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Abstract: Sigma receptors modulate nociception, offering a potential therapeutic target to treat
pain, but relatively little is known regarding the role of sigma-2 receptors (S2R) in nociception.
The purpose of this study was to investigate the in vivo analgesic and anti-allodynic activity and lia-
bilities of a novel S2R selective ligand, 1-[4-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-2-yl)butyl]-
3-methyl-1,3-dihydro-1,3-benzimidazol-2-one (CM-398). The inhibition of thermal, induced chem-
ical, or inflammatory pain as well as the allodynia resulting from chronic nerve constriction in-
jury (CCI) model of neuropathic pain were assessed in male mice. CM-398 dose-dependently
(10–45 mg/kg i.p.) reduced mechanical allodynia in the CCI neuropathic pain model, equivalent
at the higher dose to the effect of the control analgesic gabapentin (50 mg/kg i.p.). Likewise,
pretreatment (i.p.) with CM-398 dose-dependently produced antinociception in the acetic acid
writhing test (ED50 (and 95% C.I.) = 14.7 (10.6–20) mg/kg, i.p.) and the formalin assay (ED50 (and
95% C.I.) = 0.86 (0.44–1.81) mg/kg, i.p.) but was without effect in the 55 ◦C warm-water tail-withdrawal
assay. A high dose of CM-398 (45 mg/kg, i.p.) exhibited modest locomotor impairment in a rotarod
assay and conditioned place aversion, potentially complicating the interpretation of nociceptive
testing. However, in an operant pain model resistant to these confounds, mice experiencing CCI
and treated with CM-398 demonstrated robust conditioned place preference. Overall, these results
demonstrate the S2R selective antagonist CM-398 produces antinociception and anti-allodynia with
fewer liabilities than established therapeutics, adding to emerging data suggesting possible mediation
of nociception by S2R, and the development of S2R ligands as potential treatments for chronic pain.

Keywords: sigma; sigma-2 receptor; sigma-2 ligand; allodynia; analgesia; neuropathic pain; sedation;
addiction

1. Introduction

Over half the people experiencing chronic pain in the United States respond poorly to
current treatments [1]. Approved therapeutics for chronic pain presently include repur-
posed antidepressants such as tricyclic antidepressants (TCAs), antiseizure medications
such as gabapentin, and opioids [2], but these exhibit major liabilities such as sedation,
increased fall-risk, tolerance, addiction, and other psychoactive effects [3,4]. This points to
the need for more effective and safer therapeutics for chronic pain.

The sigma receptors are ligand-operated transmembrane chaperone proteins that are
expressed throughout the central and peripheral nervous systems [5–7]. These receptors are
classified into two distinct receptor subtypes: sigma-1 and sigma-2 [5–7]. Cloned in 1996 [8],
sigma-1 receptor (S1R) modulation has shown therapeutic promise for alleviating chronic
pain [9,10]. The role of the sigma-2 receptor in nociception is less clear. First identified as
Tmem97, the sigma-2 receptor (S2R) was only recently cloned in 2017 [11] and is known
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to regulate intracellular calcium and cholesterol homeostasis [12,13], but insights into the
functional role of this receptor in physiological and pathological conditions remain limited,
hampered by a paucity of sigma-2 receptor selective ligands. Research conducted with
existing sigma-2 ligands has focused on their potential to treat cancer [14,15], although
CT1812 is currently in phase 1 clinical trials for the modulation of neurodegenerative
diseases such as Alzheimer’s [16]. Extending this, emerging studies with new S2R-selective
ligands have suggested they, too, may modulate nociception.

CM-398 (Figure 1) is an analog of the established sigma-1 antagonist CM-304 [9,17],
synthesized in an attempt to increase the duration of the pharmacological action of the
parent compound. With a Ki value of 0.43 ± 0.015 nM for sigma-2 receptors, Intagliata
and colleagues [17] reported that CM-398 is more than 1000-fold more selective for the
sigma-2 over the sigma-1 receptor, providing a useful S2R-selective ligand with which to
probe the involvement of sigma-2 receptors in nociception. It is not conclusively known if
CM-398 acts as a sigma-2 receptor agonist or antagonist. In preliminary testing, CM-398
was shown to ameliorate inflammatory pain produced by the formalin assay [17], but a
full antinociceptive and anti-allodynic evaluation as well as potential clinical liabilities
were not assessed. Accordingly, we presently evaluated CM-398 for its ability to modulate
multiple modalities of acute and chronic pain in both reflexive and operant models, and
assessed liabilities of sedation, respiratory depression, and abuse potential in a place
preference assay.
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Figure 1. Chemical structure of 1-[4-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-2-yl)butyl]-3-
methyl-1,3-dihydro-1,3-benzimidazol-2-one (CM-398).

2. Results
2.1. Assessment of CM-398 Antinociception in Visceral, Inflammatory, and Acute Thermal Models
of Nociception

CM-398 dose-dependently attenuated nociception in the acetic acid writhing test with
an ED50 (and 95% C.I.) value of 14.7 (10.6–20) mg/kg, i.p. (Figure 2). The antinocicep-
tion was less potent than the effects of both the parent compound CM-304 (reported
as 0.48 (0.09–1.83) mg/kg, i.p.; [9]) and morphine (with an ED50 and 95% C.I. value
of 3.91 (1.45–10.4) mg/kg, i.p.; Figure 2). CM-398 also demonstrated significant dose-
dependent antinociception after i.p. administration in the formalin-induced inflammation
assay (F(5,36) = 9.55, p < 0.001; one-way ANOVA; Figure 3), with an ED50 (and 95% C.I.)
value of 0.86 (0.44–1.81) mg/kg. Mice spent significantly less time licking the formalin-
injected paw compared to the saline control after treatment with CM-398 with doses of 3 or
30 mg/kg i.p. (p ≤ 0.005 or better, Dunnett’s test) or morphine (10 mg/kg i.p.; p < 0.001;
Student’s t-test vs. saline control).

