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SECTION 1. RESEARCH PROJECT 
 

 

1.1 INTRODUCTION: OBJECT, MOTIVATION, AIM, METHODOLOGY 

1.1.1 MOTIVATION 

Over the centuries, man has always tried to defend his buildings from the effects of earthquakes. 

With the advancement of technology and calculation tools, the estimation of the seismic 

vulnerability of structures and the consequent measures to make them more resistant have 

become objects of increasing interest. 

The seismic risk affects a large number of territories across the globe, but some have tectonic 

geological conditions that make them more subject to seismic excitations. In particular, Italy is 

one of the countries in the Mediterranean area with the highest seismic risk, due to the 

frequency of occurrence of earthquakes that have historically affected its territory. Some of the 

past earthquakes occurred in Italy have reached a great intensity, resulting in a significant 

social and economic impact. 

In relatively recent times, particularly destructive earthquakes occurred in Italy, among which 

we remember: Sicilia-Orientale 1693; Messina 1783; Messina 1908; Belice 1968; Friuli 1976; 

Irpinia 1980; L’Aquila 2009; Amatrice 2016; Santa Venerina 2018.  

In the last 30 years, the National Seismic Network has recorded more than 190,000 seismic 

events in Italy and neighboring countries, most of which have not been felt by the population, 

but 45 earthquakes have reached a Richter ML magnitude of 5.0 or greater. Although high-

intensity earthquakes are less likely to occur, they could again affect our territory with 

devastating consequences.  

Besides Italy, many other countries around the world have areas with a significant seismic risk 

and are characterised by the presence of buildings not designed to resist to earthquakes. An 

accurate assessment of the seismic risk of urban centres is therefore of considerable importance. 

Seismic risk is determined by a combination of hazard, vulnerability and exposure, and is 

directly related to damage that, depending on the type of seismicity, the strength of buildings 

and anthropization (nature, quality and quantity of goods exposed), can be expected in a given 

period of time. 

A crucial aspect lies in the assessment of the seismic vulnerability of an existing building which 

can be performed by means of linear or non-linear models. Depending on the level of knowledge 

of the structure and on the type of analysis carried out, the adopted procedures, consistent with 

the technical regulation, can provide different results and therefore turn out to be not really 

objective.  

The task is even more complicated if the seismic vulnerability assessment is extended to urban 

areas where a great number of buildings must be analysed and the interaction of aggregates of 

adjacent buildings can increase the overall vulnerability. There are many simplified methods 

which are used to assess the seismic vulnerability of an urban environment. Among all, the 

vulnerability maps are certainly the most widespread, since they allow to carry out a quick 

census of vulnerability of buildings thanks to the collection of data of the building itself and of 
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the territory operated by experts during in situ collection phases, allowing to keep track of the 

surveys themselves. 

Another popular method is based on the Damage Probability Matrix, which returns an estimate 

of vulnerability in numeric form; in particular, it expresses the likelihood of a certain level of 

damage for each seismic intensity. The assessment of structural vulnerability by means of the 

Damage Probability Matrices evaluates the seismic behaviour of the buildings through the 

assignment of a certain structural type and then reworking the observed and detected data after 

a seismic event in statistical form. This method provides the seismic vulnerability as an 

estimation of the probability of occurrence of damage in buildings in terms of the intensity of 

the earthquake. 

Such methods are useful for the seismic vulnerability assessment of urban areas, anyway due 

to their simplicity they do not provide accurate results on the individual building. 

A reliable seismic vulnerability assessment of an individual building requires the adoption of 

an accurate numerical model and the knowledge of several data characterizing the structure. 

Different methods have been proposed in the scientific literature.  

The “Is method” defines a seismic index Is of the structure [1, 2]. It is compared with a reference 

standard index Is0 to determine whether the building is adequate to withstand a seismic event 

or not. The determination of this index is possible for buildings with no more than seven floors 

and requires a three-levels procedure with increasing depth and complexity. 

The method proposed by Calvi [3] allows to determine the probability of reaching a certain level 

of damage (marked by fixed thresholds of limit states) for each class of identified buildings and 

for each level of contemplated seismic intensity. The method is designed to be used even without 

the need to carry out field surveys, referring only to databases. However, for the analytical study 

of the seismic behaviour of the structure, an 'equivalent' model properly characterised according 

to its typological class is adopted, over generalizing and not allowing to consider the differences 

due to the ductility of the system. 

A reliable and accurate assessment of the seismic vulnerability of a building can also be provided 

in terms of probability of failure through the construction of its fragility curves which can be 

expressed as the probability of the building of reaching particular limit states in terms of the 

seismic intensity. The determination of the fragility curve is based on numerical simulations of 

the seismic response of the building, as a consequence the reliability of the results is directly 

related to the accuracy of the numerical models adopted for their evaluation. A reliable 

numerical model requires a deep knowledge and accuracy of the building data and engages a 

large computational burden thus limiting the possibility to perform a great number of numerical 

analyses, as required by the procedures for fragility curve determination. For this reason, this 

approach is usually applied only to buildings with particular strategic or historical value 

although its applicability, in principle, can be extended to the vulnerability assessment of all 

the existing buildings as a better alternative to index-based vulnerability assessment currently 

adopted for buildings. 

The Capacity Spectrum Method and the N2 Method are based on a displacement approach for 

the analysis of non-linear behaviour of structures. They compare the displacement demand and 

the capacity of a structure, evaluated with a non-linear static analysis.  

Non-linear static analysis is currently the most common approach for estimating the seismic 

vulnerability of existing buildings; it is now performed using accurate FEM models, however 
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requiring a high computational cost. Then, the seismic vulnerability is assessed by means of an 

equivalent SDOF system, thus oversimplifying the structural behaviour. Other equivalent 

models, richer than the SDOF one, could be considered in order to analyze the seismic behaviour 

of buildings. For example, in the last decades, attention has been given to simplified equivalent 

beam-like models, which have been adopted for an initial design of new buildings or for the 

reproduction of the behaviour of existing buildings.   
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1.1.2 RESEARCH PROBLEM AND AIM 

A careful and accurate assessment of the building heritage in territories with high seismic risk 

would be desirable, but it represents a very difficult task and cannot be applied at a large scale. 

However, aiming at planning the needed actions for mitigating the seismic risk, expeditious 

seismic vulnerability assessment strategies allow to establish the priorities and to focus the 

accurate assessments on the more vulnerable structures. 

At urban scale seismic vulnerability assessment strategies require fast and reliable tools 

available for the engineers. The use of oversimplified methods can provide misleading results 

and wrong decisions whose economic and social impact could be relevant. However, the analysis 

of real structures by means of simplified models is still of great importance in order to reduce 

the computational effort related to the so-called high-fidelity study of entire buildings performed 

by detailed FEM models able to predict the non-linear dynamic response of the structure 

subjected to earthquake loadings. Simplified but reliable models can allow to perform fast large-

scale simulations and to identify the most vulnerable buildings within an urban area thus 

allowing the definition of planning strategies for seismic risk reduction. 

The main goal of this study is to propose beam-like models that can be considered representative 

of the dynamic behaviour of buildings subjected to earthquake loadings. To this aim, a simplified 

model should be able to account for the non-uniform stiffness and strength distribution as well 

as the inelastic behaviour of the building along its height.  

With this aim, this research proposes non-uniform beam-like models in linear and non-linear 

context which can be considered equivalent to spatial-framed buildings drastically simplifying 

the computational cost related to the need to perform linear and non-linear dynamic analysis 

for seismic vulnerability assessment of new and existing buildings (Figure 1.1). 

 

Figure 1.1 - Building-beam equivalence 

The simplified beam-like models already proposed in the scientific literature are conceived to 

reproduce planar [4, 5] or spatial frames [6] accounting for different beam models: shear only 

beam [7], Euler beam coupled with a shear only beam [8, 9, 10], Timoshenko beam [11, 12]. 

However, almost all the proposed beam-like models refer to uniform equivalent linear beams, 

with constant stiffness along the beam axis. Furthermore, the possible presence of eccentricity 

between the mass and stiffness centres is not taken into account by any of the models proposed 

in the literature, except in [13] where approximate formulas of vibration frequencies are 

provided in order to take into account the coupling between flexural and torsional modes in non-
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symmetrical buildings, without, however, showing numerical examples. In addition, all the 

equivalent beam models already proposed in literature are based on the hypothesis of linear 

elastic behaviour. 

Anyway, buildings do not have uniform strength and stiffness distribution along their height 

and are characterised by unsymmetrical plans, therefore it is extremely reductive to compare 

them to a uniform linear beam. Furthermore, buildings when subjected to moderate or high 

earthquake loadings exhibit a non-linear behaviour and this should be taken into account for 

the design of new buildings or the seismic vulnerability assessment of existing buildings. The 

oversimplified adoption of linear elastic behaviour is extremely reductive for a reliable 

assessment of the seismic vulnerability of real structures. 

In view of the above considerations the main goals of this research can be summarized as 

follows:  

- Provide a definition of a new linear beam-like model able to take into account the non-

uniform stiffness distribution of buildings and the three-dimensional behaviour of the 

structure.  

- Propose an inelastic beam-like model with non-uniform stiffness distribution able to 

represent the non-linear behaviour of buildings subjected to earthquakes. 

- Adopt the simplified inelastic beam-like model for the seismic vulnerability assessment 

of new and existing buildings performed by means of the construction of reliable fragility 

curves. This procedure will provide, with a moderate computational effort, a more 

accurate measure of vulnerability assessment of existing buildings compared to index-

based assessments methods. 

 

 

  



20 
 

1.1.3 METHODOLOGY 

The presented study aims to propose a non-uniform beam-like model able to perform static and 

dynamic analyses of real structures with either the assumption of linear or non-linear 

behaviour. There are many advantages in the adoption of equivalent beam models, first of all 

the transition from a complex structure with a high number of degrees of freedom, 

computationally expensive, to a simple structure such as a continuous beam whose behaviour 

can be efficiently related to few degrees of freedom. 

In this study, as a first step a new analytical linear model of an equivalent shear-torsional 

spatial beam was developed and implemented in a specific software through the MATLAB 

programming language, allowing the automatic construction of the model by defining only some 

initial data of the building. 

A methodology for the choice and calibration of the equivalent beam has been proposed. The 

proposed equivalent beam is suitable for a simplified modeling of buildings which do not have 

uniform stiffness distribution along the height and are characterised by unsymmetrical plans, 

thus having eccentricity between the Mass Centre and the Stiffness Centre. By means of the 

definition of the characteristics of the equivalent beam, it has been possible to obtain, in a 

simplified way, the linear elastic response of buildings to earthquake excitations.  

The analysis of the linear three-dimensional behaviour of the continuous beam, having infinite 

degrees of freedom, has been performed through a discretization strategy based on the Ritz 

method. This procedure allows a significant reduction of the degrees of freedom, making it much 

easier to perform static and dynamic analyses.  

In order to test the proposed model, dynamic analyses have been performed on structurally 

complex buildings with simultaneous planar and vertical irregularities [14]. The obtained 

results have been validated through the comparison with those provided by a three-dimensional 

FEM model implemented in the software SAP2000. 

As a further important step, the study has been extended to the definition of a beam-like model 

able to reproduce the complex inelastic behaviour of three-dimensional buildings subjected to 

earthquake loadings. The reason of such interest lies on the consideration that the analyses of 

inelastic beam models could provide a low-cost realistic simulation of the seismic response of 

existing buildings, taking into account the damage distribution at the different floors of the 

building. 

A beam-like based equivalence strategy for multi-storey buildings is much more accurate for a 

low-cost evaluation of its non-linear response and provides several additional response data 

both in terms of capacity and demand if compared to the simplified approaches based on 

inelastic single degree of freedom dynamics. 

In order to numerically identify appropriate non-linear constitutive law of the equivalent beam-

like model, several calibration strategies of the inelastic beam have been investigated, validated 

and proposed. The most reliable strategy, which has been chosen for subsequent numerical 

applications, exploits the results related to non-linear static analyses performed on a full three-

dimensional FEM model of the structure.  

The effectiveness of the non-linear beam-like model to predict the non-linear behaviour of the 

corresponding building has been proved through several examples by conducting non-linear 

static and dynamic analyses performed on benchmark buildings.  
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In addition, a closed form solution for the static problem of a shear-torsional elastic beam in 

presence of curvature singularities due to the non-uniform stiffness distribution along the beam 

axis was determined. This solution was compared with the results obtained with the proposed 

equivalent beam model, confirming its validity. Furthermore, the closed form solution of the 

static problem allowed also to obtain the shape functions of a stepwise shear-torsional elastic 

beam. These shape functions can be adopted for the formulation of a displacement-based beam 

element with distributed plasticity, which can be used for the static non-linear analysis of the 

equivalent beam-like model. 

The last achieved goal was crucial in the development of low cost strategy for the seismic 

vulnerability assessment of buildings by means of the construction of fragility curves.  

 

The main contents of the thesis are briefly summarized in the following:  in SECTION 1 a review 

on the simplified models of buildings has been first briefly discussed. Then, the beam-like 

models already presented in the scientific literature have been recalled. In SECTION 2 the new 

beam-like model proposed in this study has been described, considering the elastic and inelastic 

behaviour, and its use in the static and dynamic analyses. Particular attention has been focused 

on the calibration procedure for the definition of the beam-like model starting from the available 

data of the building. In SECTION 3 a brief description of the process adopted in this thesis for 

the construction of the fragility curves has been reported, while in SECTION 4 numerical 

applications of the equivalent beam-like model have been shown.  

 

   



22 
 

1.2 STATE OF THE ART ON SIMPLIFIED MODELS OF BUILDINGS 

The evaluation of the dynamic response of multi-storey buildings, particularly when subjected 

to seismic loading, has represented one of the most important tasks of structural engineer 

researches in the last century and is still the objective of studies and improvements. The 

advancements in computational procedures and parallel processing of the last few years 

enhanced the accurate dynamic analysis and seismic vulnerability of multi-storey buildings. 

The analyses can be carried out at the building or urban level; simplified or high-fidelity models 

as well as approximate or sophisticated large-scale simulations are currently adopted. However, 

when analysing entire urban areas or when performing several simulations aiming at providing 

sufficient data for expressing probability failure maps, it is needed to balance accuracy and 

computational burden. It is in this context that beam-like models play an important role.  

The analyses developed by means of 3D numerical models aim at providing an accurate 

representation of the main characteristics of the dynamic behaviour of real structures and, for 

this reason, must be detailed and based on reliable data. Therefore, an accurate evaluation of 

the dynamic response of a multi-storey building subjected to seismic excitation rigorously 

requires an adequate structural expertise and great computational burden. On the other hand, 

the need of a sufficiently accurate seismic vulnerability assessment of a large number of existing 

buildings on seismic areas, in particular at urban scale, stimulated a significantly increasing 

interest in simplified but sufficiently accurate models able to represent multi-storey buildings.  

Since multi-storey buildings may exhibit a great number of degrees of freedom, especially if 

several deformability parameters of the structural members are taken into account, simplified 

Multi Degree Of Freedom (MDOF) models are usually taken into account. To this regard some 

models have been already presented in the scientific literature for the simulation of the linear 

as well as the non-linear dynamic response of multi-storey buildings. The most important goal 

of these simplified models is to reduce the number of degrees of freedom of the 3D model 

preserving the main features of its dynamic response. 

A new and renovated interest has recently grown in beam-like models, which were introduced 

in the last century. Beam-like models, which are based on the equivalence of multi-level 

structures to flexural-shear coupling continuum beams, aim to simulate the dynamic behaviour 

of multi-level buildings by drastically reducing the computational burden. Several authors 

demonstrated interest in beam-like models and proposed suitable simplified approaches for the 

dynamic analysis of multi-storey structures. 
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1.2.1 Elastic beam-like models 

In the following the elastic beam-like models proposed in literature from 1980, together with 

their use in practical applications, are briefly described. 

With regard to high-rise buildings, the discretization of multi-floor frames with coupled beams 

was introduced by Basu in 1982 [15, 16], where a fixed-base multistorey building was idealized 

as an equivalent coupled shear wall connected in series to an equivalent frame. The coupled 

wall was modelled as a continuum of uniform properties and the frame as a uniform shear beam, 

and the solutions were obtained by treating the structure as a lumped parameter system. The 

proposed approach was limited to the principal three modes of vibrations for the in plane 

behaviour. The obtained modal features have been used in [17, 18] to evaluate the design forces 

of the building by means of seismic response spectra. 

 

A similar approach has been used by Stafford Smith et al. in [19, 20] for the determination of 

the period of free vibration and the earthquake design forces of a building by means of 

equivalent coupled shear-flexure cantilevers. The stiffness of the equivalent beams is 

determined as a simple sum of the stiffness of the vertical members. The approach is limited to 

buildings with uniform properties along the height, with symmetrical plan and symmetrically 

loaded.  

 

Iwan [21] and Huang [22] proposed a continuous uniform shear-beam model to predict elastic 

storey drift demand on structures due to near-field earthquake ground motions. Since they 

noticed that the continuous model more accurately predicts the inter-storey drifts than an 

equivalent SDOF system does, they suggested the use of a drift spectrum instead of the well-

known response spectrum.  

 

McCallen and Romstad proposed in [4, 23] a simple uniform continuum model for the analysis 

of lattice structures. The equivalence between the lattice structure and the continuum model 

was established in terms of deformation energies for three assumed global deformation modes 

(axial, shear, bending). The continuum model was then analysed in a traditional finite element 

approach. Geometrical non-linearities are accounted for through updated Lagrangian 

coordinate transformation for each continuum finite element.  

 
Figure 1.2 - Lattice stress resultants – Chajes, Romstad and McCallen [5] 

In this model, the global curvature (and so the chord bending moment) is due to both shear and 

bending deformation: 
2 2

2 2
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dx dx
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If the longitudinal elements (chord) are stiff relative to the transverse elements (batten), the 

beam exhibits a global flexural behaviour and the curvature of the chords approaches the global 

curvature of the lattice; on the contrary, the beam behaves as a shear type one and the global 

curvature is due only to the shear strain energy. Intermediate cases can also be considered. 

 

Figure 1.3 - Frame modeshapes – McCallen and Romstad [4] 

 

Figure 1.4 - Discrete and associate continuum models including global degrees of freedom – Chajes [24] 

 

Figure 1.5 - Continuum finite element degrees of freedom – Chajes [24] 

The translational and rotational inertias are lumped at the end or midpoint nodes of the finite 

elements of the discretised continuum.  

The approach is extended to three-dimensional buildings with rigid floors. Therefore, the global 

model has only three degrees of freedoms, two orthogonal translations and one rotation at each 

floor level. By applying only horizontal forces, the rotational and axial degrees of freedom of the 

continuum can be condensed out. Later, the condensed continuum model of an individual frame 

can be transformed to global coordinates and added into the global stiffness.  
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Figure 1.6 - Construction of a 3.D Building Model Using Continuum Models for Each Plane Frame – 

McCallen and Romstad [4] 

The continuum is used for the free vibration analysis of planar frames or buildings with uniform 

stiffness distribution along the height and the results are shown in terms of natural frequencies 

and mode shapes.  

 

In 1993 Chajes in [5] extended the approximate method proposed by McCallen and Romstad, 

based on the definition of the equivalent continuum model to replace the repetitive cells, for 

determining displacements and member forces in two-dimensional frames with reticular 

elements. In [24, 25] the equivalent continuum model was applied to predict the measured 

seismic response of two existing buildings (a reinforced concrete one and a steel one) during the 

Loma Prieta earthquake (using the continuum model discretized with a number of finite 

elements equal to the number of floors).  

 

Later, an approximate method for estimating the maximum lateral displacement in multi-

storey buildings, based on an equivalent uniform continuum model that linearly combines a 

flexural and a shear deformable cantilever beam (Figure 1.7), was introduced by Miranda in 

1999 [26]. The lateral displacements of the building were given by the combination of shear and 

bending deformations and the seismic response was evaluated in terms of maximum roof 

displacement and maximum inter-storey drift ratio. Approximations on the dynamic response 

concern the assumption of uniform mass and stiffness along the height of the building and the 

consideration of the first mode of vibration only whose lateral displacements are given by a 

closed form solution of a static problem under a fixed load pattern. The formulation was 

successively generalised in [27, 28], where the limitation of uniform lateral stiffness distribution 

along the building was removed, assuming linear or parabolic variations. The uniform 

continuum model was subsequently used to find closed-form solutions capable of approximating 

the dynamic characteristics of the non-uniform buildings (for example mode shapes, periods and 

modal participation factors) [28]. An estimate of the ground acceleration request on the 
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structures that respond linearly to the seismic motions was determined in [29] for planar 

models, by considering up to the first three mode of vibration in the dynamic analysis.  

In 2002 Gulkan and Akkar proposed a procedure to estimate the maximum ground storey and 

maximum interstorey drift of a building by means of the first-mode shape of a uniform shear 

beam [30]. In 2005 they modified the equivalent shear beam model in order to take into account 

the general moment resisting frame (MRF) behaviour of the structure by introducing some 

empirical coefficients into the maximum ground storey and interstorey drift expressions [31].  

Later, Miranda and Akkar merged their studies and used the simplified continuous model of 

Miranda for the evaluation of generalised inter-storey drift spectrum in [32].  

 

Figure 1.7 - (a) Simplified model of multi-storey building; (b) Interacting forces in the model – Miranda 
[26] 

 

In 2000 Wang et al. proposed an approximate method to estimate the first two periods of 

vibration of multi-storey uniform buildings with asymmetrical plan [33]. The coupled natural 

frequencies of the multi-storey structure, due to the asymmetric distribution of the structural 

members with respect to the floor plan, have been expressed in terms of uncoupled lateral 

frequency, uncoupled fundamental torsional-to-lateral frequency ratio and the eccentricity 

ratio. However, this approach is valid only for proportionate structural systems whose centres 

of stiffness lie on a vertical line.  

 

Kuang and Ng studied the modal analysis for coupled flexural-torsional vibration of 

asymmetric uniform tall buildings by means of an equivalent flexural-torsional cantilever, 

whose stiffness is determined as a simple sum of the stiffness of the vertical members [34, 35]. 

The equivalent beam can be coupled with a shear cantilever in order to take into account also 

the shear deformability. However, also further studies [36, 37] have been limited to the free 

vibration analysis only considering an equivalent Euler-Bernoulli beam or an equivalent shear 

cantilever, respectively. 

 

In 2000 Li et al. in [38] studied the in-plane free vibration of tall buildings by means of an 

equivalent flexural multi-step cantilever beam with variably distributed stiffness, mass and 

axial loads according to a power or exponential law of variation. The approximated solution of 

this complex problem has been obtained using the exact solution of a one-step bar with variable 

cross-section together with the transfer matrix method. This approach was extended in [39] by 
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Rahgozar for an equivalent Timoshenko multi-step beam or in [40] for a sandwich beam, the 

latter defined according to Zalka, Potza and Kollar’ approach described in the following. 

 

 

Figure 1.8 – A one-step bar with variable cross-section subjected to axial loads (right) and multi-step 
bar – Li [38] 

 

Swaddiwudhipong et al. [41, 42] proposed a uniform shear-flexural cantilever for 3D free 

vibration analysis of frame-core wall buildings taking into account also the axial deformation. 

The solution in terms of natural frequencies and mode shapes is obtained using the Galerkin’s 

technique, adopting an exponential shape function.  

 

In 2008 Khaloo and Khosravi [43] used a combination of uniform shear and flexural cantilever 

beams to estimate the elastic structural response of a tall building. Extending the formulation 

proposed by Stafford Smith and Miranda, they investigated the multi-mode effects of tall 

buildings subjected to near-field ground motions, assuming the linearity of the system. The 

maximum inter-storey drift ratio spectra and its location along the height have been also 

calculated. 

 

Applying the concept of an "equivalent column", Zalka proposed simple formulas in 2001 [13] 

for evaluating the natural three-dimensional frequencies of the buildings braced by frameworks, 

coupled shear-walls, shear-walls and cores. The method considered local bending of the single 

vertical elements, global bending of the frames/shear walls (associated with the axial 

deformation of the vertical elements) and shear deformations of the frames/shear walls. The 

pure torsional frequency is obtained by means of an analogy with respect to bending. 

Approximate formulas were provided to take into account the interaction between translational 

and torsional modes for non-symmetrical buildings. The equivalent column was applied for the 

analysis of regular buildings with double planar symmetry and in-plane rigid floors. The same 

author proposed approximated closed-form solutions for studying tall buildings subjected to 

uniformly distributed static horizontal loads for both symmetrical [44] and non-symmetrical 

[45] systems, in 2009 and 2014, respectively. 
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Figure 1.9 - Model for the lateral vibration analysis: (a) bracing system consisting of frames, coupled 
shear walls, shear walls and cores; (b) equivalent column. – Zalka [13] 

 

o Shear stiffness 

Global shear stiffness due to beams:   
1 1

,

,

1 1

12n n
b b i

bj b i

i

E I
K K

l h

− −

= =     (1.2.2) 

With coupled shear walls modifies in:  
( ) ( )2 2

1
, 1

1 ,3

2

,

6

1 12

n
b b i i i i i

bj

b b i

i

i b b i

E I l s l s
K

E I
l h

l G A

ρ

− +
 + + +
 =
  

+   
   

   (1.2.3) 

Local shear stiffness due to columns: ,
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The shear stiffness of the framework can be established by combining the two-part stiffness as:      
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The fundamental frequency that is associated with the shear stiffness of the framework is:  
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where m is the mass density per unit length and rf   is a reduction factor, which takes into account 

the fact that the mass of a building is not uniformly distributed over the height but is 

concentrated at floor levels.  

 

o Flexural stiffness 

Global bending stiffness due to the axial stiffness of the columns: 2
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The fundamental frequency that is associated with this stiffness is:  
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Since shear and flexural behaviour are often coupled, the vibration frequency should be: 
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Local bending stiffness due to columns:  , ,
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The fundamental frequency that is associated with this stiffness is:  
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o Shear stiffness due to shear walls:    ,w w kE I      (1.2.12) 

The fundamental frequency that is associated with this stiffness is:    
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o Global stiffness of the equivalent column: , ,
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The fundamental frequency that is associated with this stiffness is:  
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If higher frequencies are needed, the factor 0.313 should be replaced by 12.3 and 96.4, 

respectively, for the calculation of the second and third frequencies. 

 

o Global shear stiffness of the equivalent column: 2
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The fundamental frequency that is associated with this stiffness is:    
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Considering the eigenvalues η, the lateral frequency is obtained from: 
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o Global torsional stiffness: ( ) ( )2 2
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Making use of the flexural-torsional analogy, the fundamental frequency for pure torsional 

vibration is obtained:  
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with 
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When the Stiffness Centre does not coincide with the Mass Centre, flexural and torsional 

behaviour are coupled, and, once the Stiffness Centre has been determined, it is possible to find 

the frequencies of the building by means of a cubic equation which considers both flexural and 

torsional basic frequencies already determined.  
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In 2003, Potzta e Kollar [8] replaced the structures of the buildings with an equivalent uniform 

sandwich beam that was defined by three types of stiffness deriving from the resistant elements: 

global bending stiffness, local bending stiffness and shear stiffness. The deformation energy of 

the equivalent beam was deduced from the generalization of Timoshenko's theory [46] for 

spatial problems, introducing separate contributions between global flexural stiffness and shear 

stiffness, on one hand, and between global flexural stiffness and local flexural stiffness on the 

other. In any case, the shape of the displacements under sinusoidal horizontal loads had to be 

fixed (i.e., sinusoidal and cosinusoidal form) in order to obtain the replacement stiffness of the 

equivalent system, leaving the choice of a certain length (a sort of free length of element 

inflection) corresponding to the best equivalence. Using the obtained equivalent stiffness, an 

approximate expression was proposed for estimating the buckling load and the natural 

frequencies of symmetrical structures, while in unsymmetrical structures the lateral-torsional 

vibration modes were determined by an eigenvalue problem, assuming uniform mass 

distribution along the height. The model is applied to study doubly symmetrical or 

unsymmetrical buildings with uniform stiffness distribution along the height. The results are 

shown in terms of natural frequencies and buckling load of the structure. Later, Tarjan and 

Kollar applied the proposed model to estimate the basic internal forces [47]. Unfortunately, the 

procedure for calculating the stiffness of the equivalent model was rather complicated and not 

entirely automatic. 

 

 

Figure 1.10 - Replacement beam of a frame (a), the sandwich beam is equivalent to a Timoshenko-
beam supported by a beam with bending deformation only (b). – Potza and Kollar [8] 

 

In order to study the dynamic response of tall buildings under wind loads, Cluni proposed two 

equivalent beam models [9]. Both equivalent beam models have uniform flexural and shear 

stiffness, linked together in series (Timoshenko beam) or in parallel. The equivalence criterion 

is based on the minimization of the difference of static and dynamic response features obtained 

by means of the equivalent beam and the FEM model. The mechanical parameters used to 

describe the beam can vary sensibly with respect to the real ones, but the main interest is to 

find an equivalent beam which can describe accurately the response of the slender building 

regardless of any physical meaning.  

o In series stiffness cantilever beam 

Free motion equation 
4 2 4

4 2 2 2
0

v v v

z EJ t GK z t

µ µ∂ ∂ ∂+ − =
∂ ∂ ∂ ∂

         (1.2.21) 
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Solution  

1 1 2 1 3 2 4 2

2 2

1 2

2 2

( , ) ( ) cos( )

( ) cos( ) sin( ) cosh( ) sinh( )

1 1
4 4

2 2 2 2

v z t z t

z D k z D k z D k z D k z

b b
k b c k b c

b c
GK EJ

ψ ω φ
ψ

µ µω ω

= +
= + + +

= − + − = + −

= = −

     (1.2.22) 

 

o In parallel stiffness cantilever beam 

Free motion equation 
4 2 2

4 2 2
0

v v v
EI GK

z t z
µ∂ ∂ ∂+ − =

∂ ∂ ∂
         (1.2.23) 
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     (1.2.24)  

In 2020 the model was extended in order to describe the flexural, shear and torsional behaviour 

of uniform tall buildings with asymmetrical plant subjected to wind or earthquake loads [48]. 

In 2021 Cluni refined the definition of the equivalent beam model, adopting the procedure 

proposed by Potza and Kollar in the sandwich beam [49]. The mechanical and dynamic features 

of the equivalent 3D Timoshenko beam are first approximately evaluated by means of 

equivalence of the deformation energy between the equivalent sandwich beam and the sub-

structures of the tall building, and then calibrated by minimizing a function which takes into 

account natural frequencies and static displacements. However, the model is not able to 

represent asymmetrical buildings. The results of the analyses performed on regular and 

symmetrical buildings with uniform stiffness distribution are shown in terms of natural 

frequencies and mode shapes and in terms of displacements under static or dynamic wind or 

earthquake loads. 

 

In [50, 51] Meftah et al. proposed an approximate hand-method for seismic analysis of an 

asymmetric building structure having constant properties along its height and stiffened by a 

combination of shear-walls and thin-wall open section structures. The governing equations of 

free vibration of the equivalent flexural-torsional cantilever have been derived basing on the 

continuum method and D’Alembert principle, and the solution have been determined by 

applying the Galerkin’s technique in [50] or an analytical method in [51]. Internal forces of the 

building subjected to an earthquake have been also derived using acceleration response 

spectrum and combining the modal responses by means of SRSS method.  
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In [52] and in [53] Rafezy et al. proposed a stepped shear-torsional cantilever model and a 

stepped Timoshenko cantilever model, respectively, for the calculation of the natural 

frequencies of asymmetric three-dimensional frame or wall-frame structures by means of the 

Wittrick-Williams’s algorithm. Each beam segment can be representative of a number of 

uniform storeys variable from one to the total number of storeys of the building if it is uniform 

throughout its height. The stiffness of each beam segment has been calculated as the sum of the 

stiffness of each frame in the considered direction in the corresponding storeys. The equations 

of motion have been referred to each beam segment of the original, asymmetric, three-

dimensional wall–frame structure. The entire original structure can then be modelled by 

assembling the substitute beams corresponding to each segment in the usual way. 

 

In [12, 54], the Homogenization method of Periodic Discrete Media (HPDM) to repetitive 

reticular structures composed of interconnected elements (beams or plates) was adopted by 

Boutin with the purpose of deducing the modal characteristics of the repetitive framed 

buildings. The homogenized continuum model can be defined as a shear only beam, a 

Timoshenko beam or a Euler-Bernoulli beam and it provides the main structural 

characteristics. The first phase of the HPDM is the discretisation of the dynamic balance of the 

structure under harmonic vibrations, followed by the actual homogenisation procedure, through 

which a continuum model is elaborated from the discrete description. For the homogenization 

process, the scale parameter � =
�����

�
 (size of the basic cell of the structure/characteristic size of 

deformation of the structure under vibrations) must be sufficiently small. For this reason, the 

method is limited to the first frequencies and mode shapes, having wavelengths much larger 

than cell size. In [55] the continuum model obtained by means of the HPDM was adopted for 

studying the local resonance in reticulated frames.  

 

Figure 1.11 – (a) Example of structures studied by Boutin et al. and (b) equivalent continuum model – 
Boutin [55] 
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Figure 1.12 - The four steps of the discretisation process – Boutin [12] 

 

Figure 1.13 - The steps of the homogenization process– Boutin [12] 
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In 2010, basing the studies on previous research [56], Rahgozar proposed a continuum model 

for predicting the stress distribution and the displacement profile for a combined system of 

different structural elements, but only under specific load patterns [57]. The model consists of 

an equivalent uniform cantilever beam with flexural and shear deformability and rotational 

springs simulating the belt trusses. This model was applied to estimate the natural frequencies 

and mode shapes of the tall buildings [58, 59], obtaining acceptable errors if compared to Finite 

Element models. 

 

Figure 1.14 - Equivalent beam model – Rahgozar [58] 

 

In 2013 Carpinteri and Lacidogna proposed an equivalent shear-torsional beam model for 

estimating the response of tall buildings under static horizontal loads in the initial design phase 

[60]. The equivalent shear beam has the stiffness of each inter-storey segment equal to the sum 

of stiffness of the columns of the corresponding floor and is subjected to elastic rotational springs 

simulating the stiffness of the floor slabs and to horizontal springs simulating the diagonal 

bracings. Therefore the model is able to consider a non-uniform stiffness distribution. Being N 

the number of floors of the building, the total number of degrees of freedom is 3N, two 

translations and one rotation for each floor. The results are shown in terms of displacements 

and internal forces due to static wind loads. In [61, 62] the model was extended in order to 

consider second order torsional effects (Vlasov’s theory), allowing to compute also the natural 

frequencies and mode shapes of a uniform building by means of the equivalent beam with shear 

and torsional deformability. 

 

Figure 1.15 - Model of a braced frame equivalent to a shear wall – Carpinteri [60] 
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Bozdogan modelled a uniform building by means of an equivalent shear beam model, taking 

into account the axial deformability of structural elements by introducing a shear stiffness 

correction coefficient [10]. The coupled shear wall is modelled as a flexural beam. Mechanical 

and geometric characteristics are assumed uniform along the height of the building.  

 

Figure 1.16 - Equivalent model of frame hinged shear wall structures – Bozdogan [10] 

 

Shear stiffness of the equivalent beam can be expressed using Zalka’s expressions [13]: 

1 1

12

1 1

p q

bi ci

i ii

K

h
r s

EI EI
r s

l h= =

=
 + 
 

= = 

         (1.2.25) 

Equation of motion is shown below: 
4 2 2

4 2 2
0

y y m y
EI K

z z h t

∂ ∂ ∂− + =
∂ ∂ ∂

         (1.2.26) 

Whose solution in dimensionless terms is: 
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      (1.2.27) 

By introducing the appropriate boundary conditions, natural frequencies and mode shapes of 

the equivalent beam can be determined. By means of the response spectra, it is possible to obtain 

maximum deflection, maximum relative displacement, maximum shear force and maximum 

bending moment of the system.  

The proposed model was extended to beams with stiffness distribution which varies according 

to a fixed law along the height and with uniform mass distribution [63]. Equations of motion 

have been solved by means of the “differential transform method”. Since only planar frames 

were considered, torsional problem has been neglected. 

 

Later, starting from 2014, an equivalent beam model, deformable in shear and torsion and 

capable of approximately reproducing the dynamic behaviour of the three-dimensional shear-
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type structures, was introduced by Luongo [64], and its aeroelastic instability to wind 

excitation has been analysed [6, 7]. The homogenization process id based on the equivalence of 

the strain energy of the building cell and of the corresponding beam segment. The model has 

been used for the modal analysis of periodic buildings with symmetrical and asymmetrical 

plans. The model has been adopted also in other papers in 2019 [65, 66], for studying the linear 

and non-linear elastic behaviour of periodic tower buildings under the assumption that the 

beam is internally constrained, so that it is capable of experiencing shear strains and torsion 

only. The elasto-geometric and inertial characteristics of the beam are directly identified from 

a discrete model of a three-dimensional frame, via a homogenization process. A more refined 

Timoshenko beam-like model suitable for the dynamic analysis of periodic buildings has been 

recently proposed [11]. The homogenization process is still based on the equivalence of the strain 

energy of the building cell, between two rigid floors with structural elements such as columns 

and shear walls, and of the corresponding beam segment. The results of the analyses performed 

on buildings with uniform stiffness distribution are shown in terms of natural frequencies and 

axial forces of the structural elements under static loads.  

 

Ragni et al. [67] proposed a displacement-based method, particularly devoted to seismic design 

steel frames equipped with dissipative braces, by using an equivalent continuous beam-like 

model where flexural deformability and shear deformability are related respectively to columns 

and diagonals of the bracing system. The design method is appealing since analytical 

expressions of the required flexural and shear stiffness distributions are obtained and 

conveniently adopted in preliminary design of dissipative diagonal braces and columns of steel 

frames.  

 

Crucial aspects of the proposed beam-like models already described, such as characteristics of 

the analysed buildings (out of plane deformability, spatial frames, non-uniform stiffness 

distribution, eccentricity between CM and CS, lumped or diffused mass) and the presence of the 

results in terms of dynamic response are reported in Table 1.1. The symbol √ indicates the 

presence of the hypothesis shown in the corresponding column into the beam-like model of the 

author in the corresponding row.  

