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Chapter 1

Introduction

Mathematics is often applied to model real phenomena. One of the main
approaches that mathematicians use to describe real situations are mat-
hematical models. Indeed, a mathematical model translates mathema-
tical equations and formulations into concrete achievements concerning
the world around us. It describes a real situation using mathematical
concepts and languages. A model may help us to explain what we are
describing and to make predictions about the future. For these reasons,
mathematical models are used in many fields: natural sciences, (such as
physics, biology, earth science, meteorology, computer science), engineer-
ing disciplines, (such as artificial intelligence), and in the social sciences
(such as economics, psychology, sociology and political science).
The models can take many forms, including but not limited to dynamical
systems, statistical models, differential equations, as well as variational
inequality formulations. The choice of the mathematical instruments we
use depends on the model that we want to describe and on the approach
that is more suitable for those situations.
In this thesis we focus our attention on two applications of mathematical
modeling to epidemiology and finance. In particular, we want to model
two real situations: the spread of anorexia and bulimia among society and
a financial network. The choice to model these two phenomena is that we
want to model them using two different techniques from a mathematical
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6 CHAPTER 1. INTRODUCTION

point of view. In both studied problems, we look for the equilibrium
solution of the model and we want to predict the future. In addition, we
model just these phenomena because the exponential growth of eating
disorders among young people in Western countries in the recent decades
leads mathematicians to find parameters that could control these social
phenomena; moreover, the recent economics crisis leads to the research
of models that describe the financial markets as real as possible.
We are interested in formulating the model that describes both pheno-
mena and in finding equilibrium points. The equilibria play an important
role: in the first case they describe the presence or not of anorexic and
bulimic; and in the second case they perform the optimal quantity of
sector assets, liabilities, and instrument prices for the financial network.
When we obtain such a result, we use two different approaches. In order
to study the spread of anorexia and bulimia, we use a nonlinear dynami-
cal system; on the other hand, when we study the financial network, we
formulate a variational inequality problem.
The model proposed to describe the spread of anorexia and bulimia takes
into account, among other things, the effects of peers’ influence, media
and education. We prove the existence of three possible equilibria, that
without media influences are disease-free, bulimic-endemic, and ende-
mic. Neglecting media and education effects we investigate the stability
of such equilibria, and we prove that under the influence of media, only
one of such equilibria persists and becomes a global attractor. Which of
the three equilibria becomes global attractor depends on the other para-
meters of the model.
To study the financial network we present a financial economy in the case
when the financial volumes depend on time and on the expected solution,
in order to take into account the influence of the expected equilibrium
distribution for assets and liabilities on the investments on all financial
instruments. We derive the quasi-variational formulation which charac-
terizes the equilibrium of the dynamical financial model. The main result
is a general existence theorem for quasi-variational inequalities under ge-
neral assumptions, which is also applied to the financial model. We also
study some numerical examples.
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1.1 Dynamical Systems

The theory of dynamical systems has been defined, in the book of Schei-
nerman [126], the mathematics of the time; indeed the term dynamical
refers to processes that produce changes that evolve over time. A dyna-
mical system is a function with an attitude: it makes the same thing over
and over again. For this reason dynamical systems are useful to model
many different kinds of phenomena. The difficulty is that virtually any-
thing that evolves over time can be thought of as a dynamical system.
An important role in dynamical system is played by the time. Moreover,
the variable t, used to measure time, can be thought as a real number,
then we say that the time varies continuously, or as a natural number,
i.e. t = 0, 1, 2, ..., and then we will say that the time varies discretely,
taking multiple values of a given unit of time as an hour, a day, a year,
depending on the time scale of the system we are describing. In the first
case we study dynamical systems in continuous time, in the second case
we study them in discrete time. Which of the two representations is more
suitable to describe a real system depends on the situation that is being
analyzed.
Once we have created a model, we would like to use it to make predicti-
ons, finding its solutions. In fact, determining the state for all future
times requires to solve the system or to integrate the system. Once the
system can be solved, given an initial point, it is possible to determine
all its future positions, a collection of points known as a trajectory or
orbit. The behavior of trajectories as a function of a parameter may be
what is needed for applications, as varying the parameter, the dynamical
system could change its behavior, so it gives a meaningful reply for the
phenomena that we are studying. Unfortunately, it is also too common
that the dynamical system, which we are interested in, does not yield an
analytic solution. The problem is that in many situations a dynamical
system depends on many parameters that are not often known precisely,
so it is very difficult to find its analytical solution. For example, a dyn-
amical system modeling global weather might have millions of variables
accounting for temperature, pressure, wind speed, and so on at points all
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around the world.
Before the advent of computers, finding an orbit required sophisticated
mathematical techniques and could be possible only for a small class of
dynamical systems. Numerical methods implemented on electronic com-
puting machines have simplified the task of determining the orbits of a
dynamical system. So, now, we are able to find at least a numerical
solution (for further details see the book of Perko [116] and the book of
Hirsch and Smale [70]).
The equilibrium points play an important role in the study of a model.
A fixed point of a function or transformation is a point that is mapped
to itself by the function or transformation. If we regard the evolution
of a dynamical system as a series of transformations, then there may or
may not be a point which remains fixed under each transformation.The
study of the stability or less of equilibrium points of a system involves
an important aspect in the applications.

From a formal point of view, to know a dynamical system means to
find a function that, once assigned the initial state vector at a certain
instant, allows uniquely to determine the system state at each following
instant. In reality, it is not easy at all to find the function, but we try
to know it through the formulation of motion equations. In the case of
continuous dynamical systems, the laws of motion are expressed by dif-
ferential equations, which describe how the speed of change of each state
variable, expressed by the first derivative with respect to time, depends
on itself and other variables, so it is very difficult to find the solution,
expecially for models described by PDEs (partial differential equations).
We can apply similar considerations to discrete dynamical systems. In
this case, the motion law is described by difference equations.
A classic example of a dynamical system can be found in problems of
mechanics, where the system state at any given moment is determined
by all the positions and velocities of the bodies that constitute it, but
there are many applications of the dynamical systems in many settings:
physics, metereology, engineering, economy, biology, ecology, epidemio-
logy.
In this thesis we study an important application of dynamical systems to
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epidemiology and, in particular, the spread of anorexia and bulimia. The
model has been formulated and studied by Ciarcià, Falsaperla, Giacobbe
and Mulone [29].
We are interested in the study of this phenomenon. The model that we
will present, has a significant interest from the mathematical point of
view; its applications have an important social interest and it is an ex-
ample of a mathematical model, studied as an epidemiological model.
Our model is inspired by an article of Gonzalez et al. [59], in which a
general model is suggested for anorexia and bulimia considered as epi-
demics. In that article the authors restrict their attention to the spread
of bulimia dividing the infected individuals in two classes and analyzing
the existence of endemic equilibria. That article concludes the analysis
by fixing the parameters according to previous medical literature, and
numerically investigating the evolution of simple and advanced bulimic
depending on the net infective force. We extend this investigation to
a model that describes both infective classes: anorexia and bulimia but
considering only one group of individuals for each class. Our model inclu-
des several alternative routes of infection/recovery: peer pressure, media
effect, education.
The difficulty to study this system is due to the presence of many pa-
rameters that change the behavior of the model. For example, the pa-
rameter that describes media influence, has a strong influence on the
evolution of the system, in fact the influence of media causes the disease-
free equilibrium to disappear. In chapter 3 we will prove the existence of
three possible equilibria, that without media influences are disease-free,
bulimic-endemic, and endemic. Neglecting media and education effects
we investigate the stability of such equilibria, and we prove that under
the influence of media, only one of such equilibria persists and becomes a
global attractor. Which of the three equilibria becomes global attractor
depends on the other parameters.
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1.2 Epidemiology

Mathematical epidemiology has a long history, going back to the small-
pox model of Daniel Bernoulli in 1760.
The first contributions to modern mathematical epidemiology are due
to P.D. En’ko between 1873 and 1894, and the foundations of the en-
tire approach to epidemiology based on compartmental models were laid
by public health physicians such as Sir R.A. Ross, W.H. Hamer, A.G.
McKendrick and W.O. Kermack between 1900 and 1935 and there has
been steady progress since that time. Sir Ronald Ross, who received
the Nobel Prize in medicine for his work on malaria (1902), founded the
field of mathematical epidemiology. After Ross formulated a mathemati-
cal model that predicted that malaria outbreaks could be avoided if the
mosquito population could be reduced below a critical threshold level,
now called reproduction number, field trials supported his conclusions
and led to sometimes brilliant successes in malaria control.
Mathematical epidemiology seems to have grown exponentially starting
in the middle of the 20th century so that a great variety of models have
been formulated, mathematically analyzed and applied to infectious di-
seases.
In the recent years, models have been formulated to control the 2002-2003
epidemics of SARS (Severe Acute Respiratory Syndrome) by Anderson
[1], Riley [123] and Wang [152], the H1N1 influenza of 2009 by Bajardi
[4], Matrajt and Longini [92], Shim and Galvani [132], Tizzoni et al.
[146], the outbreaks of Ebola in Congo and Uganda by Chowell et al.
[27], Lekone and Finkenstädt [79] and Pandey et al. [113], and to predict
negative habits and social behaviors, such as the spread of heroin studied
by Mulone and Straughan [96], the spread of alcoholism among people
studied by Mulone and Straughan [97] and Walters, Straughan and Ken-
dal [150] (see also [81, 98, 151] for other epidemiological models).
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1.3 Networks

Network analysis is usually associated with transportation problems,
electrical power transmission, telecommunications, etc. However, its met-
hods apply not only to physical networks, where the nodes and the links
have tangible embodiments, but also to a much wider class of problems
where these concepts need have no physical counterparts.

The study of networks and their applications has had a long tradition
in engineering, operations research/management science, and in compu-
ter science. More recently, the fields of finance and economics have come
to be rich and fascinating sources of network-based problems and ap-
plications. Interest from such disciplines has been supported, in part,
by the greater availability of powerful network-based methodologies and
tools that allow for enhancedmodeling as well as computation of their
solutions. The role of networks in finance and economics has gained new
prominence for a variety of reasons, including: the emergence of network
industries from transportation and logistics to telecommunications; the
recognition of the interdependence among many network systems, such
as telecommunications with finance and telecommunications with trans-
portation in the form of electronic commerce; new relationships between
economic decision-makers in terms of cooperation and competition which
are yielding new supply chains as well as financial networks; the realiza-
tion of the importance of networks and the pricing of their usage, and
interest surrounding networks and their evolution over space and time.

Financial applications covered include: portfolio optimization with
transaction costs, integrated pension and corporate planning, evolutio-
nary financial networks, international finance and electronic transactions
as well as hedging instruments for transportation networks (see [102] for
more details).

In this thesis we study a financial network where sectors invest their
amount of money in financial instruments as assets and liabilities, assu-
ming that the investments depend on time and on the expected solution.
The link with previous studies of static networks can be made in a natu-
ral way: a static configuration represents a snapshot at a fixed moment
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of time of an evolving real phenomenon. Therefore, studying the sta-
tic case can be considered only a first approach to the understanding of
the reality, which is useful and also essential for further developments.
Moreover, another important motivation for considering time-dependent
phenomena has been pointed out by Beckman and Wallace [13] where
they claim that the time dependent formulation of network equilibrium
problems allows one to explore the dynamics of markets (or traffic flows,
financial investments, Walrasian prices, . . . ) adjustment processes in
which a delay on time response is operating. It is worth remarking that
the introduction of time-dependent models allows us to take into account
the delay effect.

1.4 Variational Inequalities

The evolutionary variational inequalities (EVI) were introduced origi-
nally by Lions and Stampacchia [83] and by Brezis [23] to solve problems
arising principally from mechanics. They provided also a theory for the
existence and uniqueness of the solution of such problems.
On the other hand, Steinbach [138] studied an obstacle problem with a
memory term by means of a variational inequality. In particular, under
a suitable assumption on the time-dependent conductivity, he establis-
hed existence and uniqueness results. In this paper, we are interested in
studying an evolutionary variational inequality in the form proposed by
Daniele, Maugeri, and Oettli [41], [42]. They modeled and studied the
traffic network problem with feasible path flows which have to satisfy
time-dependent capacity constraints and demands. They proved that the
equilibrium conditions (in the form of generalized Wardrop [153] conditi-
ons) can be expressed by means of an EVI, for which existence theorems
and computational procedures were given. The algorithm proposed was
based on the subgradient method. In addition, EVI for spatial price equi-
librium problems (see Daniele and Maugeri [37] and Daniele [32], [35])
and for financial equilibria (see Daniele [33]) have been derived. The
same framework has been used also by Scrimali in [127], who studied a
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special convex set K which depends on the solution of the evolutionary
variational inequality and gives rise to an evolutionary quasi-variational
inequality. See also the recent work of Bliemer and Bovy [17] in multi-
class traffic networks. For an overview of dynamic traffic problems, see
Ran and Boyce [124]. For additional background on variational inequa-
lities and quasi-variational inequalities, see Baiocchi and Capelo [3].
In Gwinner [61], the author presents a survey of several classes of time-
dependent variational inequalities. Moreover, he deals with projected
dynamical systems in a Hilbert space framework. Raciti [121], [122] ap-
plied these ideas to the dynamic traffic network problem. Both Gwinner
and Raciti used known results in Aubin and Cellina [2] for establishing
the existence of infinite-dimensional PDS (Projected Dynamical System),
see for more details [30].
Later the evolutionary models where the set of constraints depends on
the equilibrium solution have been studied, so the variational inequality
(VI) becomes a quasi-variational inequality (QVI). This generalization
was introduced by Bensoussan et al. [15] in the context of impulse cont-
rol problems. Such problems were studied by many authors [3], [25], [95].
Many applications of these mathematical tools are known, for instance,
we may refer to Bensoussan [14] and Harker [64], who recognized the con-
nection between generalized Nash games and quasi-variational inequali-
ties, Pang and Fukushima [114] applied this result in order to formulate
the noncooperative multi-leader-follower game in terms of generalized
Nash games, Bliemer and Bovy [17] discussed a quasi-variational inequa-
lity formulation of the dynamic traffic assignment problem. Applications
to some economic and financial models can be found in [128], [129].

1.5 Financial Networks

General multitiered financial network problems with intermediation were
introduced by Nagurney and Ke [105] and extended by Nagurney and Ke
[106] to include electronic transactions. Specifically, Nagurney and Ke
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considered decision-markers with fixed sources of funds, financial inter-
mediaries, as well as consumers, who were associated with different tiers
of the financial network (see also [103]). The decision-makers within one
tier of the financial network were allowed to compete with one anot-
her in a noncooperative manner. However, decision-makers belonging to
different tiers needed to cooperate in order to complete the financial tran-
sactions. The authors assumed that the decision-makers with sources of
funds (and located at the top tier of the network) and the financial inter-
mediaries (at the middle tier) optimized their own objective functions,
which consisted of both net revenue maximization and risk minimization.
The consumers, in turn, sought to obtain the financial products such that
the price of the financial products charged by the intermediaries or the
decision-makers with sources of funds (in the case of direct electronic
transactions) plus the respective transaction costs was not greater than
the price that consumers were willing to pay for the financial product.
The authors assumed that the demand function at each demand market
was known, and then formulated the governing equilibrium conditions
as a variational inequality. Nagurney and Ke also provided qualitative
analysis as well as an algorithm for computing the equilibrium financial
flow and price pattern.

We note that financial systems were first conceptualized as networks
in 1758 by Quesnay [120], were the circular flow of funds in an economy
was considered as a network. Thore [142], in turn, introduced networks
and utilized linear programming for the study of systems of linked port-
folios (see also Charnes and Cooper [26]). Thore [143] then extended
the basic network model to handle holdings of financial reserves in the
case of uncertainity (see also Ferguson and Dantzig [54] and Dantzig and
Madansky [44]). Storoy, Thore and Boyer [139] developed a network mo-
del of the interconnection of capital markets and applied decomposition
theory of mathematical programming on the computation of equilibrium.
Thore [144] presented network models of linked portfolios with financial
intermediation and made the use of decentralization/decomposition the-
ory in the computation. However, the state-of-the-art of that time was
not sufficiently developed to allow for the formulation and computation
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of solutions to general financial network problems with intermediation,
which may include competitive behavior in the sense of Nash [110], [111],
asymmetric functions, etc. Moreover, financial electronic transactions
did not even exist in that era. The book by Nagurney and Siokos [107]
provides an overview of a variety of financial network optimization and
equilibrium models to that date.

1.6 Equilibria and optimal solutions

In both studied problems, we look for the equilibrium solution of the
model.
In the case of epidemiology the equilibrium point represents the persis-
tence or not of the disease that we are studying, as the coordinates of the
equilibrium point stand for the number of people that are susceptible to
get sick, that are infective and that are recovered.
In the case of the financial model, the equilibrium point, found as the
solution of a suitable time-dependent variational inequality, represents
the optimal investment of a sector in financial assets and liabilities.
Specifically, the evolution of time allows to settle the development of
the financial market, predicting, also, economic crisis through the use of
mathematical instruments as the evaluation index.
The techniques used to the study the two models are different; in the first
problem we use the theory of dynamical systems, while the variational
formulation is used to study the second problem. It is possible applying
the theory of dynamical systems to the case of economic models assu-
ming that the interest rate depends on time.
We are interested in finding optimization results also in epidemiology
when we are looking for the threshold parameters with the study of sta-
bility of the equilibria. On the other hand, the variational theory has
its foundations in the problems of mechanics as we can see in the works
by Lions and Stampacchia [83] and Brezis [23] who solve problems of
mechanics with the variational formulation, or in the work by Steinbach
[138] who studied an obstacle problem with a memory term by means of
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a variational inequality.

The plan of the thesis is as follows. The thesis is settled in five
chapters. The model of anorexia and bulimia and the model of finance
are presented in the chapters 3 and 5, respectively. For the sake of
completeness, we recall some properties and results of dynamical systems
and their applications to epidemiology in chapter 2. In chapter 4 we
present the financial network and the mathematical formulations.



Chapter 2

Dynamical Systems and
application to epidemiology

In this chapter we introduce continuous nonlinear systems and them pro-
perties [70, 116, 126], because they are important for the epidemiological
models as we can see in the next chapter. We deal with fixed points
and their stability and we present two methods for assessing stability:
linearization and Lyapunov functions.

Moreover we deal with epidemiology and we present some examples
of mathematical models applied to epidemics. We also pay attention to
the basic reproduction number and its computation.

2.1 Nonlinear systems

The nonlinear system of differential equations is

ẋ = f(x) (2.1)

where f : E → R
n and E is an open subset of Rn. We show that un-

der certain conditions on the function f , the nonlinear system (3.2) has a
unique solution through each point x0 ∈ E defined on a maximal interval

17
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of existence (α, β) ⊂ R.
In general, it is not possible to solve the nonlinear system (3.2); however,
the Hartman-Grobman theorem lets us know that topologically the local
behavior of the nonlinear system (3.2) near an equilibrium point x0 where
f(x0) = 0 is typically determined by the behavior of the linear system
ẋ = Ax near the origin when the matrix A = Df(x0), the derivate of f
at x0.
We establish the fundamental existence-uniqueness theorem for a nonli-
near autonomous system of ordinary differential equations

ẋ = f(x) (2.2)

under the hypothesis that f ∈ C1(E) where E is an open subset of Rn.

Definition 2.1.1 Suppose that f ∈ C(E) where E is an open subset
of Rn. Then x(t) is a solution of the differential equation (2.2) on an
interval I if x(t) is differentiable on I and if for all t ∈ I, x(t) ∈ E and

ẋ(t) = f(x(t)) .

And given x0 ∈ E, x(t) is a solution of the initial value problem

ẋ = f(x)

x(t0) = x0

on an interval I if t0 ∈ I, x(t0) = x0 and x(t) is a solution of the
differential equation (2.2) on the interval I.

Theorem 2.1.1 (The fundamental existence-uniqueness theorem)

Let E be an open subset of Rn containing x0 and assume that f ∈ C1(E).
Then there exists an a > 0 such that the initial value problem

ẋ = f(x)

x(0) = x0

has a unique solution x(t) on the interval [−a, a].
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Remark 2.1.1 If we consider the initial value problem

ẋ = f(x)

x(t0) = x0

it has a unique solution on some interval [t0 − a, t0 + a].

2.2 Stability

Definition 2.2.1 Let E be an open subset of Rn and let f ∈ C1(E). For
x0 ∈ E, let Φ(t, x0) be the solution of the initial value problem defined
on its maximal interval of existence of the solution I(x0). Then for t ∈
I(x0), the set of mappings {Φt(x0)}t∈I(x0) defined by

Φt(x0) = Φ(t,x0)

is called the flow of the differential equation ẋ = f(x).

Definition 2.2.2 Let S ⊂ E is invariant with respect to the flow {Φt}
if

Φt(S) ⊂ S ∀t ∈ R

and in particular

• S is positive invariant if Φt(S) ⊂ S ∀ t ≥ 0,

• S is negative invariant if Φt(S) ⊂ S ∀ t ≤ 0.

Remark 2.2.1
It is possible to rescale the time in any C1-system so that for all x0 ∈ E
the maximal interval of existence is I(x0) = ]−∞,+∞[.

We now that x̃ ∈ R
n is an equilibrium point of the system (2.2) if satisfies

f(x) = 0. In general, we can have stable or unstable equilibrium points
as it follows.
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Definition 2.2.3 (stable fixed point) An equilibrium point x̃ ∈ E of
a continuous dynamical system is said stable if

∀ε > 0, ∃ δε > 0 : |x0 − x̃| < δε ⇒ |x(t)− x̃| < ε ∀t ≥ 0,

where x(t) is the solution of the system.

Definition 2.2.4 (asymptotically stable fixed point) A fixed point
x̃ ∈ E of a continuous dynamical system is said asymptotically stable

if is table and furthermore

∃ δ > 0 : |x0 − x̃| < δ ⇒ lim
t→+∞

x(t) = x̃.

Definition 2.2.5 (unstable fixed point) A fixed point x̃ ∈ E of a
continuous dynamical system is said unstable if is not stable.

Figure (2.1) illustrates these possibilities.

