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A general formal derivation of the screened massive expansion is provided by Schwinger-Dyson
equations. Some known issues of the expansion are clarified and a more general framework is established
for a natural extension of the method to two loop or to amplitudes that are not directly defined
by a generating functional. For instance, a one-loop screened expansion is given for the effective
gauge-parameter-independent gluon propagator that arises from the pinch technique.
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I. INTRODUCTION

In the last decades, important progresses have been made
in the study of the nonperturbative low-energy regime of
strong interactions, establishing the dynamical generation
of a mass scale in the correlators of the theory [1–55].
Quite recently, by a mere change of the expansion point,

a new perturbative approach has been proposed for the
study of Yang-Mills theory and QCD from first principles
in the low-energy “nonperturbative” regime of strong
interactions. A screened massive expansion has been
developed [56–67], which is perfectly sound in the infrared
(IR) and has many merits of ordinary perturbation theory:
calculability, analytical outputs, and a manifest description
of the analytic properties in the complex plane. While the
agreement with lattice data is already excellent at one loop
in the gluon sector, some ambiguities on the renormaliza-
tion have been encountered in the full QCD [66]. Moreover,
the one-loop contribution to the quark renormalization
function is almost vanishing and a two-loop correction
would be required [54,55].
A two-loop extension of the screened expansion is not

straightforward without having first addressed some minor
ambiguities that emerge in its original formulation, like the
lack of a rigid criterion for the inclusion of the mass
counterterms in higher-order loops. On the other hand,
there are important physical amplitudes that are not directly
defined by a generating functional. For instance, the pinch
technique [68,69] provides amplitudes with interesting
physical features, like being gauge-parameter independent

and fulfilling Abelian Ward identities. Since these ampli-
tudes have an operational definition from the pinch
technique, it is not obvious how to evaluate them by the
screened expansion.
In this paper, we provide a more general framework and

formulate the screened expansion as a loop expansion of
the exact Schwinger-Dyson (SD) equations. The formal
derivation allows for a straightforward extension to higher
orders and clarifies some unsolved issues of the original
expansion. Moreover, in the new framework the expansion
can be easily extended to other theories, provided that a
specific set of modified SD equations is available.
This paper is organized as follows: the screened expan-

sion is recovered as a loop expansion of the SD equations in
Sec. II; in more detail, the simple one-loop approximation
is discussed in Sec. II A, the general higher order extension
is studied in Sec. II B, a specific minimal two-loop
expansion is advocated in Sec. II C, and different truncation
strategies are then compared in Sec. II D; in the framework
of the pinch technique, a screened expansion for the
effective gluon propagator is discussed in Sec. III where
a simple explicit calculation at p ¼ 0 is provided, showing
that the effective propagator is finite in the IR; finally,
Sec. IV contains some closing remarks and directions for
future work.

II. SCREENED EXPANSION OF SD EQUATIONS

By a loop expansion, the SD equations can be decoupled
and are known to provide the standard perturbative expan-
sion of the vertex functions which define the theory.
Here, we introduce a variationally oriented scheme which
captures some nonperturbative features, giving rise to a
screened loop expansion. We neglect quarks and deal
with the pure Yang-Mills theory, but the procedure is
general and can be used for the full QCD or even other
theories.
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Suppressing all color and Lorentz indices, the exact SD
equations of pure Yang-Mills theory have the following
structure:

Δ−1 ¼ Δ−1
0 − Π;

Π ¼ Π½Δ; D;Γi�;
D−1 ¼ D−1

0 − Σ;

Σ ¼ Σ½Δ; D;Γi�;
Γi ¼ Γi½Δ; D;Γj�; ð1Þ

where all functions have an explicit dependence on external
momenta (not shown) and the vertex functions Σ, Π, Γi are
given functionals of their arguments. More precisely, in a
covariant Rξ gauge, the gluon propagator is

Δμν
abðqÞ ¼ δab

�
tμνðqÞΔðqÞ − ξ

q2
lμνðqÞ

�
; ð2Þ

where tμνðqÞ, lμνðqÞ are the projectors

tμνðqÞ ¼ gμν −
qμqν

q2
; lμνðqÞ ¼ qμqν

q2
; ð3Þ

and ΔðqÞ is the transverse part entering in the SD
equations, Eq. (1), together with its tree-level expression

Δ0ðqÞ ¼ −
1

q2
; ð4Þ

the gluon self-energy is transverse

Πμν
abðqÞ ¼ δabtμνðqÞΠðqÞ; ð5Þ

and ΠðqÞ is the scalar function entering in Eq. (1); the
function DabðqÞ is the ghost propagator, and ΣabðqÞ is the
ghost self-energy, while the tree-level ghost propagator is

D0
abðqÞ ¼ δab

q2
; ð6Þ

the set of vertex functions fΓig includes the ghost-gluon
vertex Γgh ≡ Γμ

abc, the three-gluon vertex Γ3 ≡ Γμν ρ
abc and the

four-gluon vertex Γ4 ≡ Γμνρσ
abcd, which are the only vertices

with a nonzero tree-level expression Γð0Þ
i ≠ 0. The detailed

structure of the functionals Π and Σ is shown in Fig. 1 by
diagrams. In the Landau gauge, ξ ¼ 0, the gluon lines are
transverse and are given by the scalar function Δ. In the
general case, each gluon line contains the longitudinal part
shown in Eq. (2), which is exact and is not affected by the
interaction, because the self-energy Π is transverse. Thus,
in any case, the graphs are regarded as functionals of the
unknown transverse part Δ.

