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We study the dynamics of heavy quarks in a thermalized quark-gluon plasma with a time-
correlated thermal noise, η. In this case it is said that η has memory. We use an integro-differential
Langevin equation in which the memory enters via the thermal noise and the dissipative force. We
assume that the time correlations of the noise decay exponentially on a time scale, τ , that we treat
as a free parameter. We compute the effects of τ 6= 0 on the thermalization time of the heavy
quarks, on their momentum broadening and on the nuclear modification factor. We find that over-
all memory slows down the momentum evolution of heavy quarks: in fact, transverse momentum
broadening and the formation of RAA are slowed down by memory and the thermalization time of
the heavy quarks become larger. The potential impact on other observables is discussed briefly.
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I. INTRODUCTION

A hot and dense phase of nuclear matter, the quark-
gluon plasma (QGP), is expected to form in the ultra-
relativistic heavy-ion collisions at Relativistic Heavy-ion
Collider (RHIC) and the Large Hadron Collider (LHC)
energies. Probing and characterizing the bulk properties
of QGP is a field of high contemporary interest. Heavy
quarks (HQs) [1–12] such as charm and beauty are con-
sidered as good probes of the system produced in high-
energy nuclear collisions. In fact, they are produced in
the very early stage due to the hard partonic scatterings
on a time scale τ = O(1/m) where m is the rest mass of
the quark. Due to their large mass and low abundance,
they can propagate in the QGP bringing almost no dis-
turbance to it. Consequently, they act as good probes
that can experience the whole evolution of the system
created in the collisions, from the very early stage up to
the hadronization stage.

The standard approach to study the HQ dynamics
in the QGP is following their position and momentum
evolution by means of the Langevin equations [13–26]
(see also [27]) as well as relativistic kinetic theory [9–
12, 21, 28–31]. In the approaches based on the Langevin
equation, the thermal noise, η, is usually treated as stan-
dard Wiener process, thus without correlations in time.
In this work we relax this approximation and analyze the
case in which η is time-correlated; this class of stochastic
processes is called a process with memory.

The prototype of Langevin equation that we consider
in this work is

dp

dt
= −

∫ t

0

γ(t− s)p(s)ds+ η(t), (1)
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where p is the momentum of the particle, η is the stochas-
tic term that models the thermal noise, while the integral
term on the right hand side is the dissipative force. In
previous studies the latter is replaced by −γp where γ
is the drag coefficient: this replacement follows from the
Fluctuation-Dissipation Theorem (FDT) when η has no
time correlations.

Our goal is to analyze the motion of heavy quarks in a
quark-gluon plasma, when the correlations of the thermal
noise do not decay instantaneously: instead, we assume
that these correlations decay over a specific time scale
that we call the memory time, τ . Hydrodynamic fluctu-
ations [32, 33], diffusion in the evolving Glasma [34–43],
diffusion of electric charge [44], dilepton yields [45] and
the electric conductivity of the quark-gluon plasma [46]
are some of the physical problems where memory can
play a role; for these τ lies in between 0.1 and 10 fm/c.
In this study we treat τ as a free parameter and study
its effect on a few physical quantities, namely the mo-
mentum broadening of heavy quarks and on the nuclear
modification factor, RAA. For the sake of simplicity we
consider the interaction of heavy quarks with a thermal-
ized quark-gluon plasma at a fixed, constant temperature
T ; the diffusion coefficients that we use in the calculations
are that obtained by perturbative QCD (pQCD) for high
T , and by a quasiparticle model (QPM) for low T , while
the dissipative kernel is related to the thermal noise by
the Fluctuation-Dissipation Theorem (FDT).

