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Introduction

Inflammation is the body’s immune response to outside threats and traumas,

aiming to protect the body and prevent the insurgence of diseases.

It is a highly complex process in which a great number of both pro- and anti-

inflammatory agents work synergistically to ensure a quick restoration of tissue

health.

Although it is a protective mechanism, a derangement of the inflammatory re-

sponse can gravely impair the physiological functions, so that inflammation is now

recognised as the underlying basis of a significant number of severe and debilitat-

ing diseases, such as autoimmune diseases ([67]): they are inflammation-driven

disorders, caused by an abnormal and uncontrolled inflammatory response that,

in absence of an identifiable reason, attacks the body.

The complex dynamics of the inflammatory process are not yet fully known

and an in-depth knowledge of these mechanisms could be the key to control the

onset and the evolution of some severe autoimmune diseases, such as Multiple

Sclerosis (MS).

For this reason, understanding the mechanisms driving an inflammatory response

has become one of the biggest challenge in immunology.

The recent progresses in experimental and clinical immunology have guided

the emergence of a great number of mathematical models, aiming to investigate,

qualitatively and quantitatively, various open questions. Mathematical modelling

has brought several benefits to the field of the immunological studies: from ex-

plaining existing observations ([4]), to understanding which assumptions in the

model are useful ([6]), to detecting basic mechanisms driving some phenomenon,

thus reducing the cost and the time associated with performing large numbers of

experiments ([170]).

The subject of the present dissertation is the study of mathematical models

aiming to explore the mechanisms of the inflammatory response and the resulting

clinical patterns.

In this Thesis, we shall present:

• The development and the study of a Reaction-Diffusion-Chemotaxis (RDC)

model of acute inflammation. We shall call this model Model I.
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• The investigation of the pattern-forming and mathematical properties of an

existing RDC model of MS ([117]). We shall call this model Model MS.

The chemotaxis, in both models, turns out to be responsible for the formation of

clinical aggregates.

Our aim to prove that the proposed models, within biologically relevant ranges

of the parameter values, are able to reproduce qualitatively different pathological

scenarios observed in patients.

The first Chapter of this Thesis is devoted to a review of recently developed

mathematical models that investigate, both qualitatively and quantitatively, var-

ious open questions in immunology.

In this Chapter, we discuss the benefits of mathematical immunology to date and

highlight how the need to get increasingly accurate results has driven, in the last

few years, a shift from simple models of ODEs, to more complex systems of ODEs,

PDEs, to hybrid and multiscale models which combine ODEs and PDEs.

We also present a review of recently proposed mathematical and computational

models that reproduce the general dynamics of the innate and adaptive immune

response at molecular, cellular and tissue scale. Finally, we specifically focus on

mathematical models of inflammation and on a class of spatial models describing

the evolution of Balo’s Sclerosis, a rare and aggressive form of MS.

The subsequent chapters contain the results of our research.

In Chapter 2, we present a spatially extended system (Model I) that describes

the early phase of an inflammatory response. It is a generalization of the classical

Keller-Segel (KS) model of cell motility in response to a chemical signal. The pro-

posed model, moving from the one proposed in [148], introduces a local reaction

term that accounts for the activation of the immune cells during the acute phase

of inflammation. The motivation for introducing a cell-growth term is twofold:

first, an experimental study ([122]) showed that during an inflammatory response

the most effective agents are the newly recruited macrophages, therefore assigning

a primary role to freshly activated macrophages; secondly, it is well known that an

initial release of pro-inflammatory chemicals induces more inflammation ([90]). In

fact, the macrophages, stimulated by pro-inflammatory agents, release toxicants

that, while killing bacteria and destroying foreign bodies, can also damage the

hosting tissue, inducing more inflammation with the consequent recruitment of

additional immune cells.

In this Chapter, we prove that Model I undergoes chemotaxis-driven Turing and

wave instabilities, corresponding to the formation of stationary and periodic-in-

time localized aggregates of inflammatory activity. Performing a linear analysis,

we derive the instability thresholds for both the stationary and the oscillating
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patterns, proving a new result which states the necessary and sufficient conditions

for the onset of a wave instability. This is per se an interesting result which could

be applied to analogous chemotaxis models. We also show some numerical simu-

lations which confirm the reliability of our analysis.

Through a weakly nonlinear analysis close to the Turing threshold, we derive the

amplitude equation that gives the form of the pattern on 1D domains, allowing

to distinguish between a supercritical and a subcritical transition at the onset.

We also prove that the simple addition of cellular growth makes the system able to

exhibit spatio-temporal irregular solutions. The insurgence of coarsening chaotic

dynamics in a chemotaxis model, as determined by the presence of a cell pro-

liferation term, is not new and was investigated by Painter and Hillen ([144])

in the case of the classical KS model. In Model I, we identify, as the chemo-

tactic parameter is varied, a sequence of successive period doubling bifurcations,

leading to complex and irregular merging and emerging cellular aggregates, re-

sembling spatio-temporal chaos. These irregular solutions are able to reproduce

the criticality in macrophage dynamics ([142]): the immune cells constitute, in

fact, a self-organized living system which exhibits stability, but that is also ca-

pable of changing state in response to specific signals coming from the external

environment. To avoid loss of information, there must be a good balance between

stability and adaptability. Therefore, to perform its tasks, the system is poised at

the critical boundary between organized and disorganized states, a phenomenon

that is known as Self Organized Criticality (SOC) ([8]). The emergence of com-

plex spatio-temporal dynamics can be considered a hallmark of SOC.

We prove that the inclusion of the growth term is crucial for the appearance of the

merging and emerging chaotic phenomena that, in fact, are absent in the model

of Penner and coworkers ([148]), characterized by too much stability.

Finally, we investigate Model I on 2D domains, proving that it provides the

key mechanisms responsible for the formation of the inflammatory patterns ob-

served in Erythema Annulare Centrifugum (EAM). This is a class of skin lesions

characterized by ring-shaped rashes that spread from the center ([53]). We also

present a detailed analytical and numerical bifurcation analysis that enables char-

acterization of the supported stationary patterns in the case of radially symmetric

domains.

In the final part of Chapter 2, we present some numerical simulations, performed

on fully 2D domains, which highlight the evolution of the inflammatory solutions

to Model I, making it possible a comparison with the available medical data. To

this last end, we adopt only numerical values of the parameters taken from the

existing experimental literature. The obtained results confirm that the proposed
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model is able to realistically reproduce the clinically observed patterns.

On the other hand, the numerical simulations performed on 2D domains provide

a numerical justification to the study of stationary radially symmetric solutions.

In fact, we show that an initially highly localized stimulus assigned on a square

spatial domain evolves towards the formation of inflammatory aggregates that

exhibit radial symmetry.

The results presented in Chapter 2 are contained in [80].

Radially symmetric solutions were also observed in the MS model (Model

MS) developed by Lombardo and coworkers ([117]): numerical simulations of the

system dynamics on rectangular domains, in fact, revealed that a small, highly lo-

calized perturbation of the disease-free state evolves towards concentric patterns,

which closely reproduce the typical lesions observed in Balo’s Sclerosis patients.

Moreover, the authors did not perform any bifurcation analysis of these solutions.

In Chapter 3, we present the analysis of the conditions that yield the onset of

stationary non constant radially symmetric solutions ([117]). In particular, we

perform a perturbative analysis close to the Turing threshold on circular domains.

Then, through a weakly nonlinear expansion, we investigate the solutions bifur-

cating from criticality and derive the corresponding amplitude equation: in this

case the system undergoes a transcritical bifurcation at the onset. In the case

when the domain size is large compared with the critical wavelength of the pat-

tern, the previous analysis is not valid and the amplitude of the resulting pattern

is recovered through an asymptotic matching procedure ([75]).

Chapter 3 is also devoted to the investigation of the stability of the stationary

patterns supported by Model MS. The weakly nonlinear analysis presented in

[117], in fact, only describes the amplitude and the stability properties of the

first bifurcating solution, which corresponds to the critical mode, but accounts

for neither the sequence of successive bifurcations observed in numerically com-

puted bifurcation diagrams nor the pattern selection process. For these reasons,

we study the onset of the universal secondary instabilities of striped patterns,

namely the Eckhaus and zigzag instabilities, which arise in this system. The im-

portance of these instabilities comes from the fact that they modulate or change

the wavelength of the pattern when it is not optimal and therefore can justify the

formation of defects, frequently reported in real patterns.

In this chapter, we perform a weakly nonlinear analysis with the purpose of obtain-

ing the Newell-Whitehead-Segel equation which rules the evolution of the complex

amplitude of the pattern. Adopting a perturbative approach, we recover the nu-

merical bifurcation values of the sequence of successive bifurcations and study

the stability of the emerging states. We present the study on the onset of the
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Eckhaus instability in Model MS, in both the supercritical and the subcritical

regimes, and some numerical simulations in order to support the bifurcation anal-

ysis. Finally, we present the study on the zigzag instability and some numerical

simulations on 2D domains which show its occurrence in Model MS.

The results presented in Chapter 3 are contained in [22] and [21].

Model I and Model MS are extensions of the classical KS chemotaxis model

([92]).

KS-type equations are widely utilised in models for chemotaxis, due to their rel-

ative tractability (analytically and numerically), as compared to stochastic and

discrete approaches ([183], [51], [145]), and to their capacity to replicate key be-

haviours of chemotactic populations.

It has been proved that certain formulations of the model could lead to a finite-

time blow up of the solution. The work of Hillen and Painter ([87]) is a detailed

review of some variations of the KS model and their analytical properties relative

to pattern formation and existence of global solutions. From this review, it is clear

that well-posedness of the model depends on the choice of the sensitivity function

and on the inclusion of growth and degradation terms.

Chapter 4 is devoted to the study of the well-posedness properties of Model

MS on 1D domains. In particular, we prove that the inclusion of the volume-

filling sensitivity term prevents finite-time blow-up of the solutions.

We start our analysis considering an approximated problem which, in the limit of

a parameter tending to zero, tends to Model MS. Using the Galerkin method,

we construct a unique local solution to the approximated problem. We also prove

that the local solution preserves the positivity of the initial datum. Some a priori

estimates, obtained using the fact that the solution is positive, allow to extend

the local solution globally in time. Then, passing to the limit of the approximated

problem, we recover a unique weak nonnegative solution to Model MS. Finally,

we prove that classical solutions exist globally in time for every positive initial

data taken in proper functional spaces.

This analysis is contained in [57].

To make the thesis more readable, we have inserted three Appendices, where

some of the technical details are reported.
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Chapter 1

Mathematical models of immune

response: a review

Mathematical immunology is one of the fastest growing subfield of the mathe-

matical biology. The main reason of this development lies in the recent progresses

in genetic and biochemistry, which in turn has led to significant advances in experi-

mental and clinical immunology. These progresses have also guided the emergence

of a great number of mathematical models aiming to investigate qualitatively and

quantitatively various open questions in immunology.

In general, the purposes of mathematical modelling are essentially two: to offer

theoretical understanding for a theoretical problem and to help make predictions

([36]).

In the field of immunological studies, several purposes have encouraged the

development of mathematical models: from explaining existing observations and

generating new hypotheses ([4]), to understanding which assumptions in the model

are useful ([6]), to detecting basic mechanisms driving some phenomenon, selecting

hypothesis that could be tested experimentally and thus reducing the cost and

the time associated with performing large numbers of experiments ([170]).

Therefore, mathematical immunology follows the development of experimental

immunology and, at the same time, tries to influence it by providing hypotheses

of various immune processes and suggesting further theoretical problems.

Moreover, mathematical models have introduced the possibility of obtaining

accurate predictions reducing the need for physical experiments.

Since a model is still a simplification of the phenomenon under study, it must

undergo a validation process, which needs estimations of the parameters involved

in the system. In immunology this process is particularly difficult because many

quantities, such as interaction rates, cannot be easily quantified. In mathemati-

cal and computational immunology, many researchers use both parameters mea-

sured experimentally and parameters taken from other published mathematical
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and computational models. But this procedure is not rigorous because the pa-

rameter values depend on the characteristics of the experimental model and then

might differ from study to study. The only rigorous approach, which could lead

to results that could have predictive power, is to estimate in a laboratory all pa-

rameters required by a mathematical model describing a specific system, but it

turns out to be very expensive and time consuming.

Even if the complete validation of biological models is impossible, the models can

be partially confirmed by showing agreement between observations and predic-

tions.

This Chapter provides a review of some recently proposed mathematical mod-

els in immunology and is organized as follows: Section 1.1 focuses on mathematical

models of immune system processes that occur at different spatial scales, and Sec-

tion 1.2 is devoted to mathematical models of inflammation and Multiple Sclerosis,

an inflammatory diseases caused by a dis-regulation of the immune response.

1.1 The immune system

The immune system is the organism defence mechanism and consists of many

biological structures and processes that protect the body against harmful stimuli

and foreign invaders.

The immune system can be subdivided into the innate and the adaptive subsys-

tems, which cooperate to ensure the protection of the host ([128]). The main task

of the innate immune subsystem is to build a physical and chemical barrier formed

of cells and molecules that recognise and isolate pathogens, while the task of the

adaptive immune subsystem is to eliminate the foreign bodies. The actions of the

two subsystem are coordinated by a large variety of molecules and cells, such as

the innate dentritic cells, which recognise pathogen molecules via invariant cell-

surface receptors and then display their antigen on their surface to be recognised

by the T-cells, which belong to the adaptive immune response ([135]).

An important distinction between the innate and adaptive immunity is the speci-

ficity: the innate immune response is non-specific, indeed the cells of the innate

immune subsystem respond to each foreign invader using the same mechanism;

while the adaptive immune subsystem is considered to be specific as it is com-

posed of highly specialized cells that recognise a large variety of antigens and,

using specific mechanisms, eliminate pathogens and prevent their growth.

The complex dynamics of the immune response take place on different spatial

scales: the molecular/genetic scale, the cellular scale and the tissue/organ scale.

In addition, immunological processes also span a large range of temporal scales:
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from nanosecond, for peptide binding, to seconds/minutes, for degradation of

signalling molecules, to days and months, for proliferation and death of some

long-lived immune cells (like T cells).

Mathematical models of immune response available in literature cover all the

spatial scales, some of them are multiscale models, while most of the proposed

models neglect temporal scales.

In the following paragraphs, we shall present a review of a class of mathemat-

ical models derived to study the dynamics of both the innate and the adaptive

immune response, at molecular, cellular and tissue level, and multiscale models,

which describe immune processes that take place across various spatial scales.

We shall also discuss the mathematical tools used to derive and investigate these

models, and the benefits of mathematical immunology to date.

The molecular level. At the molecular level, there are two main areas that

have been investigated by various mathematical models: the mechanisms for T

cell activation, in the context of the adaptive immune response, and the different

signalling pathways involved in cell functionality, in the context of the innate im-

munity.

In the first area, the main goal of the proposed mathematical models has been

understanding and predicting T cell activation during infection or cancer immune

therapies ([77], [61], [137], [114]). Other models have been used to calculate pa-

rameter values ([156]) or to investigate the timescale of the T cell responses ([48]).

The majority of mathematical models for T cell activation are either described

by deterministic ordinary differential equations or are stochastic computational

models. In general, they are described by a relatively low number of equations,

but there are some models which are described by hundreds and even thousands

of equations ([52]), in the attempt to incorporate all components of the signalling

networks.

The comparison between mathematical and computational modelling with ex-

perimental results has led to a better understanding of T cell signalling, as dis-

cussed in [37].

Regarding the second area, the response of cells to external signals is encoded

by the spatial and temporal dynamics of the signalling pathways activated by

membrane receptors. A dysregulation of this process can lead to various diseases,

such as developmental diseases, cancer, diabetes, etc. ([93]).

Various mathematical models have been developed to investigate some of these

pathways in the context of the innate immune response ([42]), or in the context

of the adaptive immune response ([149]).
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One of the most investigated signalling pathway is the NF-κB, a protein that con-

trols cytokine production, cell survival and regulation of genes involved in immune

and inflammatory responses ([28]). There are two types of NF-κB pathways: a

classical activated pathway, mostly involved in innate immunity, and an alterna-

tive activated pathway, involved in adaptive immunity ([28]). The majority of

models developed to investigate the NF-κB pathways focus on the classical path-

way.

A minimal model of 3 coupled ordinary differential equations was derived to under-

stand oscillations in the nuclear-cytoplasmic translocation of the NF-κB transcrip-

tion factor ([102]). While in [42] the authors developed a more complex models

of 24 ordinary differential equations describing the time evolution of molecular

species of this pathway and one partial differential equation for the diffusion of

TNF-α, a cell signalling molecule involved in systemic inflammation. The anal-

ysis of this model showed that NF-κB is sensitive to a wide range of TNF-α

concentrations. In [193] the authors made use of bifurcation theory to explore

the relationship between the intensity of TNF-α stimulation and the existence of

sustained NF-κB oscillations, due to a Hopf bifurcation.

The majority of mathematical models studying molecular level processes ne-

glect the spatial aspect and then are described by ordinary differential equations.

Whilst the use of these equations renders the analysis more tractable, it may

not capture relevant biological phenomena, such as aggregation of cells or oscil-

lations in protein concentrations. For example, in [40] the authors proved that

the inclusion of a diffusion term for a protein produced by mRNA acts as a bi-

furcation parameter and gives rise to a Hopf bifurcation, which reproduces the

experimentally observed oscillations in protein levels.

The cellular level. The mathematical models proposed to describe the cellular

level dynamics focus on the direct cell-cell dynamics and on the interactions be-

tween cells and cytokines, antigens and viruses. The models available in literature

investigate both innate and adaptive immune response and their interactions.

Mathematical models have investigated the dynamics of the innate immune re-

sponse for cell-level dynamics in the context of bacterial infections alone ([123],[174],

[129], [79], [54]), viral infections alone ([34]), viral and bacterial infections ([173]),

chronic wound inflammation ([138]) or more general inflammation ([59]), and im-

mune responses to cancer ([99]). These mathematical models range from simple

deterministic ordinary differential equations ([54], [34]) and partial differential

equations ([99]), to more complex stochastic models ([79]).

Other mathematical studies investigate the cell-level adaptive immune response
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to different bacteria ([131]), viral infections ([82]), autoimmune responses ([25])

and immunodeficient responses ([69]). Some of these mathematical models have

been validated quantitatively and qualitatively against available data and then

investigated numerically. Indeed, the models described by simple ordinary differ-

ential equations can be fitted easily to experimental data. Moreover, at this level

the parameters involved in the systems are easier to measure and this makes it

easier to validate the models.

There are also more complex models for cell-level dynamics, which are mainly

used for the theoretical investigation of various aspects of the immune response

and that combine numerical and analytical tools to obtain a deeper understanding

of the nonlinear dynamics of the models. These models range from classical ordi-

nary differential equations ([131]), to more complex delay differential equations,

to describe, for example, the time delay between viral infection and immune re-

sponse, as in [82].

Finally, there are many mathematical models that investigate, at cellular level,

the interactions between the innate and adaptive immune responses following

pathogen stimulation ([84]), following trauma ([191]), or following the injection of

cancer cells ([124]). But the complex interactions between the innate and adaptive

immunity lead to difficulties in parametrising appropriately the models and then

to validate the results.

Since many models for cell-level dynamics are described by relatively few equa-

tions, it is easier to investigate them using analytical tools, in addition to numerical

simulations. For example, the complex dynamics between some of the components

of the adaptive and innate immune responses, or between immune cells and tu-

mour cells, have been investigated with the help of stability and bifurcation theory

([194], [116]). These analytical techniques have helped address questions regarding

the existence of particular types of states, such as periodic solutions that arise via

Hopf bifurcations, or questions regarding the possible immunological mechanisms

behind the transitions between various states.

The tissue level. In many immunological processes that occur at tissue level,

cells tend to assemble themselves and create multicellular structures. The tissue-

level processes are characterized by interactions of cells and then there is a very

subtle demarcation line between cell-level and tissue-level models. Moreover,

many of the processes that occur in tissues are the result of molecular and cellular

interactions. For these reasons, many models that describe tissue-level dynamics

of immune cells are actually multiscale models.
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The mathematical models for tissue-level processes are mainly described by par-

tial differential equations, in order to incorporate the spatial effects of the immune

cells on the tissues ([178], [96], [97]). However, there are also some ODEs models

that ignore the spatial aspects of the tissue-level processes and focus, for example,

only on the accumulations of immune cells in the tissues, which can sometimes

lead to tissue damage and organ failure ([171]).

Due to the complex nature of these processes, it is usually very difficult to esti-

mate model parameters, because in tissues there are mechanical forces that act

among cells and that have been never measured. These mathematical models

generally use parameter estimates done in isolation, via single experiments, or use

parameters estimated for different diseases and animal models. Thus, the results

of these models are mostly qualitative.

The immunological dynamics that have been most studied at tissue level range

from wound healing ([179], [47]), to tumor-immune dynamics ([96], [97]), to the

formation of granuloma ([178]) and to the formation of micro-abscesses following

bacterial infections ([150]). There are also several mathematical models derived to

understand some particular aspects of the tissue-level immune response in absence

of experimental results. An example is the study conducted in [43]: the authors

used a hybrid model that combines an agent-based approach for the stochastic

behaviour of macrophages and T cells in the lung, with ODEs for the dynamics

of the cytokines that control the infection (IFN-γ, TNF-γ) and those that ac-

tivate the macrophages (IL-10), and PDEs for the dynamics of chemokines, to

investigate the multiscale effects of the cytokines on the formation of granulomas

during M. tuberculosis infection. The authors first identified a set of parameters

which control M. tuberculosis infection to levels that were similar to the infec-

tion levels observed in various human and non-human primates: some parameters

were taken from the published literature, while others were estimated using sen-

sitivity analysis, to match the observed qualitative behaviours. The model was

further validated by performing virtual deletion experiments for TNF-α, IFN-γ,

and IL-10, and the results were consistent with previously published experimen-

tal data: TNF-α and IFN-γ were unable to control disease progression due to a

lack of activated macrophages and bactericidal activity, while IL-10 was necessary

to control infection. Then, using sensitivity analysis on the molecular-level pa-

rameters related to TNF-α and IL-10, allowed the authors to confirm that both

TNF-α and IL-10 were important in controlling bacterial load and tissue damage.

In particular, they showed that a balance between TNF-α and IL-10 was necessary

to mediate between the control of M. tuberculosis infection and the prevention

of host-induced tissue damage. Further computational studies have focused on
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the designing of various treatments for M. tuberculosis infection ([115]). All these

studies were performed only computationally, due to a lack of experimental models

of human M. tuberculosis infection.

Multiscale immune dynamics. Most multiscale models have been used to

explore the interconnected pathways that control immune response across dif-

ferent scales, as discussed in [95]. But the majority of multiscale mathematical

models investigate phenomena that occur at molecular scale and influence the

cell-level and tissue-level dynamics. The topics investigated in this context range

from inflammatory response to burn injuries ([200]), to the regulation of NF-βB

pathways associated with macrophage response to M. Tubercolosis ([66]) and the

interaction between metabolism and autoimmune response ([126]).

An important class of multiplescale models is represented by the kinetic mod-

els for active particles. These are complex models of integro-differential equations

or partial integro-differential equations that describe the time evolutions of het-

erogeneous populations of cells with certain microscopic properties, which can be

the degree of activation of a cell or the degree of cell functionality. These models

investigate different phenomena, such as tumour-immune interactions ([16], [18])

and wound healing ([19]). The complexity of these models makes difficult the

numerical investigation in large regions of the parameter space. Moreover, the

parameters involved in the systems are difficult to quantify and therefore these

models can be suitable to describe qualitatively the type of experimental data

that can not be quantified at this moment.

1.2 Inflammatory processes

Mathematical modelling of the inflammatory process has aroused particular

interest, due to its involvement in many sever and invalidating diseases that are

the current focus of attention in medical research, such as Multiple Sclerosis,

Alzheimer’s disease, cancer, asthma, just to name a few.

Macrophages, highly versatile large white blood cells, orchestrate all stages of the

inflammatory response.

In this Section we shall recall some of the main features of the inflammatory

response and the role of macrophages during this process. We shall also review

some of the recent attempts to model mathematically the role of macrophages
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during an inflammation and in Muliple Sclerosis, an inflammatory debilitating

autoimmune disease.

1.2.1 What is inflammation?

Inflammation is the body’s response to acute biological stress, such as bacterial

infection or tissue trauma. This response consists of a well orchestrated cascade of

events, mediated by several types of cells and signalling molecules, aiming to both

containing and eliminating invading pathogens, and repairing damaged tissues.

In general, the acute inflammatory response subsides and the body returns to a

basal state of health. However, an excessive inflammatory response can lead to

tissue damage, organ dysfunction, or possibly death.

Macrophages are highly versatile large white blood cells that play multiple,

and sometimes opposing, roles. Indeed, they orchestrate all the mechanisms of

the inflammatory processes, releasing pro-inflammatory mediators, to up-regulate

infalmmation and control infections, and anti-inflammatory molecules, to down-

regulate the inflammatory activities. Therefore a macrophage dysfunction could

lead to chronic inflammation and poorly healing wounds.

The inflammatory process acts over a wide range of spatial and temporal scales:

from subcellular, to cellular and macroscopic spatial scale, and from seconds, for

signal transduction pathways, to months or even years in the case of chronic

inflammation. Mathematical and computational approaches can provide useful

insights into this system-level behaviour, by the development of multiscale models.

1.2.2 Mathematical models of inflammation

In recent years, various mathematical models have been proposed to describe

the inflammatory response and its reparatory processes. Given the high complex-

ity of the inflammatory response, mathematical models generally focus only on a

particular aspect of the process, such as the resolution of the inflammatory state

([59]) or the motility of the immune cells and the resulting outcome of the response

([107], [108], [109]); others focus on specific macrophage functions, such as their

ability to remove debris ([182]); while yet others investigate specific inflammatory

diseases ([117]).

Although the aspects being investigated are significantly different, the macro-

phages remain the main focus of many of these models.

Lauffenburger and coworkers developed the early models of acute inflammatory

response ([107], [108], [109]). These simple models, with two or three variables
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representing bacteria, immune cells and chemoattractants, have been used to in-

vestigate how variation in some key parameters, such as cells rate motility or

phagocytosis, affects susceptibility to bacterial infection. The authors proved

that if bacteria are not eliminated, then cell densities can be highly localized with

the subsequent potential for severe tissue damage.

Kumar and coworkers ([103]) proposed a model of three time-dependent ordi-

nary differential equations consisting of a population of pathogens, and two family

of pro-inflammatory agents. The authors developed this model with the aim of

shedding light on mechanisms that underlie sepsis, an uncontrolled acute inflam-

mation due to infection and that can culminate in organ failure and death. To

date, effective therapies against sepsis are very few. The authors used their model

to investigate the conditions under which the inflammatory response can clear in-

vading pathogen or stimulate a sustained inflammatory response. The model cap-

tures five clinically relevant scenarios: healthy state, in which pathogen is cleared

and the body returns to homoeostasis; recurrent infection, where inflammation is

inadequate and the pathogen cannot be completely eliminated; persistent infec-

tious inflammation, characterized by high levels of pathogens and inflammation;

persistent non-infectious inflammation, where pathogen is cleared but inflamma-

tion persists; severe immuno-deficiency, where pathogen has grown to saturation

but the inflammatory response is very low.