Since the vertex functions are expressed as functionals of
their arguments, and since there is an infinite set of vertex
functions beyond tree level, the SD equations cannot be
decoupled exactly. However, by a loop expansion, the
functionals in Eq. (1) can be expressed as a series in powers
of the coupling g2 ¼ 4παs, yielding the standard result of
perturbation theory. For instance, at tree level, the self-
energy functionals vanish, Σ ¼ 0, Π ¼ 0, while the only

nonzero vertices, Γgh ¼ Γð0Þ
gh , Γ3 ¼ Γð0Þ

3 , Γ4 ¼ Γð0Þ
4 , are not

functionals of other vertices or correlators. The SD equa-
tions decouple and take the simple form

Δ−1 ¼ Δ−1
0 ;

D−1 ¼ D−1
0 : ð7Þ

At one loop, we can replace the propagators and vertices
by their tree-level values inside the loops, and again the
SD equations decouple as

Δ−1 ¼ Δ−1
0 − Πð1LÞ½Δ0; D0;Γ

ð0Þ
i �;

D−1 ¼ D−1
0 − Σð1LÞ½Δ0; D0;Γ

ð0Þ
i �;

Γi ¼ Γð1LÞ
i ½Δ0; D0;Γ

ð0Þ
j �; ð8Þ

where the arguments of the one-loop (1L) functionals, on
the right-hand side, are the known tree-level expressions,
yielding analytical expressions for the (approximate)
propagators and the vertex functions, provided that we
are able to evaluate the integrals in the functionals.
Unfortunately, the standard perturbative expansion

breaks down in the infrared and fails to predict a dynamical
generation of mass. In other words, the approximate
solutions are very poor at low energy and become totally
unreliable in the limit q2 → 0. We use to say that the
dynamical generation of mass is a “nonperturbative” effect
that cannot be described by a loop expansion of the exact
SD equations at any order. Actually, it can be shown that, at

FIG. 1. The functionals Π and Σ in the SD equations, Eq. (1).
The black dots are dressed vertices, while the gray dots label
dressed propagators.
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any finite order of perturbation theory, by a simple dimen-
sional argument, Π ∼ q2 → 0 in the limit q2 → 0. Thus, as
it happens in QED, the perturbative gluon propagator still
has a pole at q2 ¼ 0, where Δ−1

0 ð0Þ ¼ 0. Without any mass
scale available in the original Lagrangian, the perturbative
pole is dictated by the pole of the tree-level propagator Δ0.
Thus, the failure of the perturbative expansion is tightly
linked to the very poor choice of the zeroth-order approxi-
mation, since Δ0ðqÞ is quite far from the exact solution of
the SD equations in the IR: according to lattice calculations,
we expect that an exact solution should develop a mass
scale and should be finite in the limit q2 → 0

Δð0Þ ¼ 1

m2
; ð9Þ

where m is some dynamically generated energy whose
specific value cannot be predicted by the theory.
The previous analysis suggests that a variationally

oriented improvement of the loop expansion could be
achieved by just changing the expansion point and expand-
ing about a massive tree-level propagator

ΔmðqÞ ¼
1

−q2 þm2
; ð10Þ

which shows the correct limit of Eq. (9) in the IR.
If we look at the first of the one-loop SD equations,

Eq. (8),

Δ−1 − Δ−1
0 ¼ −Π ∼Oðg2Þ; ð11Þ

then we get a mismatch in the IR, with the difference on the
left-hand side that gets close to m2 and the right-hand side
that must be a small perturbative correction. It is quite
obvious that the perturbative expansion must break down
since the difference is not a small correction. While,
if we attempted an expansion about Δm, the difference
Δ−1 − Δ−1

m would be small at any energy scale and
would vanish in the IR: the perturbative correction would
be very small and we could extract reliable approximations
from the exact SD equations, already at the one-loop
level.
We observe that, even if the bare propagator Δ0

appears in the SD equations, the exact solution Δ
does not need to be close to Δ0 (and is not). We can
rearrange the SD equations and eliminate Δ0 by using the
exact relation

Δ−1
0 ¼ Δ−1

m −m2: ð12Þ

The first pair of exact SD equations can be recast as

Δ−1 ¼ Δ−1
m − Π0;

Π0 ¼ m2 þ Π½Δ; D;Γi�: ð13Þ

It is quite obvious that the change has no effect on the exact
solution of the equations, which does not depend on the
parameter m. We can use m as a variational parameter and
optimize the expansion by requiring that Δm ≈ Δ. In that
sense, the parameter m2 does need to be exactly the same
scale 1=Δð0Þ encountered in Eq. (9), but should be tuned in
order to optimize the expansion. We will be back to the
point later. At the moment, let us just suppose that we
picked up the best value and the difference between the
propagators is “small”:

Δ−1 − Δ−1
m ¼ −λΠ0 ≈ 0; ð14Þ

where λ is just a fictitious expansion parameter to be set to 1
at the end. We might attempt a double expansion: a δ
expansion in powers of λ and a loop expansion in powers of
the coupling g2. If the coupling g2 is not too large, and we
have new evidence that it is not, see Refs. [56,57,61], then
the optimized loop expansion gives reliable predictions,
even in the IR, provided that Eq. (14) is fulfilled, i.e., that
we are expanding about the optimal point. As long as Π0 is
small, even if Π takes a moderate value, the expansion
makes sense. Then, in the first place, we assume that
Eq. (14) is satisfied and that we might truncate the
expansion at some low order in λ.
Starting from Eq. (14), the expansion of Δ in powers of λ

yields

Δ ¼ 1

Δ−1
m − λΠ0 ¼ Δm þ λΔmΠ0Δm þOðλ2Þ ð15Þ

and, at first order, the variation δΔ ¼ Δ − Δm reads

δΔ ¼ λm2ðΔmÞ2 þ λðΔmÞ2Π½Δm;D;Γi�; ð16Þ

where we have used the second of the exact SD equations,
as given by Eq. (13), and Π is evaluated at λ ¼ 0. We
observe that the exact propagator has disappeared in the
variation δΔ, which is expressed in terms of Δm, but still
depends on the exact functions D and Γi. Corrections of
order λ2, or higher order, can be introduced by the same
method as required.
Using the variation δΔ, Eq. (16), we can evaluate the first

variation of the SD equations and eliminate the dependence
on the exact Δ among the arguments of the functionals. In
detail, the expansion of Eq. (1) leads to the approximate
first-order SD equations
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Δ−1 ¼ Δ−1
m − Π0;

Π0 ¼ m2 þ Π½Δm;D;Γi� þ
Z

dk

�
δΠ

δΔðkÞ
�

Δm

δΔðkÞ;

D−1 ¼ D−1
0 − Σ;

Σ ¼ Σ½Δm;D;Γi� þ
Z

dk

�
δΣ

δΔðkÞ
�

Δm

δΔðkÞ;

Γi ¼ Γi½Δm;D;Γj� þ
Z

dk

�
δΓi

δΔðkÞ
�

Δm

δΔðkÞ; ð17Þ

where dk is the appropriate integration measure. According
to its definition in Eq. (5), here and in all the following
equations, the functional Π is the transverse projection of
the graphs that define it. While individual graphs might
contain a longitudinal part, that part does not give any
contribution to the transverse component Δ of the gluon
propagator in the SD equations. On the other hand, the
exact resummation of all the longitudinal parts must vanish
because the exact Π is transverse.
The first-order equations are not decoupled yet,

because we still have the exact (unknown) functions
D and Γi among the arguments of the functionals
on the right-hand side. As we did for the standard one-
loop expansion, in Eq. (8), we can get explicit decoupled
equations by a loop expansion in powers of the
coupling g2.