We anticipate the main result, namely that memory
delays the dynamics of the heavy quarks in the QGP:
we show this by studying the thermalization time, the
momentum broadening and the time evolution of RAA.
The latter in particular can be potentially of interest for
the phenomenology of heavy quarks in the QGP, due to
the fact that the slower evolution of RAA would require
the use of larger diffusion coefficients in order to repro-
duce the experimental data and this in turn would require
stronger interactions of the heavy quarks with the bulk,
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potentially leading to a larger v2.
The plan of the article is the following: in section II

we present the calculations for the equilibration time and
the momentum broadening for the Brownian motion with
memory in the nonrelativistic limit; in section III we
discuss the numerical implementation of the Langevin
equation with an integral kernel, while in section IV we
present our results. Finally, in section V we draw our
conclusions.

II. NONRELATIVISTIC LIMIT

For the sake of illustration, we consider here a simple
one-dimensional motion of a heavy particle with mass m
in the nonrelativistic limit. Most of the calculations pre-
sented here have been obtained firstly in [47], where a
gaussian correlator has been considered. Here we con-
sider an exponential correlator instead, therefore we skip
many details that have been given in [47], and limit our-
selves to write explicit results that stand for the expo-
nential correlator.

The Langevin equation for momentum p is

dp

dt
= −

∫ t

0

γ(t− s)p(s)ds+ η(t), (2)

where η is the stochastic term that models the noise,
while the integral term on the right hand side is the dis-
sipative force.

The formal solution of Eq. (2) can be obtained by
means of Laplace transforms, namely

p(t) =
1

2πi

∫ σ+i∞

σ−i∞

p0 + Ξ(s)

s+ Γ(s)
estds, (3)

where p0 = p at t = 0, and Γ and Ξ denote the Laplace
transforms of the dissipative kernel and of the noise re-
spectively; the integral is understood on a Bromwich con-
tour that leaves all the singularities of the integrand on
its left side.

We assume that η is a gaussian random variable with
correlators given by

〈η(t1)η(t2)〉 = 2Df(t1 − t2). (4)

Moreover, we assume that η represents the thermal noise
in a thermalized bath at temperature T . From the FDT
we have then

γ(t, s) =
1

mT
〈η(t)η(s)〉 = 2γf(t− s), (5)

with

γ =
D
mT

. (6)

In order to analyze the thermalization time and the
momentum broadening of the heavy particle we need to
evaluate the following averages:

〈p(t)〉 = p0G, (7)

σp ≡
〈
(p(t)− 〈p〉)2

〉
= J , (8)

where we have put

G =
1

2πi

∫ σ+i∞

σ−i∞

1

s+ Γ(s)
estds, (9)

that describes momentum randomization due to the
propagation of the particle in the bath, and

J = L−1
[

〈Ξ(s1)Ξ(s2)〉
(s1 + Γ(s1))(s2 + Γ(s2))

]
(t, t), (10)

where L−1[h](t1, t2) is the two-dimensional inverse
Laplace transform of h(s1, s2) that depends on (t1, t2).
In the above equation we have put

〈Ξ(s1)Ξ(s2)〉 =

∫ ∞
0

dt1

∫ ∞
0

dt2〈ξ(t1)ξ(t2)〉e−s1t1+s2t2 .

(11)
In this work we consider an exponential correlator in

Eqs. (4) and (5), namely

f(t) =
1

2τ
e−|t|/τ , (12)

which allows to solve the problem analytically. In the
following we call τ the memory time, since it sets the
time scale over which time correlations of the noise decay.
Note that limτ→0 f(t) = δ(t) in the distributional sense,
therefore it is possible to interpolate between the local
and the nonlocal kernel by changing the value of τ . The
Laplace transform of the dissipation kernel is

Γ(s) =
γ

(τs+ 1)
. (13)

Moreover, a quick calculation shows that

〈Ξ(s1)Ξ(s2)〉 =
D(2 + τs1 + τs2)

(s1 + s2)(1 + τs1)(1 + τs2)
. (14)

