
 

Chiral phase transitions of helical matter

Shen-Song Wan , Gianluca Giuliani,† and Marco Ruggieri *

School of Nuclear Science and Technology, Lanzhou University,
222 South Tianshui Road, Lanzhou 730000, China

(Received 24 December 2020; accepted 4 May 2021; published 25 May 2021)

We study the thermodynamics of helical matter, namely quark matter in which a net helicity nH is in
equilibrium. Interactions are modeled by the renormalized quark-meson model with two flavors of quarks.
Helical density is described within the grand-canonical ensemble formalism via a chemical potential μH .
We study the transitions from the normal quark matter and hadron gas to the helical matter, drawing the
phase diagram at zero temperature. We study the restoration of chiral symmetry at finite temperature and
show that the net helical density softens the transition, moving the critical end point to lower temperature
and higher baryon chemical potential. Finally, we discuss briefly the effect of a rigid rotation on the helical
matter, in particular on the fluctuations of nH , and show that these are enhanced by the rotation.
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I. INTRODUCTION

The phase diagram of quantum chromodynamics (QCD)
in the temperature T and baryon chemical potential μ plane
is one of the most active research subjects in modern high-
energy physics. At μ ¼ 0, first-principles lattice QCD
calculations show that QCD matter experiences a crossover
from a low-temperature confined phase, in which chiral
symmetry is spontaneously broken, to a high-temperature
phase, in which chiral symmetry is approximately
restored [1–5]. It is not possible to define uniquely a
critical temperature for the restoration of chiral symmetry:
it is more appropriate to define a pseudocritical region
centered on a pseudocritical temperature Tc that is a range
of temperatures in which several physical quantities expe-
rience substantial changes. The (pseudo)critical temper-
ature is found to be Tc ≈ 150 MeV ≈ 1012 K.
Despite the amazing results obtained by lattice QCD in

recent years, it is not possible to perform reliable simulations
of QCD with three colors at large μ. For this reason, the use
of effective models for studying the phase transitions of
QCD at μ ≠ 0 is necessary. In this context the quark-meson
(QM) model is very popular due to its renormalizability
[6–12]. The aforementioned chiral crossover is reproduced
by the QMmodel, with Tc in the same ballpark of the QCD
one. At μ ≠ 0 the smooth crossover of the QM model

becomes a first-order phase transition, suggesting a critical
end point (CEP) in the μ − T plane at which the crossover
becomes a second-order phase transition with divergent
susceptibilities, marking the separation between the cross-
over on the one hand and a first-order line on the other hand.
Similar conclusions have been obtained within the Nambu-
Jona-Lasinio model [13–19]. Moreover, in recent years the
picture of the QM model has been strengthened by the
inclusion of critical fluctuations via the functional renorm-
alization group [20–23].
Besides μ, it has been recently suggested that another

chemical potential, μH, conjugated to the helical density
nH, can be of interest for the structure of QCD; see [24–29].
Matter with nH ≠ 0 is called helical matter and is opposed
to normal quark matter in which baryonic density nB ≠ 0
and nH ¼ 0. The very basic idea of helical matter is that
helicity is a conserved quantities for free massless as well as
massive fermions; therefore, if a net helicity is formed in a
system made of free quarks, a chemical potential μH can be
introduced that is conjugated to nH, similarly to the baryon
chemical potential that is conjugated to the baryonic
density. For the quark-gluon plasma produced in high-
energy nuclear collisions, lumps of matter with hn2Hi ≠ 0
can be formed thanks to event-by-event fluctuations, and
the helical density is approximately conserved because
helicity-changing processes take place on a timescale that
typically is larger than the lifetime of the quark-gluon
plasma itself [30]. The fact that matter with helical density
can be of relevance for high-energy nuclear collisions has
been discussed very recently [24–29]; in these works, it has
been argued that spin dynamics is slow enough in the
collisions, suggesting that helicity can be considered as
approximately conserved for the entire quark-gluon plasma
lifetime and be one source of the observed polarization of
the Λ particles.
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We report on helical matter both at zero and finite
temperature. μH does not introduce additional divergences;
therefore, the renormalization of the vacuum quark loop
can be done in the standard manner [6–10]. We discuss the
transition from the hadron gas to normal quark matter and
helical matter. We focus on the baryonic and the helical
density susceptibility. We show that close to the phase
transition, it is possible to distinguish between normal and
helical matter not only in terms of the densities, but also in
terms of the susceptibilities that indeed measure the
fluctuations of the conserved quantities. Our results have
some overlap with Ref. [24], and we agree with that
reference whenever we compute similar quantities. One
of our conclusions is that helical density makes the chiral
phase transition softer. Thus, the formation of lumps of
helical matter in the quark-gluon plasma produced in high-
energy nuclear collisions can impact the observables for the
critical end point, since for regions in which hn2Hi ≠ 0 the
critical end point would move to larger values of the baryon
chemical potential and smaller temperatures.
We complete our study by suggesting a coupling of the