A. First-order, one-loop expansion

If only one-loop graphs are retained in the expansion of
the functionals in the first-order SD equations, Eq. (17),
then we have some important simplifications. First of all,
inside the loops we can drop the last term of δΔ in Eq. (16),
which already is of order g2 and would give rise to higher
order terms. Thus we can just set

δΔ ¼ ðδΔÞ0 ¼ λm2ðΔmÞ2: ð18Þ

Moreover, for any generic functional F ½Δ� that does not
depend on m2, we can write

∂

∂m2
F ½Δm� ¼

Z
dk

�
δF

δΔðkÞ
�

Δm

∂ΔmðkÞ
∂m2

;

¼ −
Z

dk

�
δF

δΔðkÞ
�

Δm

½ΔmðkÞ�2; ð19Þ

and obtain the identity

Z
dk

�
δF

δΔðkÞ
�

Δm

ðδΔðkÞÞ0 ¼ −λm2
∂

∂m2
F ½Δm�: ð20Þ

Finally, at one loop, we can replace the ghost propagator
and the vertices by their tree-level functions inside the loops

and, having set λ ¼ 1, we obtain the decoupled first-order
SD equations

Δ−1 ¼ Δ−1
m − Π0;

Π0 ¼ m2 þ
�
1 −m2

∂

∂m2

�
Πð1LÞ½Δm;D0;Γ

ð0Þ
i �;

D−1 ¼ D−1
0 − Σ;

Σ ¼
�
1 −m2

∂

∂m2

�
Σð1LÞ½Δm;D0;Γ

ð0Þ
i �;

Γi ¼
�
1 −m2

∂

∂m2

�
Γð1LÞ
i ½Δm;D0;Γ

ð0Þ
j �: ð21Þ

The explicit graphs contributing to Π0 and Σ are shown in
Fig. 2, where the crossed graphs contain a transverse mass
counterterm m2tμν, shown as a cross, originating from the
mass derivative of the standard graphs and taking in
account the variation Δm → Δm þ Δmm2Δm inside the
loops. Of course, the functional Πð1LÞ is the transverse
projection of the graphs in Fig. 2, since the graphs contain a
longitudinal part.
The resulting expansion is almost equivalent to the

massive expansion introduced in Refs. [56–60]. The only
difference is the absence of the doubly crossed tadpole that
was included in the previous works and is also shown in
braces in Fig. 2. Here, at first order in λ, there are no doubly
crossed graphs, but they would be included by adding
higher order corrections. That missing graph is constant
and finite and its absence can be absorbed in part by a shift
of the parameter m and other renormalization constants, as
discussed in Ref. [57]. It must be kept in mind that, because
of the truncation, ambiguities like that can arise, especially
regarding finite higher order contributions. It is not obvious
why the result should be improved by their further
inclusion but, somehow, these terms might mimic the
effect of higher loops and their inclusion could improve
the agreement with the exact result. In fact, the doubly
crossed tadpole in Fig. 2, which arose by a strict vertex
counting in the original screened expansion [56,57],
introduces a slight improvement and leads to an excellent

FIG. 2. Graphs contributing to the one-loop screened expansion
of Π0 and Σ. The doubly crossed gluon tadpole, graph (1d) in
braces, is not present in the minimal expansion.
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agreement with the lattice data [60,62]. Moreover, in some
different frameworks, like the modified SD equations of the
pinch technique, the existence of that term would become
crucial, as shown in Sec. III. We will discuss more general
and improved truncation strategies below, in Sec. II D.
Despite that shortcoming, the present minimal one-loop
expansion has the advantage of a straight derivation from
the SD equations and a well-defined extension to higher
orders. Besides, we expect that the ambiguities on the
truncation would become less relevant when higher loop
corrections are added in the expansion.
We observe that the added mass scale breaks the Becchi-

Rouet-Stora-Tyutin symmetry at any finite order of the
expansion, which is not protected from the appearance of
new spurious diverging terms with dimensions ofm2. While
in the UV the mass parameter becomes irrelevant, and the
usual diverging terms are absorbed by the standard counter-
terms, a diverging mass term cannot be canceled because
there are no mass parameters in the original Lagrangian.
However, sincewe just rearranged the expansion of the exact
SD equations, the spurious divergences must cancel some-
how. In fact, the differential operator ð1 −m2

∂=∂m2Þ does
the job and cancels all spurious mass divergences in
the expansion. In dimensional regularization, taking
d ¼ 4 − 2ϵ, spurious terms of the kind ∼m2=ϵ, are found
in most of the graphs of Fig. 2 for the self-energy Πð1LÞ. All
these spurious terms are canceled since

�
1 −m2

∂

∂m2

��
m2

ϵ

�
¼ 0: ð22Þ

The graphs come in pairs, with each loop accompanied by
the corresponding crossed loop, and the spurious divergence
cancels in their sumaccording to Eq. (22). Thus the one-loop
expansion of Eq. (21) shows the same identical diverging
terms of the standard loop expansion and can be renormal-
ized by the standard set of counterterms [56–58].
An important point is that, having inserted an arbitrary

mass, there are two energy scales in the quantized theory:
the renormalization point p ¼ μ, which comes from the
regularization of the loops and the mass parameterm. Thus,
even if the calculation is from first principles and the exact
SD equations derive from the full, gauge fixed, Faddeev-
Popov Lagrangian of QCD, the expansion contains one free
parameter that can be taken as the ratiom=μ. The expansion
can be optimized by a variational choice of the best
parameter. For instance, it was shown that enforcing the
gauge invariance of poles and residues provides an excel-
lent agreement with the lattice data [60].