 

As this excursus shows, the definition of an equivalent beam was not always simple and 

immediate, especially in case of three-dimensional, torsional coupling behaviour. Furthermore, 

in scientific literature there are no equivalent models which evaluate the seismic response of 

non-uniform buildings with asymmetrical plans. This requirement is necessary in order to study 

existing irregular buildings.  

The reduction of complex structural systems to equivalent beam models is still an open 

challenge of great interest. 
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Table 1.1 - Summary of the literature review about linear elastic beam-like models 

 

Author 
Shear 

beam 

Flexural 

beam 

Timoshenko’s 

model 

Out of plane 

floor 

deformability 

Non-

uniform 

stiffness 

3D 

systems 
CM≠CS 

Distribuited 

and lumped 

masses 

Modal 

analysis 

Seismic 

response 

Proposed model √ - - √ √ √ √ √ √ √ 

Basu √ √ - - - - - - √ - 

Stafford Smith √ √ - - - - - - √ - 

Iwan and Huang √ - - - - - - - √ √ 

McCallen, Chajes √ √ - √ - √ - - √ √ 

Miranda √ √ - - √ - - - √ √ 

Gulkan, Akkar √ √ - - - - - - √ √ 

Wang √ √ - - - √ √ - √ - 

Kuang and Ng √ √ - - - √ √ - √ - 

Li, Rahgozar - √ √ - √ - - - √ - 

Swaddiwudhipong - - √ - - √ - - √ - 

Khaloo, Khosravi √ √ - - - √ - - √ √ 

Zalka, Potzta, 

Kollar 
√ √ - √ - √ √ - √ - 

Cluni - - √ - - √ - - √ √ 

Meftah - √ - - - - √ - √ √ 

Rafezy √ - √ - √ √ √ - √ - 

Boutin - - √ √ - - - - √ - 

Rahgozar - - √ - - - - - √ - 

Lacidogna √ - - √ √ √ - - √ - 

Bozdogan √ √ - - √ - - - √ - 

Luongo  - - √ - - √ √ - √ - 

Ragni - - √ - √ √ - - - - 
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All the above-mentioned papers focus exclusively on the linear dynamic behaviour of multi-

storey buildings obtained by exploiting equivalent beam-like models. Nevertheless, as it is very 

well known, the dynamic response of real structures under seismic loads exhibits significant 

excursions into the plastic regime which cannot be taken into account by elastic models. In the 

following, the main simplified models which consider the non-linear behaviour of the building 

are discussed. First, equivalent inelastic Single Degree Of Freedom (SDOF) systems are treated; 

then, equivalent inelastic Multi Degree Of Freedom (MDOF) systems are shown, focusing on 

the inelastic beam-like models. 

 

1.2.2 Inelastic SDOF models 

Following a well-established procedure, consistent to actual seismic codes, the assessment of 

the seismic vulnerability of buildings is nowadays generally performed, rather than by means 

of non-linear dynamic analyses of detailed 3D FEM models, identifying the seismic demand of 

each building through the inelastic behaviour of a Single Degree Of Freedom (SDOF) system 

assumed equivalent to the 3D structural model.  

The inelastic behaviour of equivalent SDOF oscillators is inferred by considering the results of 

non-linear static analyses performed on detailed 3D FEM models. Well-known examples of such 

procedure, computationally less demanding with respect to the dynamic non-linear analysis 

performed on 3D FEM model, are given by the N2 Method [68, 69, 70, 71, 72, 73, 74, 75, 76], the 

Capacity Spectrum Method (CSM) [77, 78], the Uncoupled Modal Response History Analysis 

(UMRHA) and the Modal Pushover Analysis (MPA) [79]. 

The N2 method was proposed by Fajfar in [68, 69, 70, 71, 72, 73] and consists in a non-linear 

procedure which intends to emphasize the evaluation of the non-linear (N) response of the multi-

storey building by means of  two (2) models: the 3D non-linear FEM model and the SDOF 

equivalent system. First, non-linear static analyses are performed by means of a 3D non-linear 

FEM model of the structure, considering distributions of external static loads which reflect 

somehow the mass distribution and the fundamental vibration modes of the structure. Then, 

the results, expressed in terms of capacity curves for several directions of the input, are 

considered for the definition of inelastic SDOF systems assumed to be representative of the non-

linear global seismic behaviour of the building for each considered direction of the loading. 

Several International Technical Codes suggest similar procedures [80, 81, 82] inspired by the 

N2 method. 

The Capacity Spectrum Method is a strategy similar to the N2 method, which also possesses 

the strong advantage to reduce the structure to a SDOF model thus facilitating the evaluation 

of the non-linear seismic response, by means of non-linear dynamic analyses, as well as the 

assessment of the seismic capacity of the entire structure based on elastic response and inelastic 

design spectra [77, 78].  

Aiming at better exploiting the results obtained by 3D pushover analysis, some authors 

proposed different strategies for the assessment of the seismic response of the building. Few 

studies introduced some corrections to the original formulation of the N2 method [74, 75, 76], 

some included the contribution of more than one vibration mode [79], others considered the 

pushover analysis obtained by force distributions containing the contribution of different 

vibration modes [83], or else more computational demanding analysis based on adaptive force 
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distributions related to the evolution of the inelastic response of the building (adaptive 

pushover) [84].  

 

In the following, the N2 method, the Capacity Spectrum Method, the Uncoupled Modal 

Response History Analysis and the Modal Pushover Analysis are described in detail. In 

particular, the evolution of the N2 method is exploited, through its first, second and basic 

formulation used nowadays in the technical codes, while some developments are treated in the 

extended formulation. 
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• N2 method – first formulation [68, 69] 

The N2 method is a non-linear procedure for the seismic design of buildings whose name is 

inspired by the consideration that the method is based on the use of two different mathematical 

models (N2). In its initial formulation it has been proposed for structures oscillating 

predominantly in a single mode.  

 

1)    In the first step of the N2 procedure, a non-linear static analysis of the MDOF system under 

a monotonically increasing lateral load is performed. The most important result of the static 

analysis is the base shear – top displacement relationship. It enables the assessment of the 

three most important structural parameters: stiffness, strength, ductility. The relationship 

depends on the vertical distribution of the horizontal load. Uniform and inverted triangular 

distributions can be used.  

 

2)   In the second step, an equivalent SDOF system is defined, whose non-linear characteristics 

are based on the base shear - top displacement relationship obtained in the first step. A 

structure can, according to the well-known procedure of structural dynamics, be approximately 
transformed into an equivalent SDOF system by assuming a displacement shape φ  and a 

distribution of lateral resisting forces ψ  which are constant during an earthquake. 

The equation of motion for planar system subjected to a base acceleration ( )gu tɺɺ  can be written 

in the form: 

1 ( )
g

U P u t⋅ + = − ⋅ ⋅M Mɺɺ ɺɺ          (1.2.28) 

where P  represents the restoring force vector (resistance of the structure). If the assumed shape 

φ  is taken to be the same as that resulting from the static application of the dynamic loads, 

then the distribution of lateral resisting forces ψ  is equal to the distribution of lateral loads. By 

introducing: 
andU u P pφ ψ= ⋅ = ⋅         (1.2.29) 

by assuming concentrated masses tm  (a diagonal mass matrix) and by pre-multiplying by Tφ  

the equation of motion (1.2.28) can be transformed into the form: 

( )
2

i i

i i i i i i g

i i

m
m u p m u

m

φ
φ φψ φ

φ
+ = −  


ɺɺ ɺɺ       (1.2.30) 

or 
* * * *

gm u Q m u+ = −ɺɺ ɺɺ          (1.2.31) 

Equation (1.2.31) represents the equation of motion for an equivalent SDOF system, where the 

constants are defined by: 
*

*
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*

, ( base shear)
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


      (1.2.32) 

Viscous damping can be included in Equation (1.2.31). 
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The * *
Q u−  relationship of the SDOF system can be approximated by a tri-linear relationship 

for the sake of simplicity.  

 

3)   In the third step of N2 method, maximum displacements (and the corresponding ductility 

demand) are determined by carrying out non-linear dynamic analysis on the equivalent SDOF 

system. Dynamic analysis, in its simplest form, can also be performed by using inelastic 

response spectra. (There are some trial expressions to evaluate the maximum inelastic 

displacement from the response spectrum) 

Some more details of the structural response (e.g. formation of plastic hinges, inelastic 

behaviour of structural elements, storey drifts, ductility demand in structural elements) can be 

obtained by following the inelastic static response of the MDOF model up to the maximum 

displacement determined by the non-linear dynamic analysis of the SDOF model. 

 

The structural behaviour of a building during an earthquake can be evaluated by comparing 

ductility demand and supply. When using the N2 procedure, demand can be estimated by taking 

into account the results of the dynamic analysis of the equivalent SDOF system and of the static 

analysis of the MDOF system. The results are not very sensitive to the details of the equivalent 

SDOF system. 

It should be emphasised that the N2 procedure generally yields unconservative results for shear 

forces along the whole height of the building. 

If the first natural period of the structure is much larger than the predominant period of the 

ground motion, the higher mode effects may be important, therefore all quantities will be 

underestimated in the upper part of the structure if N2 method is used. 

Additional research is needed to solve some particular problems in different phases of the 

method. 

 

Extension of the method 

In order to include the effect of cumulative damage, in the third step, in addition to the 

maximum displacement, the input energy imparted to the SDOF system is determined, which 

provides a very good estimate of the input energy for multi-storey buildings, unless the influence 
of the higher modes is important. The dissipated hysteretic energy HE  can be approximately 

distributed to the various elements of the MDOF system proportionally to the energy dissipated 

under monotonic static loading up to the maximum displacement. Finally, damage indices are 

computed at the component level: 

H

u y u

Eu
DM

u F u
β= +          (1.2.33) 

where DM  is the damage index, u  and uu  are the actual and ultimate displacements, 

respectively, yF  is the yield strength and β  is a constant which depends on the structural 

characteristics.  
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• N2 method – second formulation [70] 

The second formulation of the N2 method follows the same three steps of the first formulation. 

The main differences with respect to the first formulation are: 
a) the hypothesis on the lateral resisting forces P ; 

b) the linearization adopted for the force-displacement relationship of the SDOF system. 

 
a) The vertical distribution of lateral resisting forces P  is proportional to the assumed time-

independent displacement shape φ  (normalized to the top displacement 1nφ = ) by means of the 

diagonal mass matrix: 
P φ= ⋅M            (1.2.34) 

Therefore, the transformation of the MDOF system into the equivalent SDOF can be written in 

the form: 
*

R c R= ⋅            (1.2.35) 

where *R  represents the quantities in the equivalent SDOF system (force *F , displacement *D  
and hysteretic energy *

H
E ) and R  represents the corresponding quantities in the MDOF system 

(base shear V , top displacement tD  and hysteretic energy HE ). Constant c  is defined as: 
2

1

T

i i

T

i i

m
c

m

φ φ φ
φ φ

= = 


M

M
         (1.2.36) 

where 
im  is the concentrated mass at the i-th storey. The value in the denominator represents 

the mass of the equivalent SDOF system *

i im mφ= . 

These expressions do not require the transformation of the elastic spectra.  

Furthermore, the non-linear static analysis should be performed on the MDOF system under 
the increasing lateral loading P . In this way, the vertical distribution of lateral loads in the 

pushover analysis corresponds to the distribution of inertia forces due to the assumed 

displacement shape. 

 

b) The base shear – top displacement relationship of the MDOF system is transformed into a 

force-displacement relationship of the equivalent SDOF system. Then, for the force-

displacement relationship of the SDOF system, an approximate bilinear relationship is used, in 

particular an elastic-plastic behaviour with positive hardening is adopted. Assuming this 

hypothesis, it is possible to define the seismic demand of the SDOF by means of the inelastic 
spectra, by determining the reduction factor Rµ  and the corresponding displacement ductility 

demand µ . 

Furthermore, in this version of the method, the damage index DM  for each structural element 

is expressed as: 

H

u y u

E
DM

M

θ β
θ θ

= +          (1.2.37) 

where θ  and uθ  are the actual and ultimate rotations, respectively, yM  is the yield moment 

and β  is an empirical constant which depends on the structural characteristics.    
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• N2 method – basic formulation used in technical codes [71, 72] 

The N2 method in its basic formulation consists of the following steps. 

 

1) Determine the base shear-top displacement relationship by a pushover analysis. 

It is assumed that the lateral force in the i-th storey is proportional to the component of the 
assumed displacement shape iφ  weighted by the storey mass 

im : 

i i iP mφ=            (1.2.38) 

Such distribution has a physical basis (inertia forces) and yields the simplest transformation 

from MDOF to SDOF systems. However, any other reasonable distribution can also be used. 

The distribution remains constant during the pushover analysis.  

 

2) Transform the force-deformation relationship of the MDOF into that of an equivalent SDOF 

system. 

The starting point is the equation of motion of a planar MDOF model that explicitly includes 

only lateral translational degrees of freedom: 

1U R a+ = −M Mɺɺ          (1.2.39) 

U  and R  are vectors representing displacements and internal forces, M  is the diagonal mass 

matrix of the MDOF system and a  represents the ground acceleration as a function of time. It 
will be assumed that the displacement shape φ  is constant, i.e. that it does not change during 

the structural response to ground motion. This is the basic and the most critical assumption 

within the procedure. 
By introducing the assumptions tU Dφ=  and P R= , and pre-multiplying Equation (1.2.39) by 

Tφ , the equation of motion of the SDOF system can be written as: 
* * * *

m D F m a+ = −ɺɺ          (1.2.40) 

where * 1Tm φ= M , *D  and *F  are, respectively, the mass, the displacement and the force of the 

equivalent SDOF system. Provided that the distribution of the lateral loading is defined by 

equation (1.2.38), the transformation of all quantities is performed by means of the equation: 
*

Q Q= Γ            (1.2.41) 

where *
Q  represents the quantities in the equivalent SDOF system (force *F , displacement *D  

and hysteretic energy *

HE , if needed), and Q  represents the corresponding quantities in the 

MDOF system (base shear V , top displacement tD  and hysteretic energy HE ). The constant Γ  

is defined as: 

2

1T

i i

T

i i

m

m

φφ
φ φ φ

Γ = =


M

M
         (1.2.42) 

It is usually called modal participation factor. Note that the assumed displacement shape φ  is 

normalized - the value at the top is equal to 1. Note also that any reasonable shape can be used 
for φ . Only in a special case φ  represents the first mode shape. The value in the numerator 

represents the mass of the equivalent SDOF system: 
*

i im mφ=           (1.2.43) 

Note that the same constant Γ  applies for the transformation of both displacements and forces. 

As a consequence, the force - displacement relationship determined for the MDOF system (the 
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V  - tD  diagram) applies also to the equivalent SDOF system (the *F - *D  diagram), provided 

that both force and displacement are divided by Γ . 

 

3) Idealize the force-displacement relationship of the equivalent SDOF system into an elastic-

perfectly plastic form. 

In a regulatory document, some guidelines may be given [85, 86]. Note that the graphical 
procedure requires the post-yield stiffness equal to zero. This is because the reduction factor Rµ  

is defined as the ratio of the required elastic strength to the yield strength. The influence of 

moderate strain hardening is incorporated in the demand spectra.  

The elastic period of the idealised bilinear system *T  can be determined as: 
* *

*

*
2

y

y

m D
T

F
π=           (1.2.44) 

where *

yF  and *

yD  are the yield strength and displacement, respectively. 

If the forces in the force-displacement curve for the equivalent SDOF system are divided by the 

equivalent mass *
m , the acceleration-displacement relation (capacity curve) is obtained. 

Finally, the capacity diagram in AD format is obtained by dividing the forces in the force-

displacement diagram ( *F - *D ) by the equivalent mass *
m . 

*

*a

F
S

m
=            (1.2.45) 

 

4) Determine the seismic demand for the equivalent SDOF system. 

The intersection of the radial line corresponding to the elastic stiffness of the idealised bilinear 

system and the elastic demand spectrum (ADRS format) defines the strength required for the 

elastic behaviour and the corresponding elastic displacement demand.  

In the following, the conservative assumption 0 CT T=  has been used. If the elastic period *T  is 

larger than 0T , the inelastic displacement demand dS  is equal to the elastic one 
de

S . The 

ductility demand is equal to the reduction factor ( Rµµ = ) and it can be obtained from the graph. 

If *T  is smaller than 0T , the reduction factor Rµ  is first determined as the ratio between the 

elastic acceleration 
ae

S  and the yield acceleration 
ay

S , representing both the acceleration 

demand and the capacity of the inelastic system. The ductility demand is then calculated from: 

( ) 0

*
1 1

T
R

T
µµ = − +          (1.2.46) 

The displacement demand is determined as: 
* *

d y
D S Dµ= =           (1.2.47) 

The inelastic demand in terms of accelerations and displacements corresponds to the 

intersection point of the capacity spectrum and the demand spectrum which corresponds to the 

ductility demand µ  (ratio between the maximum displacement and the yield displacement). 

 
Since the ductility µ  has been determined, it is possible to define the corresponding demand 

inelastic spectrum. 
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For an inelastic SDOF system with a bilinear force-deformation relationship, the acceleration 
spectrum 

aS  and displacement spectrum d
S  can be determined as: 

ae
a

S
S

Rµ

=            (1.2.48) 

d de
S S

Rµ

µ=           (1.2.49) 

The reduction factor Rµ -ductility µ  relationship is expressed as: 

( ) 0

0

1 1
T

R T T
T

µ µ= − + ≤         (1.2.50) 

0R T Tµ µ= ≥         (1.2.51) 
0.3

0 0.65
C C

T T Tµ= ≤          (1.2.52) 

An even simpler version (of Rµ  spectra) can be obtained by fixing the transition period 0 C
T T= . 

 

5) Check performance at the expected maximum displacement. 

First, the displacement has to be transformed back from the SDOF ( d
S ) to the MDOF ( t

D ) 

system (Equation (1.2.41)). Then the performance at maximum displacement is evaluated on 

the global and local level. Nevertheless, only the displacement of the control point of the MDOF 
system, usually located at the top floor of the building and used for the V  - t

D  relationship 

determined in the pushover analysis, can be determined in any case. 
The local seismic demand (e.g., story drifts, joint rotations) can be determined by a pushover 

analysis. Under monotonically increasing lateral loads with a fixed pattern (as in Step 1), the 

structure is pushed to its target top displacement t
D . The storey drifts are determined indirectly 

from the floor displacements obtained in the pushover analysis and corresponding to the 

displacement of the control point (top floor) equal to the target (maximum) displacement, 

assuming that the distribution of deformations throughout the structure in the static (pushover) 

analysis approximately corresponds to that which would be obtained in the dynamic analyses. 
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• N2 method – extended formulation [74, 75, 76] 

 

The basic assumption used in pushover-based methods is that the structure vibrates 

predominantly in a single mode. This assumption is not always fulfilled, especially in the case 

of high-rise buildings and/or torsionally flexible plan-asymmetric buildings, and it may not 

detect the structural weaknesses which may be generated when the dynamic characteristics of 

the structure change after the formation of the first local plastic mechanism.  

In [74, 75, 76] the N2 method has been extended in order to take into account torsional effects 

and higher mode effects in elevation. The extension is based on the assumption that the 

structure remains in the elastic range when vibrating in torsional or higher modes, and that the 

seismic demands in terms of displacements and storey drifts can be estimated as an envelope of 

demands determined by a basic pushover analysis, which does not take into account the 

torsional and higher mode effects, and normalized demands determined by a standard elastic 

modal analysis, which includes torsional and higher mode effects. 

 

Plan-Asymmetric Building Structures 

 

The steps of the extended N2 method taking into account torsional effect are as follows: 

1) Perform pushover analyses by using a 3D mathematical model. Loading is applied at the 

mass centres, independently in two horizontal directions, in each direction with + and – sign. 

Determine the target displacement (displacement demand at CM at roof level) for each two 

horizontal directions (the larger value of two values, obtained for + and – sign). 

2) Perform a linear modal analysis of the 3D mathematical model, independently for excitation 

in two horizontal directions (each one CQC or SRSS rule) and combine the results according 

to the SRSS rule. 

3) Determine the correction factors T
c  to be applied to the relevant results of pushover 

analyses. The correction factor is defined as the ratio between the normalised roof 

displacement obtained by elastic modal analysis and by pushover analysis. The normalized 

roof displacement is the roof displacement at an arbitrary location divided by the roof 

displacement at the CM. If the normalised roof displacement obtained by elastic modal 

analysis is smaller than 1, take 1. Correction factors are defined for each horizontal direction 

separately. The same values of T
c  apply to the displacements and storey drifts. Note that 

the correction factor depends on the location of the element in the plan. It is assumed that 

the T
c  factors are independent of the elevation of the structure, so the same T

c  can be used 

for the adjustment of the pushover results at any storey in elevation.  

4) Multiply all relevant quantities obtained by pushover analyses with appropriate correction 

factors. For example, in a perimeter frame parallel to the X-axis, all quantities are multiplied 

with the correction factor determined with pushover results obtained for loading in the X-

direction and for the location of this frame. The relevant quantities are, for example, 

deformations for the ductile elements which are expected to yield and the stresses for brittle 

elements which are expected to remain in the elastic range. 

The results obtained by this procedure are influenced both by the nonlinear static (pushover) 

and the elastic dynamic analysis. Displacement demand (amplitude and the distribution along 
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the height) at the mass centres is determined by the usual N2 method, which is based on 

pushover analysis. The amplification of demand due to torsion is determined by elastic dynamic 

analysis, while reduction of demand due to torsion is not taken into account. 

 

 

Higher mode effects 

 

As already pointed out, the N2 method is based on the very restrictive assumption that the 

structure vibrates predominantly in a single mode (a time-independent displacement shape). 

Thus, this method is in principle inaccurate for structures where higher mode effects are 

significant, and it may not detect the structural weaknesses which may be generated when the 

structure’s dynamic characteristics change after the formation of the first local plastic 

mechanism. 

The N2 method has been extended in order to take into account higher mode effects in elevation.  

It is worth remembering that the extension of the N2 method to plan-asymmetric buildings, 

where torsional influences are important, was made by assuming that the torsional influences 

in the inelastic range are the same as in the elastic range. The torsional influences are 

determined by the standard elastic modal analysis. They are applied in terms of correction 

factors, which are used for the adjustment of results obtained by the usual pushover analysis. 

Practically the same idea has been used for the extension of the N2 method to medium- and 

high-rise buildings, where higher mode effects are important along the elevation of the 

structure. It is assumed that the structure remains in the elastic range when vibrating in higher 

modes, and that the seismic demands can be estimated as an envelope of demands determined 

by a basic pushover analysis, which does not take into account the higher mode effects, and 

normalized demands determined by an elastic modal analysis, which includes higher mode 

effects. Typically, the pushover analysis controls the behaviour of those parts of the structure 

where the major plastic deformations occur, whereas the elastic analysis determines seismic 

demand at those parts where the higher mode effects are important. Due to the similarity of the 

approaches, basically the same procedure as in the case of torsion can be applied. The influence 

of higher modes is determined by standard elastic modal analysis and used for the adjustment 

of the results obtained by the usual pushover analysis. The proposed procedures (for taking into 

account higher mode effects in plan and in elevation) are consistent and compatible. Both effects 

can be considered simultaneously by two sets of correction factors. 

 

In order to predict the structural response for a building with a non-negligible effect of higher 

modes along the elevation, the following procedure can be applied: 

1) Perform the basic N2 analysis. The basic N2 analysis consists of a pushover analysis of an 

MDOF structural model, a bilinear idealization of the pushover curve and the 

transformation to an equivalent SDOF model, the determination of the displacement 

demand of the SDOF system by using inelastic response spectrum, and the transformation 

of the displacement demand from the SDOF to the MDOF system. Loading is applied at the 

mass centres (CM), independently in each of the two horizontal directions, in each direction 

with the + and − sign. The target displacement (the displacement demand at the CM at roof 
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level) is determined for each of the two horizontal directions (the larger value of the two 

values, obtained for the + and − sign). It is assumed that the effects of higher modes on the 

displacement demand (target roof displacement) are negligible. Seismic demand for all 

relevant quantities is represented by the results of the pushover analysis at the target roof 

displacement.  

2) Perform the standard elastic modal analysis of the MDOF model independently for 

excitation in two horizontal directions, considering all relevant modes (using the CQC or 

SRSS rule), and combine the results for both directions according to the SRSS rule. 

Determine storey drifts (and displacement, if necessary) for each storey. Normalize the 

results in such a way that the top displacement (at the CM) is equal to the target top 

displacement. 

3) Determine the envelope of the results obtained in Step 1 and 2. 

(3a) For each storey, determine the correction factors HM
c , which are defined as the ratio 

between the results (normalised storey drifts and displacements) obtained by elastic modal 

analysis (Step 2) and the results obtained by pushover analysis (Step 1). If the ratio is larger 
than 1.0, the correction factor HM

c  is equal to this ratio, otherwise it amounts to 1.0. Note 

that the correction factors for displacement are small and can be neglected in most practical 

applications. The correction factors for storey drifts are important. One correction factor is 

determined for each storey in the two horizontal directions. 

(3b) The resulting storey drifts (and displacements, if necessary) are obtained by multiplying 
the results determined in Step 1 with the corresponding correction factors HM

c . Different 

values of HM
c  apply to the displacements and storey drifts. 

4) Determine other local quantities. The resulting correction factors for storey drifts HM
c  apply 

to all local deformation quantities (e.g. rotations). 

 

Nevertheless, although taking into account higher modes effects, the extended N2 method still 

neglects the inelastic behaviour of the structure when vibrating in higher modes, thus probably 

leading to an inaccurate assessment of the structural behaviour. 

 

Plan-Asymmetric Building Structures and Higher mode effects 

 

Higher mode effects in plan and in elevation can be considered simultaneously by two sets of 

correction factors, one for displacements (in plan) and the other for storey drifts (along the 

elevation). 

1) Same Step 1 of Higher mode effects; 

2) Same Step 2 of Higher mode effects; 

3) Determine the seismic demand by using the results obtained in steps 1 and 2. This can be 

achieved by applying two sets of correction factors, one for displacements (in plan) and the 

other for storey drifts (along the elevation). The set determined for displacements (in plan) 

also applies to the storey drifts. So, the resulting correction factor for the storey drift in a 
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particular storey, and at a particular position in the plan, is obtained as a product of two 

correction factors. The correction factors are defined for each horizontal direction separately. 

They are applied to the relevant results of the pushover analyses. The correction factor for 

displacements due to torsion is defined as in Step 3 of Plan-Asymmetric Building Structures, 

while the correction factor for storey drifts due to higher mode effects in elevation is defined 

as in Step 3 of Higher mode effects.  

4) The resulting correction factors for storey drifts (obtained as a product of two correction 

factors HM
c  and T

c  as described above) apply to all local deformation quantities (e.g. total 

joint rotations consisting of both elastic and plastic part) determined by pushover analysis 

and corresponding to the target displacements. 
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• Capacity Spectrum Method [77] 

The Capacity Spectrum Method is a graphical procedure which compares the capacity of the 

structure to resist to lateral forces to the demand of earthquake ground motion on the structure.  

The fundamental steps of the procedure are described in the following. 

 

1) Capacity curve: Estimate or calculate the capacity curve in terms of lateral roof displacement 

R
∆  and total lateral force at the base of the building V  by performing a non-linear static 

analysis. Different distributions of horizontal forces can be used for the pushover analysis, such 

as the ones considered in the standard code procedure or alternatively distributed forces 

calibrated as masses times accelerations proportional to the first mode shape of the elastic 

model of the structure. 

 

2) Dynamic characteristics: Estimate or calculate modal vibrational characteristics of the 

structure such as periods of vibration, mode shapes, modal participation factors, and effective 

modal mass ratios. 

The effective mass ratio is: 
( )2

2

x x

x x x

m

m m

ϕ
α

ϕ
= 
 

 

The roof participation factor is: 
2

x x

R R

x x

m
PF

m

ϕ
ϕ ϕ

ϕ
= 


 

where xm  is the lumped floor mass and xϕ  is the mode shape. 

 
3) Capacity spectrum: Convert the RV − ∆  capacity curve to a a dS S−  capacity spectrum by using 

the dynamic characteristics to represent the structure as a single degree of freedom structure. 

The spectral set of coordinates a dS S−  are given by: 
a

V
S

Mgα
= , R

d

R

S
PFϕ

∆= , where M  is the 

total mass of the structure. 

The secant period at each point along the curve can be calculated as: 

1/2

2 a

d

S
T

S g
π
 

=  
 

. 

After the capacity spectrum has been plotted, it is useful to approximate the force-displacement 

diagram with an equivalent bilinear capacity representation that establishes an effective yield 

point and an effective peak inelastic limit. 

 

4) Demand of earthquake - Response spectra: Obtain or calculate linear elastic response spectra 

for several levels of damping, including the 5-percent damped spectrum. Higher damped 

response spectra are used to represent inelastic response spectra to account for hysteretic non-

linear response of the structure. 

 

5) Graphical solution: Plot capacity spectrum and family of damped response spectra together 

on an ADRS (acceleration-displacement response spectra) format. The intersection of the 

capacity spectrum with the appropriately damped response spectrum represents the estimated 
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inelastic demand of the earthquake on the structure. Finally, the displacement has to be 

transformed back from the SDOF to the MDOF system. 

 

The CSM is applicable to a variety of uses such as a rapid evaluation technique for a large 

inventory of buildings, a design verification procedure for new construction of individual 

buildings, an evaluation procedure for an existing structure to identify damage states, and a 

procedure to correlate damage states of buildings to amplitudes of ground motion. However, the 

equivalence of the building with a SDOF system and the use of elastic demand spectra lead to 

an excessive simplification of the structure, which does not allow to exploit its complex inelastic 

behaviour.  
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• Uncoupled Modal Response History Analysis and Modal Pushover Analysis [79] 

The Capacity Spectrum Method and the N2 method are based on the assumption that the 

response is controlled by the fundamental mode and that the mode shape remains unchanged 

after the structure yields.  Obviously, after the structure yields, both assumptions are 

approximate. To overcome these limitations, several researchers have proposed adaptive force 

distributions [84] that attempt to follow more closely the time-variant distributions of inertia 

forces. While these adaptive force distributions may provide better estimates of seismic 

demands, they are conceptually complicated and computationally demanding for routine 

application in structural engineering practice. Therefore, an improved pushover analysis 

procedure has been developed, the Modal Pushover Analysis (MPA) [79]. The differential 

equations governing the response of an inelastic multistorey building to horizontal earthquake 
ground motion ( )gu tɺɺ  are as follows: 

( )( ) ( ) ( ),sign ( ) ( )gt t t t u t+ + = −D SMu C u f u u M iɺɺ ɺ ɺ ɺɺ      (1.2.53) 

where M  and DC  are the diagonal mass matrix and damping matrix of the MDOF system, 

respectively, i  denotes the spatial distribution of the load, ( )gu tɺɺ  represents the earthquake 

ground motion and Sf  is the vector of the lateral internal restoring forces. Expansion of the 

displacements of the inelastic system in terms of the natural vibration modes of the 

corresponding linear system leads to: 

1

( ) ( )
N

n n

n

t q t
=

=u ψ           (1.2.54) 

where nψ  is the nth mode of vibration of the linear system. Substituting Equation (1.2.54) in 

Equation (1.2.53), pre-multiplying by T

nψ  and using the mass- and classical damping-

orthogonality property of modes, give: 
( )

( ) 2 ( ) ( )sn
n n n n n g

n

F t
q t q t u t

M
ξ ω+ + = −Γɺɺ ɺ ɺɺ        (1.2.55) 

where nω  is the nth natural frequency, nξ  is the nth modal damping ratio and the resisting 

force, which depends on all modal coordinates ( )nq t , is given by: 

( ) ( )( ) ( ), sign ( ) ( ),sign ( )T

sn sn n
F t F t t t t= = Sq q ψ f u uɺ ɺ      (1.2.56) 

Equation (1.2.56) implies coupling of modal coordinates because of the yielding of the structure. 

Neglecting the coupling of the N equations in modal coordinates is the basic and most critical 
assumption of the UMRHA and MPA methods. Therefore, ( )snF t  depends only on one modal 

coordinate ( )nq t , thus leading to the uncoupled equation of motion of the equivalent inelastic 

SDOF systems represented by Equation (1.2.55) divided by Γ : 
( )

( ) 2 ( ) ( )sn
n n n n g

n

F t
D t D t u t

L
ξ ω+ + = −ɺɺ ɺ ɺɺ        (1.2.57) 

where /n nD q= Γ ,  n nL M= Γ ⋅  and: 

( ) ( )( ) ( ),sign ( ) ( ),sign ( )T

sn sn n n n n nF t F q t q t t t= = Sψ f u uɺ ɺ      (1.2.58) 

Therefore, in the UMRHA and MPA methods the seismic demand due to individual terms in the 

modal expansion of the effective earthquake forces is determined as described in the following. 

The force-displacement non-linear relationship of each equivalent nth SDOF system is 
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determined by means of the base shear - roof displacement curve of the MDOF system, which 

is developed from a pushover analysis using the inertia force distribution corresponding to the 

nth mode. This pushover curve is idealized as a bilinear force - deformation relationship for the 

nth-mode inelastic SDOF system (with vibration properties in the linear range that are the 

same as those of the nth-mode elastic SDOF system). The peak deformation of this SDOF 

system, determined by non-linear response history analysis (solving Equation (1.2.57)) or from 

the inelastic response or design spectrum, for UMRHA and MPA respectively, and then 

multiplied by Γ , is used to determine the target value of roof displacement at which the nth-

seismic response is determined by the pushover analysis. An estimate of the total seismic 

demand on inelastic MDOF systems is provided by the sum or the SRSS combination rule, for 

UMRHA and MPA respectively, of these ‘modal’ demands due to the first two or three terms of 

the expansion, each one obtained by means of an equivalent inelastic SDOF. The superposition 

of the results, however, is valid only for linear elastic systems. 
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1.2.3 Considerations about the adoption of SDOF Models 

 

As already pointed out, nowadays the seismic vulnerability assessment of buildings is fulfilled 

by means of the adoption of equivalent SDOF systems. Although SDOF based approaches allow 

to obtain an easy and synthetic evaluation of the seismic performance of the building, in several 

cases they do not reflect the real inelastic behaviour of the entire structure. For the latter reason 

the high computational cost, related to the development of a non-linear static analysis on a 

detailed 3D model of the entire building, cannot always be considered fully justified on account 

of the successive interpretation of the results on the full model according to a seismic demand 

based on the inelastic response of a SDOF system. 

The basic hypothesis of the equivalent SDOF system-based approaches is that the structure 

vibrates predominantly according to a single mode. However, in the case of high-rise or irregular 

buildings the higher modes effects cannot be neglected. For this reason, some researchers have 

extended the SDOF-based procedures in order to overcome this limitation by combining the 

fundamental mode effect and the elastic or inelastic contribution due to higher modes [75, 76, 

79, 83, 84], as briefly described in the previous paragraphs. In order to account somehow of the 

real structural vibration modes, all the latter procedures share, as a common feature, the 

particular attention to the external load distribution used to generate the capacity curves. 

However, since all these methods in the final step rely on the definition of a SDOF system, the 

accuracy gained in virtue of the additional processed information might be spoiled by the 

roughness implied by the drastic reduction of degrees of freedom. In fact, they are affected by 

limitations, which do not reflect the real inelastic behaviour of the structure, such as, for 

example, the application of the superposition principle to inelastic responses as well as the 

evaluation of global displacements only, converted into local displacements (i.e. inter-storey 

drifts) by generalizing the along height distribution of the static capacity curve. 

Several additional issues related to the seismic assessment procedures based on SDOF 

equivalent systems are detailed addressed in [87]. Some drawbacks are associated to the correct 

definition of the cyclic response of the SDOF equivalent system entitled to represent the complex 

response of the entire structure. This is particularly true for masonry structures whose cyclic 

behaviour is strongly related to the collapse mechanism and is generally affected by loss of 

strength and ductility [88] during the earthquake response. Further issues are related to the 

inability of SDOF systems to account for partial collapse mechanism, often related to the 

contribution of higher modes or triggered by geometrical irregularities, unless these have been 

correctly identified by the considered pushover analyses.  

To the author’s opinion, the drawbacks of the procedure, rather than related to the use of 

pushover analyses, are due to the oversimplified enforced equivalence with a SDOF system. 

Hence in order to better exploit the great deal of information relevant to the non-linear 

structural behaviour, obtained from a pushover analysis for a prescribed distribution of forces 

in a certain direction, the equivalent non-linear system should be endowed with additional 

degrees of freedom as proposed in the present study.  
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1.2.4 Inelastic MDOF models 

In view of the promising results achieved by equivalent MDOF systems for the evaluation of the 

linear dynamic behaviour of multi-storey buildings, it is the author’s belief that the extension 

of MDOF and beam-like models to embed the inelastic structural behaviour may introduce 

significant improvements in the assessment of seismic vulnerability of buildings.  

Along this line, and in order to overcome the limitations implied by SDOF models, some 

simplified inelastic equivalent MDOF models have been proposed in the literature. 

 

Lai et al. [89] in 1992 proposed a multi-rigid-body model with material non-linearity for the 

earthquake response analysis of shear-type structures. The model assumes that structural 

deformation concentrates totally on the nodes of the rigid elements. A damper and a spring are 

attached at each joint, and the stiffness of the spring incorporates the material non-linearities 

in accordance with each storey. The chosen non-linear models of restoring forces are bi-linear 

type and tri-linear degrading type. No further details were provided for the calibration strategy. 