The authors analysed various bifurcations between the different outcomes when

key parameters are changed and suggested various therapeutic strategies. The

healthy negative outcomes depend on initial conditions and key parameter val-

ues. The model suggests that only the strength of the late pro-inflammatory wave

governs predisposition towards a state of persistent inflammation. A healthy out-

come is possible only when the risk of persistent inflammation is also present. A

strong late immune response increases the risk of unabated inflammation but also

ensures complete elimination of pathogen. These results are consistent with the

experimental results obtained in [159].

This work was extended by Reynolds and coworkers ([158], [55]), in order to

investigate the host-pathogen interactions and the timing of possible treatment

strategies. In particular, in [158] the authors included an anti-inflammatory me-

diator, in order to gain insight into the importance of anti-inflammatory agents

in the resolution of inflammation. This model does not include components of

the adaptive immune response, but describes the generic response to pathogenic

insult and then it can be seen as a model of the innate immunity. The authors

derived a reduced model that consists of a system of four differential equations,

in which the variables are: a population of pathogens, the macrophages, tissue
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damage and a population of anti-inflammatory mediators. This model has been

developed by first considering two-variable subsystems (pathogens-macrophages,

macrophages-tissue damage) and treating the other variables as parameters, then

combining these subsystems to form a three-variable subsystem (in which the

anti-inflammatory mediator is constant), and finally incorporating the dynamics

of the anti-inflammatory mediator to create the reduced model. They adopted

a subsystem approach to ensure that the interactions of the model variables are

consistent with biological observations. In particular, they focused on the abil-

ity of immune cells not only to dampen the inflammatory response by removing

pathogens, but also to promote the inflammatory state through damage to tissue.

In all numerical simulations, parameter values were taken within ranges found

in experimental literature. Parameters that could not be documented from exist-

ing data were estimated such that the subsystems behave in a biologically appro-

priate manner for plausible levels of the anti-inflammatory mediators.

Through a bifurcation analysis of the subsystems, the authors proved that the

growth rate of the pathogens play a pivotal role: when it is low, immune cells

are capable of clearing the pathogens and restore the healthy state, while if the

growth rate is high, then a sufficiently large number of pathogens can induce a

persistent infection, despite the action of the macrophages.

The three- and four-variables models exhibit the same fixed points: the healthy

state, the aseptic and septic death. Also in this case, the pathogen growth rate

governs the qualitative behaviour of the solutions. For low values, the healthy

and aseptic death states exist, but as the growth rate is increased the septic death

state comes into existence and the healthy and aseptic death states lose stability.

The authors investigated how the rate of the anti-inflammatory response affects

the overall outcome following infection: a slight increase of these rates helps the

system to restore health sooner, but larger increases enhance the risk of septic

death. On the other hand, slowing down the anti-inflammatory dynamics causes

the trajectory to proceed to aseptic death.

Finally, the authors mimicked a treatment aimed at modulating the anti- inflam-

matory after an initial infection, decreasing or increasing the levels of the anti-

inflammatory, after the evolution of the infection, to simulate a therapeutic inter-

vention aimed at depleting or raising the availability of the anti-inflammatory. A

small depletion yields a healthy outcome, but the resolution takes longer. More

substantial depletion pushes the system to aseptic death. Finally, if the values

are raised sufficiently, the simulations lead to septic death. Therefore, the authors
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suggested that a modest increase in the anti-inflammatory mediator may be ben-

eficial, but it is important to prevent large increases. These findings could be par-

ticularly crucial in the clinical practise: a modest increases in anti-inflammation

would change the outcome from aseptic death to health, but larger increases would

lead to severe problems.

Further work by the same authors applies this model to different disease sce-

narios, such as the response to endotoxin ([55]), that is a potent immonistimulant

of acute inflammatory response. The pathogen equation was replaced by an en-

dotoxin equation. Although the model is highly reduced, it incorporates sufficient

dynamic complexity to qualitatively reproduce the experimental results of multiple

endotoxin administrations. The authors proved that the outcomes of endotoxin

administration depend on the rates of interactions between different components

of the acute inflammatory response and on the different timescales in the dynam-

ics of pro- and anti-inflammatory mediators. Finally, the results of the simulations

involving low-dose protracted endotoxin infusion and variations in timing of the

doses, yielded predictions that remain to be verified experimentally.

Motivated by the desire to gain more quantitative results, Roy and coworkers

([164]) extended the model developed in [55] to an eight ordinary differential equa-

tions model of the acute inflammatory response, by representing more specifically

the dynamics of a variety of cytokines, previously treated as a unique variable.

In this work, the model parameters were calibrated to experimental data and the

model validation was performed by comparing the model predictions at specific

endotoxin levels with experimental data at the same endotoxin levels. The results

of the analysis confirmed that the model is able to reproduce the response to

specific endotoxin challenge levels.

The improvement process described above has led to the formulation of in-

creasingly sophisticated models. It is representative of the ongoing challenge of

balancing biological fidelity with the accuracy of models. But improved biological

fidelity and more accurate reproduction of data come at a cost of considerable

increase in the complexity and in the number of equations, other then an increase

in the number of parameters that must be identified, which, as discussed in the

previous section, is one the most difficult part of model design and validation.

Despite their increasing complexity, the discussed models make the limiting

assumption that the spatial aspects can be ignored. Indeed, these models are

systems of ODEs, which makes the investigations more tractable, but may not

capture some significant biological phenomena.

The limitations of ODEs of neglecting spatial aspects can be addressed by using

PDEs, which allow quantities to vary over both space and time.
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Penner and coworkers proposed one of the first spatial models for the dynam-

ics of an acute inflammation, which can be thought as a model of rash ([148]).

They extended the Keller-Segel model of cell motility in response to a chemical

signal to include an anti-inflammatory mediator. The macrophages are repre-

sented by motile cells and move up the concentration gradient of the molecular

mediator, represented by pro-inflammatory molecules. The newly introduced anti-

inflammatory mediators is produced by the immune cells and follows a slower

timescale than the pro-inflammatory molecules: indeed, the anti-inflammatory

mediators are produced at a later stage of the acute inflammatory response.

The model does not take into account the origin of the inflammatory response.

After a linear stability analysis, the authors performed some numerical simu-

lations in both 1D and 2D spatial domains. Their analysis revealed that the

rate of chemoattraction can generate spatial patterns. The incorporation of the

anti-inflammatory can also generate instabilities: when the time-scale of anti-

inflammatory dynamics is not sufficiently slow, the system admits stationary pat-

terns of stripes, in both 1D and 2D domains, or isolated round spots, in 2D do-

mains, while for a sufficiently slow dynamics of the inhibitor, the system settles to

regular dynamical patterns that include oscillating patterns, localized breathers,

and traveling waves, which are absent in the two-dimensional Keller–Segel-type

chemotaxis model. Therefore, the different timescales between pro- and the anti-

inflammatory agents allows the existence of wave instability and self-supporting

travelling waves, that generate propagating patterns reminiscent of the rapidly

evolving bands seen in Erythemic gyratum reopen, also known as Gammel’s de-

sease, a rare rash associated with malignancy.

In [190] an highly reduced spatial model of acute inflammatory stage is pre-

sented. In this model, the focus is on the pathogen-host interactions occurring

during the early stage of Lyme disease, an infectious disease transmitted to hu-

mans by a bite of a tick infected with a bacterium. The tick bite activates the

innate immune response. In this work, the authors hypothesized that the motility

of the bacterium is a prime factor and that the details of the immune response

are less important. To test this hypothesis, they developed a minimalistic model

containing three species: a translocating and a stationary population of bacteria

and a population of macrophages. As in [148], the movement of macrophages is

modelled using Keller-Segel model of chemotaxis. The authors assumed circular

symmetry about the bite site and adopted axially symmetric domains.

Adopting realistic parameters values, the model is able to reproduce the three

different types of rash morphology typically observed in patients with Lyme dis-

ease: homogeneous erythema, central clearing rash and bull’s eye rash. The model
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predicts that the principal contributor to the formation of the rashes is the rate

at which active macrophages are cleared from the dermis. Moreover, the rate at

which the rash spreads depends only on bacterial diffusion and replication rate.

Finally, the authors included an antibiotic treatment and observed that inflam-

mation persists longer in patients with homogeneous rashes. This result is in

agreement with clinical data.

The discussed models focus on the acute inflammatory response, but macro-

phages also stimulate the repair and replacement of tissue through the production

of a range of growth factors, such as vascular endothelial growth factor (VEGF),

which attract endothelial cells and promote the formation of new blood capillaries

(angiogenesis) to increase blood flow in the area of damage. In [199] the authors

studied a model of dermal wound healing, in which macrophages promote angio-

genesis. Macrophages are assumed to die by apoptosis, at a rate that is enhanced

under ischemic conditions, because of a lack of blood flow into the wound. The

numerical simulations revealed that the lack of flow limits macrophage recruit-

ment to the wound site and then impairs wound closure.

The process of tissue repair is crucial in the success of the acute inflammatory

response and this is evident in patients with diabetes who often suffer from the

debilitating condition of wounds that are slow, or fail, to heal. The restoration

of blood and lymphatic capillaries are essential for the wound healing. A simple

mathematical model of five equations ([20]) was proposed to study the formation

of lymphatic capillaries and and how the healing process is altered by diabetic

conditions. This model includes a population of macrophages that are attracted

by, and produce, the mediator TGF-β and the subsequent productions of VEGF

attracts capillary cells that form capillaries. The results of the study indicate

possible treatment strategies for situations where lymphogenesis is impeded, such

as under diabetic conditions.

1.2.3 Multiple Sclerosis: an inflammatory neurodegenera-

tive disease

The immune system normally protects the body from foreign invaders and pre-

vents the insurgence of diseases. In some cases, however, it may produce, without

a real cause, an inflammatory response that attacks the body’s own tissue. This

dysfunction is known as autoimmunity and is usually harmless. In certain cases,

however, autoimmunity can cause a broad range of human illnesses, known as

autoimmune diseases. Some common autoimmune diseases are Multiple Sclerosis
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(MS), celiac disease, diabetes mellitus type 1, inflammatory bowel disease, psori-

asis, rheumatoid arthritis and systemic lupus erythematosus.

In particular, MS is a debilitating and progressive autoimmune disease, character-

ized by multiple focal areas of myelin loss in the white matter of the brain, called

plaques or lesions. Myelin, a substance produced by a family of specialized cells

called oligodentrocytes, clothes the nerve fibers of the central nervous system to

help the transmission of the nerve impulses. The immune system of MS patients

produces, for unknown causes, an inflammatory state that destroys the oligoden-

drocytes and the myelin sheath around the nerves. Inflammation, in fact, is a

major hallmark in MS in all stages of the disease.

Four type of lesions have been classified ([121]): around 15% of patients displays

type I lesions, characterized by high incidence of remyelinating plaques in a back-

ground of activated macrophages and absence of complement deposition. Type II

lesions are the most common (about 50% of patients) and they are characterized

by the presence of immunoglobulin and complement deposit and abundance of

remyelinating shadow plaques. Type III lesions (about 30% of patients) exhibit

extensive zones of apoptotic oligodendrocytes and macrophages activation in a

myelinated tissue with few or no T-lymphocytes, no evidence of complement acti-

vation and no remyelinating shadow plaques. Finally, type IV lesions, extremely

rare, are present only in the 1% of patients and show dying non-apoptotic oligo-

dendrocytes in the periplaque white matter, probably due to a potential primary

metabolic oligodendrocyte disfunction. The mechanism that drives different le-

sion types is still unknown, but two different mechanisms of demyelination have

been identified: in type I and II macrophages activation is mediated by adaptive

immunity, while in type III lesions demyelination is provoked by innate immune

response.

To date, it is not clear whether MS is an interindivudal heterogeneous 1-stage

disease or a stage-evolving pathology. In the reported cases, neither overlap in

pattern nor a change between different lesion types was observed during the clin-

ical course of individual patients. This fact supports the intra-individual homo-

geneity hypothesis. But an alternative hypothesis was proposed by Barnett and

Prineas ([10]): they found the presence of two different lesion types (type II and

III) within one patient, which is consistent with intra-individual heterogeneity or

stage dependent pathology. The authors hypothesized that type III lesions would

represent the early stage in the formation of lesions which would then evolve to-

wards the second stage of the disease, characterized by the presence of types I and

II lesions.
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1.2.4 Mathematical models of Multiple Sclerosis

Recently, several mathematical models ([33], [94], [117]) have been proposed to

describe Balo’s sclerosis, a rare and aggressive form of MS, characterized by con-

centric demyelinated patterns in the white matter of the brain and in the spinal

chord.

In [33] and [94] the authors proposed a chemotactic cellular model, following a

set of hypothesises which only involve cellular events common to most subtypes

of MS: resting macrophages are initially spread in the white matter; an activa-

tion front, which can be an antibody or a wave of oxydative stress, drives the

macrophages into an auto-immune active state. The activated macrophages at-

tack the oligodendrocytes which, in turn, produce a molecular signal that attracts

surrounding activated macrophages to protect the neighbouring zones. The model

consists of a population of immune cells, a chemotactic signalling molecule and a

population of destroyed oligodendrocytes.

Analysis of this model suggests that high values of chemoattraction reflect the

aggressivity of the demyelinating process and are obtained for high values of rest-

ing macrophages. Indeed, the destruction of oligodendrocytes is correlated with

the number of macrophages. Numerical simulations revealed that the model only

produces homogeneous demyelinated plaques and concentric damaged areas. In

particular, the ring-shaped patterns are favoured by high values of chemoattrac-

tion.

A major hypothesis of this model is that the chemoattractant is produced by

the damaged oligodendrocytes. It has been proved that the formation of concentric

rings is also possible in absence of oligodendrocytes-driven cytokine production

([117]). In [117] the authors, moving from the model proposed by Khonsari and

Calvez ([94]), introduced a chemotaxis system based on partial differential equa-

tions. The proposed model aims to reproduce the initial stage of the demyelination

process, involved in the genesis of type III lesions. The authors chose a different

analytical form for the chemotactic sensitivity function, which still displays satu-

ration at high cell densities to prevent solutions blow-up, but does not degenerate

close to the stable homogeneous equilibrium. They also adopted a different dy-

namics for the pro-inflammatory cytokines, removing the quasi-steady state ap-

proximation considered in [94] and set an evolutive equation whose characteristic

time scale can be varied to investigate its effects on the corresponding solutions.

Finally, they introduced in the local equation for the pro-inflammatory cytokines

a linear production term from the activated macrophages, since macrophages are

the principal source of chemical mediators driving inflammatory demyelination in
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Multiple Sclerosis ([26]). The authors showed that this term is able to induce the

appearance of concentric rings, also in absence of oligodendrocyte-driven cytokine

production.

Adopting experimentally available numerical values of the parameters, the model

is able to predict the appearance of aggregates that qualitatively reproduce some

of the patterns of demyelinated lesions.

Unlike the model proposed in [94], which only reproduces plaques or concentric

bands, the model proposed in [117] supports the formation of stationary patterns

close to the Turing bifurcation threshold and complex oscillatory solutions far

from the threshold. Moreover, in 2D domains the model supports the forma-

tion of localized spots of apoptotic oligodendrocyte area, whose size depends on

the aggressiveness of the macrophages and on the diffusivity of the cytokines. A

comparison between Magnetic Resonance Imagine (MRI) data and the numerical

simulations has revealed a good agreement with the size and the shape of the

plaques observed in clinical cases.

Finally, the model is also able to reproduce Balo’s sclerosis demyelinated rings, the

formation of confluent plaques and neuropathological states characterized by the

presence of nodules of activated macrophages, usually observed in the reversible

stages of Multiple Sclerosis.



22

Chapter 2

A chemotaxis model of Erythema:

pattern formation and complex

dynamics

Inflammation is the body’s response to outside threats like stress, infection,

pathogens or damaged cells, aimed to eliminate the threat and promote tissue

repair and healing. It is a highly complex process, characterized by the action of

both pro- and anti-inflammatory agents that work synergistically to ensure a quick

restoration of tissue health. A dis-regulation of the inflammatory response can give

rise to chronic inflammation ([111]) and can lead to a wide range of diseases, such

as cancer ([151]), atherosclerosis ([65]), asthma ([83]) and autoimmune diseases

([67]). Understanding the precise role of every inflammatory agent is therefore a

key step in the design of treatments directed to minimize tissue damage and to

avoid the insurgence of chronic diseases.

There is a general consensus that macrophages play a pivotal role in all stages

of inflammation and orchestrate the healing process ([30], [60]). They derive from

blood monocytes and reside in all tissues in a resting state. They act as sentinels

responding to a threat by activating. Once activated, they engulf and destroy

foreign bodies and mediate the releasing of signalling molecules to recruit more

cells ([180]). They also stimulate tissue repair and help to resolve inflammation

([56]).

Immune cells, in fact, in the early and late stage of inflammation, display differ-

ent phenotypes, which are classified as M1 (classically activated) and M2 (alter-

natively activated)([125]): the M1 macrophages are activated by bacterial prod-

ucts, such as Lipopolysaccharides (LPS), and inflammatory cytokines, such as

Interferon−γ (IFN−γ); they perform debriding activities, release several toxicants

([105]) and produce pro-inflammatory cytokines, such as Tumor Necrosis Factor-α

(TNF-α), which significantly contribute to the recruitment and the activation of
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more immune cells in the site of the injury. In the early stage of the inflammatory

response, activated macrophages mainly display M1 phenotype ([50]). After hav-

ing performed their pro-inflammatory tasks, they undergo apoptosis or can change

their phenotype in M2 ([177]), thus suppressing the inflammatory activity by re-

alising anti-inflammatory mediators, such as Interleukin-10 (IL-10), which inhibit

the production of pro-inflammatory cytokines and downregulate previously acti-

vated immune cells ([180]).

The two different phenotypes M1 and M2 are not totally distinct and can be

viewed as two extremes of a continuum macrophage activity function ([56]).

This heterogeneity in functions is pivotal to the successful resolution of inflamma-

tion and the restoration of healthy tissue ([56]).

Macrophages, other than supplementing a large variety of pro-inflammatory

and anti-inflammatory cytokines, possess receptors for many molecular mediators.

indeed, individual cytokines, or combinations of them, interact with specific re-

ceptors and modulate the function of the immune cells. A number of cytokines,

including IFN-γ, IFN-α, TNF-α IL-2, IL-4, M-CSF, GM-CSF, are in fact involved

in the activation of macrophages, and some of them are produced by the macro-

phages themselves. Other cytokines, such as IL-10 and IL-11, have a strong anti-

inflammatory effect and reduce the production of pro-inflammatory mediators

from activated macrophages. Finally, TNF-α and IFN-γ stimulate chemotaxis:

this is a directed movement of cells along a concentration gradient of a chemotactic

factor, or chemoattractant. However, a prolonged exposure to chemoattractants

can considerably dampen the chemotactic effects: in fact, after the receptors of im-

mune cells are occupied and the cells respond to stimuli, the chemotactic activity

greatly decreases ([30]).

Following the use adopted in [148], in this thesis we shall distinguish between

chemokines and cytokines. Chemokines are in fact a family of small cytokines,

secreted by cells, having the ability to induce directed chemotaxis in nearby re-

sponsive cells. Therefore, we shall denote by chemokines the pro-inflammatory

mediators, and by cytokines the anti-inflammatory molecules.

In the last few years, several mathematical modeling approaches have been

proposed to provide insights on molecular interactions, to test distinct biological

hypothesises and to improve the overall knowledge of the major pathological pro-

cesses ([60, 187, 192, 191]). Despite the increasing interest in this area, there are

only few models that incorporate spatial aspects in the description of inflamma-

tion driven diseases ([119], [33], [63], [64], [39], [38], [117]). Recently, a simplified

spatio-temporal model describing the dynamics of acute inflammation has been

designed and investigated by Penner and coworkers ([148]): the authors proposed
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a system consisting of a fixed population of immune cells and two different types

of signalling molecules: a chemokine, which is the chemoattractant for the im-

mune cells, and an anti-inflammatory cytokine, which acts as an inhibitor of the

inflammatory state. The prescribed reaction term does not take into account im-

mune cell kinetics: this corresponds to assume that the number of macrophages

is constant during the evolution of the inflammatory response.

On the other hand, a recent experimental study ([122]) showed that, though

the resident macrophages are the first responders, they play a minor role in the

acute phase: in fact the authors proved that a reduction of the resident macro-

phages number affects neither the timing of healing process nor the efficiency of

tissue regeneration. Rather, the most effective agents are the newly recruited

macrophages, whose number increases remarkably during the inflammatory re-

sponse ([127]).

Motivated by the above exposed findings and following a similar argument

to the one adopted in [103], we have generalized the model proposed in [148],

including a local reaction term for the macrophages, which accounts for the re-

cruitment of immune cells during the inflammatory response. Therefore, in the

model proposed here, the number of immune cells is not constant.

This Chapter is organised as follows. In Section 2.1, we shall present the main

assumptions underlying the development of the model. In Section 2.2, the ranges

of numerical values used in the numerical simulations are presented. They are

taken from both experimental literature and estimations given in similar mathe-

matical models of inflammation. In Section 2.3, we shall perform a linear stability

analysis aiming to determine the conditions on the system parameters for the oc-

currence of both Turing and wave instabilities. We prove that the present system

supports the formation of stationary and oscillating in time non-homogeneous

structures and that they are induced by the chemotaxis term. A novel result of

this thesis is the derivation of necessary and sufficient conditions for the onset of

the wave instability for a three component reaction-diffusion-chemotaxis system.

To the best of our knowledge, theorems asserting the necessary and sufficient con-

ditions for instability in a multicomponent system have been proved only in the

case when the diffusion matrix is diagonal and semidefinite positive ([46], [166],

[5], [85]). Less attention has been paid to wave instability in Chemotaxis models.

We believe that this is per se an interesting result because it could be applied to

analogous models.

In Section 2.4, a weakly nonlinear analysis will be performed, in order to derive

the amplitude equation of the stationary patterns and to distinguish between a

supercritical and a subcritical transition at the onset.
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In Section 2.5, we shall show that the simple addition of cellular growth can lead to

the emergence of spatio-temporal irregular solutions, resembling spatio-temporal

chaos, which are able to reproduce the criticality in macrophages dynamics ([142]):

the immune cells constitute a self-organized living system that exhibits stability,

but that is also capable of changing state in response to specific signals from its

environment. To avoid loss of information, there must be a good balance be-

tween stability and adaptability. Therefore, to perform its tasks, the system is

poised at the critical boundary between organized and disorganized states. The

emergence of complex spatio-temporal dynamics can be considered a hallmark of

critical behaviour. We prove that the inclusion of the growth term is crucial for

the occurrence of this phenomenon.

In Sections 2.6 and 2.7, we shall present a study on pattern formation on 2D

domains, proving that the proposed model provides the key mechanism for the

formation of the skin rashes observed in Erythema Annulare Centrifugum (EAC).

EAC is a very aggressive form of cutaneous rash ([176]), characterized by symmet-

rical distributed target lesions with typical ring-shaped pattern ([89]). EAC was

first described by Darier ([53]) and refers to a class of skin lesions characterized

by a rash in a ring form that spreads from the center. Often no specific causes

for the eruptions are found, although it is sometimes linked to diseases such as

contact dermatitis, infections, drugs and Lyme disease ([27]). The lesions appear

as pink-red concentric rings or as bull’s eye marks. The rash can reach a diameter

up to several centimeters and the growth rate ranges between 2 and 5 mm/day

([162]).

In particular, Section 2.6 is devoted to a detailed analytical and numerical bifur-

cation analysis aimed to characterize the supported patterns in the case of radially

symmetric solutions.

We shall support the analysis of Section 2.6 through extensive numerical simula-

tions, performed on fully 2D domains: in fact, fixing as initial condition a radially

symmetric perturbation of the homogeneous equilibrium, the system evolves to-

wards radially symmetric patterns which are able to reproduce the ring-shaped

skin eruptions of EAC. Using the estimated values of the parameters, we shall

show that the growth rate of the numerical solution is in perfect agreement with

clinical measurements. This is done in Section 2.7.

2.1 A mathematical model of inflammation

In this Section, we develop a chemotaxis-reaction-diffusion model describing

the interaction between a population of macrophages m(x, t), and two families of
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signalling molecules: a chemokine c(x, t) and a cytokine a(x, t). All the quantities

are intended as concentrations in space.

The proposed model generalizes the system introduced by [148] in the sense

that it takes into account the cell kinetics. For the sake of completeness, I shall

here briefly review the main assumptions of the model.

2.1.1 Activated macrophages

The first responders to an outside threat are resident macrophages, which, due

to the chemical signals released by foreign bodies, become activated.

Macrophage recruitment originates from differentiation of blood monocytes,

which are produced in the bone marrow, enter the peripheral blood and migrate to

various organs. Once they have reached their target organ, monocytes differentiate

into resting macrophages: within tissue, some of them become resident active cells,

performing a regular maintenance (such as cleaning up dying cells), the others stay

in a resting state and become activated if the host tissue is threatened ([30]).

In the presence of a threat, an acute inflammation process develops: macro-

phages move toward the microbial particles guided by a gradient of chemotac-

tic molecules, such as Lipopolysaccharides (LPS) secreted by external micro-

organisms, become activated and phagocyte the threatening agent. During an

acute inflammatory reaction, the number of circulating monocytes increases, and

some cytokines facilitate monocyte migration to the site of inflammation. Al-

though different cell types (such as epithelial cells) produce cytokines, the immune

cells are the main source of these signalling molecules ([30]).

We therefore assume that the evolution of the immune cells population is ruled

by the following equation:

∂m

∂t
= ∇x · (Dm∇xm)
︸ ︷︷ ︸

Diffusion

−∇x ·
(

ψ
m

(1 + αc)2
∇xc

)

︸ ︷︷ ︸

Chemotaxis

+ rmc
(

1− m

m̄

)

︸ ︷︷ ︸

Activation

. (2.1)

The first term in (2.1) describes the diffusion of the cells due to random motion

and Dm is the diffusivity coefficient.

The second term models the chemoattraction of macrophages due to a gra-

dient of chemical signal, represented by the chemokine. The sensitivity function

χ̄(c) = ψ
(1+αc)2

, which describes the rate of attraction, has been derived in the so-

called receptor-binding model ([87]) and displays saturation for increasing values

of c. The parameters ψ and α represent the maximal chemotactic rate and the
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modulation of the saturation of chemokine receptors, respectively.