B. Higher orders and loops

In principle, we could extend the expansion and truncate
it at the order λN and ðg2ÞL which we call Nth order and L
loop. But, first of all, we observe that it does not make sense
to consider a large value of N at a small value of L.

While the λN term is accompanied by a power of
ðΠ0ÞN ¼ ðm2 þ ΠÞN , the term ΠN has no effects inside
the loops, even in one-loop graphs, if N > L − 1, since the
generated graphs would have N þ 1 > L loops at least and
would be discarded in the L-loop expansion. We would just
add powers of m2, which are not regarded as small terms
according to Eq. (14). In fact, even for N ¼ 1 the self-
energy Π does not contribute to δΔ in Eq. (18) at one loop.
Thus, there is no reason to believe that the result might
improve by increasing N. For instance, at one loop,
increasing N would only produce a proliferating of crossed
graphs, like the doubly crossed tadpole of the original
screened expansion [56,57]. These terms introduce finite
small corrections that might improve the result sometimes,
but it is not obvious why they should in general.
However, the crossed terms, which cancel the spurious

divergences, originate right from the insertions of m2 that
play an important role: the spurious divergences are
introduced by the mass scale m and can only be canceled
by those insertions of m2. Moreover, we know that the
divergences must cancel exactly if the whole series is
resummed, as Becchi-Rouet-Stora-Tyutin symmetry would
be restored. Then, we must allow for a sufficient number of
mass insertions in the graphs and an order N > 1 is
required beyond one loop. On the other hand, according
to Eq. (15), any power of λ adds at least one loop to the
graphs, so that some L-loop terms would be missing in
the expansion if N < L. Then we advocate the choice of
N ¼ L as the minimal compromise that might cancel all
spurious divergences without a large proliferation of
crossed graphs.
At a generic order N, the simple procedure that we

described above becomes quite cumbersome and a direct
iteration of Dyson equations would be easier to be
implemented in practice. But it is instructive to look at
the details anyway. The variation δΔ of Eq. (16) would
generalize as

δΔ ¼ Δm

XN
n¼1

½ðm2 þ ΠÞΔm�nλn; ð23Þ

where Π is a functional Π ¼ Π½Δ; D;Γ� that contains the
original exact arguments. Thus, a recursive iteration is
understood by the insertion of Eqs. (23) and (1) for Σ and Γi
in the functionals, up to the desired power orders N and L.
Moreover, all functionals in the SD equations should be
expanded according to the generic Taylor series

F ½Δ� ¼ F ½Δm� þ
XN
n¼1

1

n!

Z �
δnF

δΔðk1Þ…δΔðknÞ
�

×
Yn
i¼1

½δΔðkiÞdki� ð24Þ
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until the desired order λN and ðg2ÞL is reached, discarding
higher order terms.
As remarked above, for N > 1, it is easier to follow the

straightforward path of iterating the Dyson equations
directly. The SD equations can be written in the exact
equivalent form

Δ ¼ Δm þ Δmλðm2 þ ΠÞΔ;
D ¼ D0 þD0ΣD;

Π ¼ Π½Δ; D;Γi�;
Σ ¼ Σ½Δ; D;Γi�;
Γi ¼ Γi½Δ; D;Γj�; ð25Þ

where λ must be set to 1 at the end of the calculation. The
equations can be iterated, up to the desired order, discarding
all terms with higher powers than λN and ðg2ÞL. The
procedure will generate exactly the same graphs as
described before. For instance, it is easy to check that
for L ¼ 1 and N ¼ 1 we obtain the same graphs of Fig. 2.
Both procedures are the exact expansion of the same set of
SD equations, then at a given order they must give the same
set of graphs.
An even easier procedure arises by a two-step expansion

of the SD equations. Observing that

Δ−1 ¼ Δ−1
0 − λΠ;

Δ−1
0 ¼ Δ−1

m − λm2; ð26Þ

we can iterate the standard Dyson equation, equivalent to
the first line of Eq. (26),

Δ ¼ Δ0 þ Δ0ðλΠÞΔ ð27Þ

and generate the usual loop expansion of the SD equations.
At each iteration this equation adds one or more loops and a
power of λ. Then, as a second step, we can iterate the
second Dyson equation, equivalent to the second line of
Eq. (26),

Δ0 ¼ Δm þ Δmðλm2ÞΔ0; ð28Þ

which inserts mass counterterms in the ordinary graphs and
replaces Δ0 by Δm. Each iteration adds a cross in a gluon
line and a power of λ. For instance, starting from a one-loop
term of Π, and inserting one loop by Eq. (27), we can still
add N − 1 crosses at the order N. At any given loop order,
all graphs are readily obtained by just adding the allowed
number of crosses to the gluon lines. In practice, we just
draw all the ordinary graphs of perturbation theory and
decorate them inserting the correct number of crosses in all
the topologically different positions.

C. Minimal two-loop extension

Let us describe a minimal two-loop expansion with
N ¼ L ¼ 2. By the two-step procedure described in the
previous subsection, we first iterate Eq. (27) inside the SD
equations and generate the standard two-loop expansion.
There are three classes of graphs contributing to the gluon
self-energy Π½Δ0� at the order L ¼ 2:
(1) A first class Πð1LÞ

0 ½Δ0� is given by the one-loop
graphs of Fig. 1, with the exact propagator Δ
replaced by Δ0, according to Eq. (27) at the order
N ¼ 0, and the other arguments D, Γi set to their
bare values (these graphs have no powers of λ, then
N ¼ 0 and L ¼ 1).

(2) A second class Πð2LÞ
1 ½Δ0� originates from the in-

sertion of λΠ in the one-loop graphs of Fig. 1,
according to Eq. (27) at the order N ¼ 1, with all the
arguments set to their bare values (these graphs have
a power of λ and we retain only two-loop terms, then
N ¼ 1 and L ¼ 2).