 

 

Figure 1.17 – From left to right: Shear-type model; multi-rigid-body discrete model; displacements of 
the shear-type structure described by multi-rigid-body model – Lai [89] 

 

Hajirasouliha and Doostan [90] in 2010 proposed an equivalent shear-frame specifically 

devoted to the non-linear dynamic analysis of multi-storey planar braced steel frames. In the 

latter work the calibration of the inelastic mechanical properties of each inter-storey of the 

equivalent MDOF shear-frame system is conducted by means of a pushover analysis performed 

on the full-model frame structure. The inter-storey non-linear force-displacement relationship 

has been replaced with an idealized bilinear relationship to calculate the nominal storey 

stiffness and the effective yield strength of each storey (i.e. based on an energy equivalence 

among the two curves and assuming the nominal storey stiffness as the secant stiffness 

calculated at a storey shear force equal to 60% of the effective yield strength). Although 

pushover analyses are performed under different lateral load patterns, Hajirasouliha et al. [90] 

detected no relevant differences on the storey mechanical properties as the lateral load 

distribution changes. The model has been also adopted to investigate the seismic performance 

of multi-storey shear buildings considering soil-structure interaction [91]. 
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Figure 1.18 - Shear-frame model – Hajirasouliha [90] 

 

Among the equivalent MDOF models, the fish-bone model (generic frame), first presented by 

Nakashima et al. [92] in 2002, is adopted for the seismic analysis of steel moment resisting 

frames. It consists of a single column with beams at every floor level extending halfway towards 

an adjacent column with a roller supporting each beam at midspan. The inelastic behaviour is 

taken into account by means of plastic hinges located at the ends of each member, representing 

the sum of the effects of the plastic hinges of the original frame in the corresponding position. 

Further applications on damage assessment of buildings by means of the fish-bone model can 

be found in [93]. The fish-bone model has been developed by several researches in order to take 

into account the flexural deformation of moment frames due to the axial elongation and 

contraction of columns in [94], also considering tall buildings or irregular frames such as braced 

frames and/or moment resisting frames with non-regular span-length in [95] and it has been 

also improved for the seismic analysis of reinforced concrete frames into the substitute frame 

model [96] and the improved fish-bone model [97].  

 

 

Figure 1.19 - (a) Frame building (b) fish-bone model (c) generic frame model (d) modified fish-bone 
model – Soleimani [96] 

 



57 
 

 

Figure 1.20 - Fish-bone model (left) and substitute frame model (right) - Soleimani [96] 

 

Figure 1.21 - (a) Frame building (b) improved fish-bone model – Jamsek [97] 

 

 

Inelastic beam-like models 

With regard to the extension of the already mentioned elastic beam-like models, modelling of 

the inelastic behaviour of buildings by means of inelastic beam-like models have been also 

investigated in the literature. 

McCallen, Romstad and Chajes in [98, 99, 100] updated the elastic continuum model 

(discussed above) in order to consider also material non-linearities. They assumed that the 

structural elements of the lattice (which is a repetitive reticular structure) were characterised 

by the Ozdemir model elasto-platic behaviour with kinematic hardening [101] and derived the 

instantaneous stiffness matrix of the continuum finite element. The inelastic continuum model 

was adopted for predicting the static and dynamic non-linear analysis of planar lattice frames.  

Gicev and Trifunac [102] analysed horizontal shear deformations in a 1-D building supported 

by a half-space and excited by a vertically propagating shear wave. The 1-D structure was 

characterised by elasto-plastic material properties.  

Kuang and Huang [103] modelled a wall-frame structure with uniform stiffness as an 

equivalent continuum system consisting of a combination of a flexural cantilever and a shear 

cantilever. The model is based on the equivalent continuum system proposed by Miranda et al., 

but it is discretized by one flexural and one shear deformation elements at each storey, as shown 

in Figure 1.22. Furthermore, in the proposed model the deformation compatibility constraints 
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are set at the floor levels where the storey mass is lumped. In this case, a bilinear hysteretic 

model is used for the material properties of flexural and shear cantilevers. 

 

 

Figure 1.22 – Mass distribution, flexural and shear deformation elements and floor links in the 
proposed model - Kuang and Huang [103] 

 

In the beam-like models, coupling shear and bending deformation already proposed in the 

literature, no attention on the shear locking effect has been paid. In the Kuang and Huang’s 

work these contributions have been considered separately, however this separation can 

introduce further difficulties in the calibration strategies if the model has to be considered 

equivalent to a building structure. With reference to the spatial behaviour, further potential 

problems may arise coupling shear and torsional deformation fields.   
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SECTION 2. THE PROPOSED BEAM-LIKE MODEL  
 

In this section, the proposed beam-like model is introduced. The main purpose of this research 

is to propose a simplified model considered representative of the dynamic behaviour of building 

structures both in linear and non-linear context. In this section an inhomogeneous three-

dimensional beam-like model is introduced with the aim to establish a satisfactory equivalence 

with the linear or non-linear dynamic response provided by a three-dimensional FEM model of 

the building. 

Firstly, the elastic behaviour is addressed and discussed, then an inelastic beam-like model is 

proposed and described by exploiting the non-linear behaviour.  

The proposed non-uniform elastic beam-like model is able to take into account two different 

irregularities. In particular, this model is suitable for the schematization of real buildings that 

do not have a uniform mass and stiffness distribution along their height and are characterised 

by unsymmetrical plans. The equation of motion of the proposed beam-like model is derived 

through the application of Hamilton’s principle. The linear dynamic behaviour of the non-

uniform beam-like element is then evaluated by discretizing the continuous model according to 

a Rayleigh–Ritz approach based on an appropriate number of modal shapes of a uniform beam 

having only shear and torsional deformability. 

Successively, an equivalent non-uniform inelastic beam-like model for the evaluation of the non-

linear dynamic response of multi-storey buildings is presented. The non-linear and 

inhomogeneous model is characterised by a number of degrees of freedom equal to the number 

of floors and is capable to predict the non-linear dynamic response of an entire building adopting 

an opportune calibration based on the results of pushover analyses performed in certain 

directions for prescribed distribution of forces. As better specified in the following, the inelastic 

beam-like model aims at representing the non-linear behaviour of the building along a specific 

loading direction. The non-linear model, therefore, is defined as plane beam, nevertheless it is 

able to represent irregular buildings since it takes into account the spatial behaviour of the 

structure being calibrated on the base of a spatial pushover analysis. 

The equivalent non-uniform inelastic beam-like model can be studied following two different 

approaches. The first approach considers a FE discretization of the equivalent beam, where each 

beam element represents an inter-storey of the building, as described in Par. 2.2. The second 

approach discretizes the equivalent beam according to a different displacement-based strategy 

that considers the exact static displacement function of a multi-stepped shear beam, as 

described in Par. 2.3. 

 

2.1 NON-UNIFORM SHEAR-TORSIONAL BEAM-LIKE MODEL WITH 

PLANAR ECCENTRICITY – LINEAR ELASTIC BEHAVIOUR 

The proposed model consists of a 3D shear-torsional cantilever beam able to reproduce the 

dynamic behaviour of multi-storey buildings. The equivalent beam has non-uniform stepwise 

cross-section, in order to correctly reproduce a multi-storey building with non-uniform stiffness 

distribution due to the decreasing column cross sections along the height and the presence of 

infills. Furthermore, planar irregularities due to the unsymmetrical distribution of the columns 
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or shear walls can be taken into account. This kind of irregularity must be properly considered 

since it induces eccentricity between the Stiffness Centre and the Mass Centre, thus causing 

unneglectable torsional effects. Each portion of the beam represents a building inter-storey, 

whose shear and torsional stiffness are initially approximately evaluated according to a 

geometrical consistent reference model. Stiffness contributions due to beams and floors of the 

building can be neglected (rigid floor hypothesis) or considered by means of appropriate stiffness 

reduction coefficients, as it will be shown later. When computing inertia forces, floor masses and 

gravity loads are supposed lumped at the floor level, while column masses are considered 

distributed along the beam-like axis or concentrated at the floor levels. Once the beam-like 

model of the entire building is defined, it can be calibrated on a reduced number of modal 

properties of the building itself.  

The governing equations of both the static and dynamic responses are derived by means of the 

Hamilton’s principle.  

In order to evaluate the response of the equivalent beam by considering a limited number of 

degrees of freedom, an original Rayleigh-Ritz discretization based on an appropriate number of 

mode shapes of a uniform cantilever beam having only shear and torsional deformability is 

adopted.  

Firstly, the equations of motion of the beam-like model in the generalised space are derived 

through the application of Hamilton’s principle. Successively, the eigen problem, related to the 

evaluation of natural frequencies and mode shapes, is solved. Finally, the responses of the beam-

like subjected to static or earthquake loads are evaluated. 

 

2.1.1 Kinematics of the beam-like model 

The proposed beam-like model is conceived for establishing an equivalence with 3D structures 

(Figure 2.1a) by means of a spatial beam element (Figure 2.1d). With reference to the k-th storey 

of the building, shown in Figure 2.1d, in the X,Y plane the Mass Centre (CM) and the Stiffness 

Centre (CS) will be assumed as not coincident, thus inducing a torsional behaviour of the 

structure. It is worth noting that, at each floor, the CM point is placed on the global vertical axis 

Z and, consequently, the CS coordinates coincide with the CS-CM eccentricity ( ), ,
, .

x k y k
e e  Each 

k-th building inter-storey (Figure 2.1b) is modelled by means of an equivalent beam segment 

having the same height kh , uniform stiffness properties, uniform distributed masses , ,,x k y km m  

and second order moment 0,kI . Concentrated values for the masses , ,,x k y kM M  as well as the 

second order moment 0,kI  are applied at the end of each beam segment in order to simulate the 

presence of beam and floor masses and applied loadings (Figure 2.1c).  
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Figure 2.1 - (a) 3D structure (b) generic k-th inter-storey (c) equivalent beam segment (d) beam-like 
model 

According to the assumed hypothesis of rigid floors, very often adopted in the literature, the end 

of each column, which has the coordinates ( ), ,
,

i k i k
x y  at each k-th floor level, has the following 

displacement components: 

( ) ( ) ( ), , , ,xi k x k z k i ku t u t t yϑ= +          (2.1.1)  

( ) ( ) ( ), , , ,yi k y k z k i ku t u t t xϑ= −          (2.1.2) 

where ( ) ( ) ( ), , ,, ,x k y k z ku t u t tϑ  are the displacement components and the rotation of the CM of the 

k-th floor level.  

It is worth noting that displacements in X and Y directions and axis rotation of the equivalent 

beam are continuous functions of the abscissa z , denoted as ( ) ( ) ( ), , , , ,x y zu z t u z t z tϑ . 

The complete non-uniform beam-like model is obtained by the sequence of all the beam 

segments with uniform properties, as shown in Figure 2.1d. 

 

2.1.2 The inter-storey shear and torsional stiffness 

The equivalent beam shear stiffness in the two principal directions, denoted as , ,
ˆ ˆ,x k y kR R , and 

the torsional stiffness, denoted as ˆ
kC , are obtained for the k-th segment by considering the 

contributes of all En  columns of the k-th inter-storey of the building whose base points have 

planar coordinates ( ), ,
,

i k i k
x y . The adopted inter-storey stiffness values are: 

, ,

1

ˆ
En

x k xi k

i

R R
=

=            (2.1.3a) 

, ,

1

ˆ
En

y k yi k

i

R R
=

=            (2.1.3b) 

2 2

, , , , ,

1 1 1

ˆ
E E En n n

k i k xi k i k yi k i k

i i i

C C R y R x
= = =

 
= + + 
 
          (2.1.3c) 

If a shear type behaviour can be assumed, the flexural and torsional stiffness of each column 

can be expressed as: 

, , ,

, , ,3 3

12 12yi k xi k zi k

xi k yi k i k

k k k

EJ EJ GJ
R R C

h h h
= = =    (2.1.4) 
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where E  and G  are Young modulus and shear modulus respectively, ,xi kJ  and ,yi kJ  the 

moment of inertia with respect to X and Y axes, ,zi kJ  the rotational inertia moment with respect 

to Z axis of the i-th column of the k-th inter-storey. 

The CS coordinates for the k-th segment are: 

, , , ,

1 1
, ,

, ,
ˆ ˆ

E EN N

yi k i k xi k i k

i i
x k y k

y k x k

R x R y

e e
R R

= == =
 

       (2.1.5) 

In order to take into account the unknown or not properly identified structural properties (floor 

out-of-plane deformability, beam-column stiffness ratio and uncertainty on the position of the 

Stiffness Centre at each floor), three correction coefficients are introduced. These coefficients, 
denoted as , ,

x y c
k k k , are used to better calibrate the shear stiffness along the X and Y directions 

and the torsional one that are listed in Equations (2.1.3). The actual stiffness values are 

therefore provided by the following expressions: 

, , , ,
ˆˆ ˆ

x k x x k y k y y k k c kR k R R k R C k C= = =     (2.1.6) 

In the following, each of these coefficients is assumed to have the same value in all the inter-

storeys and is evaluated by means of an iterative optimization procedure described in Par. 2.1.7. 

Following this linear calibration strategy, the stiffness ratio between the floor remains the same 

as the initial one, defined according to the geometry of the building.    

The choice of using the same correction coefficients for all the inter-storeys is justified by the 

need of mantaining the calibration procedure as simple and fast as possible. In fact, the 

assumption of different correction coefficients for each inter-storey would lead to a more 

complicated mathematical problem requiring at least as many input data as the number of 

coefficients. The adopted use of three correction coefficients will require, instead, the knowledge 

of only the first three modal characteristics of the building, as better specified in the following. 

Furthermore, in the case of different correction coefficient for each inter-storey, the 

mathematical problem would require the application of some constraints in order to avoid 

solutions not consistent with the actual stiffness distribution along the height of the building 

(for example for a regular building inter-storey stiffness at the lower floors smaller than the one 

at the higher floors).  

Future developments of the study may be related to a better definition of different calibration 

coefficients at each inter-storey.  

 

2.1.3 Rayleigh-Ritz discretization and Hamilton’s principle 

In order to evaluate the response of the non-uniform equivalent beam by introducing a limited 

number of degrees of freedom, a Rayleigh-Ritz discretization was performed. The discretization 

is based on the choice of an appropriate N  number of mode shapes of a uniform shear cantilever 

beam, as displacement shape functions of the non-uniform beam, defined as follows: 

( )( ) sin 2 1 1, 2, ...,
2

m
m m

π
ψ ζ ζ= − = ∞ 

 
 

       (2.1.7) 
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where /z hζ =  is the dimensionless abscissa of the beam, z  the along-axis abscissa and h the 

beam length. 

The introduced displacement components can be expressed as the sum of each shape function 

contribution as follows: 

1 1

( , ) ( ) ( )
x x

N N

x i i i i

i i

u t q t qζ ψ ζ ψ
= =

= =          (2.1.8a) 

1 1

( , ) ( ) ( )
y y

N N

y i i i i

i i

u t q t qζ ψ ζ ψ
= =

= =          (2.1.8b) 

1 1

( , ) ( ) ( )
N N

z i i i i

i i

t q t q
ϑ ϑ

ϑ ζ ψ ζ ψ
= =

= =          (2.1.8c) 

( ), ( ), ( )
x yi i iq t q t q t

ϑ
 being the generalised i-th coordinates along the X, Y, ϑ  directions, which 

represent the contribution of the single shape function to the total response. 

For the evaluation of the seismic response of the building, displacements 
( ) ( 0, ), ( ) ( 0, )gx x gy yu t u t u t u tζ ζ= = = =  at the base of the beam ( 0)ζ =  have been introduced in 

the formulation in order to take into account seismic excitations. However, also the static 

response of the building has been calculated considering transversal loads applied along the 

height with assumed distributions. The governing equations of the static and dynamic problem 

of the multi-stepped beam in the generalised space are derived through the application of 

Hamilton’s principle.  

( )
1

0

0 10 ,

t

NC

t

T U W dt t tδ δ− + = ∀          (2.1.9) 

Firstly, the case of the static problem, which involves the contribution of the elastic energy and 

the work associated with the non-conservative forces, is considered. Secondly, the dynamic 

problem of the beam subjected to base motion is taken into account. Non-conservative forces, 

related to the viscous damping forces, are not considered in the following since for simplicity a 

classical damping model is assumed and, as a consequence, the damping will be introduced as 

modal damping ratios in the reduced modal space. Since the adopted beam model has only shear 

deformability, it does not account for second order geometrical effects and a geometric stiffness 

matrix is not introduced.  

In the present formulation, primes and dots denote differentiation with respect to the 
normalized abscissa ζ  and time t , respectively.  

 

2.1.4 Static problem 

The governing equations of the static problem of the beam-like model in the generalised space 

are derived through the application of Hamilton’s principle, which in this case can be reduced 

to the contribution of the elastic energy U  and the work associated with the non-conservative 

forces NCW  only, as follows: 
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[ ]
1

0

0 10 ,

t

NC NC

t

U W dt t t U Wδ δ δ δ− + = ∀ → =      (2.1.10) 

The Rayleigh-Ritz discretization introduced in Paragraph 2.1.3 is performed.  

According to the beam-like shear-torsional behaviour, the elastic energy U  is given as follows: 
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    (2.1.11) 

where fN  is the number of floors, , , ,, ,x k y k z kGA GA GJ  represent the shear and torsional stiffness, 

constant for each k-th beam segment, that can be computed in accordance with the equivalent 

beam model adopted as follows: 

, ,x k x k kGA R h= ⋅           (2.1.12a) 

, ,y k y k kGA R h= ⋅           (2.1.12b) 

,z k k kGJ C h= ⋅            (2.1.12c) 

Lumped horizontal forces , ,,x k y kF F  with eccentricity ( ), ,,
x k y k

e e  with respect to CM and torsional 

moment ,kMϑ  are considered acting at the k-th floor level.  

The work associated with the non-conservative forces NCW  is: 

,

1 1 1

,

1 1 1

,

1 1

( ) ( )

( ) ( )

( )

f

x

f

y

f

N N N
k k

NC x k i i y i i

k i i

N N N
k k

y k i i x i i

k i i

N N
k

k i i

k i

z z
W F q e q

h h

z z
F q e q

h h

z
M q

h

ϑ

ϑ

ϑϑ

ψ ζ ψ ζ

ψ ζ ψ ζ

ψ ζ

= = =

= = =

= =

 = = + = + 
 

 + = − = + 
 

 + = 
 

  

  

 

     (2.1.13) 

Introducing Equations (2.1.11) and (2.1.13) in Hamilton’s principle leads to the following 

expression: 
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            (2.1.14) 

The mathematical notation of Hamilton’s principle can be simplified by omitting for convenience 
the dependency on ζ , and by rearranging all the terms in a more compact manner as follows: 

T T= ∀δq Kq δq F δq         (2.1.15) 

leading to the governing equations of the static problem of the proposed equivalent multi-

stepped beam in the generalised space in matrix notation as follows: 

=Kq F            (2.1.16) 

where K  is the generalised Stiffness Matrix, F  the load vector and q  the vector of generalised 

coordinates: 

x x

y y

x y

ϑ

ϑ

ϑ ϑ ϑ

 
 =  
 
 

K K

K K K

K K K

  
x

y

ϑ

 
 =  
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F

F F

M

  
x

y

ϑ

 
 =  
  

q

q q

q

  (2.1.17) 

The expressions of the dimensionless terms of the stiffness matrix and of the load vector are 

shown below. 
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Generalised Stiffness Matrix. 

1

,

1

1
' '

kf

x x

k

N

j i x k i j

k

GA d
h

ζ

ζ

ψ ψ ζ
−

=

=  K         (2.1.18a) 

1

,

1

1
' '

kf

y y

k

N

j i y k i j

k

GA d
h

ζ

ζ

ψ ψ ζ
−

=

=  K         (2.1.18b) 

( )
1

2 2

, , , , ,

1

1
' '

kf

k

N

j i z k y k x k x k y k i j

k

GJ e GA e GA d
hϑ ϑ

ζ

ζ

ψ ψ ζ
−

=

= + + K      (2.1.18c) 

1

, ,

1

1
' '

kf

x x

k

N

j i j i y k x k i j

k

e GA d
hϑ ϑ

ζ

ζ

ψ ψ ζ
−

=

= =  K K        (2.1.18d) 

1

, ,

1

1
' '

kf

y y

k

N

j i j i x k y k i j

k

e GA d
hϑ ϑ

ζ

ζ

ψ ψ ζ
−

=

= = −  K K       (2.1.18e) 

 

Load vector equivalent to the applied static forces. 
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2.1.5 Equations of motion 

The equations of motion of the proposed beam-like model in the generalised space are derived 

through the application of Hamilton’s principle.  

The explicit expression of the kinetic energy T  is given as follows: 
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  (2.1.20) 

The expression of the elastic energy U  is given by Equation (2.1.11). 

Since the beam is subjected to earthquake base motion, no external loads are applied and, for 

the kinematic hypothesis of the shear-torsional beam model (therefore in absence of axial 

deformability of the columns), the work associated with the gravity loads is equal to zero. 

Structural damping is neglected and will be later introduced, in terms of modal damping ratios, 

in the uncoupled equations of motions.  

The work associated with the non-conservative forces is equal to zero. 
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0NCW =            (2.1.21) 

Therefore, Hamilton’s principle can be reduced to the contribution of the kinematic T  and 

elastic U  energy only, as follows: 
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In view of the above expressions of the kinetic and elastic energies, integrating by parts the 

kinematic terms in Hamilton’s principle leads to the following expression:  
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            (2.1.23) 

where 1,2,...j N=  and 
k

k
z

h
ζ = . 

The mathematical notation of Hamilton’s principle can be simplified by omitting for convenience 
the dependency on t  and ζ , and, furthermore, by rearranging all the terms in a more compact 

manner as follows: 
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T T T+ = ∀δq Mq δq Kq δq P δq&&        (2.1.24) 

leading to the equations of motion of the proposed equivalent multi-stepped beam in the 

generalised space in matrix notation as follows: 

+ =Mq Kq P&&            (2.1.25) 

where M  is the generalised Mass Matrix, K  the generalised Stiffness Matrix introduced in 
Paragraph 2.1.4, P  the equivalent generalised load vector and q  the vector of generalised 

coordinates: 
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           (2.1.26) 

The expressions of the dimensionless terms of the matrices are shown below. 

 

Generalised Mass Matrix. 
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Load vector equivalent to the seismic excitation. 
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jϑ
= 0P            (2.1.28c) 

where ,i kψ  is the shape function evaluated at the floor level with abscissa kz . 

2.1.6 Eigen-problem 

The modes of vibration in the generalised space, denoted as ψ̂ , and the natural frequencies ω  

of the equivalent beam are obtained solving the following generalised eigen-problem: 

2 ˆω − = K M ψ 0           (2.1.29) 

where M  and K  are the Stiffness and Mass Matrices already seen in the previous paragraphs. 

Consequently, the mode shapes in the geometric space can be obtained by means of Equations 

(2.1.8), where the N  displacement shape functions of a uniform beam, of the type given in 
Equation (2.1.7), are considered. Consequently, the j -th mode shape in the geometric space of 
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the equivalent non-uniform multi-stepped beam, denoted as vector function ( )j ζφ , is obtained, 

in view of Equations (2.1.8), by multiplying each displacement shape function of the uniform 
beam ( ), 1, 2, ...,

i
i Nψ ζ = , considered for the discretization, times the corresponding eigen-vector 

components.  

, 1 1 2 2
ˆ ˆ ˆ( ) ( )ψ ( )ψ ( )ψ

x x xu j j j N N j
ϕ ζ ψ ζ ψ ζ ψ ζ= + + +Κ       (2.1.30a) 

, 1 1 2 2
ˆ ˆ ˆ( ) ( )ψ ( )ψ ( )ψ

y y yv j j j N N j
ϕ ζ ψ ζ ψ ζ ψ ζ= + + +Κ       (2.1.30b) 

, 1 1 2 2
ˆ ˆ ˆ( ) ( )ψ ( )ψ ( )ψ

j j j N N jϑ ϑ ϑϑϕ ζ ψ ζ ψ ζ ψ ζ= + + +Κ       (2.1.30c) 

Equations (2.1.30) provide the three spatial components in the actual geometric space (Figure 
2.1) of the j -th mode shape to be adopted to perform a suitable dynamic analysis of the 

equivalent non-uniform beam by means of a suitable modal superposition procedure, as shown 

later.  

 

2.1.7 Shear and Torsional stiffness optimization 
The correction coefficients , ,

x y c
k k k , introduced in Paragraph 2.1.2 in order to take into account 

all the unknown or improperly identified structural properties, are evaluated by means of an 

iterative procedure aiming at minimizing the following objective function: 
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  (2.1.31) 

where 3n N< , being N  the number of inter-storeys, and β  a Boolean parameter. 

The objective function O , dependent on the three correction coefficients  , ,
x y c

k k k , represents a 

measure of the deviation with respect to target values of a given number n  of natural 
frequencies jω  and mode shapes ;j kφ , collected in the modal displacement vector 

1; 2; ; ;k k j k n k
 =  φ φ φ φ φ… … , where 

,; ,( ; , , ) ( ; , , )
u jj k k x y c v j k x y c

k k k k k kϕ ζ ϕ ζ =  φ  is 

evaluated at suitably chosen m  floor levels of dimensionless abscissa , 1, ,k k mζ = Κ  by means 

of the beam-like model. At each step of the iterative optimization procedure, the modal 

parameters are calculated by solving the eigen-problem in Equation (2.1.29) of the non-uniform 
equivalent beam by assuming trial values of the stiffness coefficients , ,

x y c
k k k . It is worth 

noting that the eigen-properties of the non-uniform beam-like model are strictly dependent on 
the values of the correction coefficients , ,

x y c
k k k . The target values, denoted with a 

superimposed tilde “~”, represent the objective values which can be obtained by a three-

dimensional FEM model of the building, if available, but can also be obtained by means of 

dynamic identification methods performed on real building without the need to develop a FEM 

model. In the applications reported in the following, these values will be obtained numerically 

by means of reference detailed linear FEM models.  
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Correction coefficients are assumed to vary into the range [0.1 1]. The choice of the upper bound 

of the range rises from the consideration that, since the considered beam exhibits only shear 

deformation, it is reasonably stiffer than the FEM model. The presence of out-of-plane floor 

deformability and flexural stiffness of the real structure leads to the identification of stiffness 

correction coefficients for the beam-like model lower than one. On the other hand, the lower 

bound has been chosen assuming that, since the initial shear and torsional stiffness of the beam-

like have been defined according to the geometry of the building, a variation higher than 90% 
is not realistic. The parameter β  is set equal to 0 for buildings with only one stiffness 

irregularity (either planar or vertical), equal to 1 on the other case. In the last case, indeed, 

because of the structural complexity, it is necessary to consider also the modes of vibration in 

the objective function in order to obtain reliable values of the correction coefficients through the 

optimization process.  

The problem of the amount of data available to conduct a reliable calibration is of significant 

importance, particularly when a large scale real investigation has to be conducted. With this 

regard the present study intended to explore and provide a first insight into the performance of 

the proposed procedure based on the availability of a minimum amount of data. In particular, 

the minimum number of eigen-properties required to accurately evaluate the stiffness of the 

equivalent beam has been chosen after several numerical analyses. 

The influence of the amount of data on the problem is also crucial for the unicity of the solution. 

With this regard, it is the case to state that, since the objective function cannot be explicitly 

formulated, the study of the unicity of the solution is a complex mathematical task. In addition, 

the adopted numerical optimization procedure may provide different solutions (intended at local 

minima) in accordance with the trial initial values adopted for the correction coefficients. To 

further explore this aspect, as explained before, the values of the three stiffness correction 

coefficients have been bounded in the range [0.1 1] and for each analysed building the 

minimization procedure has been implemented by testing different trial initial values of the 

correction factors. Then the stiffness correction coefficients associated to the lower value of the 

objective function have been selected. This procedure does not claim to assure the unicity of the 

solution in terms of stiffness correction coefficients however it provides the accuracy of different 

selected solutions. 

 

2.1.8 Static response 

Once Equation (2.1.16) has been solved, the static deflection of the beam-like model in the 

geometric space can be obtained by means of Equations (2.1.8). 

 

2.1.9 Dynamic response 

The dynamic response of the beam-like model subjected to external loading, in the generalised 

space, can be expressed as a combination of  3S N≤  modes of vibration multiplied by the time-

dependent functions ( )jz t : 

( )
1

ˆ( )
S

j j

j

t z t
=

= ⋅q ψ           (2.1.32) 
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where S  indicates the number of modes of vibration. Substitution of Equation (2.1.32) into the 

equations of motion (2.1.25) leads to:  

( ) ( )
1 1

ˆ ˆ
S S

j j j j

j j

z t z t
= =

⋅ + ⋅ = M ψ K ψ P&&         (2.1.33) 

Furthermore, in view of the orthogonality conditions of the vibration modes, Equation (2.1.33) 

provides: 
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       (2.1.34) 

So, the equations of motion are simplified as follows: 

, ,( ) ( ) ( )mod j j mod, j j mod, j j mod jM z t C z t K z t P⋅ + ⋅ + ⋅ =&& &       (2.1.35) 

It is worth noting that the terms mod, jC  are representative of the generalised modal damping for 

all the modes of vibration and are related to the corresponding modal damping ratios as follows: 

,

,

2
mod j

j j

mod j

C

M
ξ ω= . 

Lastly, the dynamic response in the geometric space is obtained by means of the following 

expressions: 
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where N  is the number of displacement shape functions adopted in the discretization and S  is 

the number of modes of vibration used to compute the dynamic response.     
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2.2 NON-UNIFORM SHEAR-ONLY BEAM-LIKE MODEL –INELASTIC 

BEHAVIOUR  

 

In order to take into account the global inelastic seismic response of multi-storey buildings, the 

inhomogeneous beam-like model, used in the previous section to characterize the linear elastic 

behaviour, must be substantially revisited for its extension to the non-linear context. With this 

purpose, in this section a new cantilever beam model, conceived to be representative of the 

inelastic response of a 3D framed building when subjected to a horizontal force distribution in 

a certain direction, is formulated. The proposed model is suitable to represent the 

inhomogeneous and the inelastic properties of the building along its height, which are assumed 

variable from one floor to the other. The inter-storey non-linear behaviour of the building is 

modelled considering a beam-like model with shear deformability only defined according to a 

suitable inelastic constitutive law. Since the beam-like model is intended to represent the non-

linear behaviour of the building along a specific loading direction, the beam is defined as a plane 

model, able anyway to take into account the spatial behaviour of irregular buildings by means 

of a calibration procedure based on a non-linear analysis performed on a 3D FEM model. Figure 

2.2 reports a qualitative scheme to emphasize the proposed beam-building equivalence. It is 

evident that the corresponding inelastic beam model will inherit a constitutive law that depends 

not only on the load direction but also on the adopted distribution of forces. Since the model is 

proposed for the assessment of the seismic response of the building, its calibration has been 

performed by means of the results of a pushover analysis along the considered direction under 

a suitable distribution of loads.  

The mass distribution of the beam-like model is assumed to be consistent to the actual mass 

distribution of the 3D structural model, therefore it can be concentrated at the floor levels as 

well as, when required, distributed along the height. This latter mass distribution is preferable 

for modelling masonry structures or combined reinforced concrete masonry buildings, in which 

the actual mass distribution is spread along the height of the building and its concentration at 

the floor level does not well represent the actual distribution of inertia loads. In Figure 2.2.a the 

3D model of a building with Nf floors together with the force resultant Fd,i at i-th floor acting in 

direction d are reported. In Figure 2.2.b the proposed equivalent beam-like model suitable for 

the dynamic analysis of the building in direction d is qualitatively shown. 

a)  b) 

Figure 2.2 - a) 3D FEM model of the building and b) equivalent beam-like model along the considered 
direction   
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2.2.1 Considerations About Beam-Like and SDOF Models 

As already pointed out, one of the main goals of the proposed inelastic beam-like model is to 

represent a more accurate and therefore promising alternative to the SDOF model nowadays 

used to assess the seismic vulnerability demands of multi-storey buildings. With this aim, in 

the present paragraph some considerations, concerning the comparison between the proposed 

model and the SDOF one, are formulated.  

It has been already highlighted that the equivalent SDOF system-based approaches rely on the 

hypothesis that the structure vibrates predominantly with a single mode. This assumption is 

not always fulfilled, especially in the case of high-rise or irregular buildings. Some procedures 

have been employed in order to overcome this limitation by combining the fundamental mode 

effect and the elastic or inelastic contribution due to higher modes [75, 76, 79, 83, 84].  

On the contrary, the proposed beam-like models are able to take into account the higher mode 

effects, since defined in order to be equivalent to the MDOF building system. As it has been 

proposed for the linear behaviour and will be shown in the following paragraphs for the inelastic 

response, the beam-like model stiffness distributions and degrees of freedom have been set with 

the aim to represent the dynamic behaviour of each floor of the building when subjected to 

earthquake loadings. 

It is worth noting that the presence of floor degrees of freedom leads to the evaluation of all the 

floor displacements allowing the identification of partial failure mechanisms. This is not 

possible by using equivalent SDOF system-based approaches, since the displacement pattern 

obtained by means of the non-linear static analysis is inherited by the SDOF system [87].  

The results reported in the following section show how the proposed inelastic beam-like model 

can be able to reproduce the non-linear static and dynamic behaviour of the building with 

sufficient accuracy drastically reducing the computational burden and, as a consequence, the 

required computational time. The low computational cost of the proposed beam-like model will 

allow to propose new seismic assessment numerical strategies alternative to those currently 

used partially based on the inelastic behaviour of SDOF model.  
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2.2.2 The inelastic beam-like model and its discretization  

The beam-like model, represented in Figure 2.2, can be analysed as an inhomogeneous 

continuous beam model or it can be discretized according to finite element approach. The linear 

elastic beam-like model has been discretized according to a Rayleigh-Ritz strategy that allowed 

to limit the number of degrees of freedom required to obtain an accurate linear dynamic 

response of the model. With regard to the inelastic beam model, the need to achieve a reliable 

simulation of the inelastic response at the floor levels, where inelastic displacements tend to 

concentrate, suggests considering a discretization in which the beam element is divided into a 

number Nf of sub-beam shear deformable elements of length hi equal to the inter-storey height. 

The characterization of the inelastic response of each i-th uniform beam sub-element can be 

defined by means of appropriate uniaxial inelastic constitutive laws, in terms of shear force Ti 

and inter-storey drift si. Figure 2.3.a and Figure 2.3.b summarise the equivalent shear beam-

like model approach described so far. 

 
Figure 2.3 - a) Discretization of the equivalent beam-like model with non-linear constitutive law of the 

i-th sub-element and b) the deflection of the equivalent beam under the considered load distribution 

 

Therefore, following a simple FEM discretization for simulating the inelastic response of the 

inhomogeneous shear beam, the axis of the proposed cantilever equivalent beam is divided into 

a number of segments representing the inter-storeys of the building. Each beam segment has 

the same length and constitutive law of the corresponding inter-storey of the building while the 

mass can generally be assumed to be concentrated at the floor level. 

It is worth highlighting that, in view of the adopted inelastic calibration of the beam-like model, 

the equivalence concerns the static and dynamic responses of the building and the equivalent 

beam along a fixed direction, which may vary according to the direction of the applied loadings.  

Each floor of the building is represented by a node i, which coincides with the end of a beam 

segment. 

Therefore, the equivalent beam, qualitatively shown in Figure 2.4.a, is defined by means of: 

1. Nodes, numbered from bottom to top as shown in Figure 2.3.a, according to the reference 

global system d-z.  

2. Initial and final nodes of each beam segment and its normalized vector it = [0 1] (shown 

in red in Figure 2.4.b) directed from the initial to the final node.  
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3. Characteristics of each beam segment, as shown in Figure 2.5: length, lumped mass on 

the final node, distributed mass, initial shear stiffness in direction d ( 0dR ) and the 

corresponding tangent stiffness ( dtR ) useful for the non-linear behaviour.  

 

Figure 2.4 – a) Nodes and segments of the equivalent beam-like model and b) beam segment vectors 

 
In Figure 2.5, in each i-th inter-storey 

im  denotes the distributed mass, iM  the lumped mass, 

yT  and uT  the yielding and ultimate shear force, respectively, and ys  and us  the yielding and 

ultimate inter-storey drifts, respectively. 
 

 

Figure 2.5 - Equivalent beam-like model with mass distribution, degrees of freedom ui and assumed 
non-linear constitutive law of the i-th sub-element 
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According to the adopted discretization approach of the shear beam, it is necessary to define 

nodal displacements and nodal forces. 

Nodal displacements are referred only to the non-constrained nodes (thus neglecting node 0). 
For node i the displacement components in the fixed direction d are denoted as i

u . The vector 

of nodal displacements can therefore be expressed as: 

1

2

N

u

u

u

 
 
 =
 
 
  

u
Μ

       (2.2.1) 

where N  is the total number of beam nodes corresponding to the number of floors. 

The vector of the nodal forces, according to the vector of nodal displacement, is shown below: 

1

2

N

F

F

F

 
 
 =
 
 
  

F
Μ

      (2.2.2) 

where i
F  is the force applied to node i in the fixed direction d.  

Different load distributions can be applied. The beam-like model can be subjected to a static 

force vector F  according to the following relationships: 

=F Mφ            (2.2.3) 

where φ  is the fixed displacement distribution and M  is the diagonal mass matrix which 

considers lumped masses at the nodes due to the applied seismic masses.  

In particular, the following three load distributions have been considered in the numerical 

applications:  

a) mass proportional force distribution; 
b) inverse triangular proportional force distribution; 
c) force distribution associated with the fundamental natural mode. 

As better highlighted in the subsequent section, alternatively, a displacement distribution can 

also be applied on the beam-like model. In particular, the following displacement distribution 

has been considered in the numerical applications:  

d) displacement distribution proportional to the fundamental natural mode. 

Adaptive force or displacement distributions can also be considered; however, in the present 

research, attention has been focused on invariant load or displacement distributions. As 

suggested by some technical codes, like for example Italian Code NTC – D.M. 17.01.2018, static 

forces equivalent to the inertia forces due to the seismic actions corresponding to a linear 

dynamic analysis can also be applied.  

Alternatively, it is also possible to apply a user defined static force distribution. 



77 
 

The non-linear dynamic analysis is performed considering a seismic acceleration ( )
g

u tɺɺ  applied 

at the base of the beam. Since there are only translational degrees of freedom, horizontal inertia 

forces can be computed as:  

 ( ) ( )
g

t u t= −F Miɺɺ                                                   (2.2.4) 

where M  is the beam mass matrix and i  the vector of load spatial distribution having unitary 

components according to the direction of the applied earthquake.  

It is worth highlighting that, differently from Section 2.1 where the equations of motion for the 

linear elastic beam-like model are derived in terms of generalised coordinates q, in this section 

the equations of motion of the inelastic beam-like model are expressed in terms of floor 

displacements.  

