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Abstract
An innovative strategy for an optimal design of planar frames able to resist seismic 
excitations is proposed. The optimal design is performed considering the cross sec-
tions of beams and columns as design variables. The procedure is based on genetic 
algorithms (GA) that are performed according to a nested structure suitable to be 
implemented in parallel on several computing devices. In particular, this bi-level 
optimization involves two nested genetic algorithms. The first external one seeks 
the size of the structural elements of the frame which corresponds to the most per-
forming solution associated with the highest value of an appropriate fitness func-
tion. The latter function takes into account, among other considerations, the seismic 
safety factor and the failure mode that are calculated by means of the second inter-
nal algorithm. The proposed procedure aims at representing a prompt performance-
based design procedure which observes earthquake engineering principles, that is 
displacement capacity and energy dissipation, although based on a limit analysis, 
thus avoiding the need of performing cumbersome nonlinear analyses. The details of 
the proposed procedure are provided and applications to the seismic design of two 
frames of different size are described.
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1  Introduction

The structural design of a structure may be faced considering different aspects 
and strategies with increasing levels of complexity. The problem can be tackled 
accounting for static, seismic, or alternative load scenarios. Usually, in the case 
of seismic loads and for new structures, the codes [1] suggest the employment of 
global elastic analysis, performed according to an equivalent static load distribu-
tion or to a Response Spectrum Analysis (RSA) for seismic excitations, and then 
to singularly design each member. However, a local design does not ensure to 
have an effective global performance of the building, especially in seismic condi-
tions. For the latter reason, modern design strategies of structures must observe 
the principles of global ductility that assure the capability to dissipate an ade-
quate amount of energy before collapsing during an earthquake. To this aim, the 
behaviour factor to scale the design spectrum (evaluated on the basis of the struc-
tural typology and not calibrated on the specific structure) and the regulations 
associated with the strength hierarchy [2] of beams and columns, have been more 
recently introduced in the design process.

The adoption of a nonlinear approach for the assessment of structures, even in 
the case of design of new buildings, has been suggested by several authors both 
considering static [3, 4] and dynamic [5, 6] load conditions, for instance adopting 
pushover analyses within a performance-based approach [7]. Nonlinear analyses 
ensure a deeper knowledge of structures and are preferred in the study of exist-
ing structures; nevertheless, the required computational effort and the number of 
configurations that are usually needed to be analysed in a design process, make 
them usually unsuitable for a global speedy design of structures. A comparison 
between design algorithms adopting linear and nonlinear analyses is presented in 
[8], where a fast convergence is observed when the elastic optimization process is 
assumed, compared with the relatively slow but steady and smooth convergence 
of the inelastic optimization process.

In structural analysis, a fair compromise between linear and nonlinear (pusho-
ver and time-history) analyses in terms of computational effort is represented by 
the limit analysis. Plastic theory has been introduced since the early 1950 [9–13] 
and never stopped developing. Limit analysis is able to evaluate the global resist-
ance of a structure subjected to a certain load condition with a reasonable compu-
tational cost, and was widely employed for design purposes since it also provides 
useful information in terms of failure mode [14, 15]. The latter aspect was taken 
into account in [16] where a failure mode control was introduced in the design 
process as well as the second order effects and the hierarchy strength principle. 
Comprehensive overviews of the performance-based plastic design methods and, 
more specifically, for the design of steel structures can be found in [17] and [18], 
respectively. Nevertheless, in the plastic design of a structure it is difficult to 
ensure meeting the desired global performance in terms of ductility demand.

The need to explore numerous structural configurations to reach a satisfac-
tory design solution favoured the employment of evolutionary algorithms [19] to 
guide the design process and limit the number of configurations to be assessed. 
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Under the simplified hypothesis of linear behaviour, evolutionary algorithms 
were widely employed in design problems [20–24]; alternative strategies based 
on the feasible direction method [25] on teaching–learning based [26] and ant 
colony [27] optimizations, or on the harmony search algorithm [28] were also 
proposed. The application of genetic algorithms in design contexts was also eval-
uated with reference to reinforced concrete structures [29], to steel frames with 
semi-rigid connections [30]. These procedures are often capable of accounting 
for different features, such as buckling effects [31], and different load scenarios 
besides gravity and seismic loadings, such as the effects of wind [32]. In the field 
of seismic analysis, dynamic simulations can also be employed and combined 
with evolutionary algorithms [33, 34]. Due to the needed computational effort, 
nonlinear analyses are rarely combined with evolutionary algorithms. Applica-
tions of pushover analyses in combination with genetic algorithms may be found 
in [35], for the retrofitting design of existing buildings, in [36] where geometric 
nonlinearities are also considered, and in [37] where structural configurations are 
selected by a genetic algorithm aiming at identifying a Pareto optimal design set.

The latter paper [37] is an example of combination of two different algorithms 
for structural optimization problems. Actually, evolutionary algorithms are often 
combined considering two different levels of accuracy for the same problem (rough 
selection of a set of approximate solutions with the first algorithm, and then identifi-
cation of an optimal solution among those previously selected with the second one) 
or treating different aspects of the problem. Bi-level algorithms are very common 
in structural optimization or optimal shape design, where the minimization of the 
weight or cost of a structure is typically needed. Such minimization is considered 
as an upper-level objective, subjected to constraints involving bounds on displace-
ments, stresses and contact forces, whose values are determined, in general, by solv-
ing the potential energy minimization problem at the lower level [38]. In the context 
of bi-level optimization strategies, nested evolutionary algorithms have been intro-
duced since the early 1990s and include genetic algorithms, differential evolution, 
particle swarm or ant colony optimization methods, etc. (see [38] and references 
therein); however, only a few of them were applied to structural optimization along 
the years [39].