(3) A third class Πð2LÞ
0 ½Δ0� is given by the two-loop

graphs of Fig. 1, where Δ is just replaced by Δ0 and
all the other arguments are also set to their bare
values (any further insertion would raise the loop
order beyond two loop, then N ¼ 0 and L ¼ 2 for
these graphs).

There would be a fourth class of graphs, generated by the
one-loop graphs of Fig. 1 by iterating with the ghost and
vertex functionals of Eq. (25): for instance, inserting the
ghost propagator in a one-loop graph

D ¼ D0 þD0ΣD0 þ � � � ; ð29Þ

the graph generates a two-loop graph with N ¼ 0.
However, these two-loop graphs can be added to the third

class Πð2LÞ
0 ½Δ0�. Then, all graphs in the three classes are

understood as functionals of the bare arguments, i.e., all
internal lines and vertices are replaced by the bare ones (in
the notation, we are omitting the other bare arguments, D0,

Γð0Þ
i , for brevity).
In the second step, according to Eq. (28), we decorate the

graphs with the allowed number of mass insertions and
replace all the bare gluon lines Δ0 by the massive ones, Δm.
All graphs in the second class Πð2LÞ

1 ½Δ0� have N ¼ 1 and
can receive only one further mass insertion. The generated
graphs can be drawn by just inserting one mass counterterm
in a gluon line in all the different positions. Following the
same steps that led to Eq. (21), the total set of graphs
generated by the second class can be written as

ΠðiiÞ ¼
�
1 −m2

∂

∂m2

�
Πð2LÞ

1 ½Δm�: ð30Þ

The first classΠð1LÞ
0 ½Δ0� and the third classΠð2LÞ

0 ½Δ0� contain
graphs with N ¼ 0, which can receive a maximum of two
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mass insertions. The total set of graphs generated, including
the correct combinatorial factors, can be written as

ΠðiÞ ¼
�
1 −m2

∂

∂m2
þ 1

2
m4

∂
2

∂ðm2Þ2
�
Πð1LÞ

0 ½Δm�;

ΠðiiiÞ ¼
�
1 −m2

∂

∂m2
þ 1

2
m4

∂
2

∂ðm2Þ2
�
Πð2LÞ

0 ½Δm�: ð31Þ

Thus, the evaluation of the generated graphs is immediate if
the analytical expressions are known for the standard two-
loop graphs with massive gluon lines (all of them occur in
the Curci Ferrari model [70]). The proof of Eqs. (30)
and (31) relies on the identity

Δ2
m ¼ −

∂

∂m2
Δm; ð32Þ

which can be used recursively if the functionals depend on
m2 only through the argument Δm. Actually, each graph in
Π½Δm� contains a product of massive gluon propagators
Δi ≡ ΔmðkiÞ, with i ¼ 1; 2…M, whereM is the number of
internal gluon lines. The derivative of this product reads

∂

∂m2

YM
i¼1

Δi ¼
XM
j¼1

ð−Δ2
jÞ
Y
i≠j

Δi: ð33Þ

Then, multiplying by m2, the differential operator
−m2

∂=∂m2 replaces a transverse gluon line by the chain
Δjm2Δj in all the different positions in the graph, recovering
Eq. (30). A second derivative gives

∂
2

∂ðm2Þ2
YM
i¼1

Δi ¼
XM
j¼1

ð2Δ3
jÞ
Y
i≠j

Δi þ
XM
j¼1

ðΔ2
jÞ
X
k≠j

ðΔ2
kÞ
Y
i≠j;k

Δi;

ð34Þ

then multiplying by m4=2

m4

2

∂
2

∂ðm2Þ2
YM
i¼1

Δi ¼
XM
j¼1

ðΔjm2Δjm2ΔjÞ
Y
i≠j

Δi

þ
X
j<k

ðΔjm2ΔjÞðΔkm2ΔkÞ
Y
i≠j;k

Δi;

ð35Þ

where each pair j, k is taken only once in the last line. We
recognize a double mass insertion in the same line j,
summed over all the different gluon lines, in the first term.
In the second term we find two mass insertions in different
lines j, k, summed over all the pairs, each taken once.
It is instructive to see how the same graphs are generated

by a direct recursive iteration of Eq. (25), as shown in Fig. 3
for a single one-loop graph.

The present two-loop expansion produces a really
minimal set of graphs, containing all the standard two-
loop graphs and a minimal set of crossed graphs that cancel
the spurious divergences. Any proliferation of crossed
graphs is avoided, and still the expansion might be
renormalized, in principle, by the standard set of counter-
terms and renormalization constants of perturbation theory.
In other words, all spurious diverging terms, which cannot
be canceled by the counterterms, are removed by the
differential operators in Eqs. (30) and (31).
In order to illustrate the mechanism, we observe that all

diverging graphs can be expanded to first order in external
momenta and reduced to scalar diverging functions [70,71].
We are interested in the spurious diverging terms of the self
energyΠðpÞ in the limit p2 → 0, which are not canceled by
the wave function renormalization constant at any order.
The massive gluon lines give rise to a diverging result
Πð0Þ ¼ c ×m2, where the constant c contains poles 1=ϵn

and logarithmic terms ðlogmÞl=ϵn. At two loop, we would
be left with dangerous double poles m2=ϵ2 and logarithmic
poles m2 logm=ϵ with dimensions of m2. For instance, at
p ¼ 0, the diverging part of a typical two-loop graph is
given by the Euclidean integral [70,72]

�
g2μ2ϵ

ð2πÞd
�

2
Z

d4−2ϵkd4−2ϵq
ðk2 þm2Þ½ðk − qÞ2 þm2Þ�ðq2 þm2Þ

¼ −
3g4

32π2

�
m2

ϵ2
þ 3m2

ϵ
þ 2

m2

ϵ
logðμ̄2=m2Þ þ…

�
: ð36Þ

It is quite obvious that the simple pole and the double pole
m2=ϵ2 disappear after the action of the differential operators
in Eqs. (30) and (31), while the logarithmic pole is reduced
to a simple pole