Figure 2.1: The fixed point on the left is asymptotically stable: all trajectories

which begin near x̃ remain near, and converge to, x̃. The fixed point in the

center is stable: trajectories which begin near x̃ stay nearby but never converge

to x̃. Finally, the fixed point on the right is unstable: there are trajectories

which start near x̃ and move far away from x̃.
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2.3 Linearization

Definition 2.3.1 The function f : Rn → R
n is differentiable at x0 ∈

R
n if there is a linear transformation Df(x0) ∈ L(Rn) that satisfies

lim
|h|→0

|f(x0 + h)− f(x0)−Df(x0)h|

|h|
= 0

The linear transformation Df(x0) is called the derivate of f at x0.

The following theorem gives us a method for computing the derivate in
coordinates.

Theorem 2.3.1

If f : Rn → R
n is differentiable at x0, then the partial derivatives

∂fi
∂xj

,

i, j = 1, . . . , n, all exist at x0 and for all x ∈ R
n,

Df(x0)x =
n
∑

j=1

∂f

∂xj

(x0)xj .

Thus, if f is a differentiable function, the derivate Df is given by the
n× n Jacobian matrix

Df =

[

∂fi
∂xj

]

.

Definition 2.3.2 Suppose that f : Rn → R
n is differentiable on E. Then

f ∈ C1(E) if the derivate Df : E → R
n is continuous on E.

The next theorem gives a simple test for deciding whether or not a
function f : E → R

n belongs to C1(E).

Theorem 2.3.2
Suppose that E is an open subset of Rn and that f : E → R

n. Then

f ∈ C1(E) if the partial derivatives
∂fi
∂xj

, i, j = 1, . . . , n, exist and are

continuous on E.
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Definition 2.3.3 Let x̃ ∈ Rn is an hyperbolic equilibrium point if all
the eigenvalues of the matrix Df(x̃) have the real parts nonzero; instead
the equilibrium point is said nonhyperbolic.

We suppose that the equilibrium point x̃ is hyperbolic.
To linearize f(x) near the hyperbolic fixed point x̃ applying the formula of
Taylor arrested at the first derivative, so we obtain a good approximation.
In the one-dimensional case we obtain

f(x) ≈ f(x̃) + f ′(x̃)(x− x̃).

In the multidimensional case we have

f(x) ≈ f(x̃) +D
(

f(x̃)
)

(x− x̃).

where

D
(

f(x)
)

=













∂f1(x)
∂x1

∂f1(x)
∂x2

· · · ∂f1(x)
∂xn

∂f2(x)
∂x1

∂f2(x)
∂x2

· · · ∂f2(x)
∂xn

...
...

. . .
...

∂fn(x)
∂x1

∂fn(x)
∂x2

· · · ∂fn(x)
∂xn













, f(x) =











f1(x)
f2(x)
...

fn(x)











.

In particular, if x̃ = 0, then

f(x) ≈ D
(

f(0)
)

x

as, from the definition of fixed points, f(x̃) = f(0) = 0.
So in this case a good approximation of a non linear dynamical system

ẋ = f(x)

is the following linear dynamical system

ẋ = Ax

with A = D
(

f(0)
)

.
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Definition 2.3.4 Let A = D
(

f(x̃)
)

the Jacobian matrix of f calculate
at the fixed point x̃ The fixed point x̃ is said:

• sink if all the eigenvalues of A have negative real part.

• source if all the eigenvalues of A have positive real part.

• saddle if is hyperbolic and exists at least one eigenvalue of A with
positive real part and at least one with negative real part.

Remark 2.3.1 In particular, in the epidemiological models the stability
of the equilibrium disease-free depends on a parameter R0, the basic re-
production number, that has an important epidemiological meaning, as
we shall see in section (2.9).
When R0 < 1 we predict that the infection will be not spread, while if
R0 > 1, the disease will spread. Moreover, the behaviour of R0 is strictly
connected with the real part of the eigenvalues of the Jacobian matrix,
indeed the condition R0 < 1 is equivalent to the condition that all eigen-
values of the Jacobian matrix has negative real part and the condition
R0 > 1 is equivalent to the condition that at least one eigenvalues of the
Jacobian matrix has positive real part. So, the disease-free equilibrium
point is locally stable if and only if R0 < 1.

2.4 Topological equivalence

Definition 2.4.1 Let X be a metric space and let A and B be a subsets
of X. A homeomorphism of A onto B is a continuous map of A onto
B, H : A → B, such that H−1 : B → A is continuous. The sets A and
B are called topologically equivalent if there is a homeomorphism of
A onto B.

The Hartman-Grobman theorem is an important result in the local quali-
tative theory of ordinary differential equations. The theorem shows that
near a hyperbolic equilibrium point x0, the nonlinear system

ẋ = f(x) (2.3)
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has the same qualitative structure as the linear system

ẋ = Ax (2.4)

with A = Df(x0).

Definition 2.4.2 Two autonomous systems of differential equations such
as (2.3) and (2.4) are said to be topologically equivalent in a neighbor-
hood of the origin if there is a homeomorphism H mapping an open set
U containing the origin onto an open set V containing the origin which
maps trajectories of (2.3) in U onto trajectories of (2.4) in V and preser-
ves their orientation by time in the sense that if a trajectory is directed
from x1 to x2 in U , then its image is directed from H(x1) to H(x2) in V .
If the homeomorphism H preserves the parameterization by time, then
the systems (2.3) and (2.4) are said to be topologically conjugate in
a neighborhood of the origin.

Theorem 2.4.1 (The Hartman-Grobman theorem)
Let E be an open subset of Rn containing the origin, let f ∈ C1(E), and
let Φt be the flow of the nonlinear system (2.3). Suppose that f(0) = 0
and that the matrix A = Df(0) has no eigenvalue with zero real part.
Then there exists a homeomorphism H of an open set U containing the
origin onto an open set V containing the origin such that for each x0 ∈ U ,
there is an open interval I0 ⊂ R containing zero such that for all x0 ∈ U
and t ∈ I0

H ◦ Φt(x0) = eAtH(x0)

i.e. H maps trajectories of (2.3) near the origin onto trajectories of (2.4)
near the origin and preserves the parameterization by time.

The consequence of all this is that every equilibrium points of the system
ẋ = f(x) that are sinks they are asymptotically stable; instead every
equilibrium points that are sources they are unstable.
When you can apply the Hartman-Grobman theorem is said that is valid
the test of linearization.
Hence, the behavior of the nonlinear and continuous dynamical system
is:
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• if ∀Re(λ) < 0 ⇒ the fixed point x̃ is stable

• if ∃λ : Re(λ) > 0 ⇒ the fixed point x̃ is unstable

• if ∀Re(λ) ≤ 0, ∃λ : Re(λ) = 0 ⇒ the test of linearization fails

where x̃ is a fixed point and λ is an eigenvalues of the matrix A = Df(x̃).

2.5 Lyapunov function

The question if an equilibrium point is stable, asymptotically stable or
unstable is a delicate problem. The following method, due to Lyapunov
function is very useful in answering this question [84].

Definition 2.5.1 If f ∈ C1(E), V ∈ C1(E) and Φt is the flow of the
differential equation ẋ = f(x), then for x ∈ E the derivate of the function
V (x) along the solution Φt(x)

V̇ (x) =
d

dt
V (Φt(x))|t=0 = DV (x)f(x).

Theorem 2.5.1
Let E be an open subset of Rn containing x0. Suppose that f ∈ C1(E) and
that f(x0) = 0. Suppose further that there exists a real valued function
V ∈ C1(E) satisfying V (x0) = 0 and V (x) > 0 if x 6= x0. Then

(a) if V̇ (x) ≤ 0 for all x ∈ E ⇒ x̃ is stable,

(b) if V̇ (x) < 0 for all x ∈ E − {x̃} ⇒ x̃ is asymptotically

stable,

(c) if V̇ (x) > 0 for all x ∈ E − {x̃} ⇒ x̃ is unstable,

Remark 2.5.1
If V̇ (x) = 0 for all x ∈ E then the trajectories of ẋ = f(x), lie on the
surface in R

n defined by
V (x) = c

where c is a constant.
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Definition 2.5.2 Each function V : E → R that satisfies (a) and (b) is
called Lyapunov function. Moreover, if satisfies (c) is called strictly

Lyapunov function.

The Lyapunov theorem allows as to draw conclusions on the stability of
the fixed points without knowing explicitly the solutions of the system.
However, the main problem is to determine the Lyapunov function and
there isn’t a precise law to find a good Lyapunov function.

Theorem 2.5.2 (Krasovskii - La Salle principle)
Let x̃ ∈ E an equilibrium point of ẋ = f(x). Let V : E → R a Lyapunov
function for x̃. Let X a neighborhood of x̃ closed on E positive invariant.
Suppose that doesn’t exist an orbit x(t), solution of ẋ = fx, defined for
all t ∈ R, on X − {x̃} in which V = c (c is a constant), then x̃ is
asymptotically stable and X ⊂ B(x̃), where B(x̃) is a basin of attraction
for x̃.

2.6 Attractors

Definition 2.6.1 Let A ⊂ R
n. A neighborhood of A is an open set U

that contains B.

Definition 2.6.2 Is said that x(t) → B for t → ∞ if the distance
d(x(t), B)→ 0 for t→∞.

Definition 2.6.3 Let B an open subset of Rn. A closed invariant subset
A ⊂ B, is said an attracting set of the system ẋ = fx if exists a
neighborhood U of A that

∀x ∈ U, Φt(x) ∈ U ∀t ≥ 0 and Φt(x)→ A for t→∞

An attractor of the system is an attracting set which contains a dense
orbit.
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2.7 Dynamics of infectious diseases

Terminology, notations and assumptions, that are given in this section,
are based on the papers of Hethcote [67], [68] and the book of Murray
[99].
An epidemic is an occurence of a disease in excess of normal expectancy,
while a disease is called endemic if it is habitually present; however,
communicable disease models of all types are often referred to as epidemic
models and the study of disease occurence is called epidemiology.
The population or community under consideration is divided into disjoint
compartments which change with time t:

• the susceptible class, S, consists of those individuals who can incur
the disease but are not yet infective (the number of individuals in
this class is denoted with S(t)).

• the infective class, I, consists of those who are transmitting the
disease to others (the number of individuals in this class is denoted
with I(t)).

• the removed class, R, consists of those who are removed from the
susceptible-infective interaction by recovery with immunity, isola-
tion or death (the number of individuals in this class is denoted
with R(t)).

Sometimes, there would be another two compartments that are often
omitted because they are not crucial for the susceptible-infective inte-
raction:

• the passively immune class, M, that contains infants with pas-
sive immunity as their mother has been infected (the number of
individuals in this class is denoted with M(t)).

• the exposed class, E, that contains susceptibles that became in-
fected but not yet infectious during the latent period (the number
of individuals in this class is denoted with E(t)).
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The choice of which compartments to include in a model depends on
the characteristics of the particular disease being modeled and the pur-
pose of the model. Acronyms for epidemiology models are often based
on the flow patterns between the compartments such as MSEIR, SEIR,
SIS, SIR and so on. For example, in the MSEIR model, shown in Figure
2.2, passively immune newborns first become susceptible, then exposed
in the latent period, then infectious and then removed with permanent
immunity.
If recovery does not give immunity, then the model is called an SIS

Figure 2.2: The general transfer diagram for the MSEIR model.

model, since individuals move from the susceptible class to the infective
class and then back to the susceptible class upon recovery. If individuals
recover with immunity, then the model is an SIR model. If individuals do
not recover, then the model is an SI model. In general, SIR models are
appropriate for viral agent diseases such as measles, mumps and small-
pox; while SIS models are appropriate for some bacterial agent diseases
such as meningitis, plague and veneral diseases.

2.8 Formulating epidemiology models

In the previous section we have said that we consider compartmental
models as the population under studying is divided into disjoint com-
partments. The rates of transfer between compartments are expressed
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mathematically as derivatives with respect to time of the sizes of the
compartments, so as a result our models are formulated as differential
equations. We note that all parameters in the differential equations are
nonnegative, and only nonnegative solution are considered, since nega-
tive solutions have no epidemiological significance.
We assume that the population considered has constant size N which
is sufficiently large so that the sizes of each class can be considered as
continuous variables instead of discrete variables. If the model include
vital dynamics, then it is assumed that births and deaths occur at equal
rates and that all newborns are susceptible. Moreover, we suppose that
the population is uniform and homogeneously mixing.
The horizontal incidence shown in Figure 2.2 is the infection rate of
susceptible individuals through their contacts with infectives.
If S(t) is the number of susceptibles at time t, I(t) is the number of in-

fectives and N is the total population size, then s(t) = S(t)
N

and i(t) = I(t)
N

are the susceptible and infectiuos fractions, respectively.
If β is the average number of adquate contacts (i.e. contacts sufficient
for transmission) of a person per unit time, then β I

N
= βi is the average

number of contacts with infectives per unit time of one susceptible, and
β
(

I
N

)

S = βNis is the number of new cases per unit time due to the
S = Ns susceptibles.
This form of the horizontal incidence is called the standard incidence.

2.9 The Basic reproduction number R0

A basic concept in epidemiology is existence of a threshold quantity. This
threshold, for many epidemiology models, is the basic reproduction num-
ber R0, which is defined as the expected number of individuals infected
by a single infected individual, during his or her entire infectious period,
in a population which is entirely susceptible. From this definition, it is
immediately clear that when R0 < 1, each infected individual produ-
ces, on average, less than one new infected individual, and we therefore
predict that the infection will be cleared from the population, while an
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infection can get started in a fully susceptible population if and only if
R0 > 1, as in this case the pathogen is able to invade the susceptible
population. This threshold behaviour is the most important and useful
aspect of the R0 concept. In an endemic infection, we can determine
which control measures, and at what magnitude, would be most effective
in reducing R0 below one, providing important guidance for public health
initiatives.
R0 is often found through the study and computation of the eigenvalues
of the Jacobian matrix at the disease-free or infectious-free equilibrium
point.
Moreover, to compute R0 you can follow a method, called next generation
operator approach, introduced by Diekmann et al. [48, 49] (a number of
salient examples of this method are in [24, 66, 148]). Now, we explain
this method.
We consider a heterogeneous population whose individuals are distinguis-
hable by age, behavior, spatial position and/or stage of disease, but can
be grouped into n homogeneous compartments.
A compartment is called a disease compartment if the individuals therein
are infected. Note that this use of the term disease is broader than the
clinical definition and includes asymptomatic stages of infection as well
as symptomatic.
Suppose there are n disease compartment and m non disease compart-
ments, and let x ∈ R

n and y ∈ R
m the subpopulations in each of

these compartments. Further, denote by Fi the rate secondary infections
increase the ith disease compartment and by Vi the rate disease progres-
sion, death and recovery decrease the ith compartment. Moreover, let
Vi = V

−
i − V

+
i , where V

+
i is the rate of transfer of individuals into com-

partment i by all other means and V−i is the rate of transfer of individuals
out of the ith compartment.Observe that Fi should include only infecti-
ons that are newly arising, but does not include terms which describe
the transfer of infectious individuals from one infected compartment to
another. From this definition, note that the difference Fi − Vi gives
the rate of change of individuals in the compartments.
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The compartmental model can then be written in the following form:

x′i = Fi( x, y) − Vi( x, y), i = 1, . . . , n, (2.5a)

y′j = gj( x, y), j = 1, . . . ,m, (2.5b)

where ′ denotes differentiation with respect to time.
Note that the decomposition of the dynamics into F and V and the de-
signation of compartments as infected or uninfected may not be unique;
different decompositions correspond to different epidemiological interpre-
tations of the model. The definitions of F and V used here differ slightly
from those in [22] and [148].

The derivation of the basic reproduction number is based on the line-
arization of the ODE model about a disease-free equilibrium.
In the next section there will be made assumptions to ensure the exis-
tence of this equilibrium and to ensure the model is well posed. Assume
that Fi and Vi meet the conditions outlined by Castillo-Chavez et al. [24]
and [148] Diekmann et al. (1990) [48]:

(A1) Assume Fi( 0, y) = 0 and Vi( 0, y) = 0 ∀ y ≥ 0 and for
i = 1, . . . , n. All new infections are secondary infections arising
from infected hosts; there is no immigration of individuals into the
disease compartments.

(A2) Assume Fi( x, y) ≥ 0 ∀ y ≥ 0, x ≥ 0 and i = 1, . . . , n.
The function F represents new infections and cannot be negative.

(A3) Assume Vi( x, y) ≤ 0 whenever xi = 0, i = 1, . . . , n. Each compo-
nent, Vi, represents a net outflow from compartment i and must be
negative (inflow only) whenever the compartment is empty.

(A4) Assume
∑n

i=1 Vi( x, y) ≥ 0 ∀x > 0, y ≥ 0.
This sum represents the total outflow from all infected compart-
ments. Terms in the model leading to increases in

∑n

i=1 xi are
assumed to represent secondary infections and therefore belong in
F .
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(A5) Assume the disease-free system y
′

= g( 0, y) has a unique equi-
librium that is asymptotically stable. That is, all solution with
initial conditions of the form ( 0, y) approach a point ( 0, y0) as
t→∞. We refer to this point as the disease-free equilibrium.

Note that the assumption (A1) ensures that the disease-free set, which
consists of all points of the form ( 0, y), is invariant. That is, any solution
with no infected individuals at some point in time will be free of infection
for all time. This in turn ensures that the disease-free equilibrium is also
an equilibrium of the full system.

Suppose a single infected person is introduced into a population origi-
nally free of disease. The initial ability of the disease to spread through
the population is determined by an examination of the linearization of
(2.5a) about the disease-free equilibrium ( 0, y0).
Using assumption (A1), it can be shown that

∂Fi

∂yj
( 0, y0) =

∂Vi

∂yj
( 0, y0) = 0

for every pair ( i, j). This implies that the linearized equations for the
disease compartments, x, are decoupled from the remaining equations
and can be written as

x
′

= (F − V )x (2.6)

where F and V are the n× n matrices with entries

F =
∂Fi

∂xj

( 0, y0) e V =
∂Vi

∂xj

( 0, y0).

that are Jacobian matrices.
Note that using assumption (A5), linear stability of the system (2.5) is
completely determined by the linear stability of (F − V ) in (2.6). They
define R0 as the spectral radius of the next generation operator, that is
the matrix FV −1.
To interpret the entries of FV −1 and develop a meaningful definition
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of R0, consider the fate of an infected individual introduced into com-
partment k of a disease free population. The ( j, k) entry of V

−1 is the
average length of time this individual spends in compartment j during
its lifetime, assuming that the population remains near the disease-free
equilibrium and barring reinfection. The ( i, j) entry of F is the rate
at which infected individuals in compartment j produce new infections
in compartment i. Hence, the ( i, k) entry of the product FV −1 is the
expected number of new infections in compartment i produced by the
infected individual originally introduced into compartment k.
Following [48], we call FV −1 the next generation matrix for the model
and set:

R0 = ρ(FV −1) (2.7)

where ρ(FV −1) denotes the spectral radius of a matrix FV −1.
As we shall see, the next generation matrix, K = FV −1, is nonnegative
and therefore has a nonnegative eigenvalue, R0 = ρ(FV −1), such that
there are no other eigenvalues of K with modulus greater than R0 and
there is a nonnegative eigenvector w associated with R0. Thus, R0 and
the associated eigenvector w suitably define a typical infective and the
basic reproduction number can be rigorously defined as the spectral ra-
dius of the next generation matrix, K. The spectral radius of a matrix
K, denoted ρ(K), is the maximum of the moduli of the eigenvalues of
K.
If K is irreducible, then R0 is a simple eigenvalue of K. However, if K
is reducible, which is often the case for diseases with multiple strains,
then K may have several positive real eigenvectors corresponding to re-
production numbers for each competing strain of the disease. If the
reproduction numbers, R0 = ρ(FV −1), computed in the next examples
are consistent with differential equation model, then it should follow that
the disease-free equilbrium is stable if R0 < 1 and unstable if R0 > 1.
This is shown through a series of lemmas.
If each entry of a matrix T is nonnegative we write T ≥ 0 and refer to T
as a nonnegative matrix. A matrix of the form A = sI −B, with B ≥ 0,
is said to have the Z sign pattern. These are matrices whose offdiagonal
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entries are negative or zero. If in addition, s ≥ ρ(B), then A is called an
M-matrix. Note that in this section, I denotes an identity matrix, not a
population of infectious individuals.
The following theorems are results from [16].

Proposition 2.9.1
If A has the Z sign pattern, then A−1 ≥ 0 if and only if A is a nonsingular
M-matrix.

From assumptions (A1) and (A2) it follows that each entry of F is nonne-
gative. From assumptions (A1) and (A3) it follows that the offdiagonal
entries of V are negative or zero. Thus V has the Z sign pattern. As-
sumption (A4) with assumption (A1) ensures that the column sums of
V are positive or zero, which, together with the Z sign pattern, implies
that V is a (possibly singular) M-matrix. In what follows, it is assumed
that V is nonsingular. In this case, V −1 > 0, by Lemma 2.9.1. Hence,
K = FV −1 is also nonnegative.

Proposition 2.9.2
If F is nonnegative and V is a nonsingular M-matrix, then R0 = ρ(FV −1)
< 1 if and only if all eigenvalues of (F − V ) have negative real parts.

Theorem 2.9.1
Consider the disease transmission model given by (2.5). The disease-free
equilibrium point of (2.5) is locally asymptotically stable if R0 < 1, but
unstable if R0 > 1.

2.10 Examples of epidemiological models

Using the notation and the assumptions in section 2.8, we present some
classic epidemiological models that describe the spread of a disease.
A particular case of the MSEIR model, in Figure 2.2, is the SIR mo-
del, in which the passively immune class M and the exposed class E are
omitted. We distinguish two cases the model without and with vital
dynamics (births and deaths). The SIR models without vital dynamics
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(the epidemic models)might be appropriate for describing an epidemic
outbreak during a short time period, whereas the SIR model with vital
dinamics (the endemic models) would be appropriate over a longer time
period.
However, these simple, classic SIR models have obvious limitations. They
unrealistically assume that the population is uniform and homogeneously
mixing, whereas it is known that mixing depends on many factors inclu-
ding age. Moreover, different geographic and social-economic groups have
different contact rates. Despite their limitations, the classic SIR models
can be used to obtain some estimates and comparisons.