In terms of design criteria, the economic one (i.e. minimum weight) is often con-
sidered as the only variable to be minimized in the design process, as long as the 
structural requirements are satisfied. Within this context, the design problem con-
sists in finding a set of variables, namely the cross section of the members, which 
minimize a certain function (weight of the structure) under some design constraints, 
which have to be evaluated following a structural analysis. The latter aspect usually 
prevents the formulation of explicit approaches for a comprehensive design of the 
structural members of buildings. Enrichments of such procedures led to including 
other performance objectives in the design process (e.g. the energy dissipation) to 
achieve an improved structural solution, that is the formulation of multi-objective 
design processes. The adoption of nonlinear static [40–42] and dynamic [43, 44] 
analyses was often combined with a multi-objective approach.

In the field of the limit analysis, some of the authors recently proposed a 
strategy for the evaluation of the ultimate load of frame structures in seismic 
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conditions based on the application of evolutionary algorithms to the method of 
the combination of elementary mechanism [45]. The proposed methodology can 
be applied both to regular [46, 47] and irregular [48] frames. A further advance 
was then proposed in [49], where the second order effects [50] were introduced 
and a simplified capacity curve of a frame is derived to evaluate its seismic 
capacity. The results obtained by means of the procedure proposed in [49] allow 
evaluating the seismic vulnerability of an assigned frame and are here used as one 
of the needed steps in a bi-level optimal design strategy.

Precisely, a nested genetic algorithm (GA) for an optimal design of planar 
frames able to resist seismic excitations is here proposed. The optimal design is 
performed selecting the cross sections of beams and columns, here considered as 
the design variables, among a predefined set of profiles in order to satisfy struc-
tural safety and economic criteria. The procedure is composed of two levels: the 
upper algorithm (called “External GA”) assigns the cross sections to the members 
of the frame and provides the input data for the lower level routine (called “Inter-
nal GA”), which exploits the algorithm for the structural assessment of a specific 
configuration [49], able to evaluate the safety factor of the frame with respect to 
prescribed seismic load scenarios. Besides seismic safety factors, different design 
requirements are included in the evaluation of the fitness function of each frame 
such as economic cost (associated with the minimum weight) and strength hierar-
chy criterion privileging those frames associated with a more dissipative failure 
mode. The strategy is implemented in a dedicated software developed within the 
agent-based multiplatform environment Netlogo [51] and has been integrated into 
a cloud-based computational workflow built on top of the GARR Cloud Infra-
structure, using modern and innovative strategies allowing to easily reproduce 
this work in accordance to the FAIR principles in OpenScience. The conceived 
approach is a multi-objective design strategy, compatible with the main modern 
concepts of earthquake engineering for an effective design of structures, which 
is keen to introduce additional design criteria and to vary the relative weights of 
the adopted criteria in the evaluation of the performance of a generic set of cross-
sections distribution.

The novel contribution of the proposed methodology mainly involves the proce-
dure itself rather than the capability of speeding up existing design strategies, and 
the comparison with already proposed methodologies should be made in terms of 
quality of the procedure. Precisely, to the best authors’ knowledge, a bi-level optimi-
zation algorithm with nested GA is here applied for the first time as a structural seis-
mic design approach of frames. In addition, the design process not only avoids the 
employment of oversimplified linear analysis, but is able to include in the structural 
assessment the ductility resources of the structure although exploiting a limit analy-
sis strategy. The presented procedure represents a fair compromise between accu-
racy and rapidity of the algorithm, since it avoids performing nonlinear static analy-
ses, but is able to more accurately estimate the displacement capacity with respect to 
a linear approach, which requires assuming a priori the behaviour.

The procedure is validated against two significant case studies, which are duly 
analysed considering the needed computational effort, demonstrating how the 
designed frames are those which maximize the defined fitness and providing a 
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discussion on the criteria included in the fitness function and how they affect the 
final outcome of the design procedure.

2 � The proposed design strategy

In the present study planar regular frames with columns clamped at the base are 
considered (Fig. 1). These are characterized by the number of floors Nf and the num-
ber of columns Nc. The length of all the beams is L and the height of the columns is 
H. Different constant cross sections for the beams within the same floor can be con-
sidered and the same assumption is made for the columns. The structural members 
are numbered starting from the base to the top of the frame and from left to right, 
first columns and then beams.

The frame may be loaded, at each floor, by permanent vertical distributed loads 
qk and concentrated horizontal forces Fk proportionally increased with a multiplier 
λ. With the aim of simulating seismic inputs, the horizontal forces are considered 
variable while the vertical loads are assumed to be distributed and of constant value 
within the same floor.

In the proposed design procedure, the geometry of the frame in terms of intersto-
rey height and frame bays, is assigned. In addition, the vertical loads, and the hori-
zontal ones, which depend on the weights, are considered known as well. The design 
variables are the cross sections associated with the members, that is their stiffness 
and resisting plastic moments.

The proposed design approach, consisting in the two nested genetic algorithms, 
is described in the following subsections. Specifically, in the first subsection, the 
External GA, devoted to the identification of the best set of cross sections to be 

Fig. 1   Layout of a generic planar frame
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assigned to the members of the frame, is described. Aiming at the evaluation of the 
fitness function for a certain set of cross sections investigated by the External GA, a 
procedure for the assessment of the corresponding seismic performance, according 
to the strategy proposed in [49], is run. The latter considers two load scenarios, each 
of which constitutes a procedure here addressed as Internal GA, briefly recalled in 
the second subsection. In the third subsection, the procedure for the definition and 
calculation of the fitness of the generic frame, which takes into account not only the 
seismic performance but also other meaningful criteria, and the considerations lead-
ing to the identification of the optimal design, are illustrated.