FIG. 3. All graphs generated by the first one-loop graph of
Fig. 1 after a double iteration of the SD equations, according to
Eq. (25), limiting to pure gluon terms, neglecting any ghost and
vertex insertions for brevity. All straight lines are massive gluon
propagators while the black dots label exact, dressed, propaga-
tors. Only dressed propagators can receive further insertions in
the next iteration.
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�
1 −m2

∂

∂m2

�
m2 logðμ̄2=m2Þ

ϵ
¼ m2

ϵ
;

�
1 −m2

∂

∂m2
þ 1

2
m4

∂
2

∂ðm2Þ2
�
m2 logðμ̄2=m2Þ

ϵ
¼ m2

2ϵ
: ð37Þ

The residual simple poles are what one would expect since,
at two loop, a renormalization of the coupling has to be
considered in the one-loop graphs, yielding the same kind
of divergence. In the limit p2 → 0, a typical one-loop graph
contains the spurious diverging part

Πð0Þ ∼ g2m2

�
1

ϵ
þ logðμ2=m2Þ þ C

�
; ð38Þ

which is canceled by the crossed graph, according to
Eq. (22), leaving

Πð0Þ ∼ g2m2: ð39Þ

At two-loop order, we must consider the renormalization of
the coupling constant up to one loop

g2 ¼ g2RZ
2
g ¼ g2Rð1þ 2δZgÞ; ð40Þ

where, in the MS scheme, δZg ¼ bg2R=ϵ, with a constant b
to be defined in order to cancel the divergence of the two-
loop graphs. Then, the finite sum of the one-loop graphs
acquires an extra two-loop diverging term

Πð0Þ ∼ g2m2 ¼ g2Rm
2 þ 2bg4R

m2

ϵ
; ð41Þ

which, in principle, could subtract the residual divergences
arising from Eqs. (37) and (36), without having to add any
mass counterterm by hand. Of course, a detailed two-loop
calculation is required in order to check that the residual UV
divergences can be absorbed by the same set of counterterms
of the standard perturbation theory, as we expect since the
mass parameter becomes irrelevant at high energy.

D. Different truncation strategies

As discussed above, an ambiguity can arise about the
number of finite crossed graphs to be retained at any loop
order of the expansion. Different truncation strategies
might lead to slightly different results, especially at one-
loop. In this section we compare the minimal expansion
with the more effective vertex-counting criterion of the
original derivation in Refs. [56,57].
First of all, we observe that a strict loop-wise expansion

would lead to the same identical result of standard
perturbation theory. Since m2 insertions do not change
the loop order, in principle, at any given loop order, we
should resum all graphs with any number of mass inser-
tions. The exact resummation of all the mass insertions,

Δm þ Δmm2Δm þ Δmm2Δmm2Δm… ¼ Δ0; ð42Þ

is equivalent to restoring Δ0 in place of Δm in any internal
gluon line. On the other hand, the infinite sum in Eq. (42)
provides some nonperturbative content that makes the
difference between a screened expansion about Δm and
the standard perturbative expansion about Δ0. Thus, the
above series in Eq. (42) must be truncated, since its exact
sum would wash out the nonperturbative content. Retaining
a finite number of terms in any gluon line would lead to
crossed graphs, all belonging to the same loop order.
Especially when these graphs are finite, their inclusion
does not change the result dramatically, and different
strategies might be envisaged for determining their inclu-
sion at any loop order.
The minimal choice N ¼ L has been shown to be

effective for canceling all spurious divergences, but it arose
from the assumption that λΠ0 ¼ λðm2 þ ΠÞ is a small
quantity, validating the δ expansion in powers of λ.
However, in the loop expansion, the exact function Π is
replaced by its truncated expansion and even a finite
missing contribution might lead to a large Π0, thus
invalidating the expansion. A notable example is provided
by the modified SD equations arising from the pinch
technique, since the one-loop effective self-energy
Π̂ð1LÞð0Þ ¼ 0 exactly, because of the QED Ward identity,
which is satisfied by the modified vertices. The anomaly
arises because the expansion parameter is by itself a
truncated expansion.
Even if more cumbersome, a vertex-counting criterion

would be more reliable, as it is based on a δ expansion in
powers of the whole interaction, which does not depend on
the loop order of the expansion. When starting from a well-
defined Lagrangian, perturbation theory leads to an expan-
sion of the generating functional in powers of the whole
interaction. In the resulting graphs, each power of a local
interaction term introduces a vertex in the expansion. In the
presence of anomalous interaction terms, which do not
contain powers of the coupling g2, we can only take track of
the order by just counting the number of vertices in a graph.
Thus, regarding the mass counterterm insertions as two-
point vertices, it makes sense to determine the order of a
graph by counting the total number of vertices. This
democratic criterion gives the same order to m2 counter-
terms, three-gluon and four-gluon vertices, which would
be of order g0, g, and g2, respectively, in a loop-wise
expansion. Actually, we can check that all graphs in Fig. 2,
including the doubly crossed tadpole, have no more than
three vertices.
Implementing the same procedure for the expansion of

the SD equations is not immediate without going through
the functional definition of the theory. However, we can
assume that a given set of SD equations derives from some
unknown functional definition of the theory and that the
expansion of the SD equations by graphs can be traced back
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to a power expansion of the whole interaction. Then, by the
democratic criterion, we can truncate the screened expan-
sion and retain graphs with a given number of vertices.
At one loop, in order to cancel all the spurious divergences
we should retain graphs with no more than three vertices.
Especially at one loop, where the ambiguity on the retained
terms can have a stronger effect, the vertex-counting
criterion is more reliable, as shown by the agreement that
is found with the lattice data. In fact, by a variational
argument, when expanding about Δm, if the massive
propagator Δm is a very good approximation for the exact
propagator Δ, then the effect of the whole interaction must
be very small and a perturbative expansion in powers of
the whole interaction, including the mass counterterm,
makes sense.

