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Abstract: Salen ligands and relative metal complexes are widely used in many fields, such as catalysis,
sensing, optical and electronic materials. The introduction of a wide range of substituents in different
positions, both in the salen scaffold and in the diamine bridge, allows the tuning of chemical, catalytic
and spectroscopic properties. In this contribution, we report the synthesis and characterization of a
new salen ligand and relative Co(II) complex bearing a maleonitrile bridge and two chlorine atoms in
the salen backbone.
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1. Introduction

The term Salen is an acronym widely employed to indicate a class of organic molecules
which present a structure deriving from N,N’-bis(salicylidene)ethylenediamine (Scheme 1).

Scheme 1. General reaction for the synthesis of a salen ligand.

Most preparative and catalytic studies on this family of compounds have been dedi-
cated to salen ligands with C2 symmetry, according to the procedure developed by Jacobsen
and reported in Scheme 1 [1].
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Common diamines used for the aforementioned synthesis are 1,2-cyclohexyldiamine,
ethylenediamine, 1,2-diphenylethylenediamine and maleonitrile diamine [2–4]. The sub-
stituents on the aromatic rings can be different, although the most used have t-butyl groups
in positions 3 and 5, and hydroxymethyls or halo substituents in position 5. Salen ligands
may also be asymmetrical when they display different substituents on the two aromatic
rings, leading to several advantages [5–11].

Furthermore, because of the complexation between metal ions and salen ligands, the
imine groups increase their stability in acidic conditions since they are generally susceptible
to acid-catalyzed hydrolysis in the presence of water.

For several years, salen ligands have been considered essential for catalysis, either
symmetrical or asymmetrical [12–17], and sensing [18–22]. In particular, asymmetrical
catalysis, also known as chiral synthesis, facilitates the formation of a specific stereoisomer
during a chemical reaction. This is important in the field of pharmaceutical synthesis since
enantiomers or diastereomers of the same molecule often have different biological activities.

Here, we report the synthesis and characterization of a new salen ligand 1 (Figure 1),
having a malonitrile bridge and two chlorine atoms in 5-5′ positions, and its relative Co(II)
metal complex 2 (Figure 1). These molecules can be used as precursors to obtain Lewis
Acid receptors, thus used for sensoristic applications due to the intriguing fluorescence
properties of the malonitrile and cobalt-based compounds. In addition, the presence of
chlorine atoms in 5-5′ positions lead to the possibility of further functionalization [23].

Figure 1. Chemical structures of ligand 1 and its Co-metal complex 2.

2. Results

Salen ligand 1 was obtained through the reaction of 5-chloro-salicylaldehyde and
2,3-diaminomaleonitrile in absolute ethanol (Scheme 2).

Scheme 2. Synthesis of the salen ligand 1.

The reaction was performed overnight through reflux. The conversion of the starting
aldehyde was monitored by TLC analysis. After the disappearance of the aldehyde, the
precipitate was collected by vacuum filtration. The desired compound was characterized
by 1H NMR, 13C NMR, ESI-MS and FT-IR analyses. In particular, the 1H NMR spectrum
showed the presence of three signals at 8.20 and 6.94 ppm (doublets) and at 7.33 ppm
(doublet of doublets) relative to the aromatic protons (Figure 2, light blue, green and red
circles, respectively). In addition, the diagnostic signal due to the formation of the desired
compound is at 8.50 ppm (singlet), and it is relative to the proton of the imine group (yellow
circle in Figure 2). Finally, the singlet signal at 10.62 ppm is ascribed to the phenolic proton
(blue circle in Figure 2).
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Figure 2. 1H NMR spectrum of 1 in DMSO-d6 and molecular structure.

The 13C NMR spectrum confirmed the structure of the molecule by the presence of nine
different carbon signals (see Supplementary Materials). Moreover, the ESI-MS spectrum
of 1 in methanol showed the presence of a signal at m/z 408.1, relative to [M+H]+ (see
Supplementary Materials). The UV-vis spectrum of 1 in CH3CN showed a band centred at
379 nm, with ε = 20,698, calculated using four solutions at four different concentrations
(1 × 10−5, 2 × 10−5, 3 × 10−5 and 4 × 10−5 mol/L, Figure 3). Upon excitation at 390 nm,
an emission band with a maximum at 561 nm can be observed (Figure 3).

Figure 3. UV- vis spectrum in CH3CN (red 1 × 10−5, violet 2 × 10−5, brown 3 × 10−5 and green
4 × 10−5 mol/L) and emission spectrum (red line, 1 × 10−5 M, λex 390 nm) in CH3CN of 1.
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Salen ligand 1 was employed for the formation of a Co(II) complex 2 (Scheme 3). The
reaction was performed at room temperature under a nitrogen atmosphere in the presence
of Co(II) acetate until the formation of a precipitate. The conversion of the starting reagent
was monitored by TLC analysis. The precipitate was collected by vacuum filtration. Due to
the paramagnetic nature of Co(II), it is not possible to carry out NMR experiments [4,24,25].
The desired complex was characterized by ESI-MS analysis, showing a signal at m/z 440.9,
relative to [M]− (see Supplementary Materials). Furthermore, FT-IR spectrum of 2 shows,
in the region 3000–3500 cm−1, a broader band in respect to the ligand 1, probably due to
the absence of OH groups and the introduction of cobalt metal ion.