fluctuations of nH and the angular velocity ω of a rigid
rotation. Rotation has been considered in the context of
hot quark matter several times in recent literature; see
[25,31–42], and references therein. This is the first time in
which rotation is considered within helical matter; there-
fore, we limit ourselves to the simplest implementation of
rotation, namely that of an unbounded system, and we
study only quark matter in proximity of the rotation axis.
We illustrate, by using an ideal gas as an example, that
rotation links to the fluctuations of the helical density and
enhances them. We compute analytically the relation
between the helical susceptibility and ω in the case of a
massless gas. Then we show how this link appears within
the QM model. We think that also this part of the study
motivates the relevance of helical matter for the quark-
gluon plasma produced in high-energy nuclear collisions,
due to the vorticity produced in the collisions [43–51] that
enhances the fluctuations of nH.
The plan of the article is the following. In Sec. II we

formulate the QM model with a helical chemical potential
and the renormalization of the vacuum term. In Sec. III we
discuss the phase diagram at T ¼ 0. In Sec. IV we present
the results at finite temperature. In Sec. V we discuss the
enhancement of the fluctuations of helical density in a
rotating medium. Finally, in Sec. VI we summarize our
conclusions and an outlook of possible future projects. We
use the natural units system ℏ ¼ c ¼ kB ¼ 1 throughout
this article.

II. THE QUARK-MESON MODEL
FOR HELICAL MATTER

In this sectionwe summarize theQMmodel that we use in
our study.We firstly define the helical chemical potential μH
that we couple to quarks beside the standard quark number

chemical potential μ. Thenwe define the Lagrangian density
of the model. Finally, we specify the thermodynamic grand
potential and its renormalization procedure.

A. Helical chemical potential

We begin with a free, massive Dirac fermion. Helicity is
defined, for momentum eigenstates with eigenvalues p, as
the projection of spin s over the direction of momentum p,
that is,

h ¼ s · p
jpj ; ð1Þ

where si¼ 1
2
ε0ijkΣjk is the spin operator with Σμν¼ i

4
½γμ;γν�.

Helicity can take the values h ¼ �1=2 only; for conven-
ience, we rescale the helicity operator by a factor of 2 as
η ¼ 2h and get ηψ ¼ ℵψ . Thus, the eigenvalues ℵ are now
�1. Helicity is relevant, since it is conserved for a free
Dirac fermion, and can be used beside momentum to label
the energy eigenstates. The helicity operator (1) is nonlocal
in coordinate space, due to the 1=jpj: however, a proper
system of eigenfunctions can be chosen to take the trace for
the computation of the thermodynamic potential, namely
the standard momentum and helicity eigenfunctions: with
this choice the nonlocality of h is harmless and states can be
labeled by the helicity eigenvalue [36].
The aim of our study is to consider the effects of helicity

on the QCD phase diagram: helicity is a conserved quantity
for a free massive fermion; therefore, it is possible to
introduce a chemical potential μH that is coupled to the net
helicity of the system in equilibrium, nH ¼ Nþ − N−,
where N� denotes the number of particles with ℵ ¼ �1.
For the Dirac field the relevant operator is

N̂h ¼ ψ̄γ0ηψ ; ð2Þ

analogous to the quark number operator

N̂ ¼ ψ̄γ0ψ : ð3Þ

It is an obvious fact that in hot quark matter, as the one
produced in high-energy nuclear collisions, the helicity of
quarks can be changed by microscopic processes even
though regions with hn2Hi ≠ 0 are formed by event-by-
event fluctuations; however, these processes are known to
happen for timescales larger than the typical lifetime of the
fireball [30]; therefore, for the purpose of describing the
matter produced in the collisions, net helicity is fairly
conserved and it is possible to introduce a chemical
potential μH conjugated to N̂h in the model.
The Lagrangian density of a free, massive Dirac fermion

with both helical and number chemical potential μ in
momentum space is

L ¼ ψ̄ðpþ μHγ
0ηþ μγ0 þmÞψ : ð4Þ
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The poles of the propagator in momentum space define the
energy spectrum:

pðsÞ
0;ℵðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
− sμ − ℵμH; ð5Þ

with s ¼ �1 and ℵ ¼ �1.

B. Lagrangian density of the quark-meson model

The QM model consists of a mesons and quarks that
interact via an Oð4Þ-invariant local interaction term. The
meson part of the Lagrangian density of the QM model is

Lmesons ¼
1

2
ð∂μσ∂μσ þ ∂μπ∂μπÞ

−
λ

4
ðσ2 þ π2 − v2Þ2 − hσ; ð6Þ

where π ¼ ðπ1; π2; π3Þ corresponds to the pion isotriplet
field. This Lagrangian density is invariant under Oð4Þ
rotations. On the other hand, as long as v2 > 0 the potential
develops an infinite set of degenerate minima. Among these
minima, we choose the ground state to be the one
corresponding to

hπi ¼ 0; hσi ≠ 0; ð7Þ
since hπi ≠ 0 would correspond to a spontaneous breaking
of parity which is not observed in QCD, unless an isospin
chemical potential is introduced; see [52] for a review. The
ground state specified in Eq. (7) breaks the Oð4Þ symmetry
down to Oð3Þ since the vacuum is invariant only under the
rotations of the pion fields. The term

Lmass ¼ hσ ð8Þ
in Eq. (6) is responsible of the explicit breaking of chiral
symmetry, where h ¼ Fπm2

