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The WWOX gene encodes a 414-amino-acid protein composed of two
N-terminal WW domains and a C-terminal short-chain dehydrogenase/
reductase (SDR) domain. WWOX protein is highly conserved among species
and mainly expressed in the cerebellum, cerebral cortex, brain stem, thyroid,
hypophysis, and reproductive organs. It plays a crucial role in the biology of
the central nervous system, and it is involved in neuronal development,
migration, and proliferation. Biallelic pathogenic variants in WWOX have been
associated with an early infantile epileptic encephalopathy known as WOREE
syndrome. Both missense and null variants have been described in affected
patients, leading to a reduction in protein function and stability. The most
severe WOREE phenotypes have been related to biallelic null/null variants,
associated with the complete loss of function of the protein. All affected
patients showed brain anomalies on magnetic resonance imaging (MRI),
suggesting the pivotal role of WWOX protein in brain homeostasis and
developmental processes. We provided a literature review, exploring both the
clinical and radiological spectrum related to WWOX pathogenic variants,
described to date. We focused on neuroradiological findings to better
delineate the WOREE phenotype with diagnostic and prognostic implications.
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1. Introduction

Developmental and epileptic encephalopathies (DEEs) are early-onset disorders

characterized by multiple seizure types, widespread epileptic discharges at the

electroencephalogram, and neurodevelopmental delay (1–4). In recent years, next-

generation sequencing (NGS) technologies, including exome and genome studies,

revealed an increased complexity underlying DEEs, with the involvement of several

genes implicated, such as the WWOX gene. Biallelic pathogenic variants of WWOX,
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fped.2023.1301166&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fped.2023.1301166
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fped.2023.1301166/full
https://www.frontiersin.org/articles/10.3389/fped.2023.1301166/full
https://www.frontiersin.org/articles/10.3389/fped.2023.1301166/full
https://www.frontiersin.org/journals/pediatrics
https://doi.org/10.3389/fped.2023.1301166
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


Battaglia et al. 10.3389/fped.2023.1301166
represented by homozygous and compound heterozygous variants,

have been associated with an early infantile epileptic

encephalopathy known as WOREE syndrome (MIM: 616211)

(5–8). Individuals affected with WOREE syndrome presented

early onset epilepsy, with refractoriness to antiseizure

medications (ASMs), development impairment with psychomotor

delay, spastic tetraplegia, inability to walk, non-verbal

communication and other additional features, generally dying

within the first year of life (1). Brain imaging typically showed

variable anomalies, such as myelination impairment, corpus

callosum thickness, white matter anomalies, and/or cerebral

atrophy (1, 9).

In WOREE syndrome, WWOX pathogenic variants lead to a

variable loss of function of WWOX protein, which is highly

conserved across species and mainly expressed in the cerebellum,

brain, thyroid, hypophysis, and reproductive organs (1, 10, 11).

WWOX includes 414 amino acids with two WW domains at the

N-terminal end and a central short-chain dehydrogenase/

reductase (SDR) domain (1, 12). It plays a crucial role in the

biology of the central nervous system and is involved in neuronal

development, migration, and proliferation. Functional studies

using human organoids and animal models attempted to explain

WWOX properties, exploring the phenotype spectrum related to

WWOX loss of function. Specifically, WWOX, mainly expressed

in neurons, oligodendrocytes, and astrocytes, acts as a scaffold

protein, modulating the cytoskeleton and homeostasis of its

substrates (9, 11–14).

Interestingly, oligodendrocyte progenitors present a high level

of WWOX protein, in contrast with mature myelinated

oligodendrocytes, suggesting a crucial role of the protein in

myelin biogenesis, and in differentiation of these cells. Indeed,

there is evidence of its function in cellular lipidic homeostasis

and of its interaction with proteins involved in myelin biogenesis

such as SEC23IP, SCAMP3, VOPP1, and SIMPLE (1, 15, 16).

Moreover, loss of function of WWOX leads to hypo-myelinization,

with a potential role in multiple sclerosis pathogenesis (1).

