trial

3) Final data collection of
treatment efficacy 

1) Refinement on follow-up
data and data analysis

2) Validated and personalized
in silico trial platform for the
evaluation of TB treatments

Figure 1.1: A sketch depicting the main steps of the STriTuVaD project development.

The main objective of this Ph.D. project is to provide a new advanced version

of UISS in silico platform which also implements the treatment layer.

As a first step, the TB cellular and molecular pathway was studied through ParallEl

paThways AnaLyzer (PETAL). It is a Python tool that automatically explores and

detects the most relevant nodes within a KEGG pathway, scanning and perform-

ing an in-depth search. In order to clarify potential links between the genes of our

interest, PETAL was performed to allow users to find hidden interactions among
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significant proteins belonging to the same pathway and other proteins within pos-

sible linked pathways. From a biological point of view, this depth search helps in

retrieving certain interesting genes potentially hidden and involved in an important

biological and cellular process. Thus, PETAL can lead to the identification of pos-

sible pathways for drug resistance, providing novel insights about TB resistance.

Secondly, for the three modeling layers (physiological, disease, and treatment), Met-

ricUISS has been used to faithfully generate digital twin cohorts based on observed

in vivo data. This tool performs statistical analysis, and studies UISS results from

different perspectives, e.g., correctly simulating disease dynamics, studying treated

patients, and studying retrospective and prospective data.

In addition, software that explores, correlates, analyzes, and classifies data straight-

forwardly was developed under the codename PEAK (Pattern rEcognition frAme-

worK). It allows users to reduce the time needed for data analysis and discovering un-

known relationships between different data. PEAK was used in a specific case study

dealing with a well-defined dataset representing a cohort of 10,000 digital twins af-

fected by COVID-19 with different immunological characteristics. This dataset was

created to evaluate the correlations of specific components (e.g., cytotoxic T cells,

antibodies, Interferon-γ, Lung epithelial cells, and Interleukin 6) activated during

exposure to COVID-19.
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Chapter 2

Tuberculosis

2.1 Introduction

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis

(MTB) [1], an organism that belongs to the Mycobacteriaceae family, including

other mycobacteria genetically related.

Mycobacteria are thin bacilli that are 2 to 4 µm long. Several species of mycobac-

teria are harmless and live in the surface layers of the soil.

Tuberculosis usually affects the lungs in pulmonary tuberculosis, although, in a per-

centage of cases (up to 1/3), other organs are involved, such as in extrapulmonary

tuberculosis.

Tuberculosis is a disease among the top 10 causes of mortality worldwide, especially

in underdeveloped areas of the African and Asian continents [2]; it has existed for

millennia and remains a major global health problem.

Most importantly, tuberculosis represents a clinical and public health problem world-

wide. However, its incidence and prevalence have significantly decreased in more

developed nations. In contrast, it has increased in less developed countries due to

the emergence of strains resistant to many antibacterial drugs.
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The World Health Organization (WHO) estimates that tuberculosis is the second

leading cause of death from infectious disease, behind only AIDS (Acquired Im-

mune Deficiency Syndrome). Each year, tuberculosis kills about two million people,

mostly concentrated in developing countries.

2.2 Epidemiology

Tuberculosis is widespread throughout the world. Since 1980, the disease has wors-

ened, which can be explained, in part, by the global spread of Human Immunodefi-

ciency Virus (HIV) infection and the emergence of drug-resistant strains [3].

In particular, in 2016, the largest number of new tuberculosis cases occurred in Asia,

with 45% of new cases, followed by Africa, with 25% new cases (Figure 2.2).

The WHO estimates that about one-third of the world’s population is currently

infected with TB, and tuberculosis represents one of the leading causes of death (in

2016, it ranks ninth).

In this context, approximately within 10.4 million of new cases (incident cases),

90% involve adults, 65% males and 10% people with HIV infection (74% in Africa)

(Figure 2.1) [4].

The total estimation of patients who died from TB is 95%, registered in the middle-

or low-income countries, 56% of new cases are concentrated in seven countries: In-

dia, Indonesia, China, Philippines, Pakistan, Nigeria, and South Africa.

Therefore, India ranks as the country with the highest-burden of TB and has the

highest number of deaths worldwide [5].
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Figure 2.1: Countries that had at least 100 000 incident cases of TB in 2019 [4].

Figure 2.2: Estimated tuberculosis incidence rate in 2019 [4].
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In Europe, an “action plan” called Tuberculosis Action Plan for the WHO Eu-

ropean Region 2016-2020 has been outlined [6].

The plan defines and recommends the European States a series of activities to cir-

cumscribe and contain the spread of Multidrug-resistant tuberculosis (Mdr-TB).

Mdr-TB is a form of tuberculosis that is very difficult to treat. Less than 50% of

those affected can recover, as it is resistant to isoniazid and rifampicin, the most

popular antibiotics against the infection.

The plan’s proposed strategy for halting the disease’s spread is to ensure universal

access to prevention practices, diagnosis, and treatment in all states in the region.

Therefore, by 2020, the plan set a goal to:

• reduce TB deaths by 35%;

• reduce TB incidence by 25%;

• increase successful cases among individuals with Mdr-TB by 75%.

These results can only be achieved by improving action strategies at the level of treat-

ment, prevention and research, and sharing the knowledge and experience gained by

each European country. According to WHO estimates, Italy is one of the countries

with a low incidence of the disease (about 20 cases per 100,000 inhabitants), and

health authorities continuously monitor its spread (Figure 2.3).

In 2016, there were approximately 4072 registered TB cases, down slightly from the

last ten years. Specifically, 1.9% of cases involved children within four years of age,

2% deals with children of 5-14 years of age, 18% is related to 15-24 years old, 35%

of cases involved individuals of 25-44 years of age, another 18% involved individuals

of 45-64 years of age, and the final 14% involved those over 65.

Of the total cases, only 3778 were classified as new ones (not previously treated),
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Figure 2.3: Estimated incidence of tuberculosis cases between 2007 and 2016 [7].

and 300 occurred in pediatric age. Of the total number of patients, 70% presented

pulmonary tuberculosis. The estimated number of deaths per year is 330, or nearly

one death per day.

2.3 Etiology and Pathogenesis

TB is a primarily airborne infectious disease caused by M. tuberculosis. Infected

individuals disperse germs into the air via saliva droplets from sneezing or coughing

(approximately 3000 bacciferous droplet nuclei per cough) [8, 9].

Intensively exposed individuals face the highest risk of acquiring TB infection to

prolonged periods in closed, overcrowded, and poorly ventilated environments.

This increases the likelihood of infection because these germs can remain suspended
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for several hours and then be inhaled through the airways.

TB is a potentially severe disease and, if not treated properly, can lead to death.

If the infection goes untreated, each person with active TB infects, on average,

10-15 new individuals each year (Global WHO TB report 2016). However, anyone

with a compromised immune system, such as people with diabetes and or HIV,

has a much higher risk of becoming ill [10, 11, 12]. In particular, TB is a disease

strongly associated with the conditions in which people live. Therefore, the lowering

of immune defences may depend on living in deplorable hygienic conditions and

suffering from a state of malnutrition and poor health.

After exposure, about 1-2% of people affected immediately develop active TB, also

called ”primary TB”; 1/3 develop latent-type TB infection (LTBI), typical of most

individuals affected by TB; 2/3 do not contract the disease.

Among individuals with latent infection, only 5-10% will develop the active form of

TB. The risk of contracting TB is related to age, which is one of the essential factor

in the disease’s evolution. It can affect people of all ages, but the risk of getting

tuberculosis again is about 15%. Infection is more likely to develop during:

• childhood (risk of becoming ill is between 30% - 50%);

• late adolescence;

• early adulthood.

The immune system encountering M. tuberculosis bacilli can trigger two possible

scenarios; first, the bacillus can be killed instantly by the innate immune response

[13]. Secondly, out of approximately ten persons infected with tuberculosis, one may

develop an active infection within a period of 1 to 3 years. In the latter, the immune

system can be probably not avle to control early infection or enabled to acquire a
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protective response in time to prevent disease.

Preventive drug treatment for individuals already infected and at high risk of relapse

can significantly decrease the likelihood of developing an active TB form.

2.4 Clinical Manifestations

Any organ in the human body can be affected by tuberculosis. Specifically, pul-

monary manifestations are the most frequent in HIV-negative individuals (70 - 80%

of cases). Pulmonary and extrapulmonary TB can occur many years after an individ-

ual’s exposure to the infectious agent and can be caused by temporary or permanent

immunity impairment. Only on rare occasions, individuals develop symptoms soon

after the primary infection.

However, not all infected people develop the disease; in fact, the immune system

can fight the infection, and the bacteria can remain dormant for years. This specific

condition is called LTBI, and about a quarter of the world’s population is affected

[14, 15]. People with a latent infection have no symptoms and are not contagious.

It has been estimated that about 5-15% of people with latent infection develop the

disease in an active form in their lifetime.

The typical main symptoms of active pulmonary tuberculosis are fever, weakness,

chest pain, weight loss, night sweats, and coughing with sputum and blood some-

times [16]. These symptoms can be mild for months.

In contrast, if the tuberculosis is extrapulmonary, the symptoms depend on the site

involved.
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2.5 Diagnosis

Early diagnosis of tuberculosis has positive repercussions on the recovery of the

affected person and the prevention other people. Symptoms and signs of tuberculosis

depend on the disease location and extent, and vary according to the development

stage of the disease. There are several tools for diagnosis, including:

• Mantoux Test or Tuberculin Skin Test (TST): represents the most common

diagnostic tool and consists on a simple skin test. A small amount of a sub-

stance called purified protein derivative (PPD) of tuberculin is injected just

under the forearm skin. After 48-72 hours, the patient should undergo a fore-

arm examination by a health care provider to detect, evaluate and determine

reactions occurring at the tuberculin inoculation site, i.e., the appearance of

swelling erythematous patches. However, what must be analyzed is not so

much the extent of the red patch but the diameter of the dermal induration

at the injection site to establish the diagnostic accuracy of the result. Based

on the diameter of the inoculation site, it is possible to evaluate if the test is

positive or negative according to the following criteria:

– no hardening: negative test;

– hardening with diameter less than 2 mm: negative test;

– hardening with diameter between 2 and 4 mm: doubtful test;

– hardening with a diameter of 5 mm or more: positive test.

A new examination is usually required after a couple of months in a negative

test and a doubtful test. The advantages of the Mantoux test are represented

by the fact that is an inexpensive test and at the same time easy to administer.
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Otherwise, the disadvantages include the need for a demanding reading time

(strictly dependent on the operator) and the potentiality that the outcome

depends on the temporary conditions of patient’s natural immuno-repression,

any pharmacological inductions or immuno-activation.

• A blood test or interferon-gamma test : can be used to obtain confirmation of

diagnostic suspicion. These tests use sophisticated technology to measure the

immune system reaction to Mycobacterium tuberculosis and provide a faster

and more accurate result in comparison to the Mantoux test.

• Instrumental examinations : if the preliminary tests are positive, further as-

sessments to determine the disease stage (active or latent) are needed, along

with the evaluation of mycobacteria resistance to antibiotics. One of the most

common tests, given the lesions primary localization, is the chest X-ray. This

latter can highlight the presence of small white spots in the lung regions where

the immune system has confined the pathogens (in an inactive form).

2.6 Treatments

The discovery of the first antitubercular drugs in the 1940s, together with the im-

provement in the population of socio-sanitary conditions, raised rosy prospects for

eradicating tuberculosis. The pharmacological treatment of tuberculosis is quite

complicated.

Tuberculosis can be treated with a panel of four standards (first-line) medications.

There is usually a two-month intensive treatment phase using all medicines, followed

by a four-month continuation phase with only two. Due to the too-long treatment

and hepatotoxic effects, many people do not finish the course of medication, and as a
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result, resistance to TB drugs can be developped. Therefore, following WHO guide-

lines published in May 2016, all rifampicin-resistant TB cases (RR-TB), including

those with multidrug-resistant TB (MDR-TB), should be treated with second-line

MDR-TB treatment. Thus, the treatment duration is much longer for MDR-TB

(at least 9-12 months) than for drug-sensitive TB (between six and nine months),

with a significantly higher risk of adverse drug reactions and unsuccessful treatment

outcomes, particularly death.

Figure 2.4: The global trend in the estimated number of TB deaths, during the period
2000–2019. The shaded areas represent the uncertainty intervals. Horizontal dashed lines
highlight the 2020 milestone and 2030 target of the End TB Strategy [4].

The outcome of MDR-TB treatment is poor. Within the MDR-TB cases world-

wide that started therapy in 2010, only 48% had a favourable outcome. Preventive

treatment of chemoprophylaxis is essential to avoid the worsening of tuberculosis
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from the latent phase to the active one. In this sense, isoniazid is particularly in-

dicated in patients with AIDS and infants. Chemoprophylaxis therapy should be

performed in patients with previously untreated tuberculosis, significantly when im-

munocompromised. Among chemoprophylactic drugs, isoniazid is used in treating

both pulmonary and extrapulmonary tuberculosis.

The current prophylactic vaccine against human tuberculosis is Bacillus Calmette –

Guérin (BCG) vaccine, developed almost 100 years ago, and able to prevent severe

forms of tuberculosis in children. However, no vaccine is currently effective in pre-

venting tuberculosis disease in adults, either before or after exposure to tuberculosis

infection [17].

In 2014, the World Health Assembly adopted the WHO Tuberculosis Strategy to

eliminate the global TB epidemic by 2035, reducing TB cases by 90% (compared to

the 2015 baseline) (Figure 2.4). The achievement of this goal requires a comprehen-

sive approach including new and more effective vaccines and improved diagnostics

and treatments. Vaccines are considered the most effective and cost-effective means

of addressing the disease. For this particular disease, multiple vaccine development

strategies are being pursued:

• infection prevention: vaccines are administered before exposure to MTB to

prevent initial infection and therefore disease;

• disease prevention: after exposure to MTB, vaccines are administered to in-

fected individuals that are asymptomatic and with a medium-high risk of

developing the disease in the future. The main objective is to prevent the

manifestation of active disease and thus, reduce transmission.
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Figure 2.5: Global Clinical Pipeline of TB Vaccine Candidates (information updated to
December 2015).

• relapse prevention: vaccines are administered after MTB infection and anti-

tubercular drugs administration to prevent reactivation and subsequent trans-

mission of the infection [18].