π .
The quark sector of the QM model is described by the

Lagrangian density

Lquarks ¼ ψ̄ði∂μγ
μ − gðσ þ iγ5π · τÞÞψ ; ð9Þ

where τ are Pauli matrices in the flavor space. Quarks get a
constituent mass because of the spontaneous breaking of
the Oð4Þ symmetry in the meson sector:

Mq ¼ ghσi: ð10Þ

In this study we limit ourselves to the mean field approxi-
mation in which σ ¼ hσi and π ¼ hπi; therefore, from now
on anytime we write down a meson field we have in mind
its expectation value and we will skip the hi for the sake of
notation. Finally, the Lagrangian density of the model is
given by

LQM ¼ Lquarks þ Lmesons: ð11Þ

C. Thermodynamic potential

The mean field effective potential of the QM model at
zero temperature is given by

Ω ¼ U þ Ωq þΩT; ð12Þ

where

U ¼ λ

4
ðσ2 þ π2 − v2Þ2 − hσ ð13Þ

is the classical potential of the meson fields as it can be read
from Eq. (6) while Ωq þ ΩT corresponds to the sum of the
vacuum and thermal contributions of the quarks.
Firstly we analyze the vacuum term

Ωq ¼ −2NcNf

Z
d3p
ð2πÞ3 Ep; ð14Þ

with Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

q

q
and Mq denotes the constituent

quark mass defined in Eq. (10). Equation (14) corresponds,
after renormalization, to the quark contribution to the
condensation energy at T ¼ μ ¼ μH ¼ 0. Following the
renormalization procedure of Ref. [7] we can replace
Ωq → Ωren

q in Eq. (12), with

Ωren
q ¼ 3g4

32π2
NcNfσ

4 −
g4F2

π

8π2
NcNfσ

2

þ g4NcNf

8π2
σ4 log

Fπ

σ
: ð15Þ

The finite temperature thermodynamic potential is stan-
dard: following Ref. [24] to take into account the helical as
well as the number chemical potentials, we get

ΩT¼−
NcNf

β

X
s¼�1

X
ℵ�1

Z
d3p
ð2πÞ3 lnð1þe−βðEp−sμ−ℵμHÞÞ; ð16Þ

where β ¼ 1=T and the summations run over the signs of
energy and helicity. Note that due to the summation over s
and ℵ in Eq. (16), the thermodynamic potential at μ ¼ 0
and μH ≠ 0 is equivalent to that at μ ≠ 0 and μH ¼ 0. This
duality has been observed noticed in Ref. [24] for the
first time.
For the sake of illustration, we write down the relation

between nH and μH, μ and T for the case of an ideal
massless gas. This can be obtained analytically by virtue of
ΩT that can be computed exactly in this limit, namely

ΩT

NcNf
¼ −

7π2T4

180
−
μ2T2

6
−

μ4

12π2

−
μ2HT

2

6
−

μ4H
12π2

−
μ2Hμ

2

2π2
: ð17Þ
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From this relation we get

nH ¼ NcNf
μ3H
3π2

þ NcNfμH

�
T2

3
þ μ2

π2

�
: ð18Þ

The relation between nH and μH is similar to that between μ
and the standard baryonic density:

nB ¼ NcNf
μ3

3π2
þ NcNfμ

�
T2

3
þ μ2H

π2

�
: ð19Þ

The duality μ ↔ μH is evident by comparing Eqs. (18)
and (19).

III. RESULTS FOR HELICAL MATTER
AT ZERO TEMPERATURE

Our parameter set isMσ¼700MeV, v ¼ Fπ ¼ 93 MeV,
Mπ ¼ 138 MeV and g ¼ 3.6, λ ¼ M2

σ=2F2
π ¼ 28.3 and

h¼M2
πFπ¼1.78×106MeV3; these give Mq ¼ 335 MeV

in the vacuum. The thermodynamic potential is invariant
under the changes μ → −μ or μH → −μH; therefore, the
signs of two chemical potentials are irrelevant and we
consider μ > 0 and μH > 0 only. Moreover, we have
verified that changing Mσ down to Mσ ¼ 550 MeV
does not alter the results qualitatively; therefore, we
limit ourselves to report only the results obtained for
Mσ ¼ 700 MeV.

A. The phase diagram at zero temperature

The phase diagram of a system with unbalanced helicity
at T ¼ 0 has been studied in Ref. [24] for the first time: here
we confirm the results of Ref. [24] and in addition to this,
we analyze how the vacuum renormalized term of the
thermodynamic potential affects the picture. In the upper
panel of Fig. 1 we plot the condensate versus μ at T ¼ 0
and for several values of μH. At μH ¼ 0 a first-order phase
transition for μ ¼ μc ≈ 365 MeV from the chiral broken
phase to the chiral restored phase has been found in
agreement with previous model calculations [7]: the chiral
restored phase can be dubbed as normal quark matter phase
since quark number density is finite while helical density is
vanishing. Increasing μH we notice that the phase transition
becomes smoother and eventually the discontinuity of the
order parameter disappears: a smooth crossover replaces
the first-order phase transition in some range of μH. In
addition to this, the critical value of μ becomes smaller.
Increasing μH even further the crossover becomes stronger
again and turns to another first-order phase transition;
eventually, at μ ¼ 0 and μH ¼ μc a first-order transition
happens to a new phase in which chiral symmetry is
restored but quark matter has vanishing density and finite
helical density; the fact that μc sets the scale for the phase
transition in the two cases is due to the duality μ ↔ μH of
the thermodynamic potential.