2.1 � The external GA (design algorithm)

The main loop of the external algorithm is devoted to the definition of the cross 
sections to be assigned to the members of the frame. The cross sections of the struc-
tural members are assumed as design variables and can vary within a predefined list 
of commercial profiles for steel frames or, in the case of reinforced concrete struc-
tures, in a predefined list of conveniently chosen cross sections. Since the procedure 
adopted in the present paper, in order to identify the optimal set of profiles, makes 
use of genetic algorithms, a population of profile chromosomes is considered. Each 
individual of the population is coded as a string of integer numbers, where each 
number (called “gene”) identifies the considered commercial profile. Therefore, a 
generic profile chromosome Cext

k
 of the population (k = 1, …, Pext), being Pext the 

overall number of possible different external chromosomes, can be coded in the fol-
lowing string:

where

and ci represents the identification code of the cross section of the i-th structural ele-
ment within the predefined list.

In the design of frames for engineering applications it is realistic to consider a 
vertical symmetry according to which the cross sections of both columns and beams 
within the same story can vary although respecting the symmetry condition. This 
consideration induces a drastic reduction of the number of independent genes as 
reported in Eq. (2).

It can also be interesting to consider the particular case in which a constant cross 
section for the beams within the same floor is taken into account and the same 
assumption is made for the columns. In this case it is easy to verify that the number 
of genes in the profile chromosome is equal to 2*Nf.

(1)Cext
k

≡

(

c1, c2,… , cn◦structel
)

n◦structel = Nf

(

2Nc − 1
)

(2)n◦ independent genes =

{

Nf∗ Nc if Nc is odd

Nf∗ (Nc − 1) if Nc is even
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For each profile chromosome, and therefore for each generic frame, the corre-
spondent seismic performance is evaluated by means of a limit analysis strategy 
procedure described in detail in [49], which represents the internal algorithm in the 
proposed nested strategy and is briefly recalled in the next Sect. 2.2. The seismic 
performance of the frame, together with other engineering requirements, contribute 
to the definition of the fitness of the profile chromosome and therefore to the identi-
fication of the optimal set of cross sections, as described in Sect. 2.3.

2.2 � The internal GA (seismic assessment algorithm)

The inner level of the routine aims at evaluating the safety factor of the structural 
configurations selected by the upper level of the algorithm. Such inner procedure 
is able to reconstruct a capacity curve representing an equivalent single degree of 
freedom system, on which the verification suggested by the standards [1] are per-
formed. The procedure, which was originally presented in [49], is able to account 
for geometric (second order effects) and constitutive nonlinearities and estimates the 
displacement capacity according to the main criteria suggested by the codes. The 
evaluation of the approximated capacity curve is here briefly recalled.

Specifically, the procedure exploits the estimation of the resistance of the struc-
ture, which is evaluated according to a limit analysis approach. Although a consider-
able number of possible approaches to compute the resistance of a frame through 
limit analysis could have been adopted, here the strategy proposed in a previous 
paper by the authors [46] is used. The adopted strategy makes use of the method of 
combination of elementary mechanisms [11, 45], following its combination with a 
genetic algorithm as proposed in [46]. This strategy has been extensively validated 
[46–48] with Finite Element nonlinear static analyses showing how fast and reliable 
it is. Given a profile chromosome Cext

k
 , the load factor λo of the horizontal forces is 

calculated following an approach which takes into account the global collapse mech-
anisms obtained by means of linear combinations of three elementary ones: floor, 
beam and node mechanisms [11].

For each collapse mechanism, making use of the virtual work theorem, the value 
of the load multiplier λo is given by:

where �WextH and �WextV represent the virtual work done by the horizontal forces 
and the vertical permanent load, respectively, and �Wint is the internal virtual work 
concentrated in the plastic hinges. Analysing all the possible combinations of N ele-
mentary mechanisms, the minimum value of λo must be sought in order to obtain the 
real collapse load.

The optimization adopted within the inner level of the algorithm aims indeed 
at seeking the combination of elementary mechanisms which minimizes the load 
multiplier λo of the adopted load distribution, that is the correct collapse multiplier. 
The minimization procedure makes again use of genetic algorithms through the 

(3)�0 =
�Wint − �WextV

�WextH
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definition of the population of “internal chromosomes” Cint
h

 (h = 1, …, Pint), being 
Pint the overall number of possible different internal chromosomes, defined as:

where cj = 1 or cj = 0 depending on fact that the j-th elementary mechanism is 
involved in the combination or not. For these internal algorithms, a number Nint of 
generations will be considered. Once the winning internal chromosome is sought 
through the procedure proposed in [46], the corresponding final collapse load �c can 
be obtained by decreasing the load factor λo taking into account the second order 
effects of the work done by the vertical loads as follows:

where � is the horizontal displacement of the top of the frame purged of the elas-
tic deformability, and � is the slope of the linear post-elastic descending branch 
accounting for the second order effects [49].

An approximated bilinear capacity curve, referred to a monitored point conveni-
ently chosen at the top floor of the frame is adopted. In Fig. 2 the construction of the 
proposed bilinear capacity curve (black line), which approximates the actual nonlin-
ear one (red line) is depicted.

It is worth highliting that, in order to take into account the progressive damage diffu-
sion occurring in the frame during the collapse, the initial stiffness ki is an appropriate 
reduction of the elastic stiffness ke, by a reduction coefficient able to account for the 
ratio between the acting moment in correspondence of the global elastic load multiplier 
and the relevant plastic moment in all the sections involved in the collapse mechanism, 
as described in [49]. The resistance Vby is obtained as the cross point between the initial 
elastic branch associated with the stiffness ki and the inelastic one, with slope ks, depart-
ing from the point u = 0,Vb = Vb,max = �o

∑Nf

j=1
Fj (where the maximum base shear 

Vb,max is computed multiplying the summation of the horizontal forces Fj by the col-
lapse load multiplier λo). The second branch of the capacity curve is identified consid-
ering the resistance of the structure obtained through a limit analysis and evaluating 
how the resistance of the structure reduces as the horizontal displacements increase. 

(4)Cint
h

≡

(

c1, c2, c3,… , cj,… , cN
)

(5)�c = �0 − ��

Fig. 2   Approximated bilinear capacity curve [49]
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Precisely, the post-peak slope ks is evaluated considering the second order effects and is 
equal to

The capacity curve is then truncated considering as ultimate displacement uu the 
condition associated with the achievement of the ultimate conditions in the structure 
according to the adopted standard [1], namely the global base shear reduction and the 
achieving of ultimate chord rotations in beams.