Interestingly, when microglia were treated with lipopolysaccharides,

a WWOX overexpression occurred, with the following activation of

the immune system. Moreover, WWOX modulates the NF-kB

pathway, and its loss of function was related to astrogliosis,

suggesting an additional role of WWOX in neuroinflammation

and activation of the immune response (1, 17–21).

Furthermore, WWOX protein presents a focused expression in

the medial entorhinal cortex, basolateral amygdala, and layer 5 of

the frontal cortex, which are mostly involved in memory,

learning mechanisms, perception, and emotion control. It was

observed that the loss of function of the WWOX protein was

related to Alzheimer’s disease, temporal lobe epilepsy, cognitive

impairment, and neuropsychiatric disorders such as autism

spectrum disorder (22–27). Interestingly, the WWOX protein is

mostly expressed in the cerebellar cortex and in specific cell

types, such as basket cells and granule cells, and hypomorphic

mutations of WWOX have been associated with cerebellar

disorders such as Spinocerebellar Ataxia Type 12 (SCAR12)

(MIM: 614322). WWOX pathogenic variants have also been

related to sex differentiation disorders (DSD), according to their
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high expression in reproductive organs and their potential role in

gonadotropin synthesis, gonad development, and steroid

metabolism (8, 12, 28, 29).

Furthermore, WWOX loss of function has also been related to

early infantile refractory epilepsies. Functional studies showed that

-/- mice presented GABAergic interneuron impairment and

decreased expression of GAD65/67, enzymes that synthesize

GABA, with evidence of cortical hyperexcitability and epilepsy

onset (21, 30, 31).

WWOX also manages several pathways such as Wnt/β-catenin

and TGFβ/SMAD and its loss of function is associated with

carcinogenesis progression (9, 32, 33).

This study aims to better characterize neuroradiological

features in WOREE syndrome, collecting all brain imaging data

described to date in the literature, to accurately define the most

common signs of the disease, which could lead to the definitive

diagnosis when it is clinically suspected.
2. Genetic findings

WWOX is located on chromosome 16q23.1-q23.2 and crosses

the second most common fragile site (FRA16D) in the human

genome, with potential genomic instability (1, 12, 34).

A genotype-phenotype correlation has been suggested for

WWOX-related disorders (35, 36). Specifically, WWOX loss of

function caused by biallelic null variants (i.e., frameshift,

nonsense, donor/acceptor splice site, and deletion) have been

associated with the most severe phenotypes, represented by

WOREE syndrome, with early death before 2 years of age,

prenatal cerebral anomalies, and eye malformations (36).

Concurrently, hypo-morphic genotypes characterized by biallelic

missense variants have been related to a milder phenotype,

represented by SCAR12. This rare spinocerebellar ataxia has been

described in two families affected with early onset epilepsy,

neurodevelopmental delay, intellectual disability, and cerebellar

ataxia (35). Learning disorders, dysarthria, nystagmus, and

decreased reflexes in the upper and lower limbs have also been

reported in patients with SCAR12 who presented a partial loss of

function of WWOX protein (35). Concurrently, patients carrying

both a null and a missense variant presented an intermediate

phenotype, whereas heterozygous variants have been described in

healthy controls.

Interestingly, WWOX has been recently involved in several

neurological disorders such as autism spectrum disorder (ASD),

multiple sclerosis (MS), and Alzheimer’s Disease (35). Patients

with Alzheimer’s Disease presented decreased WWOX protein

levels, compared to age-matched healthy controls (37, 38).

Specifically, functional studies revealed that the microtubule-

associated protein tau was hyper-phosphorylated after interaction

with glycogen synthase kinase 3β (GSK-3β) in the affected

hippocampi, leading to neurofibrillary tangles formation with

consequent neuronal death. In this circumstance, WWOX

concurrently prevented tau hyperphosphorylation and increased

the affinity to microtubules of tau proteins, blocking

neurofibrillary accumulation and related neurodegeneration
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processes (39). Furthermore, WWOX interacted with another

protein, TPC6AΔ, involved in tau aggregation and Aβ generation,

suggesting a protective role of WWOX protein in Alzheimer’s

Disease (35, 40).