The smoothening followed by the hardening of the phase
transitions when μH is increased is evident when we
compute the chiral susceptibility [53–56]

χσ ¼
�∂2Ω
∂σ2

�−1
ð20Þ

around the transitions. The results are shown in the lower
panel of Fig. 1 in which we plot the dimensionless quantity
F2
πχσ versus μ for several values of μH. We find that for

μ ≈ μc or μH ≈ μc the susceptibility is very peaked around
the transition, while the peaks become smaller and broader
as we move toward the region μ ≈ μH, signaling that the
transition turns to a smooth crossover.
In Fig. 2 we plot the phase diagram in the μ − μH plane at

T ¼ 0. The solid lines denote first-order transitions where a
discontinuity of the condensate takes place, while the
dashed line stands for the crossover around which the
condensate changes smoothly. The diamonds denote
the critical end points at which the crossover becomes a

FIG. 1. Condensate (upper panel) and chiral susceptibility
(lower panel) versus μ at T ¼ 0 and for several values of μH .
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first-order transition. The circle is the inversion point,
namely the point at which the crossover is the smoothest
realized in the phase diagram, corresponding to the values
of μ ¼ μH at which moving upward or downward along the
transition line, the crossover becomes harder. All the lines
have been obtained from the results shown in Fig. 1 by
identifying the critical values of μ with those at which the
chiral susceptibility has the peak. Clearly the transition line
is symmetric under the exchange μ ↔ μH. We notice the
presence of two critical points in the phase diagram,
resulting from the aforementioned duality of the thermo-
dynamic potential. The inversion point (IP) at which the
crossover is the smoothest is μ ¼ μH ≈ 257 MeV.
The chiral symmetry restored phases in the lower right

and upper left corners of the phase diagrams are quite
different: for μ ≫ μH quark matter has both number and
helical densities, denoted by n and nH, respectively, but
n ≫ nH; therefore, it is legitimate to call this phase as
normal quark matter; on the other corner of the phase
diagram where μH ≫ μ the dual situation nH ≫ n is
realized; therefore, this phase can be dubbed as helical
quark matter.

One way to distinguish the helical matter from the
normal phase is the value of the densities

n ¼ −
∂Ω
∂μ ; ð21Þ

nH ¼ −
∂Ω
∂μH ; ð22Þ

where n and nH denote the quark number density and the
helical density, respectively. In Fig. 3 we plot n and nH
versus the quark chemical potential for two representative
values of μH: indigo lines correspond to μH ¼ 30 MeV to
cover the lower right corner of the phase diagram in Fig. 2,
and green lines to μH ¼ 400 MeV that cover the upper left
corner of the phase diagram and extend then to higher
values of μ. The normal phase is characterized by n ≫ nH
while the helical matter has nH ≫ n. Increasing μ in the
case of large μH the system smoothly connects to a phase in
which n ≈ nH.
In Fig. 4 we plot the susceptibilities of quark number

density χμ and of helical density χμH, defined, respectively, as

χμ ¼ −
∂2Ω
∂μ2 ; ð23Þ

χμH ¼ −
∂2Ω
∂μ2H : ð24Þ

In the upper panel of Fig. 4 we have collected the results for
μH ¼ 350 MeV, while in the lower panel μH ¼ 400 MeV:
the two values of μH that allow us to probe the helical matter
phase crossing the transition line and above the transition
line, respectively. We notice that around the crossover line,

FIG. 2. Phase diagram in the μ − μH plane at T ¼ 0. Solid lines
denote first-order transitions where a discontinuity of the con-
densate takes place, and the dashed line stands for the crossover
around which the condensate changes smoothly; diamonds
denote the critical end points (CP) at which the crossover
becomes a first-order transition. The blue circle labeled IP stands
for the inversion point, namely the point at which the crossover is
the smoothest realized in the phase diagram, corresponding to the
values of μ ¼ μH at which moving upward or downward along
the transition line, the crossover becomes harder. The χSB
window denotes the region where chiral symmetry is broken
spontaneously; the other regions correspond to phases with finite
quark number density n and/or helical density nH. In the normal
matter chiral symmetry is restored and n ≫ nH, while helical
matter denotes the region where chiral symmetry is restored
but nH ≫ n.

FIG. 3. Densities, measured in units of the nuclear saturation
density ρ0 ¼ 0.16 fm−3, versus μ.
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χμH has a clear peak structure while the peak of χμ is very
modest, indicating that in that region the fluctuations of the
helical density are much more pronounced that those of the
quark number. On the other hand, increasing μ and getting far
from the crossover line, the two susceptibilities agree with
each other: quark number and helicity fluctuate in the same
way. This is clearer for μH ¼ 400 MeV in which case no
transition line is crossed: the two susceptibilities agree with
each other in the full range of μ studied, denoting that the
fluctuations of the quark number and of the helical density
are the same. We have checked that the dual situation
happens moving at low μH and crossing the critical lines
increasing μ.
We have verified that changing the value of Mσ in the