2.11 The epidemic SIR model

McKendrick, like Sir Ronald Ross, was a physician commissioned by the
English Army to India. McKendrick became involved in the study of epi-
demic diseases using mathematical models through the direct encourage-
ment of Ross. His simple epidemic model was published in a joint paper
with Kermack (Kermack and McKendrick (1927) [76]). It involved the
study of the transmission dynamics of a communicable disease that pro-
vide permanent immunity after recovery. Their mathematical work led to
the first widely recognized threshold theorem in epidemiology. Kermack
and Mckendrick’s model is an SIR (Susceptible-Infected-Recovered) mo-
del without vital (births and deaths) dynamics.
Using the notation in sections 2.8 and 2.7, the classic epidemic model is
given by the following initial value problem:



























dS

dt
= −βS

I

N
S(0) = S0 ≥ 0

dI

dt
= βS

I

N
− γI I(0) = I0 ≥ 0

dR

dt
= γI R(0) = R0 ≥ 0

(2.8)

where S(t), I(t) and R(t) are the numbers in these classes, such that
S(t) + I(t) +R(t) = N .
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This model uses the standard incidence and has recovery at rate γI,
corresponding to an exponential waiting time e−γt; since the time period
is short, this model has no vital dynamics.
Dividing the equations in (2.8) by the constant total population size N
yields the normalized system



























ds

dt
= −βsi

di

dt
= βsi− γi

dr

dt
= γi

If we consider r(t) = 1 − s(t) − i(t), where s(t), i(t) and r(t) are the
fractions in the classes, we obtain:











ds

dt
= −βis s(0) = s0 ≥ 0

di

dt
= βis− γi i(0) = i0 ≥ 0

. (2.9)

The triangle T in the si phase plane given by

T = {(s, i)| s ≥ 0, i ≥ 0, s+ i ≤ 1} (2.10)

is positively invariant and unique solutions exist in T for all positive time,
so that the model is mathematically and epidemiologically well posed. To
compute R0 we note that the disease compartment is only the infected
class I, while the nondisease compartments are the classes S and R.
Moreover, the unique disease-free equilibrium is ( 1, 0, 0). So we pose:

F = βsi V = γi

F and V satisfy assumptions from (A1) to (A5), so we compute:

F ( 1, 0, 0) = β V ( 1, 0, 0) = γ

Hence, immediately, we obtain R0 from the definition (2.7):

R0 =
β

γ
.
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Note that β is the average number of susceptibles infected by one infecti-
ous individual per unit time and 1

γ
is the mean length of infectious period;

therefore R0 =
β

γ
gives the number of secondary infectious cases produced

by an infectious individual who has been introduced into a population of
susceptibles during the individual’s period of infectiousness.

2.12 The endemic SIR model

The classic endemic models the SIR model with vital dynamics, proposed
by Kermack and McKendrick; where N , the total population, is constant,
and γ is the per capita natural death rate.
The equation of the model became:



























dS

dt
= µN − µS −

βIS

N
S(0) = S0 ≥ 0

dI

dt
=

βIS

N
− γI − µI I(0) = I0 ≥ 0

dR

dt
= γI − µR R(0) = R0 ≥ 0

(2.11)

with S(t) + I(t) +R(t) = N .
This SIR model is almost the same as the SIR epidemic model (2.8)
above, except that it has an inflow of newborns into the susceptible class
at rate µN and deaths in the classes at rates µS, µI and µR. The deaths
balance the births, so that the population size N is constant.
Dividing the equations in (2.11) by the constant total population size N
yields











ds

dt
= −βis+ µ− µs s(0) = s0 ≥ 0

di

dt
= βis− (γ + µ)i i(0) = i0 ≥ 0

(2.12)

with r(t) = 1− s(t)− i(t). The triangle T in the si phase plan given by
(2.10) is positively invariant and the model is well posed.
For this model the threshold quantity is given by R0 =

β

γ+µ
, which is the

contact rate β times the average death-adjusted infectious period 1
γ+µ

.
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The normalized system is:



























ds

dt
= µ− βsi− µs

di

dt
= βsi− (γ + µ)i

dr

dt
= γi− µr

with:
1 = s+ i+ r

The disease and nondisease compartments are the same of the previous
model.
Hence we pose:

F = βsi V = (γ + µ)i

F e V satisfy assumptions from (A1) to (A5), so we compute:

F ( 1, 0, 0) = β V ( 1, 0, 0) = γ + µ .

From definition (2.7) the basic reproduction number is:

R0 =
β

γ + µ
.

Note that β is the average number of susceptibles infected by one infecti-
ous individual per unit time and 1

γ+µ
is the mean length of infectious

period; therefore R0 =
β

γ+µ
gives the number of secondary infectious ca-

ses produced by an infectious individual who has been introduced into
a population of susceptibles during the individual’s period of infectious-
ness.
The stability for R0 > 1 can be also proved using a Lyapunov function.
If we pose

s = se (1 + u)

i = ie (1 + v)
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with (se, ie) =
(

1
R0
, µ(R0−1)

β

)

.

Notice that u and v are the perturbations.
Then the system (2.12) becomes

{

u̇ = −βieu(1 + v)− βiev − µu

v̇ = (γ + µ)(1 + v)u .

Hence the triangle (2.10) becomes

T ∗ = {(u, v)| u ≥ −1; v ≥ −1; se + ue ≤ 1− se − ie} .

We can introduce a Lyapunov function

L =
u2

2
+R0ie[v − ln(1 + v)]

and it will be
L̇ = −βieu

2(1 + v)− µu2 ≤ 0 .

Hence, thanks to the Lasalle theorem 2.5.2 the equilibrium point (0, 0)
in the uv phase plane is globally asymptotically stable in T ∗.

2.13 The SEIR model

Another epidemiological model is the SEIR model, that describes, above
all, childhood disease as measles.
The population is divided into four compartments: susceptible individu-
als, S, exposed and latently infected, E, infectious individuals, I, and
recovered individuals with immunity, R.
New infections in compartment E arise by contacts between susceptible
and infected individuals in compartments S and I at a rate βSI. Indivi-
duals progress from compartment E to I at a rate k and develop immunity
at a rate γ. In addition, natural mortality claims individuals at a rate µ.
For simplicity, the model assumes a constant recruitment, Π, of suscep-
tible individuals.
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The model is:











































dS

dt
= Π− µS − βS

I

N
dE

dt
= βS

I

N
− (k + µ)E

dI

dt
= kE − (γ + µ)I

dR

dt
= γI − µR

with:

N = S + E + I +R .

The normalized system is:











































ds

dt
=
Π

N
− βsi− µs

de

dt
= βsi− (k + µ)e

di

dt
= ke− (γ + µ)i

dr

dt
= γi− µr

with:

1 = s+ e+ i+ r .

The system has a unique disease-free equilibrium ( s0, 0, 0, 0) with s0 =
Π
µN
. Taking the infected compartments to be E and I gives

F =

(

βsi

0

)

V =

(

(k+µ)e

−ke+(γ+µ)i

)

F ( s0, 0, 0, 0) =
(

0 βs0

0 0

)

V ( s0, 0, 0, 0) =
(

k+µ 0

−k γ+µ

)
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and the next generation matrix is

K = FV −1 =











kβs0
(k + µ)(γ + µ)

βs0
γ + µ

0 0











.

Notice that the ( 1, 2) entry of K is the expected number of secondary
infections produced in compartment E by an individual initially in com-
partment I over the course of its infection. To interpret this term, recall
that βs0 is the rate of infection for our single infected individual in a po-
pulation of s0 susceptible individuals, and

1
γ+µ

is the expected duration

of the infectious period. The ratio k
µ+k

is the fraction of individuals that

progress from E to I. Hence, the ( 1, 1) entry of K is the expected num-
ber of secondary infections produced in compartment E by an infected
individual originally in compartment E.
From definition (2.7):

R0 =
kβs0

(k + µ)(γ + µ)
.
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Chapter 3

Anorexia and bulimia: a
mathematical model in the
presence of media’s influence

In this chapter we propose a mathematical model to study the dynamics
of anorexic and bulimic populations presented in [29]. The model propo-
sed takes into account, among other things, the effects of peers’ influence,
media influence, and education.
In section 3.2 we describe and formalize the model, that we denote SABR
because the compartments are: susceptible, anorexic, bulimic, and reco-
vered. After a proof of positive invariance of the admissible region and
of the existence of three equilibria in section 3.3, we consider at first, in
section 3.4, the case in which the influence of media and education are
neglected. In such case we analyze: existence and spectral stability of the
equilibria, global stability of the disease-free equilibrium with a Lyapu-
nov function, basic reproduction number and its sensitivity with respect
to the parameters. In section 3.5 we finally discuss, partly analytically
and partly numerically, the effect of education and media. We nume-
rically prove the existence and the global stability of a unique endemic
equilibrium.

43
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3.1 Eating disorders

The prevalence of eating disorders has increased over the last 50 years
and they have, recently, had a major impact on the physical and mental
health of young women. Anorexia and bulimia are related to eating
disorders. Both of these disorders revolve around the fear of obesity or
obsessive desire to remain thin, and the biological necessity of consuming
food.

In the United States, where statistics are generally complete and easy
to access, 8 million people (90% of which are women, for this reason
studies on eating disorders frequently look at women) suffer from eating
disorders. Anorexia is suffered by 0.5% of women, 2 to 3% of women suffer
of bulimia [156]. Statistics reveal that the situation is really alarming: in
some EU countries 0.93% of woman older than 18 suffer from anorexia.
In particular, in Italy eating disorders involve 3.3% of woman and man
older than 18 (see [119]). To these numbers, however, we should add
another 8% of individuals who don’t show all the features which are
essential for the diagnosis of anorexia or bulimia, but have sub-clinical
forms of the diseases.

These disorders are very serious: anorexia nervosa is the third most
common chronic illness in the United States [52]. In Australia, eating
disorders are the seventh major cause of mental disorders, and treatment
for anorexia nervosa represents the second highest cost to the private
hospital field [91].

Although eating disorders are prevalent in western countries, recent
studies have shown that the incidence of anorexia has risen sharply in
Asian countries such as China and westernization is one of the causes of
the development of eating disorders in Chinese population [74].

3.1.1 Harmful psychological influences and preven-
tion

In [19] the authors investigate the meaning of body image and the role it
plays during the adolescence. Body image is the internal representation
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of one’s own outer appearance, which reflects physical and perceptual
dimensions. In the age-range 10–15, 20% to 50% of girls in the United
States say that they feel too fat [77] and 20% to 40% of girls feel over-
weight [134]. An important study has shown that 40% of adolescent girls
believed that they were overweight, even though most of these girls fell
in the normal weight range [112].

The family acts as a primary socialization agent by transmitting cer-
tain messages to adolescents, often differently according to gender [51].
Peers also are important in shaping body image and eating patterns. Gi-
rls who compare their appearance with that of their female peers have a
greater risk of body dissatisfaction [82, 115, 125, 155].

Media’s effect on adolescent girls is strikingly strong [60, 94]. Studies
from the United States, Britain, and New Zealand offer evidence that
increased media use, especially the number of hours per day spent wat-
ching television, is associated with greater BMI (Body Mass Index) and
greater risk of obesity among children and adolescents [63, 90].

Media propose also an unrealistic ideal to be thin. In particular, in-
vestigators have explored the hypothesis that an increasingly thin stan-
dard of female beauty has led to increases in weight and shape anxiety,
dieting, and disordered eating in girls and women. Investigators from
a range of disciplines (e.g., anthropology, communications, history, phi-
losophy, and psychology) have used a variety of methods to examine the
relationship between media and how girls and women regard their bodies
[11, 12, 71, 154]. Important works are those of the anthropologist Ann
Becker [11, 12]. In her studies of Fijian girls’ self perception during the
three-year period in which western media were introduced to Fiji, Becker
observed that dieting and disordered eating appeared in adolescent girls
for the first time ever in Fijian culture. The influence of Western me-
dia in Fiji is particularly significant given that the thin ideal of beauty
directly contradicts traditional Fijian norms. In another Australian qua-
litative study, girls associated the media’s portrayal of the thin ideal with
pressure to be thin [154].

Messages about body weight and appearance are now common also in
the Internet. Although there are many sites that convey positive health
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messages to young people, several web sites contain health-related infor-
mation that can be harmful, portraying disordered eating in a positive
light. A very deep and interesting analysis of pro-eating disorder web si-
tes can be found in [20] where they describe different kind of messages to
which users are exposed. These sites characterize anorexia and bulimia
as a lifestyle choice, not a clinical disease [19, 21, 56].

Frequent magazine readers, usually adolescent girls, also are more
likely to engage in anorexic and bulimic behaviors, such as taking ap-
petite control or weight-loss pills. Research suggests that several factors
contribute to harmful attitudes and behaviours, but exposure and desire
to resemble media ideals are significant factors that must be taken into
consideration [38, 57].

For many patients suffering from severe anorexia nervosa hospitaliza-
tion does not lead to full remission, since typically residual psychopatho-
logical features persist after weight-recovery [78]. In fact some Individuals
achieve complete recovery while others are ravaged by a chronic disorder,
and some die from it. Predicting course and outcome of anorexia nervosa
is complicated by the intrinsic complexity of the disorder [53, 117].

Eating disorders research has moved toward attempted prevention.
To prevent eating disorders, one needs to first understand what causes
them and then to institute programs in order to mitigate those causes or
to teach individuals how to deal with them. There are many educatio-
nal campaigns to prevent eating disorders promoted by schools, colleges,
social institutions and so on [131]. According to the National Institute
of Mental Health it is important to increase the awareness that eating
disorders are a public health problem and that prevention efforts are war-
ranted [5, 136, 140], especially prevention at school [145]. Furthermore
researches revealed significant reductions in disordered eating patterns
and disturbed attitudes about eating and body shape, as well as signifi-
cant increases in healthy eating patterns after a prevention program also
in a high risk school setting [80, 135].
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3.2 The SABR Model

The time evolution of anorexia and bulimia has been also analyzed in
the context of epidemiological models (see for example [49, 67, 99]). In
this work we focus on the spread of anorexia and bulimia nervosa and we
investigate a mathematical model in which anorexia and bulimia depend
not only on peer pressure (related to parameters β1, β2) but also on the
influence of media (related to parameters m1,m2). This last factor has
a strong influence on the evolution of the system. As it will become ap-
parent from the dynamical equations (3.1), the influence of media causes
the disease-free equilibrium to disappear. Recovery from these patholo-
gical conditions can be obtained through pharmacological therapy with
antidepressants and with cognitive-behavioral therapy, which fosters the
development of healty body images in order to prevent re-sensitization
(i.e. to become susceptible once again). We model the effects of tre-
atment using the parameters γ1, γ2 and of (re)sensitization using the
parameter ν [69].

We also study the positive effect of a parameter related to education,
that we call ξ. In this model we consider only the possibility that anorexic
individual can become bulimic because the rate of bulimic individuals
that become anorexic can be disregarded in a first approximation. The
main scope of this research is to consider the positive effects of education
and the negative effects of some media, to compute their influence on
the reproduction numbers and the equilibria, and finally to investigate
strategies to mitigate the effects of the disorders on population acting on
such parameters.

Our model is inspired by an article of Gonzalez et al. [59], in which
a general model is suggested for anorexia and bulimia considered as epi-
demics. In that article the authors restrict their attention to the spread
of bulimia dividing the infected individuals in two classes and analyzing
the existence of endemic equilibria. That article concludes the analy-
sis fixing the parameters according to previous medical literature, and
numerically investigating the evolution of simple and advanced bulimic
depending on the net infective force. We extend this investigation to



48 CHAPTER 3. A MODEL FOR ANOREXIA AND BULIMIA

a model that describes both infective classes: anorexia and bulimia but
considering only one group of individuals for each class. Our model inclu-
des several alternative routes of infection/recovery: peer pressure, media
effect, education. In particular we divide the population into four classes:
susceptible class, S, in which individuals are at risk of becoming anorexic
or bulimic; anorexia class, A, in which an individual has the symptoms
of anorexia; bulimia class, B, in which an individual has the symptoms
of bulimia; and recovered/educated class, R, in which individuals have
been taught healthy eating behaviors and body images. We are able to
perform the investigation in a rigorous mathematical setting almost up
to the general case, and we resort to a numerical investigation only at
the very end, to prove with certainty the existence of a unique endemic
equilibrium.

Let S,A,B,R denote respectively the number of susceptible indivi-
duals, the number of anorexics, the number of bulimics, and the number
of recovered/educated individuals. The at-risk population S, can deve-
lop either anorexia A, or bulimia B because of contact with peers or the
influence of media. Once anorexic, an individual may become bulimic.
An anorexic or bulimic can recover from this condition, and move to
the recovered class R. Once recovered, an individual may become again
susceptible.

According to the Introduction, we consider also the case in which a
susceptible becomes not sensitive to negative peer pressures and media
influences thanks to an education campaign.

The model is described by Figure 3.1 assuming that the parameters
appearing near the arrows are multiplied by the class from which the
arrows go out, as proposed by Hethcote in [68]. This model is more
appropriate to describe a homogeneous population (for instance young
women in the age range 12-25), because such part of the population is
primarily at risk. In fact females are more susceptible than males, and
they enter the susceptible group as they enroll in Junior High School
and begin frequenting other adolescents, while they leave the group by
finding a job or creating a family of their own.

The parameters of the model, all non-negative constants, are:
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Figure 3.1: The SABR model that describes the spread of eating disor-
ders in a community of susceptible (S), anorexic (A), bulimic (B) and
recovered people (R). Arrows indicate the direction of movement into or
out of a group.
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• m1: rate of individuals becoming anorexics due to media influences
per unit time;

• m2: rate of individuals becoming bulimics due to media influences
per unit time;

• β1: anorexics’ peer-pressure contact rate per unit time;

• β2: bulimics’ peer-pressure contact rate per unit time;

• α: rate of anorexics that become bulimics per unit time;

• γ1: rate of anorexics that recover for medicine or due to social
campaigns per unit time;

• γ2: rate of bulimics that recover for medicine or due to social cam-
paigns per unit time;

• ξ: education rate per unit time;

• µ: entry and exit rates of the general population per unit time;

• ν: sensitization rate.

Observe that the class of recovered population R contains the indivi-
duals that have healthy body images and contains individuals that have
never had eating disorders but are immune through education or because
of a strong personality, and those who have had them but have been tre-
ated. The (re)sensitization rate ν we use in our model is an average of
the sensitization rates of the two families.

We assume that the rate at which anorexia and bulimia spread de-
pends on how often susceptible individuals meet people with eating dis-
orders and how successful those encounters are in transmitting eating
disorder habits, and how persuasive media are. These social factors are
embedded in the recruitment rate as we noted above. The number of
individuals who develop eating disorders depends on the relative sizes of
the healthy and ill population. The probabilities of meeting an anorexic
or a bulimic individual is proportional to the fraction of the two groups
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A/P and B/P in the total population P = S+A+B+R, and such con-
tacts can drive some individuals to the corresponding eating disorder.
This fact (perhaps surprising given the visible devastation suffered by
many anorexic) is well-documented in the literature [18, 31, 55, 118]. In
the model we consider, the possibility that a bulimic becomes anorexic is
disregarded because, according to the American Psychiatric Association,
half of anorexic patients do develop bulimia, while only a few bulimic pa-
tients develop anorexia. This fact is in accordance with the introduction
of [75] and with the mathematical model of [59].

To model the system we use the mathematical formulations of section
2.1

ẋ = f(x)

where
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x3

x4
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S
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; f =











f1

f2

f3

f4











;

where

f1 = µP − (µ+ ξ +m1 +m2)S − (β1A+ β2B)
S

P
+ νR,

f2 = m1S + β1A
S

P
− (µ+ α + γ1)A,

f3 = m2S + β2B
S

P
+ αA− (µ+ γ2)B,

f4 = ξS + γ1A+ γ2B − (µ+ ν)R.

So, this model of spread of anorexia and bulimia can be cast mathe-
matically as a set of the following four nonlinear ordinary differential
equations that describe the changes in the populations S, A, B and R
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over time











































dS

dt
= µP − (µ+ ξ +m1 +m2)S − (β1A+ β2B)

S

P
+ νR

dA

dt
= m1S + β1A

S

P
− (µ+ α + γ1)A

dB

dt
= m2S + β2B

S

P
+ αA− (µ+ γ2)B

dR

dt
= ξS + γ1A+ γ2B − (µ+ ν)R .

(3.1)

As discussed above, we assume that the population under study is
part of a larger population at demographic equilibrium, so that we can
take it to be constant. It is hence natural to normalize the quantities by
introducing the new variables to be constant, with equal entry and exit
rates µ,

S = s · P A = a · P B = b · P R = r · P ,

obtaining the normalized model











































ds

dt
= µ− (µ+ ξ +m1 +m2) s− (β1 a+ β2 b) s+ ν r

da

dt
= m1 s+ β1 a s− (µ+ α + γ1) a

db

dt
= m2 s+ β2 b s+ α a− (µ+ γ2) b

dr

dt
= ξ s+ γ1 a+ γ2 b− (µ+ ν) r

(3.2)

subject to the constraint

1 = s+ a+ b+ r. (3.3)

We hence can use the integral of motion (4.1) and reduce the normalized
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system (3.2) to a system consisting of the three differential equations



























da

dt
= −β1 a

2 − β1 a b− β1 a r + (β1 −m1 − µ− α− γ1) a−m1 b−m1 r +m1

db

dt
= −β2 b

2 − β2 a b− β2 b r + (α−m2) a+ (β2 −m2 − µ− γ2) b−m2 r +m2

dr

dt
= (γ1 − ξ) a+ (γ2 − ξ) b− (ξ + µ+ ν) r + ξ .

(3.4)

We observe that in this general case the disease-free equilibrium, i.e.
the case in which the whole population belongs to the susceptibles or
the removed, does not exist. In fact, if all the parameters are positive
constants, to the choice a = b = 0 correspond a positive time derivative
of the solutions a(t), b(t).

The analysis of stability of equilibria for this system is complicated.
In the following sections we consider some particular cases where this
investigation becomes possible, and we use the results to draw conclusions
for the general case. We start by considering m1, m2 and ξ equal to
zero, we then consider the case ξ > 0 with m1,m2 = 0 and finally we
investigate the effect of media (m1,m2 > 0) on the equilibria.

3.3 General properties of the model

3.3.1 Positive invariance of the unit tetrahedron

Representing percentages of a population, the three quantities a, b, r
must be positive and have sum less than 1, i.e. must belong to the tetra-
hedron

T = {(a, b, r) | a+ b+ r ≤ 1, a , b , r > 0}.