In addition to classical approaches, immunotherapeutic vaccines are being devel-

oped for individuals with active TB combined with TB drug therapy to shorten the

duration of treatment and reduce relapse rates after the completion of treatment.

The RUTI® vaccine is one of the most advanced developed therapeutic vaccine

against Mdr-TB. Figure 2.5 shows the development pipeline for the new candidate

TB vaccines [19, 20, 21].
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Chapter 3

Agent-Based Model (ABM)

paradigm

3.1 Simulation and modeling of natural phenom-

ena

Simulation is an essential instrument for studying physical and natural phenomena

allowing, beginning from the actual state of knowledge, the determination of specific

possible future condition through a mathematical model. Numerous physical and

biological processes are still described using deterministic laws. Using these laws,

it should be possible to obtain a univocal and predictable result from an ”exact

description” of a natural phenomenon. In 1960, Edward Lorenz [22] conducted a

study on the simulation of weather forecasts to demonstrate the interactions between

the main meteorological phenomena. By slightly varying the input parameters for

the determination of similar models to those already found, Lorenz unexpectedly

obtained completely different results from the previous ones. This led him to realize

that ”complex dynamic systems” often produce significant effects on minor changes

dealing with the starting conditions and laying the groundwork for what will be
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later described as “Chaos Theory” [23, 24, 25].

In the modeling approach, deterministic laws are used, but the results obtained are

unpredictable, in other words, not known a priori. The apparent contradiction can

be quickly solved because the sensitivity of a phenomenon, in comparison to its

initial conditions, plays a fundamental role. Indeed, the description of the current

state of a phenomenon is always subjected to approximations and limits of precision.

These limits can compromise the deterministic nature because they cause errors

and uncertainties within the results. This is particularly evident in the study of

susceptible phenomena. In this case, even small approximations of the input lead to

specific behaviors; the latters, if described with finite precision, show unpredictable

results of non-deterministic and therefore, chaotic nature. Researchers are used to

formally describe the phenomenon they would like to study and also own essentially

two needs:

(a) to understand how the current observed situation is;

(b) to be able to predict what will happen in the future.

From this point forward, a mathematical model for the physical or biological phe-

nomenon is needed to describe, as faithful as possible, the overall behavior. The

modeling process, therefore, aims to provide this mathematical model for the stud-

ied phenomenon.

The main steps in the process of modeling include:

• the targeted study to obtain the set of characteristics (e.g., existence, unique-

ness, regularity) that the solution owns within the dynamic system [26];
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• the identification of an algorithm able to provide an universal method for

calculating such solution or, more generally, to obtain information about the

solution in a possibly efficient and complete way;

• the conversion of the algorithm into a programming language and its execution.

One can notice how the use of a computer assumes considerable importance within

the whole procedure. It allows obtaining an approximation of the phenomenon

object of the study results, avoiding the continuous searching of the real solution.

This latter may be, computationally speaking, too costly or not physically feasible.

There are, however, many issues to be considered. Firstly, the algorithm used must

be ”usable”, in the sense that it must require a reasonable amount of memory

resources and computation time because, in such complex problems, they play a

fundamental role. A summary scheme of the entire process is provided in Figure 3.1.
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ANALYSIS OF THE MODEL

EXPERIMENTAL VERIFICATION

MATHEMATICAL MODEL

ALGORITHM DEVELOPMENT

ALGORITHM RESOLUTION

Figure 3.1: The logical scheme from the real world-problem to the experimental model.

The approximate results must deviate from the valid values in a non-significant

way to ensure usability. It is necessary to limit the presence of errors as much as

possible. To do this, it is important to use an algorithm that is ”stable”, in other

words, that does not amplify errors during calculation. The problem lies in the fact

that errors are already introduced in the modeling phase, especially when it pass

from the physical phenomenon to the corresponding experimental model. It should

be noted that some natural phenomena are so complex that it is almost impossi-

ble to create a mathematical model that entirely describes them. When using a

mathematical model is feasible, the excessive complexity of the model will not make

it more accessible to find a numerical solution. Moreover, it is often necessary to
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consider a simplification that describes only some aspects of the problem, leaving

some variables out.

Further truncation and rounding errors are introduced in the mathematical oper-

ators during the numerical representation phase; other errors can be introduced

when the input are inserted into the computer memory. Error analysis is almost

entirely outside the typical nature and characteristics of the phenomenon under in-

vestigation. In addition, a chaotic phenomenon remains unpredictable and occurs

independently from the mathematical model chosen to describe the phenomenon

and the available degree of precision.

3.2 Modeling and simulation in biomedicine

Within the field of biomedical phenomena the association of a mathematical model

to the experimental process is now widespread practice, acquiring a bidirectional

nature. This means that information is mutually exchanged between the two sys-

tems to understand natural phenomena in a better way. This is particularly evident

when observing the ideal research process [27]. From observing a particular phe-

nomenon in real patients, the researcher attempts to develop biological, in vitro,

and in vivo models that lead to an easier study of the phenomenon. The analysis

of the properties of the solution can then provide important information about the

occurring dynamics within the phenomenon. The resulting data are then used for

the simulations of the in silico models.

Finally, the obtained results are tested on multiple experimental steps of increas-

ing complexity and applied to clinical practice. This modelling process is shown in

Figure 3.2. The mathematical model can accelerate the entire process, helping to
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reveal potential hidden mechanisms of the phenomenon which are difficult to catch

through ordinary experimental studies, which also are excessively long and costly,

or impractical. Consequently, such a biomedical modelling process suggests new

therapeutic interventions and provides significant refinements for the experimental

protocols, identifying in advance the most promising pathways from a clinical per-

spective. It is worth noting that the evolution of many natural phenomena, such as

tumor growth, is incredibly complex. Often, to obtain an exhaustive analysis, it is

not sufficient to observe the phenomenon, but it is necessary to use different scale

levels. The description of the phenomenon is, in fact, strongly related to the degree

of the scale to be used [27].
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Figure 3.2: The biomedical modeling process.

Specifically, in the analysis of a biological and biomedical phenomenon, re-

searchers should consider three natural levels of scales (as shown in Figure 3.3):

1. Sub-cellular level: it describes specific mechanisms and phenomena a on

a microscopic scale that occur within the cell and its membranes, such as
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receptor activation, macromolecule synthesis, degradation of DNA sequences,

and expression of specific protein sequences on the cell membrane.

2. Cellular level: it describes the interactions between the cell population on a

mesoscopic scale, such as the interaction between tumor cells and other ones

such as macrophages and lymphocytes.

3. Tissue level: it provides a macroscopic view of typical continuous phenomena

such as the migration of sets of cells or the main biochemical reactions for the

diffusion of substances within the organism.

In particular, the different levels describe the same phenomenon observed from differ-

ent points of view. The variation of a phenomenon in one level is directly influenced

by the other ones, and affects the same phenomena in the other levels.

Therefore, a multi-scale analysis can provide a more detailed and complete descrip-

tion of the phenomenon, facilitating the modeling of the biomedical phenomenon

itself.

3.3 Mathematical models in immunology

Computational methods currently used for immunology modeling are classified into:

• Continuous models

• Discrete models

Continuous models use differential equations to describe the system under investi-

gation and can be used to describe, for example, cell populations. These methods

are called continuous methods for the use of actual variables. However, the val-

ues of the phenomenon can be considered as discrete ones, such as the number
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Figure 3.3: Representation of the potential levels of scale in the observation of biomedical
phenomena.

of cells. These models own several advantages. Firstly, real parameters are used,

there is no measurement limit, so asymptotic extrapolation is straightforward. In

addition, differential equation theory owns a very solid mathematical basis. How-

ever, they can result in a complicated method to be used due to the many cases

of non-linearity widely involved in biological systems. Furthermore, in continuous

model the abstraction is much greater than for discrete systems, and the approx-

imations introduced could not have apparent biological significance. Oppositely,

discrete models allow the interaction among entities and they can be described in

a defined space. One of the advantages of the discrete models is that a biological
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scenario could be described precisely. In addition, the non-linearity does not rep-

resent a problem. Complex cases can require more time for computation but do

not prevent their solution. System size is generally small compared to the reality,

and consequently, one should pay close attention to those problems arising from the

finite size. In addition, asymptotic extrapolation is often difficult or even impossi-

ble. It should be pointed out that both type of models are not necessarily mutually

exclusive. Their common use can help to describe better the biological phenomena.

In particular: i) continuous models have been used for the description of phenomena

on the macroscopic scale, since they have behavioral connotations typically constant

while ii) the discrete models are suitable for typical phenomena on the cellular and

sub-cellular scale, allowing to describe their behavior accurately.

3.3.1 Continuous models

In continuous models, each population is characterized by a certain fixed activity,

and intracellular interactions modify the number of cells related to that specific

activity. Large numbers represent these populations. It is justifiable to consider

their concentration in space as a continuous variable. Considering the distribution

of the elements in space as a homogeneous solution in which interactions occur by

random collisions, it is possible to use a system of nonlinear differential equations

to describe their behavior. In this case, the equation system shows the following

structure [28]:

x(t) = gain–loss (3.1)

Where x(t) represents the change in concentrations of x = xi over time, and semi-

linear or nonlinear terms express the gain or loss of molecular complexes due to
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stimulation of cells or new complexes (cell-cell or cell-molecule). In contrast, ”the

gain” of new cells or their ”loss”, due to end-of-life, is expressed by linear time

variables. A trend (or curve) represents the solution of x(t), and the set of curves

formed at different initial conditions describes a flow. If x is stationary (x = x0), it

is called as a fixed point. Stable fixed points, the one for which a small change in

the variables over time decreases to zero, are referred to as flow attractors. After

looking for flow attractors, the overall behavior can be analysed numerically.

3.3.2 Discrete models

As previously mentioned, the discrete models present numerous characteristics that

make them suitable for modeling and simulating biological phenomena. Generally,

the mathematical knowledge required does not affect the modeling, so the approxi-

mations made are generally more biological than mathematical. Finally, all cases of

specific phenomena can be described easily, making a close correspondence between

the model and the biological phenomenon. One of the most important examples of

a discrete model is a cellular automaton (CA). Nowadays, CA is considered one of

the most influential paradigms for studying complex systems. Along with neural

networks and genetic algorithms, CA forms a set of methodological supports indis-

pensable for scientific investigation. It is worth to mention that CA is a discrete

model both in space and time. All the rules that constitute the transitions from

one state to another one are applied simultaneously in the same ”time-step”. The

cellular automata can be briefly defined as a set of cells arranged on a regular lattice

in which the following properties are applied:

• the state of a cellular automaton is determined by the contents of all the cells

located into the lattice in a given time-step;
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• the contents of the cells can contain a finite number of states according to

deterministic local rules;

• a ”local rule” is similar to a function defined for all the cells that accept as

arguments the value contained in the cell itself and the ones belonging to

neighboring cells, returning a new content for the cell;

• the update of the cell contents takes place simultaneously.

From the structure of the CA, two fundamental properties can be inferred. Firstly,

a CA is a ”parallel” computing model that can be appropriately applied to new

systems. Secondly, in a CA model, agents interact with each other depending on

local information and then, they pursue global objectives.

3.3.3 Cellular automata

Cellular automata represent spatial models [29, 30, 31] based on relatively simple

notions about the effect of space and related dynamics. In their most severe and

complex form, they simulate spatial diffusion around a certain point where the

dimensions of time and space are treated as a whole.

The temporal scale level and spatial aggregation show the tendency to be quite

flexible in these models, although the scales tend to be significant. Moreover, these

models are shown to be better adapted to the study of specific dynamics rather than

others. Such models do not belong to a specific class of dynamics, due to external

inputs, and they do not depend on the dynamics implemented within the model

[32]. Agents do not physically move in space but can be associated with different

locations, and their change over time may reflect an implicit process of movement

[33]. A typical CA is a two-dimensional grid or lattice subdivided into more cells.
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Each cell assumes a finite number of states at any given time and is characterized

by a value determined by a set of simple rules based on the previous state.

3.3.4 A Cellular Automata for the immune system: the

Celada-Seiden model

The aim of the Celada-Seiden (CS) model [34, 35, 36] is to create a system in

which the ”hypotheses” accurately reflect the immune phenomenon and can be

tested through the interactions between its elements. Therefore, this model does

not take into account the modeling through continuous systems and opts for mod-

eling through discrete systems due to specific reasons.

Firstly, the discrete model allows the representation of all the simulation elements

through a language with more biological than mathematical feature.

Besides, it becomes simpler to modify the interactions between the system entities

without adding new and more complicated equations, hiding the practical complex-

ity of the continuous models shown to the naked eye.

However, it should be noted that the actual complexity of the immunological phe-

nomenon currently makes it impossible to implement on a computer a ”large scale”

representation of the phenomenon analyzed. The number of possible antigens that

can be recognized, and therefore, the potential receptors that the system may con-

tain, have been estimated theoretically to a value in the order of 1020. The human

organism under conditions of extreme activity can contain up to 1012 specific cells.

To simulate such an event, the only solution is to consider a small sample of a pop-

ulation whose size can reach considerable proportions.

For this reason, the results obtained cannot replace in vitro and in vivo experiments

but, on the contrary, should be considered as proper support for them. In particular,
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the CS model bases its structure on the model of cellular automata. However, there

are significant differences regarding the definition of cellular automata described

above:

1. In the CS model, the rules are not always deterministic but probabilistic.

2. The value of a local cell is determined only by taking into account the cell

itself and not considering the cells in the neighborhood.

3. The entities can spread from one cell to another one.

The model uses a bidirectional grid that represents a small portion of the organism.

The cells are triangular in size instead of square, thus bringing the number of neigh-

boring cells from eight to six. Instead of containing a binary value in various cellular

automata implementations, each cell can be populated by several distinct entities

of different types. It was also chosen to address the most demanding problem en-

countered during the modeling process, namely the description of the receptor, in

the simplest way, that is, using a string of bits. This offers the possibility to move

within the set of possible receptors affordably and straightforwardly at the memory

level. A few bits are sufficient to represent a discrete range of possibilities, directly

proportional to the number of bits used.

3.4 Definition of the Agent-Based Model concept

and its essential features

Agent-based models (ABMs) are a class of computational models aimed at computer

simulation of specific actions and interactions of autonomous agents to evaluate their

effects on the system as a whole. ABMs have, to some extent, evolved from cellular
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automata (CA).