The third term in (2.1) is the novelty of the present model with respect to the

dynamics presented in [148], where the number of activated immune cells was held

fixed after the activation described by the initial condition. Here, we want also

to take into account the effects of a secondary inflammation, which might concur

to the settling of a recurrent or persistent inflammatory state. In fact, it is well

known that the presence of pro-inflammatory chemicals induces the macrophages

to release toxicants agents, such as oxygen free radicals ([184]) which, if on the

one hand have the ability to kill bacteria and destroy foreign bodies, on the other

hand can also damage hosting tissue, inducing more inflammation ([90]) with the

consequent recruitment of more immune cells. Indeed, an increased number of

activated macrophages has been observed ([105]) at sites of injury after the re-

lease of toxicants by the immune cells. Therefore we introduce an activation term

with mass-action type kinetics, proportional to the product of the macrophages

and chemokines populations and that saturates for increasing concentration of the

macrophages, so to mimic cell depletion. The same functional form was adopted

in [103]. Here r and m̄ represent the growth rate coefficient and the carrying

capacity of the activated macrophages, respectively. We choose m̄ to be equal to

the average density of the resting macrophages, which act as a cellular pool for

the activated macrophages, so that, when m = m̄, all the resting macrophages

have turned into their active state. We therefore hypothesize that m̄ represents

the optimal number of activated cells that makes effective the immune response,

without incurring into damaging to the healthy tissue.

2.1.2 Pro- and Anti-Inflammatory Molecules

Once activated, macrophages release pro- and anti-inflammatory cytokines,

which, for simplicity, we assume to have the same evolution:

∂c

∂t
= ∇x · (Dc∇xc)
︸ ︷︷ ︸

Diffusion

+ νc
m

1 + βa
︸ ︷︷ ︸

Production

− µcc
︸︷︷︸

Decay

,

∂a

∂t
= ∇x · (Da∇xa)
︸ ︷︷ ︸

Diffusion

+ νa
m

1 + βa
︸ ︷︷ ︸

Production

− µaa
︸︷︷︸

Decay

.

(2.2)

The first term in both equations represents the diffusion of molecules with dif-

fusivity coefficients Dc and Da, respectively. The second term in (2.2) describes
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the production of the chemical species by macrophages, the denominator repre-

senting the inhibitory effect of the anti-inflammatory citokines on the activity of

the previously activated macrophages ([2]).

The parameters νc and νa are the production rates per macrophage and β

controls the inhibitory effect of the cytokines.

Finally, the last terms in (2.2) represent the natural decay of both molecules,

with decay rates µc and µa, respectively.

Since the production of anti-inflammatory mediators is relatively late com-

pared to the production of pro-inflammatory chemicals, we set Da = Dc/τ, νa =

νc/τ and µa = µc/τ , where τ is a parameter which regulates the slower time scale

of the anti-inflammatory molecules.

2.1.3 The Model

The model (2.1)-(2.2) can written in non-dimensional form by setting:

m∗ =
m

m̄
, c∗ =

µc
νcm̄

c, a∗ =
µa
νam̄

a, D∗ =
Dm

Dc

, t∗ =
µc
Γ
t,

x∗ =

√
(
µc
ΓDc

)

x, r∗ =
m̄νc
µ2
c

r, χ =
ψνcm̄

µcDc

, α∗ =
νcm̄

µc
α, β∗ = β

(
νam̄

µa

)

n,

(2.3)

where we have introduced the nondimensional parameter Γ that controls the spa-

tial and temporal scales. Dropping the asterisks, the non-dimensional equations

become:
∂m

∂t
= D∆m−∇ ·

(

χ
m

(1 + αc)2
∇c
)

+ Γrmc(1−m),

∂c

∂t
= ∆c+ Γ

(
m

1 + βa
− c

)

,

∂a

∂t
=

∆a

τ
+

Γ

τ

(
m

1 + βa
− a

)

.

(2.4)

When r = 0, the system (2.4) reduces to the model presented by [148].

We assume that the flux of particles is zero on the boundary of the spatial

domain Ω. Since the flux of m is ∇m − χ m
(1+αc)2

∇c and the flux of c is ∇c,
in this case zero-flux boundary conditions and homogeneous Neumann boundary

conditions are equivalent. We therefore enforce homogeneous Neumann boundary

conditions on the spatial domain Ω:

∇m = ∇c = ∇a = 0, on ∂Ω. (2.5)
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In what follows, we investigate the pattern-forming properties of System (2.4),

subjected to the boundary conditions (2.5).

2.2 Parameter estimation

In this Section, we give estimations of the parameters appearing in System

(2.1)-(2.2). To assign precise numerical values to the different constants is an

arduous task, not only because of the experimental difficulties associated with the

measurements, but also because such values significantly depend on the tissue in

which inflammation occurs. For these reasons, we have estimated a range of values

for each parameter, taking into account both available experimental data from

literature and estimations given in similar mathematical models of inflammation.

We use the following units: min for the time, µm for the length, nM for the

chemical concentration and µm−3 for the density of cells.

The diffusion coefficients, both for macrophages and signalling molecules, are

easily found in the literature. It is well known that the chemoattractant diffuses

faster than the macrophages ([76]). For the chemokine diffusion rate, we adopt

the value given by [81], that is Dc = 900 µm2

min
, and for the macrophages we set

Dm = 800 µm2

min
, given by [76].

The functional dependence of the chemotactic function χ̄(c) = ψ
(1+αc)2

was

experimentally verified by [68], where nevertheless no estimate of the coefficient

ψ was given. We therefore estimate a range of values for this parameter using

the experimental data presented by [183], where the following expression of the

chemotactic function was used:

X(c) =
χ0NT0Kd f S

(Kd + c)2
.

χ0NT0 is a constant reflecting the orientation sensitivity of the cells, f(c) represents

the variation of total cell surface receptors number, S(c) is the cells movement

speed and Kd is the receptor equilibrium dissociation constant. In the above ex-

pression, the experimentally measured value of χ0NT0 is 0.2 cm and the values

of f and S have been measured for values of the chemoattractant concentra-

tion ranging from 0 to 3 × 10−7 M: namely, the authors reported the values of

S ∈ [4.3; 30]µm/min, and f ∈ [0.2, 1].

In their experiments, the authors used a chemoattractant (the FNLLP) whose

equilibrium dissociation constant Kd is equal to 2 × 10−8, a value which lies

within the interval of measured values for the the dissociation constants of the

chemokines involved in the inflammatory processes ([12], [175]). Recalling that
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nM = 10−9 Mwt pg µm−3, where Mwt is the molecular weight of the cytokines

expressed in kDa (we use the value of 17 kDa for the molecular weight of IL−1β),

we obtain α = 3 × 106 µm3

pg
. From ψ = χ0NT0f S/Kd, we finally estimate ψ ∈

[5× 109; 176× 109] µm5

min pg
.

We have not found an experimental measurement of the growth rate r, but

several estimations of this parameter have been given in analogous mathematical

models. We adopt the numerical value of r given by [158], that is 1.7×105 µm3

pg min
,

which also falls within the range estimated by [196].

The numerical values of the density of resting macrophages m̄ can vary signif-

icantly from tissue to tissue, generally ranging between 10−6cells/µm3 ([141]) and

10−4cells/µm3 ([110], [169]). We set m̄ = 3× 10−4 cells/µm3 ([110]).

The chemokine production rate νc per macrophages was experimentally mea-

sured in vitro by [112] and [138], and we adopt the interval (5.7× 10−6 − 1.96×
10−5) pg min−1 cells−1.

To estimate the inhibitor rate β introduced in the chemokine production

term, we follow the argument in [187], where the inhibitory effect of the anti-

inflammatory chemical is reproduced by the functional form Ka

Ka+a
, where Ka is

the dissociation constant of the cytokine a, from which β = 1/Ka.

The range for chemokine decay µc ∈ [0.001; 0.03] min−1 is taken from [138].

Finally, recalling that τ controls the slow time scale of the cytokine dynamic

and that the anti-inflammatory mediators are detected in the site of inflammation

within few minutes to five days after the injury ([56]), we set τ ∈ [1; 7200].

In Table 2.1 we report the ranges of values for every parameter appearing in

Eqs.(2.1)-(2.2), and in Table 2.2 the ranges of the dimensionless parameter values.

2.3 Linear Analysis

The non-dimensional model has a unique nontrivial homogeneous steady state

(m, c, a) = (m0, c0, a0). In this state m0 = 1, the second and the third equations

of (2.4) are identical and, in particular, c0 = a0, where a0 is the positive root

of the equation a = 1/(1 + βa), which has a unique positive solution for all

β ≥ 0. The homogeneous solution is therefore P ∗ = (m0, c0, a0) = (1, a0, a0),

where a0 =
−1+

√
1+4β

2β
.
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Table 2.1: Values of the parameters introduced in Eqs.(2.1)-(2.2)

Parameter Description Value Source

Dm Macrophages 800 µm2

min
[130]

random motility

Dc Chemokine 900 µm2

min
[81]

random motility

ψ Chemoattraction [5× 109; 176× 109] µm5

min pg
[183]

α Receptor-binding 3× 106 µm3

pg
[183]

constant

r Macrophages 1.7× 105 µm3

pg min
[158]

activation rate

m̄ Average 3× 10−4 cells

µm3
[110]

macrophages density
νc Chemokine [5.7× 10−6; 1.96× 10−5] pg

min cells
[112],

production rate [138]

β Inhibition rate 3× 106 µm3

pg
Estimated

µc Chemokine decay rate [0.001; 0.03] min−1 [138]

Table 2.2: Values of the dimensionless parameters appearing in Eqs.(2.4)

Parameter Description Value
D Macrophages random motility 0.9
χ Chemoattraction [3× 10−4; 121]
α Receptor-binding constant [0.002; 1.82]
β Receptor-binding constant [0.002; 1.82]
r Macrophages activation rate [0.002; 270]

The linearization of the system (2.4) about the equilibrium point P ∗ gives:

∂

∂t






m

c

a




 =






D − χ
(1+αa0)2

0

0 1 0

0 0 1
τ




∆






m

c

a




+ Γ







−ra0 0 0
1

1+βa0
−1 − β

(1+βa0)2

1
(1+βa0)τ

0 −
(

β
(1+βa0)2τ

+ 1
τ

)







≡ D∆[m, c, a]T +K, (2.6)

where D is the linearized diffusion matrix and K is the linearized kinetics.

Taking into account the boundary conditions (2.5), we look for solutions of the

form (m̂, ĉ, â) = eλt cos(kx), so that, plugging this expression into the system

(2.6), we obtain the following eigenvalue problem:

λ






m̂

ĉ

â




 = A(k)






m̂

ĉ

â




 ,
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with

A(k) =







−k2D − Γra0 k2 χ
(1+αa0)2

0
Γ

1+βa0
−Γ− k2 − Γβ

(1+βa0)2

Γ
(1+βa0)τ

0 −k2

τ
− Γ

(
β

(1+βa0)2τ
+ 1

τ

)






= −k2D +K.

(2.7)

Let Re(·) denote the real part of its argument.

According to the classical Turing analysis, if Re(λ) < 0, for all eigenvalues λ of

A(k) and for all k, then the homogeneous steady state P ∗ is stable. Otherwise, if

for a given k there exists an eigenvalue λ(k) of A(k) such that Re(λ) > 0, then

spatially periodic perturbations of the homogeneous state with wavelength 2π/k

will grow exponentially in time, making the equilibrium unstable.

In what follows we shall adopt the notation λ = λ(k;D,K) used in [104] to

stress the dependence of the eigenvalue λ(k) on D,K.

Definition 2.3.1. Let λ(k;D,K) be an eigenvalue of A(k).

• A stationary Turing instability occurs for the homogeneous steady state P ∗,

if one real eigenvalue λ(k;D,K) crosses 0 from negative to positive along

the real axis in the complex plane for some k as D varies, and if all the

remaining eigenvalues of A(k), for all k and for such D that λ(k;D,K) = 0,

stay in the left half complex plane.

• A wave instability occurs for the homogeneous steady state P ∗, if a non-

real eigenvalue λ(k;D,K) and its complex conjugate cross the imaginary

axis from the left half plane to the right one for some k as D varies, and

if all the remaining eigenvalues of A(k), for all k and for such D that

Re(λ(k;D,K)) = 0, stay in the left half complex plane.

For k = 0, the eigenvalues of this problem are all negative, which implies

that, in absence of diffusion, the homogeneous steady state P ∗ is linearly stable.

Therefore we look for conditions which lead to instability for k 6= 0.

Theorem 2.3.1. If χ = 0, then the system (2.4) admits neither the Turing nor

the wave instability.

Proof K is a stable matrix, i.e. the real part of any eigenvalue of K is negative.

Moreover, it can be easily seen that all the signed principal minors of K are non-

negative, which implies, by Theorem 4. in [46], that K is a strongly stable matrix,

i.e. ∀D = diag(d1, d2, d3) real, diagonal and positive semidefinite matrix, K −D

is stable.
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If χ = 0, then D is a real, diagonal and positive semidefinite matrix and therefore,

∀k the matrix K − k2D is stable, which concludes the proof. �

From the previous result, it follows that for system (2.4) the chemotaxis is

the only potentially destabilizing mechanism. Hence, hereafter, we shall assume

χ 6= 0.

2.3.1 Turing and wave instability

In this Subsection, we state some theorems giving the necessary and sufficient

conditions for the occurrence of both the Turing and the wave instability for the

system (2.4). For simplicity, I set K := k2.

Let P(λ) = λ3 + N(K)λ2 + P (K)λ + Q(K) be the characteristic polynomial

of (2.7), where N(K), P (K) and Q(K) are polynomials in K.

In particular, it is easy to verify that N(K) is positive for all choices of pa-

rameters and for all Ks. The following Theorems hold:

Theorem 2.3.2. System (2.4) admits a Turing instability if and only if Q(K) < 0

for K in some interval I = (K1, K2).

Theorem 2.3.3. Let R(K) := N(K)P (K)−Q(K). System (2.4) admits a wave

instability if and only if there exists an interval I = (K1, K2) such that:

(i)Q(K) > 0 in I, (ii) det(B(K)) < 0 in I, (iii)R(K) < 0 in I,

(2.8)

where B(K) is the Bezoutiant matrix associated to the characteristic polyno-

mial P(λ).

The proofs of Theorems 2.3.2 and 2.3.3 together with the definition of the

Bezoutiant matrix are given in Appendix A.

We shall limit the study of the occurrence of the Turing and the wave insta-

bilities in system (2.4) by considering the variation of three parameters, namely

the activation rate of macrophages r, the chemotactic coefficient χ and the time

scale of the cytokine’s dynamics τ , while keeping all the other parameters fixed.

Using Theorems 2.3.2 and 2.3.3 and fixing the parameter values as follows:

[

D α β Γ
]

=
[

0.9 0.01 0.1 5.5
]

, (2.9)

we have determined for different values of (r, τ, χ), the regions of the parameter

space in which either one of the Turing or wave instability occurs. The procedure
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Figure 2.2: (a): spatio-temporal evolution of m. The parameters are given by (2.9)
and (r, τ, χ) = (2.4, 30, 6.9), corresponding to a Turing instability. (b): spatio-temporal
evolution of m. The parameters are (2.9) and (r, τ, χ) = (2.4, 200, 6.75), corresponding

to a wave instability. (c): close-up of (b)

On the other hand, the longer time scale required for the down-regulation of

inflammation (τ > 1) allows for the occurrence of a wave instability, which corre-

sponds to the insurgence of structures whose local density oscillates in time. This

behaviour is not observed for small values of τ , while it is favoured for increasing

values of τ . In the case of a wave instability, therefore, if the anti-inflammatory

mechanism sets in with a delay sufficient to permit the development of a fully

inflammatory response, then a temporary resolution of inflammation is possi-

ble. This scenario is consistent with the reported periodic-in-time appearance

of localized skin eruptions, known as Recurrent Erythema Multiforme (REM)

([168, 195, 113]). It is an acute, self-limited, inflammatory disease of unknown

etiological attribution, characterized by the recurrent appearance of distinctive

target lesions with a 6.2 mean number of episodes per year. In Fig. 2.2b we

show a numerical simulation of the macrophages density for a parameter set cor-

responding to a wave instability: the frequency of the temporal oscillations is in

fact compatible with the medical observations. Hence, the proposed model pro-

vides a mechanism that can account for the still unexplained origin of recurrent

inflammations.

From the comparison of Fig. 2.1a-Fig. 2.1b we can discern the effect of varying

r on the instabilities. A higher value of the activation rate implies that both the

Turing bifurcation threshold χT (τ) and the wave instability regions are shifted up-

wards. This agrees with the observation that an increased activation rate favors

the stability of the homogeneous state, consequently requiring a higher chemotac-

tic strength for aggregation.

Finally, in Fig. 2.1c we show a plot of the instability regions in the (r, χ)-plane

for a fixed value of τ . We see that, for large r, the homogeneous steady state P ∗
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is stable, losing stability as r increases. As the χT (τ) solid line is crossed from

right to left, a Turing instability can set in, the threshold value being larger for

increasing r. Within the Turing instability regions, sparse isolas of wave instability

are found, where periodic structures also oscillate in time.

2.4 Weakly nonlinear analysis

In this Section, we perform a weakly nonlinear analysis close to the uniform

steady state P ∗, based on the method of multiple scales ([197], [71], [72], [75]), to

predict the amplitude and the shape of the Turing pattern.

Upon defining w = (m− 1, c− a0, a− a0)
T and separating the linear and the

nonlinear part, we rewrite System (2.4) in the following form:

∂tw =Lχw +∇ · Qχ
D(w,∇w) +

1

2
QK(w,w) +∇ · CχD(w,w,∇w)

+ CK(w,w,w) +∇ · T χ
D (w,w,w,∇w) + TK(w,w,w,w)

+∇ · Pχ
D(w,w,w,w,∇w) + PK(w,w,w,w,w).

(2.10)

where in the operators Lχ, Qχ
D, CχD, T χ

D and Pχ
D we have stressed the de-

pendency on the bifurcation parameter χ. The linear operator Lχ is defined as

Lχ = Dχ∆+K where Dχ and K are defined in (2.6). The action of the multilinear

operators is given in B.1.

We define the small control parameter ε2 = (χ−χc)/χc and expand the solution

of the original system (2.4) and the bifurcation parameter χ in ε:

w = εw1 + ε2w2 + ε3w3, (2.11)

χ = χc + ε2χ(2) +O(ε4). (2.12)

Near the bifurcation, we separate the fast time t and the slow time T , and

the latter one is obtained from the linear analysis: for ε sufficiently small, it is

straightforward to verify that λ ∼ ε2. Since the growth rate of perturbation is

proportional to eλt, the characteristic time scale of T is O(ε−2).

We set T = ε2t and therefore the time derivative decouples as ∂t → ∂t + ε2∂T .

Performing a weakly nonlinear analysis up to O(ε3), we obtain the following

Stuart-Landau equation for the amplitude A(T ):

dA

dT
= σA− LA3. (2.13)
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The details of the analysis are given in B.2.

The coefficient σ is always positive in the region of Turing instability, while

L can have either sign. Therefore the dynamics of the Stuart-Landau equation

(2.13) can be divided into two qualitatively different cases: the supercritical case,

when L is positive, and the subcritical case, for L negative.

In the supercritical case, there exists a stable equilibrium solution of the Stuart-

Landau equation (2.13), that is A∞ =
√

σ/L, which represents the asymptotic

value of the amplitude of the pattern. According to the weakly nonlinear theory,

the asymptotic behaviour of the solution is given by:

w = εη

√
σ

L
cos(kcx) + ε2

σ

L
(w20 +w22 cos(2kcx)) +O(ε3). (2.14)

where kc is the critical wavenumber.
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Figure 2.3: Comparison between the weakly nonlinear solution (dotted line) and the
numerical solution of system (2.4) (solid line). (a): Supercritical case: the parameters
are D = 0.1, Γ = 1.3, r = 5, α = 0.01, β = 0.1, τ = 30, ε = 0.05. With this choice of
the parameters, one has χc = 6.779 and kc = 2.99. (b): Subcritical case: the parameters
are D = 0.1, Γ = 9, r = 0.1, α = 1, β = 0.4, τ = 30. With this choice of the parameters

one has χc = 1.606, kc = 2.96, ε = 0.01.

Figure 2.3a shows a comparison between the stationary solution (2.14) pre-

dicted by the weakly nonlinear analysis and the Turing pattern, computed using

a numerical spectral scheme and reached starting from a random perturbation of

the uniform steady state. The two solutions display an excellent agreement, the

L2-norm of the distance between the numerical solution and the weakly nonlinear

solution being consistent with the O(ε3) approximation.

In the subcritical case, the Landau coefficient L is negative, so that Eq. (2.13)

is not able to predict the amplitude of the pattern. We therefore have to push the

weakly nonlinear expansion at fifth order ([14]). Performing a weakly nonlinear

analysis up to O(ε5), we obtain the following quintic Stuart-Landau equation for
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the amplitude A:
dA

dT
= σ̄A− L̄A3 + Q̄A5, (2.15)

The details of the analysis are given in B.3.

In the subcritical case, namely when σ̄ > 0, L̄ < 0, and Q̄ < 0, Eq. (2.15)

admits two real stable equilibria, A∞,± =

√

L̄−
√
L̄2−4σ̄Q̄

2Q̄
, which represent the

asymptotic values of the amplitude A of the Turing pattern. In this case, the

amplitude A is O(ε−1) and, consequently, the emerging pattern is an O(1) pertur-

bation of the equilibrium. Therefore, the solution obtained through the weakly

nonlinear analysis may fail to capture the quantitative features of the emerging

structures. For this reason, in general we cannot expect a good agreement between

the asymptotic and the numerical solutions, as it happens in the supercritical case.

Nevertheless, the simulation reported in Figure 2.3b shows that, close to the crit-

ical threshold, the asymptotic solution has a good agreement with the expected

pattern.

2.5 Spatio-temporal chaos

In this Section, we show the results of a detailed numerical investigation of

the system (2.4), aimed to prove that the presence of a cell kinetics term is able

to induce complex dynamics. The emergence of oscillatory patterns and spatio-

temporal chaotic solutions for chemotaxis systems of the Keller-Segel type with

cell-growth terms has been investigated by [144] and also confirmed in other vari-

ations of the model [143]. We shall show that, in System (2.4), the presence of

the cell-growth term is crucial for the appearance, as the parameter χ is var-

ied, of a sequence of successive bifurcations leading to time-periodic patterns and

spatio-temporal chaos.

All the simulations presented in this Section has been performed on the one-

dimensional spatial domain I = [0, 2π] enforcing homogeneous Neumann bound-

ary conditions. For the discretization in space, we have adopted a Fourier spectral

solver with 256 modes. The integration in time has been realized using the Crank-

Nicholson method for the diffusive part and a second-order Runge-Kutta explicit

method for the reaction terms.

We fix all the parameters but χ, and approximate a continuous bifurcation

analysis as follows:
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1. we select a value of χ (starting with a value χ < χT , where χT is the critical

value for the Turing instability), and assign a random perturbation of the

homogeneous steady state P ∗ as initial condition;

2. System (2.4) is solved numerically until the time T = Tend, at which the

system has reached a stable configuration;

3. we slightly increase the value of χ and perform a new simulation, start-

ing from an initial condition that is a random perturbation of the solution

attained at t = Tend. We then return to step 2.

To track distinct branches originating at bifurcation points, we have repeated

step 3 for the same value of χ starting from different random perturbations of the

solution obtained for the previous value of χ at t = Tend.

Let us first consider the case r = 0. We select the following parameter set:

[

r D α β Γ τ m0

]

=
[

0 0.9 0.5 0.4 1 10 10
]

. (2.16)

Notice that, in the case r = 0, the equilibrium value of the macrophages is fixed by

the initial condition. Linear stability analysis predicts that the Turing bifurcation

occurs for χ > χT = 1.08 with fastest growing mode kT = 1/2. Numerical

analysis reveals that, beyond the Turing threshold, the cells population aggregates

in a stable unique peak, whose amplitude grows, concentrating on one end of the

domain, as the chemotactic response increases (see Figure 2.4).
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Figure 2.4: Numerical bifurcation analysis of System (2.4) for the parameter set given
in (2.16). For each subfigure, we plot the profile (left) and the space-time (right) density

of the macrophage species for T > Tend.



Chapter 2. A chemotaxis model of Erythema 40

Increasing the number of peaks of the expected stationary solution, as can be

obtained, for example, by selecting the following numerical values of the parame-

ters:

[

r χ D α β Γ τ m0

]

=
[

0 1.75 0.45 0.5 0.4 1.3 30 10
]

, (2.17)

we observe the phenomenon of merging dynamics [167, 143, 144], also referred

to as coarsening dynamics: starting from the initial condition, the system at first

evolves towards a multi-peak solution which appears stationary in time. However,

on a logarithmic time scale, one observes further aggregation of the structures, due

to the strong chemotactic attraction between adjacent peaks. Therefore merging

of the structures corresponds to transient dynamics along metastable multipeaked

stationary solutions. The process of coalescence of chemotactic aggregates is re-

ported in Figures 2.5. We notice that the absence of the activation term (r = 0 in

this case) prevents the formation of new agglomerates, precluding the emerging

phase that is observed when r 6= 0 (see below).
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Figure 2.5: Spatio-temporal evolution of the species m of System (2.4) with zero growth
(r = 0), showing merging dynamics. The numerical values of the parameters are given
by (2.17), so that χc = 0.23 and kc = 0.015. (a): Initial evolution starting from a
random perturbation of the nontrivial equilibrium, showing the transient appearance
of nearly uniformly spaced aggregates. (b): Merging dynamics on a longer timescale,

characterized by the collapse of neighboring aggregates.

We have also tested other parameter sets and, as long as r = 0, spatio-temporal

irregularity of the solutions has not been detected: therefore the analysis presented

here confirms that, in absence of a cell activation term, complex dynamics is

excluded.

We now consider the case r > 0. For the following choice of parameters:

[

r D α β Γ τ
]

=
[

2.4 0.9 0.01 0.1 5.5 30
]

, (2.18)



Chapter 2. A chemotaxis model of Erythema 41

linear stability analysis predicts that the homogeneous solution P ∗ becomes un-

stable for χ > χT = 6.78 with most unstable wavenumber kT = 3.

Figure 2.6 describes the sequence of bifurcations by which the homogeneous

solution (shown in Figure (2.6a)) loses stability as χ > χT : the stationary pattern

predicted by the linear analysis that develops for χ & χT (Figure (2.6b)) persists,

with the peaks becoming sharper, as χ is further increased (Figure (2.6c)). Be-

tween χ = 7.4 and χ = 7.45, the Turing pattern becomes unstable, bifurcating to

a time-periodic spatial pattern: the numerical simulations shown in Figure 2.6d

in fact reveal the presence of an oscillating branch at χ = 7.45, whose amplitude

becomes larger with further increasing the value of χ (see Figure (2.6e)). Be-

tween χ = 7.55 and χ = 7.6, the periodic solution undergoes to a period-doubling

bifurcation, described by the doubling in the loop structure of the trajectories

calculated at x = π (Figure (2.6f)). This new class of solutions remains stable

up to χ = 7.61; at χ = 7.62, a small increment of the chemotactic term results

in the periodic pattern to lose its stability to a irregular spatio-temporal solution

(Figure (2.6g)). The chaotic solution is still present for an increased value of χ,

(Figure (2.6h)), although at χ = 7.9 a time-periodic pattern reappears, as shown

in Figure (2.6i). This type of solution remains stable until χ = 8.4, successively

bifurcating to a stationary pattern with a different wave number at χ = 8.45

(Figure (2.6l)).