range (550,700) MeV does not lead to significant changes
in the condensates and in the phase diagram. Moreover,
lowering the value of g the phase transitions tend to be

smoother and eventually for Mq ¼ gFπ ¼ 300 MeV at
T ¼ μ ¼ μH ¼ 0, the first-order lines disappear.
We have analyzed the effect of removing the renormal-

ized vacuum term of quarks in the thermodynamic poten-
tial; see Eqs. (12) and (15). In Fig. 5 we plot the condensate
versus μ at T ¼ 0 for several values of μH, for the model
without the vacuum term. Firstly, we notice that at μH ¼ 0
the chiral phase transition happens for μ ¼ μc ≈ 320 MeV,
which is smaller than the critical chemical potential that we
have found when we have included the vacuum term; see
Fig. 1: the vacuum term makes the chiral symmetry broken
phase more stable. Then, we notice that the phase transition
remains of the first order for any value of μH; we notice that
changing μH from zero to about 200 MeV, the jump of the
order parameter decreases, and then it increases for larger
μH. We interpret this as a softening of the phase transition
for small μH, which then becomes harder as an inversion
point is crossed, similarly to the one in Fig. 2. However, we
do not find any range of μH in which the transition turns to a
smooth crossover: the phase diagram in this case will differ
from the one shown in Fig. 2 because in the former case
there is only a first-order phase transition line. We conclude
that the existence of the critical end points in the zero
temperature phase diagram depends on how the regulari-
zation of the divergent term of the thermodynamic potential
is done; however, the softening followed by the hardening
of the phase transition is unaffected by this choice.

IV. RESULTS FOR HELICAL MATTER
AT FINITE TEMPERATURE

A. Chiral symmetry breaking

In Fig. 6 we plot the σ condensate versus temperature, for
several values of μ and μH. In general, there is a temper-
ature range in which the condensate drops down, signaling

FIG. 4. Condensate (upper panel) and chiral susceptibility
(lower panel) versus μ at T ¼ 0 and for several values of μH .

FIG. 5. Condensate versus μ at T ¼ 0 and for several values of
μH , computed for the model without the quark renormalized
vacuum term in the thermodynamic potential.
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the approximate restoration of chiral symmetry via a
smooth crossover; the pseudocritical temperature can be
identified with the temperature at which dσ=dβ is maxi-
mum. Increasing μH at μ ¼ 0 results in the lowering of the
critical temperature. This agrees with the expectations from
the zero temperature phase diagram in Fig. 2, since it is
shown there that increasing μH at μ ¼ 0 makes the chiral
broken phase less stable and eventually leads to chiral
symmetry restoration and helical matter. Therefore, it is
expected that increasing μH at finite temperature will also
lower the σ condensate and chiral symmetry restoration will
be facilitated. Increasing μ shifts the pseudocritical temper-
ature to lower values: once again, this is in agreement with
the expectation from the zero temperature phase diagram in
Fig. 2, because increasing μ has the effect to destabilize the
chiral symmetry broken phase.

B. Phase diagram

These results can be summarized in a phase diagram in
the μ − T plane; see Fig. 7. The solid lines denote the
smooth crossover from the chiral broken phase to the chiral
symmetric phase, computed at several values of μH. Firstly,
increasing μH moves the critical line downward, in agree-
ment with the previous discussions. The dots in the figures
denote the CEP, namely the values of μ and T at which the
crossover becomes a second-order phase transition with
divergent susceptibilities; increasing μ further the critical
line becomes first order, with a discontinuity of the σ
condensate. One of the effects of increasing μH is to move
the CEP downward; eventually, the CEP disappears from
the phase diagram. This agrees with Fig. 2 since at T ¼ 0
there is a large window in the μ − μH plane in which
the transition to helical or normal quark matter happens
via a smooth crossover rather than a first-order phase
transition.

C. Quark number susceptibility

In Fig. 8 we plot the particle number susceptibility [see
Eq. (23)] normalized to temperature, versus temperature,
for several values of μ and μH. We notice that around the
chiral crossover, increasing the value of μH results in a
broader susceptibility: this becomes evident if we compare
the cases μH ¼ 200 MeV and μH ¼ 0; see the upper and
lower panels in Fig. 8.
The results discussed in this section show that helicity

softens the transition from the quark-gluon plasma to the
hadron phase. In fact, the helical chemical potential makes
the chiral phase transition softer, and if μH is large enough,
the critical end point disappears from the phase diagram
and the transition to the chiral symmetric phase remains a
smooth crossover in the whole μ − T plane. This picture is
confirmed by the quark number fluctuations that are
smoothed by the helical chemical potential.

V. HELICAL MATTER UNDER ROTATION

We close this study by analyzing briefly the correlation
between rotation and the fluctuations of the helical density.
This investigation is motivated by the potential applications
to relativistic heavy ion collisions. As a matter of fact, even
if the quark-gluon plasma in collisions was produced with a
net nH ¼ 0, local fluctuations of nH are possible: the
amount of fluctuations is measured by the susceptibility
χμH defined in Eq. (24), where the derivative takes into
account the dependence of the condensate of μH. We want
to prove that in a rotating medium the fluctuations of nH are
enhanced: this in turn would imply that in a medium in
local equilibrium, local lumps with nH ≠ 0 can form and
this formation is enhanced if the system is rotating. We
limit ourselves to the simplest implementation of rotation
of a fermion system; namely, we assume a rigid rotation of
an unbounded system with a constant and homogeneous
angular velocity ω directed along the z axis. While the

FIG. 6. Constituent quark mass M versus temperature for
several (μ; μH) pairs. Solid and dashed lines correspond to μ ¼
0 and μ ¼ 100 MeV, respectively.