Scheme 3. Synthesis of Co(II)-salen complex 2.

3. Materials and Methods

The NMR experiments were carried out at 27 ◦C on a Varian UNITY Inova 500 MHz
spectrometer (1H NMR at 499.88 MHz and 13C NMR at 125.7 MHz) equipped with a pulse-
filed gradient module (Z axis) and a tunable 5 mm Varian inverse detection probe (ID-PFG).
The ESI spectrum was acquired on an API 2000-ABSciex (positive and negative ion-mode
for 1 and 2, respectively). A JASCO V-560 UV-vis spectrophotometer, equipped with a 1 cm
path-length cell, was used for UV-vis measurements (a resolution of 0.1 nm). Luminescence
measurements were carried out using a Cary Eclipse fluorescence spectrophotometer at
room temperature. The emission was recorded at 90◦ with respect to the exciting line beam,
using 5:5 slit widths for all measurements. All chemicals were of reagent grade and were
used without further purification.

3.1. Synthesis of 1

0.720 g (4.64 × 10−3 mol) of 5-chloro-salicylaldehyde were transferred into a 250 mL
flask and solubilized with 100 mL of absolute ethanol. Then, 0.250 g (2.32 × 10−3 mol)
of 2,3-diaminomaleonitrile were added to the solution. The reaction was stirred at reflux
for 19 h. Conversion was monitored by TLC analysis (silica gel: n-hexane/EtOAc 8:2),
and the disappearance of the starting reagent was observed. The precipitate was collected
by vacuum filtration on Millipore, and it was washed with absolute ethanol. The prod-
uct was dried on air (yield 45%). 1H NMR (500 MHz, DMSO-d6): δ 10.62 (s, 2H, OH),
8.50 (s, 2H, CH=N), 8.20 (d, J = 2.4 Hz, 2H, Ar-H), 7.33 (dd, J = 3.0 Hz, J = 9.1 Hz, 2H,
Ar-H), 6.94 (d, J = 8.5 Hz, 2H, Ar-H) ppm. 13C NMR (125 MHz, DMSO-d6) δ 103.46, 114.31,
118.64, 123.67, 124.08, 127.23, 132.82, 150.35, 157.16 ppm. ESI-MS: m/z 408.1 [M+Na]+. FT-IR:
ν(OH) 3410 cm−1; ν(Ar-C-H) 3195 cm−1; ν(C≡N) 2247 cm−1; ν(C=N) 1637 cm−1; ν(C=C)
1553 cm−1. Anal. Calcd. For C18H10Cl2N4O2: C, 56.13; H, 2.62; N, 14.55. Found: C, 56.09;
H, 2.58; N, 14.53.

3.2. Synthesis of 2

A total of 0.150 g (3.9 × 10−4 mol) of 1 were transferred into a 25 mL flask and
solubilized with 2 mL of absolute ethanol. The reaction was stirred at reflux under N2
atmosphere. Then, 0.107 g (4.3 × 10−4 mol) of Cobalt(II) acetate tetrahydrate were added
to the solution. Once the precipitate was formed, the reaction was monitored by TLC
analysis (silica gel: n-hexane/EtOAc 6:4). The precipitate was filtered under vacuum on
Millipore and washed with 1 mL of absolute ethanol. The product was dried on air (yield
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94%). ESI-MS: m/z 440.9 [M]−. FT-IR: ν(C≡N) 2247 cm−1; ν(Ar-C-H) 3424 cm−1; ν(C≡N)
2247 cm−1; ν(C=N) 1637 cm−1; ν(C=C) 1553 cm−1; g (Co-O) 550 cm−1; g (Co-N) 494 cm−1.
Anal. Calcd. For C18H8Cl2CoN4O2: C, 48.90; H, 1.82; N, 12.67. Found: C, 48.85; H, 1.78;
N, 12.62.

4. Conclusions

Two new maleonitrile salen compounds, the salen ligand and its relative Co(II) com-
plex, having chlorine atoms in 5-5′ positions, have been synthetized and characterized.
Further spectroscopic studies on the metal-salen complex 2 are in progress. These com-
pounds can have applications in catalysis as well as sensing applications.

Supplementary Materials: The following supporting information can be downloaded online. Figure S1:
1H NMR spectrum of 1 in DMSO-d6; Figure S2: APT spectrum of 1 in DMSO-d6; Figure S3: ESI-MS
spectrum of 1 in CH3OH; Figure S4: ESI-MS spectrum of 2 in CH3OH.
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