The described approximated bilinear curve is representative of the Multi-Degrees 
of Freedom (MDOF) system and therefore of the whole frame. According to the pro-
cedure reported in [49], the properties of an equivalent Single-Degree of Freedom 
(SDOF) system and the demand and capacity associated with the Near Collapse (NC) 
Limit State are compared in order to evaluate the safety factor. The latter is defined 
as the ratio between the ultimate displacement of the equivalent elastic–plastic SDOF 
system and the seismic demand (displacement at the top floor of the frame) as recom-
mended by the codes.

For seismic assessments of the worked examples presented in the following, the pro-
cedure proposed in Eurocode 8 [1] is employed. In particular, in order to define the 
seismic demand, the city of Catania (Italy) was chosen; correspondingly, the Italian 
annex [52] was considered to obtain the design spectrum, considering soil type B and 
modal damping equal to 5%.

For each profile chromosome Cext
k

 two internal genetic algorithms (“Internal GA A” 
and “Internal GA B”) are firstly launched for the determination of the collapse loads 
and failure mechanisms when mass proportional (A) or inverse triangular (B) horizon-
tal load distributions are applied. The consequent two values of the collapse loads, say 
�A
c
 and �B

c
 , are the minimum ones corresponding to the winning chromosomes Cint

A
 and 

Cint
B

 , obtained for the considered load distributions after several runs of the algorithms 
(typically Nint = 10, in order to avoid local minima). When the two collapse loads are 
evaluated, the corresponding safety factors SFA

k
 and SFB

k
 of the profile chromosome Cext

k
 

with respect to expected seismic demand are calculated. It is important to point out that 
configurations with safety factors lower than one are automatically discarded by the 
algorithm.

2.3 � Fitness calculation

In the identification of the most performant frame many requirements must be con-
sidered. For example, as already said, both the safety factors described in the previous 
paragraph must be greater than one. Other considerations, involving the economic cost 
of the structural members (related to the weight of the frame) and further engineering 
design precautions, can be introduced in the definition of the following fitness value Fk 
of the profile chromosome Cext

k
:

(6)ks = −�

Nf
∑

j=1

Fj

(7)Fk = �1f1k + �2f2k + �3f3k + �4f4k
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where

•	 f1k = 1 − 0.5

(

1

SFA
k

+
1

SFB
k

)

 is the fitness component related to the seismic safety 
factors;

•	 f2k = 1 −
Massk

MaxMass
 takes into account the ratio between the mass (Massk) of 

the frame associated with the profile chromosome Cext
k

 and the maximum one 
(Max Mass) which corresponds to a frame with all the structural members 
having the biggest cross section in the list of considered profiles;

•	 f3k =
1

2N

�

∑N

j=1
cA
j
+

∑N

j=1
cB
j

�

k
 , with cA

j
∈ Cint

A
 andcB

j
∈ Cint

B
 , allows to control 

the failure mode privileging the frames for which more elementary mecha-
nisms (and therefore more unitary values of cA

j
 orcB

j
 ) are involved, that is the 

failure mode is global, which implies a large energy dissipation;
•	 f4k =

1

Nc(Nf−1)

�

∑Nf−2

h=0

∑Nc+h(2Nc−1)

i=1+h(2Nc−1)
F(ci − ci+(2Nc−1)

)

�

k
 , with F(x − y) = 1 

ifx > y ,         F(x − y) = −1 if x < y andci ∈ Cext
k

 , is the fitness component that 
takes into account a resistance hierarchy according to which the cross section 
of the columns cannot increase with the height of the frame.

It is worth to note that the last two criteria are widely accepted and adopted 
in the plastic design of frames and were already accounted for in [16]. Here, the 
same criteria are also considered, and the relevant fitness components represent 
mathematical formulas to express the same concepts.

The definitions of the four components of the fitness imply that the four values 
range between 0 and 1, thus favouring the introduction of the relative weights  
�1,�2,�3, �4, by means of which the designer can calibrate the above require-
ments. It is worth pointing out that in the design process there is not an absolute 
optimal solution and different configurations can be sought according to the cri-
terion of choice the designer wants to privilege. For example a designer inter-
ested only on limiting the cost of the structure could adopt as relative weights 
�1 = �3 = �4 = 0, �2 = 1 . A designer more attentive to the structural performance 
of the frame would increase the relative weights corresponding to the first, third 
and fourth criteria.

Once the fitness of all the profile chromosomes Cext
k

 (k = 1, …, Pext) have been 
evaluated by means of a parallel computing procedure, the fitness array is pro-
cessed by the External GA which produces the next generation.

The process is repeated until the established number of iterations Next has been 
reached. The optimal design of the frame is finally achieved considering the set of 
cross sections for beams and columns associated with the highest fitness.

The whole nested procedure is summarized in the flow chart reported in Fig. 3.
The adoption of a weighting method, where the original multiobjective prob-

lem is converted into a single objective one through a linear combination of the 
objective functions is motivated by the fact that, provided that all weights are 
positive, this method should only generate Pareto-like solutions [53]. Actually, 
it presumably will generate a subset of these solutions. A modified algorithm for 
the exploration of the entire Pareto front will be explored in future works.
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It is worth stressing that the design strategy entrusts two different tasks to the two 
levels of the algorithm. Namely, for each configuration of the frame explored by the 
external loop, the internal one identifies the expected collapse mechanism and the 
relevant load multiplier, which are employed to perform a prompt assessment of the 
seismic vulnerability; on the other hand, the external level of the algorithm explores 
the possible cross-section distribution in the frame, aiming at identifying a safe and 
optimized structural design of the frame. In this sense, the internal loop is at the 
service of the external one but cannot be faced simultaneously for two main reasons:

–	 The safety multiplier, identified for each frame configuration by the external 
loop, is exploited by the fitness function reported in Eq. (7) implemented in the 
external loop.