In this subsection we analyze the positive invariance of such tetrahedron,
i.e. we show that any solutions starting inside that region can never leave
it.

Positive invariance is equivalent to the fact that the vector field X
whose associated O.D.E. is the system of equations (3.4) is always ente-
ring the faces of the tetrahedron, that is, its scalar product with the inner



54 CHAPTER 3. A MODEL FOR ANOREXIA AND BULIMIA

normal vector of the boundary of T is always positive. The tetrahedron
is composed of 4 faces:

• the face of T lying in the b, r-plane has inner normal (1, 0, 0), and
its scalar product with X is m1(1− b− r). This function is positive
on that face, in which precisely b+ r < 1 (and b, r > 0);

• the face of T lying in the a, r-plane has inner normal vector (0, 1, 0),
and its scalar product with X is aα − am2 −m2 r +m2. Letting
h = α/m2 the equation becomes (1−h)a+r < 1, and this equation
is satisfied in a set that includes the face of T ;

• the face of T lying in the a, b-plane has inner normal vector (0, 0, 1),
and its scalar product with X is a (γ1−ξ)+b (γ2−ξ)+ξ. Denoting
h = γ1/ξ and k = γ2ξ the equation becomes a (1−h)+b (1−k) < 1,
and this equation is satisfied in a set that includes the face of T ;

• the face of T inside the first octant has equations a+ b+ r = 1 and
inner normal n = (−1,−1,−1). The scalar product n · X equals
µ+ ν r, that is positive on the face.

This proves the positive invariance of T . We will prove that this
system always has three equilibria, but only some of them belong to T ,
and hence have meaning in this model. In the sequel we will say that
an equilibrium exists or that it is admissible if it belongs to T . The
main goal of our treatment is to determine the existence and stability of
admissible equilibria.

3.3.2 The equilibria

In this section we prove that the system always admits three equilibrium
solutions. To be meaningful, an equilibrium must have coordinates a, b, r
which are positive and such that a+ b+ r ≤ 1.
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From the first and third components of the vector field at the equili-
brium one has that, posing χ = µ+ ν,

1− r(a, b) =
β1a

2 + β1ab+ (m1 + µ+ α + γ1)a+m1b

β1a+m1

(3.5)

r(a, b) =
a γ1 + b γ2 + ξ (1− a− b)

χ+ ξ
(3.6)

(in our model we assume χ + ξ 6= 0.) These two equations imply re-
spectively that r(a, b) < 1 when a, b are positive and r(a, b) > 0 when
a, b have a sum less than 1, hence the equilibrium point (a, b, r(a, b)) is
always admissible whenever a, b > 0 and a+ b < 1.

Substituting (3.6) in the first two components of the vector field and
equating to zero, one obtains the two equations

(a β1 +m1 ) (c1 + a (γ1 + χ) + b (γ2 + χ)) = c2 (3.7)
(

−b β2 −m2 −
α(χ+ ξ)

γ1 + χ

)

(c3 + a (γ1 + χ) + b (γ2 + χ)) = c4 (3.8)

with

c1 =
(α + γ1 + µ)(χ+ ξ)

β1

− χ, c2 = m1
(α + γ1 + µ)(χ+ ξ)

β1

,

c3 =
α (γ2 + χ) (χ+ ξ)

β2 (γ1 + χ)
+
(χ+ ξ) (γ2 + µ)

β2

− χ

and

c4 =
χ+ ξ

β2

(

m2 (γ2 + µ)−
α2 (γ2 + χ) (χ+ ξ)

(γ1 + χ) 2
−

α (µξ + χ (−β2 + γ2 + µ−m2) + γ2 (ξ −m2))

γ1 + χ

)

It is clear that, unless β1 = 0 or β2 = 0, such equations are those of
two hyperbolas, and we are in the case in which two asymptotes are
parallel, hence the two hyperbola intersect only in three points (see the
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Appendix). When either β1 or β2 are zero, then some of the algebraic
passages need a little more care, and one can see that one of the two
hyperbolas degenerates to a line, and the intersection then consists of
two points. If both β1 = β2 = 0 then the intersection is a unique point.
We note that in our model we assume always β1 > 0, β2 > 0, so the
system presents three equilibria.

The expression of the equilibria in the generic case is too cumbersome
to write explicitly, and it is difficult to discuss existence and stability. We
begin our investigation with the case in which the effect of media and
education are absent (i.e. m1 = m2 = ξ = 0). We then discuss partly
analytically and partly numerically what happens when these parameters
move away from zero.

3.4 The simplified case: m1 = m2 = ξ = 0

Disregarding media and education coefficients m1, m2, ξ system (3.4)
becomes



























da

dt
= −β1 a

2 − β1 a b− β1 a r + (β1 − µ− α− γ1) a

db

dt
= −β2 b

2 − β2 a b− β2 b r + α a+ (β2 − µ− γ2) b

dr

dt
= γ1 a+ γ2 b− χ r.

(3.9)

We see immediately that the disease-free equilibrium E0 = (0, 0, 0)
is a solution of (3.9).

To discuss the local stability of E0, we consider the Jacobian matrix
J0 associated to system (3.9) in E0. A simple computation gives

J0 =













β1
Ra − 1

Ra

0 0

α β2
Rb − 1

Rb

0

γ1 γ2 −χ













,
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where we introduced the quantities

Ra =
β1

µ+ α + γ1
, Rb =

β2

µ+ γ2
.

The eigenvalues of matrix J0, since it is lower triangular, are given by
the diagonal elements, and then local stability of E0 is ensured by the
conditions Ra < 1, Rb < 1. The quantity R0 defined by

R0 = max{Ra, Rb}

guarantees that the disease free equilibrium is linearly stable for R0 < 1,
instead if R0 > 1 the pathological behaviors will spread in the suscepti-
ble population. So R0 is the basic reproduction number. We compared
this result with the computation of R0 based on the the next generation
operator approach introduced by Diekmann et al. [49, 48] (a number of
salient examples of this method are in [24, 66, 148]). We use the unre-
duced system (3.2), for which the disease-free equilibrium has s = 1 and
a = b = r = 0. The disease-compartments are in this case a and b, so
that, using the notations of the references above, we have

F =





β1a s

β2b s



 V =





(µ+ α + γ1)a

−αa+ (µ+ γ2)b



 .

The Jacobian matrices of F and V on the disease-free equilibrium are

F ( 1, 0, 0, 0) =

(

β1 0
0 β2

)

V ( 1, 0, 0, 0) =

(

µ+ α + γ1 0
−α µ+ γ2

)

,

and so the next generation operator is

FV −1 =







Ra 0

α

β1

RaRb Rb







whose spectral radius is

R0 = max {Ra, Rb}
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which coincides with our previous result. A simple analysis shows that
R0 is most sensitive to changes in the value of β1 or β2.

3.4.1 Global stability of E0

We want to prove global stability of the equilibrium E0 using the theory
of Lyapunov functions [84]. Let us consider the two-parametric family of
functions

V (a, b, r) = a+ h b+ k r

with h, k strictly positive reals. Note that V (E0) = 0 and V > 0 for any
(a, b, r) 6= E0 in the positive octant. To prove global stability of the E0

equilibrium we compute the orbital derivative of V , which is

V̇ =− β1(a+ b+ r)a+ (β1 − µ− α− γ1)a − h β2(b+ a+ r)b+ hα a+

h (β2 − µ− γ2) b + k(γ1a+ γ2b)− k χ r.

From a linear stability analysis we know that E0 is locally stable if

Ra < 1, Rb < 1 i.e. β1−µ−α−γ1 < 0, β2−µ−γ2 < 0, (3.10)

but these conditions do not guarantee in general V̇ < 0. We investigate
then the effect of different values of h, k. By choosing h = k = 1, one
obtains that

V̇ < (β1 − µ) a + (β2 − µ) b,

and global stability follows when β1, β2 < µ. A stricter condition can be
obtained observing that

V̇ < (β1 − µ− α− γ1)a + hα a+ h (β2 − µ− γ2) b + k(γ1a+ γ2b) =

= (β1 − µ− α(1− h)− γ1(1− k)) a+ h

(

β2 − µ−

(

1−
k

h

)

γ2

)

b,

and V̇ is globally negative for

β1 − µ− α(1− h)− γ1(1− k) < 0, β2 − µ−

(

1−
k

h

)

γ2 < 0.
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Such conditions can be made arbitrarily close to the linear instability
conditions (3.10) if we choose 0 < k � h � 1. We have hence proved
that when the equilibrium E0 is spectrally stable, then it also is globally
stable in the positive octant.

3.4.2 The endemic equilibria

In this section we calculate the endemic equilibria of the model and we
introduce the quantities

λ1 = β1
Ra − 1

Ra

λ2 = β2
Rb − 1

Rb

to simplify our computation, which imply immediately

Ra > 1 ⇔ λ1 > 0 Rb > 1 ⇔ λ2 > 0

So, we consider again system (3.9), and find the further two equilibria

• E1 =

(

0,
χλ2

β2(χ+ γ2)
,

γ2λ2

β2(χ+ γ2)

)

the anorexia-free endemic equi-

librium, where only bulimia is endemic, that we call for the sake of
shortness bulimic-endemic equilibrium;

• E2 =

(

χ
λ1 ρ1
β1 ρ2

, χ
αλ1

ρ2
, γ1

λ1 ρ1
β1 ρ2

+ γ2
αλ1

ρ2

)

, the endemic equilibrium;

where

ρ1 = β1β2
Ra −Rb

RaRb

= λ1β2 − λ2β1

ρ2 = ρ1(χ+ γ1) + αβ1(χ+ γ2).

Remark 3.4.1 When the coordinates of an equilibrium are positive, then
their sum is less than or equal to one. In particular the sums of the
coordinates of E1, E2 are λ2/β2 and λ1/β1 respectively.
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Let us now investigate existence and stability of E1 and E2 relative
to the stability conditions of E0.

The expression of E1 shows that this equilibrium exists only when
Rb > 1 (i.e. λ2 > 0) and hence when E0 becomes unstable. The stability
of E1 can be determined by evaluating the Jacobian matrix J1 in E1

J1 =













ρ1
β2

0 0

α−
χλ2

χ+ γ2
−

χλ2

χ+ γ2
−

χλ2

χ+ γ2
γ1 γ2 −χ













.

One eigenvalue is ρ1/β2 and sum and product of the other two eigenvalues
are respectively

−χ−
χλ2

χ+ γ2
, χλ2 .

Since E1 exists for λ2 > 0, these eigenvalues are negative and stability of
E1 depends entirely on the sign of ρ1. Then E1 is spectrally stable only
if ρ1 < 0 and then Ra < Rb.

The expression of E2 shows that this equilibrium exists if ρ1 > 0 (i.e.
Ra > Rb) and λ1/ρ2 > 0. Since ρ1 > 0 implies ρ2 > 0, these conditions
turn out to be Ra > Rb and Ra > 1.

The Jacobian matrix J2 associated to the equilibrium E2 is













−
χλ1ρ1
ρ2

−
χλ1ρ1
ρ2

−
χλ1ρ1
ρ2

α−
αχβ2λ1

ρ2
−
ρ1
β1

−
αχβ2λ1

ρ2
−
αχβ2λ1

ρ2
γ1 γ2 −χ













.

The characteristic polynomial of J2 is

λ3 + a2λ
2 + a1λ+ a0 = 0
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where

a2 = −tr(A) =
χλ1ρ1

ρ2
+

ρ1

β1

+
αχβ2λ1

ρ2
+ χ

a1 =
χ
(

λ1β1γ1ρ1 + λ1β1γ2αβ2 + ρ1ρ2 + αχβ2λ1β1 + χλ1ρ1β1 + λ1ρ1αβ1 + λ1ρ1
2
)

β1ρ2

a0 = −det(A) =
χλ1ρ1

β1

.

We notice that these coefficients are all positive. To prove the local
stability of E2 by the Routh-Hurwitz criterion we should also prove that

a2 a1 − a0 (3.11)

is positive. This condition is difficult to be proved analytically because of
the many parameters. However numerical sampling of expression (3.11)
in the space of parameters and a numerical minimization of (3.11) show
that when E2 exists it is also locally stable. We can summarize these
results in Table 3.1.

E0 E1 E2

Ra < 1, Rb < 1 stable does not exist does not exist

Ra > 1; Rb < 1 unstable does not exist stable(1)

Ra < 1; Rb > 1 unstable stable does not exist

Ra > 1; Rb > 1, Ra < Rb unstable stable does not exist

Ra > 1; Rb > 1, Ra > Rb unstable unstable stable(1)

Table 3.1: the scheme of equilibrium points and their stability for m1 =
m2 = ξ = 0. (1) The stability of E2 is proved only numerically.

It is instructive to analyze the existence of the equilibrium E1 in
the plane β1, β2 when the other parameters are fixed. The geometry of
such region is always qualitatively the same: the half-plane Rb > 1 (see
Figure 3.2).
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Figure 3.2: The equilibria E1 and E2 are stable for choices of parameters
in the dark and light shaded regions respectively. The regions are plotted
in β1, β2-space, and they are qualitatively the same for every choice of
the other parameters α, γ1, γ2, µ, ν. In this particular case we have chosen
α = 0.3, γ1 = 0.1, γ2 = 0.3, µ = 0.01, ν = 0.1. The disease-free equili-
brium E0 is stable only when the parameters belong to the unshaded
region, that is when Ra < 1 and Rb < 1.



3.5. CASE WITH INFLUENCES OF EDUCATION AND MEDIA 63

3.5 Case with influences of education and

media

3.5.1 Case with ξ > 0 and m1 = m2 = 0

Let us now consider the effect of positive values of the education coeffi-
cient ξ. System (3.4) becomes



























da

dt
= −β1 a

2 − β1 a b− β1 a r + (β1 − µ− α− γ1) a

db

dt
= −β2 b

2 − β2 a b− β2 b r + α a+ (β2 − µ− γ2) b

dr

dt
= γ1 a+ γ2 b− χ r + ξ (1− a− b− r).

(3.12)

In this case the disease-free equilibrium is

E
′

0 =

(

0, 0,
ξ

ξ + χ

)

,

which is always admissible. Moreover, we note that in this state the
number of susceptibles is s = χ/(ξ + χ).
To discuss the stability of E ′0, we proceed as in section 4.4.
The Jacobian matrix J ′0 associated to system (3.12) at E ′0 is

J ′0 =









λ′1 0 0

α λ′2 0

γ1 − ξ γ2 − ξ −ξ − χ









with

λ′1 = β1
R′a − 1

Ra

, λ′2 = β2
R′b − 1

Rb

.

In these expressions we introduce the new reproduction numbers

R′a = Ra

χ

ξ + χ
, R′b = Rb

χ

ξ + χ
,
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which include the fraction χ/(ξ + χ) of the population susceptible to
eating disorders in the disease-free state when an education campaign is
considered. The eigenvalues of J ′0 are λ

′
1, λ

′
2 and −(ξ+χ), so the stability

is guaranteed by the conditions R′a < 1, R′b < 1.
We checked these results with the next generation operator approach,
obtaining

FV −1 =

[

R′a 0
α

β1

R′aRb R′b

]

.

So, R′0 = max(R′a, R
′
b) is the control reproductive number.

It is straightforward that λ′1, λ
′
2, R

′
a, R

′
b are strictly decreasing functions

of ξ. It follows that, as expected, ξ has a stabilizing effect on the disease-
free equilibrium.
Also in this case we have a bulimic-endemic equilibrium and an endemic
equilibrium, but their explicit expressions and the study of their stability
are mathematically cumbersome so we will not report them here.

3.5.2 General case

In this section we describe what happens when the parameters m1,m2

become positive. It is possible to show, partly analytically and partly
numerically that in this general case there is always only one endemic
equilibrium in the unit tetrahedron.

An increase in m1,m2 will increase the percentage of anorexic and
bulimic, but which of the three possible equilibria E ′0, E

′
1, E

′
2 described

in the case without the influence of media will become the endemic equi-
librium depends on the other parameters.

When m1 = 0 and m2 > 0 we denote by E ′′0 , E
′′
1 , E

′′
2 the prolongation

of the equilibria E ′0, E
′
1, E

′
2. It can be proved that E ′′0 , E

′′
1 are bulimic-

endemic but remain anorexic-free. Their analytic expression is
(

0,−
1

2β2 (γ2 + χ)

(

G±
√

G2 + 4β2m2χ (γ2 + χ)
)

, ∗

)

(3.13)

where G = (γ2 + µ)ξ + (γ2 + χ)m2 − λ2χ and r is not explicitly written.
Which of the two expressions (with plus or minus) is the prolongation of
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E ′0 and which of E
′
1 is possible to say only once the parameters are fixed,

and depends on the sign of G. From this expression one can analytically
prove that

Figure 3.3: The evolution of the b-component of the equilibria E ′′0 , E
′′
1 as

m2 becomes positive whilem1 = 0. The left panel corresponds to a choice
of parameters for which E ′1 does not exist when m2 = 0 (that is λ2 < 0),
and shows that the disease-free equilibrium becomes bulimic-endemic.
The right panel corresponds to a choice of parameters for which E ′1 does
exist when m2 = 0 (that is λ2 > 0) and shows that the disease-free
equilibrium exits from the admissible region while E ′′1 remains admissible.

Proposition 3.5.1 As soon as m2 is increased from zero then only one
of the two anorexic-free equilibria (the disease-free E ′0 and the bulimic-
endemic E ′1) will be in the unit tetrahedron, while the other will move out
of the unit tetrahedron T . So there are two possible cases:

C0 the bulimic-endemic equilibrium E ′1 does not belong to the tetrahe-
dron when m2 = 0, then also when m2 > 0 its prolongation E ′′1 does
not belong to the tetrahedron while E ′′0 becomes bulimic-endemic.
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C1 The bulimic-endemic equilibrium E ′1 does belong to the tetrahedron
when m2 = 0, then also when m2 > 0 the equilibrium E ′′1 does
belong to the tetrahedron and is anorexic-free and bulimic-endemic,
while E ′′0 moves out of the unit tetrahedron.

From now on we call this bulimic-endemic and anorexic-free equili-
brium E ′′01 (the subscript 01 indicates that the prolongation of either E

′
0 or

E ′1 play the role of such equilibrium, and we cannot know a-priori which
of the two will be). The two possibile events described in the Proposition
above are summarized in Figure 3.3.

As we discussed above, when m1 = 0, there still exist two anorexic-
free equilibria (i.e. with a = 0) that we denote E ′′0 , E

′′
1 . The value of their

b-component is written in formula (3.13).
Regardless the sign of G, one of the two components becomes nega-

tive while the other becomes bulimic-endemic (i.e. with b positive) and
anorexic-free (i.e. with a = 0). Which of the two depends on the sign of
G. There are hence two possibilities described in the result above. The
plots of the two possible scenarios is depicted, for two different choices of
all the parameters except m2 (and with m1 fixed to zero) in Figure 3.3
left for the case C0 and in Figure 3.3 right for the case C1.

When m2 > 0 and also m1 is increased from zero, the coordinates
of the equilibria do not have simple analytical expression. They are
the roots of a cubic polynomial in a whose coefficients depend on the
parameters and hence can be obtained using Cardano’s formula. Not
only the investigation of their positivity is extremely difficult, but it is
also complicate to decide which of the three expressions tend to E ′′0 , E

′′
1 ,

E ′′2 respectively when m1 tends to zero. We outline the evolution of
the equilibria as m1 grows away from zero by resorting to the numerical
analysis plotted in Figure 3.4. Also in this case there are two possibilities

Remark 3.5.1 If m1 6= 0,m2 6= 0 we denote by E ′′′0 , E
′′′
1 , E

′′′
2 the three

equilibria that tend respectively to E ′′0 , E
′′
1 , E

′′
2 as m1 tends to zero. Only

one of such solutions lies in the interior of the unit tetrahedron T , gi-
ving a system with precisely one endemic equilibrium. There are two
possibilities
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Figure 3.4: The evolution of the a-component of the equilibria
E ′′′0 , E

′′′
1 , E

′′′
2 as m1 becomes positive. The solid lines represent equili-

bria whose b-component is positive, the dotted lines to equilibria whose
b-component is negative. The left panel is associated to a choice of para-
meters for which E ′′2 does not exist, the right panel to a choice for which
E ′′2 does exist when m1 is set to zero.

D01 The endemic equilibrium E ′′2 does not belong to the tetrahedron when
m1 = 0, then also when m1 > 0 the equilibrium E ′′′2 does not belong
to the tetrahedron while E ′′01 becomes endemic (i.e. either E ′′′0 or E ′′′1
moves in the interior of the unit tetrahedron).

D2 The endemic equilibrium E ′′2 does belong to the the unit tetrahedron
when m1 = 0, then also when m1 > 0 the equilibrium E ′′′2 belongs
to the tetrahedron and remains endemic. In this case E ′′′0 and E ′′′1
move out of the unit tetrahedron (one of them already did not belong
to such tetrahedron already when m1 = 0).

In this case, the two possible scenarios can be proven only numeri-
cally. In the left panel of Figure 3.4 we plot the case D01 under the
hypothesis that C0 is verfied. In the a-axis there are only solutions with
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a = 0. Such solutions are the two E ′′0 and E ′′1 . Increasing m1 the two
a-components of those solutions become positive, but one of them has
negative b-component, while the other has positive b-component and is
hence admissible, i.e. belongs to the unit tetrahedron.

In the right panel of Figure 3.4 we plot the case D2. In the a-axis
there are two solutions with a = 0 (E ′′0 and E ′′1 ) and one with positive a
(the endemic equilibrium E ′′2 ). Increasing m1 the two a-components of
E ′′0 , E

′′
1 become negative, and these solutions are hence non-admissible.

One of them also has negative b-component, while the other has positive
b-component. On the other hand, the equilibrium E ′′′2 has a-component
which increases with m1, and remains an endemic solutions with higher
percentage of anorexics when m1 becomes larger.