 

 

Figure 2.6 - Applied forces 

 

The derivation of the stiffness, mass and damping matrices of the inelastic beam are reported 

in Appendix B. 
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2.2.3 The Calibration of the Inelastic Properties  
 

As already pointed out, the proposed beam-like model is conceived to be representative of the 

inelastic response of the 3D building when subjected to a specific horizontal load distribution 

along a given direction. For this reason, the equivalence between the beam and the building is 

enforced by calibrating the inelastic beam model in order to predict the same pushover curve 

obtained by performing non-linear static analysis on the 3D FEM model. This result can be 

easily obtained reconstructing, according to a step by step procedure, the tangent shear stiffness 

of each inter-storey beam segment which provides the same inter-storey displacements of the 

full 3D FEM model. This inverse non-linear static identification procedure allows to obtain an 

inelastic beam-like model somehow equivalent to the more demanding 3D FEM model, although 

related to a specific direction and under a precise distribution of horizontal loadings. In 

particular, the inter-storey shear force is equal to the sum of the shear forces of the structural 

vertical elements (columns) of the considered inter-storey, while the displacement is due to the 

difference between the mean values of the displacements of the nodes situated at the top and at 

the bottom of the considered inter-storey. These values, collected for each step of the pushover 

analysis, allow to draw the non-linear “inter-storey capacity curve”, which relates the shear 

force to the corresponding relative displacement. 

Under this assumption, the proposed beam-like model can be considered as representative of 

the 3D structure, in the considered direction, both for the linear and non-linear behaviour. 

In order to adopt this equivalent model for predicting the non-linear dynamic response of the 

entire building, when subjected to earthquake loading in the same direction, it is necessary to 

characterize the inter-storey cyclic behaviour to be associated to each segment of the 

inhomogeneous inelastic multi-stepped beam. For this latter reason, the non-linear inter-storey 

constitutive law, obtained by the above described calibration strategy, has been first substituted 

with a bilinear curve and then extended to a cyclic inelastic behaviour, in accordance with what 

proposed in the scientific literature for the SDOF equivalent system [68, 70]. In the present 

study the most adopted simplified strategy, based on the definition of a bilinear elasto-plastic 

model, generally adopted to define the equivalent SDOF models, is considered. The cyclic 

inelastic behaviour of each inter-storey is attributed to each uniform segment of the multi-

stepped beam. In the numerical applications reported in the next section, an elasto-plastic 

behaviour with kinematic hardening, defined according to an energy equivalence criterion on 

the hysteresis loop, has been adopted. It is worth noting that the contribution of infill walls to 

the building strength and stiffness is disregarded, anyway it could be captured by the proposed 

model by performing a pushover analysis accounting for the non-linear contribution of these 

non-structural elements. In this latter case more complex constitutive laws could be needed if 

the low ductile and cyclic degrading behaviour of the masonry infills are considered in the FEM 

model. This further application, exploiting the capability of the beam-like model, will be the 

subject of future investigations.  

In Figure 2.7.a-b an example of inter-storey capacity curve (in black) and the corresponding 

back-bone inelastic force-displacement response (in red) are reported, respectively. 

 



79 
 

a)  b) 
 

Figure 2.7 - a) An example of inter-storey capacity curve and b) the corresponding back-bone curve 

If the considered building, subjected to a load distribution in a given direction, undergoes 

different inelastic responses according to the load versus, an asymmetric cyclic behaviour has 
to be considered, as reported in Figure 2.8.a, where 

T Y
, ,R R F  indicate the elastic, post elastic 

stiffness and the yield force, respectively, while 
T Y

, ,R' R' F'  indicate the same quantities with the 

opposite sign loading. 
 

Alternatively, if the capacity curve is not affected by the load versus, a simple symmetric elasto-

plastic law with kinematic hardening can be considered (Figure 2.8.b). 

Without loss of generality, for simplicity, a symmetric elasto-plastic law with kinematic 

hardening is considered in what follows. 

 a)  b) 
 

Figure 2.8 - Elasto-plastic force-displacement constitutive law with positive kinematic hardening: a) 
asymmetrical behaviour; b) symmetrical behaviour. 

 

In some cases, it is not possible to determine a good correspondence between the inter-storey 

capacity curve obtained from the static non-linear analysis and a bilinear curve, especially when 

the inter-storey undergoes a softening behaviour. In order to define a more accurate simplified 

constitutive law for each segment of the equivalent beam-like model, a cyclic static non-linear 

analysis is performed on the FEM model and the cyclic non-linear inter-storey capacity curve is 

obtained as already described. The inter-storey simplified cyclic inelastic behaviour is finally 

defined according to an energy equivalence criterion on the hysteresis loop (which has been 

imposed by equating the areas inside the curves), as shown in Figure 2.9.  

In general a symmetric elasto-plastic behaviour with kinematic hardening is adopted, while an 

elasto-perfectly plastic behaviour is considered if the inter-storey cyclic law shows a softening 

behaviour. 
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a)  b) 

Figure 2.9 - An example of cyclic inter-storey capacity curve and the corresponding cyclic back-bone curve 
adopting a) a symmetric elasto-perfectly plastic behaviour or b) a symmetric elasto-plastic behaviour with 
kinematic hardening  

 

The calibration of the equivalent inelastic beam-like model is performed considering the 3D 

building subjected to a precise distribution of horizontal loadings. However, the imposition of 

the force distribution could lead sometimes to obtain some inter-storey capacity curves not 

showing a non-linear behaviour if according to the distribution of forces the corresponding inter-

storey elements do not exhibit an inelastic behaviour. However, the pushover analysis not 

necessarily provides the same damage distribution associated to a non-linear dynamic analysis 

and it is therefore needed to characterise a suitable non-linear constitutive law for each level of 

the building. For these reasons it has been also proposed a calibration strategy based on a 

pushover analysis associated to a specific displacement distribution on the building in order to 

exploit the non-linear behaviour of each inter-storey. In fact, in this case all the inter-storey 

drifts are forced to increase proportionally allowing to follow the inter-storey force-displacement 

relationships until a chosen ductility. Therefore, the choice of using a displacement distribution 

instead of a force distribution would be preferable. 

 

Once the inelastic beam-like equivalent model has been defined, different numerical strategies 

can be adopted for the evaluation of the non-linear response under static and dynamic loadings, 

as described in the Appendices C and D. 
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2.3 ALTERNATIVE INELASTIC BEAM MODEL BASED ON 

GENERALISED FUNCTIONS 

 

In this sub-section the inelastic beam model already proposed in sub-section 2.2 is discretized 

according to a different displacement based approach. In particular, the static response of multi-

stepped linear shear-torsional beam is determined in closed form and successively used for 

discretizing the inelastic beam model. 

2.3.1 The multi-stepped linear beam element 

Beams with non-uniform stiffness distribution along their axis can be conveniently modelled as 

stepped. Although in the scientific literature closed form solutions for the static analysis of 

either Timoshenko or Euler stepped beams are available [104, 105], the case of shear-torsional 

beams has not been explicitly reported. A part of the study of the PhD course has therefore been 

devoted to the derivation of the closed form solution for static displacements of shear-torsional 

elastic stepped beams.  

The well-known static governing equations of the shear-torsional beam with variable shear 
( ) ( )G z A z  and torsional ( ) ( )

T
G z J z  stiffness are written as follows: 

• Equilibrium equations:  ( )I
V p z= −  ( )

I

T
M t z= −     (2.3.1) 

• Constitutive equations: ( ) ( )V G z A z γ=  ( ) ( ) ( )
I

T T
M G z J z zθ=   (2.3.2)  

• Compatibility equation: '( )v zγ =        (2.3.3)   

where ( )p z  is the transversal load, ( )t z  is the distributed torsional moment, ( )V z  is the shear 

force, ( )
T

M z  is the torsional moment, ( )zγ  is the shear strain, ( )v z  is the transversal 

displacement, ( )zθ  is the torsional rotation.  

Equations (2.3.1), (2.3.2), (2.3.3) can be combined to provide the following second order 

differential equations: 

( ) ( ) ( ) ( )
I

IG z A z v z p z  = −           (2.3.4)  

( ) ( ) ( ) ( )
I

I

T
G z J z z t zθ  = −           (2.3.5)  

where, once again, the prime denotes differentiation with respect to z . 

 

Figure 2.10 - Step-wise shear-torsional elastic beam 
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The shear ( ) ( )G z A z  and torsional ( ) ( )TG z J z  stiffness, with m abrupt variations with respect 

to the reference values 0 0G A  and 0 0TG J  respectively along the beam axis, can be expressed by 

means of the adoption of the Heaviside unit-step generalised function as follows: 

( ) ( )0 0 1

1

( ) ( ) 1
j

m

j j

j

G z A z G A U z zββ β −
=

 
= − − − 

 
       (2.3.6)  

( ) ( )0 0 1

1

( ) ( ) 1
j

m

T T j j

j

G z J z G J U z zαα α −
=

 
= − − − 

 
       (2.3.7)  

where: 

0 0

0 0

1 1
j j

j j j j

G A
G A G A

G A
β β = −  = −          (2.3.8)  

0 0

0 0

1 1
j Tj

j Tj T j j

T

G J
G J G J

G J
α α = −  = −        (2.3.9)  

The parameters , 1,...,j j mβ =  and , 1,...,j j mα =  represent the shear and torsional stiffness 

jumps, while 
j

zβ  and 
j

zα  are the relevant singularity positions, respectively.  

Substituting Equation (2.3.6) into Equation (2.3.4) and Equation (2.3.7) into Equation (2.3.5), 

the following uncoupled differential equations governing the shear and torsional problems of 

the step-wise beam are obtained: 

( ) ( )0 0 1

1

1 ( ) ( )
j

I
m

I

j j

j

G A U z z v z p zββ β −
=

  
− − − = −  

   
      (2.3.10)  

( ) ( )0 0 1

1

1 ( ) ( )
j

I
m

I

T j j

j

G J U z z z t zαα α θ−
=

  
− − − = −  

   
      (2.3.11)  

For simplicity, by considering the dimensionless coordinate /z Lξ = , the governing differential 

equations of the shear-torsional beam by accounting for the singularities introduced in 

Equations (2.3.6)-(2.3.7), take the following dimensionless form: 

( ) ( )1

1

1 ( ) ( )

I
m

I

j j j

j

U u pββ β ξ ξ ξ ξ−
=

  
− − − = −  

   
       (2.3.12)  

( ) ( )1

1

1 ( ) ( )
j

I
m

I

j j

j

U tαα α ξ ξ θ ξ ξ−
=

  
− − − = −  

   
       (2.3.13)  

where the normalized function 
( )

( )
v

u
L

ξξ =  and the normalized load parameters 
0 0

( )
( )

p L
p

G A

ξξ =

and 
2

0 0

( )
( )

T

t L
t

G J

ξξ =  have been introduced. 

Integration of Equations (2.3.12) - (2.3.13) leads to: 

( ) ( ) [1]

1 2

1

1 ( ) ( )
m

I

j j j

j

U u p Cββ β ξ ξ ξ ξ−
=

 
− − − = − + 

 
       (2.3.14)  

( ) ( ) [1]

1 2

1

1 ( ) ( )
j

m
I

j j

j

U t Dαα α ξ ξ θ ξ ξ−
=

 
− − − = − + 

 
       (2.3.15)  

where [ ]
( )

k
p ξ  and [ ]

( )
k

t ξ  indicate a primitive of order k of the relevant function. 
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Therefore, it is possible to obtain ( )
I

u ξ  and ( )
Iθ ξ : 

( ) ( ) ( ) ( )

[1]
[1]2

2

1 1
1 1

( ) 1
( ) ( )

1 1

I

m m

j j j j j j
j j

p C
u p C

U Uβ β

ξξ ξ
β β ξ ξ β β ξ ξ− −

= =

− +
 = = − +   − − − − − − 

 
 

 (2.3.16)  

( ) ( ) ( ) ( )
[1]

[1]2
2

1 1
1 1

( ) 1
( ) ( )

1 1
j

j

I

m m

j j j j
j j

t D
t D

U Uα α

ξθ ξ ξ
α α ξ ξ α α ξ ξ− −

= =

− +
 = = − +   − − − − − − 

 
 

 (2.3.17)  

Making use of the properties of the Heaviside’s function, Equations (2.3.16) – (2.3.17) can be 

rewritten as: 

( )[1]

2

1

( ) ( ) 1 *
m

I

j j

j

u p C U βξ ξ β ξ ξ
=

 
 = − + + −  

 
       (2.3.18)  

( )[1]

2

1

( ) ( ) 1 *
j

m
I

j

j

t D U αθ ξ ξ α ξ ξ
=

 
 = − + + −  

 
       (2.3.19)  

where: 1

1

*
1 1

j j

j

j j

β β
β

β β
−

−

= −
− −

, 1

1

*
1 1

j j

j

j j

α α
α

α α
−

−

= −
− −

.  

Integration of Equations (2.3.18) – (2.3.19) lead to: 

( ) ( ) ( ) ( )[2] [2] [2]

1 2

1 1

( ) * ( ) * ( )
m m

j j j j j j

j j

u C C U p p p Uβ β β βξ ξ β ξ ξ ξ ξ ξ β ξ ξ ξ ξ
= =

 
 = + + − − − − − −   

 
   

            (2.3.20)  

( ) ( ) ( )[2] [2] [2]

1 2

1 1

( ) * ( ) * ( ) ( )
j j j

m m

j j j

j j

D D U t t t Uα α α αθ ξ ξ α ξ ξ ξ ξ ξ α ξ ξ ξ ξ
= =

 
 = + + − − − − − −   

 
   

            (2.3.21)  

 

Equations (2.3.20) – (2.3.21) can be rewritten as: 

( ) ( ) ( )1 1 2 2 3( )u C f C f fξ ξ ξ ξ= + +         (2.3.22)  

( ) ( ) ( )1 1 2 2 3( ) D g D g gθ ξ ξ ξ ξ= + +         (2.3.23)  

where: 

( )1 1f ξ =            (2.3.24a) 

( ) ( ) ( )2

1

*
m

j j j

j

f Uβ βξ ξ β ξ ξ ξ ξ
=

= + − −        (2.3.24b) 

( ) ( ) ( )[2] [2] [2]

3

1

( ) * ( )
m

j j j

j

f p p p Uβ βξ ξ β ξ ξ ξ ξ
=

 = − − − −       (2.3.24c) 

( )1 1g ξ =            (2.3.24d) 

( ) ( ) ( )2

1

*
j j

m

j

j

g Uα αξ ξ α ξ ξ ξ ξ
=

= + − −        (2.3.24e) 

( ) ( ) ( )[2] [2] [2]

3

1

( ) * ( )
j j

m

j

j

g t t t Uα αξ ξ α ξ ξ ξ ξ
=

 = − − − −
       (2.3.24f) 

 

The boundary conditions for a cantilever beam are shown in the following: 
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1 1

0 0

0 0 0

1 1

0 0

0 0 0

1) ( 0) 0

2) ( 0) ( 0) ( ) ( ) ( 0) ( )

3) ( 0) 0

4) ( 0) ( 0) ( ) ( ) ( 0) ( )

L

I I

L

I I

T T

u

V G A u p z dz p Ld u p d

M G J t z dz t Ld t d

ξ

ξ ξ ξ ξ ξ ξ ξ

θ ξ

ξ θ ξ ξ ξ θ ξ ξ ξ

= =

= = = = =  = =

= =

= = = = =  = =

  

  

 

(2.3.25)  

Thus, allowing to obtain the following constants: 

( ) ( )
( )

( )

( ) ( )
( )

( )

1

1

31 1

0
2 2 3 2

20 0

1

1

31 1

0
2 2 3 2

20 0

1) 0

( ) 0

2) 0 0 ( ) ( )
0

3) 0

( ) 0

4) 0 0 ( ) ( )
0

I

I I

I

I

I I

I

C

p d f

C f f p d C p d
f

D

t d g

D g g p d D t d
g

ξ ξ
ξ ξ ξ ξ

ξ ξ
ξ ξ ξ ξ

=

−
+ =  = =

=

−
+ =  = =


 


 

  (2.3.26)  

 

 
In case the multi-stepped beam is subjected only to Fn  concentrated forces , 1, ,r FF r n= … , 

applied at the abscissae 
rF

ξ  with eccentricity er with respect to the centre of stiffness, the load 

terms become: 

( )
1

( )
nF

Fr r

r

p z F z zδ
=

= −          (2.3.27)  

( ) ( ) ( )
1 1 10 0 0 0

( )
( ) ( )

nF nF nF
F F

r r r r
F

r r

r r r

F Fp L
p p F

L G A G A

δ ξ ξ δ ξ ξξξ ξ δ ξ ξ
= = =

− −
=  = = = −      (2.3.28)  

( )
1

( )
nF

Fr r r

r

t z F e z zδ
=

= −          (2.3.29) 

( ) ( ) ( )
2

1 1 10 0 0 0

( )
( ) ( )

nF nF nF
F F

r r r r r r
F

r r

r r rT T

F e F e Lt L
t t T

L G J G J

δ ξ ξ δ ξ ξξξ ξ δ ξ ξ
= = =

− −
=  = = = −   (2.3.30) 

where the property ( ) ( )i

i
L

L

δ ξ ξ
δ ξ ξ

−
− =    of the Dirac’s delta distribution has been exploited 

and the normalized loads 
0 0

r
r

F
F

G A
=  and 

0 0

r r
r

T

F e
T L

G J
=  have been introduced. 

Further useful quantities are: 

( )[1]

1

( )
nF

Fr r

r

p F Uξ ξ ξ
=

= −          (2.3.31 a) 

( ) ( )[2]

1

( )
nF

F Fr r r

r

p F Uξ ξ ξ ξ ξ
=

= − −         (2.3.31b) 

( )[1]

1

( )
nF

Fr r

r

t T Uξ ξ ξ
=

= −          (2.3.31c) 
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( ) ( )[2]

1

( )
nF

F Fr r r

r

t T Uξ ξ ξ ξ ξ
=

= − −         (2.3.31d) 

 

In this case, the boundary conditions for a cantilever beam give the following constants: 

( )

( )

1

1 1

2

1 10 0

1

1 1

2

1 10 0

1) 0

2) ( )

3) 0

4) ( )

nF nF

F
r r r

r r

nF nF

F
r r r

r r

C

C p d F d F

D

D t d T d T

ξ ξ δ ξ ξ ξ

ξ ξ δ ξ ξ ξ

= =

= =

=

= = − =

=

= = − =

  

  

      (2.3.32)  
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2.3.2 Inelastic beam finite element 

In this paragraph, by exploiting the closed form solution presented above, a displacement based 

beam element with distributed plasticity is formulated. Such an element is characterised by the 

capability of adapting its stiffness matrix by means of displacement shape functions enriched 

by generalised functions including the effect of plastic deformation occurrences on transversal 

displacements.  

The displacement field along the span of the beam element is that consistent with the model 

adopted for the plastic deformation distribution and is also able to account for the presence of 

any external load distribution. 

Lastly, the adoption of the below described beam finite element for the non-linear static analysis 

of the beam-like model will be shown.  

 

 

Shape functions 

Referring to the step-wise shear-torsional beam reported in Figure 2.11 in dimensionless 

coordinate (whose closed form solution has been determined in 2.3.1), the shape functions of the 

finite element are determined in the following.  

 

Figure 2.11 - Step-wise shear-torsional elastic beam in dimensionless coordinates 

 

The degrees of freedom and the corresponding nodal forces of the step-wise shear-torsional beam 

finite element are shown in Figure 2.12.a and Figure 2.12.b respectively. 

 

a)  b) 

Figure 2.12 - a) Degrees of freedom and b) corresponding nodal forces of the finite element 
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The transversal displacement and the torsional rotation of the beam axis subjected to a 
distributed transversal load ( )p ξ  and a distributed torsional moment ( )t ξ  can be expressed as 

follows: 

1

21 2

33 4

4

, ,

( , , ) ( , , ) 0 0( , , )

0 0 ( , , ) ( , , )( , , )

( , , )

( , , )

( , , , ) ( , , , )

p

p

e p

q

qN Nu

qN N

q

u

ξ ξξ
ξ ξθ ξ

ξ
θ ξ

ξ ξ

 
     = +       
 
 

 
+ = 
  

= ⋅ +

GA GAGA

GJ GJGJ

GA

GJ

GA GJ GA GJ

ξ β* ξ β*ξ β*

ξ α* ξ α*ξ α*

ξ β*

ξ α*

N ξ β* α* q u ξ β* α*

 

            (2.3.33)  

where ,
( , , , ) 1, 2,3,4iN iξ =GA GJ
ξ β* α*  denotes the shape function associated with the i-th 

degree of freedom, which can be collected into the matrix ,
( , , , )ξ GA GJN ξ β* α* , 

[ ]1 2 3 4

T

e q q q q=q  denotes the degrees of freedom displacement vector and 
,( , , , )p ξ GA GJu ξ β* α*  the vector of the solution due to the contribution of external loads.  

The shape functions can be derived by imposing unit displacements in the corresponding 

degrees of freedom in Equations (2.3.22) - (2.3.23) and neglecting the presence of external loads.  

( ) ( )1 1 2 2( , , ) 1,2i i

iN C f C f iξ ξ ξ= + =GAξ β*       (2.3.34)  

( ) ( )1 1 2 2( , , ) 3, 4i i

iN D g D g iξ ξ ξ= + =GJξ α*       (2.3.35) 

where: 

1 1

1 2

2

2 2

1 2

2

3 3

1 2

2

4 4

1 2

2

1
1; ;

(1)

1
0; ;

(1)

1
1; ;

(1)

1
0; .

(1)

C C
f

C C
f

D D
g

D D
g

= = −

= =

= = −

= =

         (2.3.36)  

The components of the vector of the solution due to the contribution of external loads 
,( , , , )p ξ GA GJu ξ β* α*  can be derived by imposing zero displacements in all the degrees of freedom 

in Equations (2.3.22) - (2.3.23), respectively. 

( ) ( ) ( )3 3
3 1 2 3

2

(0) (1)
( , , ) (0)

(1)
p

f f
u f f f f

f
ξ ξ ξ ξ−= − + +GAξ β*      (2.3.37)  

( ) ( ) ( )3 3
3 1 2 3

2

(0) (1)
( , , ) (0)

(1)
p

g g
g g g g

g
θ ξ ξ ξ ξ−= − + +GJξ α*      (2.3.38)  

Using Equations (2.3.12) – (2.3.13), it is possible to express the shear force and the torsional 

moment along the beam axis: 

,( , , ) ( , , )
( , , , )

( , , ) ( , , )

I

I

T

T u

M

ξ ξξ
ξ θ ξ

   
= ⋅   

  

GA GA
GA GJ

GJ GJ

ξ β* ξ β*
k ξ β α

ξ α* ξ α*
     (2.3.39)  
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where: 

,
( , , )( , , )

( , , , )
( , , )( , , )

II
p

e II
p

uu ξξ ξ
θ ξθ ξ
  

= ⋅ +   
    

GAGA
GA GJ

GJGJ

ξ β*ξ β*
B ξ β* α* q

ξ α*ξ α*
     (2.3.40)  

, 1 2

3 4

( , , ) ( , , ) 0 0
( , , , )

0 0 ( , , ) ( , , )

I I

I I

N N

N N

ξ ξξ
ξ ξ

 
=  
 

GA GA
GA GJ

GJ GJ

ξ β* ξ β*
B ξ β* α*

ξ α* ξ α*
  (2.3.41)  

( ) ( )

( ) ( )
1

1,

1

1

1 0

( , , , )

0 1
j

m

j j j

j

m

j j

j

U

U

β

α

β β ξ ξ
ξ

α α ξ ξ

−
=

−
=

 − − − 
 =
 

− − − 
 





GA GJk ξ β α   (2.3.42)  

 

 

The element stiffness matrix 

The relationship between nodal displacements 
eq  and nodal forces [ ]1 2 3 4

T

e Q Q Q Q=Q  is 

ruled by the stiffness matrix eK  of the finite element, which can be obtained by means of the 

Principle of Virtual Work. 
1

, , ,

0

( , , , ) ( , , , ) , ( , , , )T T I I

e e e
dδ ξ δ ξ ξ δ δ ξ= ⋅ ∀ ∀

GA GJ GA GJ GA GJQ q F ξ β* α* u ξ β* α* q u ξ β* α*      (2.3.43)  

where: 

, ( , , )
( , , , )

( , , )T

T

M

ξξ
ξ

 
=  
 

GA
GA GJ

GJ

ξ β*
F ξ β* α*

ξ α*
       (2.3.44)  

, ( , , )
( , , , )

( , , )

I

I

I

u ξξ
θ ξ
 

=  
 

GA
GA GJ

GJ

ξ β*
u ξ β* α*

ξ α*
       (2.3.45)  

Substituting Equation (2.3.39) in Equation (2.3.43): 
1

, , , ,

0

,

( , , , ) ( , , , ) ( , , , )

, ( , , , )

T I T I

e e

I

e

dδ ξ ξ δ ξ ξ

δ δ ξ

= ⋅ ⋅

∀ ∀


GA GJ GA GJ GA GJ

GA GJ

Q q u ξ β* α* k ξ β α u ξ β* α*

q u ξ β* α*

   (2.3.46)  

Substituting Equation (2.3.40), neglecting the contribution of the external load, in Equation 

(2.3.46): 
1

, , ,

0

( , , , ) ( , , , ) ( , , , )T T T

e e e e e
dδ ξ ξ ξ ξ δ δ= ⋅ ⋅ ⋅ ⋅ ∀

GA GJ GA GJ GA GJQ q q B ξ β* α* k ξ β α B ξ β* α* q q      (2.3.47)  

Equation (2.3.47) allows to obtain the relationship between nodal displacements 
eq  and nodal 

forces eQ : 
,

( , , , , )e e= ⋅GA GJ
eQ K ξ β α β* α* q         (2.3.48)  

Where the stiffness matrix of the finite element is defined as: 
1

, , , ,

0

( , , , , ) ( , , , ) ( , , , ) ( , , , )T dξ ξ ξ ξ= ⋅ ⋅
GA GJ GA GJ GA GJ GA GJ

eK ξ β α β* α* B ξ β* α* k ξ β α B ξ β* α*  (2.3.49)  
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Integrals can be solved in closed form due to the simple adopted shear-torsional only beam 
model. In particular, the G Points are representative of the beam segments with length jw , as 

shown in Figure 2.13. Therefore, the singularity positions can be expressed as 
1

1

j

j n

n

wβξ
−

=

= . 

 

Figure 2.13 - Finite element subdivision 

The stiffness matrix can be evaluated as follows: 

, , , ,

1

( , , , , ) ( , , , ) ( , , , ) ( , , , )
m

T G G G

p p p p

p

wξ ξ ξ
=

≈ ⋅ ⋅GA GJ GA GJ GA GJ GA GJ
eK ξ β α β* α* B ξ β* α* k ξ β α B ξ β* α*  

(2.3.50)  

 

The nodal resisting forces and the nodal forces equivalent to the external load 

Applying again the Principle of Virtual Work, it is possible to compute the nodal forces 

equivalent to the resisting forces. Substituting Equation (2.3.40), neglecting the contribution of 

the external load, in Equation (2.3.43), it is possible to obtain: 
1

, ,

0

( , , , ) ( , , , )T T

e e e e
dδ ξ ξ ξ δ δ= ⋅ ⋅ ∀

GA GJ GA GJQ q F ξ β* α* B ξ β* α* q q    (2.3.51)  

Or: 
1

, , ,

0

( , , ) ( , , , ) ( , , , )T

e
dξ ξ ξ= ⋅

GA GJ GA GJ GA GJQ ξ β* α* B ξ β* α* F ξ β* α*     (2.3.52)  

Analogously to the stiffness matrix, the vector of the nodal resisting forces can be evaluated by 

means of the following closed form solution: 

, , ,

1

( , , ) ( , , , ) ( , , , )
m

T G G

e p p p

p

wξ ξ
=

≈ ⋅GA GJ GA GJ GA GJQ ξ β* α* B ξ β* α* F ξ β* α*    (2.3.53)  

 

 

Applying the Principle of Virtual Work, it is possible to obtain the vector of the nodal forces 

equivalent to the external load: 
1

, ,

0

( ) ( , , , ) ( , , , )T T

e e
dδ ξ δ ξ ξ ξ= ⋅ ∀

GA GJ GA GJP q f u ξ β* α* u ξ β* α*    (2.3.54)  

where: 
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( )
( )

( )

p

t

ξ
ξ

ξ
 

=  
 

f            (2.3.55)  

, ( , , )
( , , , )

( , , )

u ξξ
θ ξ
 

=  
 

GA
GA GJ

GJ

ξ β*
u ξ β* α*

ξ α*
        (2.3.56)  

Substituting Equation (2.3.33) , neglecting the contribution of the external load, in Equation 

(2.3.54), it is possible to obtain: 
1

,

0

( ) ( , , , )T T

e e e e
dδ ξ ξ ξ δ δ= ⋅ ⋅ ∀

GA GJP q f N ξ β* α* q q      (2.3.57)  

Therefore, the vector of the nodal forces equivalent to the external load is: 
1

, ,

0

( , , ) ( , , , ) ( )T

e
dξ ξ ξ= ⋅

GA GJ GA GJP ξ β* α* N ξ β* α* f       (2.3.58)  

As before, it can be evaluated by means of the following closed form solution: 

, ,

1

( , , ) ( , , , ) ( )
m

T G G

e p p p

p

wξ ξ
=

≈ ⋅GA GJ GA GJP ξ β* α* N ξ β* α* f      (2.3.59)  

 
In case the multi-stepped beam element is subjected only to Fn  concentrated forces

, 1, ,r FF r n= … , applied at the abscissae 
rFξ  with eccentricity er, the load terms become: 

( )
1

( )
nF

Fr r

r
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0 0
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Useful quantities: 

( )1 0I
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Graphical representation of the shape functions 

The shape functions of the step-wise shear-torsional beam finite element are able to reproduce 

correctly the static deflection of a multi-stepped beam, even in presence of localisation of plastic 
deformations at a storey. Of course, the shape functions depend on the stiffness jumps jβ  and 

jα  of each beam segment. In case of uniform beam segments, the shape functions are equal to 

the shape functions of a uniform shear-torsional beam element. 

In order to provide a graphical representation of these shape functions, a beam finite element 

with length equal to 6 m has been considered. The beam finite element has been divided into 6 

uniform segments of equal length, as reported in Figure 2.14. Three case studies, which assume 

different steel section profiles in each uniform beam segment as reported in Table 2.1, are 

analysed. The adopted shear modulus is G = 80769 MPa. 

 

 

Figure 2.14 - Investigated beam finite element 

Table 2.1 - Adopted section profiles for each beam segment 

Beam 

segment 

Case 1 

Uniform 

Case 2 

Step-wise 

Case 3 

Soft-segment 

 Profile Profile Profile 

A HE 240 A HE 240 A HE 240 A 
B HE 240 A HE 240 A HE 240 A 
C HE 240 A HE 180 A HE 120 A 
D HE 240 A HE 180 A HE 240 A 
E HE 240 A HE 120 A HE 240 A 
F HE 240 A HE 120 A HE 240 A 

 

Table 2.2 - Profile areas 

Profile 
Area  

10-4 [m2] 

HE 240 A 76.8 
HE 180 A 45.3 
HE 120 A 25.3 

  

In Figure 2.15 the two shape functions for the shear behaviour have been reported for each case 

study: Uniform beam element (blue), Step-wise beam element with decreasing size of the section 

profile (red) and beam element with segment C having smaller cross section than the others 

(soft-segment, green). The torsional shape functions have similar graphical representation.  

E
1 1 1

6

B FC
1 1 1

A D
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Figure 2.15 - Shear shape functions of a step-wise beam element 
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Inelastic beam finite element for the beam-like model 

In this paragraph, the step-wise shear-torsional beam finite element is adopted for the static 

non-linear analysis of the inelastic beam-like model.  

A unique step-wise shear-torsional beam finite element is adopted for the entire beam-like 

model, each beam finite element segment with uniform stiffness corresponding to an inter-
storey building. In particular, the singularities positions jβξ  and jαξ  coincide with the floor 

levels.  

For the sake of simplicity, the chosen G points represent control sections of the beam segments 

where the plastic constitutive laws are usually integrated according to a discrete incremental 

approach. In this case, the G points are assumed to be coincident with the central position of 

each uniform finite element segment, except for the first beam segment where the G point is 

located at the initial end.  Therefore, the constitutive law of each beam segment is assumed to 

be equal to the constitutive law of the corresponding inter-storey and the total number of beam 

segments is equal to the number of inter-storeys of the building. The terms jw  are the 

dimensionless length of the uniform beam segments.  

According to the classical Newton–Raphson approach for the solution of non-linear incremental 

problems in the context of holonomic plasticity in each time step, an incremental iterative 

procedure is followed. Initially, the parameters jβ  and jα  represent the shear and torsional 

stiffness jumps with respect to the reference values 0 0G A  and 0 0TG J ,respectively, along the 

beam axis. In the generic step of the incremental integration procedure in presence of plastic 

occurrences, the parameters jβ  and jα  have to be updated according to the current internal 

force-relative displacement state and the inter-storey constitutive law.  

In Figure 2.16 the beam-like model with m beam segments (and control sections) is depicted. 

The dimensionless length of the uniform beam segments and the positions of the G points are 

indicated with jw  and G

jξ , respectively.  

 

Figure 2.16 - Beam-like model according to the proposed inelastic finite element  
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SECTION 3. THE ADOPTION OF THE BEAM-LIKE 

MODEL FOR SEISMIC ASSESSMENT OF BUILDINGS 
 

Nowadays the seismic vulnerability assessment of new and existing buildings is one of the most 

important tasks focused by researchers. The link between the seismic hazard and the effects on 

the built environment can be established by means of fragility curves. In this section, a brief 

description of fragility curves and their construction process is reported. These curves can be 

evaluated either by means of a complete FEM non-linear model of the building or a low-cost 

beam-like model. In the numerical section it will be emphasized how the proposed beam-like 

model can be very useful for the seismic assessment of existing buildings. In fact, it will be 

shown that analytical fragility functions can be estimated by performing non-linear dynamic 

analyses on the equivalent beam-like model drastically reducing the required computational 

effort but still maintaining a high level of accuracy.  

 

3.1 FRAGILITY CURVES 

A fragility function specifies the probability of collapse, or some other limit states of interest, of 

a structure as a function of some ground motion intensity measure (IM). The term collapse refers 

in general to the achievement of a fixed threshold (DT) by the chosen Damage Parameter (DP). 

Therefore, in the following the probability of collapse is used to refer to the probability of 

reaching a limit state of interest.  

The IM of the ground motion should describe its main intensity characteristics and may be 

related to time-history, to energy-content or to spectral components. It could be represented by 

different parameters such as the Peak Ground Acceleration (PGA), the spectral acceleration 

corresponding to the first period of vibration of the structure (Sa(T)), the Housner Intensity 

(SIH), the Energy density (Iv), the strong motion time duration (tD), etc. While, on the other 

hand, the DP should be a simple output of the structural analyses. Displacement of the top floor, 

inter-storey drifts ratio or floor accelerations can be chosen for example as Damage Parameters. 

In Figure 3.1 an example of fragility function for a hypothetic building has been reported. It 

clearly shows the probability of collapse for a fixed IM level. For example, for a ground motion 

with IM = 0.75, the probability of collapse of the building is about 80%. 

 

Figure 3.1 - Example of a fragility function 
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The fragility curves have been estimated following the Baker statistical procedure, reported in 

[106] and briefly described in the following.  

Two different approaches can be used for the evaluation of the fragility curves: the first follows 

the incremental dynamic analysis (IDA) procedure, while the second follows the multiple stripe 

analysis (MSA) procedure. In the IDA a suite of ground motions is repeatedly scaled in order to 

find the IM level at which each ground motion causes collapse. In the MSA the analysis is 

performed at a specified set of IM levels, each of which has a unique ground motion set. The 

second one allows to reduce the number of non-linear dynamic analyses to be performed for 

different ground motions at varying intensity levels.  

A lognormal cumulative distribution function is often used to define a fragility function: 
ln( )

( )
x

P C IM x
µ

σ
− = = Φ  

 
        (3.1.1) 

where ( )P C IM x=  is the probability that a ground motion with IM=x will cause the structure 

to collapse, ( )Φ  is the standard cumulative distribution function (CDF), µ  is the median of 

the fragility function (lnIM), σ  is the standard deviation of lnIM. Calibration of Equation (3.1.1) 
for a given structure requires estimating µ  and σ  from structural analysis results. Their 

estimated values will be denoted as µ̂  and σ̂  in the following. 

There are two common statistical approaches for estimating parameters from data. The method 

of moments finds parameters such that the resulting distribution has the same moments (e.g. 

the mean and standard deviation) of the sample moments of the observed data. The maximum 

likelihood method finds the parameters such that the resulting distribution has the highest 

likelihood of having produced the observed data.  

In the following, appropriate methods for estimating parameter values for the fragility function 

that are consistent with the data collected as results of the IDA or MSA are briefly described.  

 

Incremental Dynamic Analysis  

Incremental dynamic analysis involves scaling each ground motion in an opportune range until 

it causes the collapse of the structure [107]. This process produces a set of IM values associated 

with the collapse limit state for each ground motion, as illustrated in Figure 3.2a. For a given 

IM=x, the probability of collapse can be estimated as the cumulative frequency of the analyses 

reaching collapse at a level lower than x.  

These probabilities are referred to as an empirical cumulative distribution function, and are 

illustrated in Figure 3.2b. Fragility function parameters can be estimated from this data by 

taking logarithms of each ground motion’s IM value associated with onset of collapse, and 

computing their mean and standard deviation [108]: 

1

1
ˆ ln
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=

=            (3.1.2) 
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= −
−           (3.1.3) 

where n is the number of ground motions considered, and IMi is the IM value associated with 
onset of collapse for the i-th ground motion. This is a method of moment estimators, as µ  and 

σ  are the mean and standard deviation, respectively, of the lognormal distribution representing 

the IM values. The mean and standard deviation, or moments, of the distribution are estimated 
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using the sample moments from a set of data. A fragility function fitted using this approach is 

shown in Figure 3.2b. 