In contrast, CM-398 did not produce significant antinociception in the 55 ◦C warm-
water tail-withdrawal assay. Whereas morphine (10 mg/kg, i.p.) produced significant
antinociception over time (factor: treatment: F(2,249)= 247.9, p < 0.0001; repeated measures
two-way ANOVA with Tukey’s test; Figure 4), pretreatment with a 30 mg/kg, i.p. dose
of CM-398 produced results that were not significantly different from the vehicle control
(p= 0.7593; Figure 4).
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ED50 values analyzed using linear regression.
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Figure 3. Evaluation of CM-398 for antinociceptive effects in the mouse formalin-induced in-
flammation assay. Dose-dependent antinociception of sigma-2 receptor ligand CM-398 followed
i.p. administration. Control mice were treated with saline (0.9%, i.p.) or morphine (10 mg/kg, i.p.).
All points represent summed time spent licking ± SEM administered to 5–10 mice for all points.

Molecules 2022, 27, x FOR PEER REVIEW 4 of 17 
 

 

 

Figure 4. Evaluation of CM-398 for acute thermal antinociception in the 55 °C warm water tail-with-

drawal assay. Mean ± SEM of latency to withdraw the tail from warm water after treatment with 

morphine (10 mg/kg, i.p.; red circles), CM-398 (30 mg/kg, i.p.; cyan triangles), or vehicle (0.9% saline, 

i.p.; gray diamonds) was examined every 10 min up to 110 min.; n = 7–8 for all points, * p < 0.05; 

two-way RM ANOVA with Tukey’s post hoc test. 

2.2. Anti-Allodynic Effects of CM-398 in the CCI Neuropathic Pain Model 

In the chronic constriction nerve injury assay, CM-398 (Figure 5) attenuated the re-

duced paw withdrawal threshold characteristic of mechanical allodynia caused by CCI 

(white diamond; Figure 5) in a significant time- and dose-dependent manner when com-

pared to the saline control (factor: treatment: F(5,231)= 34.98, p < 0.001; two-way ANOVA with 

Tukey’s multiple comparisons post hoc test; Figure 5). The anti-allodynic effects of CM-

398 at doses of 30 or 45 mg/kg, i.p. were equivalent to those of the positive control gabapen-

tin (p > 0.5 and p > 0.7, respectively, for all time points). Although also equivalent to re-

sponses of the parent compound CM-304, the anti-allodynic effects of CM-398 were longer 

lasting, with the loss of significant CM-304 effects by 60 min, while the responses of CM-

398 still significantly differed from the vehicle control 80 min after administration of either 

30 mg/kg (p < 0.03) or 45 mg/kg (p < 0.0001) doses (Figure 5). 

 

Figure 5. Dose- and time-dependent anti-allodynic activity of CM-398 (squares) in the mouse 

chronic constriction injury (CCI) model of neuropathic pain. Mechanical allodynia produced from 

sciatic nerve ligation was reduced from 40–80 min post-CM-398 (30 mg/kg, i.p., pink squares, and 

45 mg/kg, i.p., cyan squares) in a manner similar to the positive control, gabapentin (50 mg/kg, i.p., 

green hexagons). CM-398 produced effects that were longer lasting than the parent compound CM-

304 (45 mg/kg, i.p., dark-purple diamonds). N = 10 for all groups; * = significantly different from 

vehicle controls; p < 0.05; two-way ANOVA with Tukey post hoc test. (Note: CM-304 data were 

previously published in Cirino et al., 2019 [9]). 

Figure 4. Evaluation of CM-398 for acute thermal antinociception in the 55 ◦C warm water tail-
withdrawal assay. Mean ± SEM of latency to withdraw the tail from warm water after treatment with
morphine (10 mg/kg, i.p.; red circles), CM-398 (30 mg/kg, i.p.; cyan triangles), or vehicle (0.9% saline,
i.p.; gray diamonds) was examined every 10 min up to 110 min.; n = 7–8 for all points, * p < 0.05;
two-way RM ANOVA with Tukey’s post hoc test.
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2.2. Anti-Allodynic Effects of CM-398 in the CCI Neuropathic Pain Model