–	 The fitness functions of the internal and external loops cannot be mixed since 
they measure completely different aspects of the frame (minimization of the load 
multiplier as single optimization criterion in the case of the internal loop, four 
different parameters with different relative weights in the case of the external 
loop).

3 � Algorithm implementation

The algorithm matches the classic case of a job workflow running Next • Pext times 
a direct acyclic graph (DAG) where Next expresses the number of the External GA 
generations and Pext the number of profile chromosomes to compute at each cycle. 
Although several commercial software products are available to implement this 

Fig. 3   Flow chart of the nested algorithm
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type of computational workflow, their use may be better justified in those cases 
where the process flow can vary during the computation.

In the case of the proposed nested genetic algorithm, the computational work-
flow ever has a static configuration so that it can be easily controlled by a dedi-
cated set of shell scripts.

Recalling the algorithm workflow depicted in Fig.  3, a main script manages 
the NetLogo External GA and several worker scripts (whose number, in the pres-
ence of limited resources, may be lower than the number of profile chromosomes) 
are responsible for executing the necessary NetLogo Internal GA, A and B, algo-
rithms. The worker script also computes the final fitness Fk value as soon as all λA

c

 
and λB

c

 will be available for each chromosome Ck
ext. Once all fitness values have 

been determined, the main script wakes up the External GA and a new generation 
calculation will start until the maximum number Next of repetitions is reached.

The execution coordination among the main and the workers scripts is ensured 
by a database instance principally holding a task queue, a chromosomes table 
and relevant computed values such as the fitness evolution across External GA’ 
generations.

The computation of the two nested algorithms makes use of the virtualization 
based on containers. Since the earlier design phases, virtualization has been con-
sidered a key element, because it offers the possibility to run on a wide range of 
physical platforms, especially those provided by open and private Cloud infra-
structures. This way to access computing infrastructures also becomes a key ena-
bler to let this work be reproducible and reusable [54], two important factors in 
the incoming age of Open Science [55] and FAIR principles (www.​go-​fair.​org/​
fair-​princ​iples/) compliant research data. For this reason, all source codes related 
to the running environment setup and the algorithm execution are publicly avail-
able in the INFN source code repository, (baltig.infn.it/brunor/optimal_design).

The decision of using containers to manage the virtualized resources has been 
made for principally two reasons. The first is associated with the simplicity to 
install, use, and maintain the execution environment. The second is related to the 
reached level of maturity and popularity since container images can be consid-
ered today a standard technology.

The software development, testing and the final data extraction were carried 
out executing the nested algorithm on top of the GARR Cloud Infrastructure 
(www.​garr.​it/​en/​garr-​en/​docum​ents/​docum​enti-​tecni​ci/​3474-​garr-​white-​paper-​
maggio-​2017) which reserved for the execution the following resources:

Cores: 100
RAM: 100 GB
Disk storage: 1 TB

To perform the data analysis of the present paper, these resources have been 
used to instantiate a virtual cluster made of 4 nodes having 24CPU and 24 GB of 
RAM, all of them accessing a common storage volume. The cluster used a con-
tainer orchestration system to execute the following microservices:

http://www.go-fair.org/fair-principles/
http://www.go-fair.org/fair-principles/
http://www.garr.it/en/garr-en/documents/documenti-tecnici/3474-garr-white-paper-maggio-2017
http://www.garr.it/en/garr-en/documents/documenti-tecnici/3474-garr-white-paper-maggio-2017
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Service Instances Description

db 1 Database instance holding persistent data
dbmgr 1 A tiny REST-API server to perform CRUD operations on the database
master 1 Service controlling the External GA
worker 15 Service executing Internal GA 1 and 2 and performing the final Fitness calculation
web 1 Service exposing the algorithm execution dashboard and serving a file manage-

ment to access computed data

The External GA and the Internal GA, A and B, use a common directory stor-
ing all parameters inside different text files; the following Table 1 explains their 
meaning.

Table 1   Text files exchanged by the algorithm and their meaning

data-input-ext-algorithm.txt Configure the behavior of the External GA, such as the number of chromo-
somes (different profiles displacement), frame size, the maximum number 
of generations, the length of beams and columns of the frame, etc

Horizontal-force-list-A.txt Used by internal GA A, specifies the horizontal loads applied at each level 
of the frame corresponding to a mass proportional distribution

Horizontal-force-list-B.txt Used by internal GA B, specifies the horizontal loads applied at each level 
of the frame corresponding to an inverse triangular distribution

Table-of-profiles.txt It holds contains the whole of possible profiles, each identified by a 
progressive number followed by other information such as the relative 
weights and the static resistance parameters

Vertical-force-list.txt Used by both internal GA A and B it contains the vertical loads applied at 
each level of the frame

Fitness_times.txt Contains the number of times internal GA A and B are applied. The higher 
is this value the more reliable result will be computed for the Internal 
GAs; on the other end, the slower will be the computation

Fig. 4   Optimal Design overall implementation
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The overall architecture of the algorithm implementation is summarised in Fig. 4, 
which further specifies the flow chart presented in Fig. 3, explaining the role of all 
involved docker containers and showing how the External GA interconnects with 
the Internal GAs and the fitness calculation. Notice that the External GA will iterate 
the profile chromosomes generations till the maximum number of iterations have 
been reached or by user interruption.