 

Figure 3.2 - a) Example IDA results, used to identify IM values associated with collapse for each 
ground motion; b) observed fractions of collapse as a function of IM, and a fragility function estimated 

using equations (3.1.2) and (3.1.3) - [106] 

 

Truncated Incremental Dynamic Analysis  

In the incremental dynamic analysis some ground motions may need to be scaled to large IM 

values in order to produce collapse; this procedure raises several concerns which are illustrated 

in the following. First of all, in order to observe collapse, many structural analyses have to be 

performed with increasing IM levels, therefore it is computationally expensive. Second, the 

large-IM results are less practically relevant, as the fragility function values at large-IM levels 

are less interesting than the values corresponding to small-IM levels. Furthermore, scaling 

typical moderate-IM ground motions up to extreme IM levels is not an accurate way to represent 

earthquakes of such large-IM levels [109].  

A different strategy has been proposed in [106] in order to overcome these limitations. In 

particular, incremental dynamic analysis is performed only up to a level, IMmax, above which no 

further non-linear dynamic analyses are performed. Illustrative results from this type of 

analysis are shown in Figure 3.3a. Therefore, if n ground motions are used in the analysis, there 

will in general be m ground motions that caused collapse at IM levels lower that IMmax and n-m 

ground motions that did not cause collapse prior to the analysis being stopped. 

The data collected in this type of analysis cannot be used to estimate the fragility function 
parameters by using Equations (3.1.2)-(3.1.3). However, it is possible to estimate µ  and σ  by 

using the maximum likelihood method to compute the likelihood of observing the data obtained 

in the analysis.  
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Figure 3.3 - a) Example truncated IDA analysis results; b) observed fractions of collapse as a function 
of IM, and a fragility function estimated using equation (3.1.7) - [106] 

The IM values at collapse (IMi) for the m ground motions causing collapse are known. Assuming 

Equation (3.1.1) for the definition of the fragility function, the likelihood that an arbitrary 

ground motion with IMi causes collapse is given by the lognormal distribution probability 

density function (PDF): 
ln( )

Likelihood iIM µφ
σ

− =  
 

        (3.1.4) 

where ( )φ  denotes the standard normal distribution PDF. The n-m ground motions that did 

not cause collapse at IMmax are called censored data, since it is possible to know only that the 

corresponding IMi are greater than IMmax. The likelihood that a given ground motion can be 

scaled to IMmax without causing collapse is the probability that the corresponding IMi is greater 

than IMmax: 

maxln( )
Likelihood 1

IM µ
σ

− = − Φ  
 

        (3.1.5) 

Assuming that the IMi value for each ground motion is independent, the likelihood of the entire 

observed data set is the product of the individual likelihoods: 
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∏     (3.1.6) 

where ∏  denotes a product over i values from 1 to m (corresponding to the m ground motions 

that caused collapse at IM levels lower than IMmax). Maximizing this Likelihood Equation, the 

fragility function parameters can be estimated. It is mathematically equivalent and numerically 

easier to maximize the logarithm of the likelihood function: 
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     

   (3.1.7) 

A fragility function obtained using this Equation is shown in Figure 3.3b. It is worth noting that 

in the special case where all the n ground motions cause collapse at IM values lower than IMmax, 

the solution of Equation (3.1.7) is equivalent to the Equations (3.1.2)-(3.1.3), except that the “n-

1” in Equation (3.1.3) is an “n” in Equation (3.1.7). furthermore, the normal distribution PDF 
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and CDF in Equation (3.1.7) can be replaced with the PDF and CDF of another distribution 

type, in order to fit a fragility function for some other distributions.  

 

Multiple Stripe Analysis 

The fragility functions can be estimated with a different approach than IDA, by using the 

Multiple Stripe Analysis, where the structural analyses are performed at a discrete set of IM 

levels and different ground motions are used at each IM level. Following this approach, the 

analysis need not to be performed up to IM amplitudes where all ground motions cause collapse.  

An example of MSA results is shown in Figure 3.4a. Due to the differing ground motions used 

at each IM level, strictly increasing fractions of collapse with increasing IM level may not be 

observed, even though it is expected that the true probability of collapse is increasing with IM. 

With this type of data, it is not possible to estimate the fragility function parameters by using 

the approaches described above, because the IMi values associated with the onset of collapse for 

a given ground motion are unknown. Instead, the structural analysis results provide the 

fraction of ground motions that cause collapse at each IM level. The appropriate fitting 

technique for this type of data is to use the method of maximum likelihood, briefly described in 

the following.  

At each intensity level IM=xj, the dynamic analyses produce some number of collapses out of a 

total number of ground motions. Assuming that observation of collapse or no-collapse from each 

ground motion is independent on the observations from other ground motions, the probability 

of observing zj collapses out of nj ground motions with IM=xj is given by the binomial 

distribution: 

( ) ( )collapses in ground motions 1
j jj

n zj z

j j j j

j

n
P z n p p

z

− 
= − 
 

    (3.1.8) 

where jp  is the probability that a ground motion with IM= xj will cause collapse of the structure. 

The goal is to identify the fragility function that will predict jp , and the maximum likelihood 

approach identifies the fragility function that gives the highest probability of observing the 

collapse data obtained from dynamic analyses. The likelihood of the entire data set is obtained 

by the product of the binomial probabilities (Equation (3.1.8)) at each IM level: 
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where m is the number of IM levels. Substituting Equation (3.1.1) in jp , it is possible making 

explicit the fragility function parameters in the likelihood function: 
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Estimates of the fragility function parameters are obtained by maximizing this likelihood 

function. It is equivalent and numerically easier to maximize the logarithm of the likelihood 

function: 
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  (3.1.11) 

A fragility function obtained using this approach is plotted in Figure 3.4b. 
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Equation (3.1.11) has been obtained using a lognormal cumulative distribution function for the 

fragility function, but other functions can be substituted without changing the fitting approach. 

It is worth noting that this formulation does not require multiple observations at each IM level 

of interest (i.e. ni can equal 1). This makes it useful, for example, when fitting a fragility function 

using unscaled ground motions, each having unique IM amplitude.  

 

Figure 3.4 - a) Example MSA analysis results. Analyses causing collapse are plotted at Peak Storey 
Drift Ratios greater than 0.08, and are offset from each other to aid in visualizing the number of 

collapses; b) observed fractions of collapse as a function of IM, and a fragility function estimated using 
equation (3.1.11) - [106] 
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SECTION 4. NUMERICAL APPLICATIONS 
 

In this section, the reliability of the beam-like model has been investigated by performing 

structural analyses on two benchmarks. The first case study is a multi-storey RC frame denoted 

as “Edificio Catania”, while the second one is the well-known SAC9 building already considered 

in the scientific literature. In the following, the “Edificio Catania” has been first presented, then 

static and dynamic analyses have been performed by means of both its equivalent elastic and 

inelastic beam-like models. Fragility curves for this building have been also obtained by using 

the equivalent inelastic beam-like model. 

Finally, the inelastic beam-like model has been used for the static and dynamic non-linear 

analyses of the SAC9 building. 

 

4.1 CASE STUDY 1: EDIFICIO CATANIA 

In order to apply the proposed procedure to real structures, a multi-storey RC frame 

representative of residential buildings designed to resist only gravity loads has been considered. 

The considered building has been chosen as benchmark, characterised by different number of 

storeys, within an extensive survey focused on multi-storey RC buildings built in Catania, Italy, 

before the introduction of the seismic code [110, 111, 112].  

The building here considered has 6 storeys, each one having inter-storey height equal to 3.3 m 

except the first storey which has an inter-storey height equal to 4.3 m.  The dimensions of the 

cross sections of the beams on the edge were assumed to be 30 × 50 cm2, while all the remaining 

beams have a 110 × 23 cm2 size. The columns were assumed fully fixed at the base. A reduction 

along the height of the building in the column cross-section has been introduced as shown in 

Figure 4.2. The material properties were characterised by a Young’s modulus of 29962 MPa, a 

Poisson ratio equal to 0.2 and a mass density of 25 kN/m3.  

 

(a) (b) 

Figure 4.1 - 3D FEM model (a) and plan of the building (b) 
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Figure 4.2 - Cross sections of the columns 

The floors haven’t been modelled, but they are reported as uniformly distributed area loads 

according to Table 4.1. The loads referring to the balcony and the stairs have been reported as 

uniformly distributed line loads according to Table 4.2 and Figure 4.3. Floor diaphragms have 

been also introduced.  

Table 4.1 - Area loads 

 
Gk Qk 

 
[kN/m2] [kN/m2] 

1°-2°-3°-4°-5° FLOOR 6,25 2 

TOP FLOOR 5,25 2 

BALCONY 4,60 4 

STAIRS 7,87 4 

 

Table 4.2 - Line loads 

 
Gk Qk Gk_tamp 

 [kN/m] [kN/m] [kN/m] 

EDGE BEAMS - Balcony 6,89 6,00 5,67 

EDGE BEAMS - Balcony – Top 

floor 6,89 6,00 2,84 

STAIRS BEAMS 17,71 9   

 

    

Figure 4.3 - From left to right: area, infill, balcony and stairs applied load position 
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4.2 CASE STUDY 1: BEAM LIKE MODEL - LINEAR ELASTIC 

BEHAVIOUR 

 

In this paragraph the linear elastic behaviour of the considered building has been studied by 

means of the elastic beam-like model.  

First, the calibration procedure was performed. Then the proposed multi-stepped beam was 

adopted for simulating the static and dynamic behaviour of the building and the results, in 

terms of static and seismic response, were compared to those obtained by means of a 

conventional 3D FEM model developed with SAP2000 v.23 [113]. 
The static displacements of the nodes at each floor have been evaluated by considering a uniform 

and an inverse triangular force distribution. The forces in the FEM and in the beam-like models 

are applied to the center of gravity (centroid) of each floor of the building, separately in the x 

and y directions. The values of the applied forces from the bottom to the top floor in the two load 

conditions are assumed as follows: 

a) [100 100 100 100 100 100] kN;  

b) [20.67 36.54 52.40 68.27 84.13 100] kN. 

Aiming at simulating representative seismic inputs that may occur on the Italian peninsula, 

linear dynamic analyses were performed by considering, in the x and y directions, two real 

seismic records [114] that occurred in Santa Venerina (2018) and L’Aquila (2009), plotted, 

respectively, in Figure 4.4a-b. Some characteristic data of the two records (PGA, PGV, PGD, 

distance for epicentre) are reported in Table 4.3. In all the time-histories, constant modal 

damping ratios jξ  = 0.05, for all considered modes, were assumed.  

Table 4.3 - Records adopted in numerical simulation 

Record State Date Hour Mw 
Dist. 

(km) 

PGA 

(cm/s2) 

PGV 

(cm/s) 

PGD 

(cm) 

Lat. 

(°) 

Long. 

(°) 

Santa 
Venerina 

Italy 2018-12-26 02:19:17 4.9 6.9 −547.932 (E) 37.128 (E) 5.696 (E) 37.644 15.116 

L’Aquila Italy 2009-04-06 01:32:40 6.1 4.9 644.246 (E) −42.720 (N) 6.789 (E) 42.342 13.380 

 

  

 

(a)     (b) 

Figure 4.4 - Accelerograms of (a) Santa Venerina (2018) and (b) L’Aquila (2009).  
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4.2.1 Calibration procedure 

Aiming to numerically compare, for the considered building, the modal shapes that have been 

obtained by means of the beam-like and the FEM models, a consistency indicator is needed. The 

Modal Assurance Criterion (MAC) is here used calculating the following matrix elements:  

( )
( )( )

2

, ,

, , , ,

T

i BL j FEM

ij T T

i BL i BL j FEM j FEM

MAC
⋅

=
⋅ ⋅

φ φ

φ φ φ φ
       (4.2.1) 

where each term of the MAC matrix is bounded between 0 and 1. 

Taking into account the orthogonality properties of the modes of vibration, a perfect coincidence 

between the modal shapes in the two models would provide a diagonal unitary matrix. 

Therefore, values close to 1 in the main diagonal of the matrix indicate a good correspondence 

of the modal shapes, while low values indicate that the modes are not consistent [115].  

 

With reference to the number of eigen-properties required to accurately evaluate the stiffness 

of the equivalent beam, after some numerical analyses it has been verified that in this case it is 

sufficient to consider the first three frequencies and the corresponding mode shapes. Namely, 

in the optimization problem of the stiffness coefficients, for the considered building, due to the 

contemporary presence of the considered irregularities (in the horizontal and in the vertical 

distribution of stiffness), besides the first three frequencies, the mode shape displacements at 

the top floor of the first three modes of vibration have been taken into account in Eq. (2.1.31). 

 
The validity of the latter statement has been proved by evaluating the stiffness correction 

coefficients for the equivalent beam like model either by including or neglecting the modal 

shapes in the objective function ( 1β =  and 0β = , respectively). The corresponding modes of 

vibration of the beam-like and FEM models have then been numerically compared by means of 

the MAC.  
For the analysed building the MAC_A and MAC_B matrices ( 1β =  and 0β = , respectively) 

assume the following expressions:   

1, 2, 3,

1,

2,

3,

0.9958 0 0

MAC_A 0 0.9976 0.0905

0 0.1223 0.9952

FEM FEM FEM

BL

BL

BL

ϕ ϕ ϕ
ϕ
ϕ
ϕ

 
 =  
  

      (4.2.2) 

1, 2, 3,

1,

2,

3,

0.9958 0 0

MAC_B 0 0.3345 0.9128

0 0.5783 0.1382

FEM FEM FEM

BL

BL

BL

ϕ ϕ ϕ
ϕ
ϕ
ϕ

 
 =  
  

       (4.2.3) 

The observation of the two MAC matrices clearly shows that the addition of the modal shapes 

in the objective function provides a more precise correspondence between the modes of vibration 

of the beam-like and the FEM models and consequently increases the accuracy in the evaluation 

of the dynamic response by means of the proposed procedure. 

 

Numerical analyses on the appropriate number of shape functions to be used in the Rayleigh-

Ritz discretization in order to obtain an accurate seismic response have been previously carried 
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out. It is possible to show that the increase in the number of Rayleigh-Ritz components (mode 

shapes of a uniform shear cantilever beam) allows to reduce the differences with respect to the 

results obtained through the FEM model. In this case, the number of shape functions adopted 

in the Rayleigh-Ritz discretization is equal to 10. 

 
For the considered building, the minimization of the objective function provided the following 

values for the stiffness correction coefficients: 0.36111; 0.54568; 0.41421
x y c

k k k= = = , assumed 

uniform along the height of the equivalent beam.  

Table 4.4, Figure 4.5 and Table 4.5 compare three periods, modal shapes and modal 

participating masses, respectively, calculated through the FEM approach to those obtained by 

means of the proposed beam like model. The geometry of the building is reconstructed simply 

by assuming a rigid diaphragm behaviour at the floor levels. 

Table 4.4 - Modal periods comparison 

Type Mode 1 Mode 2 Mode 3 

FEM 1.458 s 1.278 s 1.213 s 
Proposed beam-like model 1.458 s 1.251 s 1.236 s 

 

(a) 

 
  

(b) 

   

 Mode 1 Mode 2 Mode 3 

Figure 4.5 - Modal shapes comparison between the (a) FEM and (b) beam-like models 
 

Table 4.5 - Modal participating masses comparison 

Mode1 UX UY RZ 

FEM 79% 0% 0% 
Proposed beam-like model 76.3% 0% 0% 

Mode2 UX UY RZ 
FEM 0% 69% 11% 

Proposed beam-like model 0% 69.1% 9.0% 
Mode3 UX UY RZ 
FEM 0% 11% 68% 

Proposed beam-like model 0% 9.2% 66.6% 
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As it can be observed from Figure 4.5, Table 4.4 and Table 4.5, there is very good agreement 

between the results obtained from the beam-like model and those related to the 3D FEM model, 

for all the modal properties related to the first two translational modes and to the third torsional 

one.  

4.2.2 Static response 

The static displacements of the beam-like model have been obtained by means of the two 

different approaches presented in 2.1.8 and in 2.3.1, respectively. The first one considers the 

described Rayleigh-Ritz discretization of the multi-stepped beam and evaluates the static 

displacements by means of the construction of the stiffness matrix. The second approach is 

based on a closed form solution of the considered multi-stepped beam appropriately derived.  

The reliability of the beam-like model has been evaluated by comparing the static displacements 

in the x and y directions of some control points located at the upper left and the lower right 

corners of each floor (nodes A.4 and H.1 whose positions in plan are shown in Figure 4.1b).  

The figures show the displacements in the x and y directions for the beam-like model obtained 

by means of the Rayleigh-Ritz approach (red line), the closed form solution (blue line) and the 

ones obtained on the FEM model of the building (black line). The results plotted in Figure 4.6 

and Figure 4.7 clearly show the accuracy of both the proposed discretization approaches for the 

evaluation of the linear static response of the considered building. 

a)  

b)  

Figure 4.6 - Static displacements in x and y direction for uniform force distribution applied in a) x and 
b) y direction. Red line: Multi-stepped equivalent beam with Rayleigh-Ritz discretization. Blue line: 
Closed form solution for the equivalent beam multi-stepped beam. Black line: FEM model of the building 
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a)  

b)  

Figure 4.7 - Static displacements in x and y direction for inverse triangular force distribution applied in 
a) x and b) y direction. Red line: Multi-stepped equivalent beam with Rayleigh-Ritz discretization. Blue 
line: Closed form solution for the equivalent beam multi-stepped beam. Black line: FEM model of the 
building 

4.2.3 Dynamic response 

The dynamic response of the beam-like model has been obtained by means of the approach 

presented in 2.1.9, which considers the described Rayleigh-Ritz discretization of the multi-

stepped beam. 

The reliability of the beam-like model has been evaluated by comparing the time histories of the 

x and y displacements and accelerations of some control points. 

For the sake of brevity, in the following only the results related to two control points located at 

the upper left and the lower right corners of each floor are reported (nodes A.4 and H.1 in Figure 

4.1b). These control points have been chosen in order to highlight possible non negligible 

torsional effects. Furthermore, the maximum displacements of the same corners located at each 

floor and the maximum inter-storey drifts were calculated. 
Figure 4.8 and Figure 4.9 report the displacement time histories of the control points at each 

floor in both the x and y directions, calculated by means of the beam-like (red-line) and FEM 

(black line) models during the considered seismic excitations. In particular Figure 4.8 and 

Figure 4.9 report, respectively, the x and y displacements due to the Santa Venerina and 

L’Aquila earthquake loading.  
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a)  

b)  

Figure 4.8 - Displacement time histories along the x and y direction for the control points a) A.4 and b) 
H.1 at each floor for Santa Venerina earthquake. 
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a)  

b)  

Figure 4.9 - Displacement time histories along the x and y direction for the control points a) A.4 and b) 
H.1 at each floor for L’Aquila earthquake. 
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Figure 4.10 reports the floor rotation time history, calculated at each floor by means of the beam-

like (red-line) and FEM (black line) models during the considered seismic excitations. In 

particular Figure 4.10 a-b report, respectively, the top floor rotation due to the Santa Venerina 

and L’Aquila earthquake loading. It can be observed that the values of the floor rotations are 

very small, as a consequence the differences between the beam-like and the FEM models can be 

considered negligible since do not provide significant displacements. 

 

a) b)  

Figure 4.10 - Top floor rotation time history for a) Santa Venerina and b) L’Aquila earthquake. 

 

Figure 4.11 and Figure 4.12 report the acceleration time histories of the control points in both 

the x and y directions, calculated by means of the beam-like (red-line) and FEM (black line) 

models during the considered seismic excitations. In particular Figure 4.11 and Figure 4.12 

report, respectively, the x and y accelerations due to the Santa Venerina and L’Aquila 

earthquake loading.  
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a)  

b)  

Figure 4.11 - Acceleration time histories along the x and y direction for the control points a) A.4 and b) 
H.1 at each floor for Santa Venerina earthquake. 
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a)  

b)  

Figure 4.12 - Acceleration time histories along the x and y direction for the control points a) A.4 and b) 
H.1 at each floor for L’Aquila earthquake. 
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Once again, it must be remarked how the proposed approach is able to correctly reproduce the 

time history of any chosen point on the building. Finally, as it can be observed in Figure 4.13-

Figure 4.14 and Figure 4.15-Figure 4.16 respectively, also the maximum displacements and 

inter-storey drifts normalised by the storey height of the same corners located at each floor, 

calculated by means of the beam-like model, give very accurate results.  

 

a) b)  

Figure 4.13 - Maximum floor displacements for the control points a) A.4 and b) H.1 at each floor in the 
Santa Venerina earthquake. 

a) b)  

Figure 4.14 - Maximum floor displacements for the control points a) A.4 and b) H.1 at each floor in the 
L’Aquila earthquake. 
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a) b)  

Figure 4.15 - Maximum inter-storey drifts normalised by the storey height for the control points a) A.4 
and b) H.1 in the Santa Venerina earthquake. 

a) b)  

Figure 4.16 - Maximum inter-storey drifts normalised by the storey height for the control points a) A.4 
and b) H.1 in the L’Aquila earthquake. 
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4.3 CASE STUDY 1: BEAM LIKE MODEL - INELASTIC BEHAVIOUR 

 

In this chapter the non-linear behaviour of the “Edificio Catania” has been studied by means of 

the inelastic beam-like model presented in paragraph 2.2.  

The non-linear static and dynamic analyses on a FEM model of the building have been 

performed using the software SAP2000 v.23 [113]. The global non-linear behaviour of the 

structure has been modelled by introducing plastic hinges at the ends of all the structural 

elements (beams and columns). In particular, P-M2-M3 hinges have been used for columns and 

M3 hinges for beams, where shear failure has been neglected, according to the idealized flexural 

hinge criteria.  

First, the calibration procedure, already described in paragraph 2.2.3, was performed. Then the 

proposed multi-stepped beam was adopted for simulating the static and dynamic inelastic 

behaviour of the building and the results, in terms of static and seismic response, were compared 

to those obtained by means of the conventional 3D FEM model. 

Since the capacity curves depend on the applied distribution of forces, different loading patterns 

have been taken into account in order to investigate the corresponding differences in predicting 

the inelastic responses, as better specified in the following. 

The complete FEM and the beam-like models of the building have been subjected to a static 
force vector 

b
F  according to the following relationships:  

b b=F M φ            (4.2.4) 

where φ  is the fixed displacement distribution and bM  is the diagonal mass matrix which 

considers lumped masses at the nodes due to the applied seismic masses.  

In particular, the following three force distributions have been considered in the numerical 

applications:  

a) mass proportional force distribution (Figure 4.17a-Figure 4.18a); 
b) inverse triangular proportional force distribution (Figure 4.17b-Figure 4.18b); 
c) force distribution associated with the fundamental natural mode (Figure 4.17c-Figure 

4.18c). 

The forces in the FEM and in the beam-like models are applied to the center of gravity (centroid) 

of each floor of the building, separately in the x and y directions. The values of the applied forces 

from the bottom to the top floor in the three load conditions are assumed as shown in Figure 

4.17 and Figure 4.18. 

 

Figure 4.17 - Lateral force distribution types in x direction: a) Mass proportional, b) inverse triangular 
mass proportional and c) associated with fundamental mode. 
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Figure 4.18 - Lateral force distribution types in y direction: a) Mass proportional, b) inverse triangular 
mass proportional and c) associated with fundamental mode. 

 
Aiming to simulate representative seismic inputs that may occur on the Italian peninsula, non-

linear dynamic analyses were performed by considering the two real seismic records in the x 

and y directions that occurred in Santa Venerina (2018) and L’Aquila (2009), already presented 

in 4.2 for the linear dynamic analyses. 

 

4.3.1 Calibration procedure 

The results of the non-linear static analysis performed on the FEM model with displacement 

control have been reported in terms of inter-storey capacity curves for the three described load 

distributions (a, b, c) in Figure 4.19 and Figure 4.20 in the x and y directions, respectively.  

 

 

Figure 4.19 - Inter-storey capacity curves in x direction for load distribution a (blue), b (red) and c 
(black) 
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Figure 4.20 - Inter-storey capacity curves in y direction for load distribution a (blue), b (red) and c 
(black) 

 

Some further analyses have been performed in order to study with more accuracy the non-linear 

behaviour of the considered building. In particular, a static non-linear analysis has been 

performed on the FEM model with displacement control by applying a displacement distribution 

equal to the fundamental natural mode in the considered direction, reported in Figure 4.21. Also 

in this case, the results in terms of inter-storey capacity curves have been compared to the ones 

obtained by applying the first two load distributions (a, b) in Figure 4.22 and Figure 4.23 in the 

x and y directions, respectively. This displacement distribution will be denoted as d) and 

compared to the previous load distributions a-b-c in the following. 

 

 

Figure 4.21 - Lateral displacement distribution type, equal to the fundamental mode in x (left) and y 
(right) directions. 
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Figure 4.22 - Inter-storey capacity curves in x direction for load distribution a (blue), b (red) and 
displacement distribution d (black) 

 

Figure 4.23 - Inter-storey capacity curves in y direction for load distribution a (blue), b (red) and 
displacement distribution d (black) 
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The beam-like model has been calibrated by following the procedure described in paragraph 

2.2.3. As first step, the inelastic inter-storey responses, reported in Figure 4.19 and Figure 4.20, 

have been considered for the calibration of the inelastic multi-stepped beam. As second step, the 

obtained inter-storey capacity curves have been transformed into equivalent bilinear elasto-

plastic force-displacement laws with positive kinematic hardening. The equivalence has been 

obtained by imposing the equality between the areas below the non-linear and bilinear capacity 

curves and assuming as initial inter-storey stiffness the tangent to the origin of the inter-storey 

capacity curve. With regard to the curves reported in black in Figure 4.22 and Figure 4.23 

obtained by applying a displacement distribution, the equivalence has been obtained by 

imposing an energy equivalence criterion on the hysteresis loop and still assuming as initial 

inter-storey stiffness the tangent to the origin of the inter-storey capacity curve. It is worth 

remembering that in general a symmetric elasto-plastic behaviour with kinematic hardening is 

adopted, while an elasto-perfectly plastic behaviour is adopted if the inter-storey force-

displacement law shows a softening behaviour.  

The stiffness values of each beam segment, assumed as initial stiffness in the successive non-

linear analyses, are reported in Table 4.6; the latter data, together with the mass distribution, 

allow to define the linear elastic behaviour of each beam-like model associated with each load 

or displacement distribution. In Table 4.7 and Table 4.8 the inelastic limits and the hardening 

parameters for each beam segment are reported, respectively. No limits of the ductile behaviour 

have been considered since the limits of ductility have been checked a posteriori.  

The above described identified parameters are sufficient for the characterization of the non-

linear response of the beam-like model.  

Table 4.6 - Initial stiffness of each beam segment associated with each different load and displacement 
distribution 

Beam 

segment 

Height 

h [m] 

Initial stiffness 

R [N/m] · 10^8 

Force dist. a) Force dist. b) Force dist. c) Displ. dist. d) 

x y x y x y x y 

1 4.30 2.659 2.779 2.549 2.690 2.532 2.664 2.540 2.765 
2 3.30 2.027 2.264 2.034 2.282 2.033 2.286 2.027 2.209 
3 3.30 1.591 1.832 1.630 1.863 1.646 1.853 1.639 1.853 
4 3.30 1.237 1.326 1.258 1.339 1.263 1.358 1.253 1.351 
5 3.30 1.055 1.141 1.085 1.157 1.086 1.160 1.086 1.160 
6 3.30 0.980 1.055 1.019 1.098 1.008 1.084 1.011 1.095 

Table 4.7 - Yielding force of each beam segment associated with each different load and displacement 
distribution 

Beam 

segment 

Height 

h [m] 

Yielding force 

Fy [N] · 10^5 

Force dist. a) Force dist. b) Force dist. c) Displ.  dist. d) 

x y x y x y x y 

1 4.30 15.609 14.360 13.167 11.990 12.907 11.748 18.458 16.835 
2 3.30 12.240 10.651 11.553 9.909 11.569 9.820 6.827 5.644 
3 3.30 9.675 8.335 10.098 8.654 10.253 8.705 7.793 8.637 
4 3.30 7.390 6.425 8.523 7.464 8.727 7.565 7.521 8.209 
5 3.30 4.922 4.208 6.467 5.846 6.550 5.906 7.914 9.111 
6 3.30 2.316 2.056 3.075 2.804 2.953 2.679 5.782 6.975 
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Table 4.8 - Hardening parameter of each beam segment associated with each different load and 
displacement distribution 

Beam 

segment 

Height 

h [m] 

Post yielding stiffness 

RT [N/m] · 10^6 

Force dist. a) Force dist. b) Force dist. c) Displ. dist. d) 

x y x y x y x y 

1 4.30 2.371 5.586 3.018 7.759 2.757 8.067 - - 
2 3.30 3.398 7.700 4.722 10.364 4.390 10.653 26.249 23.448 
3 3.30 2.725 6.586 3.974 8.554 3.796 8.708 - - 
4 3.30 1.918 5.966 2.795 6.938 2.658 7.003 9.163 13.532 
5 3.30 2.737 10.794 1.475 5.471 1.372 5.181 - - 
6 3.30 10.903 24.765 19.853 20.345 21.823 21.300 - 1.699 

 

Four bilinear relationships have been defined, each one representing the monotonic or cyclic 

inelastic inter-storey response of the building subjected to the considered force or displacement 

distribution. In Figure 4.24 and Figure 4.25 the inter-storey inelastic equivalent force-

displacement laws in x and y directions, relative to the mode proportional force distribution, are 

reported as an example, while in Figure 4.26 and Figure 4.27 the inter-storey inelastic 

equivalent hysteresis loops due to force-displacement laws, relative to the modal displacement 

distribution analyses, are reported. In particular, the inter-storey capacity curves or hysteresis 

loops (in black), the corresponding Back-Bone curves of the bilinear force-displacement laws (in 

red) and the extended Back-Bone curves without limits of the ductile behaviour (dashed in red) 

have been reported in each figure. 

 

 

Figure 4.24 - Inter-storey capacity curves (CapCurve in black), the corresponding Back-Bone curves 
(red) and the extended Back-Bone without limits of the ductile behaviour (BackBoneEx dashed in red) 

for mode proportional analysis in x direction 
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Figure 4.25 - Inter-storey capacity curves (CapCurve in black), the corresponding Back-Bone curves 
(red) and the extended Back-Bone without limits of the ductile behaviour (BackBoneEx dashed in red) 

for mode proportional analysis in y direction 

 

Figure 4.26 - Inter-storey hysteresis loops (HystLoop in black), the corresponding cyclic Back-Bone 
curves (red) and the extended Back-Bone without limits of the ductile behaviour (BackBoneEx dashed in 
red) for modal displacement distribution analysis in x direction 
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Figure 4.27 - Inter-storey hysteresis loops (HystLoop in black), the corresponding cyclic Back-Bone 
curves (red) and the extended Back-Bone without limits of the ductile behaviour (BackBoneEx dashed in 
red) for modal displacement distribution analysis in y direction 

 

4.3.2 Non-linear static response 

Once each inter-storey non-linear behaviour has been defined, it is possible to perform non-

linear pushover analyses by making use of the beam-like model.  

The non-linear pushover analyses of the equivalent beam model take into account load 

distributions equal to the above described initial force or displacement distributions (a, b, c, d) 

adopted for the FEM model. The forces are applied on the beam axis at the floor level and are 

proportionally increased until conventional values of 0.25 m or 0.2 m top displacements are 

obtained, respectively in x and y directions. The displacements are also applied on the beam 

axis at the floor level and are proportionally increased or decreased in order to obtain a closed 

cyclic capacity curve. 

In the case of applied force distributions, the Newton-Raphson iterative procedure, presented 

in Appendix C.1, has been used in order to evaluate the response of the beam-like model to the 

static non-linear loading process. Instead in the case of applied displacement distributions, the 

procedure presented in Appendix C.5 has been implemented. 

For each load distribution and for each considered direction, the capacity curves representative 

of the global behaviour of the building have been retrieved by considering the above described 

beam-like models. In Figure 4.28a-d and Figure 4.29a-d the comparisons between the global 

capacity curves, obtained by means of the FEM and the beam-like models, are reported showing 
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a satisfactory agreement. The differences arise from the simplified assumption on the inter-

storey constitutive laws adopted for the beam-like model. 

 

a)  b)  

c)  d)  

Figure 4.28 - Capacity curves in x direction for a) Mass proportional force distribution; b) Inverse 
triangular force distribution; c) Fundamental natural mode force distribution; d) Fundamental natural 
mode displacement distribution  

 

a)  b)  
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c)  d)  

Figure 4.29 - Capacity curves in y direction for a) Mass proportional force distribution; b) Inverse 
triangular force distribution; c) Fundamental natural mode force distribution; d) Fundamental natural 
mode displacement distribution 

 

The latter comparisons confirm the ability of the beam-like model to reproduce accurately the 

non-linear static response of the building even if the inter-storey force-displacement 

relationships has been replaced by equivalent bilinear inelastic behaviour with kinematic 

hardening or by equivalent elasto-perfectly plastic behaviour. 

In the following sub-section, the beam-like model is adopted to predict the non-linear dynamic 

response of the considered building by means of non-linear dynamic analyses. 

 

4.3.3 Non-linear dynamic response 

The dynamic response of the beam-like model was obtained by means of the approach presented 

in Appendix D. 

For each seismic record, four dynamic analyses have been performed both in direction x and y, 

each one assuming the inter-storey shear-displacement relationship corresponding to load or 

displacement distribution a), b), c) or d). The damping matrix C  has been obtained by setting 

the modal damping ratio equal to 5% for all the vibration modes (six as the number of degrees 

of freedom) of the beam-like model. 

The reliability of the non-linear dynamic response of the beam-like model was evaluated by 

comparing the time histories of the displacements of the centre of gravity at each floor in the 

considered direction. For simplicity, no limits have been considered in the available ductility at 

each floor level. In the FEM model, the displacements of the centre of gravity have been 

calculated as the mean values of the four corner nodes of the same floor. 
Figure 4.30.a-b and Figure 4.31.a-b report the time histories, expressed in terms of floor level 

displacements, for the four beam-like models in x and y directions for Santa Venerina e L’Aquila 

earthquakes, respectively, compared to the results of the FEM model.  
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a)  

 

b)  

Figure 4.30 - Dynamic response to Santa Venerina earthquake with constitutive law of the Beam-Like 
model associated with mass proportional (BL.a), inverse triangular (BL.b), mode proportional (BL.c) force 
distributions and mode displacement distribution (BL.d) in a) x and b) y directions 
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a)  

 

b)  

Figure 4.31 - Dynamic response to L’Aquila earthquake with constitutive law of the Beam-Like model 
associated with mass proportional (BL.a), inverse triangular (BL.b), mode proportional (BL.c) force 
distributions and mode displacement distribution (BL.d) in a) x and b) y directions 
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The results show that all the proposed inelastic beam models are able to reproduce the non-

linear dynamic behaviour of the entire building with a good accuracy. Some differences in terms 

of residual displacements can be observed with reference to the different distribution of force 

adopted for the calibration of the beam-like model. However, in terms of maximum displacement 

all the models are comparable.  

Differently from the analyses based on the equivalent SDOF system, it is worth noting that the 

beam-like model allows to compute the non-linear dynamic response at each floor level without 

introducing any kinematic constraint.  

The proposed beam-like model allows to reduce drastically the computational burden being 

related to a beam-like model characterised by a number of degrees of freedom equal to the 

number of floors, independently on the complexity of the full FEM model. In fact, the 

computational time required by the beam-like model for each dynamic non-linear analysis is 

about 60 times lower than the one required by a FEM model. 

 

4.3.4 Beam-like model versus N2 approach 

Aiming at comparing the beam-like model with another simplified approach proposed in the 

literature, the obtained results for the analysed structure have been compared with those 

provided by the SDOF-based N2 method proposed by Fajfar [71, 72].  

The inter-storey drifts provided by the N2 method have been retrieved by the 3D FEM model 

capacity curve. Precisely, the displacement distributions associated to the ultimate 

displacement, corresponding to the target point, obtained on the equivalent SDOF system, have 

been identified. This procedure has been applied for each of the three previously described force 

distributions (mass proportional, inverse triangular, mode proportional). The definition of the 

equivalent SDOF system has been obtained according to the bilinearization procedure 

suggested in the Eurocode 8 [86].  The main characteristics of the equivalent SDOF system 

(conventional notation has been used) are reported in Table 4.9. 

The seismic demand for the equivalent SDOF system has been calculated by means of non-

linear dynamic analyses, which were performed in x and y directions by considering the Santa 

Venerina and L’Aquila ground motions, already used in the previous paragraph. Consistently 

to the previously performed analyses, a damping ratio equal to 5% has been assumed. 

Table 4.9 - Characteristics of equivalent SDOF system 

Characteristic 
Force distribution a) Force distribution b) Force distribution c) 

x y x y x y 

m* [kg]·10^6 2.68 2.68 1.60 1.60 1.60 1.62 
Γ 1.00 1.00 1.39 1.39 1.33 1.33 
T* [s] 1.88 2.05 1.63 1.79 1.67 1.83 
Fy* [kN] ·10^3 1.70 1.70 1.03 1.05 1.06 1.08 
sy* [cm] 5.64 6.74 4.38 5.37 4.68 5.66 

 

The displacement time history of the top floor Centre of Mass (CM) of the building, assumed as 

control point in accordance with the N2 method and obtained by means of the N2 equivalent 

SDOF system, has been compared to: i) the top node displacement of the equivalent beam-like 

model and ii) to the FEM displacement time history of the top floor of the building. Furthermore, 
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the maximum floor displacements, as well as the maximum inter-storey drifts, have been 

compared.  

The results of the dynamic analyses for each adopted force distribution a), b) and c) in the 

pushover analysis are shown in Figure 4.32a-d, Figure 4.33 a-d, Figure 4.34 a-d, respectively. 

Furthermore, since the N2 method can be applied only by performing a static non-linear 

analysis on the structure with a prefixed force distribution, the results of the dynamic analyses 

for the displacement distribution d) in the pushover analysis have been compared to the results 

of the N2 method obtained by considering the force distribution c) in Figure 4.35 a-d. The 

percentage errors, with respect to FEM results, on the maximum floor displacements and storey 

drifts have been reported in Figure 4.36 a-d, Figure 4.37 a-d, Figure 4.38 a-d, Figure 4.39 a-d. 