FIG. 7. Pseudocritical lines in the μ − T plane, for several
values of μH . The dot denotes the critical end point.
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choice of more realistic boundary conditions is feasible
[25,33,34,36], these would complicate the calculations but
probably would not change qualitatively the results: there-
fore, in this first study we prefer to adopt the simplest
implementation possible to highlight the effect, leaving a
complete study to a future article.
The implementation of rotation in quark matter that we

adopt has been already discussed several times in the
literature; therefore, we quote the results leaving the details
to the original references [25,31–42]. In previous works a
coordinate-dependent condensate has been considered,
within the local density approximation in which it is
assumed that local equilibrium is realized at any point in
space and that the thermodynamic potential per unit volume
is given by that of a homogeneous system at any point.
Within this approximation, the gap equation for the con-
densate is solved at each point in space, and then the
thermodynamic potential is obtained via an integration over
the whole volume. Leaving the solution of the more
complete problem to a future study, here we limit ourselves
to consider a homogeneous condensate: this approximation
is not very bad, considering that even when the coordinate

dependence is introduced, on average the condensate varies
at most of the 10% when the radial coordinate r changes
from the origin up to ωr≲ 0.8. We further limit ourselves
to μ ¼ 0.
Within the local density approximation, the thermody-

namic potential for an unbounded system rotating with
angular velocity ω along the z axis, temperature T ¼ 1=β
and helical chemical potential μH can be obtained from
Refs. [24,36,38,40], that is,

ΩM¼−
NcNf

4β

Z
d3r

X∞
n¼−∞

Z
dp
8π2

J nðpTrÞ

×
X
s¼�1

X
ξ¼�1

X
η¼�1

logð1þeðsEpþξðnþ1=2ÞωþημHÞβÞ; ð25Þ

where we have put

Z
dp ¼

Z
dp2

T

Z
dpz; ð26Þ

with pT denoting the transverse momentum while pz is
the momentum along the z axis; moreover, Ep ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ p2

T þ ðgσÞ2
p

. We have also defined

J nðpTrÞ ¼ J2nðpTrÞ þ J2nþ1ðpTrÞ; ð27Þ

where JnðpTrÞ denotes the first kind Bessel function of
order n. Finally, r is the location from the center of the
rotation.
In the form of Eq. (25), ΩM contains a vacuum part that

depends of ω. At difference with previous works [38,40]
we subtract this ω-dependent contribution and replace it
with our previously renormalized vacuum term; see Sec. II.
This procedure is in line with Refs. [34,36] and is justified
by the fact that the vacuum term should depend on ω: an
easy way to see this is that in order to experience the
rotation, at least one particle should be put on the top of the
vacuum so that this particle can feel inertial forces that
appear in a rotating system; but the quantum state of
vacuum plus one particle is different from the vacuum
itself. Therefore, it is not possible to have a vacuum that
feels the rotation.
After the subtraction and dividing by the volume of the

system, V, we are left with the matter part of the
thermodynamic potential per unit volume, ΩT ¼ ΩM=V,
that replaces Eq. (16) and reads

ΩT ¼ −
NcNf

2βV

Z
d3r

X∞
n¼−∞

Z
dp
8π2

J nðpTrÞ

×
X
ξ¼�1

X
η¼�1

log ð1þ e−βðEpþξðnþ1=2ÞωþημHÞÞ: ð28Þ

It is an easy exercise to prove that for ω ¼ 0 Eq. (28) is
consistent with Eq. (16). In fact,

R
d3p=ð2πÞ3¼R

dp=ð8π2Þ

FIG. 8. βχμ (in MeV) over temperature, versus temperature, for
several values of μ. Upper and lower panel correspond to μH ¼ 0
and μH ¼ 200 MeV, respectively.
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for any function that does not depend of the azimuthal
angle, and after putting ω ¼ 0 in the right-hand side of
Eq. (28) the n dependence of the integrand is confined to
the J nðpTrÞ term: the summation over n can be performed
by using J−n ¼ ð−1ÞnJn as well as the well-known identity

J20ðxÞ þ 2
X∞
n¼1

J2nðxÞ ¼ 1; ð29Þ

which brings an overall factor of 2 in Eq. (28).
Under the assumption that the condensate does not

depend of r, the integration over volume can be done
exactly: considering that J n ¼ J jnj−1 for n < 0 we can
limit ourselves to evaluate J n for n > 0. We take a cylinder
with radius R and height h that develops along the direction
of ω: we have V ¼ πR2h and