4 � Numerical applications

In the present paragraph the proposed design strategy is applied to two different 
steel frames having 2 spans and 2 storeys, and 3 spans and 5 storeys, respectively. 
Therefore, the profile chromosome size for the two frames is 10 and 35, respectively. 
Taking into account a vertical symmetry the number of independent genes decreases 
to 6 and 15 respectively while for frames in which the cross sections for beams 
and columns are constant within the same floor, the number of independent genes 
becomes 4 and 10 respectively. For both the frames two applications are developed 
respectively assuming a vertical symmetry or equal members within the same inter-
floor. After a preliminary analysis, aimed at identifying sets of parameters for the 
GA algorithms that allowed to find stationary value for both the minimum collapse 
load of the internal chromosomes and the fitness of the profile chromosomes, the 
numbers of the external algorithm generations and of the chromosomes to com-
pute at each cycle have been chosen respectively equal to Next = 30 and Pext = 100. 
The corresponding values for the internal (A and B) algorithms are Nint = 40 and 
Pint = 100. For both the external and internal algorithms the crossover rate and the 
mutation-rate are fixed, respectively, to 80% and 1% (see [46, 49] for more details 
about these parameters). In the following subsections, two worked examples are first 
described and analysed; then, the computational effort required by the proposed pro-
cedure is shortly discussed.

4.1 � Two‑storey frame

The considered frame, reported in Fig. 5, has 2 bays each one of length 4 m and 2 
storeys with interstorey height equal to 3 m. The beams are subjected to a permanent 
distributed vertical load equal to 50 kN/m. According to standard seismic analyses 
two horizontal force distributions are considered, namely a mass proportional force 
distribution and an inverse triangular one. The relevant horizontal forces are sum-
marized in Table 2

The objective of the design strategy is to select an optimal set of profiles for 
beams and columns among a predefined list (according to a chosen criterion). In the 
present application reference is made to steel profiles in the class HEA and 10 possi-
ble cross sections are considered as reported in Table 3 where, for each cross section 
the moment of inertia I, the area A and the plastic moment Mp are reported. Axial 
and shear deformability are neglected. The Young’s modulus adopted for the steel is 
equal to 210,000 MPa.



1 3

A nested genetic algorithm strategy for an optimal seismic…

For the considered frame, the generic profile chromosome for the application of 
the external genetic algorithm has 10 genes corresponding respectively to the ID 
of the profile of the structural elements numbered in Fig.  5. Since each gene can 
assume ten different values, the overall number of possible different chromosomes 
in the population is Pmax = 1010

.

Fig. 5   First benchmark planar frame (length in m, forces in kN)

Table 2   Horizontal force 
distributions (in kN) for the two-
storey frame

Force distribution

Mass proportional Inverse triangular

F1 400 266.67
F2 400 533.33

Table 3   Predefined list of the 
considered set of adopted cross 
sections

ID Profile I (cm4) A (cm2) Wp (cm3) Mp (KNm)

1 HEA-140 1033 10.2 173.5 40.7725
2 HEA-160 1673 13.21 245.1 57.5985
3 HEA-180 2510 14.47 324.9 76.3515
4 HEA-200 3692 18.08 429.5 100.9325
5 HEA-220 5410 20.67 568.5 133.5975
6 HEA-240 7763 25.18 744.6 174.981
7 HEA-260 10,450 28.76 919.8 216.153
8 HEA-280 13,670 31.74 1112 261.32
9 HEA-300 18,260 37.28 1383 325.005
10 HEA-320 22,930 41.13 1628 382.58



	 A. Greco et al.

1 3

Assuming a vertical symmetry for the frame the number of independent genes 
reduces to 6 which correspond respectively to the ID of profiles for: outer columns, 
inner column and beams for each floor. Also the case in which a constant cross sec-
tion for the beams and columns within the same floor is considered; in this case the 
number of independent genes is 4. This means that, in these last two cases, the num-
ber of possible different chromosomes will be reduced to Pmax = 106 and Pmax = 104, 
respectively. However, for sake of clearness, the general form (1) of the profile chro-
mosomes, with a size equal to the number of structural members, has been always 
maintained in reporting the simulation results.

The chosen relative weights are α1 = 0.2, α2 = 0.6, α3 = 0.1 and α4 = 0.1, which 
allow to reasonably balance the contribution of all the criteria introduced in the 
fitness function. Anyway, the designer can differently calibrate the design require-
ments privileging one of them or also add some new ones in the definition of the 
fitness of a profile chromosome.

Once reached the established number of iterations Next of the nested algorithm, 
the profile chromosomes of the last generation are analysed and the one with the 
highest fitness will be the winner. Table 4 shows three examples of winning chromo-
somes obtained for the vertically symmetric frame, together with their correspond-
ing fitness components defined in Eq. (7). The analogous result related to the frame 
with a constant cross section for the beams and columns within the same floor are 
reported in Table 5.

It is worth to note that removing the assumptions of adopting the same cross-sec-
tion for the columns at a given floor leads to a more optimized configurations (outer 
beams at the ground floor can accommodate a smaller section).

Aiming at a deeper insight on the differences between the above results, more 
details related to the two profile chromosomes with the best fitness in the two 
design configurations, having vertical symmetry or equal members within the 
same floor, are provided in the following. In particular, for each one of the two 

Table 4   Three examples of winning profile chromosomes for the vertically symmetric two-storey frame

Profile chromosome Fitness f1 (α1 = 0.2) f2 (α2 = 0.6) f3 (α3 = 0.1) f4 (α4 = 0.1)

[4 5 4 5 5 3 3 3 4 4] 0.633 0.661 0.567 0.6 1
[4 5 4 5 5 3 4 3 4 4] 0.627 0.656 0.559 0.6 1
[4 5 4 4 4 4 3 4 3 3] 0.623 0.453 0.587 0.8 1

Table 5   Three examples of winning profile chromosomes for the two-storey frame having a constant 
cross section for the beams and columns within the same floor

Profile chromosome Fitness f1 (α1 = 0.2) f2 (α2 = 0.6) f3 (α3 = 0.1) f4 (α4 = 0.1)

[5 5 5 5 5 3 3 3 4 4] 0.627 0.667 0.556 0.6 1
[4 4 4 4 4 3 3 3 3 3] 0.624 0.390 0.609 0.8 1
[5 5 5 4 4 4 4 4 3 3] 0.616 0.374 0.568 1 1
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frames, the value of the collapse load multiplier λc, the correspondent collapse 
mechanism, the ultimate displacement of the equivalent elasto-plastic SDOF sys-
tem dcu, the seismic demand dmax and the related safety factors SF for the two 
considered load conditions are reported in Table 6.

