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Voltage-dependent anion-selective channels (VDAC) are pore-forming proteins located
in the outer mitochondrial membrane. Three isoforms are encoded by separate genes
in mammals (VDAC1-3). These proteins play a crucial role in the cell, forming the
primary interface between mitochondrial and cellular metabolisms. Research on the
role of VDACs in the cell is a rapidly growing field, but the function of VDAC3 remains
elusive. The high-sequence similarity between isoforms suggests a similar pore-forming
structure. Electrophysiological analyzes revealed that VDAC3 works as a channel;
however, its gating and regulation remain debated. A comparison between VDAC3 and
VDAC1-2 underlines the presence of a higher number of cysteines in both isoforms 2
and 3. Recent mass spectrometry data demonstrated that the redox state of VDAC3
cysteines is evolutionarily conserved. Accordingly, these residues were always detected
as totally reduced or partially oxidized, thus susceptible to disulfide exchange. The
deletion of selected cysteines significantly influences the function of the channel. Some
cysteine mutants of VDAC3 exhibited distinct kinetic behavior, conductance values and
voltage dependence, suggesting that channel activity can be modulated by cysteine
reduction/oxidation. These properties point to VDAC3 as a possible marker of redox
signaling in the mitochondrial intermembrane space. Here, we summarize our current
knowledge about VDAC3 predicted structure, physiological role and regulation, and
possible future directions in this research field.
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INTRODUCTION

The Voltage-dependent anion-selective channels (VDACs) are
pore-forming proteins, also known as porins, localized in the
mitochondrial outer membrane (MOM). These small proteins
(30–35 kDa) are the main pathway for the flux of ions and
metabolites between mitochondria and the cytoplasm. VDACs
are involved in many cellular functions, including Adenosine
DiPhosphate and Adenosine TriPhosphate transfer, Reactive
Oxygen Species (ROS) signaling, hexokinase anchoring, and
apoptosis (Vander Heiden et al., 2000). In mammals and
most chordates, three VDAC isoforms have been characterized:
VDAC1, VDAC2, and VDAC3 (Ha et al., 1993; Sampson et al.,
1996, 1998; Messina et al., 2012).

The data emerging in the last decades denote that VDAC
isoforms in mammals show differences in (i) the mitochondrial
localization: VDAC1 and VDAC2 are colocalized within the same
restricted area in the MOM, while VDAC3 is widely distributed
on the MOM (Neumann et al., 2010; Okazaki et al., 2015); (ii)
the channel activity and voltage dependence: both VDAC1 and
VDAC2 are maximally open at 0 mV and that they enter a lower-
conductance state. They work mainly as anion channels in the
−40 a +40 mV voltage range, while outside of this range, they
function as cation channels. On the contrary, VDAC3 did not
exhibit typical voltage gating and electrophysiological properties
(Checchetto et al., 2014; Okazaki et al., 2015); and (iii) the
N-terminal sequence and its contribution to cell viability and
survival: the N-terminal end of VDACs contains amphipathic
α-helix elements with functionally relevant properties (Ujwal
et al., 2008). A remarkable difference in the number of cysteines
in the VDAC N-terminal sequences, VDAC3 has two cysteines at
positions 2 and 8, VDAC2 also has two cysteines, but only one
of them corresponding to the VDAC3 In addition, VDAC1 and 2
N-termini have additional residues, the target of carbonylation
reactions, while VDAC3 does not have them; and (iv) finally
the specific Protein-Protein Interactions (PPIs). These data lead
to hypothesize a more specialized role for each isoform in
different biological contexts. The PPIs of VDAC1 have been
described more in-depth than those of VDAC2 and VDAC3
(Caterino et al., 2017).

This review will report progress in understanding the VDAC3
function, focusing on its structure, and discussing various models
proposed for voltage gating, its modulation, and its overall role as
a channel (see Figure 1).

OVERVIEW OF VOLTAGE-DEPENDENT
ANION SELECTIVE CHANNEL 3: FROM
GENE TO PROTEIN STRUCTURE

In higher eukaryotes, the structure of VDAC genes is very similar.
The genes have the same coding-exon organization, the same
size, with the VDAC2 gene containing an additional first exon
encoding for the short presequence of 11 amino acids, a feature of
this isoform. The size of the VDACs introns varies, but the exon-
intron organization is conserved among the whole group (Young
et al., 2007). Evolutionary analysis indicates that VDAC3 is the

oldest of the vertebrate VDAC genes, suggesting that multiple
isoforms arose from gene duplication and VDAC3 diverged from
the primordial VDAC first, with VDAC1 and VDAC2 arising
more recently. VDAC3 is placed on a separate branch of a
phylogenetic tree, suggesting that this isoform has a distinctive
physiological function from VDAC1 and VDAC2 (Sampson
et al., 1996). The observation indirectly supports this prediction
that VDAC3 does not rescue the porin-less yeast temperature-
sensitive phenotype completely but generates a lower level of
growth under restrictive conditions (Sampson et al., 1997).