III. SCREENED EXPANSION AND PINCH
TECHNIQUE

The pinch technique [68,69] is a general method based
on a new set of off-shell Green’s functions that are
independent of the gauge-fixing parameter and satisfy
ghost-free Ward identities. Historically, the method
was first introduced as a tool for the study of the SD
equations [1,73]. Actually, the arguments of the SD
equations, Eq. (1), are gauge-dependent unphysical
Green’s functions, while all physical observable must be
gauge-parameter independent. The delicate all-order can-
cellation of the gauge dependence might be distorted by an
arbitrary truncation of the infinite set of equations. On the
other hand, in the pinch technique, the new set of Green
functions are gauge independent at any order, and provide a
direct way to evaluate form factors, effective charges,
resonant transition amplitudes, and the dynamically gen-
erated gluon mass [68,69].
Unfortunately, there is no formal functional definition of

the procedure that is operational and depends on the given
diagrammatic expansion of the theory. However, the
existence of a direct correspondence between the pinch
technique and the background-field method has led to a
new set of modified SD equations that are satisfied by the
new gauge-independent Green functions. The modified SD
equations turn out to be the SD background-field equations
in the Feynman gauge [74]. Thus, operationally, we can
define the new gauge-independent functions as the solu-
tions of the background-field SD equations, provided that
we set ξ ¼ 1.
For instance, the effective gluon propagator Δ̂ðpÞ is a

physical function endowed with interesting features and
directly related to an effective renormalized coupling [69].
Thus, it would be interesting to evaluate that function by an
analytical method like the one-loop screened expansion, in
order to study the analytic properties in the complex plane.
Actually, the function Δ̂ðpÞ is tightly linked to the dressed
propagator ΔðpÞ and we argue that the two functions might
share the same poles.

Having derived the screened expansion from the
SD equations, we can easily modify the expansion and
write a screened expansion for the gauge-independent Δ̂ðpÞ
starting from the background-field SD equations in the
Feynman gauge. The new one-loop expansion defines
an approximate analytical solution of the equations
which would be equivalent to an untrivial nonperturbative
truncation of the exact equations. As it happens for
the standard gluon propagator ΔðpÞ, we expect that a
variationally improved expansion would lead to a very
accurate approximation for the effective gauge-independent
function Δ̂ðpÞ.
On the other hand, the modified SD equations have a

structure similar to the usual SD set in Eq. (1). At one loop,
the graphs contributing to the gluon self-energy are exactly
the same, but the structure of the bare vertices is modified
because all external gluon lines must be regarded as
background gluons. Then, the screened expansion would
lead to the same one-loop graphs reported in Fig. 2, but the
resulting analytical expressions are different of course,
because the background-field vertices must be used instead
of the usual ones.
In more detail, in the background-field method, the

structure of the SD equations is the following [69]:

Δ̂−1 ¼ Δ−1
0 − Π̂;

Π̂ ¼ Π̂½Δ; D;Γi�;
Δ ¼ ð1þ GÞ2Δ̂−1;

D−1 ¼ D−1
0 − Σ;

Σ ¼ Σ½Δ; D;Γi�;
Γi ¼ Γi½Δ; D;Γj�;
G ¼ G½Δ; D;Γj�; ð43Þ

where the new scalar function G relates the effective gluon
propagator Δ̂ to the transverse part of the gluon propagator
Δ, which enters on the right-hand side of the equations.
Here, the conventions are the same as in Eq. (1), with the
exact longitudinal parts of the full propagators given
by Eq. (2). Moreover, the function G has no tree-level
contribution and its leading term is of order g2, so that, at
one-loop, it can be set to zero inside the loops, where Δ
can be replaced by Δ̂. The one-loop graphs of the functional
Π̂ are the same one-loop graphs of Fig. 1 but all the
external gluon lines must be regarded as background
fields [68,69].
At one loop, the screened expansion can be easily

obtained as discussed in the previous section. For
N ¼ 1, in the minimal approach, the one-loop SD equa-
tions follow by the same steps that led to Eq. (21), yielding
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Δ̂−1 ¼ Δ−1
m − Π̂0;

Π̂0 ¼ m2 þ
�
1 −m2

∂

∂m2

�
Π̂ð1LÞ½Δm;D0;Γ

ð0Þ
i �;

D−1 ¼ D−1
0 − Σ;

Σ ¼
�
1 −m2

∂

∂m2

�
Σð1LÞ½Δm;D0;Γ

ð0Þ
i �;

Γi ¼
�
1 −m2

∂

∂m2

�
Γð1LÞ
i ½Δm;D0;Γ

ð0Þ
j �; ð44Þ

and of course, the explicit graphs contributing to Π̂0 and Σ
are the same graphs of Fig. 2, with the gluon vertices
replaced by the corresponding background-field ones in the
effective gluon self-energy Π̂0. All graphs must be evaluated
in the Feynman gauge, ξ ¼ 1, in order to obtain an
approximation for the gauge-parameter-independent effec-
tive gluon propagator Δ̂.
In the democratic vertex-counting scheme, the doubly

crossed tadpole, which is shown in braces in Fig. 2, must be
included, even if it has N ¼ 2, since it is a third-order one-
loop graph, containing three vertices. While the relevance
of this finite term might be questioned for the gluon
propagator Δ, here its presence is crucial for the effective
propagator Δ̂. As previously discussed, the expansion in
Eq. (42) must be truncated for inserting some nonpertur-
bative content, but the truncation order is quite arbitrary,
especially when the omitted terms are finite. Thus, the
pinch technique provides an interesting motivation for
retaining the doubly crossed tadpole, since without it,
the one-loop effective self-energy Π̂ would be exactly zero
at p ¼ 0, invalidating the strict λ expansion in powers ofΠ0,
which would be of order m2, according to Eqs. (13)
and (14). On the other hand, the doubly crossed tadpole
appears as the first nonvanishing contribution to Π̂ at p ¼ 0
and, in the vertex-counting scheme, its natural inclusion
restores Eq. (14). Then, besides its physical relevance, the
effective propagator Π̂ provides an interesting example
where the simple minimal expansion does not work and the
more involved vertex-counting scheme must be used
instead.
It is instructive to go through the details of the calcu-

lation in this simple case and evaluate the effective self-
energy Π̂ at p ¼ 0. At the strict order N ¼ L ¼ 1, the
accidental vanishing of Π̂ð0Þ is expected, as a consequence
of the QED Ward identity, which is satisfied by the
modified vertices. The spurious mass divergence is already
canceled in the ordinary loops and then the crossed graphs
cancel the residual finite mass entirely at N ¼ 1, requiring
the inclusion of higher order terms.
The three-gluon and four-gluon vertices involved, with