In the chronic constriction nerve injury assay, CM-398 (Figure 5) attenuated the reduced
paw withdrawal threshold characteristic of mechanical allodynia caused by CCI (white
diamond; Figure 5) in a significant time- and dose-dependent manner when compared
to the saline control (factor: treatment: F(5,231)= 34.98, p < 0.001; two-way ANOVA with
Tukey’s multiple comparisons post hoc test; Figure 5). The anti-allodynic effects of CM-398
at doses of 30 or 45 mg/kg, i.p. were equivalent to those of the positive control gabapentin
(p > 0.5 and p > 0.7, respectively, for all time points). Although also equivalent to responses
of the parent compound CM-304, the anti-allodynic effects of CM-398 were longer lasting,
with the loss of significant CM-304 effects by 60 min, while the responses of CM-398
still significantly differed from the vehicle control 80 min after administration of either
30 mg/kg (p < 0.03) or 45 mg/kg (p < 0.0001) doses (Figure 5).
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Figure 5. Dose- and time-dependent anti-allodynic activity of CM-398 (squares) in the mouse chronic
constriction injury (CCI) model of neuropathic pain. Mechanical allodynia produced from sciatic
nerve ligation was reduced from 40–80 min post-CM-398 (30 mg/kg, i.p., pink squares, and 45 mg/kg,
i.p., cyan squares) in a manner similar to the positive control, gabapentin (50 mg/kg, i.p., green
hexagons). CM-398 produced effects that were longer lasting than the parent compound CM-304
(45 mg/kg, i.p., dark-purple diamonds). N = 10 for all groups; * = significantly different from vehicle
controls; p < 0.05; two-way ANOVA with Tukey post hoc test. (Note: CM-304 data were previously
published in Cirino et al., 2019 [9]).

2.3. Assessment of CM-398-Induced Liabilities of Sedation, Respiratory Depression, and
Drug-Seeking Behavior

Potential sedation and impairment of evoked, coordinated locomotion by CM-398
were evaluated in mice with the rotarod assay. As expected, morphine was without effect,
whereas U50,488 (the kappa opioid receptor agonist) significantly impaired locomotion com-
pared to vehicle (factor: treatment: F(5,364) = 31.9, p < 0.0001, and factor: time: F(6,364) = 3.2,
p = 0.0047, two-way ANOVA with Dunnett’s post hoc test; Figure 6). While lower doses
(10 and 30 mg/kg, i.p.) of CM-398 produced no sedative effects compared to the vehicle
control, the high dose tested (45 mg/kg, i.p.) produced a significant impairment of evoked
locomotor activity (p < 0.0001; Figure 6, cyan squares).

The effects of CM-398 on spontaneous locomotor activity and respiration were char-
acterized in the Comprehensive Lab Animal Monitoring System (CLAMS). As expected,
morphine (30 mg/kg, i.p.) demonstrated significant increases in ambulation across all time
points (factor: treatment × time: F(20,330) = 38.0; p < 0.0001; repeated measures two-way
ANOVA with Dunnett’s post hoc test; Figure 7A). While trending towards an increase, the
variable response with CM-398 did not significantly alter ambulation at any dose tested.
In contrast, CM-398 produced a significant, dose-dependent, transient reduction in respi-
ration rates up to 40 min after administration of a 30 (but not 10 or 45) mg/kg i.p. dose



Molecules 2022, 27, 3617 5 of 16

that was comparable to morphine-induced respiratory depression (factor: treatment x time:
F(20,330) = 3.07; p < 0.0001; repeated measures two-way ANOVA with Dunnett’s post hoc
test; Figure 7B). These respiratory effects were reversed between 60 and 120 min, where
higher doses of CM-398 (30 or 45 mg/kg i.p.) produced a significant increase in respiration
(p < 0.0001). Consistent with earlier reports [9], morphine (30 mg/kg i.p.) significantly
reduced respiration rates for an hour (p < 0.02).
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Figure 6. Assessment of CM-398 for dose- and time-dependent changes in evoked locomotor activity
in the mouse rotarod assay. CM-398 (squares) was administered at 10, 30, or 45 mg/kg, i.p. doses
prior to testing. U50,488 (10 mg/kg, i.p; orange circles) served as a positive control; * = significantly
different from vehicle response (5% DMSO, i.p.; gray diamonds), p < 0.05; two-way ANOVA with
Dunnett’s post hoc test; n = 8–12 mice/treatment.
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Figure 7. Evaluation of potential effects of CM-398 on (A) spontaneous ambulation and (B) respiration
in C57BL/6J mice. Ambulation and respiration were monitored after i.p. administration of CM-398
(10, 30, or 45 mg/kg; squares), saline (grey diamonds), or morphine (30 mg/kg, red circles) using the
CLAMS/Oxymax system. Data are presented as % vehicle response ± SEM for ambulation (XAMB,
(A)), or breaths per minute (BPM, (B)); * = significantly different from baseline response (p < 0.05);
n = 12 mice/treatment.

Additional mice were place-conditioned for 40 min each of two days with morphine,
U50,488, or CM-398 (at 10, 30, or 45 mg/kg, i.p.). As expected, morphine produced
significant conditioned place preference (CPP) and U50,488 produced conditioned place
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aversion (CPA) (factor: treatment x conditioning: F(4,190) = 2.96; p = 0.02; two-way ANOVA
with Sidak’s post hoc test; Figure 8). In contrast, while low and medium doses of CM-398
did not show significant place preference or aversion after place conditioning with the final
preference results statistically equivalent to the preconditioning responses (p = 0.97 each),
the higher dose of CM-398 produced a significant CPA (p = 0.008; rightmost bars, Figure 8).
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Figure 8. Evaluation of CM-398 in the conditioned place preference assay. While mice showed
preference for the chamber paired with morphine treatment (10 mg/kg, i.p.), and aversion for the
kappa agonist, U50,488 (30 mg/kg, i.p.), no preference or aversion was seen for CM-398 at 10 and
30 mg/kg, i.p. However, CM-398 at 45 mg/kg, i.p. showed significant conditioned place aversion.
For each group, n = 14–24; * = postconditioning response (striped bars) significantly different from
matching pre-CPP response (matching open bars), p < 0.05; two-way ANOVA with Sidak’s post
hoc test.