ABMs can combine elements of game theory, complex systems, emergent behavior,

computational sociology, and multi-agent systems. A recent literature review on

individual-based, agent-based, and multi-agent systems models shows that ABMs

are used in non-computationally related scientific domains such as biology, ecology,

and social sciences [37]. Agent-based modeling is related to but distinct from the

concept of multi-agent systems. ABM aims to seek explanatory information about

the collective behavior of agents following simple rules, typically in natural systems.

Multi-Agent Systems (MAS) aims to design agents or solve specific practical or engi-

neering problems [37]. Moreover, agent-based models are a type of microscale model

[38] that simulates simultaneous operations and interactions of multiple agents to

recreate and predict the appearance of complex phenomena. The process deals with

an emergent behavior from the microscopic level to the macroscopic one. Regard-

ing the topic above mentioned, an essential notion should be introduced: simple

behavioral rules generate complex behaviors, as enunciated by the ”Keep it simple,

stupid” (KISS) principle, adopted extensively in community modeling. Individual

agents are typically characterized as rationally constrained, presumably acting ac-

cording to what they perceive to be their interests, such as reproduction, economic

benefits, or social status, using heuristics or simple decision rules. ABM agents can

experience ”learning,” adaptation, and reproduction processes [39]. Agent-based

models typically consist of:

• numerous agents defined at different scale levels;

• heuristic principles aimed at decision making;

• learning rules and adaptation processes;
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Software Scope License
Progr,

Language
GIS 3D Link

UISS
Immune System

dynamics
Closed-source C No No https://www.combine-group.org/software

Netlogo
Social, Natural, and
Economic Sciences

GPL Netlogo No No http://ccl.northwestern.edu/netlogo/

BioDynaMo
Dynamic research

purpose
Open-source C++ No Yes https://biodynamo.org/

Table 3.1: The table shows just a few examples of the available simulators.

• topological system in which interactions occur;

• a specific environment.

ABMs are typically implemented in the form of computer simulations through spe-

cific programs or ABM development tools. Such models can be used to evaluate

the impact on the emerging behavior of the system as a result of specific changes in

individual behavior.

3.5 Typical ABM structure

The logic characterizing agent-based modeling has been defined in detail by two

authors. The first definition given by Ferber [40] deals with MAS but can also be

extended to the ABM approach. Ferber identifies five key components:

1. the environment (E) that represents the space of interaction of the system

components;

2. a set of objects (O) with different characteristics associated with the envi-

ronment (E);

3. a collection of agents (A) representing a subset of the objects and the

active entities of the system;
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4. a set of relationships (R) connecting objects and agents;

5. a group of operations (Op) that allows the agents to perceive, produce,

transform, and manipulate the system objects.

The second definition was proposed by Macal and North [41, 42], who reduces the

system components to three elements and focuses on the concept of Complex Adap-

tive System (CAS). In particular, the complex system consists of autonomous agents

that interact with each other and adapt themselves to the variations produced by

the system.

According to Macal and North, a typical agent-based model consists of three ele-

ments:

1. a set of agents characterized by their attributes and behaviors;

2. a set of relationships defined by specific rules that describe the topology of

the interaction between the agents;

3. the environment that represents the place of interaction of the agents.

Although the two definitions diverge in some of the components that Ferber formal-

izes oppositely to North and Macal, they both agree on the presence of the agents,

the environment, and the interactions between the agents and the environment.

Focusing on the first of these three elements, the agents need to investigate the

characteristics that distinguish their functioning with the environment and among

the agents. In the next paragraph, the necessary factors an agent must incorporate

to coordinate all the system agents involved will be defined. Three main features

must be described for managing the interaction between the agents:
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1. Decision making: what kind of decision-making system can the agents take?

What is the logic behind their perception-representation-action?

2. Communication: what type of message the agents receive from the envi-

ronment and the other agents? What is the formal communication protocol

used?

3. control: Is there a hierarchical relationship between the agents?

3.5.1 Agents features

Two of the main issues that need to be addressed when applying agent-based

methodologies are:

1. the interaction between the agents;

2. what other agents can interact with the agents themselves;

3. which dynamics trigger these interactions;

One of the paradigms underlying the agent-based modeling approach is that only

local information is available to agents. The agent-based system is decentralized.

No central entity globally disseminates the same information to all agents or con-

trols their behavior to increase overall system performance. Agents interact with

each other, but they do not interact all at the same time. The interaction of the

agents typically happens through a subset of agents close to each other (neighbors).

Likewise, the interaction between the agents and the environment is localized. The

agents do not interact with each part of the environment. Therefore, the informa-

tion obtained from the agents is derived from the subset of agents with which they

interact and the portion of the environment in which they are located. If the model
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is not static, the subset of agents and the environment vary over time. The main

feature an agent should own is its ability to act autonomously. In the literature,

there is no precise definition regarding the autonomy characteristic of the agent.

The concept of autonomy can range from a simple passive behavior, consisting of

reacting to external events that respond to a basic logic of the ”if-then” type, to

a more complex behavior constituted by models of adaptive artificial intelligence.

One of the available definitions is the one suggested by Casti [43], which provides

the presence within the agent of two levels of autonomy:

• Basic level: determines the behavioral rules of the agents;

• Advanced level: includes the agent ability to change its internal set of rules.

From a modeling-oriented point of view and considering the main practical implica-

tions of agent-based modeling, the agents own the following essential characteristics:

• Self-sufficiency, modularity, and identifiability: these properties specify

the boundaries of the agent, the components that are part of the agent and

those that are not, and the presence of shared attributes. The attributes of an

agent make it identifiable (unique) for possible interactions with other agents.

• Autonomy: an agent acts independently of its interactions with other agents

and the environmental context in which it is embedded (at least in a limited

range of situations that are of interest to the model). The information rules

the agent behavior acquired through the interactions with other agents and

the environment. The behavior of an agent can range from a simple set of

logical rules to more complex behavioral systems based on abstract models.

• Variation of the state in time: the state of model component variables de-

termines the state of a system. In particular, the state of an agent is composed
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of the variables associated with it at a given time. These variables are referred

to as the attributes of the agent. As for the single-agent that contains it, the

model state is determined from the total state of its components: agents and

environment in an ABM. The agent state determines its behavior. Therefore,

the more significant is the variety of conditions in which an agent can be found,

the greater are the behavioral choices that this agent can make. In ABMs, the

state represents the specific set of information necessary to modify the system,

evolving it from one point to the successive one.

• Social Dynamics: agents own a specific social dynamic that manages the

interactions between them. Each agent must use a standard communication

protocol to enable communication, movement, response to environmental stim-

uli, and other behaviors. All agents within the system must know the chosen

protocol.

North and Macal, in addition to the above essential characteristics, identified other

valuable features that agents should present:

• Adaptability: an agent should adapt, in other words, its own rules or abstract

decision-making models capable of modifying its behavior.

• Goal Orientation: an agent should be oriented towards achieving its internal

goal, which does not necessarily correspond to goal maximization, considering

the decision-making process. Completing the internal goal encourages the

agent to change his behavior if it registers a deviation between the current

situation and the achievement of the goal.

• Heterogeneity: agents can be heterogeneous with each other. Each agent

owns several attributes that define its behavior. Behaviour is determined by
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the agent ability to retrieve and process information. The agent processes in-

formation depending on the behavior developed to interpret the world around

it and its previous experiences.

As one can notice, the agents show different attributes that can extensively vary

the behavioral characteristics of an agent compared to another one; then, in an

equally significant way, also the reactions to stimuli from the external environment

can vary.

3.5.2 Interactions among agents

One of the assumptions at the basis of agent-based modeling, is given by the modality

through which the information is made available to the agents. In particular, each

agent owns the information it can retrieve locally through neighboring agents. There

is no central entity in possession of all the information in the system. It follows

that the interactions between agents are also limited. Agents do not interact with

all other agents in the system but only with spatially close agents (as previously

described in section 3.3.3). During the simulation, the number and type of agents

in a specific space can vary because they can move from one space to another. The

typology of connection between the agents takes the name of the topology of the

model. Therefore, the topology of an ABM refers to what information is exchanged

and between whom. Figure 3.4 collects the connection types between the more

diffuse agents and the differences between the connections are:

• spatial grids: where space is divided into sub-portions of geometric shape

and each grid owns specific characteristics (Panel A);
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• representations on a Euclidean plane: where each agent can move in a

plane with 2 or 3 dimensions and the position is determined through the use

of specific coordinates on the axes (Panel B);

• network model: where the individual interactions between agents are more

defined than in the Euclidean plane representation (Panel C);

• geographic information system (GIS): where each area represents a sim-

plification of an actual portion of the territory (Panel D);

• aspatial representation: the connection between the agents does not involve

the representation through a spatial plane (Panel E).

The abovementioned topologies represent the most used by modelers and it is worth

to mention that different connection modalities are often applied within the same

model.
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A) Cellular Automata 
(von Neumann)

B) Euclidean Space 
2D/3D C) Network topology

D) Geographic Information
Systems (GIS) E) "Soup" model (Aspatial)

Figure 3.4: Representation of different types of connections between agents.

3.5.3 Environmental representation

In an ABM, agents interact with each other and with the environment. This latter

plays a fundamental role in ABMs and can be represented differently, conveying a

specific type of scenario.

The environment can be subdivided by a scale that defines the amount of infor-

mation it possesses, and represented either realistically or artificially. Furthermore,

the environment in ABMs can be defined as either cell-based or object-based. Both

applications have their limitations and strengths. Cell-based representation is fo-

cused on data processing collected directly from the point of interest. The limit of

this approach deals with the considerable amount of data to be processed, leading
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researchers to use robust software and hardware to process the data collected. Ac-

cording to Bian [44], the cell-based system should be used when the environment

owns specific features of marked heterogeneity and complex dynamics.

The representation of the environment through objects requires fewer computational

resources, but allows the access to a great deal of information (Figure 3.4 - Panel

D). The object-based representation is particularly suitable when many landscape

features need to be included within the model. Furthermore, it is indispensable

to capture the relationships between the various landscape features [44]. The last

distinction in the representation of the environment deals with the fact that the

environment could be static or dynamic. A static environment finds its use within

ABMs when one aims to investigate the emerging characteristics of a system, due

to the agents interactions within a specific environment. While, a dynamic environ-

ment is more suitable for studying the effect of change on the space in which the

agents are located.
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Chapter 4

A framework based on ABM:

Universal Immune System

Simulator (UISS)

4.1 Introduction

The Universal Immune System Simulator (UISS) is a computational framework that

uses a multi-scale, multi-organ, three-dimensional agent-based simulator of the im-

mune system. UISS is entirely written in the standard ANSI C-99 programming

language, which allows it to be architecture-independent. The modeling approach

used by UISS is the same as the one used by Celada-Seiden (see Chapter 3). Cellu-

lar and molecular entities were considered as agents in the model. Such entities can

be heterogeneous, have internal properties (life, energy, and other), act and make

decisions (move, interact with other agents in their neighborhood, change their in-

ternalizing state or die) individually or as a result of interaction with other agents.

As mentioned, the cellular entities can take up a state from a specific set of suit-

able states, and their dynamics are realized through state changes. A state change
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occurs when a cell interacts with another cell or with a molecule or both of them.

UISS considers the relevant lymphocytes, i.e., B lymphocytes, T helper, cytotoxic

and regulatory T lymphocytes, and natural killer cells. Monocytes are represented

as well, and UISS also takes care of macrophages and dendritic cells. For what con-

cerns the molecular side, the model distinguishes between simple small molecules like

interleukins or signaling molecules in general and more complex molecules like im-

munoglobulins and antigens, for which their specificity must be represented. At the

same level of entities, also immune system activities are implemented. They include

both interactions and functions. Functions refer to the primary immune system

functions. In particular, UISS takes care of the diversity of specific elements:

• major histocompatibility classes restriction;

• clonal selection by antigen affinity;

• thymus education of T cells;

• antigen processing and presentation (both the cytosolic and endocytic path-

ways are implemented);

• cell-cell cooperation;

• homeostasis of cells created by the bone marrow;

• hypermutation of antibodies;

• cellular and humoral response;

• immune memory.

In UISS, as in most ABM approaches, time is discrete. This means that all activities

in the system are tracked and measured using equidistant time intervals.
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An interaction between two entities is a complex action that ends with a change

of state of one or both entities. The entities must be ”close enough” to interact

with each other. Specifically, physical proximity is modeled through the definition

of a lattice site. All interactions among cells and molecules occur within a given

lattice site at a single time step, so that there is no correlation between entities on

different sites at a given time. In UISS, the simulation space can be represented by

a 2D hexagonal lattice LxL (6 neighbors) or a 3D as a cubic lattice LxLxL, with

periodic boundary conditions or rigid walls on the edges depending on the question

of interest.

All entities can move with a uniform probability between neighboring lattices in the

grid with an equal diffusion coefficient (Brownian motion). This simulation space is

used to represent three anatomical compartments: the thymus, the bone marrow,

and a portion of a generic secondary organ. Interactions can be seen as Bernoulli

events, so each interaction has a certain probability of occurring. Interactions can

be classified as specific or non-specific interactions:

• Specific interactions: they involve cells from the adaptive immune system

equipped with specific receptors. In this case, the probability p of the inter-

action will depend on the result of the recognition phase, in which the affinity

between the receptors involved plays an important role.

• Non-specific interactions: they are those that refer to the use of non-specific

receptors. Thus, considering Toll-like receptors (TLRs), they will recognize

pathogen-associated molecular patterns (PAMPs) expressed by pathogens with

low specificity. These will not be explicitly modeled in UISS; a fixed probability

p will be used for all interactions involving the same TLR-PAMP pair.
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UISS represents receptors and ligands as bit strings and uses a string-matching rule

to model affinity. This clever idea was introduced by Farmer et al., [45] as a way to

perform calculations for determining molecular complementarity and predicting the

optimal size of an epitope. From immunology, one knows that binding is a thresh-

old effect consisting of two components: the affinity of a single receptor and ligand

and the total binding, or avidity of multiple binding pairs. A string-matching rule

models the binding by counting the number of positions in the string at which the

symbols are complementary (known as Hamming distance). Repertoires are repre-

sented in the model as sets of strings. By adopting bit strings, many binding events

can be simulated quickly, making it feasible to study the large-scale properties of

the immune system. Character strings produce accurate models when benchmarked

to experiment, suggesting that the abstraction captures receptor/ligand binding fea-

tures.