3.5.3 Numerical illustration

Figure 3.5: Orbits of system (3.12) starting from a regular grid of points
inside the unit tetrahedron and converging to the equilibrium point in-
dicated by a small circle. Dashed lines show the projection of the equili-
brium point on the coordinate planes. In the left panel we show a global
endemic equilibrium E ′2, with ξ = 0.05. In the right panel we change
only ξ to 0.1 obtaining a global disease-free equilibrium.
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Figure 3.6: Orbits of system (3.4) starting from a regular grid of points
inside the unit tetrahedron with a different choice of parameters. In the
left panel we show the effect of media pressure on bulimic population
(m2 = 0.05, ξ = 0.1). In the right panel we show the effect of media on
anorexic population (m1 = 0.05, ξ = 0.1).

In this section we examine numerically the competing effect of the
education factor ξ and the media influence on the onset of anorexia m1

and bulimia m2. We consider the initial set of parameters β1 = 0.4, β2 =
0.3, m1 = m2 = 0, α = 0.05, γ1 = 0.05, γ2 = 0.2, µ = 0.05, ν = ξ = 0.
With this choice of parameters we have Ra = 2.67 > Rb = 1.2 > 1, and,
as expected, the only endemic equilibrium E2 = (0.16, 0.06, 0.40) (see
Table 3.1).

Introducing the education factor ξ = 0.05 the new reproductive num-
bers are R′a = 1.3, R′b = 0.6. The endemic equilibrium is E ′2 = (0.07, 0.02,
0.54), which, by numerical evidence, is still globally stable (see Figure 3.5-
left). What we see is that both the anorexic and bulimic population have
noticeably shrunk but they are still present.

A further increase of ξ to ξ = 0.1 has the effect of making R′a =
0.89 and R′b = 0.4 both less than 1. The numerically globally stable
equilibrium is in this case the disease free state E ′0 = (0, 0, 0.67) (see
Figure 3.5-right). The effect is exactly what we expected from a strong
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educational campaign.
We introduce now the negative influences of media on bulimia, by

setting m2 = 0.05. Note that we have still a strong educational effect
from ξ = 0.1, but we know that a state with no bulimics can no longer
be an equilibrium, since now db/dt 6= 0 even for b = 0. The new bulimic-
endemic equilibrium E ′′1 = (0, 0.06, 0.71) is shown in Figure 3.6-left

As expected, a worse effect derives from a promotion of anorexic
behaviour, modeled in our numerical computation by m1 = 0.05,m2 =
0. The new equilibrium is (0.13, 0.03, 0.65). Even in this case there
is numerical evidence that such state is globally stable (see Figure 3.6-
right).

Remark 3.5.2 What are the reasonable values of some of the coefficients
is a complicated question. Any conjecture should be tested with the help of
the medical community. The values of the rates β1, β2, and their related
unit of time is highly sensitive to the particular environment in which
the recruited population live. For instance such rates can be profoundly
higher when dealing with a high-risk environment such as a ballet school
[135]. We have not found explicit values of these parameters in literature.



Chapter 4

Financial Models and
Mathematical Formulations

This chapter offers a comprehensive analysis of dynamic networks and
evolutionary variational inequalities applied to a financial network and
an introduction to the quasi-variational inequalities.

4.1 The Financial Model

In 1992 Nagurney, Dong and Hughes [104] were the first to develop a
multi-sector, multi-instrument financial equilibrium problem using the
theory of variational inequalities and recognized the network structure
underlying the problem. That contribution was subsequently extended
by Nagurney [100] to include more general utility functions and by Nagur-
ney and Siokos [107], [108] who formulated a dynamic financial equili-
brium model and analyzed it qualitatively using the theory of projected
dynamical systems. Many other dynamic financial models, along with
their variational inequality formulations at the equilibrium state, can be
found in the book by Nagurney and Siokos [107].
We notice that Daniele [36] proposed an alternative approach to the one
described above, indeed the dynamics are now modeled not using the
theory of projected dynamical systems [109], but studied by means of

71
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evolutionary variational inequalities and these are infinite - rather than
finite-dimensional. In addition, the variance-covariance matrices (see also
[88], [89]) which allow us for risk minimization are now time-varying as
well as the financial volumes held by the sectors.
Infinite-dimensional variational inequalities have been used for many pur-
poses in finance by Jaillet, Lamberton and Lapeyre [73] for the pricing
of American options, and by Tourin and Zariphopoulou [147] for single-
agent investment modelling and computation. Stochastic variational in-
equalities, in turn, have been used by McLean [93] for the non-linear
portfolio choice problem and by Gurkan, Ozge and Robinson [62] for the
pricing of American options. For additional background on financial pro-
blems and variational inequalities see [101].
The papers by Daniele and Maugeri [37] and by Daniele, Maugeri and
Oettli [41], [42] discuss other time-dependent applications using the ap-
proach revealed in [36] for the first time for financial equilibrium pro-
blems.
We start by introducing a first general evolutionary model for the formu-
lation and analysis of multi-sector, multi-instrument financial equilibrium
problems, proposed in [33], which will be improved later on. The functi-
onal setting is the Lebesgue space L2([0, T ],Rp). The time dependence
of the model in the L2([0, T ]) space allows the model to follow the finan-
cial behavior, even in the presence of a possibly very irregular evolution,
whereas the equilibrium conditions are required to hold almost everyw-
here (see [37], [41], [42] for analogous problems). The variance-covariance
matrices associated with the sectors’ risk perceptions will be required to
have L∞([0, T ])-entries.
Analitically, consider a financial economy consisting of m sectors, with a
typical sector denoted by i, and of n instruments, with a typical financial
instrument denoted by j, in the time horizon [0, T ].
Examples of sectors include domestic businesses, banks and other finan-
cial institutions, as well as state and local governments. Examples of
financial instruments, in turn, are mortgages, mutual funds, savings de-
posits, money markets funds, etc.
Let si(t) denote the total financial volume held by sector i at time t,
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which is considered to depend on time t ∈ [0, T ]. As in the presence of
uncertainty and of risky perspectives, the volume si held by each sec-
tor cannot be considered stable and may decrease or increase depending
on unfavorable or favorable economic conditions. As a consequence, the
amounts of the assets and of the liabilities of the sectors will depend on
time.
For this reason, at time t, denote the amount of instrument j held
as an asset in sector i’s portfolio by xij(t) and the amount of instru-
ment j held as a liability in sector i’s portfolio by yij(t). The as-
sets in sector i’s portfolio are grouped into the column vector xi(t) =
[xi1(t), xi2(t), ..., xij(t), ..., xin(t)]

T and the liabilities in sector i’s portfo-
lio are grouped into the column vector yi(t) = [yi1(t), yi2(t), ..., yij(t), ...,
yin(t)]

T . Moreover, group the sector asset vectors into the matrix

x(t) ∈ L2([0, T ],Rnm)

i.e.

x(t) =

















x1(t)

. . .

xi(t)

. . .

xm(t)

















=

















x11(t) . . . x1j(t) . . .x1n(t)

. . .

xi1(t) . . . xij(t) . . . xin(t)

. . .

xm1(t) . . . xmj(t) . . . xmn(t)

















and the sector liability vectors into the matrix

y(t) ∈ L2([0, T ],Rnm)

i.e.

y(t) =

















y1(t)

. . .

yi(t)

. . .

ym(t)

















=

















y11(t) . . . y1j(t) . . .y1n(t)

. . .

yi1(t) . . . yij(t) . . . yin(t)

. . .

ym1(t) . . . ymj(t) . . . ymn(t)

















.
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In order to determine for each sector i the optimal composition of in-
struments held as assets and as liabilities, first we consider the influence
due to the risk-aversion. Following the concept that assessment of risk is
based on a variance-covariance matrix denoting the sector’s assesment of
the standard deviation of prices for each instrument, we use as a measure
of this aversion the 2n× 2n variance-covariance matrix.

Qi(t) =

[

Qi
11(t)Q

i
12(t)

Qi
21(t)Q

i
22(t)

]

associated with sector i’s assets and liabilities, which, in general, will
evolve in time as well and which we assume to be symmetric and positive
definite and with L∞([0, T ]) entries. Further, denote by [Qi

αβ(t)]j the
j-th column of [Qi

αβ(t)] where α = 1, 2 and β = 1, 2 . Then the aversion
to the risk at time t ∈ [0, T ] is given by:

[

xi(t)

yi(t)

]T

Qi(t)

[

xi(t)

yi(t)

]

.

The second component that we have to consider in the process of optimi-
zation of each sector in the financial economy is the desire to maximize
the value of its asset holdings and to minimize the value of its liabilities.
These objectives are related to the prices of each instrument, which, in
turn, depend on time and appear as variables in our problem. We denote
the price of instrument j at time t by rj(t) and group the instrument
prices into the vector r(t) = [r1(t), r2(t), ..., ri(t), ..., rn(t)]

T .
Assuming as the functional setting the Lebesgue space L2([0, T ],Rp), the
set of feasible assets and liabilities becomes:

Pi =
{

[xi(t), yi(t)]
T ∈ L2([0, T ],R2n) :

n
∑

j=1

xij(t) = si(t),
n
∑

j=1

yij(t) = si(t) a.e. in [0, T ],

xij(t) ≥ 0, yij(t) ≥ 0, a.e. in[0, T ]} .
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In Figure 1 we depict the network structure associated with the above
feasible set and the financial economy out of equilibrium. The set of
feasible assets and liabilities associated with each sector corresponds to
budget constraints.
We now can give the following definition of an equilibrium of the financial
model.

s1(t)

l1

l1 l2 ln· · ·
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Figure 4.1: Network structure of the sectors’ optimization problems a.e.
in [0, T ].

Definition 4.1.1 A vector of sector assets, liabilities, and instrument
prices (x∗(t), y∗(t), r∗(t)) ∈

∏m

i=1 Pi × L2([0, T ],Rn
+) is an equilibrium of

the evolutionary financial model if and only if it satisfies simultaneously
the system of inequalities

2[Qi
11(t)]

T
j x

∗
i (t) + 2[Qi

21(t)]
T
j y
∗
i (t) − r∗j (t) − µ

(1)
i (t) ≥ 0, (4.1)

and

2[Qi
12(t)]

T
j x

∗
i (t) + 2[Qi

22(t)]
T
j y
∗
i (t) + r∗j (t) − µ

(2)
i (t) ≥ 0, (4.2)
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and equalities

x∗ij(t)
[

2[Qi
11(t)]

T
j x

∗
i (t) + 2[Qi

21(t)]
T
j y
∗
i (t) − r∗j (t) − µ

(1)
i (t)

]

= 0, (4.3)

y∗ij(t)
[

2[Qi
12(t)]

T
j x

∗
i (t) + 2[Qi

22(t)]
T
j y
∗
i (t) + r∗j (t) − µ

(2)
i (t)

]

= 0, (4.4)

where µ1
i (t), µ

2
i (t) ∈ L2([0, T ]) are Lagrangean functionals, for all sectors

i : i = 1, 2, ...,m, and for all instruments j : j = 1, 2, ..., n, and the
system























m
∑

i=1

(x∗ij(t)− y∗ij(t)) ≥ 0, a.e. in [0, T ]

m
∑

i=1

(x∗ij(t)− y∗ij(t))r
∗
j (t) = 0, r∗(t) ∈ L2([0, T ],Rn

+) .

(4.5)

If we consider a group of conditions (4.1) – (4.4) for a fixed r(t), then we
realize that they are necessary and sufficient conditions to ensure that
(x∗(t), y∗(t)) is the minimum of the problem:

min
Pi

∫ T

0







[

xi(t)

yi(t)

]T

Qi(t)

[

xi(t)

yi(t)

]

− r(t)× [xi(t)− yi(t)]







dt, (4.6)

∀

[

xi(t)

yi(t)

]

∈

m
∏

1=1

Pi

Equilibrium conditions (4.1) – (4.5) are characterized by the following
variational inequality.

Theorem 4.1.1 (Variational Inequality Formulation)
A vector of sector assets, liabilities and instrument prices

(x∗(t), y∗(t), r∗(t)) ∈
m
∏

i=1

Pi × L2([0, T ],Rn
+)
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is an evolutionary financial equilibrium if and only if it satisfies the fol-
lowing variational inequality:

Find (x∗(t), y∗(t), r∗(t)) ∈
m
∏

i=1

Pi × L2([0, T ],Rn
+)

∫ T

0

{

m
∑

i=1

[

2[Qi
11(t)]

Tx∗i (t) + 2[Qi
21(t)]

Ty∗i (t)− r∗(t)
]

× [xi(t)− x∗i (t)]

+
m
∑

i=1

[

2[Qi
12(t)]

Tx∗i (t) + 2[Qi
22(t)]

Ty∗i (t) + r∗(t)
]

× [yi(t)− y∗i (t)] (4.7)

+
m
∑

i=1

(x∗i (t)− y∗i (t))× [r(t)− r∗(t)]

}

dt ≥ 0,

∀(x(t), y(t), r(t)) ∈
m
∏

i=1

Pi × L2([0, T ],Rn
+).

The proof of the variational inequality formulation of the governing equi-
librium conditions is obtained in the following way. In a first step we
prove that conditions (4.1) – (4.4), for a fixed r(t), are necessary and
sufficient to ensure that (x∗i (t), y

∗
i (t)) is the maximum of the problem

max
Pi

∫ T

0







−

[

xi(t)

yi(t)

]T

Qi(t)

[

xi(t)

yi(t)

]

+ r(t)× [xi(t)− yi(t)]







dt,

(4.8)

∀

[

xi(t)

yi(t)

]

∈

m
∏

1=1

Pi

which is analogous to problem (4.6).
Problem (4.8) means that each sector maximizes his utility. Since the
feasible set Pi is a bounded, convex, and closed subset of the Hilbert
space, then it is also weakly compact, hence such a maximum exists
(see [72], Lemma 2.11, p. 15). Then we may prove that problem (4.8)
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is equivalent to a first variational inequality (4.9). In a second step we
prove a variational formulation of the equilibrium condition related to the
instrument prices (4.5). Therefore, the following Theorems hold true.

Theorem 4.1.2 (x∗i (t), y
∗
i (t)) is a solution to (4.8) if and only if it is a

solution to the variational inequality

∫ T

0

{

m
∑

i=1

[

2[Qi
11(t)]

Tx∗i (t) + 2[Qi
21(t)]

Ty∗i (t)− r∗(t)
]

× [xi(t)− x∗i (t)]

+
m
∑

i=1

[

2[Qi
12(t)]

Tx∗i (t) + 2[Qi
22(t)]

Ty∗i (t) + r∗(t)
]

× [yi(t)− y∗i (t)] (4.9)

∀(xi(t), yi(t)) ∈ Pi,

for a given r∗(t) ∈ L2([0, T ],Rn
+).

We may state (see [40] for the proof) the equivalence between problem
(4.8) or problem (4.9) and the equilibrium conditions (4.1) – (4.4).

Theorem 4.1.3 (x∗i (t), y
∗
i (t)) is a solution to (4.8) or (4.9) if and only

if it satisfies, a.e. in [0, T ], conditions (4.1) – (4.4), where µ
(1)
i (t), µ

(2)
i (t)

∈ L2([0, T ]) are Lagrangean functions.

We can show now the following characterization of the equilibrium con-
dition related to the instrument prices (see [40] for the proof).

Theorem 4.1.4 Condition (4.5) is equivalent to the problem
Find r∗(t) ∈ R such that

∫ T

0

m
∑

i=1

[x∗ij(t)− y∗ij(t)] × [rj(t)− r∗j (t)] dt ≥ 0, ∀r(t) ∈ L2([0, T ],Rn
+).

(4.10)

From Theorems 4.1.2, 4.1.3, 4.1.4, it immediately follows that if (x∗(t),
y∗(t), r∗(t)) ∈

∏m

i=1 Pi × L2([0, T ],Rn
+) is a financial equilibrium, then it

satisfies variational inequalities (4.9), (4.10) and hence variational ine-
quality (4.7) and viceversa. Thus Theorem 4.1.1 is completely proved.
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4.2 Quasi-variational inequalities

A generalization of the variational inequality problem is the quasi-varia-
tional inequality problem, introduced by Bensoussan et al. [15] in the
context of impulse control problems. Such problems were studied by
many authors [3], [25], [95].
Many applications of these mathematical tools are known, for instance,
we may refer to Bensoussan [14] and Harker [64], who recognized the con-
nection between generalized Nash games and quasi-variational inequali-
ties, Pang and Fukushima [114] applied this result in order to formulate
the noncooperative multi-leader-follower game in terms of generalized
Nash games, Bliemer and Bovy [17] discussed a quasi-variational inequa-
lity formulation of the dynamic traffic assignment problem. Applications
to some economic and financial models can be found in [128], [129].
Shortly, we recall that a model for a traffic network with fixed demand
due to Smith [133], leads to the following problem: to find a vector
H ∈ R

m
+ such that

H ∈ K : C(H)(F −H) ≥ 0, ∀F ∈ K, (4.11)

with
K :=

{

F ∈ R
m
+ : φF = ρ

}

.

Here, m is the number of paths connecting all the l O/D pairs, C(·) :
R

m
+ → R

m
+ is the path cost function, ρ ∈ R

l
+ is the fixed demand and φ

is a l ×m incidence matrix whose elements are:

φjr =

{

1 ifRr ∈ Rj

0 ifRr /∈ Rj

with r = 1, 2, ...,m, j = 1, 2, ..., l, and where Rr is the r-th path and
Rj is the set of those paths connecting the O/D pair j.
A solution H of the variational inequality (4.11) is an equilibrium pattern
flow in the sense of J. G. Wardrop (1952), that is:

∀ O/D pair j, ∀Rr, Rs ∈ Rj, if Cr(H) > Cs(H) ⇒ Hr = 0 .
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Hence, we have equilibrium costs Cj for every O/D pair j, obtained con-
sidering those paths on which the equilibrium flows are greater than zero.
So, we can require that the demand ρ depends on this equilibrium costs
or, more directly, on the equilibrium pattern flow H.
Thus, if we put, for each H ∈ R

m
+

K(H) :=
{

F ∈ R
m
+ : φF = ρ(H)

}

,

the Variational Inequality (4.11) becomes the following Quasi-Variational
Inequality (QVI): to find

H ∈ K(H) : C(H)(F −H) > 0, ∀F ∈ K(H). (4.12)

In order to find a numerical solution you can use the direct method pro-
posed in [85] for Variational Inequalities, also generalized for Q.V.I. in
[46].
In the following, some theorems for the existence of solutions to finite
dimensional quasi-variational inequalities are recalled.

Theorem 4.2.1 ([65], [127]) Let C, K be continuous functions and ∀H ∈
B, B a Banach space, let K(H) be a nonempty, closed and convex subset
of Rm

+ . Then problem (4.12) admits a solution.

Theorem 4.2.2 ([47], [127]) Let K be a continuous function, ∀H ∈ B
let K(H) be a nonempty, closed and convex subset of B and let C satisfy
the condition

{H ∈ B : C(H)F ≤ 0} is closed ∀F ∈ B − B.

Then problem (4.12) admits a solution.

Theorem 4.2.3 ([45], [127]) Let C : B → 2R
m
+ be a multifunction (pos-

sibly discontinuous) such that:

∀F ∈ B − B the set GF =

{

H ∈ B : inf
z∈C(H)

zF ≤ 0

}

is closed.
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Then, under the same assumptions of Theorem 4.2.1 on K(H), there ex-
ist H ∈ K(H)∩B and z ∈ C(H) such that z(F−H) ≥ 0 ∀F ∈ K(H)∩B.

The following result is due to Nguyen Xuan Tan [141] and concerns infi-
nite dimensional quasi-variational inequalities:

Theorem 4.2.4 ([127], [141]) Let X be a topological linear locally convex
Hausdorff space, C ⊂ X a convex compact nonempty subset. Let P :
C → 2X

∗

be an u.s.c. (upper semi-continuous) multivalued mapping with
P (x), x ∈ C, convex, compact, nonempty and let E : C → 2C be
a closed l.s.c. (lower semi-continuous) multivalued mapping with E(x),
x ∈ C convex, compact, nonempty and let φ : C → R be a proper
convex, lower semi-continuous function. Then, there exists x∗ ∈ C such
that:

(i) x∗ ∈ E(x∗)

(ii) there exists y∗ ∈ P (x∗) for which

〈x− x∗, y∗〉 + ϕ(x)− ϕ(x∗) ≥ 0, ∀ x ∈ E(x∗) .
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Chapter 5

The Financial Model with
volumes depending on the
expected solution

In this chapter we present a multi-sector, multi-instrument financial equi-
librium problem, using the variational inequality theory presented in [28].
The model is assumed evolving in time and the equilibrium conditions
are considered in dynamic sense. Moreover the amount of investment as
liabilities and as assets is assumed depending on the expected solutions,
namely we require that the set of feasible solutions is flexible and adaptive
and this objective is achieved just assuming that the equality constraints
depend on the variational solution. This leads to a quasi-variational for-
mulation. We prove an existence theorem for quasi-variational inequa-
lities under general and reasonable assumptions, namely assumptions
really satisfied in concrete situations. Indeed we shall prove a general
existence theorem (see Theorem 5.2.2) which, roughly speaking, under
some kind of monotonicity and the Fan-hemicontinuity of the operator,
along with natural growth conditions, ensures the existence of solutions
for a general variational inequality. The chapter is also enriched by the
study of numerical examples on financial networks with adaptive con-
straint sets.

83
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The chapter is structured as follows. In section 5.1 we present the origi-
nal model and a brief history of the improvements in the framework. In
Section 5.2 we study the model with data depending on the expected solu-
tion, giving the equilibrium definition and obtaining the quasi-variational
formulation. In Section 5.3 we prove the existence result. In Section 5.4
we recall some concepts on infinite-dimensional duality and introduce
the evaluation index. Finally, in Section 5.4 we present some numerical
examples.

5.1 Introduction

In the paper [33] P. Daniele presents, for the first time in literature, a
model of time-dependent financial flows in the case of quadratic utility
functions

Ui(t, xi(t), yi(t)) = −

[

xi(t)

yi(t)

]T

Qi(t)

[

xi(t)

yi(t)

]

+ r(t)× [xi(t)− yi(t)]

where Qi(t) =

[

Qi
11(t)Q

i
12(t)

Qi
21(t)Q

i
22(t)

]

is a 2n×2n variance-covariance matrix.