2.4. Assessment of CM-398 Antinociception in an Operant Pain Model

The locomotor impairment demonstrated by high doses of CM-398 raised concern that
the anti-allodynic effects observed may have been a false positive produced by immobility.
To control for this, CM-398 was characterized in an operant pain model that combined
the constrictive nerve injury (CCI) and conditioned place preference (CPP) assays (see
schematic outline of testing; Figure 9A). In this model, mice subjected to CCI were then
place-conditioned with the kappa opioid receptor agonist U50,488 (30 mg/kg, i.p.) or
sigma-2 receptor ligand CM-398 (10, 30, or 45 mg/kg, i.p.) for two consecutive days. On
the final day, place preference was assessed when the subjects were allowed to roam freely
in the CPP apparatus in the absence of a drug. In contrast to the results with naïve mice,
CCI-exposed mice place-conditioned with the selective sigma-2 receptor ligand CM-398
demonstrated significant dose-dependent conditioned place preference (factor: pre/post
difference: F(1,168) = 11.48, p < 0.0009; factor: treatment: F(4,168) = 2.02, p < 0.094; two-way
ANOVA and Sidak’s post hoc test; Figure 9B). Place conditioning with the 10 mg/kg dose
of CM-398 did not result in significant differences from preconditioning place preferences
(p = 0.26), while the 30 and 45 mg/kg, i.p. doses each resulted in significant place preference
(of p < 0.05 and p < 0.0005, respectively; Figure 9B). The control CCI mice place conditioned
with the vehicle aloneshowed no significant change in pre- versus post-conditioning place
preference (p > 0.99). However, of interest, place conditioning with U50,488 (30 mg/kg,
i.p.) here resulted in no significant change in preference in treated CCI mice (p = 0.99;
Figure 9B, leftmost bars), in contrast to the result with naïve mice (Figure 8). Collectively,
as the place-preference responses were assessed in the absence of any drug (i.e., a day after
the last exposure), the results of this operant testing suggest the antinociceptive properties
of CM-398 were independent of any locomotor effect.
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Figure 9. Evaluation of CM-398 in an operant model of antinociception using constrictive nerve injury
(CCI)-conditioned place preference (CPP). (A) Schematic representation of the CCI/CPP operant
model of pain protocol; (B) Dose-dependent antinociception of CM-398 following i.p. administration
in the mouse CCI/CPP operant pain model. Negative control mice were treated with vehicle
(5% DMSO, i.p.; second pair of bars from left) and positive control mice were treated with the kappa
opioid agonist U50,488 (leftmost pair of bars). All points represent differences in time spent on the
drug-paired side ± SEM tested in 15–20 mice/drug. * = postconditioning response (striped bars)
significantly different from matching pre-CPP response (matching open bars), p < 0.05; two-way
ANOVA with Sidak’s post hoc test.

3. Discussion

The current data found the selective sigma-2 receptor ligand CM-398 demonstrated
antinociceptive and anti-allodynic activity over a variety of acute and chronic pain modali-
ties, albeit with no efficacy in an acute reflexive model of thermal pain. Notably, despite
some sedative properties at higher doses, CM-398 demonstrated reduced respiratory de-
pression and no liabilities of conditioned place preference associated with clinically used
opioids. Moreover, antinociceptive efficacy of CM-398 was confirmed free of confounding
locomotor impairment with testing in an operant pain model using mice exposed to CCI in
a conditioned place preference assay. Collectively, these results suggest further develop-
ment of CM-398 may prove useful to individuals suffering from chronic pain conditions,
while also contributing insights into the function of sigma-2 receptors.

It is appropriate to acknowledge several important caveats regarding the current
results. Based on structural similarities to the parent compound and sigma-1 receptor
antagonist CM-304, it was predicted that CM-398 would possess sigma receptor antago-
nism [17]. However, the unusual pharmacology of the sigma receptors has hampered the
adaptation of conventional in vitro high-throughput screening assays, precluding direct
evidence of this activity. The present state-of-the-art includes the phenytoin assay, where
this antiseizure drug is interpreted to allosterically modulate the activity of the sigma-1
receptor [18,19]. In guinea pig brain membranes, coincubation with phenytoin was used to
reportedly increase the binding affinity of putative sigma-1 receptor agonists while slightly
decreasing the affinity of putative sigma-1 receptor antagonists [18]. In contrast, reliable
functional in vitro assays for sigma-2 receptor ligands are still in development [20], poten-
tially one day resolving this knowledge gap, but leaving confirmation of the function of this
selective sigma-2 receptor ligand currently out of reach. This question is important, as some
recent reports suggest that sigma-2 receptor activation may produce analgesia. UKH-1114
is a sigma-2 receptor agonist, as determined by in vivo characterization [21]. Sahn et al.
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reported that UKH-1114 produced dose-dependent antinociception in the spared nerve
injury assay in mice [21], suggesting that the anti-allodynic activity of CM-398 herein might
be attributed to sigma-2 receptor agonism. Consistent with this are recent data finding
that the activation of sigma-2 receptors accentuates mu-opioid receptor agonist-mediated
antinociception [22], further suggesting an analgesic effect of sigma-2 receptor agonists.
Although compounds CT0109 and CT1812 are established sigma-2 receptor antagonists
shown to improve cognitive performance in mouse models of Alzheimer disease [16,23],
neither has been examined for analgesic or anti-allodynic properties, which might resolve
this question.