Transcription of the VDAC isoform genes was detected with
many techniques and indicated that the three mammalian VDAC
isoforms are ubiquitously expressed. To date, very little is known
about the mechanisms of VDAC3 gene regulation. Although its
transcript is less abundant within the cell, the VDAC3 promoter
exhibits the highest transcriptional activity compared to VDAC2
and, particularly, VDAC1. In this regard, it has been hypothesized
that VDAC3 transcripts could be less stable than VDAC1 ones or
that their levels are kept constitutively high to readily increase
VDAC3 expression in response to specific stimuli (Zinghirino
et al., 2020). Consequently, the VDAC3 promoter contains a
polypyrimidine stretch that has been featured as a specific target
of oxidative stress (Nepal et al., 2020).

Former studies based on structure prediction suggested that
VDAC isoforms folded similarly to bacterial porins (Mihara
and Sato, 1985; Kleene et al., 1987; Young et al., 2007). About
20 years after the primary structure elucidation, the VDAC1
3D structure was solved combining NMR spectroscopy and
X-ray crystallography approaches in three different laboratories
(Bayrhuber et al., 2008; Hiller et al., 2008; Ujwal et al., 2008), while
the zfVDAC2 structure was solved by Schredelseker et al. (2014)
and Gattin et al. (2015). Both VDAC1 from mice or humans
and VDAC2 from zebrafish fold into a novel structure comprised
of 19 β-strands and an N-terminal α-helix that adopted several
conformations. A similar topology with 19 β-strands and a helix
was recently resolved in TOM40, also located in the MOM
(Araiso et al., 2019; Tucker and Park, 2019). VDAC3 shares about
60–70% sequence identity with VDAC1 and VDAC2. The sample
preparation and spectroscopic methods described by Eddy et al.
for VDAC2 will likely apply to this isoform as well (Eddy et al.,
2019), but unfortunately, the 3D structure of VDAC3 has not
yet been obtained, and only a few pieces of information are
available so far. However, modeling of the hVDAC3 sequence
on the structure of hVDAC1 or mVDAC1 showed a remarkable
similarity, indicating that this isoform is possibly folded like the
other two known VDACs.

Several investigations have focused on the N-terminal
segment, which resides in the lumen and is not part of the VDACs
barrel. The N-terminal region constitutes a mobile component of
the protein that exhibits motion during voltage gating (Mannella
et al., 1992; Mannella, 1997; Najbauer et al., 2021) and may
modulate the interaction of the antiapoptotic proteins, HK and
Bcl-2, to their binding sites (Shi et al., 2003; Abu-Hamad et al.,
2009; Arzoine et al., 2009). The N-terminal sequence of VDACs
is composed of 25 residues, except for VDAC2, where there is
an N-terminal extension of 11 residues that do not change the
channel activity. The VDAC isoforms also differ in their cysteine
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FIGURE 1 | Overview of VDAC3. Created by BioRender.com.

content. Human VDAC3 has six cysteines: four of these residues
are predicted to be in the connection loops between β-strands,
protruding toward the intermembrane space (IMS; Cys36, Cys65,
Cys122, and Cys229), and two are in the N-terminal domain
(Cys2 and Cys8). VDAC1 lacks cysteines at the N-terminus and
has only two residues located on the β-strands (i.e., Cys 127 and
Cys232 in humans). VDAC2 also has many cysteines (nine in
humans and six in mice), but only one of them is conserved
in the N-terminus in a position corresponding to VDAC3. The
predicted location of hVDAC3 cysteines suggests that they are
highly accessible to soluble oxidative molecules and related to
some specific biological function.

To explore the role of the N-terminal domain of VDAC3, a
set of chimerical proteins was created by swapping the first 20
amino acids of VDAC3 N-terminal with homologous sequences
of the other isoforms and then expressing them in the yeast strain
of Saccharomyces cerevisiae 1por1 strain. Such replacement
is sufficient to change the features of the protein radically.
Insertion of the N-terminus of VDAC1 confers activity to VDAC3
and increases life span, indicating more efficient bioenergetic
metabolism and/or better protection against ROS. However, also
substitution with the N-terminus VDAC2 improves the ability
of VDAC3 to complement the absence of endogenous porin1 in
yeast, although to a lesser extent (Reina et al., 2010).