Figure 2.7 shows another numerical experiment obtained for the following

choice of the parameters:

[

r D α β Γ τ
]

=
[

0.1 0.9 0.1 0.1 30 30
]

. (2.19)

Using (2.19), the linear stability analysis predicts that the homogeneous solution

P ∗ becomes unstable for χ > χT = 0.514 with kT = 4.5 most unstable wavenum-

ber.

Figure 2.7 describes a sequence in which the homogeneous solution (in Fig-

ure 2.7a) loses stability as χ > χT to a stationary pattern (Figure 2.7b). This

branch remains stable until χ = 0.565, after which the system shows an irreg-

ular solution characterized by a sequence of merging and emerging structures,

whose wavenumber oscillates between 4 and 5 (see Figure 2.7c). Increasing the

chemotactic sensitivity, the pattern ends up in a stationary-in-time pattern with

a smaller wavenumber, as Figure 2.7d shows. This transition is found again if

we increase further χ: in Figure 2.7e an irregular solution is reported which is

stabilized as χ = 0.67 (Figure 2.7f) and a pattern with a different wavenumber

appears.
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Figure 2.6: Numerical bifurcation analysis of System (2.4). The parameters are as in
(2.18). In each frame (2.6a)-(2.6l), we plot the phase-space trajectories at the spatial
location x = π (left), and the space-time snapshot of the macrophage density for t > Tend

(right).
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Figure 2.7: Numerical bifurcation analysis of System (2.4). The parameters are as in
(2.19). For each subfigure (2.7a)-(2.7f) we plot the phase-space trajectories at the spatial
location x = π (left), and the space-time snapshot of the macrophage density for t > Tend

(right).

In both the numerical experiments showed in Figure 2.6 and Figure 2.7, we

can observe transitions of striped patterns towards chaotic solutions, which are

stabilized in stationary patterns with different wavenumbers, as the chemotactic

parameter increases. The onset of this new stationary pattern is predicted by the

linear stability analysis: in fact, when the control parameter is just above the

Turing threshold, the mode kT becomes unstable originating a stationary pattern.

With the increasing distance from the bifurcation threshold, more modes k near

kT become unstable, giving rise to stationary Turing patterns characterized by a

different number of stripes.

The transition between stationary and irregular solutions is able to reproduce

criticality, a key property observed in many self-organized real systems, first in-

troduced by [8]. Self-organized criticality (SOC) is displayed in those dynamical

systems with spatial degrees of freedom naturally evolving towards an attractor

that is a self-organized critical point: this is defined as a state in which perturba-

tions are neither dampened nor amplified, and are propagated over long temporal

or spatial scales. SOC is now considered one of the mechanisms by which com-

plexity arises in nature. A hallmark of critical behavior is the transition between

organized and disorganized states. This transition has been observed in enzyme ki-

netics ([136]), growth of bacterial populations ([140]), and foraging in ant colonies

([15]), although it is difficult to observe experimentally in a population of macro-

phages. Recently, Nykter and coworkers ([142]) have developed a method, based

on algorithmic information theory, to prove that macrophages exhibit dynamics in
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the critical regime, at the boundary between order and chaos. The macrophages

change their state in response to specific stimuli coming from the environment. In

doing so, they tend to maintain a good balance between stability and adaptabil-

ity: too much stability (a characteristic of ordered behaviour) makes the system

incapable of responding to stimuli; conversely too much adaptability (a character-

istic of chaotic behaviour) would make the system incapable of maintaining one

or more stable steady state, necessary for executing cellular functions. The two

borderline cases would provoke a loss of information. The critical behavior at the

edge between order and chaos instead represents the point of minimal information

loss, guaranteeing both stability and adaptability. From the modeling viewpoint,

therefore, the absence of the cell activation term, as in the model presented in

[148], results in a system characterized by too much stability, i.e. incapable of

transitions to complex dynamics: in fact, as shown in Fig. 2.4, the increase in

the control parameter does not affect the stability of the stationary pattern. On

the other hand, the inclusion of the growth term in the macrophages dynamics

produces a model that is able to reproduce the critical behavior of the immune

cells.

2.6 2D stationary radially symmetric solutions

In the present and in the following Section, we show that system (2.1)-(2.2) can

successfully model the formation of localized inflammatory structures having the

form of hotspots, bull’s eyes and rings, typical of some classes of skin erythemas,

such as the Erythema Annulare Centrifugum (EAC) (also known as erythema

gyratum repens or Darier erythema). This is a pathology that may appear from

infancy to old age, identified by the presence of ring-shaped eruptions. Usually

the lesion originates as a small spot that progressively enlarges, forming one or

more rings around the central area. The rings grow at a rate of approximately

2 − 5 mm/day and can reach a diameter of 6 − 8 cm ([162]). The final lesions

appear as bull’s eye mark or raised red rings around a clear central area. Often

no specific causes for the eruptions are detected.

In this Section, we focus on the existence and the stability properties of sta-

tionary radially symmetric solutions to system (2.4). To this end, we rewrite the

model (2.4) using polar coordinates (%, θ) and neglect the dependency on θ, to

obtain:
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∂m
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(2.20)

We impose no-flux boundary conditions on the disk % ∈ [0, R], with R = β1,n,

where β1,n is the n-th zero of the Bessel function J1(%) and perform a weakly

nonlinear analysis near the bifurcation value, following the same techniques used

in Section 2.4. Due to the loss of translation symmetry, we now expect a trans-

critical rather than a pitchfork bifurcation at criticality. We set ε = (χ− χc)/χc,

the characteristic time T = εt, and write the solution of (2.20) as the following

expansion close to the homogeneous steady state P ∗:

w =






m−m0

c− c0

a− a0




 =






εm1 + ε2m2 + ε3m3

εc1 + ε2c2 + ε3c3

εa1 + ε2a2 + ε3a3




+O(ε4) = εw1+ε

2w2+ε
3w3+O(ε

4).

(2.21)

Collecting the terms at each order in ε, we obtain a sequence of equations for the

wis. At O(ε) we get the following linear problem:

Lχcw1 = 0, (2.22)

where Lχc = Dχc 1
%
∂
∂%

[

% ∂
∂%

]

+ K and the expressions of D and K are given in

(2.6). The solution of Eq. (2.22), satisfying the boundary conditions, is:

w1 = A(T )η J0(kcx), with η ∈ Ker(K − k2cDχc), (2.23)

where A(T ) is the amplitude of the pattern, unknown at this level, and the vector

η is given by (B.2). At O(ε2) we obtain the following linear equation:

Lχcw2 = F. (2.24)

The explicit expressions of F is given in Appendix C. Imposing the solvability

condition for equation (2.24), we obtain the following evolution equation for the
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of the full system (2.20), computed through the software AUTO and showed in

Figure 2.9: close to the bifurcation point, the behavior is in fact as predicted by

the weakly nonlinear approximation. However, the numerical analysis far from

threshold reveals the existence of two subcritical branches of steady solutions,

bistable with the spatially homogeneous state, and corresponding to a bump and

a ring solution, respectively. The spatial distribution of the macrophages and

cytokine densities at the points labeled by L and M in the bifurcation diagram

2.9 are shown in Figure 2.10.
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Figure 2.9: (a): Numerically computed bifurcation diagram of System (2.20) as χ is
varied. All the other parameters are fixed as in (2.26). Solid red (dashed black) lines
represent stable (unstable) branches of equilibria. (b): Enlargement of the box in (a),

showing a subcritical stable branch of ring solutions.

(a)

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x (cm)

macrophages

y
(c
m
)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(b) (c)

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

1

−0.5

0

0.5

1

1.5

x (cm)

macrophages

y
(c
m
)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d)

Figure 2.10: Stationary solutions of System (2.20) corresponding to the points labeled
by L and M in Figure 2.9. The parameters are given by (2.26). (a)-(b): Spatial
distribution of the cytokine and of the macrophage density at the point L. (c)-(d):

Spatial distribution of the cytokine and of the macrophage density at the point M .

Fixing the following parameters values:

[

D α β r Γ τ
]

=
[

0.9 0.1 0.1 0.01 1 30
]

, (2.27)

on the spatial domain [0, β1,15], the weakly nonlinear analysis prescribes a negative

value of the coefficient L in (3.23). Therefore we expect an unstable bump solution
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below the critical value of χ (here χc = 1.53) and a ring solution above the

threshold.

This is in agreement with the numerical bifurcation diagram of (2.20) reported

in Figure 2.11, that, close to the primary bifurcation point, shows a stable branch

of ring solutions bifurcating supercritically from the uniform steady state. Far

from the primary transition, the numerical analysis detects several bifurcation

points (of saddle-node type), from which stable branches of multi-rings and bull’s

eye solutions emerge and coexist for large values of the chemotaxis coefficient. The

spatial distribution of the species densities corresponding to the labeled points in

Figure 2.11 are shown in Figure 2.12.

We notice that the points G and J correspond to branches of solutions having

a bump at the origin, while H and I correspond to solutions with a local minimum

density at r = 0.

The comparison of the inflammatory patterns showed in Figures 2.10-2.12 with the

images taken from patients suffering of EAC and reported in Figure 2.13, proves

that the proposed model is able to reproduce qualitatively different inflammatory

rashes, ranging from one-ring, to bull’s eye and multi-rings.
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Figure 2.11: (a): Numerically computed bifurcation diagram of System (2.20) as χ is
varied. The parameters are fixed as in (2.26). Solid red (dashed black) lines represent
stable (unstable) branches of equilibria. (b): Enlargement of the box in (a), showing a

far-from-equilibrium stable branch of stationary bump solutions.
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Figure 2.12: Stationary solutions of System (2.20) corresponding to the labeled points
in Figure 2.11. The parameters are given by (2.27). (a)-(b): Spatial distribution of the
cytokine and of the macrophage density at the point G. (c)-(d): Spatial distribution of
the cytokine and of the macrophage density at the point J . (e)-(f): Spatial distribution of
the cytokine and of the macrophage density at the point H. (g)-(h): Spatial distribution

of the cytokine and of the macrophage density at the point I.
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Figure 2.13: Clinical images of Erythema Annulare Centrifugum. (a): Coexistence of
one-ring and bull’s eye inflammatory patterns.(b): A polycyclic lesion.

2.7 Numerical simulations in 2D

In Section 2.6, we have proved that the model (2.20) supports stationary solu-

tions with circular symmetry. In this Section, we show the results of a numerical
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investigation of the full system (2.1)-(2.2) on a 2D square domain. Our goal is

two-fold: on the one hand, we want to simulate the evolution in time of inflamma-

tion and compare it with the available medical data. On the other hand, we want

to provide a numerical justification to the study performed in Section 2.6, showing

that an initially highly localized stimulus initiates the formation of inflammatory

structures that exhibit radial symmetry.

The numerical solutions have been computed using a spectral algorithm, em-

ploying 256 modes for the discretization in each space dimension. The time in-

tegration has been realized as described in Section 2.5. Assuming that, after an

initial unknown insult, inflammation is triggered by an highly localized concen-

tration of activated macrophages, we have set a bump in the macrophages spatial

distribution as initial condition and zero initial density for both the cytokine

species. We have enforced Neumann boundary conditions on the square domain

[0, 6] cm × [0, 6] cm.

Because inflammation causes the rash, we can use the density of macrophages

as an indicator of the rash appearance.

Figure 2.14 shows the spatio-temporal evolution of the macrophages for the

following choice of the parameters:

[

D α β r Γ τ χ
]

=
[

0.9 0.1 0.1 1 1 30 4.5
]

. (2.28)

Initially the solution appears as a small red spot (Figure 2.14b), which sub-

sequently enlarges, while the central area is clearing (Figures 2.14c-2.14d). The

resulting pattern is a ring, which adequately reproduces the evolutive phases of

EAC reported in Figure 2.15. From the numerical simulations, we have been able

to measure the rash growth rate: it is higher in the first days, due to the low

density of the anti-inflammatory cytokine, and successively it slows down, until

it reaches vanishingly small values. The estimated average growth rate of the

diameter turns out to be about 3 mm/day, that is perfectly in agreement with the

clinical data ([162]).
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(a) (b)

(c) (d)

Figure 2.14: Temporal evolution of the macrophage species for the system (2.4). The
parameters are given by 2.28.

(a)

Figure 2.15: Progression of Erythema Annulare Centrifugum in the same patient: it
is possible to observe the evolution of the rash, which first appears as a small red-
spot, which enlarges as the central area clears. Images are provided by courtesy of

RegionalDerm.com.

Figure 2.16 shows a temporal sequence of the numerical solution obtained

increasing the value of χ, and keeping the others as before.
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(a) (b)

(c) (d)

Figure 2.16: Temporal evolution of the macrophage species for the system (2.4). The
parameters are as in 2.28 except for χ = 5.

The rash appears as a little spot (Figure 2.16b), its diameter increases (Figure

2.16c) while the density of macrophages in the central area decreases (Figure

2.16d). As time progresses, the macrophage density increases again in the center

so that the resulting solution is a bull’s eye pattern (Figure 2.16d). Increasing the

chemotactic term, produces a decrease in the average growth rate, that in this

case is about 2 mm/day, which is compatible with the medical measurements.

The above exposed results are in agreement with the nonlinear analysis of the

corresponding radial system (2.20). In fact, fixing the parameters as in (2.28), one

gets χc = 4.92 and a positive value of the coefficient L appearing in the amplitude

equation (3.23). This implies the existence of a ring solution below the Turing

threshold and of a bump solution above criticality. The simulations represented

in Figures 2.14-2.16 confirm these previsions.

Figure 2.17 shows the temporal evolution of a solution to System (2.4), ob-

tained increasing the activation rate r of macrophages. Fixing the following values:

[

D α β r Γ τ χ
]

=
[

0.9 0.1 0.1 3 1 30 10
]

, (2.29)

the theoretical predictions of the weakly nonlinear analysis prescribe χc = 9.1

and L < 0, so that a stable branch of stationary rings is expected above the
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threshold. The resulting simulation of the full system shows the appearance of

two rings around a cleared central area, as shown in Figure 2.17.

(a) (b)

(c) (d)

Figure 2.17: Temporal evolution of the macrophage species for the system (2.4). The
parameters are: D = 0.9, Γ = 1, r = 3, α = 0.1, β = 0.1, τ = 30, χ = 10.

Therefore a high value of r not only accelerates the formation of the rash on

the skin, but also promotes the formation of more rings.
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Chapter 3

Plaque formation in Multiple

Sclerosis

Multiple Sclerosis (MS) is the most common of the demyelinating disorders

that affect the central nervous system causing severe and progressive physical and

neurological impairment. It is an immune-mediated inflammatory demyelinating

disease, pathologically and pathogenetically heterogeneous, which is characterized

by myelin damage and loss, resulting in the formation of dense, scar-like tissue

called sclerosis or plaques ([106]).

Four different histological patterns of plaques have been identified ([121]), pos-

sibly determined by heterogeneous pathogenetic mechanisms: subtypes I and II

are characterized by T-cell infiltration, whereas subtype III and IV reveal myelin

damage with concomitant destruction of oligodendrocytes, reminiscent of virus-

or toxin-induced demyelination rather than autoimmunity ([10]).

Pattern III patients present a lesional pathology common to the earliest events

of the disease and to Balò sclerosis, a rare, aggressive and often fulminant vari-

ant of MS, characterized by the presence of concentric layers of alternating de-

myelination and preserved myelin. Patients report an inflammatory state, with

macrophages activation and extensive oligodendrocytes apoptosis. These common

features have led some researchers to hypothesize that the pathological changes

observed in pattern III and in Balò sclerosis probably occur at the onset of any

typical new lesion ([11]).

Although the detailed immune effector mechanisms involved in MS lesion for-

mation are still not completely understood, some mathematical models have been

developed. In particular, the model proposed by [94, 13, 117] are able to reproduce

many of the typical pathological hallmarks of the disease .

In this Chapter, we shall focus on the pattern forming and mathematical

properties of the following nondimensional reaction-diffusion-chemotaxis model of

MS presented in [117]:
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∂m
∂t

= ∆m+m (1−m)−∇ · (χh(m)∇c) , with h(m) = m
1+m

,
∂c
∂t

= 1
τ
[ε∆c+ (δd− c+ βm)] ,

∂d
∂t

= rf(m)m(1− d), with f(m) = m
1+m

.

(3.1)

Here m = m(t,x) is the density of activated immune cells (macrophages), c =

c(t,x) is the concentration of the chemical species (cytokine) secreted by the

immune cells, and d = d(t,x) the density of the damaged oligodendrocytes. The

above system is solved for (t,x) ∈ R
+ × Ω, where Ω ⊂ R

2, imposing initial

condition and no-flux boundary conditions.

The spatial movement of the macrophages is accounted for by classical diffu-

sion plus a chemotactic-driven migration term, which describes cytokine-mediated

movement of the immune cells, which migrate toward a higher-concentration re-

gion of chemical species produced by themselves ([120, 157, 161, 39]). The chemo-

taxis term is chosen of the flux-limited Keller-Segel form, to avoid unphysical

blow-up of the solution as caused by the unbounded chemotaxis flux prescribed

by the classical Keller-Segel model ([181, 86, 58, 198, 87]). Here, the nonnega-

tive parameter χ measures the maximal chemotactic rate. The local activation

of the macrophages is described by a logistic term, which provides growth and

saturation.

The evolution of the cytokine is ruled by a reaction-diffusion equation whose

kinetics takes into account linear decay and the production of pro-inflammatory

cytokines by both destroyed oligodendrocytes and macrophages. The apoptotic

oligodendrocytes are fixed in space and their local production by activated macro-

phages is described by the damaging function f(m), that is positive, increasing

with respect to m(x, t) and bounded for high values of the macrophages density.

The spatially uniform steady states of the system are the disease-free equi-

librium P0 = (0, 0, 0), the disease point P ∗ = (m∗, c∗, d∗) = (1, β + δ, 1), and

P ∗∗ = (0, δd, d). P0 and P ∗∗ are unstable for the kinetics; in particular P ∗∗ rep-

resents a scenario where, in absence of activated macrophages, oligodendrocytes

death, due to unknown agents, results in the production of cytokines. Since we

are interested in describing the early inflammatory phase of MS, characterized

by the destruction of the oligodendrocytes driven by the activated macrophages,

the investigation of the dynamics starting from this steady state is beyond our

interest.

The disease point P ∗, instead, is a stable attractive node for the kinetics for

all non negative values of the parameters.
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As discussed in [117], the proposed model prescribes qualitatively different

spatial dynamics depending on the size of the chemotactic parameter χ.

Therefore, we adopt χ as bifurcation parameter and denote by (χc, kc) the bifur-

cation threshold of the primary Turing instability and the critical wavenumber,

respectively. Their explicit expressions are:

χc =
2(1 +

√
ε)2

β
, k2c =

1√
ε
. (3.2)

The homogeneous state P ∗ is linearly stable for χ < χc and the resulting

asymptotic solutions are homogeneous in space, corresponding to the formation

of the spatially uniform plaques observed in MS patients. As χ & χc, P
∗ becomes

unstable to spatially varying perturbations with most unstable wavenumber kc,

one observes the formation of spatially periodic stable clusters of cells, which

closely resemble the pathological concentric lesions observed in Balò sclerosis and

in the early stages of the pattern III MS lesions ([9]).

Moreover, for small values of the parameter r, the system reproduces the appear-

ance of preactive lesions, clusters of activated microglia without apparent loss of

myelin, which are believed to constitute the initial stage of the disease ([188, 189]).

In this Chapter, we shall investigate the conditions which yield the appear-

ance of stationary non constant radially symmetric solutions for the chemotaxis

reaction-diffusion model (3.1) when homogeneous Neumann conditions are im-

posed at the boundary edge: since the flux of m is ∇m − h(m)∇c and the flux

of c is ∇c, then the homogeneous Neumann conditions imply that the flux is zero

on the boundary.

Although this setting might seem somewhat artificial, I stress that, on the one

hand, circular symmetry is by far preferred in the shape of both the plaques and

the concentric layers of demyelination observed in the MRIs of MS and Balò pa-

tients. Moreover in [117] a detailed numerical investigation of the system dynamics

on rectangular planar domains has revealed that, if one perturbs the disease-free

state with a small, highly localized bump, the solution evolves towards the for-

mation of concentric patterns, which closely reproduce the observed lesions.

On the other hand, the enforcing of no-flux boundary conditions on a fixed

domain can be justified by the following observations: active plaques are usually

formed in a time interval ranging from few hours to days and present a pronounced

variability in their appearance mostly only over the first months after their de-

velopment, due to the concurrent inflammatory activity and repair mechanisms

([163]). After this initial period, the majority of the lesions appear stable in form

and dimensions on MRI from year to year. The analysis presented here is a first
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attempt to describe the morphological characteristic of a stabilized plaque, while

the no-flux boundary conditions are meant to roughly reproduce the absence of

recruitment of activated immune cells and chemical mediators from the extern

of the plaque. The formulation of a more refined model where neuroprotective

agents enter into the dynamics, so determining a limitation to the lesion size, is

under study.

In the first part of this Chapter, we shall perform a perturbative analysis close

to the Turing bifurcation point, on circular domains whose linear size is of the

order of the critical wavelength. We shall derive the amplitude equation close

to criticality, proving the occurrence of a transcritical bifurcation at the onset.

Numerical and analytical investigations show the coexistence, beyond the linear

regime, of supercritical small amplitude patterns and subcritical large nonconstant

solution which exist also below threshold. This phenomenon was numerically

detected also in [117]. In the case of domains whose radius is much larger than

the critical wavelength, the solution has a different structure close and far away

from the core. We shall adopt a matched asymptotic expansion which will allow

to describe the pattern solutions in the different subdomains.

In this Chapter, we shall also investigate the stability of the stationary pat-

terns supported by (3.1).

Using numerical values of the parameters taken from the experimental literature,

in [117, 22], the system (3.1) has been found to support the formation of station-

ary patterns that closely reproduce the concentric lesions observed in the clinical

practice. However, the weakly nonlinear approach adopted in [117, 22] only de-

scribes the amplitude and the stability properties of the first bifurcating patterned

branch corresponding to the critical mode while fails to account for the pattern

selection process, due to the occurrence of secondary instabilities.

Therefore, we shall focus on the universal secondary instabilities of striped

patterns ([88]), namely Eckhaus and zigzag, which are longitudinal and trans-

verse instabilities of the primary stationary branches bifurcating from the ho-

mogeneous equilibrium. The Eckhaus and zigzag instabilities are at the origin

of defect-mediated wavenumber adjustments since they modulate or change the

wavelength of the pattern, when it is not optimal. In particular, a perturbation

of a striped pattern along the longitudinal direction can generate an Eckhaus in-

stability, which acts on the roll phase to change the wavelength, compressing or

dilating the pattern. A perturbation along the transversal direction can excite a

zigzag instability, so creating undulations along the rolls.

The motivation for the investigation of the conditions under which such insta-

bilities can be excited relies on them being mechanisms of pattern selection and
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can account for the formation of defects, frequently reported in real patterns. In

fact, both the Eckhaus and the zigzag instability have been the subject of many

experimental studies ([118, 147]) and are responsible for the occurrence of several

phenomena observed in systems modelled by reaction-diffusion equations, such as

the banded vegetation in a semi-arid environment ([45, 49]), the phase slip and

the reversal observed in magnetic fields ([62, 155]) and the phenomenon of pattern

selection in time-growing domains ([98, 101]), just to name a few. An equally im-

portant motivation for the interest in the secondary instabilities of Eckhaus-type

comes from the fact that, in the case when the primary transition is subcritical,

they can account for the birth of localized structures. Analytical studies based

on perturbation theory performed on the Swift-Hohenberg equation have indeed

revealed a complex bifurcation structure which results in the appearance of homo-

clinic and heteroclinic snaking branches of localized states, beginning and ending

through an Eckhaus bifurcation on primary branches of periodic states [17, 91].

In the context of modeling the demyelinating patterns occurring in MS, this study

is therefore a preliminary approach to the investigation of the formation of small

localized plaques.

Adopting a perturbative approach, I will justify the sequence of successive

bifurcations observed in the numerically computed bifurcation diagram of the

system (3.1) in the proximity of the Turing threshold, recovering the numerical

bifurcation values of the control parameter and the corresponding stability of

the emerging states. This is achieved deriving the amplitude equations of both

the Eckhaus and the zigzag instability which capture the stability of the pattern

against spatial modulations. In the case of a primary subcritical transition, the

theoretical analysis performed will show that the Eckhaus bifurcation, at small

amplitudes, is not able to stabilize the emerging periodic branch. This fact is in

agreement with the results presented in [17, 91]. We will also numerically study

the insurgence of defects determined by phase-slips: in fact, when the established

pattern belongs to the Eckhaus unstable region, the wavelength-changing process

induces the formation of a singularity, where the amplitude of the pattern vanishes

and the phase is undefined. A phase slip then occurs that inserts or removes a

wavelength into the pattern at the location of the phase slip, originating a new

pattern with a different wavelength. We shall numerically study the time needed

for a phase slip to occur showing that, for small amplitude perturbations of the

pattern, it is entirely determined by the linear growth rate of the instability.

To the best of our knowledge, the Eckhaus bifurcation analysis presented in this

Thesis is the first study on the effects of long-wavelength instabilities performed

for a reaction-diffusion-chemotaxis system.
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The Chapter is organized as follows: Section 3.1 is devoted to the analysis of

the radially symmetric solutions; in particular, in Subsection 3.1.1 a Turing in-

stability analysis of the homogeneous disease state with respect to axisymmetric

perturbations shall be presented. In Subsection 3.1.2, the solutions which bifur-

cate from criticality will be investigated through a weakly nonlinear expansion

and the corresponding normal form of the bifurcation will be derived. In Subsec-

tion 3.1.3, we shall consider the case when the domain size is large compared with

the critical wavelength: an asymptotic matching procedure yields the amplitude

of the resulting pattern close to and far away from the core. Numerical simu-

lations shall be also presented to corroborate the analytical results. In Section

3.2, we shall present a study on the occurrence of the secondary instabilities; in

particular, in Subsection 3.2.1, we shall give the details on the weakly nonlinear

analysis performed to obtain the Newell-Whitehead-Segel equation, which rules

the evolution of the complex amplitude of the pattern. Subsection 3.2.2 is de-

voted to the study on the onset of the Eckhaus instability in the system (3.1),

in both the supercritical and the subcritical regimes, and Subsection 3.2.3 shows

some numerical simulations which support the bifurcation analysis. In Subsection

3.2.4, I shall present the study on the zigzag instability, proving that a finite-size

domain results in a stabilizing effect counteracting the instability. Some numerical

simulations on 2D domains shall be also presented. Finally some conclusions will

be drawn and perspectives for future developments will be presented.