Natural scale and multi-organ ABM simulations, however, require thousands of mil-

lions of agents. This represents an issue even for modern CPUs and personal com-

puters. To this end, high-performance computing (HPC) resources are mandatory

to reproduce the natural scale behavior of the immune system and related patholo-

gies. Due to the intrinsic nature of the biological and immunological entities that

mainly act and interact locally, the simulation of big tissues and/or organs can be

split across different CPUs cores. So can leading to separate simulation spaces that

can be executed in parallel for most of the time, except for the processes that involve

entities migration from an organ to another or occasional movement across adjacent

tissues fragments belonging to different simulation spaces. This entitles high de-

grees of scalability in the function of the number of available CPU cores. The model

and its computer implementation are very flexible, and new biological entities and



Chapter 4. A framework based on ABM: Universal Immune System Simulator

(UISS)
46

Figure 4.1: Some of the key features implemented in UISS.

interactions can be easily added (Figure 4.1). UISS is then able to reproduce and

provide in silico predictions about immune system-related pathology.

What is a digital twin (DT) ? A digital twin is a digital representation of a real-

world entity or system. Implementing a digital twin is an encapsulated software

object or model that mirrors a unique physical object, process, organization, per-

son, or other abstraction. Data from multiple digital twins can be aggregated for

a composite view across a number of real-world entities, such as a person and its

related processes.

The UISS framework has been used for successfully modeling and simulating multi-

ple immune system-related pathologies. It has initially used to model and simulate

the immune system responses to mammary carcinoma tumor cells in naive and vac-

cinated mice with an immune preventive vaccine [46] (named Triplex), showing the

ability to accurately reproduce the experimental results. in silico experiments car-

ried out on two large statistical samples of virtual mice underlined that the humoral

response is fundamental in controlling the tumor growth and therefore, suggested

the selection and timing of experiments for measuring the activity of T cells. The

resulting model has been then used in conjunction with two well-known optimiza-

tion techniques, namely genetic algorithms (GA) and simulated annealing (SA), to

suggest vaccination protocols capable of guaranteeing the same survival rates (enti-

tled with the use of a Chronic protocol with the lowest possible number of vaccine



Chapter 4. A framework based on ABM: Universal Immune System Simulator

(UISS)
47

administrations) [47]. GA have been used in HPC environments showing, as a re-

sult, a reduction of approximately 50% in the number of vaccinations [48].

Furthermore, SA improved the quality of the suggested solution and decreased the

required computational time of two orders of magnitude [48, 49, 50, 51, 52]. The

optimized protocol has been tested in vivo [47]. GA techniques have also been ap-

plied to optimize the Highly Active Anti-Retroviral Therapies (HAART) protocol

to significantly prolong life for people infected by HIV [53]. UISS was also special-

ized to model the effects of the Triplex vaccine as a therapeutic agent against lung

metastases derived by mammary carcinoma [54].

In a further case study, UISS was applied to simulate the main characteristics and

dynamics of the immune system activities in digital twins suffering from a relapsing-

remitting form of multiple sclerosis (RRMS) [55]. In this case, the simulator revealed

that it may potentially assist MS specialists in classifying the severity level of MS

at onset and choosing the best treatment strategy [56]. The final goal was to build

a comprehensive profile, including also genetics, immunological, and environmental

data so to reliably predict the real dynamics of MS at patient level and inform the

therapeutic choice at early stages. UISS was also extended to the SARS-CoV-2

scenario. In this disease module, UISS is able to reproduces the fundamental SARS-

CoV-2 immune system dynamics. The lung compartment, that represents the main

target organ of the virus, along with the generic lymph node, that allows immune

system entities to be activated and selected [57] were considered. Moreover, it has

been used to predict the outcome of one of the latest suggested approach based on

monoclonal antibody.

In the next section, the specific implementation in UISS for the tuberculosis module

will be illustrated.
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4.2 A specific module for Tuberculosis: UISS-TB

UISS has been extended to include all entities, interactions, and target tissues needed

to represent and mimic tuberculosis dynamics and related interaction with the host

immune system. It has been applied the methodology described in [58], as it is

divided into three different levels. The first level includes the steps involved in the

model development:

(i) Identification of the model objectives.

(ii) Collection of the current knowledge about the biological system under inves-

tigation.

(iii) Selection of the most appropriate model structure to satisfy the model objec-

tives.

(iv) Translation of goals and knowledge into model hypotheses.

(v) Design and drawing of a conceptual model.

(vi) Identification of the mathematical techniques and development of the formal

model.

The second level describes the tuning step, i.e., estimating and fitting model param-

eters. Finally, the third level deals with analysis and evaluation, i.e., comparing the

model results against experimental data sets and analyzing discrepancies.

Our model considers both innate and adaptive immunity (both cellular and hu-

moral) and immune memory. Figure 4.2 depicts all the entities implemented within

the simulation framework, especially immune cells, cytokines, and specific biological

mechanisms of TB. All the TB disease model entities interact with each other and are
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Figure 4.2: Pulmonary tuberculosis – immune system interaction disease model. A con-
ceptual description of the leading entities and interactions of MTB – immune system.
The main two compartments are represented: the lung and the peripheral lymph nodes.
The representation depicts both cellular and humoral responses when MTB droplets infect
alveolar macrophages resident in the lung. The cascade of cytokines and chemokines is
also represented with possible different behaviors depending on the virulence of the MTB
strain.

appropriately located in two specific compartments: the lung (pulmonary alveoli)

and the peripheral lymph nodes. The starting point of the conceptual TB disease

model consists of the aerosol droplets of MTB that reach lung alveolar macrophages

(AMs) on one side and neutrophils (N) on the other one. The initial challenge of

MTB is implemented simulating a virtual injection of MTB bacilli into a lattice

point in the lung compartment. Then the bacilli are free to move and disseminate

randomly. When an AM becomes infected, it secretes IL-1, TNF-α, IL-12, IL-6, and
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chemokines. Depending on MTB strains and their virulence, infected AM can play

a different role in determining the downstream pathways leading to the induction of

either apoptosis or necrosis and the outcome of the infection. In this context, lipoxin

A4 (LXA4) promotes necrosis, while prostaglandin E2 (PGE2) is a proapoptotic fac-

tor. When the necrosis process is favored, the AM becomes necrotic and contributes

to the MTB spread. Otherwise, when the AM becomes apoptotic, simultaneously,

three specific scenarios can occur. Firstly, AM apoptotic can interact with a lung

resting macrophage (M) and lead to efferocytosis of macrophages, in other words, an

engulfment of AM apoptotic by M, essential for tissue homeostasis and immunity.

This means switches from “resting” to “active” status. Secondly, AM apoptotic cells

can encounter a lung dendritic cell (DC). AM apoptotic can be taken up by DC that

captures antigens (Ag) through a process called nibbling; then, DC will process and

present the resulting fragments to antigen-specific T lymphocytes in the context of

molecules of the major histocompatibility complex of class I (MHC-I) or related

proteins. From this point forward, MTB–antigen processing DCs, migrate to the

local lung-draining lymph nodes (by 8–12 days post-infection), driving näıve T cell

polarization. This migration is influenced by IL-12 release and other chemokines,

except when IL-10 is present and can block this moving. A third interaction dealt

with the secretion of MTB debris from AM apoptotic: MTB debris will interact

with DCs, in status resting, that will process and present the resulting fragments to

antigen-specific T lymphocytes in the context of molecules of the major histocom-

patibility complex class II (MHC-II) or related proteins. When MTB infects a lung

N, N produces and secretes IL-1 and other chemokines. Like AM, also for N, the

MTB strain can lead to a different role in the induction of either apoptosis or necro-

sis and the final outcome of the infection. Both AM and N effector functions can be
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negatively modulated by IL-10 induction during MTB infection. Respectively, IL-10

can lead to the inhibition of macrophage and neutrophil effector functions, reducing

the bacterial killing and impairing the secretion of cytokines and chemokines. As

previously said, IL-10 can also block chemotactic factors that control DC moving to

the lung-draining lymph nodes. The scenario inside the lymph node depicts the DC

cells in antigen-presenting cell status secreting IL-12, Type 1 IFN, IL-6, and IL-23

and driving näıve T cell differentiation toward a Th1, Th2, or Th17 phenotype. Th

cell population differentiation can be negatively modulated by IL-10 and regulatory

T cells (Treg).

Protective antigen-specific Th1 cells migrate back to the lungs about 14–17 days

after the initial exposure and infection to MTB and under a chemokine gradient

(except when IL-10 blocks this process). In the lung, the activated Th1 cell popula-

tion produces and secrete IFN-γ, causing macrophage activation, relative cytokine

production (IL-12 and TNF-α), and bacterial control. It is worth mentioning that

in this context, IL-10 can block macrophage activation and consequent cytokine se-

cretion. Also, TReg negatively modulates Th1 population effector functions. For

completeness, the Th1 cell population also interacts with B cells leading to three

specific processes at the same time. B cells duplicate after a successful interaction,

differentiate in memory B, and secrete immunoglobulins type G (IgG). Similarly,

Th2 cell migration and interaction with B cells leads to B cells duplication, differ-

entiation in memory B cells, and immunoglobulins type A (IgA). For the Th17 cell

population, their migration and interaction with B cells will finally lead to cell du-

plication and secretion of immunoglobulins type E (IgE). B cells also interact with

MTB; after that, B cells become active and secrete immunoglobulins type M (IgM).
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4.2.1 Cellular entities

The cellular entities added to the simulator to simulate the dynamics of tuberculosis

are:

• Neutrophils: Neutrophils are a type of white blood cell. In fact, most of the

white blood cells that lead the immune system response are neutrophils. There

are four other types of white blood cells. Neutrophils are the most plentiful

type within white blood cells, making up 55 to 70 percent of our white blood

cells. White blood cells, also called leukocytes, are a key part of our immune

system. White blood cells produce chemicals that fight antigens targeted to

the source of the infection or inflammation. Neutrophils are not limited to a

specific area of circulation. They can move freely through the walls of veins

and into the tissues of our body to immediately attack specific antigens.

• Alveolar macrophages: Alveolar macrophages (AM), also known as dust

cells, are white blood cells. Alveolar macrophages are the first line of defense

against invading respiratory pathogens. They reside in pulmonary alveoli and

inter-alveolar septum near pneumocytes. The alveoli are the terminal unit

of the respiratory system responsible for gaseous exchange. The alveoli are

comprised of three different kinds of cells: (1) Type I pneumocytes, (2) Type

II pneumocytes, and 3) Alveolar macrophages. (1) Type I pneumocytes build

up the structure of the alveolar wall and aid in respiration process. Specifically,

they do not replicate. (2) Type II pneumocytes secrete a lipoprotein called

surfactant that prevents the collapse of the alveoli even after exhalation. (3)

Alveolar macrophages produce various signaling chemicals that interact with
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other cells of the immune system to orchestrate a response that maintains

immunologic and tissue homeostasis in the body [59, 60].

• Mycobacterium tuberculosis: Mycobacteria belong to the Mycobacteri-

aceae family and the order Actinomycetales. Within the pathogenic species

belonging to the M. tuberculosis complex, which comprises eight distinct sub-

groups, the most common and influential agent of human disease is Mycobac-

terium tuberculosis [61]. (For further details, see Chapter 1).

• Liposome: A liposome is a spherical vesicle having at least one lipid bilayer

[62]. The liposome can be used as a drug delivery vehicle to administer nutri-

ents and pharmaceutical drugs, such as lipid nanoparticles in mRNA vaccines

and DNA vaccines [63]. Liposomes can be prepared by disrupting biological

membranes. A liposome design may employ surface ligands for attaching to

unhealthy tissue.

4.2.2 Molecular entities

The molecular entities added to the simulator to simulate the dynamics of tubercu-

losis are:

• Interleukins: cytokines whose presence at the lattice site promotes or blocks

specific interactions by increasing or decreasing their probability of being re-

leased [64].

• Interferons: cytokines produced by both white blood and tissue cells in re-

sponse to the presence of specific antigens coming from viruses, bacteria, or

tumor cells [65].



Chapter 4. A framework based on ABM: Universal Immune System Simulator

(UISS)
54

• Vitamin D: a regulator of calcium metabolism that helps in maintaining

normal levels of calcium and phosphorus in the blood [66].

• Lipoxin A4: a bioactive molecule that helps in hindering the biochemical

process that leads to inflammation, and removing those cells that promote

inflammation. It represents a pro-necrotic factor within the cellular compart-

ment during tuberculosis pathogenesis [67].

• Prostaglandin E2: a mediator that influences critical physiological events

such as blood coagulation, gastric mucous membranes, and is involved in the

mechanism of inflammation. It represents a pro-apoptotic factor, i.e., it acti-

vates a sort of cell programmed death that can be spontaneous or induced by

agents of different origin [68]. In tuberculosis, it favors the apoptosis of MTB

infected cells.

• Isoniazid: Isoniazid (INH) is the main antibiotic used in the treatment of

tuberculosis. It is used alone or in combination with other specific drugs [69].

Molecular entities do not have internal states and are not represented individually,

but populations are defined as different concentrations of different molecular entities

within the lattice.

4.2.3 Interactions among entities

The main interactions between the entities and/or with the Mycobacterium tuber-

culosis are the following ones:

• Macrophage (M) - Alveolar Macrophage (AM)

• Alveolar macrophage (AM) - Mycobacterium tuberculosis (MTB)
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• Neutrophils (N) - Mycobacterium tuberculosis (MTB)

• Dentritic cells (DC) - Mycobacterium tuberculosis (MTB)

• Cytotoxic T cells (CT) - Alveolar Macrophage (AM)

• Dentritic cells (DC) - Alveolar Macrophage (AM)

• Reactivation of Tuberculosis

• Dentritic Cells (DC) - Liposome (LP)

• Cytotoxic T Cells (TC) - Liposome (LP)

• Isoniazid (INH) - Mycobacterium tuberculosis (MTB)

The interactions have been represented graphically with 2DIs tool [70].

4.2.4 Treatment strategies implemented

At this step, two treatments against tuberculosis were modeled and implemented

within the computational infrastructure: INH (Section 4.2.4), the antibiotic admin-

istered to those individuals who get infected with the Mycobacterium, and RUTI®

vaccine (Section 4.2.4) that has been specifically developed as a therapeutic vaccine

for TB. The vaccine is capable to reduce bacillary load when administered after

chemotherapy in murine and guinea pig models. It is also immunogenic when given

to healthy adults and individuals with latent TB.

Isoniazid antibiotic

INH is one of the most effective anti-TB drugs used for TB treatment. This com-

pound was first synthesized in the early 20th century, and its activity against TB
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was first reported in the early 1950s [71, 72]. With the introduction of INH, TB

treatment was first considered feasible. At therapeutic levels, INH is bactericidal

against actively growing intracellular and extracellular MTB organisms. INH is used

in conjunction with other effective anti-tuberculosis agents under multi-drug ther-

apy.