In the same table, in the bottom panels, a visual representation of the tempo-
ral spreading of the winning profiles among the population of chromosomes is 
reported for the two cases. After a certain amount of generations, the diversity in 
the population of chromosomes tends to vanish (except for the random mutations 
introduced at each generation). In particular, the population of Pext = 100 profile 
chromosomes, indicated by coloured cells (different colours correspond to differ-
ent chromosomes), is reported in the x-axis, while in the y-axis (from bottom to 
top) the sequence of the Next = 30 generations of the external GA is shown: the 

Table 6   Comparison between the two best profile chromosomes obtained for the two-storey frame

[4 5 4 5 5 3 3 3 4 4]
Vertical symmetry

[5 5 5 5 5 3 3 3 4 4]
Equal members within the same floor

λ
A

c

0.283 0.301
Collapse Mech_A

  
dcu

A [m] 0.247 0.247
dmax

A [m] 0.110 0.106
SFA 2.249 2.335
λ
B

c

0.255 0.271
Collapse Mech_B

  
dcu

B [m] 0.250 0.250
dmax

B [m] 0.116 0.118
SFB 2.148 2.113
Temporal spreading
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temporal convergence towards a single colour expresses the diffusion of the win-
ning chromosome among the population.

The single-coloured cells, randomly distributed in the top part of the figure, rep-
resent random mutations of the winning chromosome produced by the GA. It is 
interesting to highlight that the fitness of the profile chromosome [4 5 4 5 5 3 3 3 4 
4], having the internal column at the first storey with cross section greater than the 
external ones at the same floor, turns out to be greater than that of [5 5 5 5 5 3 3 3 4 
4] with equal columns at the first storey. In particular, the chromosome related to the 
frame with vertical symmetry has a higher value of the term f2 in the fitness defini-
tion being related to a more performant distribution of the masses and its realization 
is therefore economically more convenient. Furthermore the safety factors of the 
vertically symmetric frame turn out to be greater only in one of the two load condi-
tions, anyway this has a small influence in the fitness function due to the assumed 
weight α1.. This consideration allows underlining that the provided results are deeply 
related to the weights introduced for each component of the fitness function, which 
can be conveniently calibrated according to desired requirements.

To focus on the dependency of fitness calculation on the choice of the main 
weights α1 and α2, in Table  7 the fitness of the two best profile chromosomes 
reported in Tables  4 and 5 evaluated for different couples of weights have been 
compared.

It immediately appears that the frame with vertical symmetry shows the highest 
fitness until the weight α2, related to the mass, overcomes the weight α1, related to 
the safety factors. Then, the fitness of the other frame becomes the best one. Bold 
characters help to recognize this effect.

Table 7   Comparison between the fitness of the two best frames of Tables 4 and 5 for several values of 
weights α1 and α2. The fitness of the absolute winner frame among the two is highlighted in bold

Vertical symmetry Equal members within the same 
floor

  

α1 = 0.1 α2 = 0.7 0.623 0.616
α1 = 0.2 α2 = 0.6 0.633 0.627
α1 = 0.3 α2 = 0.5 0.641 0.638
α1 = 0.4 α2 = 0.4 0.651 0.649
α1 = 0.5 α2 = 0.3 0.661 0.661
α1 = 0.6 α2 = 0.2 0.670 0.672
α1 = 0.7 α2 = 0.1 0.680 0.683
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4.2 � Five‑storey frame

The second application refers to a frame with three bays and five storeys. The 
storey height is equal to 3.2 m and the length of the bays is 4.5 m (Fig. 6). The 
beams are subjected to a permanent distributed vertical load equal to 25 kN/m 
while the horizontal forces in the two considered load conditions are reported in 
Table 8. Also for this frame, reference is made to the 10 steel profiles in the class 
HEA reported in Table 3. Since in this case, as previously stated, the number of 
structural elements is equal to 35, the size of the external GA population will be 
Pmax = 1035

. Again, assuming a vertical symmetry or a constant cross section for 
the beams and columns within the same floor, the size of Pmax will be reduced to 
1015 and 1010 respectively.

Fig. 6   Second benchmark planar frame (length in m, forces in kN)
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Table  9 reports the three profile chromosomes, obtained with the proposed 
design strategy for vertically symmetric frames, which correspond to the highest 
values of the fitness. Each rate of the fitness defined in Eq. (7) is also reported.

The results related to the three profile chromosomes correspondent to the 
highest values for the frame having a constant cross section for the beams and 
columns within the same floor are reported in Table 10.

Again, for this frame a comparison between the two best profile chromosomes 
in the two design configurations is performed and the details are reported in 
Table 11.

It is interesting to point out that, adopting in the design processes of the two 
and five storey frames the same values of the relative weights �1,�2,�3, �4,  the 
safety factors and the total mass play different roles in the identification of the 
winning profile chromosome. Actually, unlike the smaller frame described in the 
previous paragraph, in the case of the vertically symmetric five storey frame, 
the chromosome with the best fitness has greater safety factors with respect to 
those of the frame with constant cross sections at the same floor. This is due to 
the presence, in correspondent locations, of structural members having bigger 
cross sections. This “strengthening” of the frame produces evidently an increase 
of the safety factors and therefore of the term f1 in the fitness function. Although 
the weight �1, attributed to this design parameter is smaller than �2, which takes 
into account the mass of the frame, in this case the former has a prevalent effect 
in the fitness value. Anyway, as already pointed out, the selected frame does not 
represent an absolute optimal design since a small change in the relative weights 
leads to different final results in which other requirements can be privileged.