Then in [34] the evolutionary financial model has been generalized choo-
sing as a utility function a general function:

Ui(t, xi(t), yi(t)) = ui(t, xi(t), yi(t)) + r(t)(xi(t)− yi(t))

where ui(t, xi(t), yi(t)) is a concave and differentiable function. The as-
sumption of concavity on ui(t, xi(t), yi(t)) is essential in order to obtain
a characterization of the evolutionary financial equilibrium and the exis-
tence of the financial equilibrium.
This model has been generalized in [40] to allow for the incorporation
of policy interventions in the form of taxes and price control. From the
policy intervention aspect, denote the ceiling price and the floor price
associated with instrument j respectively by rj(t) and rj(t). Denote
the given tax rate levied on sector i’s net yeld on financial instrument
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j as τij(t). Assume the tax rates lie in the interval [0, 1) and belong to
L∞(0, T ). Therefore, the government in this model has the flexibility of
levying a distinct tax rate across both sectors and instruments and the
possibility of adjusting the tax rate following the evolution of the system.
Then if, at time t, xij(t) denotes the amount of instrument j held as an
asset in sector i’s portfolio and yij(t) denotes the amount of instrument
j held as a liability in sector i’s portfolio, the equilibrium condition for
the price rj(t) of instrument j is the following:

m
∑

i=1

(1− τij)(xij(t)− yij(t)) =











≤ 0 if rj(t) = rj(t)

= 0 if rj(t) < rj(t) < rj(t)

≥ 0 if rj(t) = rj(t)

.

In other words, if there is a real supply excess of an instrument in the
economy, then its price must be the floor. If the price of an instrument
is greater than the floor price, but not at the ceiling, then the market
of that instrument must clear; analogously if there is an effective excess
demand for an instrument in the economy, then the price must be at the
ceilng. Subsequently, in [6] the authors present the first evolutionary mo-
del with different prices for assets and liabilities. Moreover, they choose
a general utility function and include the expenses for the management
of the financial instrument hj(t) that is a nonnegative function defined
into [0, T ] and belonging to L∞([o, T ]); so the utility function became

Ui(t, xi(t), yi(t)) = ui(t, xi(t), yi(t)) + r(t)(xi(t)− (1 + hj(t))yi(t)) .

Moreover, they introduce, for the first time in literature, the portion
of financial transactions per unit employed to cover the expenses of the
financial institutions including possible dividends and manager bonus,
Fj.
In [7, 8, 39] the authors consider as the utility function Ui(t, xi(t), yi(t)),
for each sector i, the following function

Ui(t, xi(t), yi(t)) =

ui(t, xi(t), yi(t)) +
n
∑

j=1

rj(t)(1− τij(t))[xij(t)− (1 + hj(t))yij(t)] ,
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where the term −ui(t, xi(t), yi(t)) represents a measure of the risk of the
financial agent and rj(t)(1 − τij(t))[xij(t) − (1 + hj(t))yij(t)] represents
the value of the difference between the asset holdings and the value of
liabilities. Here, τij(t) still denotes denotes the given tax rate levied on
sector i’s net yield on financial instrument j and lie in the interval [0, 1)
and belongs to L∞([0, T ],R), as in [10]. Moreover, a simple but use-
ful indicator of the economy, introduced in this works, is the Evaluation
Index E(t), that we will define in section 5.4 and use in the numerical
examples.
Finally, in [10] the authors assume that the total amount of investment
as liabilities and as assets depends on the expected solutions and the
measure of the financial risk they use is of Markovitz type.
In our thesis we take inspiration from [10], that is a financial economy in
the case when the financial volumes depend on time and on the expected
solution, in order to take into account the influence of the expected equi-
librium distribution for assets and liabilities on the investments on all
financial instruments. But unlike in [10], where the measure of the risk
is of a Markowitz type, we consider as a measure of the financial risk a
general function.

5.2 The model

The model, that we consider, evolves in time and the equilibrium con-
ditions are considered in a dynamic sense. Moreover, the amount of
investment as liabilities and as assets is assumed depending on the ex-
pected solutions, namely we require that the set of feasible solutions is
flexible and adaptive and this objective is achieved just assuming that
the equality constraints depend on the variational solution. This leads
to a quasi-variational formulation. For a quasi-variational approach to
other economic problems see also [50] and [149].
We consider a financial economy consisting of m sectors (such as do-
mestic businesses, banks, and other financial institutions), with a typical
sector denoted by i, and of n instruments (such as mortgages, mutual
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funds, savings deposits, money market funds), with a typical financial
instrument denoted by j, in the horizon [0, T ].
Let si(t) denote the total financial volume held by sector i at time t
as assets, and let li(t) denote the total financial volume held by sec-
tor i at time t as liabilities and assume they depend on time in order
to describe the unstable behavior of the economy. We denote, at time
t, the amount of instrument j held as an asset in sector i’s portfolio
by xij(t) and the amount of instrument j held as a liability in sector
i’s portfolio by yij(t). The assets in sector i’s portfolio are grouped
into the column vector xi(t) = [xi1(t), xi2(t), ..., xij(t), ..., xin(t)]

T and
the liabilities in sector i’s portfolio are grouped into the column vec-
tor yi(t) = [yi1(t), yi2(t), ..., yij(t), ..., yin(t)]

T . Moreover, group the sector
asset vectors into the matrix

x(t) ∈ L2([0, T ],Rnm)

and the sector liability vectors into the matrix

y(t) ∈ L2([0, T ],Rnm) .

We denote the price of instrument j held as an asset at time t by
rj(t) and the price of instrument j held as liability at time t by (1 +
hj(t))ri(t), where h is a nonnegative function defined into [0, T ] and be-
longing L∞([0, T ]). We introduce the term hj(t) because the prices of
liabilities are generally greater than or equal to the prices of assets so
that we can describe in a more consistent fashion the behavior of the
markets for which the liabilities are more expensive than the assets. Un-
der the assumption of perfect competition, each sector will behave as if it
has no influence on the instrument prices or on the behavior of the other
sectors, but the equilibrium prices depend on the total amount of invest-
ments and liabilities of each sector. The total financial volumes si and li

depend on time t and on the expected solution, namely by

∫ T

0

w∗(s)ds,

so si is given by si

(

t,

∫ T

0

w∗(s)ds

)

and li is given by li

(

t,

∫ T

0

w∗(s)ds

)

.

In such a way we are taking into account the influence, by means of the
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average value, of the expected equilibrium distribution for assets and
liabilities on the investments on all financial instruments. In the litera-
ture this kind of constraints is called elastic or adaptive constraints. In
order to make the model more consistent with reality, we introduce the
government intervention through a taxation on the profits, so we denote
the given tax rate levied on sector i’s net revenue on financial instrument
j by τij, with τij ∈ [0, 1) a.e.

We adhere to the existing formulation of the financial model deter-
mining for each sector i the optimal composition of instruments held as
assets and as liabilities, namely also in our paper we consider the follo-
wing utility function:

Ui(t, xi(t), yi(t), r(t))

= ui(t, xi(t), yi(t)) +
n
∑

j=1

rj(t)(1− τij(t))[xij(t)− (1 + hj(t))yij(t)],

where the term −ui(t, xi(t), yi(t)) represents a measure of the risk of the
financial agent and rj(t)(1 − τij(t))[xi(t) − (1 + hj(t))yi(t)] represents
the value of the difference between the asset holdings and the value of
liabilities. An example of utility function is obtained by using variance-
covariance matrices denoting the sectors assessment of the standard de-
viation of prices for each instrument (see [88] and [89]).

First, we make the following assumptions Hypotheses 1, which will be
denoted by

Hp. 1:

• The sector’s utility function Ui(t, xi(t), yi(t)) is defined on [0, T ]×
R

n × R
n, is measurable in t and is continuous with respect to xi

and yi.

•
∂ui

∂xij

and
∂ui

∂yij
exist and that they are measurable in t and continu-

ous with respect to xi and yi.
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• ∀i = 1, . . . ,m, ∀j = 1, . . . , n, and a.e. in [0, T ] the following growth
conditions hold true:

|ui(t, x, y)| ≤ αi(t)‖x‖‖y‖, ∀x, y ∈ R
n, (5.1)

and

∣

∣

∣

∂ui(t, x, y)

∂xij

∣

∣

∣ ≤ βij(t)‖y‖,
∣

∣

∣

∂ui(t, x, y)

∂yij

∣

∣

∣ ≤ γij(t)‖x‖, (5.2)

where αi, βij, γij are non-negative functions of L∞([0, T ]).

• The function ui(t, x, y) is concave.

• −
∂ui (t, xi(t), yi(t))

∂xij

and −
∂ui (t, xi(t), yi(t))

∂yij
are strictly monotone

functions.

Now we present in detail the model. The prices are unknown variables
and they are determined by a demand-supply law, namely for j = 1, . . . , n
and a.e. in [0, T ]

m
∑

i=1

(1− τij(t))
[

x∗ij(t)− (1 + hj(t))y
∗
ij(t)

]

+ Fj(t)







≥ 0 if r∗j (t) = rj(t)
= 0 if rj(t) < r∗j (t) < rj(t)
≤ 0 if r∗j (t) = rj(t),

(5.3)

where w∗ = (x∗, y∗, r∗) is the equilibrium solution for the investments as
assets and as liabilities and for the prices and Fj(t) ∈ L2([0, T ]) is the
quantity of financial transactions per unit employed to cover the expenses
of the financial institutions including dividends and manager bonus.

For technical reasons, we shall choose as the functional setting

L2([0, T ],Rp) =

{

x : [0, T ]→ R
p|

∫ T

0

‖x(t)‖2
Rp dt < +∞

}
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where

(∫ T

0

‖x(t)‖2
Rp dt

)

1

2

= ‖x‖L2([0,T ],Rp). To denote the norm in the

Hilbert space L2([0, T ],Rp) we shall use the symbol ‖x‖ when there
is no possibility of confusion. As it is well known, the dual space of
L2([0, T ],Rp) is still L2([0, T ],Rp) and we define the canonical bilinear
form in L2([0, T ],Rp)× L2([0, T ],Rp) as:

� G, x�=

∫ T

0

〈G(t), x(t)〉 dt, G, x ∈ L2([0, T ],Rp).

Where 〈G(t), x(t)〉 denotes the scalar product in R
p.

In order to define the constraint set, let us introduce the set

E =
{

w = (x(t), y(t), r(t)) ∈ L2([0, T ],R2mn+n) : x(t) ≥ 0,

y(t) ≥ 0, r(t) ≤ r(t) ≤ r(t) a.e. in [0, T ]} ,

with r(t) ≤ r(t) ∈ L2([0, T ],Rn), 0 ≤ r(t) ≤ r(t) a.e. in [0, T ]. It
is easy to verify that E is a convex, bounded and closed subset of
L2([0, T ],R2mn+n).
If K : E → 2E is the set-valued map defined as

K(w∗) =

{

w = (x(t), y(t), r(t)) ∈ E :
n
∑

j=1

xij(t) = si

(

t,

∫ T

0
w∗(s) ds

)

,

n
∑

j=1

yij(t) = li

(

t,

∫ T

0
w∗(s) ds

)

a.e. in [0, T ] i = 1, . . . ,m

}

,(5.4)

then K(w∗) is the feasible set for every w∗ ∈ E.

Now, we can give different but equivalent equilibrium conditions, each of
which is useful to illustrate particular features of the equilibrium.

Definition 5.2.1 A vector of sector assets, liabilities and instrument
prices w∗ ∈ K(w∗) is an equilibrium of the dynamic financial model if
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and only if ∀i = 1, . . . ,m, ∀j = 1, . . . , n, and a.e. in [0, T ], it satisfies
the system of inequalities

−
∂ui(t, x

∗, y∗)

∂xij

− (1− τij(t))r
∗
j (t)− µ

(1)∗
i (t) ≥ 0, (5.5)

−
∂ui(t, x

∗, y∗)

∂yij
+ (1− τij(t))(1 + hj(t))r

∗
j (t)− µ

(2)∗
i (t) ≥ 0, (5.6)

and equalities

x∗ij(t)
[

−
∂ui(t, x

∗, y∗)

∂xij
− (1− τij(t))r

∗
j (t)− µ

(1)∗
i (t)

]

= 0, (5.7)

y∗ij(t)
[

−
∂ui(t, x

∗, y∗)

∂xij
+ (1− τij(t))(1 + hj(t))r

∗
j (t)− µ

(2)∗
i (t)

]

= 0,(5.8)

where µ
(1)∗
i (t), µ

(2)∗
i (t) ∈ L2([0, T ]) are the Lagrange functions associated

to the constraints

n
∑

j=1

xij(t) = si

(

t,

∫ T

0

w∗(s) ds

)

and
n
∑

j=1

yij(t) = li

(

t,

∫ T

0

w∗(s) ds

)

respectively, and verifies conditions (5.3) a.e. in [0, T ].

For additional details on Definition 5.2.1, see, for instance, [6] and [7].

Also in this formulation we are dealing with Lagrange multipliers which
are unknown a priori, but this has no influence because, as we shall see
by means of Theorem 5.2.1, Definition 5.2.1 is equivalent to a variational
inequality in which µ

(1)∗

i (t) and µ
(2)∗

i (t) do not appear.

Indeed, under assumptions Hp. 1, such an equilibrium is characteri-
zed by the following variational formulation.

Theorem 5.2.1 A vector w∗ ∈ K(w∗) is a dynamic financial equilibrium
if and only if it satisfies the following variational inequality:
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Find w∗ ∈ K(w∗) :
m
∑

i=1

∫ T

0

{

n
∑

j=1

[

−
∂ui(t, x

∗
i (t), y

∗
i (t))

∂xij

− (1− τij(t))r
∗
j (t)
]

·[xij(t)− x∗ij(t)]

+
n
∑

j=1

[

−
∂ui(t, x

∗
i (t), y

∗
i (t))

∂yij
+ (1− τij(t))r

∗
j (t)(1 + hj(t))

]

·[yij(t)− y∗ij(t)]

}

dt

+
n
∑

j=1

∫ T

0

m
∑

i=1

{

(1− τij(t))
[

x∗ij(t)− (1 + hj(t))y
∗
ij(t)

]

+ Fj(t)
}

·
[

rj(t)− r∗j (t)
]

dt ≥ 0, ∀w ∈ K(w∗). (5.9)

For the proof see [6], [8], [9].
The aim of this paper is to prove an existence result for (5.9). We

shall get such an existence result by proving a general theorem which is
interesting in itself.

Let F : [0, T ]×R
2mn → R

2mn be such that the following condition is
satisfied:

F is measurable in t ∀w ∈ R
2mn, continuous in w a.e. in [0, T ]

and there exists δ ∈ L2([0, T ]) such that (F )

‖F (t, w)‖ ≤ δ(t) + ‖w‖ a.e. in [0, T ], w ∈ R
2mn.

First of all, we recall the definitions of a strongly monotone and a Fan-
hemicontinuous mapping.

Definition 5.2.2 Let F : [0, T ]× E → L2([0, T ],R2mn). We say that F
is strongly monotone in x and y and monotone in r if there exists ν > 0 :

〈F (t, w1(t))− F (t, w2(t)), w1(t)− w2(t)〉 ≥ ν(‖x1 − x2‖
2 + ‖y1 − y2‖

2)

∀w1(t) = (x1(t), y1(t), r1(t)) , w2(t) = (x2(t), y2(t), r2(t)) ∈ E.
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Definition 5.2.3 Let F : [0, T ]× E → L2([0, T ],R2mn). We say that F
is Fan-hemicontinuous if ∀v ∈ E the function

w →� F (t, w), w − v �

is weakly lower semicontinuous on E.

Further, we make the following assumptions (α):

• the functions s and l are Carathéodory functions, which means they
are measurable in t and continuous with respect to the second vari-
able;

• there exist δ1(t) ∈ L2([0, T ]) and c1 ∈ R such that:

‖s(t, x)‖ ≤ δ1(t) + c1, ∀x ∈ R
mn;

• there exist δ2(t) ∈ L2([0, T ]) and c2 ∈ R such that:

‖l(t, y)‖ ≤ δ2(t) + c2, ∀y ∈ R
mn.

Now let us consider the following variational inequality:

Find w∗ ∈ K(w∗) : 〈〈F (t, w∗), w − w∗〉〉 ≥ 0 ∀w ∈ K(w∗). (5.10)

We can prove the following existence theorem.

Theorem 5.2.2 Let F : [0, T ] × E → L2([0, T ],R2m+n) be a bounded,
strongly monotone in x and y, monotone in r, Fan-hemicontinuous map-
ping and satisfying conditions (F) and (α). Then variational inequality
(5.10) admits a solution.

Now, let us remark that variational inequality (5.9) can be rewritten by
using the operator

A(t, w) : [0, T ]× R
2mn → R

2mn
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defined as follows:

A(t, w) = A(t, x(t), y(t), r(t))

=

(

[

−
∂ui (t, xi(t), yi(t))

∂xij

− rj(t) (1− τij(t))

]

ij

,

[

−
∂ui (t, xi(t), yi(t))

∂yij
+ rj(t) (1− τij(t)) (1 + hj(t))

]

ij

,

[

m
∑

i=1

(1− τij(t)) [xij(t)− (1 + hj(t)) yij(t)] + Fj(t)

]

j

)

.

Then variational inequality (5.9) becomes:

〈〈A(t, w∗), w − w∗〉〉 ≥ 0 ∀w ∈ K(w∗). (5.11)

From Theorem 5.2.2 we deduce an existence theorem for variational in-
equality (5.11), namely we shall prove the following theorem.

Theorem 5.2.3 Under assumptions Hp. 1 and (α1)-(α3) variational
inequality (5.11) admits a solution.

Remark 5.2.1 IWe assume that ∀w ∈ E, then w ∈ K(w). Hence, set-
ting

K(w) = K(w)− w,

we get 0 ∈ K(w). As a consequence, replacing K(w) with K(w), the
assumption 0 ∈ K(w) is always satisfied. In the sequel we shall use the
notation K(w).

5.3 Proof of Theorems

In order to prove Theorem 5.2.2, let us recall that the following existence
result holds true (see [130], Theorem 3.2):
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Theorem 5.3.1 Let F (t, w) satisfy all assumptions in Theorem 5.2.2
provided that the monotonicity on r is replaced by the strong monotonicity
on r. Then, variational inequality (5.10) admits a solution.

We remark that in this theorem it is required that the operator F (t, w)
is strongly monotone in x, y and r. Hence, the aim of Theorem 5.2.2 is
to show that, for the existence of solutions, it is enough to assume the
operator F only monotone in r.
To prove Theorem 5.2.2, let us consider the following variational inequa-
lity, for each fixed n ∈ N :

Find w∗n ∈ K(w∗n) : 〈F (t, w
∗
n), w − w∗n〉 = 〈F (t, w

∗
n), w − w∗n〉

+
1

n

∫ T

0

r∗nj(t) (rj(t)− r∗nj(t)) dt ≥ 0, ∀w ∈ K(w∗n), (5.12)

where

K(w∗n) =

{

(xn(t), yn(t), rn(t)) ∈ L2
(
[0, T ],R2mn

)
:

n∑

j=1

xnij(t) = si

(
t,

∫ T

0

w∗n(s) ds

)
,

n∑

j=1

ynij(t) = li

(
t,

∫ T

0

w∗n(s) ds

)

a.e. in [0, T ], xn(t) ≥ 0, yn(t) ≥ 0, r(t) ≤ rn(t) ≤ r(t) a.e. in [0, T ]

}
.

Variational inequality (5.12) is a perturbation of the previous variational
inequality (5.10). We are following the same procedure presented by
Stampacchia in [137] (see Sect. 3).

For the operator F , as it is easy to see, all the assumptions of Theorem
5.3.1 are fulfilled. Then, there exists a unique solution w∗n ∈ K(w∗n) to
(5.12) ∀n ∈ N. The set of solutions {w∗n} turns out to be bounded in L

2 by
the definition of K(w∗n). Then, we can extract from {w∗n} a subsequence,
denoted, for the sake of simplicity, by {w∗n}, weakly convergent to some
w̃ ∈ L2 (see, for instance, [23], Theor. III, 16):

w∗n ⇀ w̃.



96 CHAPTER 5. THE FINANCIAL MODEL

We shall show that
w̃ ∈ K(w̃).

Taking into account that w∗n ∈ K(w∗n), we have

n∑

j=1

x∗nij(t) = si

(
t,

∫ T

0

w∗n(s) ds

)
and x∗nij ⇀ x̃ij(t),

hence
n∑

j=1

x∗nij(t) ⇀
n∑

j=1

x̃ij(t).

Now, for every test function ϕ ∈ L2([0, T ]), we get:

lim
n

∫ T

0

ϕ
n∑

j=1

x∗nij(t) = lim
n

∫ T

0

ϕ si

(
t,

∫ T

0

w∗n(s)ds

)
dt =

∫ T

0

ϕ
n∑

j=1

x̃ij(t).

For assumption (α1) and taking into account that lim
n

∫ T

0

x∗n(s) ds =
∫ T

0

x̃(s) ds, we get

lim
n

si

(
t,

∫ T

0

w∗n(s)ds

)
= si

(
t,

∫ T

0

w̃(s)ds

)

and

lim
n

∫ T

0

ϕ si

(
t,

∫ T

0

w∗n(s)ds

)
dt =

∫ T

0

ϕ si

(
t,

∫ T

0

w̃(s)ds

)
dt.

As a consequence for every ϕ we have:

∫ T

0

ϕ

[
si

(
t,

∫ T

0

w̃(s)ds

)
−

n∑

j=1

x̃ij(t)

]
dt = 0

and therefore

si

(
t,

∫ T

0

w̃(s) ds

)
=

n∑

j=1

x̃ij(t).
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An analogous procedure can be applied to obtain:

li

(
t,

∫ T

0

w̃(s) ds

)
=

n∑

j=1

ỹij(t).

It remains to prove that xi(t) ≥ 0 a.e. in [0, T ]. For the sake of generality
and forseeing future extensions of the model, we shall prove

xi(t) ≤ xi(t) ≤ xi(t) a.e. in [0, T ].

We shall just prove that xi(t) ≤ xi(t). We know that xi(t) ≤ x̃∗ni(t).
Then, for every nonnegative function ϕ ∈ L2([0, T ]), in virtue of the
weak convergence, we have:

0 ≤ lim
n

∫ T

0

ϕ (x∗ni(t)− xi(t))︸ ︷︷ ︸
≥0

dt =

∫ T

0

ϕ(x̃i(t)− xi(t))dt. (5.13)

Now, let us assume ad absurdum there exists a subset E ⊂ [0, T ] with
positive measure such that x̃i(t)− xi(t) < 0 in E. Then one chooses:

ϕ =

{
0 in [0, T ] \ E

ϕ > 0 in E.