Notably, it was also observed that WWOX protein was

decreased in the chronic active lesions of patients with MS,

compared to age-matched healthy controls (41). Specifically,

WWOX has been identified as a susceptible gene in MS and 48

WWOX pathogenic variants have been detected in affected

patients (42). Interestingly, the role of WWOX in grey matter

impairment in MS was described, with a relevant involvement of

the protein in the myelination process and oligodendrocyte

differentiation (35).

Moreover, deletions and duplications affecting the WWOX

gene have been found in patients with ASD, and copy number

variations (CNVs) of WWOX have been reported in patients

with milder ASD phenotypes (35). However, the emerging role of

WWOX in the pathophysiology of neurological disorders should

be better evaluated in functional studies.

Even though pathogenic variants affect WWOX protein

uniformly, some mutational hotspots have been reported in the

literature to date. Specifically, the p.Gln230Pro pathogenic variant

affects the SRD domain and has been described both in

homozygosity and in compound heterozygosity in eight cases

overall (1). Nevertheless, how missense variants affecting the

SRD domain impair WWOX catalytic activity has not been

demonstrated yet.

Moreover, two mutations affecting Glycine 137, a pivotal

residue of the coenzyme binding region, have been described.

Additionally, biallelic mutations affecting glutamic acid 17 and

serine 318 combined with deletion or other missense mutations

have been reported. Recurrent deletions and duplications of

exons 6–8 have also been described. They led to truncated

proteins or unstable products that were quickly degraded (1).

Furthermore, Proline 47 presumably may represent a

mutational hotspot. It is a highly conserved residue, with a

pivotal role in the function of the first WW domain. Specifically,

it was observed that pathogenic variants affecting this residue,

located in the first WW domain, both made WWOX unable to

interact with partner proteins and impaired WWOX translocation

to the nuclear compartment (1, 43). Other potential hotspot

mutations could be represented by recurrent nonsense variants

affecting Arg54*, frameshift variants such as Asp58Alafs*3,

His173Alafs*67, His173Ilefs*5, and Glu306Aspfs*21, and splice

site variants such as c.173-1G>T, c.173-2A>G, c.409+1G>T,

c.517-2A>G, and c.606-1G>A (1).

However, functional studies should be performed, and knock-

in animal models could better clarify the impact of point mutations

on WWOX structure and function. To date, mice models revealed

that WWOX presented a different tissue expression during

developmental stages (35). A significant expression was detected

in peripheral nerves, brain stem, and spinal cord during the first

stages of embryogenesis, whereas a decreased level was detected

in the latest stages, and an increased level was detected after birth.

Moreover, WWOX knockout mice, which had null alleles,

showed deep structural anomalies such as malformations,
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neuronal impairment and degeneration, heterotopia, and defects

of the midline. They exhibited a severe phenotype consistent

with patients affected with WOREE syndrome, carrying null

variants (29, 44). The full clinical spectrum of -/- mice was

characterized by growth retardation, hypoglycemia, hypolipidemia,

impaired steroidogenesis, bone defects, refractory seizures, ataxia,

severe motor incoordination, imbalance, and premature death by

2 to 3 weeks after birth. This presumably indicates a pivotal role

of WWOX in the neurobiology of the central nervous system at

different developmental stages (45).

Concerning CNVs, most of them are intragenic, with the

involvement of genomic regions crossed by WWOX, and

deletions are more prevalent than duplications (1). A

chromosomal microarray, choosing a quantitative method to

analyze the WWOX locus, should be performed in patients with

clinical features suggestive of WOREE syndrome. Indeed,

individuals with WOREE syndrome present a high prevalence of

CNVs, small structural variants detected by a quantitative

approach. Concurrently, when whole exome sequencing (WES)

and targeted gene panel sequencing are performed first, CNV

investigation should be carried out, due to deletions and

duplications, which often affect the WWOX gene. Furthermore,

RNA studies could be useful to investigate if single-nucleotide

variants (SNVs) and/or missense variants impair mRNA stability

and disrupt the pre-mRNA splicing (2).
3. Clinical findings

WOREE syndrome is a developmental and epileptic

encephalopathy (DEE) characterized by early onset epilepsy, with

refractoriness to antiseizure medications (ASMs), development

impairment with psychomotor delay, spastic tetraplegia, no

walking, non-verbal communication, and other additional

features, with death in first years of life (1). To date, 84 patients

have been reported in the literature with descriptions of the

individual phenotypes. Early onset epilepsy represented the main

feature in these patients and occurred with different semiology.