one external background line, were reported in Ref. [75].
They read

iΓαμν
abc ¼ gfabc

�
ðp2 − p1Þαgμν þ

�
p1 − qþ 1

ξ
p2

�
ν

gμα

þ
�
q − p2 −

1

ξ
p1

�
μ

gνα

�
; ð45Þ

iΓμνρσ
abcd ¼ −ig2½fxabfxcd½ðgμρgσν − gμσgνρÞ

þ fxacfxdb
��

gμσgρν − gμνgρσ −
1

ξ
gμρgσν

�

þ fxadfxbc
��

gμνgσρ − gμρgσν þ
1

ξ
gμσgνρ

��
: ð46Þ

The gluon loop, graph (2b) in Fig. 2, can be evaluated by
inserting the gluon propagator of Eq. (2) with Δ ¼ Δm.
Taking the external momentum p ¼ 0 and setting ξ ¼ 1,
the contribution of the longitudinal propagator is canceled
by the vertex structure and we can write, in Euclidean
space, the transverse projection of the graph as

Π̂ð2bÞð0Þ ¼ 2NcðgμϵÞ2
ðd − 1Þ

d

Z
ddkE
ð2πÞd

k2E
ðk2E þm2Þ2 ;

¼ −
3Ncg2

ð4πÞ2 m2

�
1

ϵ
þ log

μ2

m2
þ const

�
: ð47Þ

The transverse projection of the uncrossed tadpole,
graph (1b) in Fig. 2, follows as

Π̂ð1bÞð0Þ ¼ −NcðgμϵÞ2ðd − 1Þ
Z

ddkE
ð2πÞd

1

k2E þm2
;

¼ 3Ncg2

ð4πÞ2 m2

�
1

ϵ
þ log

μ2

m2
þ const

�
: ð48Þ

As expected, the spurious mass divergence is canceled
and the sum is finite

Π̂ð1bÞð0Þ þ Π̂ð2bÞð0Þ ¼ const ×m2; ð49Þ

but that constant term would depend on the regularization
scheme. However, even the spurious constant term dis-
appears when the crossed graphs, (1c) and (2c) in Fig. 2, are
added, yielding the trivial result

�
1 −m2

∂

∂m2

�
m2 ¼ 0 ð50Þ

and Π̂ð0Þ ¼ 0. We are not considering the ghost loop that is
zero in the limit p → 0.
We have not added yet the doubly crossed tadpole,

graph (1d) in Fig. 2, which should be included by the
vertex-counting criterion. But a double derivative, as shown
in Eq. (35)
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Π̂ð1dÞð0Þ ¼ m4

2

∂
2

∂ðm2Þ2 Π̂
ð1bÞð0Þ ¼ −

3Ncg2

ð4πÞ2 m2; ð51Þ

which is finite, does not depend on any spurious constant
and gives the total contribution to the effective self-energy
Π̂ð0Þ, yielding

Π̂0ð0Þ ¼ m2 −
3Ncg2

ð4πÞ2 m2: ð52Þ

Finally, with Eq. (44), the effective propagator reads

Δ̂−1ð0Þ ¼ Δ−1
m ð0Þ − Π̂0ð0Þ ¼ 3Ncg2

ð4πÞ2 m2; ð53Þ

so that Δ̂ð0Þ is finite (and positive). In fact, a renormaliza-
tion-group invariant can be defined as [74]

d̂ ¼ g2Δ̂; ð54Þ

and this object can be regarded as an effective coupling that
saturates in the IR.

IV. CLOSING REMARKS AND OUTLOOK

The screened massive expansion is a useful perturbative
tool for the study of QCD in the nonperturbative regime and
its two-loop extension would provide valuable information
on the analytic properties of the correlators and on related
problems like confinement, mass generation, and vacuum
elementary excitations.
Here, we formulated the expansion as a modified loop

expansion of the exact SD equations. The new formulation
provides a general scheme for extending the expansion to
higher orders and to different theories. Different truncation
strategies are discussed and a minimal two-loop expansion
is discussed, which seems to be free of spurious diverging
mass terms. Thus, even at two loop, the correlators can be
renormalized by the standard set of counterterms, without
adding spurious parameters. Moreover, the explicit calcu-
lation of the graphs would follow by simple derivatives
of the massive graphs which appear in the well-studied
Curci-Ferrari model.
Even at one loop, the present method is useful

for discussing different truncation strategies. A simple

“convergence” principle would suggest to adopt a minimal
truncation scheme, where no further finite terms are
retained, once the cancellation of all the spurious diver-
gences is achieved. However, a democratic vertex-counting
scheme seems to be more effective at one loop and might
become crucial in other frameworks, like the pinch
technique.
Actually, one of the merits of the present formulation is

its ability to describe different theories, and the pinch
technique provides an interesting example since the occur-
rence of a mass term is prohibited by the QED Ward
identities at one loop. While a mass generation becomes
harder in that framework, the screened expansion seems to
be robust enough and predicts a finite effective gluon
propagator in the IR, albeit in the more effective vertex-
counting scheme.
It would be interesting to pursue the present study in the

two open directions: a full two-loop calculation of the QCD
correlators and a one-loop analytical calculation of the
effective gluon propagator by the pinch technique.
For instance, the poor one-loop description of the quark

renormalization function improves by a two-loop calcu-
lation in the massive Curci-Ferrari model [54,55]. It would
be very interesting to see if the same improvement can be
achieved by the screened massive expansion, which would
provide a reliable precise calculation from first principles.
At variance with numerical solutions of the SD equa-

tions, a one-loop calculation of the effective gluon propa-
gator would give explicit analytical results that could be
easily continued to the whole complex plane. Since the
effective propagator is a physical gauge-invariant object,
the location of its poles would be very important, to be
compared with the complex-conjugated poles that have
been reported for the Yang-Mills propagator [58,60] and
seem to be related to the gluon confinement [64,76]. Thus,
a detailed study of the analytic properties of the effective
propagator would be very welcome.
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