A new series of novel ligands with high affinity for the sigma-2 receptor were recently
shown to produce anti-allodynic effects up to 24 h [24], but the function of these compounds
remains (understandably) undetermined. Additional future studies with established sigma-
2 receptor ligands of known function and sigma-2 receptor knockout mice would also be
beneficial to investigating this question. However, the majority of the current literature
holds that antinociception and/or anti-allodynia against inflammatory and neuropathic
pain states result from sigma receptor antagonism [10,25,26]. Extending this, our selective
sigma-2 ligand CM-398 was found efficacious against the affective component of pain in
mice subjected to CCI in an operant model. Additionally, consistent with current investi-
gations of sigma receptor antagonists, CM-398 was unable to attenuate acute nociception
induced in the 55 ◦C warm-water tail-withdrawal assay [27]. However, our results were
able to confirm that CM-398 is more potent than morphine in the acetic acid writhing
assay and equipotent with morphine in formalin tests, both of which are characterized by
an increased inflammatory response in rodents [28]. Although Intagliata and colleagues
reported CM-398 has selectivity for sigma-2 over sigma-1 receptors [17], it remains unclear
if the potential anti-inflammatory effects of CM-398 are due to interactions with the sigma-2
or sigma-1 receptor or both. Intagliata and colleagues also reported CM-398 bound to
serotonin transporters (SERT), a neurotransmitter associated with the descending control of
pain [29], but the 568-fold lower affinity of CM-398 for SERT over sigma-2 receptor [17] lim-
its the plausibility of this as a mechanism mediating the antinociception observed presently.
Alternatively, it is further possible that as with sigma-1 receptor ligands, sigma-2 receptor
ligands may modulate a variety of intracellular signaling inflammatory mediators such as
the release of nitric oxide or bradykinin-induced calcium release at the inflamed site [30],
or modulate inflammatory activity by attenuating pERK1/2 in the dorsal horn and the
dorsal root ganglion [31], thereby producing analgesia. While direct examination of these
nociceptive mechanisms was beyond the scope of this initial characterization study, we
anticipate the establishment of selective sigma receptor antagonists will facilitate studies of
the signal transduction modulated by CM-398 through actions at the sigma-1 and sigma-2
receptors to resolve these questions.

Chronic constrictive nerve injury (CCI) is a common and well-validated rodent model
for neuropathic (sciatica) pain. In the clinic, neuropathic pain such as sciatica is treated
with anticonvulsants such as gabapentin or opioids [2]. Similar to previously collected
data with sigma receptor antagonists [9], CM-398 dose-dependently demonstrated efficacy
against CCI-induced neuropathy after a single dose for a duration of time that was com-
parable to gabapentin and longer than its parent compound, CM-304. Peripheral nerve
injury, such as CCI, produces alterations to nerve conduction in both the ascending and
descending pain pathways thought to promote peripheral sensitization [32]. CCI is known
to initiate the activation of TRPV1 and sodium channels on the injured peripheral nerve,
increasing neuronal excitability in a manner associated with the increased perception of
noxious stimuli [32]. The enhanced NMDA receptor activity and pain sensitization as-
sociated with peripheral nerve injury are blocked by the application of sigma-1 receptor
antagonists [33,34]. The present anti-allodynic effects of CM-398 could also be attributed to
an antagonism of sigma-2 receptors to prevent NMDA-mediated sensitization, but this has
not been directly examined with sigma-2 receptors and is beyond the scope of this initial
study. Given the higher density of sigma receptors in the peripheral dorsal root ganglia
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compared to the dorsal horn or supraspinal brain regions mediating nociception, these
results further support the dorsal root ganglia as a target of particular interest for sigma
receptor involvement in the various and diverse modalities of pain [35]. Further detailed
studies, for instance, selectively eliminating sigma-1 and sigma-2 receptors in nociceptive
neurons in cre-lox transgenic mice to evaluate the role of peripheral and central receptors
in the nervous system in neuropathic pain states with or without CM-398 treatment, are
needed to clarify these remaining points.

Exposure to neuropathic pain is also associated with aversive emotions [36] which
diminishes quality of life and complicates therapeutic treatment [37]. We evaluated the
effect of CM-398 on the ability to alleviate anhedonia associated with constrictive nerve
injury. The affective or emotional component of pain was evaluated with conditioned
place preference (CPP), measuring the preference of CCI-exposed mice for the drug-paired
compartment of the apparatus [38]. Aversion to pain offers robust motivation to seek
pain relief. In this context, associating pain relief with the drug-paired compartment
and cues during the occurrence of continued neuropathic pain is reflected by a later
conditioned place preference in the absence of the drug [39]. Consistent with this, non-
contingent administration of CM-398 in animals exposed to CCI produced conditioned
place preference in mice with chronic neuropathic pain, suggesting CM-398 ameliorated
chronic discomfort induced by CCI. These results are more remarkable for the fact that the
place conditioning of naïve mice with CM-398 was found to produce either no effect or (at
45 mg/kg, i.p.) actual aversion.