3.1 Axisymmetric solution

3.1.1 Turing instability analysis

In this Subsection, we perform a Turing instability analysis of the system (3.1)

around the homogeneous steady state P ∗ = (1, β + δ, 1). To study the stability of

the equilibrium P ∗ with respect to radially symmetric perturbations, the equations

(3.1) are rewritten using the polar coordinates (%, θ). The cylindrical symmetry

implies no dependence of the concentrations on the azimuthal angle, so that the

system (3.1) reads:







∂m
∂t

= 1
%
∂
∂%

(

%∂m
∂%

)

+m (1−m)− 1
%
∂
∂%

(

χ% h(m) ∂c
∂%

)

, with h(m) = m
1+m

,

∂c
∂t

= 1
τ

[

ε1
%
∂
∂%

(

% ∂c
∂%

)

+ (δd− c+ βm)
]

,

∂d
∂t

= rf(m)m(1− d), with f(m) = m
1+m

.

(3.3)
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The domain is the disk % ∈ [0, R], and we impose no-flux boundary conditions at

% = R.

The linearization of System (3.3) around the equilibrium point P ∗ = (m∗, c∗, d∗)

gives:

ẇ = Lχw = Kw +Dχ∆ρw, (3.4)

where

w =






m−m∗

c− c∗

d− d∗




 , K =






−1 0 0
β
τ

− 1
τ

δ
τ

0 0 − r
2




 , Dχ =






1 −χ
2

0

0 ε
τ

0

0 0 0




 , (3.5)

and ∆ρ =
1
ρ
∂ρ + ∂ρρ.

We look for solutions of the form w ∝ eλtJ0(kρ),where λ represents the growth

rate, J0 is the zeroth Bessel function of the first kind and k is the wavenumber of

the perturbation. By substituting this expression in the system (3.4), we obtain

the eigenvalue problem:

λw = Aw, (3.6)

where A = K − k2Dχ. From (3.6), we obtain the dispersion relation, which gives

the eigenvalue λ as a function of the wavenumber k:

λ2 + g(k2)λ+ h(k2) = 0, (3.7)

with

h(k2) = det(D̄)k4 + qk2 + det(K̄), (3.8)

and

g(k2) = k2tr(D̄)− tr(K̄), q =
2(1 + ε)− χβ

2τ
, (3.9)

where

D̄ =

(

1 −χ
2

0 ε
τ

)

and K̄ =

(

−1 0
β
τ

− 1
τ

)

(3.10)

For the occurrence of the Turing instability, we require that ∃ k such that

Re(λ(k)) > 0. Since g(k2) > 0, ∀k, the only possibility for (3.7) to have a root

with positive real part is h(k2) < 0 for some nonzero k. We denote by kc the
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value where h attains its minimum: the marginal stability is represented by the

condition h(k2c = 0). Therefore, we obtain the bifurcation value χc and the most

unstable wavenumber kc by imposing:

min
k

(h(k2)) = 0. (3.11)

The minimum is attained for

k2 = − q

2det(D̄)
=: k2c . (3.12)

The previous expression requires q < 0, which is satisfied by imposing the

condition:

χ > χ̄ =
2(ε+ 1)

β
. (3.13)

Substituting the expression (3.12) for k2c in (3.8) and imposing (3.11), we find

the bifurcation value:

χc =
2(
√
ε+ 1)2

β
, (3.14)

and the critical wavenumber is found substituting the expression (3.14) in (3.12):

k2c =
1√
ε
. (3.15)

The bifurcation value χc of the control parameter χ and the expression of the

critical wavenumber kc are then found as (3.2). This happens because the Bessel

function J0(kρ) is a eigenfunction of ∆ρ and formally the results are the same.

The investigation of the dynamics supported by the above system has been

carried out by adopting numerical values of the dimensional parameters, which

have been taken or derived from the experimental literature (see [117]). The

corresponding dimensionless parameter ranges are reported in Table 3.1 :

3.1.2 Weakly nonlinear analysis on small domains

In this Subsection, we perform a weakly non linear analysis close to the uniform

steady state P ∗ = (1, β + δ, 1) to derive the amplitude equation which rules the

pattern evolution close to the threshold in the case when the domain size is few

characteristic wavelengths.

We assume that the condition for the Turing instability, that is χ > χc, is

satisfied. Following a perturbative expansion approach ([71, 73, 29, 172]), we
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Table 3.1: Non dimensional parameter values used in the numerical simulations

Parameter Description Value

χ chemoattraction 4− 55
τ time scale of cytokine dynamics 0.001− 1
ε cytokine diffusion 0.5− 1.5
β cytokine production rate 0.2− 1
δ cytokine production rate per oligodendrocyte 0− 1
r damaging intensity 0.01− 6

define the small control parameter η = (χ−χc)/χc, which gives the dimensionless

distance from the bifurcation value χc.

Close to criticality, the amplitude of the pattern evolves on a slow temporal scale,

which, from the dispersion relation, can be proved to be O(η). Therefore we

introduce the slow variable T = ηt.

Upon translation of the equilibrium P ∗ to the origin, the system (3.3) can be

written as:

∂w

∂t
= Lχw +Nw, (3.16)

where w and Lχ are defined in (3.4) and N is a nonlinear operator containing

higher order powers in w .

We then expand w, the bifurcation parameter χ and the time derivative ∂/∂t

as follows:

w = ηw1 + η2w2 +O(η3), (3.17)

χ = χc + ηχ1 + η2χ2 +O(η3), (3.18)

∂

∂t
= η

∂

∂T
+O(η2), (3.19)

where wi = (w
(1)
i , w

(2)
i , w

(3)
i )T .

By substituting the above expansions (3.17)-(3.19) into (3.16) and collecting

the terms at each order of η, we obtain the following systems:

O(η) : Lχcw1 = 0, (3.20)

O(η2) : Lχcw2 = F, (3.21)
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with Lχc = K+Dχc

[
1
ρ
∂ρ + ∂ρρ

]

. The explicit expression of F is given in Appendix

C.

The solution of the linear problem (3.20) is given by:

w1 = A(T )γ J0(kcρ), with γ ∈ Ker(K − k2cDχc), (3.22)

where we choose the domain size R = β1,n/kc, where β1,n is the nth root of the

Bessel function J1(kc%) so as to satisfy the Neumann boundary conditions, and

A(T ) is the amplitude of the pattern, still unknown at this level. The vector γ

can be defined up to a constant and it is normalized as follows:

γ =
(

M, 1, N
)T

=
(

1+εk2c
β

, 1, 0
)T

.

Substituting the expression (3.22) for w1 into (3.21) and imposing the solvability

condition, we obtain the following amplitude equation:

dA

dT
= σA− LA2, (3.23)

where the explicit expressions of coefficients σ and L are computed in Appendix

C.

Therefore, at order η, the solution of (3.3) is given by:

w = η A(T ) γ J0(kc%) +O(η2). (3.24)

The steady state solutions of Eq.(3.23) are A∗
1 = 0 and A∗

2 = σ/L. The amplitude

equation exhibits a transcritical bifurcation at η = 0, consistently with the loss

of translational invariance of System (3.3) due to the radial symmetry. When A∗
2

is positive, the solution exhibits a bump in the origin, that we shall call a bump

solution. A negative value ofA∗
2 corresponds to a solution that has a ring at the

outer edge of the domain, that we shall call a ring solution. The stability of these

two different types of solution depends on the sign of L. It turns out that L is

always positive, so that the bifurcation diagram near the threshold of Eq.(3.23)

is of the type shown in Figure 3.1: the steady state ring solution exists only for

negative σ and it is unstable, while the steady state bump solution exists only for

positive σ and is stable.
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A

σ0

Ring

Bump

Figure 3.1: Bifurcation diagram of (3.23) showing the transcritical transition at σ = 0.
Solid lines represent stable solutions, dotted lines represent unstable branches.

Now, we present some numerical simulations which support the previous anal-

ysis.

The numerical solutions have been obtained discretizing the spatial derivatives

of System (3.3) with a finite difference scheme based on the method of the lines.

The temporal integration has been performed with the stiff integrator CVODE

included in the XPPAUT software.

We have set the domain [0, β1,9/kc] and imposed homogeneous Neumann bound-

ary conditions. We have fixed the following values for the parameters of System

(3.3): τ = 1, ε = 0.5, β = 1, δ = 1, r = 1.

Figure 3.2 shows the numerical simulations: from the numerical bifurcation

diagram reported in (a) one can discern the transcritical bifurcation at χc = 5.83,

as predicted by linear analysis. The profile of the supercritical stable bump branch

is reported in (b). The snapshot of macrophage density shown in (c) displays

the typical concentric rings observed in Balò Sclerosis. However, extending the

numerical bifurcation diagram far from criticality, one finds that the unstable

ring solution emanating from the primary instability undergoes a saddle-node

bifurcation, originating a stable branch of ring solutions. This behaviour, which

is reported in Fig.3.3, cannot be predicted by the weakly nonlinear expansion,

which is accurate only up to first order in η. The bistability for a given value

of the chemotactic parameter of rings and bumps is perfectly consistent with the

clinical findings observed in the MRIs of MS patients, where both demyelinated

core/myelinated ring and myelinated core/demyelinated ring can be observed.

Moreover, the existence of subcritical ring branch confirms the numerical findings

in [117], where the appearance of concentric patterns was reported also for values

of χ below the critical threshold.
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Figure 3.2: Numerical simulation of the macrophage species from System (3.3) for the
following set of parameters: τ = 1, β = 1, r = 1, δ = 1, ε = 0.5, η = 0.01, R = β19,
χ = 5.848. Therefore χc ' 5.83 and kc ' 1.19. (a) Numerical bifurcation diagram close
to criticality, showing the appearance of a branch of supercritical stable bump solutions
bifurcating transcritically from the unstructured state; (b) Radial profile of the solution
at the point labeled by a red solid dot in the bifurcation diagram in (a); (c) snapshot of

the macrophages density.
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Figure 3.3: Numerical simulation of the macrophage species from System (3.3) for the
same set of parameters of Fig.3.2: the bifurcation diagram in (a), extended far from the
primary instability, diplays the appearance of a subcritical ring branch, shown in (b)

and in (c).

3.1.3 Weakly nonlinear analysis on large domains

Following the same procedure of Subsection 3.1.2, here we perform a weakly

nonlinear analysis close to the homogeneous solution in the case when the do-

main size is large compared to the characteristic wavelength. This will yield the

Ginzburg-Landau equation which describes the amplitude of the pattern close to

the threshold [75].

In this case, we need to take into account not only the slow temporal scale, but

also the slow modulation in space of the amplitude. For the sake of simplicity, we

set the small control parameter η2 = (χ − χc)/χc: notice that here η is changed



Chapter 3. Plaque formation in Multiple Sclerosis 66

slightly in its definition respect to Subsection 3.1.2. Through the dispersion rela-

tion, it is possible to prove that the amplitude of the pattern depends on the slow

spatial coordinate P = η ρ. Therefore, we separate the fast coordinate ρ and the

slow one P , so that the spatial derivatives write as follows:

∂ρ → ∂ρ + η∂P , ∂ρρ → ∂ρρ + 2η∂ρP + η2∂PP . (3.25)

We expand w, the bifurcation parameter χ and the time derivative ∂/∂t as follows:

w = ηw1 + η2w2 + η3w3 +O(η4), (3.26)

χ = χc + η2χ2 +O(η4), (3.27)

∂

∂t
= η2

∂

∂T
. (3.28)

Thus, by substituting (3.25)-(3.28) into (3.16) and collecting the terms at each

order in η, we obtain the following systems:

O(η) : Lχc

2 w1 = 0, (3.29)

O(η2) : Lχc

2 w2 = F, (3.30)

O(η3) : Lχc

2 w3 = G, (3.31)

with Lχc

2 = K +Dχc∂ρρ. The expressions for F and G are too cumbersome and I

do not report them.

From equation (3.29), by imposing homogeneous Neumann boundary condi-

tions, we obtain a solution of the form:

w1 = γA(P, T ) cos (kcρ), with γ ∈ Ker(K − k2cD
χc), (3.32)

where A(P, T ) denotes the amplitude of the pattern, still arbitrary at this level,

and γ is normalized as follows:

γ =
(

M, 1, N
)T

=
(

1+εk2c
β

, 1, 0
)T

.

The solvability condition for the Eq. (3.30) is given by 〈F,ψ cos (kcx)〉 = 0,

with

ψ =
(

M̄, 1, N̄
)T

=
(

β
τ(1+k2c )

, 1, 2δ
τr

)T

∈ Ker(L∗
2),
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where we have denoted by L∗
2 the adjoint of Lχc

2 and by 〈·, ·〉 the scalar product

in L2.

The solution to the second-order system (3.30) is given by:

w2 = A2
w20 + A2

w22 cos (2kcρ) +

(
A

P
+ 2

∂A

∂P

)

w2P sin(kcρ), (3.33)

where the vectors w2i = (w
(1)
2i , w

(2)
2i , w

(3)
2i )

T , for i = 0, 2, P are the solutions of the

following linear systems:







Kw20 =
(
M2

2
, 0, 0

)T

,

(K − 4k2cDχc)w22 =
(
M2

2
− 1

4
Mχck

2
c , 0, 0

)T

,

(K − k2cDχc)w2p =
(

Mkc − χckc
2
, εkc, 0.

)T

(3.34)

Substituting the expressions of w2 and w1 into (3.31), and imposing the solv-

ability condition, we obtain the Ginzburg-Landau equation for the amplitude

A(P, T ):

∂A

∂T
= ν

(
∂2A

∂P 2
+

1

P

∂A

∂P
− A

4P 2

)

+ σA− LA3. (3.35)

where:

ν =
〈G(P )

1 , ψ〉
〈ρ, ψ〉 , σ =

〈G(1)
1 , ψ〉

〈ρ, ψ〉 , L =
〈G(3)

1 , ψ〉
〈ρ, ψ〉 , (3.36)

and

G
(P )
1 =






2kcχc(2w
(1)
2P + w

(2)
2P )

4w
(2)
2P kc

0




 , G

(1)
1 =






1
2
χ2k

2
c

0

0




 ,

G
(3)
1 =







χck
2
c

(

−1
4
Mw

(2)
22 + 1

32
M2 − 1

4
w

(1)
20 + 1

8
w

(1)
22

)

+ 2Mw
(1)
20 +Mw

(1)
22

0

0






.

The analysis performed so far has neglected the curvature effects in the core

of the domain, so that the amplitude equation (3.35) obtained is valid only away

from the origin.

The evolution of the outer solution is therefore the following:
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wO = ηA(P, T )γ cos(kcρ̄) +O(η2), (3.37)

where ρ̄ = ρ− π
4

and A(P, T ) solves Eq.(3.35) .

Rewriting the amplitude equation (3.35) in terms of the variable A = AP 1/2,

we obtain the simplified equation:

∂A
∂T

= ν∂PPA+ σA− L
A3

P 2
, (3.38)

which holds in the outer region of the domain and whose solution, when P → 0,

is the following

A ≈ a+ bP + a|a|2P logP, (3.39)

where a and b are constant.

To obtain the solution close to % = 0, we adopt a matched asymptotic proce-

dure, which considers the structure of the inner solution [152]. In the core of the

domain, in fact, the %-derivatives become large. Accordingly, one can no longer

make the assumption of slow variation of A, and thus one has to go back to the

original problem, Equation (3.3). Performing an asymptotic expansion in η one

gets that, to leading order, the inner solution must satisfy the following equation:

LχcwI = 0, (3.40)

which depends on the spatial radial coordinate ρ, and whose solution is given by:

wI = C γ J0(kcρ). (3.41)

The matching between inner and outer solution gives the constant C, which is

O(η1/2), and, finally, the expression of the solution in the core:

wI =
√
η
√

πkc A γJ0(kcρ) (3.42)

Being O(η1/2), the inner solution is larger than the outer solution. This result is

consistent with the numerical results, which show solutions with larger amplitude

in the core, as reported in Fig.3.4.
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Figure 3.4: Numerical simulation of System (3.3) for the following set of parameters:
τ = 1, β = 1, r = 1, δ = 1, ε = 0.5, η = 0.01, R = 22π/kc which shows an O(

√
η) inner

solution and an O(η) outer solution, as predicted by the matched asymptotic expansion.

3.2 Secondary instabilities

3.2.1 The Amplitude equation

In this Subsection, we present a weakly nonlinear analysis performed close

to the uniform steady state P ∗, in order to obtain the equation that rules the

amplitude of striped patterns on a rectangular bounded domain Ω ⊂ R
2 ([139]).

We will conduct this analysis assuming, without loss of generality, that the stripes

are orthogonal to the x-axis.

Close to the bifurcation threshold, the pattern evolves on slow temporal and

spatial scales, therefore we fix the small control parameter η2 = (χ− χc)/χc and

perform a multiple-scale analysis, valid near the threshold (η � 1), using the

following slowly varying variables:

X = ηx, Y =
√
ηy, T = η2t. (3.43)

As before, separating the linear and the nonlinear part, we rewrite the original

system (3.1) in the following way:

∂tw = Lχw +N [w], where w =






m−m∗

c− c∗

d− d∗




 . (3.44)
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with Lχ = K +D∆, where K and D are defined in (3.5), and N is the nonlinear

operator.

Close to criticality, one can write the following weakly nonlinear expansion in η:

w = ηw1 + η2w2 + η3w3 + · · · , (3.45)

χ = χc + η2χ2 +O(η4), (3.46)

so that, following the method adopted in [117], one finds the solution at order

O(η), namely:

w1 = γ
[
A(X, Y, T ) eikcx + Ā(X, Y, T ) e−ikcx

]
, (3.47)

which satisfies the Neumann boundary conditions:

∇
x
w1 · n(x) = 0, x ∈ ∂Ω, (3.48)

where n denotes the exterior normal to the boundary ∂Ω.

In (3.47), the vector γ ∈ Ker(Lχc) is defined up to a constant and A denotes

the complex amplitude of the pattern, which evolves according to the following

Newell-Whitehead-Segel equation:

∂A

∂T
= σ̄A− L̄|A|2A+ ν̄2

(

∂X − i
1

2kc
∂Y Y

)2

A, (3.49)

where the explicit expressions of σ̄, L̄ and ν̄ in terms of the system parameters

are found to be:

σ̄ =
1 +

√
ε

τ +
√
ε
, L̄ = −(1 +

√
ε)2(2− 55

√
ε+ 63ε)

36β2
√
ε(τ +

√
ε)

, ν̄ =
4ε

(1 +
√
ε)(τ +

√
ε)
.

3.2.2 The Eckhaus instability

Through the amplitude equation (3.49) derived in Section 3.1, we can investi-

gate the structure of the bifurcation diagram away from the onset of the primary

instability, determining the location of the successive bifurcation points, in both

the supercritical (L̄ > 0) and the subcritical (L̄ < 0) regimes, that present differ-

ent transition schemes. In the supercritical case, the periodic solutions bifurcate

from the trivial state at critical values of the control parameter, above which the

newly formed branches inherit the stability properties of the homogeneous state at

the bifurcation. In the subcritical regime, periodic solutions bifurcating from the

trivial state exist below the thresholds and acquire one more unstable direction
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with respect to the homogeneous state. We will present these two cases separately.

The Eckhaus instability occurs for perturbations along the longitudinal direction

of the stripes, so that, in (3.49), we can neglect the Y-derivatives, obtaining the

following Ginzburg-Landau equation for the amplitude A:

∂A

∂t
= σ̄A− L̄|A|2A+ ν̄2

∂2A

∂X2
, (3.50)

with the corresponding Neumann boundary conditions:

∂

∂x
Re
[
A(ηx, t)eikcx

]
= 0, at x = 0, D. (3.51)

The supercritical case. In this Subsection, we present the study on the Eck-

haus instability in the supercritical regime and briefly recall the analysis performed

in [185].

The amplitude equation (3.50) can be written in a more convenient form rescaling

the variables as follows:

x̃ =
π

ηD
X, Ã =

ηD
√
L̄

πν̄
A, Qc =

D

π
kc, t̃ =

(
πν̄

ηD

)2

T, µ = σ̄

(
ηD

πν̄

)2

.

(3.52)

We therefore obtain the following normalized amplitude equation:

∂Ã

∂t̃
= µÃ− |Ã|2Ã+

∂2Ã

∂x̃2
, (3.53)

with Neumann boundary conditions:

∂

∂x̃
Re
[

Ã(x̃, t̃)eiQcx̃
]

= 0, at x̃ = 0, π. (3.54)

Dropping the tildes, the asymptotic solution assumes the following expression:

w(x, t) = 2ηRe[A(x, t)eiQcx] +O(η2) (3.55)

One solution to (3.53)-(3.54) is A = 0, which we will call C, or the conductive

state.

Looking for solutions of the form eiQxeλt and, by substituting this expression in

the linearization of (3.53), we see that, at µ = Q2, the state C becomes unstable

to eigenfunctions of the form eiQx with eigenvalues λ = µ−Q2.

For µ > Q2, there exist steady solutions:

A =
√

µ−Q2eiφeiQx, (3.56)
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called "pure modes solutions", which bifurcate supercritically from the conductive

state at µ = Q2.

For every value of Q, the solution (3.55), with A given by (3.56), corresponds to

a striped pattern branch with wavenumber Qc +Q.

The boundary conditions (3.54) imply that φ can only assume values 0 or π. Thus,

for every wavenumber Q, the bifurcation producing the states A is of pitchfork

type. Without loss of generality, we will conduct our analysis for φ = 0.

In the finite spatial domain [0, π], the wavenumbers are selected by the bound-

ary conditions so that the allowed values of Q are discrete. It is convenient to

assign an integer n at each branch An, following the ordering of the primary bifur-

cation points, so that µn = Q2
n is the (n + 1)th primary bifurcation encountered

as µ increases.

Through a linear stability analysis (see [88, 185]), one can prove that the

branch An, which exists for µ > Q2
n, is stable if and only if

µ > µE(Qn) = 3Q2
n −

1

2
. (3.57)

On the other hand, in the case of infinite domain, the solution A is stable if and

only if µ > µE(Q) = 3Q2. Therefore, the finite size of the domain produces a

downwards shift of the so called Eckhaus parabola with a consequent stabilizing

effect ([185, 100, 3]): a finite domain creates in fact a "gap" in the (Q, µ)-plane

where the Eckhaus instability cannot be excited and whose width includes exactly

one allowed wavenumber, namely Q0. Hence the branch A0 is always stable at

the onset and does not undergo any Eckhaus bifurcation.

Contrarily, the branches An, for n > 0, are always unstable at the onset: they

inherit the instability of the trivial state at µ = µn, and stabilize at the Eckhaus

bifurcation point µE(Qn) ([185]).

Through this analysis, it is possible to locate the primary and the secondary

bifurcation points on the bifurcation diagram, whose qualitative appearance is

shown in Figure 3.5(a).

Figure 3.5 (b) shows the numerical bifurcation diagram for System (3.1) computed

using the continuation software AUTO, for ε = 0.2, β = 1, δ = 1, τ = 1, r =

1. For this choice of the parameter values, L̄ > 0 and the periodic solution

branches bifurcate supercritically from the trivial state. The solid portion of

the branches represent stable solutions, while the dashed portions correspond to

unstable branches. As predicted by the above analysis, the first branch bifurcating

from the conductive state at χ = χc = 4.19 is stable, while the others are unstable

and stabilize at the Eckhaus bifurcation points.
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Figure 3.5: (a) Theoretical bifurcation diagram showing the amplitude A of the periodic
pattern, as the control parameter µ is varied. The solid and dashed portions of the
branches represent stable and unstable states, respectively. The branch A0 is stable at
the onset, while the branches An, for n > 0, are unstable and, as µ increases, undergo n
secondary restabilizing bifurcations, the last of which is the Eckhaus bifurcation point.
(b) Numerical bifurcation diagram of System (3.1) as χ is varied. For the chosen pa-
rameter set, namely ε = 0.2, β = 1, δ = 1, τ = 1, r = 1, the Turing analysis yields a
bifurcation value of χ given by χc = 4.19 at which a supercritical transition is expected.
The solid and dashed portions of the branches represent stable and unstable spatially

periodic solutions, respectively.

The subcritical case. In this Subsection, the case L̄ < 0, in which the branches

of periodic solutions bifurcate subcritically from the trivial state, is studied.

In the amplitude equation (3.50) all the variables are rescaled as before, except

Ã =
ηD

√
−L̄

πν̄
A.

The following normalized form of the amplitude equation is now recovered:

∂Ã

∂t̃
= µÃ+

∂2Ã

∂x̃2
+ |Ã|2Ã. (3.58)

The boundary conditions and the solution are as in (3.54) and (3.55).

Proceeding as in the supercritical case, we look for solutions of the form eiQxeλt

and find that, at µ = Q2, the state C becomes unstable to eigenfunctions of the

form eiQx with eigenvalues λ = Q2 − µ.

For µ < Q2, the following stationary solutions exist:

A =
√

Q2 − µeiφeiQx. (3.59)

For everyQ, the expression (3.59) represents two periodic branches which bifurcate

from the conductive state C at µ = Q2 through a subcritical pitchfork bifurcation.

As before, we assign an integer n at each branch An, following the ordering of the
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primary bifurcation points µn = Q2
n, and we consider the case φ = 0.

To determine the stability of the branch An, we perform a linear stability analysis

of the perturbed solution An + a, where

a(x, t) = eλteiQnx(αeikx + βe−ikx), (3.60)

with α, β ∈ R and k ∈ Z
+ − {0} (I will discuss the case k = 0 below).

The eigenvalues have the following expression:

λ±(Qn, k, µ) = Q2
n − µ− k2 ±

√

(Q2
n − µ)2 + (2kQn)2 for k 6= 0. (3.61)

Since the eigenvalue λ−(Q, k, µ) is always negative, the stability of the bifur-

cating branch An depends on λ+(Q, k, µ). Therefore, the branch An is stable for

perturbations of the wavenumber if and only if, for all k, λ+(Qn, k, µ) < 0, or:

µ ≥ sup
k>0

(

3Q2
n −

k

2

)

= 3Q2
n −

1

2
=: µnE, (3.62)

where µnE denotes the Eckhaus bifurcation point on the branch An.

Combining (3.62) with the existence condition µ < Q2
n, we observe that the branch

An undergoes an Eckhaus bifurcation if and only if

3Q2
n −

1

2
< Q2

n. (3.63)

The inequality (3.63) is true if and only if n < 1 (in general, it is possible to prove

that 3Q2
n − k

2
< Q2

n ⇔ n < k, see [185]). Therefore, only the branch A0 contains

the Eckhaus threshold.

The case k = 0 corresponds to a perturbation of the amplitude of the pattern.

The associated eigenvalue is λ0 = 2(Q2 − µ) which, in the subcritical regime,

is always positive. Thus the conclusion is that all the bifurcating branches are

unstable for perturbations of the amplitude.

It is worth stressing that this analysis is valid for amplitude of O(η), so that

any restabilizing bifurcation occurring at large amplitudes has to be described by

the quintic Ginzburg-Landau amplitude equation.

Figure 3.6 shows the bifurcation diagram of System (3.1) for ε = 0.8, β =

1, δ = 1, τ = 1, r = 1. In agreement with the linear stability analysis, the

Turing bifurcation of the first branch occurs at χ = χc = 7.18. For this set

of parameters, L̄ < 0 and, as predicted by the previous analysis, the branches

bifurcate subcritically from the trivial state and they are unstable (dashed portion
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of the branches). Although the first branch undergoes an Eckhaus bifurcation at

small amplitude, it does not stabilize. The stabilization occurs at large amplitude

(solid portion of the branch), and then the amplitude equation (3.58) is not able

to predict this bifurcation point.