A. Thermalization

Firstly, we examine the thermalization of the heavy
particle, which consists in the loss of information about
the initial condition and in the equilibration of its kinetic
energy with the bath, 〈E〉 = T/2 as required by the
Equipartition Theorem. From Eqs. (7), (9) and (13),
considering that the zeroes of s+Γ(s) are the solutions of
the equation s+ τs2 +γ = 0, we get by a straightforward
application of the residues theorem

〈p(t)〉 = p0
e−

t(1+A)
2τ (−1 +A)

2A
+p0

e−
t(1−A)

2τ (1 +A)

2A
, (15)

with A ≡
√

1− 4γτ .
Before moving to the thermalization time we pause on

the early, pre-thermalization behavior of 〈p(t)〉, in order
to emphasize the differences between the motion with and
without memory. In order to simplify the discussion we



3

FIG. 1. Thermalization time versus memory time, both mea-
sured in units of 1/γ.

assume that τ � 1/γ where 1/γ represents the thermal-
ization time for processes without memory. For t � τ
we get

〈p(t)〉 = p0

(
1− γt2

2τ

)
, t� τmem, (16)

while for τ � t� 1/γ we get

〈p(t)〉 = p0 (1− γt) , (17)

The memory changes the pre-thermalization evolution of
〈p(t)〉 from linear to quadratic; in particular, this implies
that the thermalization of the particle in a bath with
memory is slower than the one in a bath without memory
with the same drag coefficient, γ. This result is confirmed
by the calculation of the thermalization time that makes
use of the full result (15).

We define the thermalization time, τtherm, such that
〈p(τtherm)〉 = p0/e with 〈p(t)〉 given by Eq. (15). The re-
sults of this calculation are shown in Fig. 1 where we plot
τtherm as a function of the memory time, both measured
in units of 1/γ. Thermalization time increases with τ
in agreement with the discussion above; the quantitative
effect of memory is negligible for γτ � 1, but becomes
substantial ≈ 20% already for γτ ≈ 0.5.

The qualitative behavior of the thermalization time
can be understood in simple terms. In fact, thermal-
ization implies the loss of the correlation with the initial
condition: the heavy particle equilibrates with the bath
regardless of its initial momentum distribution. If the
thermal noise of the bath has memory, the momentum
evolution from time t to t + ∆t does not delete totally
the information of p(t) because of the correlations of the

noise. Therefore, it is natural to expect that the loss
of the information about the initalization requires more
time.

B. Momentum broadening

Next we turn to the momentum broadening, σp in
Eq. (8). The starting point is the computation of J in
Eq. (10) with correlator given by Eq. (14). We get

σp =
D

2γ(4γτ − 1)
e−

t(1+A)
τ

×
[
1− 2γτ − 4γτe

tA
τ −A− 2A2e

t(1+A)
τ

+(1− 2γτ +A)e
2tA
τ

]
, (18)

where A has been defined right after Eq. (15). Although
Eq. (18) is exact, it is quite cumbersome, therefore it is
convenient to analyze a few limit situations in which the
result (18) is manageable; after that, we will present the
full result (18) computed numerically. As in the previous
subsection, for the sake of illustration we assume that
τ � 1/γ: this assumption will be removed in the full
numerical calculation, see Fig. 2. From the results pre-
sented in the previous subsection in this regime we have
τtherm ≈ 1/γ, see Fig. 1.

The dissipative force becomes relevant on the time
scale t ≈ τtherm ≈ 1/γ, thus for tγ � 1 we can ignore it
and put γ = 0 in Eq. (18). We get

σp = D(2t− 2τ + 2τe−t/τ ), t� 1/γ. (19)

In the early stage t� τ the above result gives

σp ≈
Dt2

τ
, t� τ � 1/γ, (20)

σp ≈ 2Dt, τ � t� 1/γ. (21)

In particular, the result (21) agrees with that we would
find for the Brownian motion without memory. We notice
that the effect of a finite memory time is to slow down the
momentum broadening of the heavy particle, changing
the early time evolution from linear to quadratic.