Current therapeutics for the treatment of neuropathic pain include gabapentin and
morphine, both of which produce significant adverse effects [40,41]. This study sought
to evaluate CM-398 for potential liabilities in conditioned place preference, rotarod, and
respiratory depression assays. As morphine has a high abuse potential [42], we evaluated
CM-398 for liabilities of drug-seeking with the place conditioning assay. At sub-therapeutic
and therapeutic doses, CM-398 demonstrated a lack of conditioned place preference (CPP)
or conditioned place aversion (CPA), but at high doses (45 mg/kg, i.p.), CM-398 produced
CPA consistent with known aversive compounds such as the dopamine-2 receptor agonist,
quinpirole [43], or the kappa-opioid receptor agonists U50,488 [44] or U69,593 [45]. These
results suggest antagonism of sigma-2 receptors may produce aversion. However, aside
from a single demonstration that the non-selective sigma-1 and sigma-2 receptor antagonist
AZ-66 produced a conditioned place aversion [9], no studies to date have examined the
relationship of sigma-2 receptors and reward responses. While CM-398 was demonstrated
to lack affinity for the dopamine-2 receptor or opioid receptors, with binding Ki values
greater than 1000 nM in the presence of (−)-[3H]sulpiride or [3H]naloxone, respectively [17],
a detailed examination of the interactions with a full panel of receptors associated with
aversion has not yet been completed. It also remains possible that, at the highest therapeutic
doses, CM-398 still caused a conditioned place aversion via a non-specific interaction
with the kappa-opioid or dopamine-2 receptors. Notably, CM-398 showed no affinity for
dopamine-2 or kappa-opioid receptors when tested in a radioligand competition binding
assay up to 1 µM concentrations [17]. Further study of CM-398 in competition binding
assays for off-target affinity and behavioral testing with sigma-2 receptor and dopamine-2
or kappa-opioid receptor knockout mice would better evaluate these possibilities.

U50,488 also impairs evoked locomotor responses and produces sedative effects [46,47].
At the highest therapeutic doses (45 mg/kg, i.p.), CM-398 produced similar deficits in
evoked locomotor activity. Emerging evidence suggests that antagonism of sigma-2 re-
ceptors may impair locomotor activity. Consistent with the current results, we previously
found that the introduction of sigma-2 receptor antagonism in the non-selective sigma-1
and sigma-2 receptor antagonist, AZ-66, resulted in significant impairment of evoked
locomotor activity compared to the sigma-1 receptor-selective antagonist, CM-304 [9].
AZ-66 possesses high affinity for both sigma-2 receptors (0.51 ± 0.15 nM) and sigma-1
receptors (2.4 ± 0.63 nM) but limited selectivity, with a modest sigma-2/sigma-1 receptor
selectivity ratio of 4.7 [48]. With high affinity for sigma-2 (0.43 ± 0.015 nM), but not sigma-1
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(560 ± 8.73 nM) receptors, CM-398 possesses a far greater sigma-2/sigma-1 receptor selec-
tivity ratio of 1302 [17], correlating with locomotor impairment presently. A potential mech-
anism detailing how sigma receptor antagonists influence evoked locomotor activity has not
yet been elucidated. As more sigma-2 receptor selective ligands are discovered [17,24] and
become available for testing, these trends collectively predict that antagonists possessing a
higher sigma-2/sigma-1 receptor selectivity may demonstrate sedation.

In evaluation of respiratory effects and spontaneous locomotor activity, CM-398 pro-
duced no significant impairment of ambulation at therapeutic doses (30 mg/kg, i.p.) and
produced a transient decrease in respiratory rates. These effects may conceivably be at-
tributed to dimerization and the activation of opioid receptors located in the brainstem
where sigma-1 receptors are highly concentrated [49]. While outside of the scope of the
current studies, future studies might evaluate CM-398 in the presence of an opioid receptor
antagonist to test this. Alternatively, the CM-398 might indirectly affect respiration by
decreasing locomotor activity, as was ascribed to AZ-66 when it disrupted coordinated
locomotion in the rotarod assay [9]. Notably, CM-304 was without significant inhibitory
effects on respiration or locomotion, and, in any case, the potential sedative effects of sigma
receptor antagonists are poorly understood. Further work is required to assess the effects
of the sigma receptors (both sigma-1 and sigma-2) on respiration and locomotor activity,
evaluating hypnotic vs. sedative effects.

4. Materials and Methods
4.1. Materials
4.1.1. Subjects

Adult male C57BL/6J and CD-1 mice, housed five to a cage (8–12 weeks of age), were
used. C57BL/6J mice were used in assays of warm-water tail withdrawal [50,51], locomotor
and respiration [52], acetic acid writhing [9], and conditioned place preference (CPP) [53,54].
Antinociceptive and anti-allodynic effects were confirmed with CD-1 mice in the formalin
inflammatory pain assay and chronic constriction nerve injury assay of neuropathic pain.

All animal studies reported adhere to the ARRIVE guidelines [55]. Animals were
randomly assigned, and treatment groups were blinded. Animals were housed on a 12/12 h
light/dark cycle (lights off at 7:00 p.m.) with ad libitum access to food and water except
during the experimental sessions. All procedures were preapproved by the Institutional
Animal Care and Use Committee (University of Florida) and conducted according to the
2011 NIH Guide for the Care and Use of Laboratory Animals.