6.8 7 7.2 7.4 7.6 7.8

0.2

0.4

0.6

0.8

1

1.2

1.4

χ

A

Figure 3.6: Bifurcation diagram of System (3.1), as χ is varied. For the chosen parameter
values, namely ε = 0.8, β = 1, δ = 1, τ = 1, r = 1, χc = 7.18, the bifurcations are
subcritical. The solid and dashed portions of the branches represent stable and unstable

spatially periodic solutions, respectively.

3.2.3 Numerical simulations

In this Subsection, we present the results of the numerical investigations we

have conducted to validate the analysis exposed above.

Through numerical simulations, we have tested the occurrence of the Eckhaus

bifurcation on the branches An at µnE = 3Q2
n − 1/2. As the Eckhaus bifurcation

point separates the unstable portion of the branch from the stable one, we have

fixed a small perturbation of the steady solution (3.55) as initial condition, both

for µ < µnE and for µ > µnE: if the branch is unstable, then a modulation of the

wavenumber occurs, while if the branch is stable, the perturbation is damped.

We have imposed homogeneous Neumann boundary conditions to System (3.1)

on the one-dimensional spatial domain D = [0, 20π] (D = [0, π] in the rescaled

variables defined by (3.52)), and fixed the values of the dimensionless parame-

ters as given in Table 3.2, so that the critical wavenumber is kc = 1.18921 (in

the rescaled variables Qc = 23.7841) and the primary bifurcation of the Turing

branch is supercritical.
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Parameter Description Value

τ Time scale of cytokine dynamics 1

ε Cytokine diffusion 0.5

β Cytokine production rate 1

δ Cytokine production rate per olygodendrocyte 1

r Damaging intensity 1

Table 3.2: Non dimensional parameters values used in the numerical simulations. For
the chosen set, the primary branch of stationary pattern bifurcates supercritically from

the homogeneous state.

The boundary conditions on the domain [0, π] impose that only integer values

of the wavenumber are allowed. Therefore the system will only support periodic

pattern whose wavenumber equals Qc + Qn, for those Qn such that Qc + Qn are

integers.

In our case, the closest integer to Qc is 24 and, as χ & χc = 5.83, the system

selects the pattern with wavenumber Qc+Q0 = 24, which implies Q0 = 0.215858.

In Table (3.3) the quantities Qn are reported in their order of bifurcation from

the conductive state C, as µ increases. µn denotes the primary bifurcation point

from which the solution w(x, t) = 2ηRe
[
ρAne

iQcx
]
= ηRe

[

ρ
√

µ−Q2
ne
i(Qc+Qn)x

]

emerges and µnE is the Eckhaus bifurcation point, above which the solution sta-

bilizes.

n Qn µn = Q2
n µnE

0 0.215858 0.0465945

1 −0.784142 0.614879 1.34464

2 1.21586 1.47831 3.93493

3 −1.78414 3.18316 9.04949

4 2.21586 4.91003 14.2301

Table 3.3: Quantities Qn which differ from Qc = 23.7841 by an integer. They are shown
in order of increasing primary bifurcation points µn = Q2

n. The Eckhaus bifurcation
values µnE , above which the branch An becomes stable, are reported in the last column.

We have numerically verified the stability of the branch A0, setting µ > µ0 and

assigning a small perturbation of the solution w(x, t) = 2ηRe
[
ρA0e

i(Qc+Q0)x
]

as

initial condition. The numerical simulations, not reported here, have confirmed

the stability of this branch.
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Figure 3.7(a) and Figure 3.7(b) show two numerical simulations performed to

study the stability properties of the branch A1. We have set a small perturba-

tion of the solution w(x, t) = 2ηRe
[
ρA1e

i(Qc+Q1)x
]

as initial condition. Figure

3.7(a) shows the time evolution of the numerical solution for µ1 < µ < µ1E: the

system annihilates a roll and the solution falls on the branch A0. This proves

that the branch A1 is unstable below the Eckhaus bifurcation point, and since the

wavenumber is not optimal, the system eliminates a roll in favour of a solution

with a more appropriate wavenumber. On the other hand, for µ > µ1E the solu-

tion with wavenumber 5 becomes stable, as Figure 3.7(b) shows.

Figure 3.7(c) and Figure 3.7(d) show the same analysis conducted on the branch

A2. In both simulations, the initial data is a small random perturbation of the

solution on the branch A2. As it can be seen in Figure 3.7(c), since the branch

A1 is stable for the selected value of µ, the solution with initial data on A2 falls

on the branch A1, for µ < µ2E. While for µ > µ2E, the solution on the branch A2

becomes stable and, as shown in Figure 3.7(d), the perturbation of the solution

is damped.

The analysis on the branch A3 is shown in Figures 3.7(e) and (f): below the Eck-

haus bifurcation point, the solution is unstable, indeed we observe a jump on the

branch A1 and after that, although our analysis predict a stable A1 branch, the

solution falls on the branch A0 (see Figure 3.7(e)). The numerical simulation in

Figure 3.7(f) confirms that above µ2E the solution becomes stable.

The numerical analysis of the branch A4 shows similar results: as Figure 3.7(g)

shows, below the Eckhaus bifurcation point µ4E the solution is unstable and falls

on the branch A0, and, as expected, above µ4E the solution becomes stable (Figure

3.7(h)).

We have also investigated how the time to phase slip depends on the linear

growth rate σ+. To ensure that the spectrum of the linearized problem (which

depends on ε and β) remains unchanged, we have conducted our analysis fixing the

values of ε = 0.5, β = 0.5, r = 1, δ = 1 and varying the parameter τ . The critical

wavenumber is kc = 1.18, which is not allowed by the boundary conditions on the

domain [0, 20π]. The selected wavenumber is k̄c = 1.20, which corresponds to a 11-

rolls periodic solution. We have chosen a perturbation of the striped pattern with

wavenumber k = 1.25 as initial condition, fixing a perturbation with wavenumber

k = 0.05 and amplitude 0.005. Finally, we have chosen the value of χ = 11.714,

which lies in the Eckhaus unstable region, so that the initial perturbation triggers

the phase slip of the solution.
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Figure 3.7: Numerical simulations of the macrophage density for System (3.1) before
and after the Eckhaus bifurcation point. The parameters values are defined in Table
3.2. In all the displayed figures the initial condition is a small perturbation of the
periodic solution An. Branch A1: (a) below and (b) above the Eckhaus bifurcation
point. Branch A2: (c) below and (d) above the Eckhaus bifurcation point. Branch A3:
(e) below and (f) above the Eckhaus bifurcation point. Branch A4: (g) below and (h)

above the Eckhaus bifurcation point.
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Figure 3.8: Time evolution of the numerical solution of System (3.1) in a domain of size
D = 20π, for different values of τ . In each simulation, the initial condition is a pertur-
bation of the striped pattern with wavenumber k = 1.25. To observe the phenomenon

of phase slip, the bifurcation parameter χ is chosen in the Eckhaus unstable region.

The results of the numerical experiments are reported in Figure 3.8, where one
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can see that the time of phase slip is an increasing function of τ . We recall here

that the parameter τ is a measure of the characteristic time scale of the cytokines

dynamics and that, as reported in [117], biologically meaningful values of τ lie in

the interval [10−3, 1]. Therefore, for small values of τ , the Eckhaus instability can

be an effector mechanism of wavelength selection on the emerging demyelinating

pattern.

Finally we have quantitatively investigated the dependence of the time to

phase slip on the linear growth rate of the instability: in Figure 3.9 we have

plotted log(Tslip) as a function of −log(λ+), using the values reported in Table

3.4. The resulting graph is a straight line of unit slope, indicating that, for the

chosen small amplitude initial perturbations, the time to phase slip is entirely

determined by the linear growth rate λ+. Qualitatively similar results have been

obtained in [91], in the study of the phase slips induced by the Eckhaus instability

of weakly subcritical patterns of the Swift-Hohenberg equation.

6 7 8 9 10

7

8

9

10

log(Tslip)

−log(λ+)

Figure 3.9: log(Tslip) as a function
of −log(λ+): the plot is a straight

line of unit slope.

τ λ+ Tslip

0.05 1.16× 10−3 995

0.1 1.15× 10−3 1060

0.5 1.01× 10−3 1610

1 7.16× 10−4 2310

5 2.14× 10−4 8023

7 1.59× 10−4 10906

10 1.14× 10−4 15230

20 5.90× 10−5 27900

Table 3.4: Values of λ+ and Tslip cor-
responding to the different values of τ
in the numerical simulations shown in

Figure 3.8

3.2.4 The zigzag instability

In this Subsection, we present the study on onset of zigzag instabilities in

System (3.1).

The zigzag instability occurs for perturbation along the transversal direction of

the stripes, then, in this case, the amplitude equation is (3.49). As before, we

rescale all the variables to obtain the following normalized form of the amplitude

equation:
∂A

∂t
= µA− |A|2A+

(

∂xA− i
1

2kc
∂yyA

)2

, (3.64)
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and, imposing homogeneous Neumann boundary conditions, it is easy to verify

that one solution to (3.64) is A = 0. Looking for solutions of the form eiQxeλt

and substituting this expression into (3.64), we see that at µ = Q2 the state C

becomes unstable to eigenfunctions of the form eiQx with eigenvalues λ = µ−Q2.

As before, for µ > Q2 there exist steady solutions:

A∞ =
√

µ−Q2eiQx. (3.65)

To determine the stability of the solutions A∞, we add a perturbation of the

form

a(x, y, t) = eλteiQx(αeiPy + βe−iPy), (3.66)

with α and β real. By substituting A∞ + a in (3.64) and neglecting the nonlinear

terms in a, we derive the following equation for a:

λa = µa− 2|A∞|2a− (A∞)2a∗ +

(

∂x − i
1

2kc
∂yy

)2

a. (3.67)

Inserting the expression (3.66) into (3.67) and equating to zero the coefficients of

ei(Qx+Py) and ei(Qx−Py), we get the following eigenvalue problem:

(

λ 0

0 λ

)(

α

β

)

=

(

−µ+Q2 − QP 2

kc
− P 4

4k2c
−µ+Q2

−µ+Q2 −µ+Q2 − QP 2

kc
− P 4

4k2c

)

, (3.68)

from which we obtain the eigenvalues:

λ1 = −P 2P
2 + 4kcQ

4k2c
, λ2 = −P 2P

2 + 4kcQ

4k2c
− 2(µ−Q2). (3.69)

Imposing λ1 < 0, we get the condition Q > − P 2

4kc
. Therefore, the branch A∞ is

stable if and only if Q > − P 2

4kc
, for every admitted value of P , and, therefore, if

and only if:

Q > min
P>0

(

− P 2

4kc

)

. (3.70)

The boundary conditions impose that P is a integer, so that the branch A∞ is

zigzag unstable if the following condition holds:

Q < − 1

4kc
. (3.71)
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On the other hand, in the case of a domain of infinite length, P can be any

nonzero real number and, in the limit of P tending to 0, the condition for the

zigzag instability is Q < 0.

We have then proved that the finite domain has a stabilizing effect, in the sense

that it shifts to the left the region of stable modes (Figure 3.10).

Figure 3.11 shows the time evolution of a numerical solution obtained fixing

the following values for the parameters:

Parameter Description Value

τ Time scale of cytokine dynamics 1

ε Cytokine diffusion 0.55

β Cytokine production rate 1

δ Cytokine production rate per olygodendrocyte 1

r Damaging intensity 1

Table 3.5: Non dimensional parameters values used in the numerical simulations shown
in Figure 3.11.

The domain is [0, 20π]×[0, 20π]. We have fixed homogeneous Neumann bound-

ary conditions. The critical wavenumber is Qc = 23.2241.

We have fixed as initial condition a small perturbation of the branch A0 along the

y-axis to test the stability of the branch A0 =
√

µ−Q2
0e
iQ0x, whereQ0 = −0.2241.

The condition for the zigzag instability holds and, as predicted by the previous

analysis, the solution, after a long transient in which the solution seems to have

reached a steady state, shows undulations along the rolls (Figure 3.11(b)). The un-

dulations are soon more stressed (Figure 3.11 (c)) and finally the solution evolves

towards a stationary hexagonal pattern (Figure 3.11 (d)). The transition, ex-

cited by the zigzag instability, from unstable striped pattern to hexagons can be

described through a stability analysis of the phase equation ([78]) and will be

addressed in a forthcoming work.
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μ = Q2

Stable

solution

Q

μ

(a) Finite domain

Unstable

solution

Stable

solution

μ = Q2

Q

μ

(b) Infinite domain

Figure 3.10: Zigzag instability regions in: (a) finite domains and (b) infinite domains.
Above the curve µ = Q2, the stationary solution A =

√

µ−Q2eiQx exists. The stable
region is shifted to the left by the stabilizing effect of the finite domain.
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Figure 3.11: Temporal evolution of the numerical simulations on the branch A0, which
is zigzag unstable. The figures show the macrophage density for the system (3.1). The
initial condition is a small perturbation of the periodic solution along the y-axis. The

parameters values are defined in Table 3.5.
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Chapter 4

Existence of classical solutions to

the Multiple Sclerosis model

In this Chapter, we prove the existence of nonnegative global solutions to the

chemotaxis model of Multiple sclerosis proposed in [13]:







∂m
∂t

= ∆m+m (1−m)−∇ · (χh(m)∇c) , with h(m) = m
1+m

,
∂c
∂t

= 1
τ
[ε∆c+ (δd− c+ βm)] ,

∂d
∂t

= rf(m)m(1− d), with f(m) = m
1+m

,

m(0, x) = min(x), in Ω,

c(0, x) = cin(x), in Ω,

d(0, x) = din(x), in Ω.

(4.1)

where Ω ⊂ R
1, with no-flux boundary conditions on ∂Ω.

We start our study by analysing the following approximated model:







∂m
∂t

= ∆m+m (1− |m|)−∇ · (χh(m)∇c) , with h(m) = m
1+|m| ,

∂c
∂t

= 1
τ
[ε∆c+ (δd− c+ βm)] ,

∂d
∂t

= η∆d+ rf(m)m(1− φ(d)), with f(m) = m
1+|m|

m(0, x) = min(x), in Ω,

c(0, x) = cin(x), in Ω,

d(0, x) = din(x), in Ω.

(4.2)

where

φ(d) =







0, if d < 0

d, if 0 ≤ d ≤ N

N, if d > N

(4.3)
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where N ≥ 1 is a constant.

System 4.2, in the limit of η tending to zero, tends to System 4.1.

4.1 The approximated problem

In this Section, we prove the existence of a local solution on 1D spatial domain

for the system (4.2) by applying the following theorem proved in [165].

Theorem 4.1.1. Let H and V be two separable Hilbert spaces with dense and

compact embedding V ⊂ H. Identifying H with its dual H′ and denoting the dual

space of V with V ′, we have V ⊂ H ⊂ V ′.

Consider the Cauchy problem of a semilinear abstract differential equation

dU

dt
+ AU = F (U), 0 < t <∞,

U(0) = U0, (4.4)

in the space V ′, where A is a bounded linear operator from V to V ′ which is defined

by a symmetric bilinear form a(, ) on V satisfying:

a(U, V ) ≤ K1‖U‖V‖V ‖V , U, V ∈ V
a(U,U) ≥ K2‖U‖2V , U ∈ V , (4.5)

with some constants K1, K2 > 0 and F () is a continuous function mapping from

V to V ′ such that

‖F (U)‖V ′≤ ζ‖U‖V+ϕζ(‖U‖H) (4.6)

‖F (U)− F (V )‖V ′≤ ζ‖U − V ‖V+(‖U‖V+‖V ‖V+1)ψζ(‖U‖H+‖V ‖H)‖U − V ‖H.
(4.7)

with an arbitrary ζ > 0 and continuous increasing functions ϕζ() and ψζ() de-

pending on ζ > 0.

∀U0 ∈ H, there exists a unique local solution U to (4.4) such that

U ∈ H1((0, TU0);V ′) ∩ C([0, TU0 ];H) ∩ L2((0, TU0);V),
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where TU0 is determined by ‖U0‖H.

Theorem 4.1.2. Let Ω = (a, b) ⊂ R
1, χ > 0, τ > 0, δ > 0, β > 0, ε > 0, η > 0

and r > 0 be given parameters, and min ∈ L2(Ω), cin, din ∈ H1(Ω) be initial data.

Then (4.2) has a unique, variational (cf. [165] for a precise definition) solution

on an interval [0, TU0 ] such that:

m ∈ H1((0, TU0); (H
1(Ω)′) ∩ C([0, TU0 ];L

2(Ω)) ∩ L2((0, TU0);H
1(Ω)),

c ∈ H1((0, TU0); (H
2(Ω)′) ∩ C([0, TU0 ];H

1(Ω)) ∩ L2((0, TU0);H
2(Ω))

d ∈ H1((0, TU0); (H
2(Ω)′) ∩ C([0, TU0 ];H

1(Ω)) ∩ L2((0, TU0);H
2(Ω))

where TU0 depends only on ‖min‖L2(Ω), ‖cin‖H1(Ω), ‖din‖H1(Ω).

Proof Let A1 = −∂xx + 1, A2 = − ε
τ
∂xx +

1
τ

and A3 = −η∂xx + 1 be operators

with domain H2(Ω). They are positive self-adjoint operators on (H2(Ω))′.

Let

V = H1(Ω)×H2(Ω)×H2(Ω) and H = L2(Ω)×H1(Ω)×H1(Ω). (4.8)

Identifying H with its dual space gives V ⊂ H = H′ ⊂ V ′ where

V ′ = (H1(Ω))′ × (H2(Ω))′ × (H2(Ω))′ (4.9)

with the duality product:

〈Ū , U〉V ′,V = 〈ū, u〉(H1)′,H1 + 〈v̄, A2v〉(H2)′,H2 + 〈w̄, A3w〉(H2)′,H2 ,

where U = (u, v, w) ∈ V and Ū = (ū, v̄, w̄) ∈ V ′.

The positive definite self-adjoint operator A = Diag(A1, A2, A3) can be defined

by the following symmetric bilinear form:

a(U, V ) =

b∫

a

(∂xm∂xm̃+mm̃) + (A2c, A2c̃)L2 + (A3d,A3d̃)L2 ,

where U = (m, c, d) ∈ V and V = (m̃, c̃, d̃) ∈ V (it is easy to verify that a(U, V ) =

〈AU, V 〉V ′,V).
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Let F : V → V ′ be the mapping:

F (U) =







−χ∂x
(

m
1+|m|∂xc

)

+m(1− |m|) +m

1
τ
(βm+ δd)

r m2

1+|m|(1− φ(d)) + d






, (4.10)

where U = (m, c, d) ∈ V .

Then (4.2) can be rewritten as a semilinear differential equation:

dU

dt
+ AU = F (U), 0 < t <∞,

U(0) = U0. (4.11)

In order to apply Theorem 4.1.1, we have to verify the conditions (4.5), (4.6)

and (4.7).

The conditions (4.5) on a are easily verified.

The following estimates show that the condition (4.6) on F is fulfilled:

∥
∥
∥
∥
∂x

(
m

1 + |m|∂xc
)∥
∥
∥
∥
(H1)′

≤
∥
∥
∥
∥

(
m

1 + |m|∂xc
)∥
∥
∥
∥
L2

≤ ‖∂xc ‖L2 ≤ ‖c‖H1 , (4.12)

‖m(1− |m|) +m‖(H1)′≤ ‖m(1− |m|) +m‖L2≤ 2‖m‖L2+‖m‖2L4 (4.13)

In order to estimate ‖m‖2L4 , we can use the Gagliardo-Niremberg’s inequality,

which states that if n < p ≤ ∞ (n is the dimension of the domain), then:

‖·‖Lr≤ Cp,q,r‖·‖aW 1p‖·‖1−aLq (4.14)

where q ≤ p, q ≤ r ≤ ∞ and a is given by:

1

r
= a

(
1

p
− 1

n

)

+
1− a

q

Applying (4.14), with r = 4, p = q = 2, a = 1/4, n = 1, and the Young’s

inequality, we obtain:

‖m‖2L4≤ Cp,q,r‖m‖1/2H1 ‖m‖3/2L2 ≤
ζ

2
‖m‖H1+

C2
p,q,r

2ζ
‖m‖3L2 (4.15)
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∀ζ > 0. Substituting (4.15) in (4.13), we obtain:

‖m(1− |m|) +m‖(H1)′≤ ζ‖m‖H1+ϕζ(‖m‖L2) (4.16)

with an arbitrary ζ > 0 and a continuous increasing function ϕζ depending on ζ.

∥
∥
∥
∥

1

τ
(βm+ δd)

∥
∥
∥
∥
(H2)′

≤
∥
∥
∥
∥

1

τ
(βm+ δd)

∥
∥
∥
∥
L2

≤ β

τ
‖m‖L2+

δ

τ
‖d‖L2≤ β

τ
‖m‖L2+

δ

τ
‖d‖H1

(4.17)

∥
∥
∥
∥
r

m2

1 + |m|(1− φ(d))

∥
∥
∥
∥
(H2)′

≤
∥
∥
∥
∥
r

m2

1 + |m|(1− φ(d))

∥
∥
∥
∥
L2

≤
∥
∥
∥
∥
r

m2

1 + |m|N
∥
∥
∥
∥
L2

≤ rN‖m‖L2

(4.18)

‖d‖(H2)′≤ ‖d‖L2≤ ‖d‖H1 (4.19)

The following estimates prove that the conditions (4.7) on F are satisfied:

∥
∥
∥
∥
∂x

((
m

1 + |m| −
m̃

1 + |m̃|

)

∂xc

)∥
∥
∥
∥
(H1)′

≤
∥
∥
∥
∥

(
m

1 + |m| −
m̃

1 + |m̃|

)

∂xc

∥
∥
∥
∥
L2

≤ ‖(m− m̃)∂xc‖L2≤ ‖m− m̃‖L2‖∂xc‖L∞≤ ‖m− m̃‖L2‖∂xc‖H1

≤ ‖m− m̃‖L2‖c‖H2 (4.20)

∥
∥
∥
∥
∂x

(
m̃

1 + |m̃|∂x(c− c̃)

)∥
∥
∥
∥
(H1)′

≤
∥
∥
∥
∥

m̃

1 + |m̃|∂x(c− c̃)

∥
∥
∥
∥
L2

≤ ‖∂x(c− c̃)‖L2≤ ‖c− c̃‖H1 (4.21)

||[m(1− |m|) +m]− [m̃(1− |m̃|) + m̃]||(H1)′ ≤ 2||m− m̃||L2

+ (||m||L∞ + ||m̃||L∞)||m− m̃||L2 ≤ (2 + Csobolev[||m||H1 + ||m̃||H1 ])||m− m̃||L2

(4.22)

∥
∥
∥
∥

(
m2

1 + |m| −
m̃2

1 + |m̃|

)

(1− φ(d))

∥
∥
∥
∥
(H2)′

≤
∥
∥
∥
∥

(
m2

1 + |m| −
m̃2

1 + |m̃|

)

(1− φ(d))

∥
∥
∥
∥
L2

≤ ‖(|m| − |m̃|)(1− φ(d))‖L2≤ ‖m− m̃‖L2 (4.23)



Chapter 4. Existence of classical solutions to the Multiple Sclerosis model 88

∥
∥
∥
∥

m̃2

1 + |m̃|(φ(d̃)− φ(d)

∥
∥
∥
∥
(H2)′

≤
∥
∥
∥
∥

m̃2

1 + |m̃|(φ(d̃)− φ(d))

∥
∥
∥
∥
L2

≤ ‖m̃(φ(d̃)− φ(d))‖L2≤ ‖m̃‖L2‖φ(d̃)− φ(d)‖L∞

≤ ‖m̃‖L2‖d̃− d‖L∞≤ ‖m̃‖L2‖d̃− d‖H1≤ ‖m̃‖H1‖d̃− d‖H1 (4.24)

‖d− d̃‖(H2)′≤ ‖d− d̃‖L2≤ ‖d− d̃‖H1 (4.25)

�

Proposition 4.1.1. Let Ω =]a, b[⊂ R
1, η > 0, χ > 0, τ > 0, δ > 0, β > 0, ε > 0

and r > 0 be given parameters, and min ∈ L2(Ω), cin, din ∈ H1(Ω) be nonnegative

initial data (min, din, cin ≥ 0).

(In particular, we underline that din ∈ L∞(Ω), since the dimension of the domain

is n = 1).

Then there exists a weak (nonnegative for each component) solution m ∈
L∞
loc(R+;L

2(Ω)), c, d ∈ L∞
loc(R+;H

1(Ω)) such that ∂xm, ∂xxc, ∂xxd ∈ L2([0, T ]×
Ω), m ∈ L3([0, T ]×Ω), to the following weak form of (4.2): ∀φ, ψ, ζ ∈ C∞

c (R+×Ω)

such that ∂xφ(a, t) = ∂xφ(b, t) = 0, ∂xψ(a, t) = ∂xψ(b, t) = 0, ∂xζ(a, t) =

∂xζ(b, t) = 0, ∀t ∈ R
+,

−
∞∫

0

b∫

a

m
∂φ

∂t
−

b∫

a

min φ(0, ·) =
∞∫

0

b∫

a

m∆φ+

∞∫

0

b∫

a

m (1−m)φ+χ

∞∫

0

b∫

a

m

1 +m
∇c·∇φ,

−
∞∫

0

b∫

a

c
∂ψ

∂t
−

b∫

a

cin ψ(0, ·) =
ε

τ

∞∫

0

b∫

a

c∆ψ +
1

τ

∞∫

0

∫

Ω

[δ d− c+ β m]ψ,

−
∞∫

0

b∫

a

d
∂ζ

∂t
−

b∫

a

din ζ(0, ·) = η

∞∫

0

b∫

a

d∆ζ + r

∞∫

0

b∫

a

m2

1 +m
(1− d) ζ.

Proof: Thanks to Theorem 2.2, we know that there exists a local in time

solution (m; c; d) to system (2) on a time interval [0, T0[, for some T0 ∈]0, T ]. We

consider in this proof this solution, we show that its components are nonnegative,

and we get for them some a priori estimates.