For late times t� 1/γ, t� τ , the memory with the ex-
ponential kernel has no effect on the equilibration value of
momentum broadening: in fact, in the asymptotic limit
γt� 1 we get from Eq. (18)

σp �
D
γ
, (22)

in agreement with the standard result for the Brownian
motion.

III. LANGEVIN EQUATION WITH MEMORY:
NUMERICAL IMPLEMENTATION

In this work, we solve the Langevin equation for the
heavy quarks in a bath with a colored noise; the latter
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has correlations at different times. In order to gener-
ate this noise we introduce an ancillary stocastic process,
h(t), that evolves simultaneously to (and independently
of) the heavy quarks, built up in such a way its correla-
tor at different times does not vanish. In this section we
firstly define the ancillary process and specify its correla-
tions at different times; then, we formulate the Langevin
equation where the heavy quark is coupled to h(t) and
discuss the numerical discretization scheme adopted in
the calculations.

A. Ancillary stochastic process

Let us consider the stochastic process a that satisfies
the Langevin equation

da

dt
= −αa+ αξ, (23)

where ξ is a gaussian white noise,

〈ξ〉 = 0, (24)

〈ξ(t)ξ(t′)〉 =
1

α
δ(t− t′); (25)

a is assumed to be dimensionless, so the 1/α in (25) is put
to balance the time dimension carried by the δ−function
because ξ is dimensionless too. The formal solution of
Eq. (23) is given by

a(t) = a0e
−αt + e−αt

∫ t

0

dt1 αξ(t1)eαt1 , (26)

where a0 = a(t = 0). Clearly we have

〈a(t)〉 = a0e
−αt. (27)

We define the fluctuating field

h(t) ≡ a(t)− 〈a(t)〉. (28)

This satisfies Eq. (23) with h(t = 0) = 0, that we rewrite
for the sake of future reference:

dh

dt
= −αh+ αξ. (29)

We baptize h as the ancillary process, because we use it
as an additional stocastic process to generate the colored
noise for the Langevin equation of the heavy quarks, see
below.

From the very definition of h it is easy to see that
〈h(t)〉 = 0. Instead the correlator of h at different times is
not a δ−function: it can be obtained easily from Eq. (26),
namely

〈h(t)h(t′)〉 =
e−α|t−t

′| − e−α(t+t′)

2
. (30)

Therefore, h is a process with memory and it can be used
in any Langevin equation. From Eq. (30) it is obvious
that asymptotically

〈h(t)h(t′)〉 ≈ e−α|t−t
′|

2
, (31)

namely correlations are washed out on the time scale
1/α ≡ τ . Note that for α→ +∞ we get, from Eq. (30),

α〈h(t)h(t′)〉 ≈ δ(t− t′), (32)

that is the process h becomes a standard white noise in
the limit τ → 0, as expected.

Before going ahead, it is useful to comment on Eq. (30):
we note that the correlator is not a function of t−t′ but of
t and t′ separately. It is convenient to fix t′ and analyze
the correlator for t ≥ t′. The addendum A ≡ e−α(t+t

′)

lowers the value of the correlator; on the other hand, A
is suppressed when t′ = O(1/α). That is, correlations of
h develop substantially on a time scale t ≈ τ = 1/α nec-
essary to suppress A. After this transient regime, time
correlations are approximately given by Eq. (31) which
have also the property to be invariant under time trans-
lations. Therefore, the process (29) describes a noise that
needs a time≈ τ to develop memory: after the system en-
ters in this regime, the correlations of h at different times
are approximately invariant under time translation, and
decay on a time scale ≈ τ .

Numerically Eq. (29) can be discretized in the usual
manner by the replacements

δ(t− t′)→ δt,t′

∆t
, (33)

ξ(t) = ζ(t)

√
1

α∆t
, (34)

where ∆t corresponds to the discrete time step imple-
mented in the numerical calculation. With these we have

∆h = −αh∆t+
√
αζ(t)

√
∆t. (35)

ζ(t) will be implemented as a white noise with variance
equal to one.