Specifically, early infantile DEE, epilepsy of infancy with

migrating focal seizures (EIMFS), and infantile epileptic spasms

syndrome (IESS) have been reported (2). Seizures included

generalized tonic, myoclonic, clonic, and tonic-clonic seizures,

focal clonic seizures, infantile spasms, eyelid myoclonia, and

status epilepticus with refractoriness to ASMs. In affected

patients, EEG showed background slowing with profound

epileptic discharges (2). Developmental impairment preceded

epilepsy and included severe intellectual disability, early-onset

spastic tetraplegia, hypotonia, non-verbal communication,

absence of ambulation, psychomotor delay, and microcephaly.

Dysmorphic features have been reported in affected patients

and included short stature, round face with full cheeks, short

neck, facial hypotonia, hypertelorism, arched and bushy

eyebrows, long eyelashes, epicanthic folds, bitemporal narrowing,

low anterior hairline, broad nose, high forehead, depressed nasal

bridge, gingival hypertrophy low-set, and large ears (2). Scoliosis/

kyphosis, movement disorders, and feeding problems have also
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been described. Moreover, ophthalmic anomalies such as poor or

no eye contact, retinal degeneration, and optic atrophy have been

reported (1).

We found a genotype-phenotype correlation only about the

mortality risk. Specifically, null/null variants are associated with a

higher mortality risk than missense/null and missense/missense

variants (2). Here, respiratory problems were the main cause of

death, while other causes included SUDEP, status epilepticus, and

obstructive cardiomyopathy (2, 5, 46–49).
4. Imaging findings

One important step for the diagnosis of WOREE syndrome is

based on brain imaging. Several studies identified MRI features

related to WWOX gene mutations in children with epileptic

encephalopathy and we will try to put together all the

characteristics described to date, to define a unique radiological

pattern (Figure 1, Table 1).

In 2014, Abdel-Salam et al. reported an affected girl born from

consanguineous parents, who presented with growth retardation,

microcephaly, epileptic seizures, retinopathy, and early death.

WES revealed a nonsense homozygous mutation in WWOX, and

brain MRI documented supratentorial atrophy with a simplified

gyral pattern, hypoplasia of the hippocampus and the temporal

lobe with consecutively widened subarachnoidal space, a thin

hypoplastic corpus callosum, and hippocampal dysplasia with

extracellular vacuoles in amygdala and hippocampus (47).

Tabarki et al. then described five patients from two unrelated

families who showed progressive microcephaly, early onset

spasticity, refractory epilepsy, severe failure to thrive, and severe

developmental delay. They carried the same homozygous

mutation in WWOX. Interestingly, a brain MRI revealed a

peculiar pattern of neurodegeneration, characterized by

periventricular white matter volume loss, atrophy of the corpus

callosum, flattening of the brainstem, and bilateral symmetrical

lesions in the medial nuclei of the thalami in one patient. Of

note, the cerebellum was not affected (51).
FIGURE 1

WOREE-associated neuroradiological features. A brain MRI of an affected
weighted image reveals hypoplasia of the corpus callosum (empty arrow) a
demonstrate mild atrophy of the frontal lobes with associated bilateral w
post-mortem MRI (B”) of an affected patient were performed at 21 gesta
(black arrows). Note the slightly increased thickness of nuchal subcutaneo
cerebral hemispheres and cortical gyration are appropriate for the gestation
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Furthermore, Tarta-Arsene et al. described in 2017 a similar

brain MRI pattern in a boy with early-onset epilepsy, severe

global developmental delay, persistent hypsarrhythmia at EEG,

and epileptic spasms, carrying two WWOX mutations in a

heterozygous state. Brain imaging was performed and

documented a degenerative pattern characterized by cortico-

subcortical atrophy, an extremely thin corpus callosum, delayed

myelination, and flattening of the brainstem (52).