Positivity. Let m− = max(−m, 0). We multiply the first equation of (4.2) by

−m− and integrate in space:

1

2

d

dt

b∫

a

(m−)2 +

b∫

a

|∂xm−|2 = χ

b∫

a

m− ∂x

(
m

1 + |m|∂xc
)

+

b∫

a

(m−)2 −
b∫

a

(m−)2|m|
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≤ χ

b∫

a

m−∂x

(
m

1 + |m|∂xc
)

+

b∫

a

(m−)2 ≤ −χ
b∫

a

m

1 + |m|∂xm
−∂xc+

b∫

a

(m−)2

= χ

b∫

a

m−

1 + |m|∂xm
−∂xc+

b∫

a

(m−)2 ≤ χ

b∫

a

m−

1 + |m| |∂xm
−∂xc|+

b∫

a

(m−)2

≤ χ

b∫

a

m−|∂xm−∂xc|+
b∫

a

(m−)2 ≤ χ‖∂xc‖H1

b∫

a

m−|∂xm−|+
b∫

a

(m−)2

≤ 1

2
χ2||∂xc||2H1

b∫

a

(m−)2 +
1

2

b∫

a

(|∂xm−|)2 +
b∫

a

(m−)2 (4.26)

which becomes:

d

dt

b∫

a

(m−)2 ≤ (1 + χ2||∂xc||2H1)

b∫

a

(m−)2 (4.27)

and in integrated form :

b∫

a

(m−)2(t) ≤
b∫

a

(m−)2(0) exp





t∫

0

(1 + χ2||∂xc||2H1)(s)ds



. (4.28)

Since c ∈ L2((0, TU0);H
2(Ω)) and ‖m−

in‖2L2= 0, applying the Gronwall’s lemma

we can deduce that m− ≡ 0 on [0, TU0 ] and then m is positive on [0, TU0 ].

In order to prove the positivity of d, we multiply the third equation of (4.2)

by −d−, where d− = max(−d, 0), and integrate in space:

1

2

d

dt

b∫

a

(d−)2 + η

b∫

a

|∂xd−|2 = −r
b∫

a

m2

1 +m
(1− φ(d))d− (4.29)

then

1

2

d

dt

b∫

a

(d−)2 ≤ −r
b∫

a

m2

1 +m
(1− φ(d))d− (4.30)

Since φ(d)d− = 0, from (4.30) it follows that:
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1

2

d

dt

b∫

a

(d−)2 ≤ −r
b∫

a

m2

1 +m
d− ≤ 0 (4.31)

Since
∫ b

a
(d−)2(0) = 0, we deduce that d− ≡ 0 on [0, TU0 ] and then d is positive on

[0, TU0 ].

To prove the positivity of c, we can repeat the same arguments, or apply classical

results on positivity of parabolic equations.

Estimates. Multiplying the first equation by m and integrating in Ω, we obtain

the following inequality:

1

2

d

dt

b∫

a

m2 +

b∫

a

|∂xm|2 = −χ
b∫

a

m∂x

(
m

1 +m
∂xc

)

+

b∫

a

m2(1−m)

≤ χ

b∫

a

|∂xm∂xc|+
b∫

a

m2 −
b∫

a

m3 (4.32)

The positivity of m implies that m2 ≤ 1
2
m3 + 1. Therefore, we have:

1

2

d

dt

b∫

a

m2 +

b∫

a

|∂xm|2 + 1

2

b∫

a

m3 ≤ χ

b∫

a

|∂xm∂xc|+ |Ω| (4.33)

Multiplying the second equation of (4.2) by c and integrating on Ω, we get the

following:

1

2

d

dt

b∫

a

c2 +
ε

τ

b∫

a

|∂xc|2 +
1

τ

b∫

a

c2 =
β

τ

b∫

a

mc+
δ

τ

b∫

a

dc (4.34)

and multiplying the second equation of (4.2) by ∂xxc and integrating on Ω, we

obtain:

1

2

d

dt

b∫

a

|∂xc|2 +
ε

τ

b∫

a

(∂xxc)
2 +

1

τ

b∫

a

|∂xc|2 = −β
τ

b∫

a

m∂xxc−
δ

τ

b∫

a

d∂xxc (4.35)

To obtain estimates on d, we will use the following result.

Lemma 4.1.1. If 0 ≤ din ∈ L∞(Ω), then 0 ≤ d(t, x) ≤ k, where k = max{1, ‖din‖L∞}.
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Proof We have already proved that if din ≥ 0 then d(t, x) ≥ 0.

The function w = k − d satisfies the following equation:

∂w

∂t
= η∂xxw − r

m2

1 +m
(1− φ(k − w)) (4.36)

Let w− = max(−w, 0). Multiplying (4.36) by −w− and integrating in Ω we obtain:

1

2

d

dt

b∫

a

(w−)2 + η

b∫

a

|∂xw−|2

= r

b∫

a

m2

1 +m
(1− φ(k − w))w− = r

b∫

a

m2

1 +m
(1− φ(k + w−))w−. (4.37)

Since k ≥ 1, 1− φ(k + w−) ≤ 0. Therefore:

1

2

d

dt

b∫

a

(w−)2 + η

b∫

a

|∂xw−|2 ≤ 0. (4.38)

∫ b

a
(w−)2(0) = 0 implies that w− ≡ 0 on [0, TU0 ] and then that w is positive on

[0, TU0 ]. Therefore, we can conclude that d ≤ k. �

Remark 4.1.1. In the definition of the function φ, we fix N = max{1, ‖din‖L∞}
so that in the third equation of (4.2) we can substitute φ(d) with d.

Multiplying the third equation of (4.2) by d and integrating in Ω, we obtain:

1

2

d

dt

b∫

a

d2 + η

b∫

a

|∂xd|2 = r

b∫

a

m2

1 +m
(1− d)d (4.39)

and using the inequality d ≤ d2

2
+ 1

2
, (4.39) becomes:

1

2

d

dt

b∫

a

d2 + η

b∫

a

|∂xd|2 + r

b∫

a

m2

1 +m

d2

2
≤ 1

2
r

b∫

a

m (4.40)
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Finally, multiplying the third equation of (4.2) by ∂xxd and integrating in Ω,

we obtain the following inequality:

1

2

d

dt

b∫

a

|∂xd|2 + η

b∫

a

(∂xxd)
2 = −r

b∫

a

m2

1 +m
(1− d)∂xxd

= r

b∫

a

∂x

(
m2

1 +m
(1− d)

)

∂xd = r

b∫

a

m2 + 2m

(1 +m)2
(1− d)∂xm∂xd− r

b∫

a

m2

1 +m
|∂xd|2 ⇒

1

2

d

dt

b∫

a

|∂xd|2 + η

b∫

a

(∂xxd)
2 + r

b∫

a

m2

1 +m
|∂xd|2 ≤ rN

b∫

a

|∂xm∂xd| (4.41)

Adding up the inequalities (4.33), (4.34), (4.35), (4.40), (4.41) and discarding

some of the terms, we obtain the following:

1

2

d

dt

b∫

a

(m2 + c2 + |∂xc|2 + d2 + |∂xd|2) +
b∫

a

(|∂xm|2 + (ε/τ)|∂xxc|2)

≤ χ

b∫

a

|∂xm∂xc|+
β

τ

b∫

a

mc+
δ

τ

b∫

a

dc+
β

τ

b∫

a

m|∂xxc|+
δ

τ

b∫

a

d|∂xxc|

+
1

2
r

b∫

a

m+ rN

b∫

a

|∂xm∂xd|+ |Ω| (4.42)

Then we use Young’s inequality :

2χ

b∫

a

|∂xm∂xc| ≤
b∫

a

|∂xm|2 + χ2

b∫

a

|∂xc|2 (4.43)

2rN

b∫

a

|∂xm∂xd| ≤
b∫

a

|∂xm|2 + r2N2

b∫

a

|∂xd|2 (4.44)

2
β

τ

b∫

a

m|∂xxc| ≤
ε

τ

∫

|∂xxc|2 +
β2

ετ

b∫

a

m2 (4.45)
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2
δ

τ

b∫

a

d|∂xxc| ≤
ε

τ

∫

|∂xxc|2 +
δ2

ετ

b∫

a

d2 (4.46)

and end up with the differential inequality:

d

dt
(||m||2L2 + ||c||2H1 + ||d||2H1) ≤ K(||m||2L2 + ||c||2H1 + ||d||2H1) + (r/2 + 2)|Ω|,

(4.47)

with K := max(χ2, r2N2, (β + δ)/τ, (εδ + δ2)/(ετ), (εβ + β2)/(ετ) + r/2), so that

thanks to Gronwall’s lemma:

sup
t∈[0,T0]

(||m||2L2 + ||c||2H1 + ||d||2H1)(t)

≤
(

(||m||2L2 + ||c||2H1 + ||d||2H1)(0) + (r/2 + 2)|Ω|/K
)

eKT0 (4.48)

and the solution can be extended on the whole [0,T].

4.2 Passage to the limit

In this Section, we perform the passage to the limit for η → 0 and we prove

the existence of a unique classical and nonnegative solution to System 4.1.

Theorem 4.2.1. Let Ω =]a, b[⊂ R
1, χ > 0, τ > 0, δ > 0, β > 0, ε > 0 and r > 0

be given parameters, and min ∈ L2(Ω), cin, din ∈ H1(Ω) be nonnegative initial

data (min, din, cin ≥ 0).

Then there exists a weak (nonnegative for each component) solution m, d ∈
L∞
loc(R+;L

2(Ω)), c ∈ L∞
loc(R+;H

1(Ω)) such that ∂xm, ∂xxc ∈ L2([0, T ] × Ω), m ∈
L3([0, T ]×Ω), to the following weak formulation of (4.1): ∀φ, ψ, ζ ∈ C∞

c (R+×Ω)

such that ∂xφ(a, t) = ∂xφ(b, t) = 0 and ∂xψ(a, t) = ∂xψ(b, t) = 0, ∀t ∈ R
+,

−
∞∫

0

∫

Ω

m
∂φ

∂t
−
∫

Ω

min φ(0, ·) =
∞∫

0

∫

Ω

m∂xxφ+

∞∫

0

∫

Ω

m (1−m)φ+χ

∞∫

0

∫

Ω

m

1 +m
∂xc ∂xφ,

−
∞∫

0

∫

Ω

c
∂ψ

∂t
−
∫

Ω

cin ψ(0, ·) =
ε

τ

∞∫

0

∫

Ω

c ∂xxψ +
1

τ

∞∫

0

∫

Ω

[δ d− c+ β m]ψ,
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−
∞∫

0

∫

Ω

d
∂ζ

∂t
−
∫

Ω

din ζ(0, ·) = r

∞∫

0

∫

Ω

m2

1 +m
(1− d) ζ.

Proof: For all η > 0, we know that there exist mη, dη ∈ L∞
loc(R+;L

2(Ω)),

cη ∈ L∞
loc(R+;H

1(Ω)), such that mη ∈ L3
loc(R+;L

3(Ω)), ∂xmη ∈ L2
loc(R+;L

2(Ω)),

∂xxcη ∈ L2
loc(R+;L

2(Ω)) and the following weak form of (4.2) holds: ∀φ, ψ, ζ ∈
C∞
c (R+ × Ω) such that ∂xφ(a, t) = ∂xφ(b, t) = 0, ∂xψ(a, t) = ∂xψ(b, t) = 0,

∂xζ(a, t) = ∂xζ(b, t) = 0, ∀t ∈ R
+,

−
∞∫

0

b∫

a

mη
∂φ

∂t
−

b∫

a

min φ(0, ·) =
∞∫

0

b∫

a

mη ∂xxφ+

∞∫

0

b∫

a

mη (1−mη)φ+χ

∞∫

0

b∫

a

mη

1 +mη

∂xcη ∂xφ,

−
∞∫

0

b∫

a

cη
∂ψ

∂t
−

b∫

a

cin ψ(0, ·) =
ε

τ

∞∫

0

b∫

a

cη ∂xxψ +
1

τ

∞∫

0

b∫

a

[δ dη − cη + β mη]ψ,

−
∞∫

0

b∫

a

dη
∂ζ

∂t
−

b∫

a

din ζ(0, ·) = η

∞∫

0

b∫

a

dη ∂xxζ + r

∞∫

0

b∫

a

m2
η

1 +mη

(1− dη) ζ.

Since the rest of this proof is valid in any dimension, from now on we will use the

notations of dimension n, ∀n ≥ 1, that is ∇, ∆ instead of ∂x, ∂xx, respectively.

The following a priori estimates were obtained in the previous step, cf. (4.33),

(4.34), (4.35) and (4.39):

1

2

d

dt

∫

Ω

m2
η +

∫

Ω

|∇mη|2 +
1

2

∫

Ω

m3
η ≤ χ

∫

Ω

|∇mη · ∇cη|+ |Ω|, (4.49)

1

2

d

dt

∫

Ω

c2η +
ε

τ

∫

Ω

|∇cη|2 ≤
β

τ

∫

Ω

mη cη +
δ

τ

∫

Ω

dη cη, (4.50)

1

2

d

dt

∫

Ω

|∇cη|2 +
ε

τ

∫

Ω

|∆cη|2 ≤
β

τ

∫

Ω

|mη∆cη|+
δ

τ

∫

Ω

|dη∆cη|, (4.51)

1

2

d

dt

∫

Ω

|dη|2 ≤
r

2

∫

Ω

mη. (4.52)

Adding (4.49) and (4.51), we see that

1

2

d

dt

∫

Ω

(

m2
η + |∇cη|2

)

+

∫

Ω

|∇mη|2 +
1

2

∫

Ω

m3
η +

ε

τ

∫

Ω

|∆cη|2
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≤ χ

∫

Ω

|∇mη · ∇cη|+
β

τ

∫

Ω

|mη∆cη|+
δ

τ

∫

Ω

|dη∆cη|+ |Ω|

≤ 1

2

∫

Ω

|∇mη|2+
χ2

2

∫

Ω

|∇cη|2+
ε

4τ

∫

Ω

|∆cη|2+
β2

ετ

∫

Ω

|mη|2+
ε

4τ

∫

Ω

|∆cη|2+
δ2

ετ

∫

Ω

|dη|2+|Ω|,

so that
d

dt

∫

Ω

(

m2
η + |∇cη|2

)

+

∫

Ω

|∇mη|2 +
∫

Ω

m3
η +

ε

τ

∫

Ω

|∆cη|2

≤ 2β2

ετ

∫

Ω

|mη|2 + χ2

∫

Ω

|∇cη|2 + 2

(
δ2

ετ
N2 + 1

)

|Ω|,

and thanks to Gronwall’s lemma, for all T > 0,

sup
t∈[0,T ]

∫

Ω

(

m2
η + |∇cη|2

)

(t) ≤ K1, (4.53)

where

K1 :=

[ ∫

Ω

(

m2
in + |∇cin|2

)

+

(
2δ2N2

ετ
+ 2
)

|Ω|

max
(

2β2

ετ
, χ2
)

]

exp

(

max

(
2β2

ετ
, χ2

)

T

)

,

and
T∫

0

∫

Ω

(

m3
η + |∇mη|2 +

ε

τ
|∆cη|2

)

≤ K2, (4.54)

where

K2 :=

∫

Ω

(

m2
in + |∇cin|2

)

+max

(
2β2

ετ
, χ2

)

K1 T + 2

(
δ2

ετ
N2 + 1

)

|Ω|T.

Then thanks to (4.50),

d

dt

∫

Ω

c2η ≤ 2
β2

τ 2

∫

Ω

m2
η + 2

δ2

τ 2
N2 |Ω|+

∫

Ω

c2η,

so that

sup
t∈[0,T ]

∫

Ω

c2η(t) ≤
[ ∫

Ω

c2in + 2
β2

τ 2
K1 + 2

δ2

τ 2
N2 |Ω|

]

eT . (4.55)
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Finally thanks to (4.52),

d

dt

∫

Ω

d2η ≤
r

2

∫

Ω

|mη|2 +
r

2
|Ω|,

so that

sup
t∈[0,T ]

∫

Ω

d2η(t) ≤
∫

Ω

d2in +
r

2
(K1 + |Ω|)T. (4.56)

Finally, thanks to (4.53), (4.54), (4.55) and (4.56), we see thatmη, dη is bounded in

L∞
loc(R+;L

2(Ω)), cη is bounded in L∞
loc(R+;H

1(Ω)). Moreover, mη is also bounded

in L3
loc(R+;L

3(Ω)) and L2
loc(R+;H

1(Ω)), and cη is bounded in L2
loc(R+;H

2(Ω)).

As a consequence, there exists m, d ∈ L∞
loc(R+;L

2(Ω)), and c ∈ L∞
loc(R+;H

1(Ω)),

such that m ∈ L3
loc(R+;L

3(Ω)) ∩ L2
loc(R+;H

1(Ω)), and c ∈ L2
loc(R+;H

2(Ω)),

and such that, up to extracting subsequences (still denoted by η) mη ⇀ m in

L∞
loc(R+;L

2(Ω)) weak ∗ and L3
loc(R+;L

3(Ω)) ∩ L2
loc(R+;H

1(Ω)) weak, cη ⇀ c

in L∞
loc(R+;H

1(Ω)) weak ∗ and L2
loc(R+;H

2(Ω)) weak, and finally dη ⇀ d in

L∞
loc(R+;L

2(Ω)) weak ∗.

Thanks to those weak convergences, it is easy to pass to the limit in all the

linear terms appearing in (4.2):

∞∫

0

∫

Ω

mη
∂φ

∂t
→

∞∫

0

∫

Ω

m
∂φ

∂t
,

∞∫

0

∫

Ω

cη
∂ψ

∂t
→

∞∫

0

∫

Ω

c
∂ψ

∂t
,

∞∫

0

∫

Ω

dη
∂ζ

∂t
→

∞∫

0

∫

Ω

d
∂ζ

∂t

∞∫

0

∫

Ω

mη∆φ→
∞∫

0

∫

Ω

m∆φ,

∞∫

0

∫

Ω

cη∆ψ →
∞∫

0

∫

Ω

c∆ψ, η

∞∫

0

∫

Ω

dη∆ζ → 0,

∞∫

0

∫

Ω

[δ dη − cη + β mη]ψ →
∞∫

0

∫

Ω

[δ d− c+ β m]ψ.

It remains to pass to the limit in the nonlinear terms

∞∫

0

∫

Ω

mη (1−mη)φ→
∞∫

0

∫

Ω

m (1−m)φ,
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∞∫

0

∫

Ω

mη

1 +mη

∇cη · ∇φ→
∞∫

0

∫

Ω

m

1 +m
∇c · ∇φ,

and ∞∫

0

∫

Ω

m2
η

1 +mη

(1− dη) ζ →
∞∫

0

∫

Ω

m2

1 +m
(1− d) ζ.

Remembering that dη is bounded in L∞
loc(R

∗
+;L

∞(Ω)), that ∇cη is bounded in

L∞
loc(R

∗
+;L

2(Ω)), and that mη is bounded in L3
loc(R

∗
+;L

3(Ω)), we see that it is

sufficient to show that mη converges a.e. towards m.

We first recall that mη is bounded in L2
loc(R+;H

1(Ω)).

Then, we observe that ∆mη is bounded in L2
loc(R+;H

−1(Ω)), and that mη (1−
mη) is bounded in L

3/2
loc (R+;L

3/2(Ω)). Moreover ∇cη is bounded in L∞
loc(R

∗
+;L

2(Ω)),

so that mη

1+mη
∇cη is also bounded in L∞

loc(R
∗
+;L

2(Ω)), and finally ∇· ( mη

1+mη
∇cη) is

bounded in L∞
loc(R

∗
+;H

−1(Ω)). All in all, ∂tmη is bounded in L
3/2
loc (R

∗
+,W

−1,3/2(Ω)).

Thanks to Aubin’s lemma, we obtain that mη converges (up to extraction of a

subsequence) a.e. (towards m). In order to conclude the proof of the proposition,

we notice that all smooth functions ζ can be approximated by smooth functions

ζ such that ∇ζ · n|R+×∂Ω = 0 (for example in L2
loc(R

∗
+;L

2(Ω)).

Theorem 4.2.2. Let Ω =]a, b[ be a bounded interval of R1, χ > 0, τ > 0, δ > 0,

β > 0, ε > 0 and r > 0 be given parameters, and min, cin, din ∈ C2,α(Ω) (for

some α ∈]0, 1[) be nonnegative initial data (min, din, cin ≥ 0) compatible with the

Neumann boundary condition.

Then there exists a unique classical (nonnegative for each component) solution

to (4.1) such that m, ∂tm, ∂xxm, c, ∂tc, ∂xxc, d, ∂td ∈ C0,α(R+ × Ω), (for some α ∈
]0, 1[).

Proof: We work on [0, T ]× Ω, where T > 0 is arbitrary.

In the sequel we shall systematically use the following result (cf. [35]) on

solutions of the heat equation:

Proposition 4.2.1. If u := u(t, x) is a (weak) solution (in L1([0, T ]×]a, b[)) of

the Neumann problem

∂tu− κ∆u = f,

∀t ∈ [0, T ], ∂xu(t, a) = ∂xu(t, b) = 0,
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∀x ∈]a, b[, u(0, x) = uin(x),

where κ > 0, uin ∈ Lp(Ω), f ∈ Lp([0, T ] × Ω) (with p ∈ [1,∞[), then if p < 3/2,

u belongs to Lq([0, T ]×]a, b[) for all q such that 1
q
> 1

p
− 2

3
, and if p > 3/2, then u

belongs to C0,α(R+ × [a, b]), for some α ∈]0, 1[. Moreover, if p < 3, ∂xu belongs

to Lq([0, T ]× Ω) for all q such that 1
q
> 1

p
− 1

3
, and if p > 3, then ∂xu belongs to

C0,α(R+ × [a, b]), for some α ∈]0, 1[.

We consider the weak (nonnegative for each component) solution (m, c, d) to

(4.1) obtained in Theorem 4.2.1 (note that the assumptions on the initial data

in this proposition are sufficient to obtain the existence of such a solution), and

some time T > 0. We recall that m ∈ L3([0, T ] × Ω), c ∈ L∞([0, T ];H1(Ω)) and

d ∈ L∞([0, T ]× Ω). Moreover, we also recall that ∂xm ∈ L2([0, T ]× Ω).

We first observe that since c ∈ L∞([0, T ];H1(Ω)), Sobolev inequalities imply

that c ∈ L∞([0, T ]×Ω). As a consequence (remembering that m ∈ L3([0, T ]×Ω)

and d ∈ L∞([0, T ] × Ω)), δd − c + βm ∈ L3([0, T ] × Ω). Using Prop. 4.2.1, we

see that c ∈ C0,α([0, T ]× Ω), for some α ∈]0, 1[ and that ∂xc ∈ Lq([0, T ]× Ω) for

all q ∈ [1,∞[. Moreover, maximal regularity estimates for the heat equation with

Neumann boundary condition ensure that ∂xxc ∈ L3([0, T ]× Ω).

Thanks to the above information, we see that ∂xm∂xc ∈ Lq([0, T ] × Ω) for

all q < 2, and the same holds for (1 + m)−2 ∂xm∂xc. Moreover m
1+m

∂xxc ∈
L3([0, T ] × Ω) so that ∂x (

m
1+m

∂xc) ∈ Lq([0, T ] × Ω) for all q < 2. Observing

then that m (1 − m) ∈ L3/2([0, T ] × Ω) we see that we can use Prop. 4.2.1 for

m with p = 3/2, and deduce that m ∈ Lq([0, T ] × Ω) for all q ∈ [1,∞[ and

∂xm ∈ Lq([0, T ]× Ω) for all q < 3.

Then δd − c + βm ∈ Lq([0, T ] × Ω) for all q ∈ [1,∞[. Applying once again

Prop. 4.2.1 to c, we see that ∂xc ∈ C0,α([0, T ]×Ω), for some α ∈]0, 1[ (and more-

over, maximal regularity estimates for the heat equation with Neumann boundary

condition ensure that ∂xxc ∈ Lq([0, T ]× Ω) for all q ∈ [1,∞[).

Thanks to the above information, we see that (1+m)−2 ∂xm∂xc ∈ Lq([0, T ]×Ω)

for all q < 3, and (1 + m)−2 ∂xxc ∈ Lq([0, T ] × Ω) for all q ∈ [1,∞[. Observing

then that m (1 − m) ∈ Lq([0, T ] × Ω) for all q ∈ [1,∞[, we see that we can use

Prop. 4.2.1 for m with any p < 3, and deduce that m ∈ C0,α([0, T ]×Ω), for some

α ∈]0, 1[ and ∂xm ∈ Lq([0, T ]× Ω) for all q ∈ [1,∞[.

We now study the regularity of d. We observe that for any p > 1,

d

dt

∫

Ω

|∂xd|p
p

= −r
∫

Ω

m2

1 +m
|∂xd|p + r

∫

Ω

(1− d)
m2 + 2m

(1 +m)2
|∂xd|p−2∂xd ∂xm
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≤ r (N − 1)

(∫

Ω

|∂xm|p +
∫

Ω

|∂xd|p
)

.

Gronwall’s lemma and the estimates already proven on ∂xm ensure therefore that

∂xd ∈ ∪p∈[1,∞[L
∞([0, T ];Lp(Ω)).

Using Schauder estimates for the heat equation with Neumann boundary con-

dition for c, we now see that ∂tc, ∂xxc ∈ C0,α([0, T ]× Ω), for some α ∈]0, 1[.

At this level, we already know thatm (1−m) and (1+m)−2 ∂xxc ∈ C0,α([0, T ]×
Ω), for some α ∈]0, 1[. We also know that (1 + m)−2 ∂xm∂xc ∈ Lq([0, T ] × Ω)

for all q ∈ [1,∞[, so that we can use a last time Prop. 4.2.1 and obtain that

∂xm ∈ C0,α([0, T ]×Ω), for some α ∈]0, 1[. Then, Schauder estimates for the heat

equation with Neumann boundary condition for m finally ensure that ∂tm, ∂xxm ∈
C0,α([0, T ]× Ω), for some α ∈]0, 1[.

Noticing that ∂td ∈ L∞([0, T ] × Ω) (thanks to the estimates already known

for m and d), we see (thanks to Sobolev estimates) that d ∈ C0,α([0, T ]× Ω), for

some α ∈]0, 1[. This information together with the fact that m ∈ C0,α([0, T ]×Ω)

for some α ∈]0, 1[ ensures that ∂td ∈ C0,α([0, T ] × Ω) for some α ∈]0, 1[. This

concludes the proof of existence of classical solutions stated in Thm. 4.2.2.

We now turn to the issue of uniqueness, which will be a consequence of the

following property of stability:

Proposition 4.2.2. We consider Ω ⊂ R
n a bounded open subset, T > 0 a final

time, χ > 0, τ > 0, δ > 0, β > 0, ε > 0 and r > 0 given parameters, and

(min,1, cin,1, din,1), (min,2, cin,2, din,2) ∈ C2,α(Ω) two sets of nonnegative initial data

compatible with the Neumann boundary condition.

We denote by (m1, c1, d1) and (m2, c2, d2) two sets of classical solutions (in the

sense of Theorem 4.2.2, and defined on [0, T ]×Ω) to problem (4.1), corresponding

respectively to the initial data (min,1, cin,1, din,1), (min,2, cin,2, din,2).