This pro-drug requires activation by the heme enzyme catalase/peroxidase (KatG)

of MTB. Johnsson et al. [73] subsequently established that INH is a pro-drug and

requires conversion by the mycobacterial catalase-peroxidase (KatG) encoded by the

KatG gene. The activation mechanism has not yet been clearly understood as the

binding interaction has not been appropriately established [74].

INH works by killing the bacteria that cause tuberculosis disease. Still, it is thought

to prevent the tuberculosis mycobacteria from synthesizing substances called my-

colic acids [75] needed to form the cell walls of the bacteria. INH also seems to

combine with an enzyme that interferes with the cell metabolism of the mycobac-

teria. As a result of this metabolic alteration, the mycobacteria die. There are two

stages in the treatment of tuberculosis. In the first two months, treatment is aimed

at killing as many bacteria as possible. Therefore, several anti-TB drugs with differ-

ent mechanisms of action are used simultaneously, usually rifampicin, pyrazinamide,

isoniazid, and ethambutol.

Hence, combined protocol treatment is more likely to be effective than using a single

medicine. Controversially, using more drugs together make it less likely that bacte-

ria will develop resistance to the treatment. After this time, some of the medicines

are stopped, and the others (usually rifampicin and isoniazid) are continued for four

months to kill any remaining bacteria. INH is used in both stages of treatment.
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Later on, mutations in the katG gene in Mtb strains were associated with an INH-

resistant phenotype [76]. Many of the tuberculosis outbreaks in the world are drug-

resistant (DR), along with an increasing threat in certain regions around the world

[77, 78]. Most drug-resistant MTB clinical strains are resistant to INH [79].

RUTI® vaccine

Therapeutic vaccines do not aim to prevent tuberculosis infection, but act once the

infection, whether latent or active, is established. The main goal is to administer

these vaccines in addition to antituberculosis drugs, especially in more complex cases

of tuberculosis. The main aims are to:

• reduce the duration of drug treatment;

• promotes a rapid resolution of the clinical picture.

One of the most recent therapeutic vaccines is RUTI® [80, 81] developed by Archivel

Farma to integrate the treatment of latent TB by reducing the duration of prophy-

lactic therapy with INH. The vaccine showed a very good safety profile in a phase

2 trial [82] and is expected to start a phase 3 soon. Figure 4.3 shows a summary

of the therapeutic effects of RUTI®, focusing on decreasing the probability of tu-

berculosis reactivation. RUTI® has demonstrated its efficacy in controlling LTBI

in experimental models of mice and guinea-pigs after a short period of chemother-

apy. These experiments in animals showed the induction of a mixed (Th1, Th2, and

Th3), polyantigenic response with no local or systemic toxicity. Local accumulation

of specific CD8 T cells and a strong humoral response are characteristic features of

RUTI® that explain its protective properties. RUTI® was also designed to trigger a

new immunological response against antigens of the latent bacilli, i.e., the so-called
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Figure 4.3: Temporal strategy for the use of RUTI®, indicating the effects of short-course
chemotherapy and the requirement for subsequent immunotherapy [83]

“structural” antigens [84] and those associated with stress responses. Protective im-

munity arises against antigens that are actively released by growing bacilli. Likely,

the “focus” of the immunological response only on growing bacilli allows non-active

bacilli to remain “invisible” to the specific immunity of the host.

RUTI® is made with bacilli grown under the stressful conditions of starvation, low

pO2, and low pH. Conditions are achieved gradually by culturing solid media [85,

86]. Bacilli used to make RUTI® are subjected to conditions that are probably

found in the granuloma of hosts with active immunity: in other words, a low pO2

in the fibrotic structure of the granuloma and the low pH and starving conditions

inside the phagolysosome of the activated macrophage [87].

The choice of fragmentation of the bacilli for RUTI® formulation allowed optimal
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presentation of cell wall antigens, as well as the choice of its composition into li-

posomes [88]. The average diameter of these fragments, which is 0.1 mm, allows

the antigens in the cell wall to be effectively presented and thus provide an easier

recognition of latent bacilli. Moreover, it is well known that the cell wall of M.

tuberculosis has adjuvant properties [89] that ensure the induction of an immuno-

logical response without further adjuvant measures. In addition, the induction of a

polyantigenic reaction is postulated to help recognize latent bacilli. Another relevant

feature of RUTI® is the “detoxification” of the cell fragments obtained.

4.3 Retrospective validation of UISS-TB

To assess UISS-TB credibility, the results obtained from several tuberculosis studies,

widely reported in literature have been retrospectively reproduced. In particular,

a court of statistically significant digital twins with specific characteristics acquired

from the selected studies was generated for each reference study considered [90, 91,

92, 93, 94, 82].

A retrospective study investigates specific outcomes at the beginning of a study by

looking backward at data collected from previous patients. Retrospective studies

may be either cohort or case-control studies and have four primary purposes:

• to be an audit tool for comparison of the historical data with current or future

practice;

• to test a potential hypothesis regarding suspected risk factors concerning an

outcome;

• to ascertain the sample size and data required for a prospective study or trial;
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In the following paragraphs the in silico results, reproducting specific TB in vivo

studies will be reported. The main aim is to demonstrate that UISS-TB accu-

rately reproduces the natural mechanisms of pulmonary tuberculosis infection from

a phatophysiological point of view, along with the reproduction of the Mechanism

of Action (MoA) of isoniazid and RUTI® [91, 95, 96]. Thus, the three levels of the

retrospective validation will be described on the basis of three layers: physiological,

disease, and treatment layers.

4.3.1 Physiological model

Introduction

When challenged by an exposure to MTB, the immune system of normal healthy

adults responds in a fairly standardised way, which is described in detail in the

dedicated literature [97, 98]. As a first evidence of credibility, UISS-TB is able,

when informed with the input features of an average patient, to reproduce each

of these standardised immune responses. This preliminary evidence confirms that

UISS-TB is capable of replicating the fundamental features of the human immune

system. Actual extension of the UISS simulation platform is able, at the end of the

game, to reproduce and simulate two specific MTB scenarios i.e., the one in which

the host immune system is able to recognize and clear the infection and the other

one in which, instead, MTB establishes a chronic infection with some granulomas

formation as a reservoir of MTB infection.

Results

As first evidence of credibility, UISS-TB is able to mirror each of the expected im-

mune responses when informed of the input features of an average patient exposed
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to an Mtb challenge. Due to the lack of quantitative data related to the early phase

of Mtb infection in humans, a semi-quantitative approach to validate UISS-TB pre-

dictions was considered. In particular, for each depicted immune system dynamics

in the early response to Mtb, an expert panel of immunologists provided three pos-

sible scoring figures: 0 erroneous prediction, 1 partially corrected prediction (in this

case, a note explains the reasons why), 2 fully corrected prediction.

Specifically, mean behavior and error bars are shown for each biological entity. A

total of 100 digital twins simulations has been randomly run varying HLA reper-

toire, and one microliter of peripheral blood / 1 cubic millimeter of lung tissue was

simulated. It has been carried out several studies which are:

• The innate early host immune response to Mtb infection by the

digital patients: after Mtb challenge at day 0, an increase was observed

in terms of influx of phagocytic cells in the early phase of infection, includ-

ing recruited and activated neutrophils, macrophages, MHC-I and MHC-II

antigen-presenting cells by DCs and primarily resident alveolar macrophages

[13].

• The typical cellular response of CD4+ and CD8+ T cells mounted

against Mtb infection: on average, CD4+ Th17 population is the first

prominent response, followed by CD4+ Th1 response, contributing in the at-

tempt to control the infection. It has been observed that the referred timeline

is in good agreement with the described typical T cell response [13, 99].

• The dynamics of the typical CD4+ Th1 cytokines signature: IL-1 and

IL-12 are released almost immediately after the Mtb exposure, while IFN-γ

and IL-2 after a few days when the adaptive response is being mounted [13].
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• The dynamics of the typical CD4+ Th17 cytokines signature: it has

been observed that their levels are higher when compared to the Th1 signature

cytokines, indicating that the first line of adaptive defense is directed against

the extracellular activity of Mtb [13].

• The dynamics of LXA4 and PGE2: It has been observed a higher level

of the latter one: this is in line with the low virulence of the Mtb simulated

strain (such as H37Ra) that promotes PGE2 pro-apoptotic factor. [13].

• The dynamics of Mtb viable bacilli and specific IgM, IgG, and IgA

anti-Mtb: it has been observed that the immune system can control Mtb

spread after the first week post-infection; also this behaviour can be reproduced

and detected through UISS-TB and this is in line with literature data. [13].

• Evaluation of QuantiFERON-TB Gold Plus for predicting incident

tuberculosis among recent contacts: Guptal et al.’s work [100] has been

used to assess the capability of UISS-TB in predicting the numerosity of

healthy patients that eventually get infected after MTB exposure. UISS-TB

predicted 121 QFT-plus positive results against 126 ones reported in the study,

showing excellent evidence that mirrors experimental data.

4.3.2 Disease model

Introduction

Today, finding untreated tuberculosis patients data is quite impossible, because it

would be unethical to run a clinical trial on active TB patients with an untreated

(placebo) arm. However, the literature provides extensive evidences of the epidemi-

ology of active TB when untreated, thanks also to a large amount of data coming
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from sanatorium reports of different world zones.

To demonstrate that UISS-TB accurately reproduce the natural history of pul-

monary tuberculosis infection, model predictions have been validated in terms of::

1. Rate of mortality over a population of untreated subjects exposed to MTB

infection [92];

2. Rate of patients with latent MTB infection that develop the active disease

form over a period of time [93].

Results

Ragonnet et al. [92] considered the reports identified in a previous systematic review

of different studies from the prechemotherapy era and extracted detailed data on

mortality rate over time. They used a Bayesian framework to estimate the rates

of TB-induced mortality and self-cure. The inference was performed separately for

smear-positive TB (SP-TB) and smear-negative TB (SN-TB). They included 41

cohorts of SP-TB patients and 19 cohorts of pulmonary SN-TB patients in the anal-

ysis. The median estimates of the TB-specific mortality rates were 0.389 year−1

(95% credible interval [CrI], 0.335–0.449) and 0.025 year−1 (95% CrI, 0.017–0.035)

for SP-TB and SN-TB patients, respectively.

To demonstrate that UISS-TB is able to realistically reproduce these in vivo re-

sults, five SP-TB and two SN-TB cohorts with 1500 and 513 digital twins have

been generated respectively. It has been obtained that the median estimates of the

TB-specific mortality rates were 0.33±0.23 and 0.02±0.02 for SP-TB and SN-TB

patients (Figure 4.4). The results obtained are very close to the ones observed n

vivo. This demonstrates that UISS-TB is able to accurately reproduce the mortality

rate caused by the disease.
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Figure 4.4: The figure shows respectively the cumulative percentage of death (Smear-
positive and Smear-negative) of the digital patients generated through the observed data
from literature [92].

Shea et al. [93] estimated the rate of reactivation tuberculosis (TB) in the United

States, from an overall and by population subgroup point of view, considering spe-

cific TB cases. The rate of reactivation of TB was defined as the number of non-

genotypically clustered TB cases divided by the number of person-years at risk for

reactivation and due to prevalent latent TB infection (LTBI). Of the 39,920 TB

cases reported during 2006–2008, 79.7% of them was attributed to reactivation.

To reproduce in silico these observed results, a cohort of 1000 digital twins was

generated through a normal (or Gauss) distribution, using mean age and its stan-

dard deviation provided by the reference study. The simulation was set to for five

years to establish LTBI and then TB reactivation. In the time range of 2-4 years,

it has been observed that 79.7% of cases of patients progressed to an active form of

TB. Finally, UISS-TB was able to estimate the rate of disease reactivation almost

perfectly in comparison with the literature.
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4.3.3 Treatment model

Introduction

UISS accurately simulates tuberculosis dynamics and its interaction within the im-

mune system, and how it predicts the efficacy of the mechanism of action of isoniazid

[94] and RUTI® vaccine [82] in a specific digital population cohort. Specifically, two

groups of digital twins have been simulated. The first group was only treated with

isoniazid, while the second one was treated with the combination of RUTI® vaccine

and isoniazid, according to the dosage strategy described in the clinical trial design

[91]. UISS-TB shows to be in good agreement with clinical trial results suggesting

that RUTI® vaccine may favor a partial recover of infected lung tissue.

Results

In Katiyar et al.’s study [94], they evaluated and assessed the effectiveness of a

high-dose of isoniazid (INH) (16–18 mg/kg) as adjuvant to second-line therapy in

documented cases of MDR-TB. This was achieved through a double-blind, ran-

domized controlled trial with three treatment arms (high-dose INH, normal-dose

INH, and placebo) in addition to second-line drugs. The study primary outcomes

are represented by time to sputum culture conversion and proportion with sputum

culture negative six months after treatment initiation. To reproduce in silico the

above mentioned results, three cohorts of approximately 300 digital twins with the

dosages defined in [94] have been generated. Kaplan-Meier was used to represent

the conversion to SN-TB for some patients as performed in the reference study. In

particular, the Kaplan-Meier procedure estimates time-to-event models in the pres-

ence of censored cases. The Kaplan-Meier model is based on estimating conditional

probabilities at each time point when an event occurs, and taking the product limit
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of those probabilities to estimate the survival rate at each point in time.

Nell et al. [82] evaluated the safety, tolerability, and immunogenicity of three differ-

ent doses (5, 25, and 50 mg) of the novel antituberculosis vaccine RUTI® compared

to placebo in subjects with latent tuberculosis infection through a double-blind, ran-

domized, placebo-controlled Phase II clinical trial (95 patients randomized). Three

different RUTI® doses and placebo were tested, randomized both in HIV-positive

(n = 47) and HIV-negative subjects (n = 48), after completion of one-month isoni-

azid (INH) pre-vaccination. Each subject received two vaccine administrations, 28

days apart. Overall, a polyantigenic response was observed, which differed by HIV

status. The best polyantigenic response was obtained when administering 25 mg

RUTI®, especially in HIV-positive subjects, which did not increase after the second

vaccination.

To reproduce in silico the in vivo results, three cohorts (about 300 digital twins

with HIV negative), one for each dose (5, 25, and 50 mg) will be generated. Each

cohort will be simulated with the same treatment period according to the literature.