The figures show that the beam-like model is able to well reproduce the time histories of the top 

floor obtained with the FEM model, while the N2 method overestimates the amplitude of the 

displacement of the top floor. With regard to the maximum floor displacements, the N2 and the 

beam-like model are both in accordance with the FEM results, especially when adopting a force-

displacement inter-storey constitutive law associated with modal displacement distribution d) 

(Figure 4.39 a-d). 

From these figures it can be noticed that the maximum inter-storey drifts obtained by means of 

the beam-like model seem to overestimate the corresponding values obtained by means of the 

FEM model. However, these values overcome the inter-storey drifts which correspond to a 

collapse mechanism of the considered building and these results are not realistic since they have 

been evaluated considering the maximum values of the whole time history while the collapse 

can be achieved in the first few instants of time. Therefore, in the next paragraph, the collapse 

floor mechanism of the considered building will be investigated. It is worth highlighting that 

this study will be devoted to the beam-like and the FEM models only, since the inter-storey 

drifts time histories that could be obtained using the N2 method are all proportional being 

constrained by only one degree of freedom.  
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a)  

b)  

c)  

d)  

Figure 4.32 - Top displacement time history, maximum floor displacements and inter-storey drifts under 
Santa Venerina earthquake in a) x and b) y directions and L’Aquila earthquake in c) x and d) y directions 
with non-linear beam-like and N2 SDOF models associated with mass proportional force distribution 

 



130 
 

a)  

b)  

c)  

d)  

Figure 4.33 - Top displacement time history, maximum floor displacements and inter-storey drifts under 
Santa Venerina earthquake in a) x and b) y directions and L’Aquila earthquake in c) x and d) y directions 
with non-linear beam-like and N2 SDOF models associated with inverse triangular force distribution 
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a)  

b)  

c)  

d)  

Figure 4.34 - Top displacement time history, maximum floor displacements and inter-storey drifts under 
Santa Venerina earthquake in a) x and b) y directions and L’Aquila earthquake in c) x and d) y directions 
with non-linear beam-like and N2 SDOF models associated with mode proportional force distribution 
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a)  

b)  

c)  

d)  

Figure 4.35 - Top displacement time history, maximum floor displacements and inter-storey drifts under 
Santa Venerina earthquake in a) x and b) y directions and L’Aquila earthquake in c) x and d) y directions 
with non-linear beam-like and N2 SDOF models associated with modal displacement distribution 
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a)  

b)  

c)  

d)  

Figure 4.36 - Percentage error on maximum floor displacements and inter-storey drifts under Santa 
Venerina earthquake in a) x and b) y directions and L’Aquila earthquake in c) x and d) y directions with 
non-linear beam-like and N2 SDOF models associated with mass proportional force distribution 
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a)  

b)  

c)  

d)  

Figure 4.37 - Percentage error on maximum floor displacements and inter-storey drifts under Santa 
Venerina earthquake in a) x and b) y directions and L’Aquila earthquake in c) x and d) y directions with 
non-linear beam-like and N2 SDOF models associated with inverse triangular force distribution 
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a)  

b)  

c)  

d)  

Figure 4.38 - Percentage error on maximum floor displacements and inter-storey drifts under Santa 
Venerina earthquake in a) x and b) y directions and L’Aquila earthquake in c) x and d) y directions with 
non-linear beam-like and N2 SDOF models associated with mode proportional force distribution 
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a)  

b)  

c)  

d)  

Figure 4.39 - Percentage error on maximum floor displacements and inter-storey drifts under Santa 
Venerina earthquake in a) x and b) y directions and L’Aquila earthquake in c) x and d) y directions with 
non-linear beam-like and N2 SDOF models associated with modal displacement distribution 

  



137 
 

4.3.5 Collapse mechanism 

Once the dynamic non-linear response has been obtained by means of the beam-like model as 

shown in paragraph 4.3.3, it is possible to predict the collapse mechanism of the building also if 

concentrated at a specific floor. In particular, assuming that the collapse is obtained when the 

inter-storey drift value reaches a fixed threshold, it is possible to determine if collapse floor 

mechanisms have been achieved or not, and the relative collapsed floor. 

The threshold can be defined as the inter-storey drift value which corresponds to a ductile or a 

brittle failure mechanism. These reference inter-storey drifts can be assigned taking into 

account typical limit values of the specific building typologies as proposed in several studies in 

national codes. However, more accurate limit inter-storey drifts can be obtained by considering 

the results of pushover analyses performed on the 3D FEM model as better specified in what 

follows. 

The ductile failure mechanism, according to Eurocode8 – Part3 and Italian NTC18, is referred 

to the achievement of the ultimate chord rotation capacity of a column. The brittle collapse 

mechanism is referred to the achievement of the ultimate shear capacity of a column.  

The ultimate chord rotation capacity of each column for the Near Collapse (NC) Limit State has 

been calculated according to the following two Seismic Codes: Eurocode8 – Part3, Appendix 

A.3.2.2 [86]; Italian NTC18, Circular C.8.7.2.3.2 [85]. However, it is more convenient to evaluate 

the ultimate plastic chord rotation capacity of each column for the NC Limit State according to 

Eurocode8 – Part3, Appendix A.3.2.2.   

The ultimate shear capacity of each column for the NC Limit State has been evaluated according 

to suggestions reported in the Eurocode2-Part1-1 par. 6.2.3 and in the Italian Code NTC18 par. 

4.1.2.3.5.2.  

In this PhD thesis, in order to evaluate the ultimate plastic chord rotation capacity and the 

ultimate shear capacity of each column, the values of the internal forces of the structural 

members have been determined considering the results of a non-linear static analysis performed 

on the FEM model of the building. In particular, for each floor a non-linear static analysis has 

been performed for determining the ultimate inter-storey drift, by applying a force on the slab 

of the considered floor and by fixing equal to zero the x and y displacements of all the nodes 

below the considered floor, in order to exploit only the non-linear behaviour of the considered 

floor still accounting for the stiffness contribution of the remaining structure, as qualitatively 

shown in Figure 4.40.  

 a) b) 

Figure 4.40 - Example of the FEM model adopted for the pushover analysis for the determination of the 
ultimate inter-storey drifts of the 4th floor, in a) x and b) y directions 
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An alternative way to evaluate the internal forces of the structural members is to consider the 

results of a non-linear static analysis performed on the FEM model of the building subjected to 

a suitable force distribution without any further kinematic constraint. However, this choice 

would not conduct to an appropriate definition of ultimate inter-storey drift for each floor, since 

not all the inter-storeys would have shown a structural member reaching the ultimate plastic 

chord rotation capacity or the ultimate shear capacity. 

 

Ductile or brittle failure floor mechanisms have been associated, respectively, to the 

achievement of the ultimate plastic chord rotation capacity and the ultimate shear capacity at 

least in one of the columns of the considered floor. It is worth highlighting that the ultimate 

plastic chord rotation capacity and the ultimate shear capacity values have been determined for 

each step of the analysis and for each column of the considered floor. Therefore, the ultimate 

inter-storey drift value has been determined from the displacement distribution of the building 

at the step of the pushover analysis in which the first ductile or brittle failure mechanism has 

been achieved. 

The ultimate inter-storey drifts assumed as threshold in x and y direction are reported in Table 

4.10 and in Table 4.11 considering ductile failure mechanism only or ductile and brittle failure 

mechanisms, respectively. 

Table 4.10 - Maximum Inter-storey drift for Limit State Near Collapse considering ductile failure 
mechanism only 

Floor 
Height 

h [m] 

Maximum Inter-storey Drift (NC) 

 [cm]  

x direction y direction  

1 4.30 5.76 6.23 
2 3.30 5.13 4.83 
3 3.30 4.95 5.16 
4 3.30 5.43 5.16 
5 3.30 6.24 6.06 
6 3.30 7.26 6.24 

Table 4.11 - Maximum Inter-storey drift for Limit State Near Collapse considering ductile or brittle 
failure mechanism  

Floor 
Height 

h [m] 

Maximum Inter-storey Drift (NC) 

 [cm]  

x direction y direction  

1 4.30 0.66 0.66 
2 3.30 0.51 0.48 
3 3.30 0.57 0.51 
4 3.30 0.75 0.27 
5 3.30 6.24 0.27 
6 3.30 7.26 0.51 

Once identified the ultimate inter-storey drift values according to the procedure above 

described, for each dynamic analysis, it is therefore possible to determine the floor in which the 

threshold has been firstly reached, the inter-storey drift value and the associated time instant. 

It is assumed that the building will not collapse if the threshold is not reached in any floor.  
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As already shown in paragraph 4.3.3, for each seismic record, four dynamic analyses have been 

performed in each considered direction (x and y), each one assuming the inter-storey shear-

displacement relationship corresponding to the load distribution a), b), c) or displacement 

distribution d). 

The results for each considered seismic record, for each direction and for each distribution a), 

b), c) or d) are shown in Table 4.12 and in Table 4.13, considering the ductile failure mechanism 

only, and in Table 4.14 and in Table 4.15, considering both the ductile and brittle failure 

mechanisms, compared to the results obtained from the FEM model. It is worth highlighting 

that in case of ductile failure mechanisms only, the building does not collapse in most cases 

since the drift thresholds are very high. While, in the case of ductile or brittle failure 

mechanisms the results of the beam-like model, especially for the displacement distribution d), 

are in good accordance with those of the FEM model. 

In Figure 4.41 the time histories of the floor displacements and the inter-storey drifts with the 

associated thresholds (denoted as “Max”) are reported, respectively, until the time instant when 

the conventional collapse has been reached. The percentage of each inter-storey drift value at 

the collapse time instant with respect to the associated floor threshold is reported in Table 4.16 

and in Table 4.17. For the sake of brevity, only the results considering the force-displacement 

relationship for the displacement distribution d) compared to the FEM results are reported, 

considering both the ductile and brittle failure mechanisms.  

The figures and the tables show that the beam-like model is able to correctly reproduce the 

displacement distribution and inter-storey drifts time history of each floor until the achievement 

of the brittle failure mechanism of the building.  

Table 4.12 – Ductile collapse mechanism parameters in x direction 

Seismic 

Record 

Collapse 

x 

direction 

BEAM-LIKE  

FEM Force 

dist. a) 

Force 

dist. b) 

Force 

dist. c) 

Displ. 

dist. d) 

L’Aquila 
Floor - 1 1 3 - 

∆u [cm] - 5.8 5.86 5.08 - 
T [s] - 2.98 2.98 3.08 - 

Santa 
Venerina 

Floor - - - - - 
∆u [cm] - - - - - 

T [s] - - - - - 

Table 4.13 – Ductile collapse mechanism parameters in y direction 

Seismic 

Record 

Collapse 

y 

direction 

BEAM-LIKE  

FEM Force 

dist. a) 

Force 

dist. b) 

Force 

dist. c) 

Displ. 

dist. d) 

L’Aquila 
Floor - - - - - 

∆u [cm] - - - - - 
T [s] - - - - - 

Santa 
Venerina 

Floor - - - - - 
∆u [cm] - - - - - 

T [s] - - - - - 
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Table 4.14 - Ductile or brittle collapse mechanism parameters in x direction 

Seismic 

Record 

Collapse 

x 

direction 

BEAM-LIKE  

FEM Force 

dist. a) 

Force 

dist. b) 

Force 

dist. c) 

Displ. 

dist. d) 

L’Aquila 
Floor 1 1 1 1 1 

∆u [cm] 0.67 0.68 0.68 0.68 0.66 
T [s] 2.69 2.69 2.69 2.69 2.69 

Santa 
Venerina 

Floor 1 1 1 2 2 
∆u [cm] 0.67 0.66 0.67 0.54 0.51 

T [s] 2.95 2.94 2.94 2.94 2.94 

 

Table 4.15 - Ductile or brittle collapse mechanism parameters in y direction 

Seismic 

Record 

Collapse 

y 

direction 

BEAM-LIKE  

FEM Force 

dist. a) 

Force 

dist. b) 

Force 

dist. c) 

Displ. 

dist. d) 

L’Aquila 
Floor 4 4 4 4 4 

∆u [cm] 0.28 0.28 0.28 0.27 0.27 
T [s] 2.87 2.87 2.87 2.87 2.83 

Santa 
Venerina 

Floor 4 4 4 4 5 
∆u [cm] 0.27 0.28 0.28 0.27 0.27 

T [s] 2.92 2.93 2.93 2.93 2.93 

 

 

 

 

a)   
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b)   

c)   

d)   

Figure 4.41 - Time histories of the floor displacements and of the inter-storey drifts until the collapse 
time instant for a-b) Santa Venerina and c-d) L’Aquila earthquake, in x and y direction respectively 
considering the force-displacement relationship for load distribution d) and the ductile and brittle failure 
mechanisms 
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Table 4.16 - Percentage of each inter-storey drift value at the collapse time instant with respect to the 
associated floor threshold for Santa Venerina earthquake considering the force-displacement relationship 
for load distribution d) and the ductile and brittle failure mechanisms 

Floor 

% ∆u/∆umax – x direction % ∆u/∆umax – y direction 

BEAM-LIKE 
FEM 

BEAM-LIKE 
FEM 

Displ. dist. d) Displ. dist. d) 

1 97.57 91.97 55.79 61.36 
2 105.19 100.2 84.68 97.71 
3 66.61 67.37 70.4 55.49 
4 30.27 32.8 101.69 69.63 
5 0.73 2.85 57.2 100.19 
6 1.64 0.32 9.27 8.72 

 

 

Table 4.17 - Percentage of each inter-storey drift value at the collapse time instant with respect to the 
associated floor threshold for L’Aquila earthquake considering the force-displacement relationship for 
load distribution d) and the ductile and brittle failure mechanisms 

Floor 

% ∆u/∆umax – x direction % ∆u/∆umax – y direction 

BEAM-LIKE 
FEM 

BEAM-LIKE 
FEM 

Displ. dist. d) Displ. dist. d) 

1 102.62 100.15 79.67 42.2 
2 55.46 41.37 52.25 28.12 
3 31.77 33.68 57.29 40.29 
4 10.62 20.93 100.47 100.93 
5 0.88 0.90 42.08 20.56 
6 1.49 0.73 11.24 6.86 
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4.3.6 Fragility curves 

 

The results of the study reported in the previous paragraph show that the beam-like model is 

able to correctly reproduce the displacement distribution and inter-storey drifts time history of 

each floor until the failure mechanism of the building is reached. Therefore, this model can be 

adopted for an accurate seismic vulnerability assessment of existing buildings, allowing to 

reduce the computational effort and time with respect to corresponding calculations based on 

FEM models. 

In particular, this paragraph describes how the beam-like model can be used for the construction 

of the fragility curves of the considered building. 

Fragility curves have been obtained following the Multiple Stripe Analysis (MSA) procedure 

proposed by Baker and briefly described in 3.1.  

Two groups of seismic records have been adopted for the dynamic non-linear analyses. The first 

one considers seven real accelerograms whose response spectra are compatible with the design 

spectra suggested by the Italian Code NTC18 [85] for the geological site of Catania. The second 

one considers twenty-three real accelerograms in addition to the seven already mentioned, in 

order to dispose of thirty seismic records, whose main characteristics are compatible with the 

Catania site. The characteristics of the considered seismic records and their representation are 

reported in Appendix E.  

The ground motion Intensity Measure (IM) used in the following MSA procedure is the PGA. 

The dynamic non-linear analyses are performed at a discrete set of IM levels equal to [0.05 0.1 

0.2 0.3 0.4 0.5 0.6] g. The same accelerograms (seven or thirty), reported in Appendix E, have 

been adopted for each IM level, therefore the seismic records have been scaled in order to have 

their PGA equal to the considered IM levels. 

The construction of the fragility curves has been developed with reference to three Limit States 

of interest according to the Eurocode8: Damage Limitation (DL), Significant Damage (SD), Near 

Collapse (NC). These Limit States according to Italian Code NTC18 correspond respectively to: 

Immediate Occupancy (SLD), Life Safety (SLV) and Collapse Prevention (SLC). 

The chosen Damage Parameter (DP) is the inter-storey drift. The Damage Threshold (DT) can 

be defined according to the Hazus earthquake technical manual 4-2 of the FEMA [116] or by 

determining the inter-storey drift values which correspond to a ductile or a brittle collapse 

mechanism, as described in the previous paragraph. 

The ductile collapse mechanism, according to Eurocode8 – Part3 and Italian NTC18, is referred 

to the achievement of the ultimate chord rotation capacity of a column. The brittle collapse 

mechanism is referred to the achievement of the ultimate shear capacity of a column.  

The ultimate chord rotation capacity of each column for the three Limit States (NC, SD, DL) 

has been calculated according to the following two Seismic Codes: Eurocode8 – Part3, Appendix 

A.3.2.2, A.3.2.3, A.3.2.4 [86]; Italian NTC18, Circular C.8.7.2.3.2, C.8.7.2.3.3, C.8.7.2.3.4 [85].  

However, it is more convenient to evaluate the ultimate plastic chord rotation capacity of each 

column for the NC Limit State according to Eurocode8 – Part3, Appendix A.3.2.2.  The ultimate 

plastic chord rotation capacity of each column for the SD Limit State has been set equal to the 

3/4 of the value for NC, while equal to zero for DL (which corresponds to the achievement of the 

first plastic chord rotation and therefore to the end of the linear elastic behaviour). 
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The ultimate shear capacity of each column for the DL, SD and NC Limit States has been 

evaluated according to suggestions reported in the Eurocode2-Part1-1 par. 6.2.3 and in the 

Italian Code NTC18 par. 4.1.2.3.5.2.  

Adopting the same procedure described in paragraph 4.3.5, the values of the internal forces of 

the structural members for the computation of the ultimate plastic chord rotation capacity and 

for the ultimate shear capacity of each column have been determined considering the results of 

a non-linear static analysis performed on the FEM model of the building. In particular, for each 

floor a non-linear static analysis has been performed for determining the ultimate inter-storey 

drift, by applying a force on the slab of the considered floor and by fixing equal to zero the x and 

y displacements of all the nodes below the considered floor, in order to exploit only the non-

linear behaviour of the considered floor still accounting for the stiffness contribution of the 

remaining structure. For each step of the analysis, the ultimate plastic chord rotation capacity 

and the ultimate shear capacity for the NC, SD or DL Limit State have been determined for 

each column of the considered floor, and if those values have been reached at least in one of the 

columns, a ductile or brittle failure mechanism has been achieved, respectively. Therefore, the 

inter-storey drift values assumed as DT have been determined from the displacement 

distribution of the building at the step of the pushover analysis in which the first ductile or 

brittle collapse mechanism has been achieved for the NC, SD or DL Limit State.  

The ultimate inter-storey drift values assumed as threshold in x and y direction for each Limit 

State obtained considering ductile collapse mechanism only or both ductile and brittle collapse 

mechanisms are reported in Table 4.18 and in Table 4.19, respectively. 

 

Table 4.18 - Damage Thresholds considering ductile collapse mechanisms only 

Floor 

DT = ∆u [cm] – x direction DT = ∆u [cm] – y direction 

NC SD DL NC SD DL 

1 5.76 4.50 0.72 6.23 4.80 0.69 
2 5.13 3.99 0.54 4.83 3.78 0.63 
3 4.95 3.90 0.54 5.16 3.99 0.57 
4 5.43 4.23 0.63 5.16 4.08 0.57 
5 6.24 4.89 0.54 6.06 4.74 0.48 
6 7.26 5.61 0.30 6.24 4.83 0.21 

 

Table 4.19 - Damage Thresholds considering ductile and brittle collapse mechanisms  

Floor 

DT = ∆u [cm] – x direction DT = ∆u [cm] – y direction 

NC SD DL NC SD DL 

1 0.66 0.66 0.66 0.66 0.66 0.66 
2 0.51 0.51 0.51 0.48 0.48 0.48 
3 0.57 0.57 0.54 0.51 0.51 0.51 
4 0.75 0.75 0.63 0.27 0.27 0.27 
5 6.24 4.89 0.54 0.27 0.27 0.27 
6 7.26 5.61 0.30 0.51 0.51 0.21 
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It is worth noting that in the ductile or brittle failure mechanism case some values of the inter-

storey drift thresholds for the NC, SD or DL Limit States are equal because the ultimate shear 

capacity of a column is assumed to be the same for the three Limit States.  

For the sake of brevity, the fragility curves have been obtained considering in the beam-like 

model only the inter-storey shear-displacement relationship corresponding to the displacement 

distribution d), obtained in paragraph 4.3.1.  

In the following, the fragility curves obtained adopting the first set of seven accelerograms in x 

and y directions and considering the ductile collapse mechanism only or both the ductile and 

brittle failure mechanisms, are shown in Figure 4.42.a-b, respectively. Then the fragility curves 

obtained adopting the second set of thirty accelerograms are shown in Figure 4.43.a-b, for the 

ductile collapse mechanism only or both the ductile and brittle failure mechanisms respectively. 

In the same figures, the circles represent the “empirical” values of percentage of collapse for 

each IM level obtained by means of the dynamic non-linear analyses performed with the 

equivalent beam-like model. In Figure 4.43, for the case of thirty accelerograms in x direction 

only, the asterisks represent the “empirical” values of percentage of collapse for each IM level 

obtained by means of the dynamic non-linear analyses performed with the FEM model.  

In Table 4.20 an in Table 4.21 the mean µ and standard deviation σ of the obtained fragility 

curves are reported. 

  a) 

 b) 

Figure 4.42 - Fragility curves obtained adopting the first set of seven accelerograms in x and y directions 
considering the ductile collapse mechanism only a) or both the ductile and brittle failure mechanisms b) 
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 a) 

b) 

Figure 4.43 - Fragility curves obtained adopting the second set of thirty accelerograms in x and y 
directions considering the ductile collapse mechanism only a) or both the ductile and brittle failure 
mechanisms b) 

Table 4.20 - Fragility curves parameters considering the ductile collapse mechanism only 

N° seismic 

records  

FC 

parameter 

x direction y direction 

NC SD DL NC SD DL 

7 µ -1.527 -1.859 -3.097 -1.389 -1.757 -46.643 
σ 0.426 0.561 0.095 0.344 0.328 5.161 

30 µ -0.449 -0.565 -2.925 -0.472 -0.826 -3.243 
σ 0.942 1.054 0.860 0.801 0.745 0.863 

Table 4.21 - Fragility curves parameters considering the ductile and brittle failure mechanisms 

N° seismic 

records  

FC 

parameter 

x direction y direction 

NC SD DL NC SD DL 

7 µ -3097 -3097 -3.097 -46.643 -46.643 -46.643 
σ 0.095 0.095 0.095 5.161 5.161 5.161 

30 µ -2.440 -2.440 -2.925 -3.252 -3.252 -3.508 
σ 0.775 0.775 0.860 0.964 0.964 1.002 
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Figure 4.42 and Figure 4.43 clearly show how important is the use of an appropriate number of 

seismic records for the construction of fragility curves. Of course, the increase in the number of 

adopted accelerograms improves the obtained results since there is a wider statistical range of 

experimental collected data. However, nowadays the use of a huge number of seismic records is 

not allowed for fast seismic vulnerability assessment if a FEM software is adopted for the 

dynamic non-linear analyses due to the computational effort and time required. For this reason 

the experimental values of percentage of collapse in this study have been obtained by means of 

the FEM model only for the x direction. In terms of computational time it is important to 

highlight that the non-linear dynamic analyses of thirty accelerograms (considering only the 

first 15 [s] of each seismic record) for seven IM levels performed on the FEM model of the 

considered building require about 120 times the computational time required to perform the 

same analyses (considering the whole seismic record) by means of the equivalent beam-like 

model. 

It is worth noting that the fragility curves, which consider ductile or brittle failure mechanisms, 

show a higher percentage of collapse for a fixed IM level with respect to the ones which consider 

ductile failure mechanism only. This is in accordance with the type of construction of reinforced 

concrete buildings, which show mainly a brittle behaviour if they have been designed to resist 

gravity loadings only.  

Furthermore, the differences between the experimental values of the percentage of collapse 

obtained by means of the beam-like and the FEM models are almost negligible in the case of 

ductile or brittle failure mechanism, as shown in Figure 4.43.b. Therefore, this proves the 

reliability and great utility of the beam-like model for the construction of the fragility curves of 

existing buildings considering ductile or failure mechanisms.  
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4.4 CASE STUDY 2: BEAM LIKE MODEL OF SAC BUILDING - 

INELASTIC BEHAVIOUR 

In this chapter the proposed inelastic beam-like model is applied to another benchmark, known 

as SAC building, which has been the subject of several numerical investigations in the scientific 

literature [79, 117, 118, 119, 120]. This case study is a 9-storey steel building, whose detailed 

description is provided in [121, 79], considered representative of typical medium-rise buildings 

designed for Los Angeles, California, according to the seismic code requirements of the 1994 

UBC. The building has been analysed according to a two-dimensional model which consists of 

the N-S perimeter moment resisting frame (MRF), representing half of the building in the N-S 

direction.  

The non-linear static and dynamic analyses on a FEM model of the SAC building have been 

developed by using the well-known software SAP2000 v.22 [122]. Consistently to the numerical 

investigations already reported in the literature [79], axial deformability of columns and beams 

and large displacements effects have been neglected. The global non-linear behaviour of the 

structure has been modelled by introducing plastic hinges at the ends of all the structural 

elements (beams and columns). In particular, P-M2-M3 hinges have been used for columns and 

M3 hinges for beams, where shear failure has been neglected, according to the ASCE 41-17 

criteria.  

First, the calibration procedure was performed in order to identify the equivalent beam-like 

model. Then the proposed multi-stepped beam was adopted for simulating the static and 

dynamic inelastic behaviour of the building and the results, in terms of static and seismic 

response, were compared to those obtained by means of the conventional 3D FEM model. 

Since the capacity curves depend on the applied distribution of forces, different loading patterns 

have been taken into account in order to investigate the differences in predicting the inelastic 

responses, as better specified in the following. 

The complete FEM and the beam-like models of the building have been subjected to a static 

force vector 
b

F  according to the following relationships:  

b b=F M φ            (4.2.5) 

where φ  is the fixed displacement distribution and bM  is the diagonal mass matrix which 

considers lumped masses at the nodes due to the applied seismic masses.  

In particular, the following three load distributions have been considered in the numerical 

applications:  
a) mass proportional force distribution (Figure 4.44a); 
b) inverse triangular proportional force distribution (Figure 4.44b); 
c) force distribution associated with the fundamental natural mode of vibration (Figure 4.44c). 
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Figure 4.44 - Lateral force distribution types: a) Mass proportional, b) inverse triangular mass 

proportional and c) associated with fundamental mode 

The non-linear dynamic analyses have been performed by considering the N-S component of the 

earthquake recorded at El Centro in 1940, plotted in Figure 4.45.  

 
 

Figure 4.45 - Time history for El Centro earthquake 

 

4.4.1 Calibration procedure 

The results of the non-linear static analysis have been reported in terms of inter-storey capacity 

curves in Figure 4.46 for the three previously described load distributions. It can be observed 

that the damage is mainly distributed along the first six levels of the building for all the 

considered load distributions.  

The beam-like model has been calibrated by following the procedure described in paragraph 

2.2.3. As first step, the inelastic inter-storey responses, reported in Figure 4.46, have been 

considered for the calibration of the inelastic multi-stepped beam. As second step, the obtained 

inter-storey capacity curves have been transformed into equivalent bilinear elasto-plastic force-

displacement laws with positive kinematic hardening. The equivalence has been obtained by 

imposing the equality between the areas below the non-linear and bilinear capacity curves and 

assuming as initial inter-storey stiffness the tangent to the origin of the inter-storey capacity 

curve. The stiffness values of each beam segment, assumed as initial stiffness in the successive 

non-linear analyses, are reported in Table 4.22; the latter data, together with the mass 

distribution, allow to define the linear elastic behaviour of each beam-like model associated with 

each force distribution. In Table 4.23 the inelastic limits and the hardening parameters for each 

beam segment are reported; in this case, no limits of the ductile behaviour have been considered. 

The latter parameters are sufficient for the characterization of the non-linear response of the 

beam-like model.  
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Figure 4.46 - Inter-storey capacity curves for load distribution a (blue), b (red) and c (black) 
 

Table 4.22 - Initial stiffness of each beam segment associated with each different force distribution 

Beam 

segment 

Height 

h [m] 

Initial stiffness 

R [N/m] · 10^8 

Force dist. a) Force dist. b) Force dist. c) 

1 5.49 1.188 1.172 1.172 
2 3.96 1.621 1.637 1.630 
3 3.96 1.535 1.541 1.545 
4 3.96 1.386 1.402 1.401 
5 3.96 1.301 1.312 1.316 
6 3.96 1.193 1.201 1.195 
7 3.96 0.963 0.954 0.961 
8 3.96 0.705 0.724 0.715 
9 3.96 0.510 0.526 0.524 

Table 4.23 - Yielding force and hardening parameter of each beam segment associated with each 
different force distribution 

 
Yielding force 

Fy [N] · 10^6 

Post yielding stiffness 

RT [N/m] · 10^7 

Beam 

segment 

Force dist. 

a) 

Force dist. 

b) 

Force dist. 

c) 

Force dist. 

a) 

Force dist. 

b) 

Force dist. 

c) 

1 9.714 8.756 8.787 0.893 0.981 0.973 
2 8.504 8.282 8.322 1.180 1.270 1.248 
3 7.601 7.860 7.854 1.116 1.176 1.185 
4 6.662 7.272 7.262 1.169 1.180 1.185 
5 5.757 6.706 6.647 1.694 1.183 1.228 
6 4.723 5.913 5.872 3.249 1.338 1.335 
7 2.759 4.928 4.594 8.579 2.381 4.153 
8 2.585 3.102 3.550 7.235 4.835 1.339 
9 1.343 1.961 - 6.024 3.088 5.240 
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Three bilinear relationships have been defined, each one representing the monotonic inelastic 

inter-storey response of the building subjected to the considered force distribution. In Figure 

4.47 the inter-storey inelastic equivalent force-displacement laws relative to the mode 

proportional analysis only are reported as an example. Since the last storey exhibited an elastic 

response, this has been considered as linear elastic. 

 

 

Figure 4.47 - Inter-storey capacity curves (CapCurve in black), the corresponding Back-Bone curves (red) 
and the ex-tended Back-Bone without limits of the ductile behaviour (BackBoneEx dashed in red) for 
mode proportional analysis 

 

4.4.2 Non-linear static response 

Once each inter-storey non-linear behaviour has been defined, it is possible to perform non-

linear pushover analyses by making use of the beam-like model.  

The non-linear pushover analyses of the equivalent beam model take into account load 

distributions equal to the above described initial force distributions adopted for the FEM model. 

The forces are applied on the beam axis at the floor level and are proportionally increased until 

a conventional 1 m top displacement is obtained [79]. 

A Newton-Raphson iterative procedure, described in Appendix C.1, has been applied in order to 

evaluate the response of the beam-like model to the static non-linear loading process. 

For each force distribution, the capacity curves representative of the global behaviour of the 

building have been retrieved by considering the above described beam-like models. In 

particular, the static non-linear response has been obtained by means of the two approaches 

already presented in 2.2 and in 2.3. The first one considers a discretization of the beam-like 

model according to finite element method, in which the beam element is divided into a number 

Nf of uniform sub-beam shear deformable elements, as described in 2.2.2. In the second 
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approach, a unique step-wise shear-torsional beam finite element is adopted for the static non-

linear analysis of the entire inelastic beam-like model, as described in 2.3.2. In Figure 4.48.a-c 

the comparisons between the global capacity curves, obtained by means of the FEM and the 

beam-like models adopting a sub-beam shear deformable elements discretization (denoted as 

BEAM-LIKE.b in Figure 4.48) and a unique step-wise shear-torsional beam finite element 

(denoted as BEAM-LIKE.a in Figure 4.48), are reported and a very good agreement is observed. 

 

a) b)  

c)  

Figure 4.48 - Capacity curves for a) Uniform force distribution; b) Inverse triangular force distribution; 
c) Fundamental natural mode force distribution 

The latter comparisons confirm the ability of the beam-like model to reproduce accurately the 

non-linear static response of the building even if the inter-storey force-displacement 

relationships has been replaced by an equivalent bilinear inelastic behaviour with kinematic 

hardening. 

In the following paragraph, the beam-like models have been adopted to predict the non-linear 

dynamic response of the SAC9 building by means of non-linear dynamic analyses. 
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4.4.3 Non-linear dynamic response 

The dynamic response of the beam-like model was obtained by means of the approach presented 

in Appendix D. For simplicity, no limits have been considered in the available ductility at each 

floor level. 

Three dynamic analyses have been performed, each one assuming the inter-storey shear-

displacement relationship corresponding to the force distribution a), b) or c). The damping 

matrix C  has been obtained by setting the modal damping ratio equal to 5% for all the nine 

vibration modes of the beam-like model. 

Figure 4.49 reports the time histories, expressed in terms of floor level displacements, for the 

three beam-like models, compared to the results of the FEM model.  

 

 

Figure 4.49 - Dynamic response to El Centro earthquake with constitutive law of the Beam-Like model 
associated with mass proportional (BL.a), inverse triangular (BL.b) and mode proportional (BL.c) force 
distributions 

 

The results show that all the proposed inelastic beam models are able to reproduce the non-

linear dynamic behaviour of the entire building with a very good accuracy. 

Differently from the analyses based on the equivalent SDOF system, it is worth noting that the 

beam-like model allows to compute the non-linear dynamic response at each floor level without 

introducing any kinematic constraint.  

The proposed beam-like model allows to reduce drastically the computational burden being 

related to a beam-like model characterised by a number of degrees of freedom equal to the 

number of floors, independently on the complexity of the full FEM model.  
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4.4.4 Beam-like model versus N2, UMRHA and MPA Approaches 

Aiming at comparing the beam-like model with other simplified approaches proposed in the 

literature, the obtained results for the analysed structure have been compared with those 

provided by the SDOF-based N2 method and the multi-modal based strategies proposed by 

Chopra in [79] known as UMRHA and MPA. 

The inter-storey drifts provided by the N2 method have been retrieved by the 3D FEM model 

capacity curve. Precisely, the displacement distributions associated to the ultimate 

displacement, corresponding to the target point obtained on the equivalent SDOF system, have 

been identified. This procedure has been applied for each of the three previously described force 

distributions (mass proportional, inverse triangular, mode proportional). The definition of the 

equivalent SDOF system has been obtained according to the bilinearization procedure 

suggested in the Eurocode 8 [86].  The main characteristics of the equivalent SDOF system 

(conventional notation has been used) are reported in Table 4.24. 

The seismic demand for the equivalent SDOF system has been calculated by means of non-

linear dynamic analysis, which was performed by considering the El Centro ground motion, 

already used in the previous paragraph, scaled by a multiplier equal to 1.5 [79]. Consistently to 

the previously performed analyses, a damping ratio equal to 5% has been assumed. 

 

Table 4.24 - Characteristics of equivalent SDOF system 

Characteristic Force distribution a) Force distribution b) Force distribution c) 

m* [kg]·10^6 4.59 2.64 2.79 
Γ 1.00 1.41 1.36 
T* [s] 2.93 2.47 2.52 
Fy* [kN] ·10^3 11.42 6.97 7.28 
sy* [cm] 54.28 40.70 41.91 

 

 

The displacement time history of the top floor Centre of Mass (CM) of the building, assumed as 

control point in accordance to the N2 method and obtained by means of the N2 equivalent SDOF 

system, has been compared to: i) the top node displacement of the equivalent beam-like model, 

ii) to the displacement of the CM top floor obtained by means of the UMRHA reported in [79] 

and iii) to the FEM displacement time history of the top floor of the building. Furthermore, the 

maximum floor displacements, as well as the maximum inter-storey drifts, have been compared.  

The results of the dynamic analyses for each adopted force distribution a), b) and c) in the 

pushover analysis are shown in Figure 4.50.a-c, respectively. The percentage errors, with 

respect to FEM results, on the maximum floor displacements and storey drifts have been 

reported in Figure 4.51.a-c, while the related average percentage errors are reported in Table 

4.25.    
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a)  

b)  

c)  

Figure 4.50 - Top displacement time history, maximum floor displacements and inter-storey drifts under 
1.5x El Centro earthquake with non-linear beam-like, N2 SDOF models associated with a) mass 
proportional, b) inverse triangular, c) mode proportional force distribution, UMRHA and MPA 
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a)  

b)  

c)  

Figure 4.51 - Percentage error on maximum floor displacements and inter-storey drifts under 1.5x El 
Centro earth-quake with non-linear beam-like, N2 SDOF models associated with: a) mass proportional 
b) inverse triangular and c) mode proportional force distributions, UMRHA and MPA 
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Table 4.25 - Average percentage errors on maximum floor displacements and inter-storey drifts under 
1.5x El Centro earthquake with non-linear beam-like, N2 SDOF models associated with: a) mass 

proportional b) inverse triangular and c) mode proportional force distributions, UMRHA and MPA 

Strategy Average error – Floor Displacements Average error – Storey Drifts 

 Force dis. a) Force dis. b) Force dis. c) Force dis. a) Force dis. b) Force dis. c) 

Beam-like 7.19% 5.55% 5.79% 17.80% 8.66% 7.97% 
N2 method 10.08% 14.34% 15.02% 27.02% 17.82% 18.42% 
UMRHA 5.51% 23.00% 
MPA 6.49% 14.62% 

 

The analysis of the results expressed in terms of maximum displacements and maximum inter-

storey drifts and the data obtained as cumulative and average errors at all floors, reveals that 

the N2 method is the less accurate one compared to the other considered strategies. The results 

provided by the proposed procedure based on the beam-like inelastic model seems to be 

characterised by an accuracy comparable to those obtained by the multi-modal strategies 

proposed by Chopra, although these latter imply a pushover analysis for each vibration mode 

whose contribution is considered. On the contrary, the beam-like model-based proposed strategy 

requires a non-linear static analysis and non-linear dynamic analysis performed in beam-like 

model whose discretization involves a number of degrees of freedom corresponding to the 

number of floors. Therefore, the associated computation cost is significantly lower with respect 

to those required by multi-modal-based approaches. Furthermore, the performance of the beam-

like model appears to be even more competitive with regard to the evaluation of the inter-storey 

drifts.  