Finally, in order to appreciate the convergence of the external algorithm to 
the best profile chromosomes, in Fig. 7 the average fitness evolution of the pro-
file chromosomes as function of the number of generations for both the two-
storey (a) and the five-storey (b) frames with vertical symmetry is reported. It 
can be clearly seen, from the observation of the figure, that the number of gen-
erations selected in the numerical applications, equal to 30, guarantees a stable 
convergence of the algorithm, since a stationary state with a (local) maximum 
of average fitness is already reached just after 10–15 generations for both the 
considered frames. This last result also explain why the populations of profile 
chromosomes in the bottom panels of both Tables  6 and 11 seem to stagnate 
after 10–12 generations.

Table 8   Horizontal force 
distributions (in kN) for the five-
storey frame

Force distribution

Mass proportional Inverse triangular

F1 325.00 108.33
F2 325.00 216.67
F3 325.00 325.00
F4 325.00 433.33
F5 325.00 541.67
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4.3 � Computational effort analysis of the proposed strategy

In order to provide a computing time estimation for the two considered frames which 
would not depend on the number of available resources, the results summarized in 
Table 12 have been extracted for a single profile chromosome, considering the aver-
age computing time (expressed in seconds) of the internal algorithms (A and B) and 
the fitness calculation, extracted from the task queue.

In particular the partial times related to the different tasks of the algorithm have 
been separately specified as follows:

INT_1_A evaluates the collapse load for load condition 1 (mass proportional 
force distribution).

Table 11   Comparison between the two best profile chromosomes obtained for the five-storey frame

[6 6 6 6 6 6 6 6 6 6 6 5 5 5 5 5 5 5 5 5 5 
3 5 5 3 3 3 3 3 1 1 3 1 1 1]
Vertical symmetry

[5 5 5 5 3 3 3 5 5 5 5 3 3 3 5 5 
5 5 2 2 2 3 3 3 3 2 2 2 1 1 1 1 
1 1 1]
Equal members within the same 
floor

λ
A

c

0.157 0.129
Collapse Mech_A

  

dcu
A (m) 0.542 0.467

dmax
A (m) 0.247 0.266

SFA 2.190 1.757
λ
B

c

0.126 0.106
Collapse Mech_B

  

dcu
B (m) 0.449 0.463

dmax
B (m) 0.252 0.299

SFB 1.783 1.547
Temporal spreading
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INT_1_B evaluates the collapse load for load condition 2 ( inverse triangular 
force distribution).
INT_2 evaluates the safety factors and the fitness of the profile chromosome.

Fig. 7   External algorithm: average fitness evolution of the profile chromosomes as function of the num-
ber of generations for both the two-storey (a) and the five-storey (b) frames with vertical symmetry

Table 12   Computational effort needed by the proposed procedure

Frame Average seconds

2 storey frame Total time for 1 profile chromosome INT_1_A 40
INT_1_B 39
INT_2 26

Total time for the whole procedure 3150
5 storey frame Total time for 1 profile chromosome INT_1_A 295

INT_1_B 299
INT_2 35

Total time for the whole procedure 18,870
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In the table, for each frame, the total average computing time per chromosome is 
reported. Since each one of the Pext = 100 profile chromosomes is elaborated in par-
allel during a single generation (as well as the 10 runs of each internal algorithm), 
the total average computing time for the whole procedure can be obtained simply 
multiplying the previous total time for the Next = 30 generations of the external GA 
and is also reported in bold for both the cases.

It is clear that the required CPU time increases with the size of the frame and 
can assume significant values. However, the priority in this study was not maxi-
mizing performance but rather ensuring that the source codes were easily readable 
and maintainable. Thus, the significant amount of time requested by the code pro-
totype has been somehow mitigated using a distributed computing environment as 
described in Sect. 3. The distributed code was prototyped as well and, in particular, 
a common relational database to manage the job queue has been used. This led to a 
trade-off in performance compared to more advanced but complex solutions.

It is also worth to note that the reported values hold for unlimited (and homoge-
neous) resources, but in real cases they depend on the number of cores effectively 
available in the virtual infrastructure and on their performance. Furthermore, it must 
be pointed out that computing time strongly depends also on the kind of physical 
resources beyond the virtualized ones, here provided by the GARR institute; this 
time can be different if other cloud providers are adopted or if physical resources are 
directly used.

5 � Conclusions

The present paper proposes an original multi-objective strategy for the optimal plas-
tic design of the cross-sections in frames subjected to seismic excitations. The pro-
cedure is based on the application of two different genetic algorithms launched in 
a nested structure. In particular, when the geometry (lengths of the beams and of 
the columns) and loads acting on the frame that must be designed are assigned, the 
external algorithm explores different configurations associated with different sizes 
of the cross sections of the structural members, whereas each selected configuration 
is evaluated by means of an internal algorithm that assigns a score based on the rel-
evant performance. The bi-level strategy accommodates a multi-objective approach 
able to account for the modern concepts of seismic engineering (e.g. global ductility, 
strength hierarchy criterion, energy dissipation maximization in seismic conditions) 
as well as an economic criterion, through the assignments of relative weights associ-
ated with each design criterion.

The main advance of the proposed approach lies in the combination of a design 
process employing a standard parallelizable optimization procedure with a simpli-
fied methodology to evaluate the seismic performance of a generic frame, yet able to 
account dissipative resources and displacement capacity of the structure. The latter 
aspect leads to a fair compromise between accuracy and rapidity in obtaining results. 
More precisely, the proposed methodology provides new features with respect clas-
sic design algorithms based on linear models of the structure and is able to speed 
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up those procedures that employ nonlinear static analyses thanks to an expeditious 
although approximated evaluation of the capacity curve.

Therefore, the proposed procedure must be considered as a new design strategy, 
which can be either enriched taking into account other fitness components or oppor-
tunely calibrated according to specific requirements. It is worth noticing that the 
software implementation has been conceived in order to let this work be reproduc-
ible and reusable, according to the Open Science paradigm and FAIR principles.
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