In 2018, Jessika Johannsen et al. examined two consanguineous

patients with a homozygosity for the missense variant in the

catalytic short-chain dehydrogenase/reductase (SDR) domain of

the WWOX gene; both patients were characterized by early

epilepsy refractory to treatment, progressive microcephaly,

profound developmental delay, and brain MRI abnormalities. At

the ages of 3, 5, and 21 months the imaging showed global

atrophy, hypoplasia of the corpus callosum, and myelination

delay with normal MR spectroscopy in patient 1. In patient 2, a

cousin of patient 1, at the age of 3 and 6 months, brain imaging

showed two similar features, global atrophy and hypoplasia of

the corpus callosum (53). In the same year, Juliette Piard et al.

studied 20 patients of 18 families with WOREE syndrome; they

found a higher frequency of compound heterozygous mutations,

consistently with a lower rate of consanguinity. The study

detected abnormal brain MRI in 80% of them; specifically, 75%

of patients were characterized by corpus callosum hypoplasia and

55% by cerebral atrophy. Other alterations included enlarged

subarachnoid spaces, symmetric white matter hypersignal,

plagiocephaly, asymmetric lateral ventricle, and circular lesions

(hypo-signal) of the medial part of the corpus callosum (8).

Another case of WWOX compound heterozygous mutations in a

Chinese patient with WOREE syndrome was reported by Jing He

et al. in 2019; in this case report, brain MRI revealed a widened

subarachnoid space and a thin corpus callosum (54). Moreover,

in 2020 an interesting study reported an abnormal cerebral

cortex development in a family affected with neurodevelopmental

impairment and refractory epilepsy, carrying a homozygous

mutation in WWOX. Functional studies revealed a similar

disorganization of cortical layers in mice, carrying a homozygous
patient was performed at 2.4 years of age (A’–A’’). (A’) The sagittal T1-
nd inferior cerebellar vermis (arrowhead). (A”) Axial T2-weighted images
hite matter hyperintensity (arrows). Fetal MRI (B’) and high-resolution
tional weeks, demonstrating mild hypoplasia of the cerebellar vermis
us tissues on fetal MRI (white arrow). The laminar organization of the
al age (not shown). Courtesy of Prof. Salpietro (50).
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TABLE 1 MRI features of patients affected with WOREE syndrome reported to date.

MRI features Abdel-
Salam
et al.

Tabarki
et al.

Johannsen
et al.

Piard
et al.

He
et al.

Banne
et al.

Tarta-
Arsene
et al.

Iacomino
et al.

Oliver
et al.

Number of patients 1 5 2 20 1 56 1 2 13

Brain atrophy 1:1 5:5 2:2 11:20 +++ 1:1 13:13

Severe frontotemporal atrophy 1:1 13:13

Hippocampal atrophy 1:1 7:13

Hypoplasia of the corpus callosum 1:1 5:5 2:2 15:20 1:1 +++ 1:1 2:2 12:13

Myelination delay 1:2 + 1:1 6:13

Enlarged subarachnoid spaces 1:1 6:20 1:1

Symmetric white matter hypersignal
(T2)

3:20 + 2:2 10:13

Plagiocephaly and asymmetric
lateral ventricle

2:20

Circular lesions (hyposignal) of the
medial part of the corpus callosum
(T1)

1:20

Optic atrophy +++ 13:13

Brainstem changes 1:5 1:1 2:13

Hypoplasia of the cerebellar vermis 2:2

Progression of the abnormalities
with age

5:5 1:1 7:13

Total number of patients 101

MRI, magnetic resonance imaging; +, number of patients unspecified.

Battaglia et al. 10.3389/fped.2023.1301166
truncating WWOX mutation. Brain MRI of the two patients

affected documented hypoplasia of the corpus callosum and mild

atrophy of the frontal lobes with associated bilateral white matter

hyperintensity. Notably, hypoplasia of cerebellar vermis related to

WOREE syndrome was first reported in this study (50).