 

In order to investigate how the errors in the beam-like model vary with the deformation 

demands imposed by the ground motion, dynamic analyses have been repeated for the El Centro 

ground motion scaled by the following multiplier: 0.25, 0.5, 0.75, 0.85, 1, 1.5, 2, 3. For each 

excitation, identified by the Ground Motion (GM)  multiplier λ , the response errors (maximum 

floor displacements and storey drifts) obtained by means of the beam-like model with respect to 

the FEM model have been determined for each floor and reported in Figure 4.52.a-c. 

Furthermore, an envelope curve considering all the numerical investigations has been 

represented in the same figure.  
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a)   

b)   

c)   

Figure 4.52 - Percentage errors on maximum floor displacements and inter-storey drifts as a function 
of ground motion intensity obtained with non-linear beam-like model associated with: a) mass 

proportional, b) inverse triangular and c) mode proportional force distributions 

 

From the observation of the error distribution associated to the three considered load patterns, 

it appears that the beam-like model based on the mode proportional pushover analysis provides 

the more accurate results. Furthermore, the errors appear to be always lower than 20% for a 

ground motion characterised by a multiplier less than 1. The errors progressively increase for a 

load multiplier in the range 1 3λ≤ ≤ . It is worth noting that these results are very close to those 

obtained by Chopra in [79].  
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CONCLUSIONS 
 

In this thesis beam-like models suitable for the evaluation of linear and non-linear static and 

dynamic behaviour of multi-storey buildings have been proposed. The main goal of the proposed 

equivalent models is their possible applications in the field of seismic risk assessment of new 

and existing buildings. The low computational cost of beam-like models suggests their use also 

for the seismic vulnerability assessment at urban scale. 

In fact, modern risk policies within all municipalities aim at identifying the most vulnerable 

portions of urban areas and therefore to plan opportune strategies for seismic risk reduction. 

Nowadays, the seismic vulnerability assessment of the building heritage can be performed 

either using non-linear 3D FEM models, whose computational effort and time are very high, or 

adopting simplified SDOF models, which anyway do not provide accurate and exhaustive results 

about the structure behaviour.  

For this reason, the introduction of a continuous beam-like model, more reliable than the SDOF 

system, able to simplify the analysis of the static and dynamic behaviour of a building could be 

very useful. Some beam-like models have been presented in the last decades by researchers, 

anyway they do not sufficiently characterize the existing buildings with vertical or horizontal 

stiffness irregularities and, almost all of them, do not account for the non-linear behaviour. The 

new beam-like models here proposed allow to overcome some of the limitations of the existing 

simplified approaches and have been specifically conceived for their use in the seismic 

assessment of new and existing buildings.  

The proposed beam-like model for a simplified modelling of the linear behaviour of building 

subjected to earthquake loadings is a three-dimensional step-wise shear-torsional beam, 

suitable for the static and dynamic analyses of buildings with non-uniform stiffness distribution 

and eccentricity between the Mass Centre and the Stiffness Centre. The capability of the model 

to simulate the dynamic behaviour of an entire building makes this model useful for large 

vulnerability assessment survey that can also be performed at urban scale. Furthermore, since 

the calibration process is based on the knowledge of a certain number of modes and frequencies 

of the target building, it could be particularly useful for the dynamic identification of buildings 

whose geometry is not fully identified.  

In the thesis, the elastic beam-like model has been defined starting from geometric and 

mechanical data of the building, and then it has been calibrated by considering the modal 

characteristics of the building itself. In order to reduce the number of degrees of freedom of the 

simplified model, a Rayleigh-Ritz discretization has been adopted using the modes of vibration 

of a uniform shear cantilever beam as shape functions.  

Aiming at extending this model to the non-linear context, it has been upgraded for the 

simulation of the inelastic behaviour of buildings using different calibration strategies based on 

the results of pushover analyses performed on a non-linear 3D FEM model of the reference 

building. 

Namely, the inelastic beam-like model has been defined as a step-wise shear only cantilever 

beam, whose segments are representative of the inter-storey mechanical properties of the 

building. The inter-storey constitutive laws have been calibrated by means of the results of a 

static non-linear analysis performed on the 3D FEM model of the building. In particular, the 
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equivalence between beam and building has been enforced by calibrating the inelastic beam-

like model in order to predict the same pushover curve obtained by performing non-linear static 

analysis on the full 3D FEM model.  

It is worth highlighting that, in view of the adopted calibration procedure, the equivalent 

inelastic beam-like model is related to the considered direction of the base input motion. Once 

the inelastic beam-like model has been obtained, dynamic non-linear analyses can be performed 

on this simplified model, thus drastically reducing the required computational effort and time 

with respect to the more demanding 3D FEM model. 

It is worth noting that the proposed beam-like model could provide a more accurate 

representation of the seismic behaviour of multi-storey buildings both in terms of capacity and 

demand, particularly if compared to the commonly used SDOF system adopted within the N2 

method. In fact, the equivalent SDOF systems-based approaches rely to the simplified 

hypothesis that the structure vibrates predominantly with a single mode and transfer the 

results of the pushover analysis to a SDOF system with the aim to identify the seismic demand 

according to a displacement based approach. The beam-like model instead is able to take into 

account the higher mode effects, since it is defined as an equivalent MDOF system having one 

degree of freedom for each floor of the building. This leads to the evaluation of all the floor 

displacements allowing the identification of partial failure mechanisms, which is not possible 

by using equivalent SDOF system-based approaches. 

Furthermore, the collapse floor mechanism of a building can be evaluated by means of the 

proposed MDOF model while no inter-storey drifts time histories can be obtained using the N2 

method being all the floor displacements related to the target point adopted in the pushover 

analysis.  

The reliability of the proposed beam-like model has been validated through some numerical 

applications on two considered buildings that represented benchmark in previous research. In 

particular, the first building is a multi-storey RC frame representative of residential buildings 

in Catania designed to resist only to gravity loading. The second application refers to the well-

known SAC9 building, well-known in scientific literature. For the first considered building, 

static and dynamic analyses have been performed on the equivalent beam-like model, 

considering both the linear and non-linear behaviour, and the results have been compared with 

those obtained by means of a FEM model of the building, confirming the validity of the proposed 

model. Furthermore, an inelastic beam-like model equivalent to SAC building has been adopted 

for the evaluation of its static and dynamic response, showing a very good equivalence with the 

corresponding 3D non-linear FEM model. 

The seismic vulnerability assessment of the first case study, relative to a building designed for 

vertical loads only, has been also investigated by means of fragility curves evaluated by adopting 

the proposed beam-like model. It is worth noting that the fragility curves, obtained by 

performing non-linear dynamic analyses on the equivalent beam-like model, allow to express an 

expeditious and accurate seismic vulnerability assessment of the building. In fact, the required 

computational time for evaluating a fragility curve for the FEM model is about 120 times the 

one required for the beam-like one. 

The adoption of these simplified beam-like models, endowed with shear deformation only, have 

been here applied and validated for simulating the dynamic behaviour of low- and mid- rise 

buildings. Other simplified models, studied in the past but limited to linear behaviour, include 
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bending deformation too. Future developments, aimed at analyzing tall buildings, could 

introduce also the flexural deformability leading to inhomogeneous inelastic Timoshenko beam-

like models.  

Another important development concerns the calibration of the inelastic beam-like model with 

the adoption of different non-linear constitutive law able to consider the progressive damage 

and the softening behaviour. These latter features are particularly important for a simplified 

modelling of masonry buildings or mixed reinforced concrete masonry structures.  
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APPENDIX A 
 

SHEAR ONLY BEAM MODEL 

Since the proposed research focuses on the definition of an equivalent shear only beam model, 

it is useful to illustrate the shear only beam theory reported in the scientific literature. This 

model, although represents a simplification of the more general Timoshenko and the Euler-

Bernoulli beam models, is suitable for the schematization of the dynamic behaviour of low- and 

mid-rise buildings.  

The beam model is fundamental in structural mechanics, and it is based on the hypothesis that 

its behaviour can be described only referring to its axis and cross-sections.  

The beam models are analysed as spatial problems, where flexural-shear and torsional 

behaviour are uncoupled since there is no eccentricity between Mass Centre and Shear Centre.   

For the considered shear only beam model, the study of its dynamics allowed to obtain the 

equations of motion under earthquake loads and then, by neglecting the inertia forces, the 

equations that govern the static problem have also been determined.  

In Figure A.1 a generic beam is represented with the assumed Cartesian reference system. The 

z axis is assumed coincident with the beam axis, while x and y axes lie on the plan of the cross 

section with origin on the centre of gravity. 

 

 

Figure A.1 - Beam model 

 

Shear only beam model takes into account only shear deformability. Plane sections hypothesis 

is assumed, but orthogonality between cross-section and beam axis in not ensured.  

A distributed load p(z,t) is considered acting on a beam with shear stiffness GA(z) and 

distributed mass m(z), as shown in Figure A.2: 

 

Figure A.2 - Shear only beam model 

 

 

m(z) GA(z) 

p(z,t) 

dz 

z 
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• Compatibility equation 

( , )Iv
v z t

z
γ ∂= =

∂
          (A.1) 

where γ , v  denote the shear strain and the transversal displacement, respectively. 

• Constitutive equation 

( )T kGA z γ=            (A.2) 

 

 

Dynamics 

Static and kinematic parameters with reference to a portion dz of the beam are shown in Figure 

A.3. 

 

Figure A.3 - Shear only beam model - dynamics 

The inertia forces are defined as: 

( ), ( ) ( , )If z t A z v z tρ= &&          (A.3) 

where ( ) ( )A z m zρ = . 

Equilibrium equation with respect y axis translation: 

( , ) ( , ) 0
I

V
V dz V f z t dz p z t dz

z

∂+ − − + =
∂

       (A.4) 

where the vertical force V is equal to the shear force T: 

T V=             (A.5) 

Rearranging Equations (A.4)-(A.5) and substituting compatibility and constitutive equations, 

the equation of motion for shear only beam model is obtained: 

( , )II
kGAv mv p z t− = −&&            (A.6) 

Equation (A.6), setting ( , ) 0p z t = , allows to find the natural frequencies and mode shapes of a 

uniform cantilever beam, expressed in dimensionless terms: 

V 
 

p(z,t) 

γ 

fI(z,t) 
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( ) 2
2 1 1,...,

2
n

kGA
n n

mL

πω = − = +∞            (A.7) 

( )1( ) sin 2 1 1,...,
2

n C n n
πφ ζ ζ = − = +∞  

       (A.8) 

 

 

Static 

Static and kinematic parameters with reference to a portion dz of the beam are shown in Figure 

A.4. 

 

 

Figure A.4 - Shear only beam model- static 

Neglecting the inertia forces in Equation (A.6), the governing equation of the static problem is 

obtained: 

( )II
kGAv p z= −             (A.9) 

whose solution for ( )p z p=  is: 

2

1 2( )
2

p
v z z C z C

kGA
= − + +            (A.10) 

For a cantilever beam, Equation (A.10) becomes: 

2( )
2

p pL
v z z z

kGA kGA
= − +              (A.11) 

 

 

 

 

V 

 

V+dV 

p(z) 

γ 
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APPENDIX B 
 

DERIVATION OF THE INELASTIC BEAM-LIKE MODEL 

B.1 Nodal equilibrium equations 

For each node, a horizontal equilibrium equation in the fixed direction is written. Each one of 

these equations involve both the correspondent nodal force and the shear forces which arise in 

each beam segment connected to the node (Figure B.1).   

 

Figure B.1 - Equilibrium of the i-th node in d direction 

Shear force iT  in the fixed direction, is considered in each beam segment.  

Equilibrium of the i-th node in direction d, shown in Figure B.1, is analysed, assuming positive 

shear forces at the top of the i-th and i+1-th beam segments.  

Equilibrium of the i -th node in direction d is given by: 

1i i iF T T += −    (B.1) 

The vector of the shear forces in the fixed direction of all the beam segments is given by: 

1

2

N

T

T

T

 
 
 =
 
 
 

T
Μ

      (B.2) 

Therefore, equilibrium equations of all the nodes can be written in matrix form, as shown below: 

1 1

2 2

3 3

1 1

1 1 0 0 0

0 1 1 0 0

0 0 1 0 0

0 0 0 1 1

0 0 0 0 1

N N

N N

T F

T F

T F

T F

T F

− −

−     
    −     
    

=    
    
    −
    
        

Λ

Λ

Λ

Μ ΜΜ Μ Μ Ο Μ Μ

Λ

Λ

    (B.3) 

Or: 
T ⋅ =C T F             (B.4) 

where it is shown the equilibrium matrix 
TC . 

i+1

T i+1

T i

z

i Fi

T i+1

i

T i

T i+1

T i

d
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B.2 Compatibility equations 

In order to write the compatibility equations, the Principle of Virtual Work is applied. A virtual 

configuration of the system, described by virtual displacements û of the nodes, is considered:  

1

2

ˆ

ˆ
ˆ

ˆ
N

u

u

u

 
 
 =
 
 
  

u
Μ

        (B.5) 

The external virtual work veL  is given by: 

ˆT

ve
L = ⋅F u             (B.6) 

While the internal virtual work viL  is given by: 

( )vi

V

L tr dV=  TE            (B.7) 

According to the adopted beam model, taking into account only shear deformability into 

Equation (B.7):           

( )
1 1 1

i i i

N N N
T

vi zd d zd d i i

i i iV V A l

L tr dV dV dl dA T sτ γ τ γ
= = =

= = = = =     TE T s     (B.8) 

where 
i

T  is the shear force on i-th beam segment and 
i

s  is the relative displacement due to 

shear strain between the end nodes of i-th beam segment. 
Setting 

ve vi
L L= : 

ˆT T⋅ =F u T s            (B.9) 

Considering the equilibrium equation: 

T T T⋅ =  = ⋅C T F F T C         (B.10) 

Therefore: 

[ ]ˆ ˆ ˆT T T⋅ ⋅ =  ⋅ − =  ⋅ =T C u T s T C u s 0 C u s     (B.11) 

The last expression is the compatibility equation which relates displacements and relative 

displacements by means of the compatibility matrix C , which is also equal to the transpose 

of the equilibrium matrix. 
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B.3 Constitutive law 

The constitutive law relating shear forces and relative displacements between the ends of i-th 

beam segment is expressed as follows: 

i i i
T R s= ⋅              (B.12) 

denoting with 
i

R   the shear stiffness in the fixed direction of the i-th equivalent beam segment. 

The constitutive law for each beam segment can be expressed in matrix form as follows:   

1 1 1

2 2 2

3 3 3

1 1 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

N N N

N N N

T R s

T R s

T R s

T R s

T R s

− − −

     
     
     
     

=     
     
     
     
          

Λ

Λ

Λ

Μ Μ Μ Μ Ο Μ Μ Μ

Λ

Λ

         (B.13) 

or in compact notation: 

= ⋅T D s            (B.14) 

where D  is the matrix containing the shear stiffness 
i

R , dependent on the non-linear 

constitutive behaviour of the structure. 

  
It is worth noting that the shear stiffness 

i
R  of the i-th equivalent beam segment, assumes 

different values depending on the considered constitutive law. In case of non-linear analyses its 

value can be evaluated for example assuming either an elasto-perfectly plastic constitutive law, 

an elasto-plastic constitutive law with kinematic hardening or an inelastic multilinear 

constitutive law (described in Appendix B.7).  

 

  



178 
 

B.4 Stiffness matrix 

Rearranging the equilibrium and compatibility equations and the constitutive law: 

ˆT T T= ⋅  = ⋅ ⋅  = ⋅ ⋅ ⋅F C T F C D s F C D C u    (B.15) 

A nodal force – displacement relationship is obtained: 

ˆ= ⋅F K u            (B.16) 

where K  denotes the stiffness matrix of the structure, equal to: 

T= ⋅ ⋅K C D C            (B.17) 

The tangent stiffness matrix of the inelastic beam model can be expressed as follows: 

11 12

21 22 23

32 33 34

43 44

2 2 2 1

1 2 1 1 1

1

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0 0

N N N N

N N N N N N

NN NN

K K

K K K

K K K

K K

K K

K K K

K K

− − − −

− − − − −

−

 
 
 
 
 
 =
 
 
 
 
 
  

K

Λ

Λ

Λ

Λ

Μ Μ Μ Μ Ο Μ Μ Μ

Λ

Λ

Λ

  (B.18) 

being the matrix coefficients related to the state of the beam according to the adopted non-linear 

inter-storey force-displacement constitutive laws (described in this thesis as “inter-storey 

constitutive laws”). In the applications reported in this thesis, the inter-storey constitutive law 

has been assumed as elasto-plastic with or without linear hardening. For specific applications 

a multilinear inelastic behaviour described in Appendix B.7 has also been assumed. 

 

B.5 Mass matrix 

In the applications reported in this thesis, the mass distribution of the whole beam has been 

assumed to be lumped at the nodes.  

Therefore, the mass matrix is given by: 

1

2

0 0

0 0

0 0 N

M

M

M

 
 
 =
 
 
 

M

Λ

Λ

Μ Μ Ο Μ

Λ

      (B.19) 

where 
f

N N= . 
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B.6 Damping matrix 

Assuming a classical damping associated to a certain number of fixed damping ratio, the related 

damping matrix can be obtained by the superposition of the corresponding modal damping 

ratios as follows.  

By solving the eigen problem ( )2− =K M 0ω φ , it is possible to find natural frequencies 
n

ω  and 

mode shapes, collected in matrix Φ . 
By fixing modal damping ratios 

n
ξ  and remembering that mod, mod,2

n n n n
C Mξ ω= , it is possible to 

define the following modal damping matrix: 

1 mod,1 1

2 mod,2 2

mod

mod,

2 0 0

0 2 0

0 0 2
N N N

M

M

M

ξ ω
ξ ω

ξ ω

 
 
 =
 
 
 

C

Λ

Λ

Μ Μ Ο Μ

Λ

    (B.20) 

The relation mod

T =Φ CΦ C  can be rewritten as: 

1

mod

T− −=C Φ C Φ            (B.21) 

Starting with the orthogonality relationship mod

T =Φ MΦ M  it is possible to demonstrate: 

1 1

mod

T− −=Φ M Φ M    1

mod

T− −=Φ MΦM      (B.22) 

Therefore, remembering that modM  and modC  are diagonal matrices, it is possible to write: 

1 mod,

2Nt
T i i

i i

i i
M=

= C M M
ξ ωφ φ           (B.23) 

If all the mode shapes are not known, it is reasonable to include in Equation (B.23) only the first 

S modes that are expected to contribute significantly to the response, as shown below. 

1 mod,

2S
T i i

i i

i i
M=

= C M M
ξ ωφ φ          (B.24) 

The lack of damping in modes 1S +  to N  does not create numerical problems if an 

unconditionally stable time-stepping procedure is used to integrate the equation of motion.  

 

Damping matrix can be also defined according to the Rayleigh approach. It is possible to 

consider Rayleigh damping, which is mass-stiffness proportional: 

1 2 1 2,a a a a R= + ∈C M K         (B.25) 

with reference to the initial linear elastic stiffness matrix. The coefficients 1 2,a a  have to be 

evaluated by imposing the damping ratios corresponding to two different frequencies [123]. 
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B.7 Multilinear constitutive law 

In [124] an original formulation of a piecewise linear constitutive law has been proposed. This 

formulation has been here adopted in order to simulate an inelastic multilinear constitutive 

law. 

A piecewise linear force-displacement relationship can be modelled by using a certain number 

of parallel springs with elastic-plastic behaviour. Denoting with N  the number of linear 
segments of the piecewise linear force-displacement relationship, 

j
u  the displacement 

corresponding to the j-th change of the stiffness, 
j

F  the corresponding force and 
j

K  the tangent 

stiffness of the j-th linear segment expressed as: 

1

1

1

1

1

1

j
j j

j j

F
for j

u
K

F F
for j N

u u

−

−

 =
=  − < ≤
 −

        (B.26) 

it is possible to schematize the assigned relationship as the superposition of one spring with 

linear elastic behaviour and 1N −  springs with elastic-perfectly plastic behaviour. The stiffness 

j
K  are assumed to be decreasing. 

This schematization allows to model the piecewise linear force-displacement relationship by 

means of elastic-plastic elements only with bilinear force-displacement relationship.  

 

Figure B.2 - Piecewise linear force-displacement relationship 
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Figure B.3 - (a) parallel springs, (b) elastic spring constitutive law and (c) elastic-plastic j-th spring 
constitutive law 

With reference to Figure B.3, 
j

k  denotes the initial elastic stiffness of the j -th spring with 

elastic-perfectly plastic behaviour. The yielding displacements of the 1N −  elastic-plastic spring 
are equal to the displacements 

j
u  of the assigned piecewise linear constitutive law. Without loss 

of generality, it is possible to sort the 1N −  elastic-plastic springs according to the increasing 
values of 

j
u . The corresponding yielding forces are denoted with 

j
f . The stiffness of the unique 

elastic spring is denoted with 
e

k . 

For a fixed displacement u, the sum of the tangent stiffnesses of the N  parallel springs must 

be equal to the tangent stiffness of the piecewise linear relationship. By imposing such equality 

for different values of the displacement u, it is possible to obtain the following system of N  

equations: 

1 2 3 2 1 1

2 3 2 1 2

3 2 1 3

1 1

...

...

...

e N N

e N N

e N N

e N N

e N

k k k k k k K

k k k k k K

k k k k K

k k K

k K

− −

− −

− −

− −

+ + + + + + =
 + + + + + =
 + + + + =


 + =


=

⋮
       (B.27) 

where the first equation has been obtained for a displacement 10 u u< < , and the j -th equation 

(with 1j > ) is obtained by imposing a displacement 1j j
u u u− < < . It is worth noting that in the 

system the number of unknowns is equal to the number of equations. 
By solving the system in Equation (B.27), the N  unknowns are obtained: the stiffness 

e
k  of the 

linear elastic spring and the initial stiffness of the 1N −  springs with elastic-perfectly plastic 

behaviour. The stiffness values are: 
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1 1, 2,... 1

e N

j j j

k K

k K K j N+

=
= − = −

        (B.28) 

The yielding force 1f  of the first spring can be determined by considering that the total force of 

the system corresponding to the yielding displacement 1u  of the first spring is equal to: 

1 1 1F K u= ⋅            (B.29) 

while the corresponding force in the first spring is: 

1 1 1f k u= ⋅            (B.30) 

Deriving 1u  from Equation (B.29) and substituting in Equation (B.30), remembering Equation 

(B.28) for 1k , it is possible to obtain: 

2
1 1

1

1
K

f F
K

 
= − 
 

          (B.31) 

Analogously, in order to define the yielding force of the second spring, the total force of the 
system corresponding to the yielding displacement 2u  of the second spring is considered: 

( )2 1 2 2 1F F K u u= + ⋅ −          (B.32) 

The corresponding force in the second spring is equal to: 

2 2 2f k u= ⋅            (B.33) 

Deriving 2u  from Equation (B.32) and substituting in Equation (B.33), remembering Equation 

(B.28) for 2k  and Equation (B.31)  for 1f , after simple algebra it is possible to obtain: 

( )3
2 2 1

2

1
K

f F f
K

 
= − − 
 

         (B.34) 

Proceeding in a similar way, it is possible to obtain the yielding force of each remaining spring. 

It is possible to use the following general expression: 
1

1

1

1 , 2
j

j

j j i

ij

K
f F f j

K

−
+

=

  
= − − ≥     

         (B.35.a) 

( )1

1 11 , 2
j

j j j j j

j

K
f F F K u j

K

+
− −

 
= − − + ≥  
 

       (B.35.b) 

 

In a numerical implementation it can be convenient to substitute the linear elastic spring and 

one of the springs with elastic-perfectly plastic behaviour with a spring having elastic-plastic 

constitutive law with hardening. By assuming, without loss of generality, to combine the linear 

elastic spring with the first elastic-perfectly plastic spring, the modified stiffness of the springs 

can be expressed as follows: 

1 1 2

1

1 2,3,... 1

e

N

p

N

j j j

k K K K

k K

k K K j N+

= − +

=
= − = −

        (B.36) 

denoting with 1

e
k  and 1

p
k  the stiffness of the first spring in the elastic and plastic field, 

respectively. The yielding force *

1f  of the elastic-plastic spring with hardening is equal to: 

* 2
1 1 1 1

1 1

1 N
e

KK
f f k u F

K K

 
= + ⋅ = − + 

 
        (B.37) 
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The yielding force of the remaining springs is still given by Equation (B.35.b), or by Equation  

(B.35.a) where *

1f  has been made explicit: 

1 *

1 1

1

1
1 *

1 1

21

1 2

1 2

j N
j

j

j
j

j N
j i

ij

K K
F f F for j

K K
f

K K
F f F f for j

K K

+

−
+

=

  
− − + =      = 

   − − + − >     


    (B.38) 
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APPENDIX C 
 

INCREMENTAL STATIC ANALYSIS 

Incremental static analysis is performed by applying on the structure a linear increasing load 

distribution. The load vector is referred to as ,λF where λ  is the load multiplier which increases 

the applied loads proportionally. In order to study the response of the structure during the 

loading process, the equilibrium between the applied load and the structure reaction must be 

evaluated at each time instant. Since the structure is a MDOF system, equilibrium is expressed 

in terms of the following vectors: displacements u , forces F , displacement increments ∆u , force 

increments ∆F . 
The resisting forces Rf  depend on the displacement vector u  and therefore the equilibrium at 

each load step can be expressed as:  
( )λ = RF f u                                                            (C.1) 

In addition, at each step and for each element, the element state must be evaluated in order to 

establish whether it has an elastic behaviour or not, consequently updating the corresponding 

stiffness. The goal is to determine the vector u  at each step. 

Several procedures can be applied according to the adopted load or displacement distribution 

and the force-displacement constitutive laws of the beam-like model. These iterative procedures 

are the Newton-Raphson method [123] and the Arc-Length method. In the following these 

procedures, applied in the numerical section, are briefly described. 

Finally, the procedure for the static non-linear analysis performed on the beam-like model by 

applying an increasing displacement distribution instead of a load distribution is illustrated.  

 

C.1 Newton-Raphson Method (force control analysis) 

The equilibrium at each n-th step can be expressed as: 
( )

n n
λ = RF f u            (C.2) 

It is supposed that equilibrium has been satisfied at the 1n− -th step among applied forces 1n
λ − F  

and resisting forces , 1n−Rf , therefore the system response 1n−u  is known. 

A force increment ( )1n n n
λ λ −∆ = −F F  is therefore considered. The goal is to determine the 

displacement vector 
n

u . 

Initially, at the first iteration the resisting forces at n-th step coincide with those of the previous 

step: (1)

, , 1n n−=R Rf f . 

According to the Newton-Raphson method, the response of the structure is determined 

considering the tangent stiffness matrix at the current iteration (1) (1)
.

T

T T
= ⋅ ⋅K C D C  

The displacement increment associated with the force increment (1)

n
∆ = ∆F R  is therefore 

obtained by: 
(1) (1) (1)

T n
∆ = ∆K u R           (C.3) 

And the approximated total displacement at iteration end is: 
(1) (1)

1n n n−= +∆u u u           (C.4) 
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Then, it is possible to determine the relative displacement increment in the structural elements: 
(1) (1)

n n
∆ = ⋅∆s C u           (C.5) 

Since the constitutive law of the structural elements are defined, it is also possible to determine 

the internal shear forces (1)

n
T  and therefore to compute the corresponding resisting forces 

(2) (1)

,

T

n n
= ⋅Rf C T . There is a residual equal to: 

(2) (2)

,n n
λ∆ = − RR F f           (C.6) 

If the residual is lower than a fixed tolerance, the convergence is achieved, and a good 

approximation of the displacement is obtained at the n-th step. Otherwise, iterations go on. 

Considering the updated tangent stiffness matrix, according to the new stress-strain state of 

the structural elements (2) (2)T

T T
= ⋅ ⋅K C D C , the new displacement increment is obtained by: 

(2) (2) (2)

T n
∆ = ∆K u R           (C.7) 

And the approximated total displacement at iteration end is: 
(2) (1) (2)

1n n n n−= + ∆ + ∆u u u u          (C.8) 

Therefore, it is possible to determine the relative displacement increment in the structural 

elements:  
(2) (2)

n n
∆ = ⋅∆s C u           (C.9) 

It is also possible to determine the internal shear forces (2)

n
T , the corresponding resisting forces 

(3)

,nRf  and the new residual (3) (3)

,n n
λ∆ = − RR F f . As done before, if the residual is lower than a fixed 

tolerance, the convergence is achieved, and a good approximation of the displacement is 

obtained at the n-th step; otherwise, iterations go on.  

When the m-th residual is lower than the fixed tolerance, the convergence is achieved, and the 

approximation of the displacement at the n-th step end is: 

( )

1

1

m
i

n n n

i

−
=

= + ∆u u u           (C.10) 

where m obviously depends on the fixed tolerance. 

Therefore, the procedure goes on with the next load step, with the same iterative process 

repeated every load step, until the maximum load or the collapse of the structure is achieved. 

 

 

Figure C.1 - Newton-Raphson iterative procedure 
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In summary, the Newton-Raphson iterative procedure, reported in Figure C.1, is based on the 

hypothesis that, for each n-th step, the following approximation can be adopted: 
( 1) ( ) ( ) ( )

, ,

j j j j

n n T n n
λ+ + ∆ =R Rf f K u F≃                                                   (C.11) 

where j is the order number of the current iteration, ( )

,

j

nRf  the resisting forces at n-th step and j-

th iteration, ( )j

T
K  the tangent stiffness matrix dependent on ( )j

n
u  displacement. 

The non-linear equilibrium equations at each n-th step can be solved by means of the Newton-

Raphson iterative procedure starting with the approximation of the displacements from the 

previous loading step, according to the following procedure: 

 

1.0  Initial state determination:  

- 0 0λ= =F F 0 ; 

- 0 =u 0 , assuming at rest initial conditions (therefore 0=s 0 ); 

- ,1=Rf 0  (therefore 0=T 0 );   

-
T e

=K K , initial stiffness matrix - elastic behaviour. 

2.0  For each loading step 0,1, 2,3,...
S

n N= , initialize: 

- ( )1 1n n n
λ λ+ +∆ = −F F ; 

- 1 1n n n+ += + ∆F F F ; 

- (1)

1n+∆ = ∆R F ;                                            (N.B.  (1)

1 , 1 , 1n n n n n n+ + +∆ = − = + ∆ − = ∆R RR F f F F f F ) 

- (1)

1n n+ =u u  (therefore (1)

1n n+ =s s ); 

- (1)

, 1 ,n n+ =R Rf f  (therefore (1)

1n n+ =T T ).  

3.0  For each iteration 1, 2,3,...j =  inside the n-th step: 

 - Check convergence; if the acceptance criteria are not met, implement following steps; 

otherwise, skip these steps and go to step 4.0;  

- Update tangent stiffness matrix ( ) ( )j T j

T T
= ⋅ ⋅K C D C ; 

- Solve ( ) ( ) ( )

1

j j j

T n+∆ = ∆K u R  to find ( )

1

j

n+∆u ; 

- ( 1) ( ) ( )

1 1 1

j j j

n n n

+
+ + += + ∆u u u ; 

- Compute relative displacement increments in structural elements ( ) ( )

1 1

j j

n n+ +∆ = ⋅ ∆s C u ; 

- Update stress state ( 1)

1

j

n

+
+T  of structural elements according to relative displacement 

increment and constitutive law and, therefore, update matrix ( 1)j

T

+D  and strain vector ( 1)

1 ;
j

n

+
+s  

- Compute reaction forces  ( 1) ( 1)

, 1 1

j T j

n n

+ +
+ += ⋅Rf C T ; 

- Compute residual ( 1) ( 1)

1 , 1

j j

n n

+ +
+ +∆ = − RR F f ; 

- Compute 

( 1)

1

j

n

err

+

+

∆
=

∆

R

F
 for check convergence; 

- Replace 1j j= + , repeat from step 3.0. 
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4.0  Save results at step end, replace 1n n= +  and repeat from step 2.0. 

 

C.2 Modified Newton-Raphson Method (force control analysis) 

It is possible to avoid updating the tangent stiffness matrix ( )j

T
K  at each iteration by means of 

the Modified Newton-Raphson Method. In this case, the tangent stiffness matrix (1)

T
K  is updated 

only at the first iteration of each loading step and it remains the same for all the iterations 

inside the current loading step (Figure C.2). 

 

Figure C.2 - Modified Newton-Raphson iterative procedure 

 

C.3 Initial Stiffness Matrix Method (force control analysis) 
The “Initial Stiffness Matrix method”, indeed, assumes the tangent stiffness matrix 

T
K  to be 

constant for each iteration inside the loading step and for each loading step too.  In that way, 
the stiffness matrix 

T
K  is always equal to the elastic stiffness matrix of the structure.  

 

C.4 Arc Length method 

Differently from the Newton-Raphson method, which is a force control analysis and it increases 

the load distribution according to a prefixed load multiplier, the Arc-Length method is a 

displacement control analysis and it defines the load distribution increment together with the 

displacement increment.  

This method is very efficient in solving non-linear systems of equations when the problem under 

consideration exhibits one or more critical points (well-known is their classification into limit 

points and bifurcation points, geometrical concepts that are connected with the physical 

concepts of snapping and buckling respectively). In this paragraph, the Riks and Crisfield 

formulations are described. Riks started from the Newton’s method and added a special 

parameter controlling the progress of the computations along the equilibrium paths [125]. In 

the geometrical terms the control parameter selected corresponds in good approximation to the 

“arc length” of the equilibrium path to be computed. In fact, he added, to the standard 
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equilibrium equations, a constraint equation fixing the length of the incremental load step in 

load/deflection space.  

Crisfield in 1983 published a paper where he presented an alternative formulation for the Arc 

Length method which could be readily implemented in any commercial finite element software 

that was able to solve non-linear problems using Newton-Raphson method [126].  

 

 

Riks formulation 

The system of the non-linear equations to be solved is: 
int 0 ( )ext λ− =  = RF F F f u         (C.12) 

where λ  is the load multiplier, F  the external load vector and Rf  the internal resisting forces 

dependent on the displacement vector u . 

Assuming that the point ( )0 0,λu  is such to satisfy the system of equations (C.12), thus it belongs 

to the ‘equilibrium path’. Unlike the Newton-Raphson method, the Arc Length method 

postulates simultaneous variation in both the displacement vector ∆u  and the load multiplier 

λ∆ . The main difference is that both ∆u  and λ∆  are unknowns in contrast to Newton-Raphson 

method where λ∆  is fixed and only ∆u  have to be determined by means of an iterative 

procedure. It is possible to write: 

( ) ( )0 0', ' ( )λ λ λ∆ = + ∆ − + ∆ =RR u F f u u 0        (C.13) 

If Equation (C.13) is satisfied for 0 0( , )λ λ+ ∆ + ∆u u  then this point also belongs to the 

‘equilibrium path’. In most cases, however, immediate satisfaction of Equation (C.13) is not 

achievable. As a result a correction ( , )δ δλu  is necessary to update the point 

0 0( , )δ λ λ δλ+ ∆ + + ∆ +u u u  in order to satisfy Equation (C.13). Hence: 

( ) ( )0 0'', '' ( )λ λ λ δλ δ∆ = + ∆ + − + ∆ + =RR u F f u u u 0    (C.14) 

Using a Taylor series expansion and retaining only the linear terms, Equation (C.14) can be 

written as: 

( )
0

0 0

( )
( )λ λ δλ δ

+∆

 ∂ 
 + ∆ + − + ∆ + ⋅ = ∂   

R
R

u u

f u
F f u u u 0

u
   (C.15) 

where 
( )

T

∂
=

∂
Rf u

K
u

 is the stiffness matrix of the system. Thus, Equation (C.15) can be written 

as: 

[ ] ( ) ( )
0

0 0( ) ', '
T

δ δλ λ λ λ
+∆

⋅ − = + ∆ − + ∆ = ∆Ru u
K u F F f u u R u    (C.16) 

It is worth noting that δu  and δλ  are unknowns. Therefore, since u  vector has dimension N, 

the system (C.16) has only N equations to solve N+1 unknowns (N unknowns δu  and 1 unknown 

δλ ). Equations (C.16) then are not sufficient to determine δu  and δλ . The supplementary 

equation that completes the system is called the Arc Length Equation and has the following 

form: 

( ) ( ) ( ) ( )22 2T T
lδ δ ψ λ δλ∆ + ⋅ ∆ + + ∆ + ⋅ = ∆u u u u F F    (C.17) 

where ψ  and l∆  are user defined parameters. In a sense l∆  defines how far to search for the 

next equilibrium point and its analogous (but not directly equivalent) to the load increment λ∆  

used in Newton’s method. The Arc-length method constrains the norm of the incremental 
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displacements to a prescribed value. This is done by simultaneously adapting the size of the 

increment. It is worth noting that the size of the increment is adapted within the iteration 

process and is not fixed at the moment the increment starts. 

Collecting up equations (C.16) and (C.17), it is possible to write the system of equations in a 

more compact manner as: 

( )22 2

T

T T
A

δ
ψ λ δλ

−  ∆   
⋅ =     ∆ ∆ ⋅      

K F u R

u F F
  (C.18) 

where: 

( )
( )( )

0 0

2 2 2

( )

T T
A l

λ λ

ψ λ

∆ = + ∆ − + ∆

= − ∆ ⋅∆ + ∆ ⋅ − ∆

RR F f u u

u u F F
       (C.19) 

The system of equations (C.18) is solved for δu,δλ  and updates the previous corrections ∆u, λ∆  

to be ' δ∆ = ∆ +u u u  and 'λ λ δλ∆ = ∆ +  respectively. The method continues to provide such 
incremental corrections δu,δλ  until convergence is achieved in (C.14). When 1ψ =  the method 

is also called the Spherical Arc Length Method because Equation (C.17) suggests that the points 
', 'λ∆ ∆u  belong to a circle with radius l∆ . In its most general form for arbitrary ψ , Equation 

(C.17) can be geometrically interpreted as a hyper-ellipse in the multidimensional 

displacement-load space ( )λ−u . The user decides which value should be assigned to the 

“radius” and the next converged point is then obtained as the point of intersection between the 

equilibrium path and that sphere.  