Finally, it should be analyzed each population and verified that 25 mg dosage is the

best one as observed in vivo.

In summary, in silico trials, innovations represent a powerful pipeline for predicting

the effects of specific therapeutic strategies and related clinical outcomes. Here, it

has been shown that the simulated mechanism of action INH is in good alignment

with the results coming from past clinical trials, and UISS-TB in silico platform will

be soon validated retrospectively.
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4.4 UISS-TB Graphical User Interface

As UISS is written in C language, a Graphic User Interface (GUI) and a web

server is needed to provide a user-friendly interface. The GUI can be accessed

at https://combine.dmi.unict.it/UISS-TB/. In a previous work, it was presented a

web interface developed in Flask micro-server [96].

Flask [101] is a web application framework written in Python [102]. It was developed

by Armin Ronacher [103] and is based on the Werkzeg WSGI toolkit [104] and the

Jinja2 template engine [105] (both projects were developed by the same team).

Today, the performance of the web platform has been improved by replacing the

Flask framework with Django [106]. Django is a high-level Python web framework

that enables the rapid development of secure and maintainable websites. It is free

and open-source, owns a thriving and active community, great documentation, and

many free and paid-for support options. These enhancements allow the launch of

the simulations separately from the main thread and in a more efficient way. Fig-

ure 4.5 shows a screenshot of the web Graphic User Interface (GUI) in which it is

possible to set different combinations of cellular and non-cellular parameters.
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Figure 4.5: Web Graphic User Interface of UISS-TB. This figure depicts the GUI of UISS
that allows the run of the simulations. The ”Simulation’s Parameters” zone, on the left
side of the figure, represents the vector of features for the personalization of the digital
patients. The ”Your Simulations” box, on the right side of the figure, shows the list of
all the simulations launched by the user. The simulations are classified in ”running” or in
”completed” status.

On the right side, one can see a box called ”Your simulation” containing a list

of the simulations, sorted by their creation date and classified in ”running” or in

”completed” status. On the left side, one can see a box named ”Simulation Pa-

rameters” containing a set of the biological and physiopathological parameters that

compose the vector of features created for the customization of TB patients. To

better represent the biological diversity of TB patients, it was enriched the compo-

sition of the vector of features used for the generation of digital patients libraries.

In particular, the ”vector of features” that defines a specific TB patient is composed

by the following parameters: 1) MTB virulence; 2) MTB Sputum; 3) CD4-Th1; 4)

CD4-Th2; 5) IgG; 6) TC; 7) IL-23; 8) IL-12; 9) IL17-A; 10) IL-2; 11) IL-1; 12) IL-10;

13) IFN1A; 14) IFN1B; 15) IFNG; 16) TNF; 17) Treg; 18) LXA4; 19) PGE2; 20)
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Vitamin D; 21) Age; 22) BMI. The digital patients were generated according to the

steps explained in [107]. For each entity, it specified the unit of measurement and

the range of values used to perform the simulations.

The simulation will be performed asynchronously. This allows launching the process

separately from the main thread, notifying the user when the simulation is finished,

and performing multiple simulations simultaneously.

In detail, after the user connects to the UISS-TB web interface, she/he can select the

Tuberculosis disease model. After that, the general GUI panel appears. The user

finds in the vector of features some parameters already filled in default values. The

user can vary these values according to the ranges shown within brackets near the

selected parameter. After that, one can click on the Submit button, and an unique

identification simulation number will be assigned. After selecting the simulation id,

the user can check the simulation status by clicking on the check status button.

When the simulation is completed, the user can visualize the results of the immune

system dynamics, choosing the one she/he would like to analyze (Figure 4.6).



Chapter 4. A framework based on ABM: Universal Immune System Simulator

(UISS)
70

Figure 4.6: The figure shows on the left all the parameters selected for the simulation and
the related simulation plot on the right. On the bottom right different types of graphs
can be selected.

In collaboration with the USFD partner (flameGPU development team) [108,

109, 110], a version of the GUI based on the client/server model is currently un-

der development. The client-side is managed by UniCT, while USFD develops the

server-side. The main objective is to maintain all the advantages described above

and run the UISS-TB simulator remotely on the University of Sheffield’s HPC ma-

chines using GPUs [111, 112]. This would result in lower simulation times, but

simultaneously, can allow to run many more simulations from different users.
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Chapter 5

A statistical analysis tool for

UISS: MetricUISS

UISS general framework, at each completed simulation, generates different types of

files describing the trend [56, 95], i.e., the amount of cellular and molecular entities

at each time step. For this reason, a tool called MetricUISS was developed to have

simultaneously multiple simulations and perform statistical analysis.

MetricUISS is a tool developed in Python3 [102], used in the biomedical field, partic-

ularly for the statistical analysis of large amounts of data generated by UISS and/or

for the generation of a cohort of digital patients [57]. It is divided into specific

modules. Thanks to this, it is easier to develop new features or to extend existing

ones. Therefore, MetricUISS can be adapted to any version of UISS, i.e., with a

specific disease module or the physiological one. It uses the Pandas library [113]

to manage all these data and perform statistical functionality. In Figure 5.1, one

can observe how the class is defined and all the variables useful for the operation.

In this context, the ” init() ” function is always executed when a class is created;

it is used to assign specific values to the properties of the object created and to

performs additional functions based on these values. The tool is executed with a
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Figure 5.1: Python ’Metric’ class uses the argument ’args.command’ to define its behavior
based on the input value, i.e., analysis or plot.

single command line from the shell containing all parameters to be set, as it does

not own any graphical interface, as well as the following command:

python3 metric.py < mode >

The ”argparse” library [114] is used to input selected arguments to the tool before

it starts. This library makes writing command-line interfaces easier by making it

more user-friendly. Argparse automatically scans the input arguments and converts

them into a python object called a ”dictionary” for use within the source code [115].



Chapter 5. A statistical analysis tool for UISS: MetricUISS 73

The argparse module also automatically generates help and usage messages, with

the –help argument, which can also be shortened to -h, and issues errors when users

give the program invalid arguments.

In particular, MetricUISS requires a first argument, ”mode”, which defines a set of

instructions to be executed based on the assigned value. There are two available

approaches implemented within the ”mode” attribute:

1. Analysis: allows ”n” simulations to be carried out and all the statistical

analyses set up (in this case for Tuberculosis) to be performed. As can be seen

in Figure 5.2 - Panel A, several arguments can be set:

• -h: displays all available parameters for this ”mode” selected;

• -d: defines the setting of data-input to be performed for UISS;

• -s: indicates the number of simulations to generate;

• -rseed: indicates the type of seed assigned to every simulation; it can be

random, random ”retrievable”, or static;

• -ml: defines the number of microliters;

• -t: indicates the time to be plotted on the x-axis (i.e., seconds, minutes,

days, months, weeks, years);

• -e: defines at how many time-steps the error bars should be plotted; by

default, it is set to 100 time-steps;

• -f : indicates the type of extension to use for the generated plots; by

default, it uses the PDF extension;

• -c: sets the number of CPUs assigned to run the simulations and the

analysis; if not specified, the tool will automatically use all CPUs installed

on the machine.
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Digital twins 1 CPU 2 CPUs 4 CPUs 8 CPUs
25 256 s 138 s 82 s 55 s
50 481 s 261 s 143 s 97 s
75 736 s 382 s 214 s 136 s
100 963 s 505 s 285 s 177 s

Table 5.1: Computational efforts expressed in seconds required to complete the different
number of simulations varying the numbers of assigned processors.

2. Plot: using previously generated simulations, all plots can be created also

producing any variants or new ones. As one can seen in Figure 5.2 - Panel B,

several arguments can be set:

• -h: displays all available parameters for this ”mode” selected;

• -ml: defines the number of microliters;

• -t: indicates the time will be plotted on the x-axis (i.e., seconds, minutes,

days, months, weeks, years);

• -e: defines at how many time-steps an error bar should be plotted; by

default, it is set to 100 time-steps;

• -f : indicates the type of extension to use for the generated plots; by

default, it uses the PDF extension;

• -c: sets the number of CPUs assigned to run the simulations and the

analysis; if not specified, the tool will automatically use all CPUs installed

on the machine.

Hence, as previously mentioned, MetricUISS can be run in multiprocessor mode

[116] through the joblib library [117], with the advantage to speed up the execution,

due to the number of CPUs assigned.
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A B

Figure 5.2: Panels A and B show the available topics for the ”analysis” and ”plot” ap-
proaches respectively.

MetricUISS tests were run on a server equipped with 8 Intel Xeon E5 CPUs at 2.40

GHz and 128 GB of RAM with different combinations of simulations ranging from 25

to 100, using 1, 2, 4, and 8 CPUs. Table 5.1 shows the total time expressed in seconds

to complete the n simulations classified by the number of CPUs and simulation time

(3 months - 90 days). Figure 5.3 shows the multiprocessor scalability of MetricUISS

in terms of computational cost, as described above. As one can observe, a clear

improvement can be obtained when using many processors (8 in this case) and a

large number of simulations.

In Figure 5.4, the logic behind the operation of MetricUISS is shown and it can be

divided in four basic steps: i) parameter setting, ii) running UISS, iii) analysis, and

iv) representation of results. The current functionality implemented within the tool

includes:

• descriptive statistics: [118]



Chapter 5. A statistical analysis tool for UISS: MetricUISS 76

Figure 5.3: The figure shows the time taken into account (performance analysis) by Met-
ricUISS to complete the simulations (25, 50, 75, 100) using a different number of CPUs
(1, 2, 4, 8).

– Calculation of the mean value

– Measurement of the variance

– Analysis of the minimum value

– Calculation of the maximum value

• Extraction of a list of statistically relevant digital patients (useful to study a

single individual) [119, 120].

• Filtering of those digital patients in which the bacterial load reaches high levels

[121].
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Figure 5.4: The basic steps of MetricUISS.

• Creation of specific tables subdivided by cell types (useful to study the total

quantity in a specific time-step).

• Creation of plots by cell type based on mean and variance values.

• Generation or import of digital tuberculosis patients (with active or latent

tuberculosis) with specific characteristics from third-party software [95].

• Prediction of antibiotic and/or vaccine effects or their combination [57].

• Export of plots in pdf format.

MetricUISS makes use of the matplotlib library [122] for plot generation. Matplotlib

is a plotting library for the Python programming language and its numerical math-

ematical extension NumPy [123]. In particular, three different categories of plots

can be distinguished:

1. Quantitative plots for each cellular and molecular entity and related

status. More explanatorily, Figure 5.5 shows alveolar macrophages in the
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Figure 5.5: The figure represents the dynamics of alveolar macrophages in a scenario
simulated for one month (30 days) with a cohort of 20 digital twins. The green line
shows the average trend of the cell populations, while the error bars in red represents the
standard deviation.

necrotic status over a total of 20 digital twins. It can be seen that 3 digital

twins reached lethal bacterial load levels during the simulation.

2. Plots with different counts for entities divided by compartment. Fig-

ure 5.6 depicts the average percentage of cells (neutrophils, macrophages, ep-

ithelial cells, and lymphocytes) divided between the lung compartment and

MTB sputum [124].

3. Customized plots. Specifically, MetricUISS allows a function to create com-

binations of plots (Figure 5.7) based on a specific study purpose (e.g., writing

a scientific paper, presentation, or other).
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Figure 5.6: The figure depicts the differential cell counts in lung and sputum of the neu-
trophils, macrophages, epithelial cells, and lymphocytes. Horizontal bars in red indicate
the mean value. The bullets represent the entity in each simulation divided for the com-
partment and expressed in percentage.

Figure 5.7: The figure represents a multiplot composed by: A) Interleukin 10, B) Tu-
mor Necrosis Factor-alpha, C) Lipoxin A4, D) Prostaglandin E2, E) Type I Interferons:
Interferon-alpha and F) Type I Interferons: Interferon-Beta.
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Chapter 6

A pathway analysis tool for UISS:

ParallEl paThways AnaLyzer

(PETAL)

ParallEl paThways AnaLyzer (PETAL) [125, 126] is a tool developed in Python3

language [102] (now compatible with the latest version of Python 3.9.x) that provides

better use and integration of Kyoto Encyclopedia of Genes and Genomes (KEGG)

[127]. It represents a new pathway analysis tool that automatically explores and

scans significant nodes of a pathway within KEGG, using new specially developed

open-source tools and Python libraries, such as Pandas [128] and Joblib [117].

Specifically, it allows users to find hidden interactions between significant proteins

belonging to the same pathway and other proteins within possible related pathways.

Along with this, PETAL allows to search deeply for ancestor and descendant nodes

of a specific target gene, making this task faster in terms of performance.

PETAL is potentially able to find pathways that are distant from those containing

the target of interest. In addition, the core is scalable and parallelized with the abil-

ity to easily add new functionality and specific modules to simplify and automate
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the discovery of new therapeutic targets or biomarkers.

The following paragraphs describe that PETAL exploits a data structure called

Dataframe [128], containing specific information between two interlinked genes. For

each relationship found, information about the two genes, such as the gene name

and its identifier under the Homo sapiens (hsa) field, the isoforms involved, the path-

ways of origin, the protein interaction with its biological function, and the number

of occurrences is stored in the data structure. Furthermore, during the analysis, the

number of occurrences is calculated for each connection.

Finally, PETAL provides a graphical interface that allows the user to navigate

through an interactive tree containing all the information found during the search.

The tree is constructed from the data contained within the Dataframe and formatted

in JSON. The main advantages of the tool can be summarised in three points:

1. a better performing of Breadth-First Search (BFS) [129];

2. the calculation of occurrences during analysis (i.e., the number of times a given

path was found in all the pathways retrieved by KEGG during the search

process between the initial and final gene);

3. a user-friendly interface with more information displayed.

PETAL output is made available through the d3.js library [130]. D3.js is a JavaScript

library developed to display data dynamically and interactively, starting from some

organized numeric data that combine HTML5 [131], Scalable Vector Graphics (SVG)

[132], and Cascading Style Sheets (CSS) [133]. It is worth mentioning that PETAL

GUI was not developed entirely from scratch but through the ‘Radial Tree’ project

developed by Wm Leler [134]. It represents a viewer of interactive radial trees in

which users can navigate and explore all the available information obtained during
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the search. To this aim, the GUI includes specific commands that allow users to

manage the output tree. Kyoto Encyclopedia of Genes and Genomes (KEGG) col-

lects databases distributed according to their specific functionality, specifically in

genomes, biological pathways, diseases, drugs, and chemicals.