CHANNEL ACTIVITY OF
VOLTAGE-DEPENDENT ANION
SELECTIVE CHANNEL 3

The voltage-dependent characteristics of VDAC1 and VDAC2
have been extensively demonstrated, while those of VDAC3

has only recently been examined in detailed biophysical and
electrophysiological studies (Table 1).

Initially, Xu et al. (1999) demonstrated that mVDAC3
exhibited electrophysiological properties strikingly different
from the other isoforms. mVDAC3 rarely insert into artificial
membranes and did not gate well even at high membrane
potentials (do not exhibit voltage-gating up to 80 mV; Xu
et al., 1999). Subsequently, differences in the human isoform
were also observed. As reported in Checchetto et al. (2014),
the LDAO-solubilized hVDAC3 showed channel activity with
very small conductance (90 pS in 1M KCl) compared to
hVDAC1 conductance (>3,500 pS in 1M KCl), allowing passage
of both chloride and gluconate anions. Unlike VDAC1, the
VDAC3 channel was open even at transmembrane voltages
higher than ±40 mV and showed a relatively high probability
of opening even at ±80 mV. In addition, the pores were
only slightly voltage-dependent and tended to adopt low
conductance states preferentially at negative voltages lower
than positive voltages (Checchetto et al., 2014). The small
conductance matches the cellular performance of hVDAC3
expressed in yeast strain S. cerevisiae 1por1 strain, where
only partial growth recovery under non-permissive conditions
(i.e., 2% glycerol at 37◦C) was obtained (Xu et al., 1999;
Reina et al., 2010; Checchetto et al., 2014; Okazaki et al.,
2015). Careful analyzes showed that, after treatment with
reducing agents, VDAC3 occasionally reaches the characteristic
conductance level of a fully open VDAC (Okazaki et al.,
2015; Reina et al., 2016). Very recently, the group of De
Pinto further confirmed what was previously reported in
Checchetto et al. (2014) using nanodisc-stabilized human
VDACs: accordingly, in the absence of any reductants, VDAC3
inserted into artificial membranes as small, non-gated channels
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TABLE 1 | Summary of information on VDAC3 channel activity.

Protein mVDAC3 (Xu et al.,
1999)

hVDAC3 (Checchetto
et al., 2014)

hVDAC3 (Okazaki
et al., 2015)

hVDAC3
(Queralt-Martín et al.,
2020)

hVDAC3 (Conti Nibali
et al., 2021)

Refolding detergent 5% DMSO, 2.5% Triton
X-100

1% (v/v) LDAO 0,4% (v/v) LDAO 0,1% (v/v) LDAO 1% (v/v) LDAO

Reducing agent The presence of DTT
resulted in a modest
increase in insertion of
VDAC3 channels.

None None DTT Without and with 5 mM
DTT

Bilayer composition Asolectin:cholesterol
(5:1)

Asolectin (2 mg/ml) POPE:POPC (8:2) DOPC:DOPE:DOPG
(1:1:2)

1% DiPhPC

Conductance It does not show a
clear preferred state for
this channel in a
phospholipid
membrane.

∼90 pS in 1M KCl ∼500 pS in 250 mM
KCl

∼3.9 nS in 1M KCl In the absence of DTT
∼0.7 nS; in the presence of
DTT ∼3 nS in 1M KCl

Voltage dependence No No No Yes No A perfect overlap of the
voltage dependence
between all three isoforms
was obtained only when
the cysteines were
removed from the hVDAC3
sequence

Ion selectivity Similar to mVDAC1 and
mVDAC2, mVDAC3
resulted in the same
molecular weight cutoff,
indicating that this
protein could also form
channels that allow the
flux of large
nonelectrolytes across
the mem- brane.

N.D. N.D. Similar to hVDAC1 In the presence of DTT
similar to hVDAC1 and
hVDAC2 The results of
these experiments further
corroborate the importance
of cysteine redox state in
pore function, and they
foster the hypothesis that
the selectivity of the
channel is correlated to the
size of the unitary
conductance.