Hence, (5.13) becomes:

∫ T

0

ϕ (x̃i(t)− xi(t)) =

∫

E

ϕ (x̃i(t)− xi(t)) < 0

which is an absurdity. An analogous procedure can be applied to show
the other constraints and then obtain w̃ ∈ K(w̃).
Let us prove now that w̃ satisfies variational inequality:

〈〈F (t, w̃), w − w̃〉〉 ≥ 0 ∀w ∈ K(w̃). (5.14)
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Since F (t, w̃) is monotone, according to Minty’s Lemma (see [137], Lemma
2.2), (5.14) is equivalent to prove that w̃ is a solution to the following
Minty variational inequality:

〈〈F (t, w), w − w̃〉〉 ≥ 0 ∀w ∈ K(w̃). (5.15)

Let us observe that if (5.12) is satisfied, then, according to Minty’s
Lemma again, w∗n is also a solution to:

〈〈F (t, w), w − w∗n〉〉 = 〈〈F (t, w), w − w∗n〉〉

+
1

n

∫ T

0
rj(t) (rj(t)− r∗nj(t)) dt ≥ 0∀w ∈ K(w∗n). (5.16)

In order to prove (5.14), let us recall that in [130] (see Lemma 3.1) the
author has proved that the set K(w) is Mosco convergent; in particular
we have that:

∀w ∈ K(w̃) ∃{wn} ⊆ K(wn) : wn → w in L2(R2mn).

Since (5.16) is satisfied in K(w∗n), we choose as w ∈ K(w∗n) in (5.16) the
element wn such that wn → w.
Then (5.16) becomes:

〈〈F (t, wn), wn − w∗n〉〉+
1

n

∫ T

0

rnj(t)(rnj(t)− r∗nj(t)) dt ≥ 0. (5.17)

We want to prove that (5.17) converges to (5.15). To this end we shall
work separately on the two terms of (5.17). The first term is:

〈〈F (t, wn), wn − w∗n〉〉 = 〈〈F (t, wn), wn − w̃ + w̃ − w∗n〉〉 =

= 〈〈F (t, wn), wn − w̃〉〉+ 〈〈F (t, wn), w̃ − w∗n〉〉.

Let us remark that:

• wn → w, hence limn〈〈F (t, wn), wn − w̃〉〉 = 〈〈F (t, w), w − w̃〉〉;
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• From assumption (F), F is a Nemitski operator, so F (t, wn) →
F (t, w) in L2(R2m+n) when wn → w and w̃ − w∗n ⇀ 0, hence
lim
n
〈〈F (t, wn), w̃−w

∗
n〉〉 = 〈〈F (t, w), w̃−w̃〉〉 = 0, indeed: lim

n
〈〈F (t, wn),

w̃ − w∗n〉〉 = lim
n
〈〈F (t, wn) − F (t, w), w̃ − w∗n〉〉 + lim

n
〈〈F (t, w), w̃ −

w∗n〉〉 = 0.

Therefore:

lim
n
〈〈F (t, wn), wn − w∗n〉〉 = 〈〈F (t, w), w − w̃〉〉 ∀w ∈ K(w̃)

Now we examine the second term: limn

1

n

∫ T

0

rnj(t)(rnj(t)− r∗nj(t)) dt =

0, since
1

n
converges to 0, r∗nj ⇀ rj(t) and so rj(t)− r∗nj(t) is bounded.

As a consequence:

lim
n

〈
〈F (t, wn), wn − w∗n〉〉+

1

n

∫ T

0

rnj(t)(rnj(t)− r∗nj(t)) dt

}

= 〈F (t, w), w − w̃〉, ∀w ∈ K(w̃).

Then the theorem is proved. 2

Now we are in position to prove Theorem 5.2.3.
We apply Theorem 5.2.2 by choosing as the operator F the new operator
A defined as follows:

A(t, w) : [0, T ]× R
2mn → R

2mn

defined as follows:

A(t, w) = A(t, x(t), y(t), r(t))

=

(

[

−
∂ui (t, xi(t), yi(t))

∂xij

− rj(t) (1− τij(t))

]

ij

,

[

−
∂ui (t, xi(t), yi(t))

∂yij
+ rj(t) (1− τij(t)) (1 + hj(t))

]

ij

,

[

m
∑

i=1

(1− τij(t)) [xij(t)− (1 + hj(t)) yij(t)] + Fj(t)

]

j

)

.
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The boundedness of A(t, w), which means:

∃c ∈ R : ‖A(t, w)‖L2([0,T ],R2mn+n) ≤ c,

trivially follows from assumption α2.
Let us prove that A(t, w) is strongly monotone with respect to x and y,
namely:

∃ν > 0 : 〈〈A(t, w1)−A(t, w2), w1−w2〉〉 ≥ ν
[
‖x1 − x2‖2L2 + ‖y1 − y2‖2L2

]
.

We have:
〈〈A(t, w1)− A(t, w2), w1 − w2〉〉

=
m∑

i=1

∫ T

0

{ n∑

j=1

(
−
∂ui (t, x

1
i (t), y

1
i (t))

∂x1
ij

+
∂ui (t, x

2
i (t), y

2
i (t))

∂x2
ij

)(
x1
ij(t)− x2

ij(t)
)

−

n∑

j=1

(r1j (t)− r2j (t))(1− τij(t))(x
1
ij(t)− x2

ij(t))

+
n∑

j=1

(
−
∂ui (t, x

1
i (t), y

1
i (t))

∂y1ij
+

∂ui (t, x
2
i (t), y

2
i (t))

∂y2ij

)(
y1ij(t)− y2ij(t)

)

+
n∑

j=1

(r1j (t)− r2j (t))(1− τij(t))(1 + hj(t))(y
1
ij(t)− y2ij(t))

}
dt

+
n∑

j=1

∫ T

0

{ m∑

i=1

(1− τij(t))(x
1
ij(t)− x2

ij(t))(r
1
j (t)− r2j (t))

−
m∑

i=1

(1− τij(t))(1 + hj(t))(y
1
ij(t)− y2ij(t))(r

1
j (t)− r2j (t))

}
dt

=
m∑

i=1

∫ T

0

{ n∑

j=1

(
−
∂ui (t, x

1
i (t), y

1
i (t))

∂x1
ij

+
∂ui (t, x

2
i (t), y

2
i (t))

∂x2
ij

)(
x1
ij(t)− x2

ij(t)
)

+

(
−
∂ui (t, x

1
i (t), y

1
i (t))

∂y1ij
+

∂ui (t, x
2
i (t), y

2
i (t))

∂y2ij

)(
y1ij(t)− y2ij(t)

)}
dt
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≥ ν
[
‖x1 − x2‖2L2 + ‖y1 − y2‖2L2

]
.

The last inequality is easily achieved since, by assumptions, the functions

−
∂ui (t, x

1
i (t), y

1
i (t))

∂x1
ij

and −
∂ui (t, x

1
i (t), y

1
i (t))

∂y1ij
are strictly monotone.

Hence, A(t, w) is strongly monotone in x and y and only monotone in r.
Now, we can prove that A(t, w) is Fan-hemicontinuous, namely:

〈〈A(t, w), w − ξ〉〉 is weakly lower semicontinuous,

where ξ = (ξ1, ξ2, ξ3) is fixed. So we need to prove that

lim inf
n

〈〈A(t, wn), wn−ξ〉〉 ≥ 〈〈A(t, w), w−ξ〉〉, ∀{wn} such that wn ⇀ w.

We have:
〈〈A(t, wn), wn − ξ〉〉

=

∫ T

0

m∑

i=1

n∑

j=1

(
−
∂ui (t, x

n
i (t), y

n
i (t))

∂xij

− rnj (t)(1− τij(t))

)(
xn
ij(t)− ξ1ij

)
dt

+

∫ T

0

m∑

i=1

n∑

j=1

(
−
∂ui (t, x

n
i (t), y

n
i (t))

∂yij
+ rnj (t)(1− τij(t))(1 + hj(t))

)

(
ynij(t)− ξ2ij

)
dt

+
m∑

i=1

∫ T

0

{
n∑

j=1

(1− τij(t))
[
xn
ij(t)− (1 + hj(t))y

n
ij(t)

]
+ Fj(t)

}
(rnj (t)−ξ

3
j ) dt

=

∫ T

0

m∑

i=1

n∑

j=1

−
∂ui (t, x

n
i (t), y

n
i (t))

∂xij

(
xn
ij(t)− ξ1ij

)
dt

+

∫ T

0

m∑

i=1

n∑

j=1

−
∂ui (t, x

n
i (t), y

n
i (t))

∂yij

(
ynij(t)− ξ2ij

)
dt

+
m∑

i=1

n∑

j=1

∫ T

0

[
− rnj (t)(1− τij(t))x

n
ij(t) + rnj (t)(1− τij(t))ξ

1
ij
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+rnj (t)(1− τij(t))(1 + hj(t))y
n
ij(t)− rnj (1− τij(t))(1 + hj(t))ξ

2
ij

+rnj (t)(1−τij(t))x
n
ij(t)−x

n
ij(t)(1−τij(t))ξ

3
j−r

n
j (t)(1−τij(t))(1+hj(t))y

n
ij(t)

+(1− τij(t))(1 + hj(t))y
n
ij(t)ξ

3
j + Fj(t)(r

n
j (t)− ξ3j )

]
dt

=

∫ T

0

m∑

i=1

n∑

j=1

−
∂ui (t, x

n
i (t), y

n
i (t))

∂xij

(
xn
ij(t)− ξ1ij

)
dt

+

∫ T

0

m∑

i=1

n∑

j=1

−
∂ui (t, x

n
i (t), y

n
i (t))

∂yij

(
ynij(t)− ξ2ij

)
dt

+
m∑

i=1

n∑

j=1

∫ T

0

[
rnj (t)(1− τij(t))ξ

1
ij − rnj (1− τij(t))(1 + hj(t))ξ

2
ij

−xn
ij(t)(1−τij(t))ξ

3
j +(1−τij(t))(1+hj(t))y

n
ij(t)ξ

3
j +Fj(t)(r

n
j (t)−ξ3j )

]
dt.

For the weak convergence, we have:

lim
n→∞

m∑

i=1

n∑

j=1

∫ T

0

rnj (t)(1− τij(t))ξ
1
ij dt =

m∑

i=1

n∑

j=1

∫ T

0

rj(t)(1− τij(t))ξ
1
ij dt;

lim
n→∞

m∑

i=1

n∑

j=1

∫ T

0

−rnj (1− τij(t))(1 + hj(t))ξ
2
ij dt

=
m∑

i=1

n∑

j=1

∫ T

0

−rj(1− τij(t))(1 + hj(t))ξ
2
ij dt;

lim
n→∞

m∑

i=1

n∑

j=1

∫ T

0

−xn
ij(t)(1−τij(t))ξ

3
j dt =

m∑

i=1

n∑

j=1

∫ T

0

−xij(t)(1−τij(t))ξ
3
j dt;

lim
n→∞

m∑

i=1

n∑

j=1

∫ T

0

(1− τij(t))(1 + hj(t))y
n
ij(t)ξ

3
j dt
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=
m∑

i=1

n∑

j=1

∫ T

0

(1− τij(t))(1 + hj(t))yij(t)ξ
3
j dt;

lim
n→∞

m∑

i=1

n∑

j=1

∫ T

0

Fj(t)(r
n
j (t)− ξ3j ) dt =

m∑

i=1

n∑

j=1

∫ T

0

Fj(t)(rj(t)− ξ3j ) dt.

It remains to prove that

lim inf
n→∞

∫ T

0

m∑

i=1

n∑

j=1

−
∂ui (t, x

n
i (t), y

n
i (t))

∂xij

(
xn
ij(t)− ξ1ij

)
dt

≥

∫ T

0

m∑

i=1

n∑

j=1

−
∂ui (t, xi(t), yi(t))

∂xij

(
xij(t)− ξ1ij

)
dt

and the analogous relation for yij(t). The operators −
∂ui(t, xi(t), yi(t))

∂xi

are Nemitsky operators (see [58]) and then they are L2−continuous.
Hence, we have

lim
n→∞

∫ T

0

m∑

i=1

n∑

j=1

−
∂ui (t, x

n
i (t), y

n
i (t))

∂xij

(
xn
ij(t)− ξ1ij

)
dt

=

∫ T

0

m∑

i=1

n∑

j=1

−
∂ui (t, xi(t), yi(t))

∂xij

(
xij(t)− ξ1ij

)
dt

∀{xn} : xn −→ x in L2,

namely the strong continuity of the operator−
∂ui(t, xi(t), yi(t))

∂xij

(
xij(t)− ξ1ij

)
.

Then, taking into account that−
∂ui(t, xi(t), yi(t))

∂xij

and−
∂ui(t, xi(t), yi(t))

∂yij
are convex and monotone, it is easy to prove that the operator

m∑

i=1

n∑

j=1

−
∂ui(t, xi(t), yi(t))

∂xij

(
xij(t)− ξ1ij

)
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+
m∑

i=1

n∑

j=1

−
∂ui(t, xi(t), yi(t))

∂yij

(
yij(t)− ξ2ij

)

is convex (see [87]). Indeed, if a function is continuous and convex,
then it is weakly lower semicontinuous. Hence function A(t, w) is Fan-
hemicontinuous. 2

5.4 Notes on infinite dimensional duality

In this section we recall the infinite dimensional duality (see [7], [43],
[86] and [129]) for the general financial equilibrium problem expressed
by variational inequality (5.9). The infinite dimensional duality allows
us to define the evaluation index E(t), which will be used in the sequel.

The first step is to introduce the Lagrange functional for this general
model. To this end, as usual, let us set

f(x, y, r) =

∫ T

0

{ m∑

i=1

n∑

j=1

[
−
∂ui(t, x

∗(t), y∗(t))

∂xij

− (1− τij(t))r
∗
j (t)

]

×[xij(t)− x∗ij(t)]

+
m∑

i=1

n∑

j=1

[
−
∂ui(t, x

∗(t), y∗(t))

∂yij
+ (1− τij(t))(1 + hj(t))r

∗
j (t)

]

×[yij(t)− y∗ij(t)]

+
n∑

j=1

[
m∑

i=1

(1− τij(t))
[
x∗ij(t)− (1 + hj(t))y

∗
ij(t)

]
+ Fj(t)

]

×
[
rj(t)− r∗j (t)

]}
dt.
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Then the Lagrange functional is

L(x, y, r, λ(1), λ(2), µ(1), µ(2), ρ(1), ρ(2))

= f(x, y, r)−
m∑

i=1

n∑

j=1

∫ T

0

λ
(1)
ij (t)xij(t) dt

−

m∑

i=1

n∑

j=1

∫ T

0

λ
(2)
ij yij(t) dt−

m∑

i=1

∫ T

0

µ
(1)
i (t)

(

n
∑

j=1

xij(t)− ŝi(t)

)

dt

−

m
∑

i=1

∫ T

0

µ
(2)
i (t)

(

n
∑

j=1

yij(t)− l̂i(t)

)

dt

+
n
∑

j=1

∫ T

0

ρ
(1)
j (t)(rj(t)− rj(t)) dt

+
n
∑

j=1

∫ T

0

ρ
(2)
j (t)(rj(t)− rj(t)) dt, (5.18)

where (x, y, r) ∈ L2([0, T ],R2mn+n), λ(1), λ(2) ∈ L2([0, T ],Rmn
+ ), µ(1), µ(2) ∈

L2([0, T ],Rm), ρ(1), ρ(2) ∈ L2([0, T ],Rn
+).

Remember that λ(1), λ(2), ρ(1), ρ(2) are the Lagrange multipliers as-
sociated, a.e. in [0, T ], to the sign constraints xi(t) ≥ 0 , yi(t) ≥ 0,
rj(t) − rj(t) ≥ 0, rj(t) − rj(t) ≥ 0, respectively. The functions µ(1)(t)

and µ(2)(t) are the Lagrange multipliers associated, a.e. in [0, T ], to

the equality constraints
n
∑

j=1

xij(t) = si

(

t,

∫ T

0

w∗(s) ds

)

= ŝi(t) and

n
∑

j=1

yij(t) = li

(

t,

∫ T

0

w∗(s) ds

)

= l̂i(t), respectively.

Now we recall the following theorem (see [7] for the proof).

Theorem 5.4.1 Let w∗ = (x∗, y∗, r∗) ∈ K(w∗) be a solution to variatio-
nal inequality (5.9) and let us consider the associated Lagrange functional
(5.18). Then, the strong duality holds and there exist

λ(1)∗, λ(2)∗ ∈ L2([0, T ],Rmn
+ ),
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µ(1)∗, µ(2)∗ ∈ L2([0, T ],Rm),

ρ(1)∗, ρ(2)∗ ∈ L2([0, T ],Rn
+)

such that (x∗, y∗, r∗, λ(1)∗, λ(2)∗, µ(1)∗, µ(2)∗, ρ(1)∗, ρ(2)∗) is a saddle point
of the Lagrange functional, namely

L(x∗, y∗, r∗, λ(1), λ(2), µ(1), µ(2), ρ(1), ρ(2))

≤ L(x∗, y∗, r∗, λ(1)∗, λ(2)∗, µ(1)∗, µ(2)∗, ρ(1)∗, ρ(2)∗) = 0

≤ L(x, y, r, λ(1)∗, λ(2)∗, µ(1)∗, µ(2)∗, ρ(1)∗, ρ(2)∗)

∀(x, y, r) ∈ L2([0, T ],R2mn+n), ∀λ(1), λ(2) ∈ L2([0, T ],Rmn
+ ), ∀µ(1), µ(2) ∈

L2([0, T ],Rm), ∀ρ(1), ρ(2) ∈ L2([0, T ],Rn
+) and, a.e. in [0, T ],

−
∂ui(t, x

∗(t), y∗(t))

∂xij

− (1− τij(t))r
∗
j (t)− λ

(1)∗
ij (t)− µ

(1)∗
i (t) = 0,

∀i = 1, . . . ,m, ∀j = 1 . . . , n;

−
∂ui(t, x

∗(t), y∗(t))

∂yij
+ (1− τij(t))(1+ hj(t))r

∗
j (t)− λ

(2)∗
ij (t)−µ

(2)∗
i (t) = 0,

∀i = 1, . . . ,m, ∀j = 1 . . . , n;

m∑

i=1

(1− τij(t))
[
x∗ij(t)− (1 + hj(t))y

∗
ij(t)

]
+ Fj(t) + ρ

(2)∗
j (t) = ρ

(1)∗
j (t),

∀j = 1, . . . , n; (5.19)

λ
(1)∗
ij (t)x∗ij(t) = 0, λ

(2)∗
ij (t)y∗ij(t) = 0, ∀i = 1, . . . ,m, ∀j = 1, . . . , n

(5.20)

µ
(1)∗
i (t)

(

n
∑

j=1

x∗ij(t)− ŝi(t)

)

= 0, µ
(2)∗
i (t)

(

n
∑

j=1

y∗ij(t)− l̂i(t)

)

= 0,

∀i = 1, . . . ,m; (5.21)

ρ
(1)∗
j (t)(rj(t)− r∗j (t)) = 0, ρ

(2)∗
j (t)(r∗j (t)− rj(t)) = 0,

∀j = 1, . . . , n. (5.22)
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Definition 5.4.1 We define “Evaluation Index” the value

E(t) =

m∑

i=1

l̂i(t)

m∑

i=1

s̃i(t) +
n∑

j=1

F̃j(t)

,

where

s̃i(t) =
ŝi(t)

1 + i(t)
and F̃j(t) =

Fj(t)

1 + i(t)− θ(t)− θ(t) i(t)
.

We state that, if E(t) is greater than or equal to 1, the evaluation of
the financial equilibrium is positive, whereas if E(t) is less than 1, the
evaluation of the financial equilibrium is negative.

In fact, we know that

E(t) = 1−

n∑

j=1

ρ
(1)∗
j (t)

(1− θ(t))(1 + i(t))

(

m
∑

i=1

s̃i(t) +
n
∑

j=1

F̃j(t)

)

+

n
∑

j=1

ρ
(2)∗
j (t)

(1− θ(t))(1 + i(t))

(

m
∑

i=1

s̃i(t) +
n
∑

j=1

F̃j(t)

)

.

If E(t) < 1, it means that
n
∑

j=1

ρ
(2)∗
j (t) <

n
∑

j=1

ρ
(1)∗
j (t) and this implies

that the sum of deficits exceeds the sum of surpluses and we find a
negative outlook.

On the other hand if E(t) ≥ 1, then
n
∑

j=1

ρ
(2)∗
j (t) ≥

n
∑

j=1

ρ
(1)∗
j (t) and we

have already considered the positive effects of this surplus.
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The Evaluation Index has been fixed assuming that the taxes τij(t),
i = 1, . . . ,m, j = 1, . . . , n have a common value θ(t), and the increments
hj(t), j = 1, . . . , n, have a common value i(t). However it can also be
considered the case when τij(t), hj(t) are all different, assuming θ(t) and
i(t) as the averages of τij(t) and hj(t), namely

θ(t) =

m∑

i=1

n∑

j=1

τij(t)

mn
and i(t) =

n∑

j=1

hj(t)

n
,

respectively. Also in this case the Evaluation Index gives reliable infor-
mation.

5.5 Numerical Examples

5.5.1 Example 1

We consider a special utility function, specifically the quadratic utility
function obtained by means of the variance-covariance matrix which de-
notes the sector’s assessment of the standard deviation of prices for each
instrument. In detail, we consider an economy with two agents and two
financial instruments. The variance-covariance matrices of the two agents
are:

Q1 =




1 0 −0.5 0
0 1 0 0
−0.5 0 1 0
0 0 0 1


 and Q2 =




1 0 0 0
0 1 −0.5 0
0 −0.5 1 0
0 0 0 1


 .

In the time interval [0, 1], the term ui(t, xi(t), yi(t)) is given by:

ui(t, xi(t), yi(t)) = −

[
xi(t)
yi(t)

]T
Qi

[
xi(t)
yi(t)

]
.