The KEGG database project was initiated in 1995 by Minoru Kanehisa, predicting

the need for a computer resource that could be used for biological interpretation

of genome sequence data, so he began to develop the KEGG PATHWAY database

[135, 136].

It contains manually drawn pathway maps representing experimental knowledge

about metabolism and several other cell and organism functions. In particular, each

pathway includes a range of information, such as a network of molecular interac-

tions and reactions and the links between genes and gene products (mainly proteins)

within the genome (Figures 6.1 and ( 6.2)).

KEGG is widely used in bioinformatics, particularly for data analysis in genomics,

metagenomics, modeling and simulation in systems biology, and translational re-

search in drug development.
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Figure 6.1: Tuberculosis pathway with identifier hsa05152 [137]. The map shows all the
interactions and relationships involved in this specific disease.
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Figure 6.2: It shows all descriptive and non-descriptive information related to the selected
pathway [138], such as: i) name, ii) description, iii) map, iv) organism, v) list of genes
involved and many other specific information. This figure shows only a sketch of the
hugeness of the potential retrievable information.
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KEGG is divided into 4 macro-databases and various sub-databases with refer-

ence to the following functionality:

1. System Information

• Pathway: pathway maps for cellular and organismal functions – https:

//www.kegg.jp/kegg/pathway.html

• Module: modules or functional units of genes – https://www.kegg.jp/

kegg/module.html

• Brite: hierarchical classifications of biological entities – https://www.

kegg.jp/kegg/brite.html

2. Genomic information

• Genome: complete genomes – https://www.kegg.jp/kegg/genome.

html

• Genes: genes and proteins in the complete genomes – https://www.

kegg.jp/kegg/genome.html

• Orthology: ortholog groups of genes in the complete genomes – https:

//www.kegg.jp/kegg/ko.html

3. Chemical information

• Compound, Glycan: chemical compounds and glycans – https://

www.kegg.jp/kegg/compound/, https://www.kegg.jp/kegg/glycan/

• Reaction, Rpair, Rclass: chemical reactions – https://www.kegg.

jp/kegg/reaction/

https://www.kegg.jp/kegg/pathway.html
https://www.kegg.jp/kegg/pathway.html
https://www.kegg.jp/kegg/module.html
https://www.kegg.jp/kegg/module.html
https://www.kegg.jp/kegg/brite.html
https://www.kegg.jp/kegg/brite.html
https://www.kegg.jp/kegg/genome.html
https://www.kegg.jp/kegg/genome.html
https://www.kegg.jp/kegg/genome.html
https://www.kegg.jp/kegg/genome.html
https://www.kegg.jp/kegg/ko.html
https://www.kegg.jp/kegg/ko.html
https://www.kegg.jp/kegg/compound/
https://www.kegg.jp/kegg/compound/
https://www.kegg.jp/kegg/glycan/
https://www.kegg.jp/kegg/reaction/
https://www.kegg.jp/kegg/reaction/
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• Enzyme: enzyme nomenclature – https://www.kegg.jp/kegg/annotation/

enzyme.html

4. Health information

• Disease: human diseases – https://www.kegg.jp/kegg/disease/

• Drug: approved drugs – https://www.kegg.jp/kegg/drug/

PETAL uses the BFS search logic to carry out the breadth analysis, which starts

with the initial retrieving of data, particularly the biological pathways present in

KEGG.

The breadth search is an uninformed search in which the nodes of the logical tree

are analyzed following order of proximity to the root node (Figure 6.3). The nodes

closest to the root node are expanded first, e.g., from left to right, and then all

other successor nodes are extended to a depth d. Each successor node is added to

the First Input First Output (FIFO) queue of nodes yet to be analysed as soon as

it is expanded. For demonstrative simplicity, in the following state-space, the order

of exploration of the nodes is described. Root node 1 is the first to be explored,

successor node 2 is the second, successor node 3 is the third, and so on. For each

exploration, child nodes 4 and 5 are identified and added to the queue in the open list

of nodes still to be explored. The pseudo-code is described in detail in Figure 6.4.

The breadth search is optimal when the step cost is equal for each vertex and

is a non-decreasing function of the depth of the search tree. Its complexity is an

exponential function of the node depth (d), branching factor (b), and the maximum

number of expanded nodes is O (bd). The complexity is defined as follows:

O(bd) = 1 + b1 + b2 + . . . + bd−1 (6.1)

https://www.kegg.jp/kegg/annotation/enzyme.html
https://www.kegg.jp/kegg/annotation/enzyme.html
https://www.kegg.jp/kegg/disease/
https://www.kegg.jp/kegg/drug/
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Figure 6.3: The logic of breadth-first search.

Figure 6.4: BFS pseudo-code.

Figure 6.5 shows the schematic logic of PETAL. It can be seen that before start-

ing the analysis, PETAL requires the user to provide specific details such as the

pathway, gene, and maximum depth. In this way, less common pathways can be

discovered, and the number of times they appear in other biological pathways can

be shown. The advantage is that the results are obtained automatically and quickly,

saving time and reducing complexity. This process would have taken much longer if

conducted manually. In addition, a graphical interface allows the exploration of the



Chapter 6. A pathway analysis tool for UISS: ParallEl paThways AnaLyzer

(PETAL)
88

Figure 6.5: PETAL functional scheme.

output tree, showing all connections between genes in different depths, the number

of occurrences, and other information about the pathway.

The initial parameters are passed through batch mode and read with Python’s

argparse library, and two distinct behaviors are implemented:

1. Analysis

• Load (optional – boolean): if true, this parameter allows the last

analysis previously completed to be reloaded and extended to a greater

depth.

• Pathway (required – string): this parameter represents the biolog-

ical pathway (in hsa format) from which the analysis will start (e.g.,

hsa05152);

• Gene (required – string): it represents the starting gene present in

the selected pathway. If the inserted gene is not detected in the biological

pathway, the analysis will fail (e.g., hsa:3458);

• Depth (required – integer): it indicates the maximum search depth

of the analysis;
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• #CPU (optional – integer): it indicates the maximum number of

CPUs used during the analysis. If it is set to 0 or its value exceeds the

number of installed CPUs, the analysis will be automatically charged to

the maximum number.

2. Filter

• Target (required – string): it represents the name(s) of the target

genes to be searched for in the CSV files.

• #CPU (optional – integer): indicates the maximum number of CPUs

used during the analysis. If it is set to 0 or its value exceeds the num-

ber of installed CPUs, the analysis will be automatically charged to the

maximum number.

In the current version of PETAL (v2.0), the database download has been removed

and integrated within the source code using a single CSV file. This feature has

ensured an increase in performance, i.e., the time to complete analysis has been

drastically reduced.

PETAL, at this step, will load two dataframes into the RAM, one for pathways and

one for genes, respectively. During the analysis, all the queries implemented are

applied to these two dataframes to complete the running successfully. If an update

to the database is released, PETAL automatically downloads it and immediately

proceeds with the analysis. If there are no updates, it proceeds to the next step.

PETAL tool checks the user’s input data in 3 different steps. Firstly, it verifies that

the pathway id is in the ”hsa” format (i.e., hsa05152 - Tuberculosis pathway) [137,

138] and exists within the previously loaded pathway database. The second step
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deals with the checking of the gene id in its ”hsa” format (i.e., hsa:3458 - Interferon-

gamma) and its presence within the gene database. Lastly, PETAL checks whether

the selected gene is within the pathway and owns at least one relationship. If these

three checks fail (execution stops), an error message is returned specifying the rea-

son of this stop.

In this step, the global DataFrame structure is created. It contains all the connec-

tions found during the analysis, grouped by their depth. In figure 6.6, each row

shows the following data collection and information:

• depth: shows the depth of the connection between the two genes (e.g., 1);

• starting gene id: specifies the name of the initial gene in hsa format (e.g.,

hsa:3458);

• starting gene name: indicates the name of the initial gene (e.g., IFN-gamma);

• ending gene id: specifies the name of the ending gene in hsa format (e.g.,

hsa:3459);

• ending gene name: indicates the name of the ending gene (e.g., IFNGR1);

• relation: shows the protein interaction between the two genes (e.g., PPrel);

• subtype: represents the nature of the biochemical interaction (e.g., inhibition,

phosphorylation);

• reference pathway: deals with the pathway in which the connection between

the two genes was found (e.g., hsa05230);

• fullpath: specifies the complete hierarchy from the initial gene to the ending

gene found by the analysis (e.g., MAPK1/MYC/LDHAL6A);
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• occurrences: shows the number of occurrences of a specific gene (e.g., 6).

The analysis is performed in parallel through the Joblib library. The analysis deals

with a depth equal or superior to 1. In the former case, the analysis takes care of

the initial gene, while a list of genes is considered in the latter one. Specifically, the

analysis consists of the following sub-phases:

• Depth 1:

– Reading of the KGML file of the selected pathway.

– Providing the genes directly relate to the starting gene, including their

biological relationships.

– All equal rows (duplicates) are removed except those per relation. The

number of replications per relation will be kept as the number of oc-

currences found. For example, if relation A-B is found ten times (i.e.,

ten rows in the dataframe), the nine rows are removed, and in the one

remaining row, the number of occurrences becomes 10.

– Appending the results obtained to the global dataframe.

– Exporting these results to a CSV file.

• Depth 2, . . . , n:

– Extraction of the descendent genes previously found and saving them in

a list.

– Parallel processing of each gene in the list through all steps reported in

the depth sub-step 1.

A JSON file must be created to view the tree by inserting all the links saved in

the global data frame after the analysis. Figure 6.7 shows a screenshot of PETAL
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Figure 6.6: A sketch of the results obtained from the in-depth analysis.

Figure 6.7: An output tree example (MAPK1 pathway) was obtained by running the
algorithm with a depth equal to 5. The figure depicts an interactive instance of the
output tree generated by analyzing the biological pathway ‘MAPK’. The starting gene is
represented by MAPK1 (alias ERK), and the depth search level is equal to five. As one
can see, all the genes in output are classified by their depth; the gene in red (PIK3CA)
represents the ending gene level reached by the analysis. The box on the right shows
specific information related to the pathway understudy for every single gene. The upper
panel represents the graphical user interface control buttons.

GUI: on the left, one can see the connection tree and the command toolbox. On

the right, one can see the information of a specific gene divided by: i) whole path,

ii) depth, iii) number of occurrences, and iv) related organism code (e.g., “hsa”),

which identifies the gene accordingly to KEGG nomenclature. At the moment, a

parser is being developed to allow UISS to correctly interpret the results obtained

from PETAL. PETAL predictive capability, considering as test cases three specific
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cancer scenarios coming from the recent literature. In particular, it has been selected

three studies that suggest particular genes as potential driver of drug resistance to

EGFR tyrosine kinases inhibitors [139], used in routine cancer clinical practice.

The cancer scenarios, it was considered are chronic myelogenous leukemia (CML),

non-small cell lung cancer (NSCLC), and head and neck squamous cell carcinoma

(HNSCC), as reported in [140], [141], and [142]. For each of them, the authors

respectively suggested SNCA [143], BCL-6 [144], and YAP-1 [145] as potential driver

genes of drug resistance to EGFR tyrosine kinases inhibitors. The main factors

provoking drug resistance to EGFR tyrosine kinases inhibitors (TKIs) [146] are

still poorly understood, even though several mechanisms of EGFR-TKI-resistance

have been elucidated by analyzing tumor samples obtained at different stages of

tumor progression [147, 148]. Here, it has been used PETAL to test its capability

to identify these potential target genes involved in tumor progression and EGFR

inhibitors resistance. PETAL detected the same targets investigated in the recent

literature for the ancestor and descendent nodes of SNCA, BCL-6, and YAP- 1,

across the EGFR pathway [149]. PETAL, to validate it, has been carried out the

analysis searching for the three potential driver genes of drug resistance to EGFR

tyrosine kinases inhibitors, starting from EGFR gene protein (hsa:956) (Figure 6.8)

and related pathway of origin (EGFR tyrosine kinase inhibitor resistance, hsa01521,

https://www.kegg.jp/kegg-bin/show_pathway?hsa01521), according to KEGG

nomenclature. The three selected genes are:

• BCL6 with identifier ”hsa:604” related to NSCLC disease;

• SNCA with the identifier ”hsa:6622” related to CML disease;

• YAP1 with identifier ”hsa:10413” related to HNSCC disease.

https://www.kegg.jp/kegg- bin/show_pathway?hsa01521
https://www.kegg.jp/dbget-bin/www_bget?hsa:604
https://www.kegg.jp/dbget-bin/www_bget?hsa:6622
https://www.kegg.jp/dbget-bin/www_bget?hsa:10413
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Figure 6.8: EGFR tyrosine kinase inhibitor resistance pathway: the starting gene EGFR
in all its isoforms is highlighted in red.

Case test with BLC6 target gene, PETAL discovered 13 different paths to reach

BLC6 from EGFR (Figure 6.9). It is worth mentioning that the entire data table

contains more than five entries. It has been observed that, independently of the

depth level of the analysis, BCL6 is always connected with the FOXO6 gene [150]

through direct interaction. Furthermore, the “Pathway of origin” column highlights

the involvement of the FOXO signaling pathway (hsa04068) and the related gene

expression (GErel) between BCL6 and FOXO6. These relationships highlight the
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Figure 6.9: An output tree example (starting from the EGFR pathway) was obtained by
running the algorithm with a depth equal to 15. BCL6 target gene is highlighted in red.

already prominent role of FOXO-group proteins associated with cell cycle progres-

sion and DNA-repair [151, 152].

For what concerns SNCA, PETAL discovered 12 different paths to reach SNCA

from EGFR. Through the filtering of data, it is observed that SNCA is always linked

to PRKN protein [153] through a protein-protein relation (PPrel), independently of

the depth level of the analysis and path. Even though PRKN is linked to SNCA

through the Parkinson’s disease pathway (hsa05012), this protein gene may also act

as a tumor suppressor protein, according to the literature [154]. Figure 6.10 shows

a screenshot of PETAL GUI after the in-depth search analysis of the SNCA gene.