(Conti Nibali et al., 2021). When cysteines are found to
be reduced in mass spectrometry analysis (following DTT
and iodoacetamide treatment) it means that those cysteines
were probably involved in disulfide bridges (otherwise DTT
could not have reduced them back to SH). The main
hypothesis for this discrepancy in hVDAC3 conductance
was proposed to arise from the lipids used in planar lipid
bilayer experiments and the difficulty in obtaining stable and
homogeneous VDAC3 proteins. As reported in Queralt-Martín
et al. (2020), VDAC3 forms canonical pores responsive to
membrane voltage, even though with a much lower insertion
rate than isoforms 1 and 2, and exclusively following highly-
reducing refolding procedures. The authors correlated these
differences with the lower stability of hVDAC3 in LDAO
detergent. Using a highly reactive thiol-specific fluorochrome,
they performed a thermal stability assay on mVDAC1 and
hVDAC3, confirming a dramatic change in melting temperatures
between the two isoforms (hVDAC3 Tm = 29◦C, mVDAC1
Tm = 56◦C). The outcome revealed that hVDAC3 has lower
protein stability than hVDAC1 when solubilized in LDAO.
The lower Tm value of hVDAC3 may explain the formation
of noisy channels in the PLM due to the insertion of
the unproperly folded hVDAC3. In this paper, the authors

suggested that the best insertion yield is achieved using lipid
bicelles made from 2-dimyristoyl-sn-glycero-3-phosphocholine
(Queralt-Martín et al., 2020).

More often, the protein appears to form aggregates during
protein purification. Another possible reason for such strange
channel behavior of VDAC3 was attributed to the number
and endomitochondrial location of exposed cysteine residues,
which predominantly protrude toward IMS. According to mass
spectrometry analysis, these amino acids follow an oxidative
pattern that is conserved throughout evolution and does not
include irreversible oxidations, as it was instead found in VDAC1
and VDAC2 cysteines (Saletti et al., 2018; Pittalà et al., 2020).
In hVDAC3, Cys2, Cys8, Cys122, and Cys229 were identified
as completely reduced, while Cys36 and Cys65 were detected
in both the reduced and trioxidized form. The consequence
is that the reduced Cys, even though it can be oxidized,
is always reduced back to -SH and avoids being irreversibly
oxidized. Then, they are candidates to be protected in a
disulfide bridge, or their function is linked to their reduction,
indicating that they are structurally and functionally crucial for
the protein itself. The swapping experiments mentioned above
have already suggested the importance of N-terminal cysteine
residues in the pore activity of VDAC3 (Reina et al., 2010).
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Later, electrophysiological data reported in Okazaki et al.
(2015) and Reina et al. (2016) confirmed the essential role
of such sulfur-containing amino acids in channel gating,
proposing that the N-terminal residues Cys2 and Cys8 could
form transient disulfide bonds capable of modulating the pore
diameter or changing the charges exposed on the protein
surface (Amodeo et al., 2014; Guardiani et al., 2016) and
therefore its conductance. The current flow through VDAC3
is dramatically reduced, compared to VDAC1 and VDAC2,
under non-reducing conditions (i.e., ∼90 pS vs. ∼3.5 nS in 1M
KCl, respectively).

A pivotal role for VDAC3 cysteines in modulating
mitochondrial ROS has also been proposed (Reina et al.,
2016). To date, however, this point is still speculation since
no empirical evidence is available. In this regard, the latest
data in the literature seem to support this hypothesis, at
least indirectly: for instance, Zou et al. (2018) described the
correlation between VDAC3 knockout and mitochondrial
ROS overload in renal tubules in mice subjected to high salt
intake. However, it is not clear how this “ROS buffering”
activity should take place: one possible explanation is that
under mitochondrial stress, conformational changes induced
by –SO3H formation could function as signals for incorporation
of VDAC3 into MDVs, responsible for the removal of oxidized
proteins and closely involved in mitochondrial quality control
(Soubannier et al., 2012; Reina et al., 2020). MDVs contain
numerous oxidized proteins derived mainly from the MOM:
VDAC1 has been listed among these proteins (Soubannier et al.,
2012), whereas information on the presence of VDAC3 is not
yet available.

To address their physiological role (Queralt-Martín et al.,
2020) analyzed the activity of the hVDAC3 cysteine-less mutant
(in which all six cysteine residues were replaced with alanines)
and compared it with the WT form. The PLM results suggested
that cysteine residues do not significantly affect the stability or
functionality; however, they affect the ability of hVDAC3 to
interact with other proteins (e.g., α-synuclein).