B. Application to the Langevin equation

Next we turn to the solution of the Langevin equation,
(2), for heavy quarks in the relativistic limit. We assume
the FDT in the relativistic limit, namely

γ(t, s) =
1

ET
〈η(t)η(s)〉, (36)

with E =
√
p2 +M2. Moreover, the process η(t) in (2)

is assumed to satisfy 〈η〉 = 0 and

〈η(t1)η(t2)〉 =
2D
2τ
g(t1 − t2), (37)
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where τ is the memory time and g is a dimensionless
function that defines the correlation of the noise; for sim-
plicity we assume it satisfies g(0) = 1. In the case of a
Markov process τ → 0 and g has to satisfy the condition

1

2τ
g(t1 − t2)→ δ(t1 − t2). (38)

In this work we generate the noise η by means of the
ancillary process h introduced in the previous subsection
with α = 1/τ . More precisely we assume that

1

2τ
g(t− t′) =

1

τ
〈h(t)h(t′)〉, (39)

see Eq. (30). Therefore, in Eq. (2) we put

η(t) =

√
2D
τ
h(t), (40)

see also Eq. (37). Using Eqs. (32) and (37) we note that
in the limit τ → 0 we get

〈η(t)η(t′)〉 = 2Dδ(t− t′), (41)

namely we recover the time correlation of the standard
Brownian motion.

We have noted that the ancillary process (29) devel-
ops substantial correlations after an initial transient stage
that lasts for t′ ≈ τ ; after this transient, the correlator is
approximately invariant under time translation and de-
cays exponentially on the time scale τ . We call this stage
as the exponential decay regime. In the numerical cal-
culations we start the ancillary process and let it run up
to some time t0, leaving heavy quarks frozen in momen-
tum and coordinate space; then, when the noise is in the
exponential decay regime, we start the evolution of the
heavy quarks including their interaction with the noise
itself. In this regime the correlator takes the form

〈η(t)η(t′)〉 = 2D e
−|t−t′|/τ

2τ
. (42)

With the rescaling (40) the Langevin equation (2)
reads

dp

dt
= −

∫ t

t0

γ(t, s)p(s)ds+

√
2D
τ
h(t), (43)

that we solve for t > t0. In (43) we put

γ(t, s) =
2D
ET

e−|t−s|/τ

2τ
, (44)

in agreement with the relativistic form of the FDT. The
time-discretized version of Eq. (43) is given by

∆p = −∆t

∫ t

t0

γ(t, s)p(s)ds+

√
2D
τ
h(t)∆t. (45)

Note that differently from the Markov process, the
stochastic term in (45) does not come with the

√
∆t: this

is so because now the noise is not a Wiener process due
to the memory. We implement a simple iterative scheme
to solve (45), namely

p(t) = p(t−∆t)−∆t

N∑
n=0

γ(t, sn)p(sn)∆t

+

√
2D
τ
h(t)∆t, (46)

with s0 = t0, sN−1 = t − ∆t and sN = t. This scheme
leads to the self-consistent solution

p(t)
[
1 + (∆t)2γ(t, t)

]
= p(t−∆t)

−(∆t)2
N−1∑
n=0

γ(t, sn)p(sn)

+

√
2D
τ
h(t)∆t. (47)

Equations (35) and (45) allow us to implement the mo-
mentum evolution of the heavy quark in a bath with a
colored noise. h in Eq. (45) is given by the solution of
the ancillary Langevin equation (35). This means that
at each time step one has to solve (35) [with the initial
condition h(t = 0) = 0] and (45) simultaneously. This
procedure is different from the one adopted in the litera-
ture in the case of a Markov process, in which the white
noise would be extracted randomly from a Gaussian dis-
tribution at each time step.