We choose as the feasible set for assets, liabilities and prices:

K(w∗) =

{
w = (x(t), y(t), r(t)) ∈ L2([0, 1],R10

+ ) :
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x11(t) + x12(t) = α

∫ 1

0

r∗1(s) ds+ β, x21(t) + x22(t) = α

∫ 1

0

r∗2(s) ds+ β,

y11(t) + y12(t) = γ, y21(t) + y22(t) = δ, a.e. in [0, 1]

and 2t ≤ r1(t) ≤ 5t and t ≤ r2(t) ≤ 10t a.e. in [0, 1]

}

where α, β and δ are positive parameters to be appropriately fixed. It
follows that variational inequality (5.9) becomes the problem:
Find w∗ ∈ K(w∗) :

∫ 1

0

( [2(x∗11(t)− 0.5y∗11(t))− (1− τ11(t)) r
∗
1(t)] (x11(t)− x∗11(t))+

+ [2x∗12(t)− (1− τ12(t)) r
∗
2(t)] (x12(t)− x∗12(t))+

+ [2x∗21(t)− (1− τ21(t)) r
∗
1(t)] (x21(t)− x∗21(t))+

+ [2(x∗22(t)− 0.5y∗21(t))− (1− τ22(t)) r
∗
2(t)] (x22(t)− x∗22(t))+

+ [2(y∗11(t)− 0.5x∗11(t)) + (1− τ11(t)) r
∗
1(t)( 1 + h1(t))]

(y11(t)− y∗11(t))+

+ [2y∗12(t) + (1− τ12(t)) r
∗
2(t)( 1 + h2(t))] (y12(t)− y∗12(t))+

+ [2(y∗21(t)− 0.5x∗22(t)) + (1− τ21(t)) r
∗
1(t)( 1 + h1(t))]

(y21(t)− y∗21(t))+

+ [2y∗22(t) + (1− τ22(t)) r
∗
2(t)( 1 + h2(t))] (y22(t)− y∗22(t))+

+ {(1− τ11(t)) [x
∗
11(t)− (1 + h1(t)) y

∗
11(t)] +

+(1− τ21(t)) [x
∗
21(t)− (1 + h1(t)) y

∗
21(t)] + F1(t)} (r1(t)− r∗1(t))+

+ {(1− τ12(t)) [x
∗
12(t)− (1 + h2(t)) y

∗
12(t)] +

+(1− τ22(t)) [x
∗
22(t)− (1 + h2(t)) y

∗
22(t)] + F2(t)}

(r2(t)− r∗2(t)) ) dt ≥ 0 ∀w ∈ K(w∗).

From the conservation laws, we get:

x12(t) = α

∫ T

0

r∗1(s) ds− x11(t) + β, x21(t) = α

∫ T

0

r∗2(s) ds− x22(t) + β

y12(t) = − y11(t) + γ, y21(t) = − y22(t) + δ .
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So, we have:

∫ 1

0

([
4x∗11(t)− y∗11(t)− 2α

∫ T

0
r∗1(s) ds− 2β − (1− τ11(t))r

∗
1(t) + (1− τ12(t))r

∗
2(t)

]

(x11(t)− x∗11(t))

+

[
4x∗22(t) + y∗22(t)− 2α

∫ T

0
r∗2(s) ds− 2β − δ + (1− τ21(t))r

∗
1(t)− (1− τ22(t))r

∗
2(t)

]

(x22(t)− x∗22(t))

+ [4 y∗11(t)− x∗11(t)− 2 γ + (1− τ11(t)) r
∗
1(t) (1 + h1(t))− (1− τ12(t)) r

∗
2(t) (1 + h2(t))]

(y11(t)− y∗11(t))

+ [4 y∗22(t) + x∗22(t)− 2 δ − (1− τ21(t)) r
∗
1(t) (1 + h1(t)) + (1− τ22(t)) r

∗
2(t) (1 + h2(t))]

(y22(t)− y∗22(t)) (5.23)

+

{
(1− τ11(t))[x

∗
11(t)− (1 + h1(t))y

∗
11(t)]

+(1−τ21(t))

[
α

∫ T

0

r∗2(s) ds− x∗22(t) + β − (1 + h1(t))(−y
∗
22(t) + δ)

]
+F1(t)

}

(r1(t)− r∗1(t))

+

{
(1− τ12(t))

[
α

∫ T

0

r∗1(s) ds− x∗11(t) + β − (1 + h2(t))(−y
∗
11(t) + γ)

]

+(1− τ22(t))[x
∗
22(t)− (1 + h2(t))y

∗
22(t)] + F2(t)

}
(r2(t)− r∗2(t)) dt ≥ 0 .
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Applying the direct method (see [?]) and choosing τij =
1

4
∀i, j and

hj = 1 ∀j, we find that the solution to the variational inequality (5.23)
is given by solving the system




Γ1 = 4x∗11(t)− y∗11(t)− 2α

∫ 1

0

r∗1(s) ds− 2β −
3

4
r∗1 +

3

4
r∗2 = 0

Γ2 = 4x∗22(t) + y∗22(t)− 2α

∫ 1

0

r∗2(s) ds− 2β − δ +
3

4
r∗1 −

3

4
r∗2 = 0

Γ3 = 4y∗11(t)− x∗11(t)− 2γ +
3

2
r∗1 −

3

2
r∗2 = 0

Γ4 = 4y∗22(t) + x∗22(t)− 2δ −
3

2
r∗1 +

3

2
r∗2 = 0

Γ5 =
3

4
[x∗11(t)− 2y∗11(t)] +

3

4

[
α

∫ 1

0

r∗2(s) ds− x∗22 + β − 2(−y∗22 + δ)

]

+ F1 > 0

Γ6 =
3

4

[
α

∫ 1

0

r∗1(s) ds− x∗11 + β − 2(−y∗11 + γ)

]
+
3

4
[x∗22(t)− 2y∗22(t)]

+ F2 > 0 .

Since Γ5 > 0 and Γ6 > 0, the direct method ensures that

r∗1(t) = r1(t) = 2t r∗2(t) = r2(t) = t.

Moreover, since
∫ 1

0

r∗1(t) dt =

∫ 1

0

2t dt = 1 and

∫ 1

0

r∗2(t) dt =

∫ 1

0

t dt =
1

2
,

the system:




Γ1 = 0 ⇐⇒ 4x∗11(t)− y∗11(t) = 2α + 2β +
3

4
t

Γ2 = 0 ⇐⇒ 4x∗22(t) + y∗22(t) = α + 2β + δ −
3

4
t

Γ3 = 0 ⇐⇒ 4y∗11(t)− x∗11(t) = 2γ −
3

2
t

Γ4 = 0 ⇐⇒ 4y∗22(t) + x∗22(t) = 2δ +
3

2
t



112 CHAPTER 5. THE FINANCIAL MODEL

yields: 



y∗11(t) =
1

15

(
2α + 2β + 8γ −

21

4
t

)

y∗22(t) =
1

15

(
−α− 2β + 7δ +

27

4
t

)

x∗11(t) =
8

15
(α + β) +

2

15
γ +

1

10
t

x∗22(t) =
4

15
(α + 2β) +

2

15
δ −

3

10
t.

Further, Γ5 > 0 and Γ6 > 0 mean:

F1 >
7

10
γ +

9

10
δ −

11

40
α−

7

20
β −

3

2
t

F2 >
4

5
γ +

3

5
δ −

17

20
α−

23

20
β +

3

2
t

Now, we verify that the following conditions are fulfilled:

0 ≤ x∗11(t) ≤ β + α 0 ≤ y∗11(t) ≤ γ

0 ≤ x∗22(t) ≤ β +
1

2
α 0 ≤ y∗22(t) ≤ δ

We have:

• x∗11(t) ≤ β + α ⇐⇒ α + β ≥
2

7
γ +

3

14
in [0, 1]

• x∗22(t) ≥ 0 ⇐⇒ α + 2β ≥ −
1

2
δ +

9

8
in [0, 1]

• x∗22(t) ≤ β +
1

2
α ⇐⇒ α + 2β ≥

4

7
δ in [0, 1]

• y∗11(t) ≥ 0 ⇐⇒ α + β ≥ −4γ +
21

8
in [0, 1]

• y∗11(t) ≤ γ ⇐⇒ α + β ≤
7

2
γ in [0, 1]
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• y∗22(t) ≥ 0 ⇐⇒ α + 2β ≤ 7δ in [0, 1]

• y∗22(t) ≤ δ ⇐⇒ α + 2β ≥
27

4
− 8δ in [0, 1]

So:

max

{
−
1

2
δ +

9

8
,
4

7
δ,
27

4
− 8δ

}
≤ α + 2β ≤ 7δ in [0, 1]

max

{
2

7
γ +

3

14
, −4γ +

21

8

}
≤ α + β ≤

7

2
γ in [0, 1] .

Now, we choose α = 2, β = 5, δ = 2, γ = 10 and, replacing these values
in the equilibrium solution, we obtain a.e. in t ∈ [0, 1] :





x∗11(t) =
76

15
+

1

10
t,

x∗22(t) =
52

15
−

3

10
t,

y∗11(t) =
94

15
−

7

20
t,

y∗22(t) =
2

15
+

9

20
t,

and





x∗12(t) =
29

15
−

1

10
t,

x∗21(t) =
38

15
+

3

10
t,

y∗12(t) =
56

15
+

7

20
t,

y∗21(t) =
28

15
−

9

20
t.

Finally, conditions Γ5 > 0 and Γ6 > 0 yield: F1 >
13

2
in [0, 1] and

F2 >
13

4
in [0, 1]. From formulas (5.19)and (5.22) we know that:

Γ5 + ρ
(2)∗
1 (t) = ρ

(1)∗
1 (t) and Γ6 + ρ

(2)∗
2 (t) = ρ

(1)∗
2 (t)

and

ρ
(1)∗
1 (t)(r1(t)− r∗1(t)) = 0 and ρ

(2)∗
1 (t)(r∗1(t)− r1(t)) = 0,

ρ
(2)∗
2 (t)(r2(t)− r∗2(t)) = 0 and ρ

(2)∗
2 (t)(r∗2(t)− r2(t)) = 0.



114 CHAPTER 5. THE FINANCIAL MODEL

Since r∗1(t) = r1(t), we obtain ρ
(1)∗
1 (t) > 0 and ρ

(2)∗
1 (t) = 0; hence:

Γ5 = ρ
(1)∗
1 (t) > 0.

Analogously, since r∗2(t) = r2(t), we obtain ρ
(1)∗
2 (t) > 0 and ρ

(2)∗
2 (t) = 0;

hence:

Γ6 = ρ
(1)∗
2 (t) > 0.

But ρ
(1)∗
1 (t) and ρ

(1)∗
2 (t) are the deficit variables and are positive. So the

economy is in a phase of regression. The same conclusion is confirmed
by the evaluation index whose value, in this example, is

E(t) =
72

83
< 1.

5.5.2 Example 2

With the same data as in Example 1, but with the new feasible set defined
as:

K(w∗) =

{
w = (x(t), y(t), r(t)) ∈ L2([0, 1],R10

+ ) :

x11(t) + x12(t) = α

∫ 1

0

r∗1(s) ds+ β, x21(t) + x22(t) = α

∫ 1

0

r∗2(s) ds+ β,

y11(t) + y12(t) = γ, y21(t) + y22(t) = δ, a.e. in [0, 1]

and t ≤ r1(t) ≤ 2t and t ≤ r2(t) ≤ 10t a.e. in [0, 1]

}

now we solve the system: 



Γ1 = 0
Γ2 = 0
Γ3 = 0
Γ4 = 0
Γ5 < 0
Γ6 > 0
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and the direct method ensures that

r∗1(t) = r1(t) = 2t and r∗2(t) = r2(t) = t,

which yield: F1 < 5 and F2 >
13

4
. With the same remarks as in Example

1, here we have:
Γ5 = ρ

(2)∗
1 (t)

and the evaluation index is E(t) =
72

67
> 1. So the economy is positive.

5.5.3 Example 3

Let’s modify the conservations laws as follows:

K(w∗) =

{
w = (x(t), y(t), r(t)) ∈ L2([0, 1],R10

+ ) :

x11(t) + x12(t) = α

∫ 1

0

x∗1(s) ds+ β, x21(t) + x22(t) = α

∫ 1

0

x∗2(s) ds+ β,

y11(t) + y12(t) = γ, y21(t) + y22(t) = δ, a.e. in [0, 1]

and 2t ≤ r1(t) ≤ 5t and t ≤ r2(t) ≤ 10t a.e. in [0, 1]

}

Then, variational inequality (5.23) becomes:

∫ 1

0

([
4x∗11(t)− y∗11(t)− 2α

∫ T

0
x∗1(s) ds− 2β − (1− τ11(t))r

∗
1(t) + (1− τ12(t))r

∗
2(t)

]

(x11(t)− x∗11(t))

+

[
4x∗22(t) + y∗22(t)− 2α

∫ T

0
x∗2(s) ds− 2β − δ + (1− τ21(t))r

∗
1(t)− (1− τ22(t))r

∗
2(t)

]

(x22(t)− x∗22(t))



116 CHAPTER 5. THE FINANCIAL MODEL

+ [4 y∗11(t)− x∗11(t)− 2 γ + (1− τ11(t)) r
∗
1(t) (1 + h1(t))− (1− τ12(t)) r

∗
2(t) (1 + h2(t))]

(y11(t)− y∗11(t))

+ [4 y∗22(t) + x∗22(t)− 2 δ − (1− τ21(t)) r
∗
1(t) (1 + h1(t)) + (1− τ22(t)) r

∗
2(t) (1 + h2(t))]

(y22(t)− y∗22(t))

+{(1− τ11(t))[x
∗
11(t)− (1 + h1(t))y

∗
11(t)]

+(1− τ21(t))

[
α

∫ T

0
x∗2(s) ds− x∗22(t) + β − (1 + h1(t))(−y

∗
22(t) + δ)

]
+F1(t)}

(r1(t)− r∗1(t))

+{(1− τ12(t))

[
α

∫ T

0

x∗1(s) ds− x∗11(t) + β − (1 + h2(t))(−y
∗
11(t) + γ)

]

+(1− τ22(t))[x
∗
22(t)− (1 + h2(t))y

∗
22(t)] + F2(t)} (r2(t)− r∗2(t)) dt ≥ 0 .

Applying the direct method and choosing τij =
1

4
∀i, j and hj = 1 ∀j, we

obtain the solution to variational inequality (5.23) given by the solution
to the system:




Γ1 = 4x∗11(t)− y∗11(t)− 2α

∫ 1

0

x∗11(s)ds− 2β −
3

4
(r∗1(t)− r∗2(t)) = 0

Γ2 = 4x∗22(t) + y∗22(t)− 2α

∫ 1

0

x∗22(s)ds− 2β − δ +
3

4
(r∗1(t)− r∗2(t)) = 0

Γ3 = 4y∗11(t)− x∗11(t)− 2γ +
3

2
(r∗1(t)− r∗2(t)) = 0

Γ4 = 4y∗22(t) + x∗22(t)− 2δ −
3

2
(r∗1(t)− r∗2(t)) = 0

Γ5 =
3

4
[x∗11(t)− 2y∗11(t)] +

3

4

[
α

∫ 1

0

x∗22(s)ds− x∗22 + β − 2(−y∗22 + δ)

]

+ F1 > 0

Γ6 =
3

4

[
α

∫ 1

0

x∗11(s)ds− x∗11 + β − 2(−y∗11 + γ)

]
+
3

4
[x∗22(t)− 2y∗22(t)]

+ F2 > 0 .
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Since Γ5 > 0 and Γ6 > 0, the direct method guarantees that

r∗1(t) = r1(t) = 2t and r∗2(t) = r2(t) = t.

Moreover, since

∫ 1

0

r∗1(t) dt =

∫ 1

0

2t dt = 1 and

∫ 1

0

r∗2(t) dt =

∫ 1

0

t dt =
1

2
,

choosing β = 3 and r∗1(t)− r∗2(t) = t the previous system gives:

x∗11(t) =
1

10
t+

8

5
+

2

15
γ +

66

5(15− 8α)
α +

16

15(15− 8α)
α γ

y∗11(t) = −
7

20
t+

2

5
+

8

15
γ +

33

10(15− 8α)
α +

4

15(15− 8α)
α γ

x∗22(t) = −
3

10
t+

8

5
+

2

15
δ +

58

5(15− 8α)
α +

16

15(15− 8α)
α δ

y∗22(t) =
9

20
t−

2

5
+

7

15
δ −

29

10(15− 8α)
α−

4

15(15− 8α)
α δ .

Now we verify:

0 ≤ x∗11(t) ≤ α

∫ 1

0

x∗11(s)ds+ β

0 ≤ x∗22(t) ≤ α

∫ 1

0

x∗22(s)ds+ β

0 ≤ y∗11(t) ≤ γ

0 ≤ y∗22(t) ≤ δ

The first one equation is verified for α = 1 and β = 3 and ∀γ; the second
one for α = 1, β = 3 and ∀δ; the third one for α = 1 and γ ≥ 183/90;
the last one for α = 1 and δ ≥ 171/90.
If we choose α = 1, β = 3, γ = 6, δ = 6, we obtain a.e. in [0, 1] the



118 CHAPTER 5. THE FINANCIAL MODEL

following solution:





x∗11(t) =
1

10
t+

182

35

x∗22(t) = −
3

10
t+

174

35

y∗11(t) = −
7

20
t+

301

70

y∗22(t) =
9

20
t+

123

70

and





x∗12(t) = −
1

10
t+

61

20

x∗21(t) =
3

10
t+

57

20

y∗12(t) =
7

20
t+

17

10

y∗21(t) = −
9

20
t+

297

70
.

Moreover, Γ5 > 0 and Γ6 > 0 mean F1 >
591

112
and F2 >

75

112
in [0, 1].

Also in this case we have a negative economy as stated by the evaluation

index whose value is E(t) =
1008

1067
< 1.



Chapter 6

Conclusion

In this thesis we focus our attention on modeling, one related to epide-
miology and one related to finance.

In chapter 3 we propose a mathematical model for the dynamics of
anorexic and bulimic population. The model proposed takes into account,
among other features, the effects of peers’ influence, media influence and
education. As far as we know, this problem with both kinds of disease
compartments has not been yet investigated, and we are not modeling a
specific study on a well delimited population. For this reason the values
of many parameters are purely indicative.

We begin the analysis ignoring the effects of media pressure and edu-
cation, and we obtain conditions for global stability of the disease-free
equilibrium introducing two reproduction numbers Ra, Rb associated to
the anorexic and bulimic population. We show that there exist at most
two endemic equilibria: the purely bulimic one and the endemic, both of
which can be stable under certain conditions.

We then consider the influence of an educational campaign. In this
last case we notice that the reproduction number rescaled with the coeffi-
cient χ/(χ+ ξ), indicates the fraction of population susceptible to eating
disorder in the disease-free state when an education campaign is consi-
dered.

We finally study the case in which media influence plays a role. In

119
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such a case only one of the equilibria becomes endemic and belongs to the
admissible region, while the other two become non-admissible. The equi-
librium that becomes admissible is the one which was attracting when
m1,m2 = 0, and as the media parameters are increased it moves into
the endemic region with increasing percentages of anorexic and bulimic,
remaining an attractor. Naturally the final scenario is radically diffe-
rent whether the equilibrium that becomes the attractor was disease-free,
bulimic-endemic, or endemic when m1 = m2 = 0: the percentages of ill
population differ greatly. Despite the effects of mass media, models such
as this one serve the practical purpose of deriving reproductive numbers
which can predict the possible effects of combating media pressure. In
particular, if R′0 > 1 then even eliminating mass media influence will not
be sufficient to end the disorders.

We conclude observing that, for simplicity, in this paper we have
made the assumption that the exit rate is the same for every compart-
ment and it is equal to the entry rate. A more general and biologically
more significant model would require different entry and exit rates. The
problem could also be enriched by adding multi-group components to
capture heterogeneity in the mixing, adding a risk-structure or an age-
structure, adding to the incidence functions a saturation term such as,
for example, β1A/(P + αA+ βB), dividing the recovered in treated and
non-susceptible, with different sensitization rates. Most of these refine-
ments can be captured by an averaging assumption on population groups,
while others will be made in future works, and some require a mathema-
tical analysis that exceeds our capacities. For this reason we have settled
on this model, that could be a good compromise and could be in line
with the systems that are being considered nowadays by a mathemati-
cal community (of course a numerical investigation with properly chosen
parameters can easily be made on more complicate systems).

In chapter 5 we have proved a general existence theorem for quasi-
variational inequalities. Moreover, we have applied such a general result
to the quasi-variational inequality governing the financial model in the
case when the financial volumes depend on time and on the expected
solution. Such a dependence is required in order to take care also of the
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influence of the expected equilibrium distribution for assets and liabilities
on the investments on all financial instruments.

We have also recalled the definition of the evaluation index, a very
useful tool which allows us to realize if the financial equilibrium is positive
or negative.

Finally we have presented three numerical examples and have obtai-
ned the equilibrium solutions by using the direct method. The study
cases show both regression and positive situations, as proved also by the
evaluation indices.

In this thesis we have considered the case in which the assets and
liabilities satisfy only nonnegative constraints, i.e. xij(t) ≥ 0 and yij(t) ≥
0, but in future works we can examine a more realistic situation when
assets and liabilities have to satisfy capacity constraints, i.e. xij(t) ≤
xij(t) ≤ xij(t) and y

ij
(t) ≤ yij(t) ≤ yij(t). This new formulation of the

constraint set seems to be more concrete, since there is always a financial
budget to consider in an economy.

The importance of the proved general existence theorem for quasi-
variational inequalities is evident because it can be applied to many other
problems coming from economy, physics, engineering and so on.
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[40] P. Daniele, S. Giuffrè, S. Pia, Competitive Financial Equilibrium
Problems with Policy Interventions, Journal of Industrial and Ma-
nagement Optimization, 1, n.1, pp. 39–52, 2005.

[41] P. Daniele, A. Maugeri, W. Oettli, Variational Inequalities and
Time-Dependent Traffic Equilibria, Comptes Rendus de l’Académie
des Sciences Paris, 326, Serie I, pp. 1059–1062, 1998.



128 BIBLIOGRAPHY

[42] P. Daniele, A. Maugeri, W. Oettli, Time-Dependent Traffic Equili-
bria, J. Optim. Theory Appl., 103, pp. 543–555, 1999.
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