VOLTAGE-DEPENDENT ANION
SELECTIVE CHANNEL 3-PROTEIN
INTERACTIONS

Protein interaction networks are crucial to understanding cell
functions and pathways and developing successful therapies to
treat human diseases.

In 2014, the VDAC3 interactome was defined in vivo by a
TAP-Tag immunoprecipitation strategy and mass spectrometry
identification (Messina et al., 2014). The crucial interactions
correlate VDAC3 with: (i) proteins from the endoplasmic
reticulum and MAM, (ii) proteins correlated with the response
to oxidative stress, (iii) proteins involved in the response to
misfolded or unfolded proteins, (iv) proteasomal components
and chaperons, and (v) proteins related to ribosome contact and
control (Messina et al., 2014).

In the context of PPIs, it has recently been reported that
the main difference between VDAC3 and the other VDAC

isoforms concerns associations with cytosolic proteins involved
in mitochondrial metabolism, especially α-syn and the dimeric
tubulin (Rostovtseva and Bezrukov, 2008). Several studies
establish the involvement of α-syn in mitochondrial dysfunction.
A detailed examination of the blockage kinetics of rVDAC1
reconstituted into planar lipid membranes defines that at
nanomolar concentrations, α-syn reversibly causes time-resolved
reversible blockages of the channel conductance. α-Syn induces
two distinct blocked states, depending on its concentration and
the applied voltage. Two steps characterize the blocked state in
terms of conductance: a blocked state with a conductance of
∼40% that of the open state and a second deeper state with
a conductance of ∼17% that of the open state (at potentials
V ≥ 30 mV). α-Syn blocks rVDAC1 from both sides of the
channel, but only when a negative potential is applied from the
side of the α-syn addition, suggesting that the negatively charged
C-terminal region of α-syn is responsible for the blockage of
rVDAC1 (Rostovtseva et al., 2015). These recent data show
that similarly to rVDAC1, α-syn interacts with VDAC3 but
10–100 times less effectively (Queralt-Martín et al., 2020). An
important role is attributed to the VDAC3 cysteines. Queralt-
Martin and colleagues, using a cysteine-less hVDAC3 mutant,
showed that the cysteine residues do not significantly affect
hVDAC3 stability or functionality, as previously indicated (De
Pinto et al., 2016; Reina et al., 2016), but they are responsible
for the voltage asymmetry in the on-rate of α-syn-hVDAC3
interaction (Queralt-Martín et al., 2020). Likewise, the authors
reported that VDAC3 is blocked by tubulin 10 times less
effective than isoform 1, supporting the hypothesis that VDAC3
is primarily open when VDAC1 is closed via tubulin interaction
(Queralt-Martín et al., 2020).

Voltage-dependent anion selective channel 3 is involved in
the recruitment of PINK1/Parkin, cytosolic proteins involved
in a pathway regulating mitochondrial quality control and
promoting the selective autophagy of depolarized mitochondria
(mitophagy; Narendra et al., 2008, 2010; Geisler et al., 2010;
Truban et al., 2017; Ge et al., 2020). Loss of its function
causes profound morphological and functional alterations in
mitochondria, associated with the pathogenesis of Parkinson’s
disease. Sun et al. (2012) proposed that VDACs are part of
the machinery that recruits Parkin to the organelle. Thus, they
assumed that VDACs act as mitochondrial docking sites to recruit
Parkin from the cytosol to mitochondria. The authors observed
that in the absence of all three VDACs, the recruitment of
Parkin to defective mitochondria and consequent mitophagy was
compromised (Sun et al., 2012).

Another important VDAC-interactor is the VCP, a central and
important element of the ubiquitin system. VCP is implicated
in numerous neurodegenerative disorders. For example, its
gene mutations cause frontotemporal dementia associated
with inclusion body myopathy, early-onset Paget disease,
familial ALS, and FTLD. Furthermore, VCP seems to act on
VDAC3, addressing it toward microtubules through the traffic
of cytoplasmic granules and enriching near the centrosome
(Messina et al., 2014).

All these PPIs interactions are of great interest. They can have
significant implications for mitochondrial bioenergetics and open
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the way to discover new possible specific in vivo functions of the
VDAC3 isoform hitherto unexplored.