For the numerical implementation of the 3-dimensional
Langevin equation, we are solving equations (35) and
(45) simultaneously for the 3-components (hx,hy, hz, px,
py, pz) to study HQ momentum evolution coupled with
the coordinate evolution

dri =
pi
E
dt (48)

where dri is the shift of the coordinate in each time step
dt. E and p are the energy and momentum of the heavy
quark respectively.

The HQ transport coefficients are computed as follows.
At high T we model the thermalized bath by a QGP
made of massless quarks and gluons, and use the pQCD
kinetic coefficients for the processes c`→ c`, where ` de-
notes either a massless gluon or a quark in the bath. The
diffusion coefficients in this case are well known and can
be found in the literature, see for example [49, 50]. The
squared invariant scattering amplitudes are the Com-
bridge ones, that includes s, u and t channel and their
interferences terms. The infrared divergence associated
with the t-channel diagrams is screened by the Debye
mass, mD = g(T )T . For more details see earlier works
[28, 51]. On the other hand, at low T we model the bath
with a gas of quarks and gluons quasiparticles, using the
so-called quasi-particle models (QPMs); in these mod-
els the quasiparticle masses are tuned in order to repro-
duce Lattice QCD thermodynamics [52, 53].The QPMs
account effectively for the non-perturbative effects for
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FIG. 2. σp versus time for a one-dimensional motion of
charm quarks in the nonrelativistic limit, see Eq. (6). σp is
defined in Eq. (8). We have considered two values of the
memory time, τ . Analytical results correspond to Eq. (18).

T close to the quark-hadron transition temperature, Tc.
The main feature of the QPM is that the effective cou-
pling is significantly stronger than the one of pQCD near
Tc, which enhances the HQ-bulk inteactions. We have
evaluated the diffusion coefficient within the QPM start-
ing from the effective coupling with massive quarks and
gluons. For details we refer to earlier works [28, 51].

IV. RESULTS

A. Non-relativistic check

In order to check the discretization scheme of the
Langevin equation with correlated noise (45), we plot
σp versus time in Fig. 2; the definition of σp is given in
Eq. (8), and the Langevin equation has been solved for a
one-dimensional motion of charm quarks. We have solved
the equation in the nonrelativistic limit as explained in
section II, that corresponds to replace the kinetic energy
with the mass of the quark in the Fluctuation-Dissipation
theorem, see Eq. (6); moreover, we have used a constant
diffusion coefficientD = 0.2 GeV2/fm for illustrative pur-
poses only. Here T referes to the bath temeprature. The
green and orange solid lines correspond to τ = 0.2 and
τ = 0.01 fm/c.

For comparison, in the same figure we show by dashed
lines the analytical result (18), that is valid in the non-
relativistic limit: the agreement between the two results
is excellent, showing that our numerical scheme works
properly. We notice that the memory slows down the

FIG. 3. σp for charm quarks, defined in Eq. (49), versus
time, for three values of the temperature. The solid lines
correspond to τ = 0.2 fm/c while the dashed, dot-dashed and
dot-dot-dashed stand for τ = 1 fm/c.

evolution of σp as anticipated in section II. Moreover,
for τ = 0.2 fm/c we notice that the diffusive motion is
characterized by the initial nonlinear increase of σp that
turns into a linear regime before the drag force becomes
relevant and leads to the thermalization of the heavy
quark. In the case of the smaller τ the charm quark
enters the linear regime immediately, then equilibrates
with the medium.

B. Transverse momentum broadening

In this subsection we analyze momentum broadening
of heavy quarks in a hot medium; analogously to the
previous section we define

σp = 〈(pT − 〈pT 〉)2〉, (49)

where pT =
√
p2x + p2y is the transverse momentum.