Z
d3rJ nðpTrÞ ¼ 2V

�
J2nðpTRÞ þ J2nþ1ðpTRÞ

−
ð2nþ 1Þ
pTR

JnðpTRÞJnþ1ðpTRÞ
�
;

n ≥ 0: ð30Þ

We limit ourselves to describe a region that is very close to
the center of the rotation, putting pTR ¼ 0 in the argument
of J n in Eq. (28). For x ≈ 0 the Bessel functions behave as
J20ðxÞ ≈ 1, J2nðxÞ ≈ x2jnj for n ≠ 0; in this approximation,
we have to consider only the contribution from J0 and thus
take into account J 0 ¼ J −1 ≈ 1 in the sum over n in
Eq. (28): the integration in Eq. (30) gives V for n ¼ −1, 0
and the approximate ΩT is

ΩT ¼ −
NcNf

β

Z
dp
8π2

×
X

κ¼�1=2

X
η¼�1

log ð1þ e−βðEpþκωþημHÞÞ: ð31Þ

In the following we use Eq. (31) to estimate the effect of
ω ≠ 0 on the fluctuations of the helical density: firstly, we
illustrate the idea with an ideal gas of massive particles;
then, we compute χH for the QM model.

A. The case of an ideal gas

It is instructive to evaluate the effect of ω on χH in the
case of an ideal gas with massive particles with mass m.
In this case the thermodynamic potential is given by
Eq. (28) only.
In order to mimic the conditions of high-energy nuclear

collisions we consider μH ≈ 0. Moreover, to make the
coupling between ω and μH more transparent, we consider
the lowest nontrivial order in ω in the expansion of ΩT
around μH ¼ 0 and ω ¼ 0. Considering that ΩT is an even
function of μH and ω we are left with

ΩT ¼ ΩTðμH ¼ 0;ω ¼ 0Þ
þ c2;0

2
μ2H þ c0;2

2
ω2 þ c4;0

4!
μ4H þ c0;4

4!
ω4

þ c2;2
4

ω2μ2H þOðμ6H;ω6Þ; ð32Þ

where

cm;n ¼
∂ðmþnÞΩT

∂μmH∂ωn

����
μH¼0;ω¼0

: ð33Þ

At the lowest nontrivial order the coupling between μH and
ω is given by the term proportional to c2;2 in Eq. (32).
The fluctuations of the helical density are described by

χμH ¼ −∂2ΩT=∂μ2H; from Eq. (32) at μH ≈ 0we read easily

χμH ¼ −c2;0 −
c2;2
2

ω2: ð34Þ

Within these approximations we can embed the effects of
rotation on χμH into the dimensionless coefficient c2;2.
In the massless case c2;0 and c2;2 can be computed

analytically with the result

c2;0 ¼ −
NcNf

3
T2; ð35Þ

c2;2 ¼ −
NcNf

2π2
: ð36Þ

Therefore in the massless limit we can write

χμH ¼ NcNf

3
T2 þ NcNf

4π2
ω2: ð37Þ

Note that the enhancement of fluctuations of helical density
∝ ω2 in the above equation is not related to the restoration
of chiral symmetry but to the fact that quark matter rotates.
A similar rotation can be found for the susceptibility of the
baryonic density.
For m ≠ 0 the calculation of c2;2 has to be done

numerically. We show c2;2 versus temperature in Fig. 9
for several values ofm. Note that c2;2 < 0which means that
ω ≠ 0 enhances the fluctuations of the helical density at a
given temperature. This happens because ω modifies
the single-particle spectrum like a chemical potential;
see Eq. (31).

B. The case of the QM model

We limit ourselves to compute χH for μ ¼ μH ¼ 0 to
mimic the conditions of the medium produced in very-high-
energy nuclear collisions. We write Ω ¼ U þ Ωren

q þΩT .
The thermal part of the thermodynamic potential is given by
Eq. (31) while the classical potential and the renormalized
vacuum term are given by Eqs. (13) and (15), respectively.
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We firstly show the coefficient c2;2 in Fig. 9. This has
been computed by numerical differentiation of Ω similarly
to Eq. (33):

c2;2 ¼
d4Ω

dμ2Hdω
2

����
μH¼0;ω¼0

: ð38Þ

At difference with Eq. (33), we have used the total
derivative notation in Eq. (38) to emphasize that the
differentiation takes into account of the ω and μH depend-
ence of the condensate. c2;2 is negative in agreement with
the discussion for the ideal gas, signaling the enhancement
of the fluctuations induced by a nonzero ω. The most
striking difference between the QM model and the fixed
mass results is that in the former case the chiral phase
transition affects c2;2, as it is clear from the groove
structure around Tc. Thus, in magnitude the enhancement

of fluctuations due to ω ≠ 0 is larger than the one obtained
for an ideal gas.
We complete this study by computing χμH versus

temperature for ω ≠ 0 within the QM model. The results
are summarized in Fig. 10. The enhancement of the
susceptibility induced by ω is evident. We conclude that
a rigid rotation enhances the fluctuations of helical density.