Then, for some constant K > 0 depending only on T , the parameters χ, τ , δ,

β, ε, r, and on ||∇c1||L∞([0,T ]×Ω), the following stability estimate holds:

sup
t∈[0,T ]

(

||m1 −m2||L2(Ω)(t) + ||c1 − c2||L2(Ω)(t) + ||d1 − d2||L2(Ω)(t)

)

≤ K

(

||m1,in −m2,in||L2(Ω) + ||c1,in − c2,in||L2(Ω) + ||d1,in − d2,in||L2(Ω)

)

.
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Proof: We first write the equation satisfied by d1 − d2, and compute the

derivative in time of the L2 norm of d1 − d2. We get

1

2

d

dt

∫

Ω

|d1−d2|2 = r

∫

Ω

(
m2

1

1 +m1

− m2
2

1 +m2

)

(d1−d2)−r
∫

Ω

(
m2

1 d1
1 +m1

− m2
2 d2

1 +m2

)

(d1−d2)

≤ r

∫

Ω

|m1 −m2| |d1 − d2|+ r

∫

Ω

d1 |m1 −m2| |d1 − d2| − r

∫

Ω

m2
2

1 +m2

|d1 − d2|2

≤ r

(
1

2
+

1

2
||d1||L∞(Ω)

)[∫

Ω

|m1 −m2|2 +
∫

Ω

|d1 − d2|2
]

.

We then perform the same kind of computation with c1 − c2.

1

2

d

dt

∫

Ω

|c1 − c2|2 +
ε

τ

∫

Ω

|∇c1 −∇c2|2

≤ δ

τ

∫

Ω

(c1 − c2) (d1 − d2)−
1

τ

∫

Ω

|c1 − c2|2 +
β

τ

∫

Ω

(c1 − c2) (m1 −m2)

≤ − 1

2τ

∫

Ω

|c1 − c2|2 +
δ2

τ

∫

Ω

|d1 − d2|2 +
β2

τ

∫

Ω

|m1 −m2|2.

We finally consider m1 −m2:

1

2

d

dt

∫

Ω

|m1 −m2|2 +
∫

Ω

|∇m1 −∇m2|2 =
∫

Ω

|m1 −m2|2 −
∫

Ω

|m1 −m2|2 (m1 +m2)

+χ

∫

Ω

(
m1

1 +m1

− m2

1 +m2

)

∇(m1−m2) ·∇c1+χ
∫

Ω

m2

1 +m2

∇(m1−m2) ·∇(c1−c2)

≤
∫

Ω

|m1−m2|2+χ
∫

Ω

|m1−m2| |∇(m1−m2)| |∇c1|+χ
∫

Ω

|∇(m1−m2)| |∇(c1−c2)|

≤
∫

Ω

|m1 −m2|2 +
1

2

∫

Ω

|∇m1 −∇m2|2 +
χ2

2

∫

Ω

|∇c1|2 |m1 −m2|2

+
1

2

∫

Ω

|∇m1 −∇m2|2 +
χ2

2

∫

Ω

|∇c1 −∇c2|2,
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so that

1

2

d

dt

∫

Ω

|m1−m2|2 ≤
∫

Ω

|m1−m2|2+
χ2

2

∫

Ω

|∇c1−∇c2|2+
χ2

2

∫

Ω

|∇c1|2 |m1−m2|2.

We now take a linear combination of the three differential inequalities written

above,

d

dt

(

||m1 −m2||2L2(Ω) +
τ χ2

2ε
||c1 − c2||2L2(Ω) + ||d1 − d2||2L2(Ω)

)

≤
(

r (1 + ||d1||L∞(Ω)) +
β2 χ2

ε
+ 2 + χ2 ||∇c1||2L∞(Ω)

)

||m1 −m2||2L2(Ω)

+

(

r (1 + ||d1||L∞(Ω)) +
χ2δ2

ε

)

||d1 − d2||2L2(Ω),

so that thanks to Gronwall’s lemma,

sup
t∈[0,T ]

(

||m1−m2||2L2(Ω)(t)+||d1−d2||2L2(Ω)(t)

)

≤
(

||m1−m2||2L2(Ω)(0)+||d1−d2||2L2(Ω)(0)

)

eK T ,

with

K := max

(

r (1+||d1||L∞(Ω))+
β2 χ2

ε
+2+χ2 ||∇c1||2L∞(Ω); r (1+||d1||L∞(Ω))+

χ2δ2

ε

)

,

and finally

sup
t∈[0,T ]

||c1−c2||2L2(Ω)(t) ≤
2ε

τ χ2

(

||m1−m2||2L2(Ω)(0)+||d1−d2||2L2(Ω)(0)

)

+||c1−c2||2L2(Ω)(0)

+KT

(

||m1 −m2||2L2(Ω)(0) + ||d1 − d2||2L2(Ω)(0)

)

eK T .

This concludes the proof of Prop. 4.2.2 on stability, and also concludes the part

about uniqueness of Thm. 4.2.2.
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Conclusions

In this thesis, we have presented the development and the study of a math-

ematical model of acute inflammation (Model I), and the investigation of the

pattern-forming and well-posedness properties of a mathematical model of Multi-

ple Sclerosis (Model MS).

Model I and Model MS are extensions of the Keller-Segel chemotaxis model

and the chemotactic term, in both cases, turns out to be responsible for the for-

mation of spatial patterns.

We have proved that, adopting real biological values of the parameters, both

models are able to qualitatively reproduce real pathological scenarios.

In Chapter 2, we have derived a spatial model of acute inflammation (Model

I), with a particular attention on the main biological assumptions underlying the

development of the model. We have proved that Model I undergoes chemotaxis-

driven Turing and wave instabilities and, through a linear stability analysis, we

have derived the necessary and sufficient conditions for the onset of both insta-

bilities. In particular, the condition for the onset of a wave instability (Theorem

2.3.3) is a novel result: to the best of our knowledge, similar results have been

proved only for reaction-diffusion models, and less attention has been paid to wave

instability in chemotaxis models. Moreover, the importance of this result relies

on the fact that it can be applied to analogous chemotaxis models.

The results of this analysis have been supported by numerical simulations.

Then we have performed a weakly nonlinear analysis to derive the amplitude

equation of the stationary patterns and to distinguish between supercritical and

subcritical regimes. We have compared the stationary solution predicted by this

analysis with the corresponding numerical solution, computed using a numerical

spectral scheme: the two solutions have displayed an excellent agreement, indeed

the L2-norm of the distance between the weakly nonlinear solution and the nu-

merical solution is consistent with the order of the approximation.

We have also proved that the cellular growth term makes possible the insurgence of

spatio-temporal irregular solutions, which are able to reproduce the macrophages

Self Organized Criticality. In particular, we have showed that, as the chemotac-

tic parameter increases, one can observe transitions of striped patterns towards
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chaotic solutions, which stabilizes in striped patterns characterized by a different

wave number. The transition between different wavenumbers can be predicted by

linear stability analysis. Moreover, a hallmark of critical behaviour is exactly the

transition between organized (striped pattern) and disorganized (spatio-temporal

irregular solution) states.

Finally, we have showed that this model is able to reproduce the formation of

concentric skin rashes typical of Erithema Annulare Centrifugum. We have per-

formed a perturbative analysis on circular domains and derived the amplitude

and the shape of the stationary radially symmetric patterns bifurcating from the

trivial state. After that, some numerical simulations on 2D square domains have

been performed to provide a numerical justification to the previous study: we have

showed that an initial highly localized stimulus evolves towards the formation of

aggregates that exhibit radial symmetry. Moreover, we have made a comparison

between the numerical solutions and medical data, proving that the growth rates

of the numerical solutions are in perfect agreement with the clinical measurements

available in literature. We underline that all the numerical simulations have been

performed using realistic parameter values.

In Chapter 3, we have presented a study on the existence and stability of

asymptotic radially symmetric solutions to Model MS. In particular, we have

performed a perturbative analysis in small domains, namely in domains whose lin-

ear size is of the order of the critical wavelength, to derive the amplitude equation

close to the criticality, proving the occurrence of a transcritical bifurcation. In the

case of large domains, whose radius is much larger than the critical wavelength,

the solution has a different structure close and far away from the core, and the

previous analysis can be still used to determine the amplitude of the pattern in

the core. To determine the amplitude of the pattern in the outer region of the

domain, we have performed a weakly nonlinear expansion neglecting the curvature

effects in the core, so that the amplitude equation obtained is valid only in the

outer region of the domain. The amplitude of the pattern has been recovered by

an asymptotic matching procedure. We have also showed that these results are

consistent with the numerical simulations.

The motivation for this study relies on the fact that radially symmetric solutions

are able to reproduce the aggregates reported in the MRI of Multiple Sclerosis

and Balò concentric sclerosis.

In the second part of Chapter 3, we have studied the occurrence of secondary

instabilities of striped patterns in Model MS. In particular, we have focused on

the Eckhaus and the zigzag instabilities, which are mechanisms of pattern selec-

tion. Their importance relies on them being able to account for the formation
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of defects, frequently reported in real patterns. We have derived the amplitude

equations, then we have studied the stability of the resulting patterns against

spatial modulations and, in doing so, we have justified the sequence of successive

bifurcations observed in the numerically computed bifurcation diagram of the sys-

tem. We have also focused on the stabilizing effects of a finite domain, a property

already known for the Eckhaus instability. We have proved that finite domains

have stabilizing effects also on the zigzag instability.

We have studied the insurgence of defects due to phase slip, which is the mecha-

nism that inserts or removes a wavelength into the pattern. We have proved that

the time needed for a phase slip to occur is determined by the linear growth rate

of the instability.

In Chapter 4, we have studied the well-posedness properties of Model MS on

1D domains. We have proved that the system admits classical solutions. In par-

ticular, providing a positive initial datum taken in appropriate functional spaces,

the solution is always positive and can be extended globally in time.

Finally, we present some open problems and directions for further work.

It would be worth studying the nonlinear stability of the constant solutions, both

in Model I and Model MS, using a suitable Lyapunov functional or adopting

a proper reduction method ([134]), in order to obtain optimal stability results

and the attraction rays for the initial data. It would also be of interest to rig-

orously prove that, when the chemotactic coefficient is below the threshold, the

disease-free equilibrium is globally asymptotically stable, using, for example, the

techniques adopted in [133] and [160].

Some attention would be devoted to the study of far from equilibrium phe-

nomena. In Chapter 2, we have proved that Model I shows oscillatory patterns

and complex solutions far from equilibrium. Therefore, one important point that

remains to be discussed is the investigation of the mechanisms underlying the

appearance of these spatio-temporal irregular behaviours. In fact, the oscillations

of the periodic structures reported in the numerical simulations of Figs. 2.6-2.7

are unexpected on the basis of linear analysis since, in the considered parameter

regime, the proposed system does not support any Hopf or wave instabilities.

We conjecture that the spatio-temporal periodic solutions are generated by a spa-

tial resonance of the fundamental Turing mode with its subharmonic: as discussed

in [74], a subharmonic mode is in fact able to resonantly interact with the sub-

critical fundamental Turing mode, generating time oscillations, also in the case

when its growth rate is negative.

Therefore, using the formalism of the amplitude equation, it would be of interest

to derive the normal form of the resonant interaction and to investigate the phase
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instabilities which originate the chaotic dynamics ([41]). These subjects will be

investigated in a forthcoming paper.

We have studied the onset of asymptotic radially symmetric solutions in both

Model I and Model MS. This study is preliminary to a forthcoming investiga-

tion on the stability of the resulting structures with respect to non-axisymmetric

disturbances (see [32, 31, 7]), which could highlight some observed deviations

from the ring-shaped pattern. It could also be of interest to investigate the pos-

sibility of destabilization of the rings in spots, a phenomenon already observed

in reaction-diffusion systems ([132]) and which could reproduce the formation of

small isolated plaques. A more accurate numerical method, based on Lagrangian

particles ([70]), could also be designed for the simulations of more realistic phys-

ical domains. It would be interesting to implement the proposed systems into a

Cellular Nonlinear Network (CNN), an approach that has turned out to efficiently

reproduce the behaviours observed in biological systems ([23, 24]).

As Model MS admits two dimensional periodic patterns resembling the con-

centric demyelinating structures typical of Balò Sclerosis, it would be of interest to

investigate the appearance and the interaction of two-dimensional defects, which

could realistically reproduce the patterns observed in the MRIs of MS patients.

The numerical investigation of the Turing-type branches emerging from the ho-

mogeneous equilibrium in Model MS, performed in [117] on one-dimensional

domains, has revealed, far from the primary bifurcation, an Eckhaus scenario,

followed by a Andronov-Hopf bifurcation, which determines the appearance of an

oscillating pattern. As the control parameter is further increased, a second incom-

mensurate frequency develops and spatio-temporal chaotic dynamics are observed

([1]). A similar route to chaos through quasiperiodicity has been recently re-

ported in reaction-diffusion systems ([186, 153, 74]) and is believed to be a robust

mechanism of destabilization for extended systems in nature ([44]).

Another important point that deserves attention is the description, in Model

MS, of small localized zone of demyelinating activity, which are frequently recorded

in the MS pathology. This phenomenon could be accounted for by the formation

of localized dissipative structures, usually found in reaction-diffusion systems far

from equilibrium. These states are organized in a homoclinic snaking bifurca-

tion structure, where the snaking branches bifurcate subcritically from the Turing

branch through an Eckhaus instability ([146]).

Finally, it would be of interest to extend the study on the well-posedness

properties of Model MS to 2D domains.

We think that, adopting the same techniques, it will be possible to derive similar

results for Model I. This will be subject of future study.
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Appendix A

Linear analysis

In this Appendix, the proofs of Theorems 2.3.2 and 2.3.3 are given. Then we

shall illustrate how to get the critical thresholds represented in Figure 2.1.

Proof of Theorem 2.3.2

Let P(λ) = λ3 + N(K)λ2 + P (K)λ + Q(K) be the characteristic polynomial of

(2.7). By the Routh-Hurwitz criterion, the number of roots of the polynomial

P(λ) that lie in the right half-plane equals the number of sign changes of the

sequence (1, N,NP −Q,Q). Since N(K) is always positive, from the analysis of

the possible occurring signs of NP −Q and Q, it is easy to prove that P(λ) has

only one positive root if and only if Q(K) < 0. �

Proof of Theorem 2.3.3

We first state the following Theorem, whose proof can be found in [154].

Theorem A.0.1. Let f(t) be a monic polynomial of order 3, namely f(t) =

t3 + a1t
2 + a2t+ a3. Its Bezoutiant matrix is defined as:

B =






3 −a1 a21 − 2a2

−a1 a21 − 2a2 −a31 − 3a3 + 3a1a2

a21 − 2a2 −a31 − 3a3 + 3a1a2 4a1a3 − 4a2a
2
1 + 2a22 + a41




 . (A.1)

Then every real root of f corresponds to a positive eigenvalue of B and every pair

of complex conjugates roots of f corresponds to a pair of eigenvalues of B with

opposite sign.

Let us now proceed with the proof of Theorem 2.3.3. SinceQ(K) = −det(A(K)),

by condition (i) it follows that A(K) has at least one negative eigenvalue. To state

a necessary and sufficient condition for the occurrence of a wave bifurcation, we

have to impose the remaining eigenvalues to be complex conjugate and with pos-

itive real part. The first requirement is satisfied by condition (ii): in fact, by
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With similar arguments, one can obtain the wave bifurcation threshold. In

fact, provided that there exists an interval I of Ks such that Q(K) > 0 and

det(B)(K) < 0 ∀K ∈ I, the marginal condition for the wave bifurcation, corre-

sponding to a pair of roots crossing the complex plane from left to the right, is

given by:

R(Kw) = 0, (A.3)

for some 0 6= Kw ∈ I at which R(K) attains its local minimum. In fact R(K)

is a polynomial of degree 3 in K, namely R(K) = r0K
3 + r1K

2 + r2K + r3.

The coefficients r0 and r3 are always positive, and consequently R has at most

two positive roots. The marginality condition therefore corresponds to enforce

R to attain a local minimum at K = Kw, with the requirement Kw > 0. Since

the graph of R(K) depends on χ and τ , from the condition (A.3) we get the

bifurcation value of χ, that is χw, as a function of τ , and the corresponding value

of Kw. When χ > χw, R(K) has two positive roots, K1, K2 and ∀K ∈ [K1, K2]

the system (2.4) exhibits a wave instability. Conversely, if χ < χw, then R(K) > 0

for all Ks, and the wave bifurcation cannot occur.

The graphs of Q(K) and R(K) for different values of χ are shown in Fig. A.1,

where the following set of parameter has been chosen:

[

D α β r Γ τ
]

=
[

0.9 0.1 0.1 2 1 100
]

. (A.4)
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Appendix B

Weakly Nonlinear Analysis

B.1 Nonlinear Operators

In this appendix, we give the expressions of the nonlinear operators in (2.10).

Let x = (xm, xc, xa), y = (ym, yc, ya), z = (zm, zc, za), t = (tm, tc, ta) and

s = (sm, sc, sa). The actions of the nonlinear operators are defined as:

Qχ
D((x,y)) =






QD1xmyc +QD2xcyc

0

0




 ,

QK((x,y)) =






QK11xmym +QK12(xmyc + xcym)

QK21(xmya + xaym) +QK22xaya

QK31(xmya + xaym) +QK32xaya




 ,

CχD((x,y, z)) =






CD1xmyczc + CD2xcyczc

0

0




 ,

CK((x,y, z)) =






CK11xmymzc

CK21xmyaza + CK22xayaza

CK31xmyaza + CK32xayaza




 ,

T χ
D ((x,y, z, t)) =






TD1xcyczctc + TD2xmyczctc

0

0




 ,

TK((x,y, z, t)) =






0

TK21xayazata + TK22xmyazata

TK31xayazata + TK32xmyazata




 ,

Pχ
D((x,y, z, t, s)) =






PD1xmyczctcsc + PD2xcyczctcsc

0

0




 ,
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PK((x,y, z, t, s)) =






0

PK21xayazatasa + PK22xmyazatasa

PK31xayazatasa + PK32xmyazatasa






where:
QD1 =

−χ
(1+αa0)2

, QD2 =
2χα

(1+αa0)3
QK11 = −2Γra0, QK12 = −rΓ,

QK21 =
−Γβ

(1+βa0)2
, QK22 =

2m0β2

(1+βa0)3
, QK31 =

QK21

τ
, QK32 =

QK22

τ
,

CD1 =
2αχ

(1+αa0)3
, CD2 =

−3α2χ
(1+αa0)4

, CK11 = −Γr, CK21 = Γ β2

(1+βa0)3
,

CK22 = −Γ β3

(1+βa0)4
, CK31 =

CK21

τ
, CK32 =

CK22

τ
, TD1 =

4α3χ
(1+αa0)5

,

TD2 = − 3α2χ
(1+αa0)4

, TK21 =
β4

(1+αa0)5
, TK22 = − β3

(1+αa0)4
, TK31 =

β4

τ(1+αa0)5
,

TK32 = − β3

τ(1+αa0)4
, PD1 =

4α3χ
(1+αa0)5

, PD2 = − 5α4χ
(1+αa0)6

, PK21 = − β5

(1+αa0)6
,

PK22 =
β4

(1+αa0)5
, PK31 = − β5

τ(1+αa0)6
, PK32 =

β4

τ(1+αa0)5
.

B.2 Derivation of the Stuart-Landau equation

In this Appendix, we give the details of the derivation of the Stuart-Landau

equation (2.13).

Replacing the expressions (2.11) and (2.12) in (2.10) and collecting the terms

at each order in ε, we obtain a sequence of equations for every wi.

At O(ε), we get the linear problem Lχcw1 = 0, whose solution, satisfying homo-

geneous Neumann boundary conditions, is given by:

w1 = A(T )η cos(kcx), with η ∈ Ker(K − k2cDχc), (B.1)

where K and D are given in (2.6) and A(T ) is the amplitude of the pattern, still

unknown at this level. We normalize the vector η as follows:

η =






1

M

N




 , withM = −k

2
cD11 −K11

D12k2c
, N = − K31τ

K33τ − k2c
, (B.2)

where Dij, Kij are the i, j-entries of the matrices Dχc and K.
Taking into account this solution, at O(ε2) we obtain the following linear problem:

Lχcw2 = F (B.3)

with F = −1
4
A2
∑

i=0,2 Mi(η,η) cos(ikcx), where Mi(η,η) = QK(η,η)−i2k2cQχc

D (η,η).

By the Fredholm alternative theorem, equation (B.3) admits a solution if and

only if 〈F,ψ∗〉 = 0, where 〈·, ·〉 denotes the scalar product in L2(0, 2π/kc) and
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ψ∗ ∈ Ker[(K − k2cDχc)†]. Since:

ψ∗ = ψ cos(kcx), (B.4)

with ψT = (1,M∗, N∗), M∗ = − D12k2c
k2c−K22

, N∗ = − D12K23τk2c
(k2c−K22)(k2c−K33τ)

, the Fredholm’s

theorem is satisfied and the solution of the equation (B.3) is computed in terms

of the parameters of the full system:

w2 = A2
∑

i=0,2

w2i cos(ikcx), (B.5)

where the vectors w2i are the solutions of the following linear systems:

Liw2i = −1
4
Mi(η,η), for i = 0, 2, with Li = K − i2k2cDχc .

At order O(ε3) we get the following linear problem:

Lχcw3 = G, (B.6)

where G =
(
dA
dT
η + AG

(1)
1 + A3

G
(3)
1

)

cos(kcx) + A3
G3 cos(3kcx), with

G
(1)
1 =






− Mk2cχ
(2)

(1+αa0)2

0

0




 , (B.7)

G
(3)
1 =−M1(w20,η)−

1

4
M2(η,w22)−

1

4
(QK(w22,η) + 2k2cQχc

D (w22,η))

− 1

4
(3CK(η,η,η)− k2cCχc

D (η,η,η)), (B.8)

G3 =3k2cQχc

D (η,w22) +
3

2
k2cQχc

D (w22,η)−
1

2
QK(η,w22) +

3

4
k2cCχc

D (η,η,η)

− 1

4
k2cCK(η,η,η). (B.9)

The solvability condition 〈G, ψ∗〉 = 0 for equation (B.6) leads to (2.13), the

Stuart-Landau equation for the amplitude A(T ), where the expression for σ and

L are given by:

σ = −〈G(1)
1 ,ψ〉

〈η,ψ〉 , L =
〈G(3)

1 ,ψ〉
〈η,ψ〉 . (B.10)



Appendix B. Weakly Nonlinear Analysis 112

B.3 Derivation of quintic Stuart-Landau equation

In this Appendix, we give the details of the derivation of the quintic Stuart-

Landau equation (2.15).

To predict the amplitude of the pattern, we have to push the expansion up to

fifth order. To this end, we introduce a multiple time scales T and T1:

t =
T

ε2
+
T1
ε4

+ · · · (B.11)

and the following expansion of the bifurcation parameter:

χ = χc + ε2χ(2) + ε4χ(4) +O(ε5). (B.12)

Substituting the expansions (2.11) and (B.12) into (2.10), one obtains the

equation up to O(ε3) as done in the previous Subsection. The Stuart-Landau

equation (2.13) still holds for the amplitude A(T, T1), though the derivative with

respect to T is now a partial derivative. The solvability condition 〈G,ψ∗〉 is

satisfied and the solution is:

w3 = (Aw31 + A3
w32) cos(kcx) + A3

w33 cos(3kcc), (B.13)

where the vectors w3i are the solutions of the following linear systems:

L1w31 = ση +G
(1)
1 , L1w32 = −Lη +G

(3)
1 , L3w33 = G3.

At order O(ε4) we obtain the following equation:

Lχcw4 = H, (B.14)

where

H = 2A
∂A

∂T
w20 + A2

H
(2)
0 + A4

H
(4)

+

(

2A
∂A

∂T
w22 + A2

H
(2)
2 + A4

H
(4)
2

)

cos(2kcx) + A4
H4 cos(4kcx). (B.15)

The explicit expressions of H
(j)
i , i = 0, 2 and j = 2, 4, and H4 are cumbersome

and we do not report them here. The solvability condition for (B.14) is satisfied

and the solution is:

w4 = A2
w41 + (A2

w42 + A4
w43) cos(2kx) + A4

w44 cos(4kcx), (B.16)
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where the vectors w4i, i = 1, . . . , 4, are the solutions of the following linear sys-

tems:

ΓKw40 = 2σw20 +H
(2)
0 , ΓKw41 = −2Lw20 +H

(4)
0 , L2w42 = 2σw22 +H

(2)
2 ,

L2w43 = −2Lw22 +H
(4)
2 , L4w24 = H4.

At O(ε5) the resulting equation is:

Lχcw5 = P, (B.17)

where

P =

(
∂A

∂T1
η +

∂A

∂T
w31 + 3A2∂A

∂T
w32 + AP

(1)
1 + A3

P
(3)
1 + A5

P
(5)
1

)

cos(kcx)

(B.18)

+

(

3A2∂A

∂T
w33 + A3

P
(3)
3 + A3

P
(5)
3

)

cos(3kcx) + A5
P5 cos(5kcx).

where the expressions of P
(j)
i , i = 1, 3 and j = 3, 5, and P5 are not reported.

The solvability condition for (B.17) gives

∂A

∂T1
= σ̃A− L̃A3 + Q̃A5, (B.19)

where the coefficients are given by:

σ̃ = − 〈σw31+P
(1)
1 ,ψ〉

〈η,ψ〉 , L̃ =
〈3σw32−Lw31+P

(3)
1 ,ψ〉

〈η,ψ〉 , Q̃ =
〈3Lw32−P

(5), ψ
1 〉

〈η,ψ〉 .

Adding up (B.19) to (2.13), we finally obtain the quintic Stuart-Landau equa-

tion:
dA

dT
= σ̄A− L̄A3 + Q̄A5, (B.20)

with σ̄ = σ + ε2σ̃, L̄ = L+ ε2L̃, Q̄ = Q̃ε2.
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Appendix C

Derivation of the amplitude

equation in the radially symmetric

case

In this Appendix, we give the details of the derivation of the amplitude equa-

tion (3.23).

At O(η) we get a linear problem whose solution is given by (2.23). Taking into

account this solution, at O(η2) we obtain the following linear problem:

Lχcw2 = F (C.1)

where F = ∂A
∂T
γJ0(kc%) +G

(1)
0 AJ0(kc%) + (G

(2)
0 J0(kc%)

2 +G
(2)
1 J1(kc%)

2)A2

and

G
(1)
0 =






−χ1

2
k2c

0

0




 , (C.2)

G
(2)
0 =






−χ1

4
k2cM +M2

0
3
4
rMN




 , (C.3)

G
(2)
1 =






χc

4
k2cM

0

0




 , (C.4)

By the Fredholm alternative theorem, Equation (C.1) admits solutions if and

only if 〈F,ψ∗〉 = 0, where
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ψ∗ = ψJ0(kc%), , (C.5)

and

ψ =
(

M̄, 1, N̄
)T

=
(

β
τ(1+k2c )

, 1, 2δ
τr

)T

∈ Ker[(K − k2cD
χc)†].

The solvability condition 〈F, ψ∗〉 = 0 for Equation (C.1) leads to (3.23), where

the expression for σ and L are given by:

σ = −〈G(1)
0 ,ψ〉

〈γ,ψ〉 , L =
〈G(2)

0 ,ψ〉
〈γ,ψ〉

∫ R

0
% J0(kcρ)

3 d%
∫ R

0
% J0(kcρ)2 d%

+
〈G(2)

1 ,ψ〉
〈γ,ψ〉

∫ R

0
% J0(kcρ) J1(kcρ)

2 d%
∫ R

0
%J0(kcρ)2d%

(C.6)
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