Case test with YAP1 target gene, PETAL discovered 52 different paths to reach

YAP1 (Figure 6.11), starting from EGFR and EGFR tyrosine kinase inhibitor re-

sistance pathway [155]. YAP1 is detected within a depth level equal to 6. In this

case, AMOT protein represents the closer gene connected to YAP1 and is involved

in the modulation of YAP1 at that depth level. Moreover, YAP1 was also detected,
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Figure 6.10: An output tree example (starting from EGFR pathway) was obtained by
running the algorithm with a depth equal to 15. SNCA target gene is highlighted in red.

launching the algorithm with a depth level equal to 15. In this case, the closest

gene connected to YAP1 is the YWHAQ protein [156]. It is worth mentioning that

Hippo signaling pathway [157] is always present in this analysis, independently of

the depth level of the analysis and starting gene. To our best knowledge, many of

the genes involved in Hippo signaling are recognized as tumor suppressor genes, and

they are mutated in many human cancers [158]. In this context, YAP1 is considered

an oncogene and has already been detected in high concentrations in some human

cancers [159].
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Figure 6.11: An output tree example (starting from EGFR pathway) was obtained by
running the algorithm with a depth equal to 15. YAP1 target gene is highlighted in red.
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Chapter 7

A pattern-recognition tool:

Pattern rEcognition frAmeworK

(PEAK)

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus

that causes coronavirus disease 2019 (COVID-19), a contagious disease plaguing

the world for over two years. Despite the great multitude of critical situations and

difficulties, this pandemic also made the possibility to highlight the importance of

specific tools based on artificial intelligence to predict the spread of COVID-19 and

overcome the related conseqeunces [160, 161]. The main open issue of these tools

deals with the requirement of advanced knowledge of regression and classification

algorithm theory. Hence, researchers are often looking for tools and software so-

lutions able to satisfy this important aspect of data analysis. Pattern rEcognition

frAmeworK (PEAK), a newly developed tool for data analysis, through the use of

specially designed open-source tools and Python libraries [102], such as Pandas,

Joblib, Matplotlib, and Scikit, could be used to achieve this objective.
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PEAK includes a scalable, parallelized engine to easily add new features and spe-

cific modules to simplify and automate data analysis. During my Ph.D. programme,

PEAK usability and efficiency were tested and verified by performing a particular

case study using the dataset of the 10.000 DT samples obtained running Universal

Immune System Simulator for SARS-CoV-2 (UISS-SARS-CoV-2) [57]. As previ-

ously mentioned, UISS can be extended to reproduce different diseases and related

treatments [91, 162, 163, 164, 52, 165, 95]. In this specific case, UISS-SARS-CoV-2

is an extension of UISS capable to reflects the dynamics of COVID-19 infection.

START TOOL
CONFIGURATION

DATASET
PREPROCESSING

LOADING DROPPING
COLUMNS

DROPPING
ROWS NORMALIZATION FACTORING BACKUP

EXPLORATORY
DATA

ANALYSIS

CORRELATION
ANALYSIS

LINEAR REGRESSION
ANALYSIS

CLASSIFICATION

CORRELATION
MATRIX

RESAMPLING

END

Figure 7.1: PEAK functional scheme. The tool consists of different steps: dataset import,
data processing, data exploration, correlation analysis, regression analysis, and/or clas-
sification.

PEAK workflow is straightforward to carry out different analyses, as depicted

in Figure 7.1. First, it consists of the input dataset processing followed by the re-

gression or classification analysis according to the question of interest. Specifically,

PEAK requires four parameters section to get started: i) settings, ii) dataset, iii)

regression, and iv) classification. Each section requires additional sub-parameters.

The advantage of using this tool lies in getting the results automatically and quickly,

saving time, and decreasing complexity. This process would have taken much longer

if conducted manually.
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As a case study, the tool was used on a well-defined dataset retrieved from UISS-

SARS-CoV-2 [57]. Specifically, a cohort of 10,000 digital twins with different im-

munological characteristics was generated. For each dataset entry, the mean was

calculated over the columns of our interest, which concern:

• Cytotoxic T cell (TC)

• IgG antibodies (IgG)

• Interferon gamma (IFN-γ)

• Lung epithelial cells (LEP)

• Interleukin 6 (IL-6)

• Interleukin 12 (IL-12)

Pearson correlation coefficient [166] has been calculated for each column of the

dataset. Correlation matrix (Figure 7.2) is then generated using the same indices

abovementioned. Observed correlations are not related by a cause-and-effect rela-

tionship but they represent the capability of one variable to change as a function of

the other considered variable. According to the COVID19 dataset, the correlation

between TC and LEP is negative −0.73. This reflects the immunological behavior

generally observed when TC becomes active, migrating into the site of infection,

recognizing and killing infected LEP to attempt the eradication of the reservoir of

infection. The correlation between IL-6 and LEP instead is strongly negative at

−0.96. This reflects the well-observed scenario in which IL-6 is correlated with a

fatal prognosis. Moreover, the correlation between TH1 and IFN-γ is strongly pos-

itive at 0.97. This reflects the well-known behavior that links TH1 with the IFN-γ
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secretion. Finally, the correlation between TC and IL-6 is positive at 0.77. This re-

flects the inflammatory response that, in effective immune response, can contribute

to eradicate any infection reservoir.

Figure 7.2: Correlation matrix. The figure depict the correlation matrix of Pearson. Each
row shows the correlation coefficients be- tween the variables, and each cell shows the
correlation between two variables.

PEAK is an open-source tool that offers a wide range of features for data analysis

through regression or classification of the provided dataset in a fully automated

way. Users can find the source code freely available on the GitHub repository. An

intuitive graphical interface will be added to PEAK to allow the user to perform

analysis. New analyses (e.g., Bag-of-word) will be added, while existing analyses

will be improved in due course.
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Chapter 8

Conclusions

Computational models are useful for the understanding of biological systems. The

pharmaceutical companies suggest that computational biology can play an excellent

role in this field. In silico models can offer specific answers to the general behav-

ior of the immune system, analysis of cellular and molecular interactions, effects of

treatments, and progression of the disease.

Inside the STriTuVaD project, UISS-TB has contributed in a significant way in pro-

viding a level 3 simulation platform (i.e., each individual of the reference population

is simulated and represented using biological and physiopathological data coming

from real patients). UISS was able to achieve the necessary statistical power (even-

tually integrated by a number of digital patients) to offer an effective way to estimate

time to inactivation of M. tuberculosis with a standard phase II clinical trial, and

also to obtain an in silico prediction of the effect of any recurrences. In this con-

text, UISS in silico platform is addressing the main goal of the STriTuVaD project

providing a computational infrastructure able to simulate the relevant individual

human physiology and physiopathology in patients affected by M. tuberculosis and

to predict the general outcome of a specific vaccination strategy against the disease.

UISS-TB is a state-of-the-art agent-based model able to track the dynamics of TB
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infection in humans. Individual digital patients are defined by a vector of features,

known to be fundamental in TB infection dynamics and commonly clinically mea-

sured.

UISS-TB disease model was developed to simulate the dynamics and the interac-

tions of the MTB. Moreover, the main hallmarks of MTB infection (latent and active

phases) have been identified. Current results show UISS capability to simulate the

intrinsic immune system behavior that elicits the complete clearance of the infection

or, eventually, the chronic establishment of MTB reservoir inside the host. How-

ever, UISS-TB has been extended to take care also of the reactivation of TB latent

infection and specific mechanisms of action of both antibiotics treatments and vac-

cination strategies were added.

Further steps deal with the creation of a set of digital subjects to reproduce the

biological diversity of the simulated individuals.

Through a “vector of features” that combines both biological and pathophysiological

parameters, the digital patient was personalized to reproduce its subject’s physiol-

ogy and pathology.

To successfully carry out the qualification of UISS-TB simulator, more accurate ret-

rospective and prospective analyses will be conducted.

PETAL will be extended with new databases other than KEGG (e.g., Reactome

and WikiPathways). PEAK will be enabled to perform further statistical analyses

(e.g., Bag-of-word) and modules related to artificial intelligence (e.g., Word2Vec).

In conclusion, in the vaccine development pipeline, UISS general platform with its

modules can be considered one of the leading in silico trial solutions along with spe-

cific tools (e.g., PEAK and PETAL) that could further extend its functionalities.
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[148] F. Giaǹı, G. Russo, M. Pennisi, L. Sciacca, F. Frasca, and F. Pappalardo.

“Computational modeling reveals MAP3K8 as mediator of resistance to ve-

murafenib in thyroid cancer stem cells”. In: Bioinformatics 35.13 (Nov. 2018),

pp. 2267–2275. issn: 1367-4803. doi: 10.1093/bioinformatics/bty969.

https://doi.org/10.1038/s41598-019-55208-5
https://doi.org/10.1038/s41598-019-55208-5
https://doi.org/10.1038/s41598-019-55208-5
https://doi.org/10.3390/cancers12030731
https://doi.org/10.3390/cancers12030731
https://www.mdpi.com/2072-6694/12/3/731
https://www.mdpi.com/2072-6694/12/3/731
https://doi.org/10.1093/bioinformatics/bty969


Bibliography 130

eprint: https://academic.oup.com/bioinformatics/article-pdf/35/

13 / 2267 / 28878383 / bty969 . pdf. url: https : / / doi . org / 10 . 1093 /

bioinformatics/bty969.

[149] K. Oda, Y. Matsuoka, A. Funahashi, and H. Kitano. “A comprehensive path-

way map of epidermal growth factor receptor signaling”. In: Mol Syst Biol 1

(2005), p. 2005.0010.

[150] F. M. Jacobs, L. P. van der Heide, P. J. Wijchers, J. P. Burbach, M. F.

Hoekman, and M. P. Smidt. “FoxO6, a novel member of the FoxO class

of transcription factors with distinct shuttling dynamics”. In: J Biol Chem

278.38 (2003), pp. 35959–35967.

[151] K. K. Ho, S. S. Myatt, and E. W. Lam. “Many forks in the path: cycling

with FoxO”. In: Oncogene 27.16 (2008), pp. 2300–2311.

[152] H. Tran, A. Brunet, J. M. Grenier, S. R. Datta, A. J. Fornace, P. S. DiStefano,

L. W. Chiang, and M. E. Greenberg. “DNA repair pathway stimulated by

the forkhead transcription factor FOXO3a through the Gadd45 protein”. In:

Science 296.5567 (2002), pp. 530–534.

[153] C. Alves da Costa, E. Duplan, L. Rouland, and F. Checler. “The Transcrip-

tion Factor Function of Parkin: Breaking the Dogma”. In: Front Neurosci 12

(2018), p. 965.

[154] A. Gupta, S. Anjomani-Virmouni, N. Koundouros, and G. Poulogiannis. “loss

promotes cancer progression via redox-mediated inactivation of PTEN”. In:

Mol Cell Oncol 4.6 (2017), e1329692.

https://academic.oup.com/bioinformatics/article-pdf/35/13/2267/28878383/bty969.pdf
https://academic.oup.com/bioinformatics/article-pdf/35/13/2267/28878383/bty969.pdf
https://doi.org/10.1093/bioinformatics/bty969
https://doi.org/10.1093/bioinformatics/bty969


Bibliography 131

[155] T. Huang, Y. Zhou, J. Zhang, A. S. L. Cheng, J. Yu, K. F. To, and W.

Kang. “The physiological role of Motin family and its dysregulation in tu-

morigenesis”. In: Journal of Translational Medicine 16.1 (2018), p. 98. issn:

1479-5876. doi: 10.1186/s12967-018-1466-y. url: https://doi.org/10.

1186/s12967-018-1466-y.

[156] H. Liu, Y. Tang, X. Liu, Q. Zhou, X. Xiao, F. Lan, X. Li, R. Hu, Y. Xiong,

and T. Peng. “14-3-3 tau (YWHAQ) gene promoter hypermethylation in

human placenta of preeclampsia”. In: Placenta 35.12 (2014), pp. 981–988.

[157] D. Pan. “The hippo signaling pathway in development and cancer”. In: Dev

Cell 19.4 (2010), pp. 491–505.

[158] M. Yin and L. Zhang. “Hippo signaling: a hub of growth control, tumor

suppression and pluripotency maintenance”. In: J Genet Genomics 38.10

(2011), pp. 471–481.

[159] T. Moroishi, C. G. Hansen, and K. L. Guan. “The emerging roles of YAP

and TAZ in cancer”. In: Nat Rev Cancer 15.2 (2015), pp. 73–79.

[160] Z. Li, S. Yang, and J. Wu. “The Prediction of the Spread of COVID-19 using

Regression Models”. In: 2020 International Conference on Public Health and

Data Science (ICPHDS). 2020, pp. 247–252. doi: 10.1109/ICPHDS51617.

2020.00055.

[161] H. B. Syeda, M. Syed, K. W. Sexton, S. Syed, S. Begum, F. Syed, F. Prior,

and F. Yu. “Role of Machine Learning Techniques to Tackle the COVID-19

Crisis: Systematic Review”. In: JMIR Med Inform 9.1 (2021), e23811.

https://doi.org/10.1186/s12967-018-1466-y
https://doi.org/10.1186/s12967-018-1466-y
https://doi.org/10.1186/s12967-018-1466-y
https://doi.org/10.1109/ICPHDS51617.2020.00055
https://doi.org/10.1109/ICPHDS51617.2020.00055


Bibliography 132

[162] M. Pennisi, G. Russo, G. Sgroi, G. A. P. Palumbo, and F. Pappalardo. “In

Silico Evaluation of Daclizumab and Vitamin D Effects in Multiple Sclero-

sis Using Agent Based Models”. In: Computational Intelligence Methods for

Bioinformatics and Biostatistics. Ed. by P. Cazzaniga, D. Besozzi, I. Merelli,

and L. Manzoni. Cham: Springer International Publishing, 2020, pp. 285–

298. isbn: 978-3-030-63061-4.

[163] F. Pappalardo, E. Fichera, N. Paparone, A. Lombardo, M. Pennisi, G. Russo,

M. Leotta, F. Pappalardo, A. Pedretti, F. De Fiore, and S. Motta. “A com-

putational model to predict the immune system activation by citrus-derived

vaccine adjuvants”. In: Bioinformatics 32.17 (May 2016), pp. 2672–2680.

issn: 1367-4803. doi: 10.1093/bioinformatics/btw293. eprint: https://

academic.oup.com/bioinformatics/article-pdf/32/17/2672/7374205/

btw293.pdf. url: https://doi.org/10.1093/bioinformatics/btw293.

[164] F. Pappalardo, D. Flower, G. Russo, M. Pennisi, and S. Motta. “Computa-

tional modelling approaches to vaccinology”. In: Pharmacological Research

92 (2015). Vaccines: present and future challenges, pp. 40–45. issn: 1043-

6618. doi: https://doi.org/10.1016/j.phrs.2014.08.006. url: https:

//www.sciencedirect.com/science/article/pii/S1043661814001431.
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