VI. CONCLUSIONS AND OUTLOOK

We have studied the thermodynamics of quark matter
with a helical chemical potential μH conjugated to helical
density nH, together with the standard baryon chemical
potential μ. We have analyzed chiral symmetry restoration
as well as several susceptibilities of helical matter within
the renormalized quark-meson model with two flavors of
quarks.
Helicity is a conserved quantity for free massive and

massless quarks; within the model at hand, the interaction
among quarks has the effect to shift the mass from the
current to the constituent one, giving a Hamiltonian
consistent with that of a massive Dirac particle which
justifies the use of the helicity as a good quantum number.
Thinking of potential applications of the material discussed
here to relativistic heavy ion collisions, we mention that
despite the large scattering rate that gives a low shear
viscosity over entropy density ratio, the relaxation time of
helicity in the hot quark-gluon plasma has been estimated
to be larger than the lifetime of the quark-gluon plasma
produced in the collisions. For these reasons, it is mean-
ingful to consider the helical density nH as an approx-
imately conserved quantity in heavy ion collisions, which
allows us to formulate helical density fluctuations in terms
of μH.
We have computed the phase diagram at zero temper-

ature: the result is summarized in Fig. 2. We have found a
critical line in the μ − μH plane which contains two critical
end points. The middle portion of this line is made of a
smooth crossover, while the lower right and upper left
corners of the line are first-order phase transitions. The
symmetry of the phase diagram around the line μ ¼ μH can
be understood easily in terms of the duality of the
thermodynamic potential for the exchange μ ↔ μH. We
have characterized the transition from the hadron gas at
T ¼ 0 to the helical matter in terms of average helical and
baryonic density nB; in particular, for helical matter
nH ≫ nB. We have also considered the fluctuations of
helical and baryonic density. When the transition at large
μH is considered, the fluctuations of nH are enhanced in
comparison to those of n. This might be an additional
difference, besides nH ≫ nB, between normal and helical
quark matter.
We have then studied chiral symmetry restoration at

finite temperature. The helical chemical potential disfavors
chiral symmetry breaking and thus leads to a lower
pseudocritical line. We have completed the study by

FIG. 9. Coefficient c2;2 versus temperature, for several values of
the quark mass m and for the QM model.

FIG. 10. χμH versus temperature, for several values of ω at
μH ¼ 0.
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computing the particle number susceptibilities around the
chiral crossover. Overall, our results support the idea that
μH makes the chiral phase transition softer and eventually
for large values of the chemical potential, the chiral critical
end point disappears from the T − μ diagram. Our results at
zero as well as finite temperature are in agreement
with Ref. [24].
We have also examined briefly the role of a rigid rotation

on the fluctuations of helical density. To mimic the
conditions of the quark medium produced in very-high-
energy nuclear collisions we have analyzed this problem
for the case μ ¼ μH ¼ 0. For the sake of simplicity, and
since this is the first time in which this problem has been
studied, we have used the simplest implementation of the
rotation of quark matter at finite temperature by modeling
an unbounded system in local equilibrium, limiting our-
selves to study the region close to the rotation axis. The
susceptibility of the helical density χμH is enhanced by the
rotation. We have illustrated this idea for an ideal gas, then
analyzing the same problem within the quark-meson
model. Firstly, we have embedded the effect of rotation
on χμH into a dimensionless coefficient c2;2, shown in Fig. 9
and computed analytically for the massless case; see
Eqs. (36) and (37). Then we have done the computation
of this coefficient for the quark-meson model, finding that it
is sensitive to the restoration of chiral symmetry at finite
temperature. Finally, for the QM model we have presented
the full calculation of χμH. Our conclusion is that a rigid
rotation enhances the fluctuations of nH in a system in
thermodynamic equilibrium. Therefore, even though a
medium with a net nH ¼ 0 is formed in high-energy
nuclear collisions, lumps of matter with hn2Hi ≠ 0 can form
because of event-by-event fluctuations, and this formation
is favored in rotating matter. A more detailed study of
rotation, including proper boundary conditions, will be the
subject of a forthcoming article.
Altogether, our result could have some impact on

relativistic heavy ion collisions: in fact, lumps of matter
with hn2Hi ≠ 0 can be produced due to event-by-event
fluctuations. Thus, it is meaningful to question about the
effect of helical density in the collisions. We have found
that helical density makes the chiral phase transition
smoother and lowers the critical temperature: it is likely

that the local production of nH by fluctuations lowers the
freeze-out temperature. In addition to this, our model
calculations show that the chiral phase transition is
smoother in the lumps with hn2Hi ≠ 0, and this can affect
the observables that are sensitive to the location of the
critical end point in the T − μ plane.
Other tests of the present work would consist in the

implementation of fluctuations of the helical density of the
quark-gluon plasma, in numerical codes based on relativ-
istic transport theory in which spin dynamics is included.
Then, it would be possible to compute the effect of these
fluctuations on some final state observables, like hadron
spectra, collective flows and many-particle correlators.
Along these lines, there are already preliminary studies
that suggest that spin dynamics might be important to
explain the Λ polarization puzzle [29]. We might use the
aforementioned codes to study this problem in a more
systematic way, having the advantage to use a solid
numerical setup that is already capable to reproduce many
observables of heavy ion collisions. If the Λ polarization
that turns out from these new calculations was not in
agreement with the measured one, then we could argue that
helical fluctuations are not so relevant in heavy ion
collisions.
This study can be improved by introducing the charge

chemical potential, that would split the chemical potential
of up and down quarks. This would be useful to study
charge fluctuations in heavy ion collisions.
While a complete study of the phenomenological impact

of helical density on observables of heavy ion collisions is
well beyond the purpose of the present article, our results
suggest that potentially helical matter can affect the
evolution of the medium created by the collisions, and
we plan to report on this topic in the future.
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