ROLE OF VOLTAGE-DEPENDENT ANION
SELECTIVE CHANNEL 3 IN
PATHOLOGIES

Due to its crucial role in cellular metabolism and apoptosis,
VDAC proteins are implicated in a wide range of diseases
(Caterino et al., 2017; Magrì et al., 2018), including cancer
(Maldonado et al., 2010; Reina and De Pinto, 2017; Magrì
et al., 2018), neurodegenerative disorders, including Parkinson’s
disease (Rostovtseva et al., 2015), Amyotrophic Lateral Sclerosis
(Magrì et al., 2016; Magri and Messina, 2017), and Alzheimer’s
disease (Manczak and Reddy, 2012). The knowledge about
VDAC3 involvement in pathologies is very restricted. Studies
with erastin, a small molecule compound that selectively kills
human tumor cells carrying the oncogenes HRAS, KRAS, or
BRAF, raised the possible connection between VDAC3 and
cancer (Yagoda et al., 2007; Maldonado et al., 2013). In particular,
a role of isoform 3 in the hepatocarcinogenesis induced by HBV
infection was proposed by Zhang et al. (2018, 2020): a specific
miRNA (miR-3928v) was shown to directly target and down-
regulate VDAC3 expression and to promote hepatocarcinoma
malignancy, by a still unclarified molecular mechanism. Recently,
Józwiak et al. (2020) reported a significant increase in VDAC3
expression in non-metastatic endometrial cancers compared to
normal tissue1. However, alterations in VDAC isoform 3 mRNA
levels have also been registered in pathologies different from
cancer, such as chronic unpredictable stress (Chakravarty et al.,
2013), cerebral malaria (Desruisseaux et al., 2010), and viral
infections (Avantaggiati et al., 1993; Rahmani et al., 2000; Waris
et al., 2001).

A peculiar expression of VDAC3 isoform was observed in cells
and tissue in the germinal lines of different organisms. Although
VDAC1 is predominantly located in cells of reproductive
organs required for the development of gametes (Hinsch
et al., 2001; Specchia et al., 2008), VDAC2 and VDAC3
are expressed in a specific portion of sperm and oocyte,
and genetic variants or aberrant regulation of these genes
are correlated with infertility (Sampson et al., 1997; Pan
et al., 2017). VDAC3-deficient mice are healthy, but males are
infertile with a disassembled sperm tail, the flagellum essential
for sperm motility. In VDAC3-deficient mice, the normal
structures found in spermatids within the testes suggest that
the defect develops with the maturation of the sperm in the
transition from the testes to the epididymis. Each microtubule
doublet has a corresponding outer dense fiber, all of which
are morphologically distinguishable. Two of the outer dense
fibers that are associated with microtubules 3 and 8 terminate
within the principal piece and form the longitudinal columns
of the fibrous sheath that partition the axoneme into two
unequal compartments (Sampson et al., 2001). The VDAC3
gene might affect the energy supply for spermatogenesis and

1https://www.proteinatlas.org/ENSG00000078668-VDAC3/tissue

Leydig cell steroidogenesis and, finally, affect spermatogenesis
(Hinsch et al., 2004).

Although VDACs are highly conserved between species,
the specific function of each isoform remains unknown. To
understand the specialized biological role of VDACs isoforms,
recently, using the main available public resource reporting
high-throughput data of international collaborative projects
(Zinghirino et al., 2020) was performed a systematic analysis
of human VDAC gene promoters was performed to highlight
their structural and functional features. In particular, the authors
underlined that the most active promoter controls VDAC3,
enriching in GC repetitions, suggesting an epigenetic control
mechanism capable of reducing transcript expression. Factors
binding sites found in the VDAC3 promoter belong to various
families, but those involved in the development of germinal
tissues, organogenesis, and sex determination are the most
abundant, confirming the experimental evidence of its crucial
role in fertility (Sampson et al., 2001).

FUTURE PERSPECTIVES AND
CONCLUSION

In general, the data available nowadays confirm that the
VDAC3 function is still not fully discernible. In the beginning,
VDAC isoforms were considered rescue vessels to make up for
deficiencies in other abundant isoforms. Whether or not VDAC3
knockout or overexpression could alter the expression of other
isoforms has been addressed by Craigen’s group (Wu et al., 1999):
accordingly, mouse ES cells are the first mammalian VDAC to
knock out a model in which a compensatory increase in VDAC1
expression was registered for VDAC2−/− and VDAC3−/−.

Several hints make the study of this protein a very
intriguing and promising field for acquiring deeper basic
knowledge and for the development of diagnostic and therapeutic
approaches to a wealth of pathologies such as cancer, respiratory
or reproductive system diseases, renal or dermatological
diseases, some myopathies, frontotemporal dementia, and
neurodegenerative disorders.
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