4.1.2. Materials, Drug Preparation, and Administration

The sigma receptor antagonist CM-304 (FTC146) was synthesized as described previ-
ously [56,57], and CM-398 was synthesized as described earlier [17]. All other chemicals and
drugs were purchased from Sigma-Aldrich (St. Louis, MO, USA). Sterile saline (0.9%) was
used to dissolve U50,488 and morphine. Gabapentin, CM-304, and CM-398 were dissolved
in 5% dimethyl sulfoxide (DMSO)/saline. All drugs were administered intraperitoneally
(i.p.) in a volume of 250 µL per 25 g of body weight.

4.2. Behavioral Assays
4.2.1. Tail-Withdrawal Assay

C57BL/6J mice were used in the 55 ◦C warm-water tail-withdrawal assay as previously
described [52]. Each mouse was independently tested for its initial tail-withdrawal latency
prior to drug administration. Latency for tail withdrawal of each mouse was evaluated
every 10 min until latency returned to the baseline value post-administration of drug.
A maximum response time of 15 s was used to prevent tissue damage, with the failure of
the mouse to withdraw the tail within 15 s given a maximum score of 100% antinociception.
To account for variability between animals, data are reported as percent antinociception,
calculated by the equation:
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% antinociception = 100 × ([test latency − baseline latency]/[15 − baseline latency]). (1)

4.2.2. Formalin Assay

The effectiveness of the ligand’s ability to modulate inflammatory pain was performed
with the use of C57BL/6J mice in the formalin assay as previously described [9,58]. After
a 10 min pretreatment (i.p.) of a graded dose of the vehicle (as a control), morphine
(10 mg/kg), or CM-398 (0.01–30 mg/kg), an intraplantar (i.pl.) injection of 5% formalin
(2.5 µg in 15 µL) was administered into the right hind paw. Time spent licking the right
hind paw was recorded in 5 min intervals for 60 min following injection. The last 55 min
of the assessment was used to determine the inflammatory response stimulus. Data were
analyzed as the summed duration of licking the hind paw.

4.2.3. Acetic Acid Writhing Test

The ability of CM-398 to modulate chemically induced visceral pain was assessed with
the use of C57BL/6J mice in the acetic acid writhing assay as previously described [59,60].
After a 25 min pretreatment (i.p.) of either the vehicle, morphine (1–10 mg/kg), or CM-398
(3–45 mg/kg), a second injection of 0.9% acetic acid (i.p., 0.25 mL per 25 g body wt.) was
administered to each mouse. After 5 min, the number of stretches presented in each mouse
was counted for 15 min. Antinociception was calculated by the formula:

% antinociception = ([{average stretches in the vehicle group} − {number of stretches in each test
mouse}]/[average stretches in vehicle group]) × 100.

(2)

4.2.4. Mechanical Allodynia von Frey Assessment

The assessment of mechanical allodynia was performed to measure the anti-allodynic
efficacy in the CCI and cisplatin assays as previously described [9,54,57–59]. Filaments of
increasing pressure (0.4–6 g) were applied to the plantar surface of the hind paw of the
mice prior to drug administration to record baseline responses to a peripheral stimulus.
Control or test compounds were administered (i.p.), and paw-withdrawal thresholds were
again recorded from 20–80 min post-injection. Responses at each time point were measured
in triplicate, with clear withdrawal, shaking, or licking of the paw qualified as a response.
Data are expressed as percent of baseline paw withdrawal thresholds following stimulation
of the ipsilateral hind paw with von Frey filaments. This was utilized to account for innate
variability between mice.

% antiallodynia = 100 × ([mean paw withdrawal force {g} in control group − paw withdrawal force {g} of
each mouse]/mean paw withdrawal force {g} in control group).

(3)

4.2.5. Chronic Constriction Injury

CD-1 mice anesthetized with isoflurane were subjected to chronic constriction injury (CCI),
as described previously [9,60] to induce mechanical allodynia and hyperalgesia [58,61–64].
Briefly, after anesthetization, mice were subjected to surgery where an incision was made
along the surface of the biceps femoris of the right hind paw [9]. Blunt forceps were used to
split the muscle and expose the right sciatic nerve. The tips of the two 0.1–10 µL pipette tips
facing opposite directions were passed under the sciatic nerve to allow for the easy passing
of two sutures under the nerve, 1 mm apart. The sutures were tied loosely around the nerve
and knotted twice, and the skin was closed with two 9 mm skin staples. The mice were
allowed to recover 7 days prior to baseline von Frey testing, as described above, to confirm
the induction of mechanical allodynia in each mouse. A response to von Frey fibers of lower
force, otherwise not observed in naïve mice, was an indication of mechanical allodynia,
consistent with the demonstration of neuropathic pain. The mice confirmed as allodynic
were then administered (i.p.) either the controls vehicle (5% DMSO), morphine (10 mg/kg),
gabapentin (50 mg/kg), or CM-304 (45 mg/kg), or the test compound CM-398 (10, 30,
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or 45 mg/kg). Each mouse was then tested for the threshold for mechanical allodynia
every 20 min up to 80 min post-treatment with the use of calibrated von Frey filaments as
described above, until the threshold that induced paw withdrawal was determined as a
measure of nocifensive behavior [9].