This method is widely proven to cope quite well in problems with a snapping behaviour and is 

implemented in most commercial finite element software (i.e. ABAQUS). This way of 

formulating the Arc-Length method, however, and in particular the system of equations (C.18) 

is not the most efficient one and, as a result, many commercial software use a different approach 

to this method. The reason for this is that Equation (C.18) essentially introduces a completely 

new system of equations to be solved simultaneously for δu and δλ . Therefore, the techniques 

commonly used by finite element software such as ABAQUS to solve the system of equations in 

all other cases (static analysis with Newton-Raphson method, Dynamic analysis etc.) cannot be 

used in this case where the system of equations is different than the one used in Newton-

Raphson method. Despite the capabilities of this method in cases where Newton-Raphson 

method fails, this particular formulation obstructed the immediate implementation of the 

method in such software because sacrificing the solver's efficiency and at the same time having 

to modify all the convergence criteria wasn't an option. It was necessary that the 

implementation of the method would be based on a different formulation that would ideally 

include no modifications to the system of equations to be solved. 

 

 

Crisfield formulation 

Crisfield expressed Equation (C.16) as: 

[ ] ( ) [ ]
0 0

1 1

0 0( )
T T

δ λ λ δλ− −

+∆ +∆
 = ⋅ + ∆ − + ∆ + ⋅ Ru u u u

u K F f u u K F     (C.20) 

or: 
ˆ

t
δ δ δλδ= +u u u           (C.21) 
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where: 

[ ] ( ) [ ]
[ ]

0 0

0

1 1

0 0

1

ˆ ( )
T T

t T

δ λ λ

δ

− −

+∆ +∆

−

+∆

 = ⋅ + ∆ − + ∆ = ⋅ ∆ 

= ⋅

Ru u u u

u u

u K F f u u K R

u K F
    (C.22) 

It is worth noting that ˆδu  and 
t

δu  can be calculated immediately since they only require known 

information. Once the displacement correction is expressed as in (C.21), it can be substituted in 

the Arc Length Equation (C.17), leading to: 
2

1 2 3 0a a aδλ δλ+ + =           (C.23) 

where the coefficients 1a , 2a  and 3a  are given by: 

( )
( ) ( )

( ) ( ) ( )

2

1

2

2

2 2 2

3

ˆ2 2

ˆ ˆ

T T

t t

T T

t

T T

a

a

a l

δ δ ψ

δ δ ψ λ

δ δ ψ λ

= ⋅ + ⋅

= ∆ + ⋅ + ∆ ⋅

= ∆ + ⋅ ∆ + + ∆ ⋅ − ∆

u u F F

u u u F F

u u u u F F

      (C.24)  

Equation (C.23) can be easily solved to find δλ  and to update the displacement variation with 

Equation (C.21). With this particular formulation, every iteration, the program has to find ˆδu  
and 

t
δu , which can be done by making use of the existing solver since the stiffness matrix 

involved is the same as in other methods. Subsequently, using ˆδu  and 
t

δu  it is possible to solve 

the quadratic Equation (C.23) with respect to δλ  and to update the variations ∆u  and λ∆ . 

These steps of the iterative procedure have to be repeated until convergence is achieved. 
Crisfield formulation, furthermore, sets 0ψ = . 

 

 

Choice of the appropriate Arc Length equation solution 

The quadratic Equation (C.23) would in general lead to two distinct solutions for δλ  which will 

in turn lead to two distinct solutions for δu. Thus, every iteration, the solver determined two 

sets of solutions, namely ( )1 1,δ δλu  and ( )2 2,δ δλu .  

The issue that arises, then, is to develop a robust algorithm that would be able to accurately 

determine the correct set of ( ),δ δλu  to update the solution. In general, the solution which 

avoids “doubling back” on the original load/deflection path should be chosen.  

An efficient rule to follow in order to choose the next point correctly is the following. 
It is possible to compute the two displacement corrections 1δu  and 2δu  corresponding to 1δλ  

and 2δλ  respectively. Subsequently, the projections (dot-products) of these generalised 

correction vectors on the previous corrections are calculated. The δλ , which leads to the largest 

value of the dot product and thus forms the closest correction to the previous one and therefore 

the smallest “angle” between the incremental vectors of the previous and current iterations, is 

chosen. Crisfield, however, suggested to choose the δλ  which leads to a positive value of the dot 

product; if both the dot products are positive, the appropriate root is that closest to the linear 
solution 3 2/a aδλ = − . 

The dot product is defined as: 

( ) ( )

( ) ( )( )

( )

( ) 2

, ,

1, 2

i i i

T
i i i T

DOT

DOT i

δ λ λ δλ λ λ

δ ψ λ λ δλ

= ∆ + + ∆ + ⋅ ∆ + ∆ 

= ∆ + ⋅∆ + ∆ ∆ + ⋅ =

u u u

u u u F F
     (C.25) 
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If the initial corrections ( ), λ∆ ∆u  are equal to zero (for example at the beginning of each 

increment), the corresponding DOT products are zero, therefore the chosen δλ  is the one that 

has the same sign of the determinant of the stiffness matrix.  

The Arc Length method initiation for every increment as well as the iterative loops until 

convergence is achieved are outlined in the pseudocode that follows: 

 

1.0 Initialization of the variables:  

- fix user defined parameters ψ , l∆  and tolerance tol; 

- 0 0 00 extλ λ=  = =F F 0 ; 

- 0 =u 0 , for at rest initial conditions (therefore 0=s 0 ); 

- ,0=Rf 0  (therefore 0=T 0 ); 

- 1n = . 

2.0 For each load step until 1 maxn− ≤u u  (for a target point), variables initialization: 

- (0)

1n n−=u u  (therefore (0)

1n n−=s s ) 

- (0)

1n n
λ λ −=  

- (0) (0); 0;λ∆ = ∆ =u 0  

- determine [ ]
n

T +∆u u
K , tangent stiffness matrix 

- [ ] 1
ˆ ;

n
t T

δ δ −

+∆
= = ⋅

u u
u 0 u K F ; 

- solve Arc Length equation (C.23), and choose the appropriate solution: 

 a) if the two solutions 1δλ  and 2δλ  are equal, then choose either one  

 b) else the chosen δλ  is the one that has the same sign of the determinant of the stiffness 

matrix 

- ˆ
t

δ δ δλδ= +u u u ; 

-compute ( )(0) (0) δ∆ = ⋅ ∆ +s C u u  and update (0)

n
T , 

T
D , (0)

n
s  and  (0) (0) (0)( ) T

n n
δ+ ∆ + = ⋅Rf u u u C T  

- ( )(0) (0) (0) (0) (0)( )
n n

λ λ δλ δ∆ = + ∆ + − + ∆ +RR F f u u u ;  

- 
( )

(0)

(0)
err

λ δλ

∆
=

∆ +

R

F
 

 a) if err tol<  : go to step 4. 

b) else go to step 3. 

3.0 For each iteration max1,2,3,...j I=  inside n-th load step 

- ( ) ( 1) ( ) ( 1);j j j jδ λ λ δλ− −∆ = ∆ + ∆ = ∆ +u u u  

- determine [ ]
n

T +∆u u
K , tangent stiffness matrix 

- [ ] [ ]1 1( 1)ˆ ;
n n

j

T t T
δ δ− −−

+∆ +∆
= ⋅∆ = ⋅

u u u u
u K R u K F  
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- solve Arc Length equation (C.23), and choose the appropriate solution: 

 a) if the two solutions 1δλ  and 2δλ  are equal, then choose either one  

 b) else if ( ) 0j∆ =u , the chosen δλ  is the one that has the same sign of the determinant 

of the stiffness matrix 

 c) else the chosen δλ  is the one which leads to the largest value of the dot product, given 

by Equation (14) 

- ˆ
t

δ δ δλδ= +u u u ; 

-compute ( )( )jδ δ= ⋅s C u  and update ( )j

n
T , 

T
D , ( )j

n
s  and  (0) ( ) ( )( )j T j

n n
δ+ ∆ + = ⋅Rf u u u C T  

- ( )( ) (0) ( ) (0) ( )( )j j j

n n
λ λ δλ δ∆ = + ∆ + − + ∆ +RR F f u u u  

- 
( )

( )

( )

j

j
err

λ δλ

∆
=

∆ +

R

F
 

 a) if err tol<  : go to step 4. 

b) else 1j j= + . Go to step 3. 

4.0 Save results: (0) ( )j

n n
δ= + ∆ +u u u u   and (0) ( )j

n n
λ λ λ δλ= + ∆ + . 1n n= + . Go to step 2. 
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C.5 Static non-linear analysis by applying an increasing displacement 

distribution 

 
The static non-linear analysis can be performed by applying on the structure an increasing 

displacement distribution. The applied displacement vector is referred to as ,λu where λ  is the 

load multiplier which increases the applied displacements proportionally.  

In this case, since the displacements of all the degrees of freedom of the beam-like model are 

defined for each step of the analysis, there are no unknown displacements, and it is possible to 

determine the relative displacements (drifts) for each element of the equivalent beam.  

Denoting with 1n+∆u  the n+1-th displacement increment, it is possible to determine the 

corresponding drifts as follows: 

1 1n n+ +∆ = ⋅ ∆s C u           (C.26) 

In addition, by determining the drift at each step and for each element, the element state can 

be easily evaluated in order to establish whether it has an elastic behaviour or not, consequently 

updating the corresponding stiffness. It is also possible to determine the vector of shear forces 

of the elements 1n+T . The goal is to determine the vector of the external forces F  at each step. 

Of course, the external forces will be equal to the resisting forces Rf , therefore they can be 

determined as: 

1 1

T

n n+ += ⋅F C T           (C.27) 

Therefore, no iterations are needed for the solution process, as described in the following 

procedure.  

 

1.0 Initial state determination:  

- 0 ,1= =RF f 0  (therefore 0=T 0 ); 

- 0 0λ= =u u 0 , assuming at rest initial conditions (therefore 0=s 0 ); 

-
T e

=K K , initial stiffness matrix - elastic behaviour. 

2.0  For each loading step 0,1, 2,3,...
S

n N= : 

- ( )1 1n n n
λ λ+ +∆ = −u u  

- 1 1n n n+ += + ∆u u u ; 

- 1 1n n+ +∆ = ⋅ ∆s C u ; 

- Update stress state 1n+T  of structural elements according to relative displacement 

increment and constitutive law and, therefore, update matrix 
T

D  and strain vector 1n+s ; 

- Compute external forces 1 1

T

n n+ += ⋅F C T ; 

- Update stiffness matrix T

T T
= ⋅ ⋅K C D C . 

3.0 Save results at step end, replace 1n n= +  and repeat from step 2.0. 
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C.6 Static Pushover Curve 

Once the results in terms of force and displacements have been collected for each step by means 

of one of the procedures described above, it is possible to plot the capacity curve of the 

building or Pushover Curve. This curve shows the relation between V  and u, where V  is 

the base shear while u is the displacement of the control point. For the considered equivalent 

beam model, a control point located at the top of the beam has been chosen.  

It is worth remembering that the base shear at the n-th step is equal to the sum of the applied 

nodal forces at the n-th step:  ,

2

N

n n i

i

V F
=

= . 

An example of capacity curve has been reported in Figure C.3 for the sake of clarity. 

 

 

Figure C.3 - Capacity curve 
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APPENDIX D 
 

DYNAMIC ANALYSIS 

The dynamic behaviour of the structure is ruled by the following equation of motion:  

( )( ) ( ) ( ) ( )
g

t t t u t+ + = −RMu Cu f u Miɺɺ ɺ ɺɺ                                        (D.1)  

where the vector i  denotes the spatial distribution of the load.  

For non-linear dynamic analyses, the resisting forces depend non-linearly on the displacement 

vector u  and its increment ∆u , while in the linear analysis the force displacement relationship 

is linear. Nevertheless, also in case of linear analysis in presence of non-classical damping the 

equations of motion turn out to be coupled and must therefore be solved through time-stepping 

numerical integration methods.  

The at rest initial conditions are: 

0 0= =u 0 u 0ɺ                                                   (D.2) 

Usually, the applied force is given by a set of discrete values, with a sampling interval equal to

1i i i
t t t+∆ = − , which, although not necessary, is usually assumed to be constant.  

Because of that, the equation of motion requires a numerical solution for each time-step 1i + , 

starting with the conditions already known at i-th step. The equation of motion to be solved 

numerically is: 

1 1 1 , 1( )
i i i g i

u+ + + ++ + = −RMu Cu f u Miɺɺ ɺ ɺɺ                                       (D.3)  

which allows to find: 1 1 1, ,
i i i+ + +u u uɺ ɺɺ , the associated resisting forces 1( )

i+Rf u  and the stress-strain 

state of the structural elements. 

The solution strategy is based on the Newmark’s Method [123], which is described below for 

both linear and non-linear systems. 
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D.1 Basic procedure 

Newmark’s method is based on the following equations: 

( ) ( )1 11
i i i i

t tγ γ+ += + − ∆ + ∆  u u u uɺ ɺ ɺɺ ɺɺ                                                       (D.4a) 

( ) ( ) ( ) ( )2 2

1 10.5
i i i i i

t t tβ β+ +
   = + ∆ + − ∆ + ∆
   

u u u u uɺ ɺɺ ɺɺ      (D.4b) 

 
The parameters β  and γ  define the variation of acceleration over a time step, whose typical 

values are: 
1

2
γ = , 

1 1

6 4
β≤ ≤ . 

These two equations, combined with the equilibrium Equation (D.3)  at the end of the time step, 

allow to solve the problem. An iterative procedure is required to implement these computations 
because the unknown 1i+uɺɺ  at the 1i + -th step, which is the same step for the determination of 

1i+uɺ  and 1i+u , appears in the right side of Equations (D.4), therefore making the problem 

implicit. However, for linear systems it is possible to modify Newmark’s original formulation in 

order to solve Equation (D.3)  and Equations (D.4) without iteration although still implicit.  
Two special cases of Newmark’s method, which are obtained by fixing appropriately β  and γ , 

are shown in the following. 

 

 

 

Constant average acceleration method 

Assuming that the acceleration over a time step t∆  is constant and equal to its mean value, the 

acceleration at the instant τ  included in t∆  is given by: 

( )1

1
( )

2
i i

τ += +u u uɺɺ ɺɺ ɺɺ                                                                                                                    (D.5) 

Integration of (D.5) allows to obtain the velocity: 

( )1( )
2

i i i

ττ += + +u u u uɺ ɺ ɺɺ ɺɺ                                                                                                             (D.6) 

Integration of (D.6) allows to obtain the displacement: 

( )
2

1( )
4

i i i i

ττ τ += + + +u u u u uɺ ɺɺ ɺɺ                                                                                                   (D.7) 

Velocity and displacement values at the end of the time step are given by: 

( )

( )

1 1

2

1 1

2

4

i i i i

i i i i i

t

t
t

+ +

+ +

∆= + +

∆= + ∆ ⋅ + +

u u u u

u u u u u

ɺ ɺ ɺɺ ɺɺ

ɺ ɺɺ ɺɺ

                                                                                              (D.8)  

These expressions can be obtained by imposing in Equations (D.4) 
1

2
γ =  and 

1

4
β = . 
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Linear acceleration method 

Assuming that the acceleration varies linearly over a time step t∆ , the acceleration at the 

instant τ  included in t∆  is given by: 

( )1( )
i i i

t

ττ += + −
∆

u u u uɺɺ ɺɺ ɺɺ ɺɺ                                                                                                           (D.9)  

Integration of (D.9)  allows to obtain the velocity: 

( )
2

1( )
2

i i i i
t

ττ τ += + + −
∆

u u u u uɺ ɺ ɺɺ ɺɺ ɺɺ                                                                                                (D.10)  

Integration of (D.10) allows to obtain the displacement: 

( )
2 3

1( )
2 6

i i i i i
t

τ ττ τ += + + + −
∆

u u u u u uɺ ɺɺ ɺɺ ɺɺ                                                                                     (D.11)  

Velocity and displacement values at the end of the time step are given by: 

( )1 1

2 2

1 1

2

3 6

i i i i

i i i i i

t

t t
t

+ +

+ +

∆= + +

∆ ∆= + ∆ ⋅ + +

u u u u

u u u u u

ɺ ɺ ɺɺ ɺɺ

ɺ ɺɺ ɺɺ

                                                                                          (D.12)  

These expressions can be obtained by imposing in Equations (D.4) 
1

2
γ =  and 

1

6
β = . 
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D.2 Linear systems 

For linear systems it is possible to modify Newmark’s original formulation to permit solution of 

Equation (D.3) and Equations (D.4) without iteration although still implicit.  

The equation of motion for linear systems is given by: 

1 1 1 , 1i i i g i
u+ + + ++ + = −Mu Cu Ku Miɺɺ ɺ ɺɺ                                         (D.13)  

Equation (D.4b) allow to express 1i+uɺɺ  as a function of 1i+u : 

( )
( )1 12

1 1 1
1

2
i i i i i

tt β ββ+ +
 = − − − − ∆∆  

u u u u uɺɺ ɺ ɺɺ       (D.14)  

Substituting Equation (D.14) in Equation (D.4a) allows to express the velocity as: 

( )1 1 1 1
2

i i i i i
t

t

γ γ γ
β β β+ +

   = − + − + ∆ −   ∆    
u u u u uɺ ɺ ɺɺ       (D.15)  

Substitution of Equations (D.14) and (D.15) in Equation (D.3)  allows to obtain: 

( )
( ) ( )1 12

1 , 1

1 1 1
1 1 1

2 2
i i i i i i i i

i g i

t
t tt

u

γ γ γ
β β β β ββ + +

+ +

        − − − − + − + − + ∆ − +        ∆ ∆∆          

+ = −

M u u u u C u u u u

Ku Mi

ɺ ɺɺ ɺ ɺɺ

ɺɺ

 

            (D.16)  

Rearranging the terms: 

( ) ( )1 , 12 2

1 1 1
1

1
1 1

2 2

i g i i i

i

u
t t tt t

t

γ γ γ
β β β ββ β

γ
β β

+ +

      + + = − + + + + − +      ∆ ∆ ∆∆ ∆          

    + − + ∆ −    
    

M C K u Mi M C u M C u

M C u

ɺɺ ɺ

ɺɺ

 

            (D.17)  

Which can be written in matrix form as: 

1 1
ˆ ˆ

i i+ +=Ku F       (D.18) 

where: 

( )2

1ˆ
tt

γ
ββ

= + +
∆∆

K K M C  

( )1 , 1 2

1 1 1ˆ 1 1 1
2 2

i g i i i i
u t

t tt

γ γ γ
β β β β ββ+ +

          = − + + + + − + − + ∆ −          ∆ ∆∆            
F Mi M C u M C u M C uɺɺ ɺ ɺɺ  

It is worth noting that K̂  and 1
ˆ

i+F  are known and which depend on the system characteristics, 

β  and γ  parameters and the quantities , ,i i iu u uɺ ɺɺ . Solving the system 1 1
ˆ ˆ

i i+ +=Ku F  and therefore 

computing the quantities 1i+uɺ  and 1i+uɺɺ  by using Equations (D.14)-(D.15), it is possible to find 

the system response at the 1i + -th step. However, in order to ensure the equilibrium at the 1i +
-th step, it is possible to compute the acceleration by using the equation of motion: 

1 , 1 1 1i g i i i
u+ + + += − − −Mu Mi Cu Kuɺɺ ɺɺ ɺ         (D.19)  

being known the quantities at the right side. 
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The procedure to implement the linear dynamic analysis by means of Newmark’s method is 

shown in the following: 

 

1.0 Choose special case: 

a) Constant average acceleration method: set 
1

2
γ =  and 

1

4
β = ; 

b) Linear acceleration method: set 
1

2
γ =  and 

1

6
β = ; 

2.0 Initialize variables:  

- 0 =u 0 , assuming at rest initial conditions (therefore 0=s 0  and 0=T 0 ); 

- 0 =u 0ɺ , assuming at rest initial conditions; 

-  , ,M C K  matrices assembling; 

- compute 0uɺɺ  by solving the equation of motion at initial time instant: 

0 ,0 0 0g
u= − − −Mu Mi Cu Kuɺɺ ɺɺ ɺ ; 

- select t∆ , usually equal to the sampling interval of the accelerogram; 

- 
( )1 2 32

1 1 1
; 1 ; 1 1

2 2
a a a t

t tt

γ γ γ
β β β β ββ

     = + = + − = − + ∆ −     ∆ ∆∆      
M C M C M C ; 

- 1
ˆ a= +K K . 

3.0 For each time instant 0,1,2,3,... Si N= : 

      - 1 , 1 1 2 3
ˆ

i g i i i iu a a a+ += − + ⋅ + ⋅ + ⋅F Mi u u uɺɺ ɺ ɺɺ ; 

      - Compute 1i+u  by solving 1 1
ˆ ˆ

i i+ +=Ku F ; 

      - ( )1 1 1 1
2

i i i i i
t

t

γ γ γ
β β β+ +

   = − + − + ∆ −   ∆    
u u u u uɺ ɺ ɺɺ ; 

      -  
( )

( )1 12

1 1 1
1

2
i i i i i

tt β ββ+ +
 = − − − − ∆∆  

u u u u uɺɺ ɺ ɺɺ  or compute 1i+uɺɺ  by imposing the equilibrium 

at step end: 1 , 1 1 1i g i i i
u+ + + += − − −Mu Mi Cu Kuɺɺ ɺɺ ɺ ; 

      - 1 1i i+ += ⋅s C u ; 

      - 1 1i i+ += ⋅T D s . 

4.0 Save results at step end, replace 1i i= +  and repeat from step 3.0. 
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D.3 Non-linear systems 
For non-linear systems the resisting forces 1( )i+Rf u  depend on the unknown displacement 1i+u

therefore the equation of motion is solved by means of an iterative procedure. In this case 

Newton-Raphson Method is adopted, already used for the non-linear static problem. 

The equation of motion for non-linear systems is given by: 

1 1 1 , 1( )i i i g iu+ + + ++ + = −RMu Cu f u Miɺɺ ɺ ɺɺ                                     (D.20)  

which can be written as: 

1 , 1
ˆ

i g iu+ += −P Miɺɺ           (D.21)  

where 1 1 1 1
ˆ ( )i i i i+ + + += + + RP Mu Cu f uɺɺ ɺ . 

According to the Newton-Raphson method, for each 1i + -th step it is possible to use the following 

approximation: 

( )
1

( 1) ( ) ( )

1 1 1 , 1

ˆ
ˆ ˆ

j
i

j j j

i i i g i
u

+

+
+ + + +

∂+ ∆ = −
∂

u

P
P P u Mi

u
ɺɺ≃        (D.22)  

where j is the current iteration number, ( )

1
ˆ j

i+P  is the force vector known at 1i + -th step and j-th 

iteration, 
( )

1

ˆ

j
i+

∂
∂

u

P

u
 is the derivative of 1

ˆ
i+P  with respect to displacement ( )

1

j

i+u , and 

( ) ( 1) ( )

1 1 1

j j j

i i i

+
+ + +∆ = −u u u  is the displacement increment at 1i + -th step and j-th iteration. 

Making the derivative of 1
ˆ

i+P  with respect to ( )

1

j

i+u : 

( ) ( ) ( )
( )

1 1 1
1

1 1 1 1 1 1

( ) ( ) ( )

1 1 1

ˆ ( ) ( )

j j j
j

i i i
i

i i i i i i

j j j

i i i+ + ++

+ + + + + +

+ + +

∂ ∂ ∂ ∂ ∂ ∂∂ = + + = + +
∂ ∂ ∂ ∂ ∂ ∂ ∂

R R

u u uu

u u f u u u f uP
M C M C

u u u u u u u

ɺɺ ɺ ɺɺ ɺ
  (D.23)  

According to Newmark’s method, it is possible to express 1i+uɺ  and 1i+uɺɺ  as already done for linear 

systems in Equations (D.14) and (D.15): 

( )1 1 1 1
2

i i i i i
t

t

γ γ γ
β β β+ +

   = − + − + ∆ −   ∆    
u u u u uɺ ɺ ɺɺ       (D.24) 

( )
( )1 12

1 1 1
1

2
i i i i i

tt β ββ+ +
 = − − − − ∆∆  

u u u u uɺɺ ɺ ɺɺ       (D.25) 

Deriving these expressions: 

1

( )

1

i

j

i t

γ
β

+

+

∂ =
∂ ∆
u

u

ɺ
           (D.26)  

( )
1

2( )

1

1i

j

i tβ
+

+

∂ =
∂ ∆
u

u

ɺɺ
          (D.27)  

It is worth noting that ( )1
, 1( )

1

( ) ji
T ij

i

+
+

+

∂ =
∂
Rf u

K
u

 is equal to the tangent stiffness matrix at 1i + -th step 

and j-th iteration. Therefore Equation (D.23) can be written as: 

( )( )
1

( ) ( )

, 1 , 12

ˆ 1ˆ

j
i

j j

T i T i
tt

γ
ββ

+

+ +
∂= = + +
∂ ∆∆u

P
K M C K

u
      (D.28)  

Substituting Equations (D.24) and (D.25) in ( )

1
ˆ j

i+P , it allows to obtain: 
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( )
( ) ( )

( )
( )

( ) ( ) ( ) ( )

1 1 1 1

( ) ( )

1 12

( )

, 1

( )

12

ˆ ( )

1 1 1
1 1 1

2 2

1 1
1

j j j j

i i i i

j j

i i i i i i i i

j

i

j

i i

t
t tt

t tt

γ γ γ
β β β β ββ

γ γ
β β ββ

+ + + +

+ +

+

+

= + + =

        = − − − − + − + − + ∆ − +        ∆ ∆∆          

+ =

  = + − − + − 
∆ ∆∆  

R

R

P Mu Cu f u

M u u u u C u u u u

f

M C u u M

ɺɺ ɺ

ɺ ɺɺ ɺ ɺɺ

( )

, 1

1
1 1

2 2

j

i i it
γ

β β +

       − − + ∆ − +        
        

RC u M C u fɺ ɺɺ

 

            (D.29)  

Therefore, Equation (D.22) can be written as follows: 

( )
( )( ) ( ) ( )

, 1 1 , 1 12

( )

, 1

1 1ˆ 1

1
1 1

2 2

j j j

T i i g i i i i

j

i i

u
t tt

t

γ γ
β β ββ

γ
β β

+ + + +

+

    ∆ = − − + − + + − +    ∆ ∆∆      

    + − + ∆ − −    
    

R

K u Mi M C u u M C u

M C u f

ɺɺ ɺ

ɺɺ

 (D.30) 

which can be written in matrix form: 
( ) ( ) ( )

, 1 1
ˆ j j j

T i i+ +∆ = ∆K u R           (D.31)  

where: 

( )
( )( ) ( )

, 1 12

( )

, 1

1 1
1

1
1 1

2 2

j j

g i i i i

j

i i

u
t tt

t

γ γ
β β ββ

γ
β β

+ +

+

    ∆ = − − + − + + − +    ∆ ∆∆      

    + − + ∆ − −    
    

R

R Mi M C u u M C u

M C u f

ɺɺ ɺ

ɺɺ

  (D.32)  

By solving Equation (D.31), it is possible to determine ( 1) ( ) ( )

1 1 1

j j j

i i i

+
+ + += + ∆u u u . Therefore, it is 

possible to check the convergence and, if it is not satisfied, to go on with the next iteration. When 
the convergence is achieved, it is possible to determine 1i+uɺ  and 1i+uɺɺ  from Equations (D.24) and 

(D.25), respectively, or by imposing the equilibrium at step end: 

1 1 1 , 1( )i i i g iu+ + + += − − −RMu Cu f u Miɺɺ ɺ ɺɺ         (D.33)  

being known the quantities at the right side. 

 

The procedure to implement the non-linear dynamic analysis by means of Newmark’s method 

is shown in the following: 

 

1.0 Choose special case: 

a) Constant average acceleration method: set 
1

2
γ =  and 

1

4
β = ; 

b) Linear acceleration method:  set 
1

2
γ =  and 

1

6
β = ; 

2.0 Initialize variables:  

- 0 =u 0 , assuming at rest initial conditions (therefore 0=s 0  and 0=T 0 ); 
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- 0 =u 0ɺ , assuming at rest initial conditions; 

-  , , eM C K  matrices assembling; 

- compute static resisting forces ,0 0e
=Rf K u ; 

- compute 0uɺɺ  by solving the equation of motion at initial time instant: 

0 ,0 0 ,0g
u= − − − RMu Mi Cu fɺɺ ɺɺ ɺ ; 

- select t∆ , usually equal to the sampling interval of the accelerogram; 

-
( )1 2 32

1 1 1
; 1 ; 1 1

2 2
a a a t

t tt

γ γ γ
β β β β ββ

     = + = + − = − + ∆ −     ∆ ∆∆      
M C M C M C . 

3.0 For each time instant 0,1,2,3,... Si N= , initialize variables: 

- (1)

1i i+ =u u  (therefore (1)

1i i+ =s s ); 

- (1)

, 1 ,i i+ =R Rf f  (therefore (1)

1i i+ =T T );   

- (1)

, 1 ,T i T i+ =K K ;  

- 
( )1 , 1 2

1 1ˆ 1

1
1 1

2 2

i g i i i

i

u
t tt

t

γ γ
β β ββ

γ
β β

+ +

    = − + + + + − +    ∆ ∆∆      

    + − + ∆ −    
    

F Mi M C u M C u

M C u

ɺɺ ɺ

ɺɺ

 

 

4.0 For each iteration 1,2,3,...j = inside the i-th time step: 

- Check convergence; if the acceptance criteria are not met, implement following steps; 

otherwise, skip these steps and go to step 5.0;  

- Update tangent stiffness matrix ( ) ( )

, 1 , 1

j T j

T i T i+ += ⋅ ⋅K C D C ; 

- ( ) ( ) ( )

1 1 1 , 1
ˆj j j

i i ia+ + +∆ = − ⋅ − RR F u f ; 

- ( ) ( )

, 1 1 , 1
ˆ j j

T i T ia+ += +K K ; 

- Solve ( ) ( ) ( )

, 1 1
ˆ j j j

T i i+ +∆ = ∆K u R  in order to find ( )

1

j

i+∆u ; 

- ( 1) ( ) ( )

1 1 1

j j j

i i i

+
+ + += + ∆u u u ; 

- Compute relative displacement increments in structural elements ( ) ( )

1 1

j j

i i+ +∆ = ⋅∆s C u ; 

- Update internal shear forces ( 1)

1

j

i

+
+T  of structural elements according to relative 

displacement increment and constitutive law, therefore update elastic matrix ( 1)

, 1

j

T i

+
+D  and 

relative displacement vector ( 1)

1

j

i

+
+s ; 

- Compute resisting forces ( 1) ( 1)

, 1 1

j T j

i i

+ +
+ += ⋅Rf C T ; 

- Compute residual ( 1) ( 1) ( 1)

1 1 1 , 1
ˆj j j

i i ia
+ + +

+ + +∆ = − ⋅ − RR F u f ; 
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- Compute 

( 1)

1

j

i

err

+

+

∆
=

∆
R

F
 for check convergence; 

- Replace 1j j= + , repeat from step 4.0. 

5.0 Time step end: 

      - ( )1 1 1 1
2

i i i i i
t

t

γ γ γ
β β β+ +

   = − + − + ∆ −   ∆    
u u u u uɺ ɺ ɺɺ ; 

      - 
( )

( )1 12

1 1 1
1

2
i i i i i

tt β ββ+ +
 = − − − − ∆∆  

u u u u uɺɺ ɺ ɺɺ  or compute 1i+uɺɺ  by imposing the equilibrium 

at step end: 1 1 , 1 1 , 1( )
i i i i g i

u+ + + + += − − −RMu Cu f u Miɺɺ ɺ ɺɺ ; 

      - Save results at step end, replace 1i i= +  and repeat from step 3.0.   
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APPENDIX E 
 

The seismic records considered in the non-linear dynamic analyses used for the construction of 

the fragility curves have been chosen among the real accelerograms collected in the European 

Strong Motion (ESM) database. 

The first seven earthquake records have been selected by means of the REXELite online tool 

[127, 128], which allows to search for a suite of waveforms compatible with a target spectrum, 

generated according to Italian Code NTC18 for the Catania site (SLV). The search has been 

limited to the records whose main characteristics are in agreement with those of the Catania 

site according to the Seismic hazard model MPS04-S1 [129] (mean Mw = 5.34, mean distance = 

9.28 km). In Table E.1 are reported the inputs given to the tool, while in Figure E.1 the response 

spectra of the selected records are shown with the target spectrum.  

The other twenty-three records have been chosen maintaining the characteristics of the Catania 

site according to the Seismic hazard model MPS04-S1, therefore having Mw or ML inside the 

range [4.5 6.0] and epicentral distance lower than 50 km.  

Table E.1 - Inputs for REXELIte 

Target spectrum Preliminary record search 

Latitude [°] 37.52 Station site classification B,B*,C,C* 

Longitude [°] 15.07 
Magnitude Mw or ML 

range 
[4.5 6.0] 

Site classification C Epicentral distance range [0 50] [km] 
Topography 1 Period range [T1 T2] [0.15 2.0] [s] 
Nominal life 50 [y] Tolerance below 10% 

Building functional 
type (Cu) 

1.0 Tolerance above 30% 

Limit state SLV   

 

 

 

Figure E.1 - Response and target spectra - 5% damping 
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In Table E.2 and Table E.3 the selected earthquake records with dates, corresponding station 

IDs and main characteristics (PGAs, Mw, ML, epicentral distance, etc.) are reported. In Figure 

E.2 the representation of the selected earthquake records is shown. 

 

Table E.2 – Selected earthquake records with dates 

Acc. Event Name 
Event 

Date 

Event 

Time 

Event 

Latitude 

Event 

Longitude 

Event 

Depth 

ID    [°] [°] [km] 

1 L_Aquila 06/04/2009 01:32:40 42,3420 13,3800 8,3 

2 Emilia_2nd_shock 29/05/2012 07:00:02 44,8417 11,0657 8,1 

3 Turkey 27/06/1998 13:55:53 36,8451 35,3250 46,6 

4 Emilia_1st_shock 20/05/2012 02:03:50 44,8955 11,2635 9,5 

5 L_Aquila 06/04/2009 01:32:40 42,3420 13,3800 8,3 

6 Northern_Italy 29/05/2012 10:55:56 44,8652 10,9795 4,3 

7 Emilia_2nd_shock 29/05/2012 07:00:02 44,8417 11,0657 8,1 

8 Central_Italy 24/08/2016 01:36:32 42,6983 13,2335 8,1 

9 Central_Italy 24/08/2016 01:36:32 42,6983 13,2335 8,1 

10 Central_Italy 24/08/2016 01:36:32 42,6983 13,2335 8,1 

11 Central_Italy 24/08/2016 01:36:32 42,6983 13,2335 8,1 

12 Greece 31/03/2015 15:48:41 38,33 20,49 13 

13 Central_Italy 18/01/2017 10:14:12 42,531 13,2838 9,6 

14 Central_Italy 18/01/2017 10:14:12 42,531 13,2838 9,6 

15 Central_Italy 18/01/2017 10:25:26 42,5033 13,277 9,4 

16 Central_Italy 18/01/2017 10:25:26 42,5033 13,277 9,4 

17 Emilia_1st_shock 20/05/2012 02:03:50 44,8955 11,2635 9,5 

18 Emilia_2nd_shock 29/05/2012 07:00:02 44,8417 11,0657 8,1 

19 Emilia_2nd_shock 29/05/2012 07:00:02 44,8417 11,0657 8,1 

20 Northern_Italy 15/10/1996 09:56 44,797 10,662 5 

21 L_Aquila 06/04/2009 01:32:40 42,3420 13,3800 8,3 

22 Central_Italy 18/01/2017 10:16:39 42,5375 13,2677 8,2 

23 Cosenza 25/10/2012 23:05:24 39,8747 16,0158 9,7 

24 Central_Italy 24/08/2016 02:33:29 42,7922 13,1507 8 

25 Central_Italy 24/08/2016 02:33:29 42,7922 13,1507 8 

26 Central_Italy 24/08/2016 02:33:29 42,7922 13,1507 8 

27 Central_Italy 24/08/2016 02:33:29 42,7922 13,1507 8 

28 Sicily_Italy 26/12/2018 02:19:17 37,644 15,116  

29 Sicily_Italy 26/12/2018 02:19:17 37,644 15,116  

30 Western_Turkey 26/06/2020 07:21:11 38,78 27,81 10 
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Table E.3 - Selected earthquake records with corresponding station IDs and main characteristics 

Acc. 
Station 

Code 

Epicentral 

Distance 
Stream PGA ML MW 

ID  [km]  [cm/s2]   

1 AQV 4,9 HNE 644,25 5,9 6,1 

2 MRN 4,1 HNN -288,63 5,8 6 

3 0105 48,2 HNE 271,95 5,9 6,2 

4 MRN 16,1 HNE -257,23 5,9 6,1 

5 AQK 1,8 HNN -346,78 5,9 6,1 

6 T0819 6,8 HNE 253,12 5,3 5,5 

7 MIR08 8,6 HNN -242,97 5,8 6 

8 AMT 8,5 HGE -850,80  6 

9 CLF 45,5 HGN 128,78  6 

10 FEMA 32,9 HNE 242,34  6 

11 NRC 15,3 HGN 366,77  6 

12 LXRA 15,2 HNE -95,05  4,7 

13 ASP 46,2 HGE 105,18  5,5 

14 PCB 5,4 HGN -584,33  5,5 

15 ACT 31,8 HGN -101,97  5,4 

16 MSCT 6,6 HGN -279,88  5,4 

17 MRN 16,1 HNN -258,80  6,1 

18 MIR01 0,5 HNE 411,37  6 

19 MIR04 13 HNE 392,11  6 

20 NVL 7,5 HNE -195,09  5,4 

21 AQV 4,9 HNN -535,20  6,1 

22 PCB 6,2 HGE 92,79 4,6  

23 0PAP 8,9 HGN -234,94  5,2 

24 AMT 20,9 HGE 105,58  5,3 

25 FEMA 20,6 HNE 54,15  5,3 

26 GUMA 33,6 HNN 65,45  5,3 

27 NRC 4,4 HGN 190,80  5,3 

28 SVN 4,5 HGE -547,93  4,9 

29 SVN 4,5 HGN -277,60  4,9 

30 AKS 10,9 HNN -364,93 5,2  
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Figure E.2 - Representation of the earthquake records 

 