In Fig. 3 we plot σp versus time for three temperatures
and two values of τ , namely τ = 0.2 fm/c (solid lines) and
τ = 1 fm/c (broken lines). Calculations correspond to the
cham quark. For the three cases considered it is clear that
increasing the memory time results in the slowing down
of momentum broadening; the effect is more visible at
large temperature, where the drag force is less effective.
At small temperature it is still possible to measure some
difference between the results with the two memory times
in the early evolution, then for time t ≥ 5 fm/c the results
with and without memory coincide.

In Fig. 4 we plot a selection of the results shown in
Fig. 3 for τ = 0.2 fm/c, zooming on the early time evo-
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FIG. 4. σp for charm quarks, defined in Eq. (49), versus
time and for τ = 0.2 fm/c.

lution of σp. We notice the nonlinear increase of σp, in-
duced by memory in agreement with the discussion of sec-
tion II, followed by a linear enhancement. In this regime
the charm quarks experience an almost diffusive motion,
in the sense that the energy loss due to the drag force is
still negligible. Qualitatively the different regimes appear
also for the small temperature case in the figure: how-
ever, in this case the drag force is stronger so the linear
regime lasts for a shorter fraction of the evolution, then
σp bends and eventually saturates, signaling the equili-
bration of the charm with the medium.

C. Nuclear modification factor

In this subection we analyze the modification factor
RAA, defined as

RAA(pT ) =
(dN/d2pT )t

(dN/d2pT )FONLL
, (50)

where (dN/d2pT )t denotes the spectrum of charm quarks
at time t and (dN/d2pT )FONLL denotes the spectrum at
the initialization time, To this end, at the formation time
we assume the prompt spectrum obtained within Fixed
Order + Next-to-Leading Log (FONLL) QCD that re-
produces the D-mesons spectra in pp collisions after frag-
mentation [54, 55].

dN

d2pT

∣∣∣∣
prompt

=
x0

(1 + x3pT x1)x2
; (51)

the parameters that we use in the calculations are x0 =
20.2837, x1 = 1.95061, x2 = 3.13695 and x3 = 0.0751663

FIG. 5. RAA at t = 1 fm/c and t = 3 fm/c, for τ = 0 and
τ = 1 fm/c , at T = 1 GeV obtained within pQCD.

for charm quarks; the slope of the spectrum has been
calibrated to a collision at

√
s = 5.02 TeV. RAA(pT ) 6= 1

implies that charm quarks experience interactions with
the gluon medium, causing a change in their spectrum.
Our motivation is to highlights the impact of memory on
RAA(pT ).

In Fig. 5 we plot RAA versus pT , for two values of the
memory time τ . The shape of RAA for T = 1 GeV and up
to pT ≈ 5 GeV is in agreement with the one advertised in
[34, 35, 40]: this is the result of the diffusion-dominated
propagation of the heavy quarks in the hot medium at
high temeprature, that effectively diffuses low momen-
tum charm quarks to higher momentum states. This ex-
plains why RAA remains smaller than one up to pT ≈ 2
GeV. For larger pT the energy loss is important and par-
ticles migrate to lower momentum states. At low tem-
perature the drag force is dominant in the whole range of
pT , therefore the general tendency is that particles move
to lower pT states so RAA stays greater than one up to
pT ≈ 2 GeV.

The effect of τ 6= 0 is to slow down the formation of
RAA. We notice a sizable impact of memory on the RAA.
To make this poing clearer, in Fig. 6 we show RAA for
τ = 0 and τ = 1 fm/c at T = 0.25 GeV obtained within
QPM. We notice the slower evolution of RAA when τ 6= 0.

In Fig. 7 we plot RAA at t = 3 fm/c, for τ = 0 and
τ = 1 fm/c, at T = 0.25 GeV. Solid lines correspond to
the results of the QPM model, while dashed lines stand
for the pQCD calculations. We notice that RAA obtained
within the QPM model differs considerably from the re-
sults of pQCD, which is in agreement with expectations
because the cross sections within the former are enhanced
with respect to those of the latter, implying that diffusion
and drag coefficients are larger.