4.2.6. Rotarod Assay to Assess Motor Coordination

The rotarod assay of coordinated locomotor response was used to assess the potential
sedative effects of the vehicle, U50,488, morphine, or CM-398, as described previously [60].
Seven habituation trials were performed where the last habituation trial was used as an
initial baseline of performance. The mice were administered (i.p.) one test agent: vehicle
(5% DMSO/95% saline), morphine (10 mg/kg), U50,488 (10 mg/kg), or CM-398 (10, 30
or 45 mg/kg), and then evaluated every 10 min in accelerating speed trials (180 s max
latency at 0–20 rpm) for a 60 min period. Latency to fall was measured in seconds. Data
are reported as the mean percent change from each mouse’s initial baseline latency to
fall. Decreased latencies to fall in the rotarod test indicated impaired motor coordination
or sedation.

4.2.7. Respiratory Depression and Spontaneous Locomotor Testing with CLAMS

Spontaneous locomotor activity and respiration rates were measured by the computer
automated Comprehensive Lab Animal Monitoring System (CLAMS) (Columbus Instru-
ments, Columbus, OH), as described previously [9]. Unconstrained mice were individually
habituated in sealed cages connected to the apparatus for 60 min prior to testing for mouse
baseline readings. At the start of testing, mice were intraperitoneally administered drug or
vehicle and then placed back into the CLAMS testing cages for 120 min. Respiration rates
(breaths/min) were measured using a pressure transducer built into the sealed CLAMS
cage. Infrared photobeams located inside each cage measured spontaneous locomotion as
the number of photobeam breaks or ambulation. All data are expressed as percent of the
vehicle control response.

4.2.8. Conditioned Place Preference

Condition place preference (CPP) was measured with the use of automated, three-
compartment place conditioning chambers. C57BL/6J mice underwent a 2-day coun-
terbalanced conditioning design using established methods [9]. Briefly, prior to place
conditioning, mice were given free access to all three chambers of the CPP apparatus
for 30 min to determine an initial preference. Time spent in each chamber was recorded.
Prior to place conditioning, the 106 naïve mice tested did not demonstrate significant
differences in the time spent exploring the left (568.2 ± 15.4 s) versus right (573.3 ± 15.7 s)
compartments (p = 0.86; Student’s t-test). For 2 days after the initial evaluation, the mice
were administered the assay vehicle (5% DMSO, i.p.) before being confined in a randomly
selected outer compartment of the apparatus for 40 min. After 4 hours, the mice were
administered either morphine (10 mg/kg, i.p.), U50,488 (30 mg/kg, i.p.), or CM-398 (10, 30,
or 45 mg/kg, i.p.) and then confined to the opposite outer compartment of the apparatus
for 40 min. All conditioning parameters were repeated a second day, and 24 h after the
second day of conditioning, the final preference was determined by allowing the mice
to freely move between the chambers for 30 min. Data are expressed as the difference in
time spent in the drug-paired and vehicle-paired compartments. By convention, positive
values reflect conditioned preference, whereas negative values are considered conditioned
aversion for the drug-paired side.

4.2.9. Chronic Constrictive Nerve Injury/Conditioned Place Preference Operant Model of
Pain (CCI/CPP)

To assess the antinociceptive effect of compounds under an operant condition, mice
were tested in a procedure modified from Hummel et al. [65] and Salte et al. [66] (see also
schematic in Figure 9A). One day prior to CCI surgery, naïve C57BL/6J mice were sub-
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jected to initial place preference testing in a three-chambered conditioned place preference
apparatus where they were allowed to roam freely for 30 min, as described above. These
same mice then underwent chronic constrictive nerve injury and were confirmed after
7 days to demonstrate mechanical allodynia, as detailed above. Allodynic mice were then
subjected to 2 days of counterbalanced place conditioning, and the final place preference
was assessed, as described above. For place conditioning, mice were treated with vehicle
(i.p.) and then randomly confined to one of the outer chambers of the CPP apparatus for
40 min. Four hours later, the mice were administered (i.p.) vehicle, U50,488 (30 mg/kg), or
CM-398 (10, 30 or 45 mg/kg) and then confined to the opposite outer compartment of the
apparatus. The conditioning was repeated on a second day, and the next day mice were
given free access to each compartment of the apparatus for 30 min to determine the final
place preference. Data are plotted as the difference in time spent in the drug-paired versus
vehicle-paired compartment.

4.3. Statistical Analysis

All data are presented as mean ± SEM. Statistical analysis was performed with the use
of GraphPad Prism 7.0 software. Significance is indicated as * p < 0.05 and was analyzed
using Student’s t-test or either one-way or two-way ANOVA with the appropriate post
hoc analysis (Dunnett’s, Sidak’s, or Tukey’s) for significant pairwise comparisons within
and between groups. Dose response lines were analyzed by linear or nonlinear regression
modeling and ED50 values (dose yielding 50% effect) along with 95% confidence limits using
each individual data point. CLAMS data are reported as the % of matching vehicle control
responses, and rotarod data are expressed as the % change from baseline performance, both
standard normalizations to compensate for each individual animal’s baseline response.
CPP (and CCI-CPP) data are reported as the difference in time spent in the drug and
vehicle-paired compartments between preconditioning and postconditioning responses.

5. Conclusions

Although limited by uncertainty regarding the mechanistic function of CM-398, the
current data suggest that this sigma-2 receptor ligand alleviates inflammatory and chronic
neuropathic pain in established mouse models with reduced liabilities. Collectively, these
data suggest the therapeutic potential of CM-398 while also contributing further evidence
for sigma-2 receptor involvement in analgesic responses.
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