Similar features were found in 2021 by Banne et al., who

retrospectively analyzed 45 variants in 56 WOREE published

cases. A total of 34 out of 45 patients were characterized by loss

of function mutations, and 11 were missense variants. Brain MRI

imaging of children with WOREE syndrome showed abnormally

thin or hypoplastic corpus callosum, progressive optic atrophy,

and brain atrophy as the most common features, but in some

cases, they also reported delayed myelination and white matter

hyperintense signals (35). A recent study by Karen L. Oliver

et al. in 2023 analyzed 13 patients from 12 families with WWOX

developmental and epileptic encephalopathy (WWOX-DEE) due

to biallelic pathogenic variants in WWOX. All of them showed

severe frontotemporal atrophy. Brain MRI also demonstrated

hippocampal atrophy, white matter signal abnormality, and

volume loss with a very thin corpus callosum. Severe optic

atrophy was also detected in all patients, whereas some patients

presented brainstem changes, most of which were dorsal. Brain

MRI revealed lesions in patient 1 and patient 7, at the age of 15

days and 19 days, respectively; specifically, patient 7 presented

delayed myelination, a thin corpus callosum, and frontotemporal

atrophy. Lastly, 7 of 13 patients underwent serial MRI, which

showed progression of the abnormalities with age; specifically,

related to the brain atrophy, which showed a change from mild

to severe, and white matter alteration (2).

This review analyzed 101 cases of children with various

mutations in the WWOX gene associated with WOREE
Frontiers in Pediatrics 05
syndrome from 2014 to 2023. Based on the literature data

collected, hypoplasia of the corpus callosum and brain atrophy

appeared to be the predominant MRI alterations related to this

syndrome. Other relatively frequent features included symmetric

white matter hyperintensity in T2-weighted images and optic

atrophy. Furthermore, approximately 13% of the patients

included in the study also demonstrated age-related progression.

Atrophy of the hippocampus, delayed myelination, enlarged

subarachnoid spaces, plagiocephaly, asymmetrical lateral

ventricles, hypointense circular lesions in the medial part of the

corpus callosum in T1-weighted images, brainstem alterations,

and cerebellar vermis hypoplasia were observed in a lower

percentage of cases, and therefore these findings seem to be less

specific.
5. Discussion

Genetic neurologic disorders with neurodevelopmental delay

and refractory epilepsy include a broad spectrum of monogenic

conditions with expanding clinical differential diagnosis and

genetic heterogeneity (55–60). Even in the era of next-generation

sequencing (NGS), the etiology and disease mechanisms

underlying these conditions remain unclear in a large number of

cases (61–66). Defining the full spectrum of disease-causing

molecular pathways underlying brain disorders is crucial to

genetically diagnose patients with developmental and epileptic

encephalopathies or delay and to assess potential personalized

strategies for the follow-up and management of these affected

children (67–70).
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WOREE syndrome is a developmental and epileptic

encephalopathy with a genetic etiology that affects the

development and biology of the central nervous system. The loss

of function of the WWOX gene leads to the absence of the

protein encoded, associated with the highest mortality in affected

patients. Nevertheless, the mechanistic effects of WWOX

pathogenic variants on protein function are still not well known.

Functional studies could better explain these aspects, allowing us

to accurately characterize the disorder.

The most common neuroradiological findings were cerebral

atrophy and white matter signal anomalies in the corpus

callosum, with a myelination impairment. Interestingly, all

affected patients presented brain anomalies at MRI, suggesting

the crucial role of the WWOX protein in cerebral homeostasis

and neuronal development. Recent mice studies showed how the

loss of WWOX disrupts neuronal migration and CNS

development across different species (50). However, organoids

could better elucidate the impact of WWOX mutations on fetal

developmental processes and neurogenesis (50).

Imaging data represent an essential instrument to best define

phenotypes of WOREE syndrome, with diagnostic and

prognostic implications, and they always should be detected in

patients with relevant clinical features suggesting WOREE

syndrome to better characterize the disorder. In patients with

early infantile epileptic encephalopathy with refractoriness to

ASMs and global developmental delay associated with

characteristic neuroradiological patterns, the WWOX gene

analysis should be included in the diagnostic workup.
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