The results in Fig. 7 show that memory slows down the
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FIG. 6. RAA at t = 1 and t = 3 fm/c, for τ = 0 and τ = 1
fm/c, at T = 0.25 GeV obtained within QPM.

FIG. 7. RAA at t = 3 fm/c, for τ = 0 and τ = 1 fm/c, at
T = 0.25 GeV. Red lines correspond to the results of the QPM
model, while blue lines stand for the pQCD calculations.

dynamics of the heavy quarks in the whole pT range. In
fact, RAA at large pT in the process with memory stays
above that without memory, meaning that the large pT
particles have lost less energy during the evolution. In
other words, memory slows down the energy loss. Ergo,
also thermalization in presence of a time-correlated noise
is retarded. Similarly, the diffusion to low pT is slower
when memory is present, since RAA in this case remains
lower than the one without memory. These effects are
more evident in the case of the QPM while they are
smaller (but still present) in the pQCD case.

The results discussed in this section allow us to discuss

a potential impact that memory might have on more so-
phisticated phenomenological calculations. As a matter
of fact, our results can be summarized by stating that
memory slows down the heavy quark dynamics. For ex-
ample, the formation of RAA of heavy quarks is slower
if the thermal fluctuations of the bath are time corre-
lated. Therefore, if the diffusion coefficient is tuned in
order to reproduce the experimental RAA, then a larger
coefficient is needed when the bath has memory. The
larger diffusion coefficient will then enhance the elliptic
flow, v2. The memory effect has the potential to alter the
heavy quark RAA-v2 dynamics and can improve the simu-
lations description of heavy quark RAA-v2 [51]. Memory
effect may affect other observables like the heavy quark
directed flow, particle correlations and so on. Within
our present study it is impossible to predict quantita-
tively this change due to our simplifying assumptions;
these simplifications are partly justified by the fact that
it is the first time, to our knowledge, that the effects of
time correlated fluctuations on heavy quark observables
are computed. A more detailed, quantitative study will
be the subject of future investigations.

V. CONCLUSIONS

We have studied the effects of a time-correlated ther-
mal noise of a thermalized quark-gluon plasma on the
energy loss and the diffusion of heavy quarks. In this
case the time correlation of the thermal noise does not
decay instantaneously, as instead it is assumed for the
standard Brownian motion. We have considered a sim-
ple situation in which the time correlations of the noise
decay exponentially on the time scale τ , called the mem-
ory time, and treated τ as a free parameter. We have
considered an integro-differential Langevin equation for
the heavy quark momentum, taking into account memory
effects both in the thermal noise and in the dissipative
force.

We have computed several quantities that character-
ize the dynamics of heavy quarks in the bath, namely
the thermalization time and the transverse momentum
broadening. Then we turned to the nuclear modifica-
tion factor, RAA, that we have computed using kinetic
coefficients from pQCD and quasiparticle models. Our
results suggest that memory delays the dynamics of the
heavy quarks in the QGP: indeed, memory slows down
momentum broadening as well as the formation of RAA,
retards the energy loss and thus increases the thermal-
ization time.

Our work could be of interest for the phenomenology
of heavy quarks in the QGP: in fact, the slower evolution
of RAA would require the use of larger diffusion coeffi-
cients in phenomenological calculations, for reproducing
the experimental RAA and this in turn would require
stronger interactions of the heavy quarks with the bulk,
potentially leading to a larger v2. The investigation of
this point requires a refined study with realistic initial
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conditions, including the initial geometry of the fireball,
and will be matter for future studies. In addition to this
problem, it is of a certain interest to analyze processes
with a long tail memory, in which the time correlations of
the noise do not decay exponentially but as power laws.
These processes can be generated via Langevin equations
with fractional derivatives [56, 57]; this problem will also
be the subject of future studies.
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