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Abstract

The intensified attention to health, the growth of an elderly population, the changing lifestyles, and the medical discoveries
have increased demand for natural and nutrient-rich foods, shaping the popularity of microalgae products. Microalgae thanks
to their metabolic versatility represent a promising solution for a ‘green’ economy, exploiting non-arable land, non-potable
water, capturing carbon dioxide (CO2) and solar energy. The interest in microalgae is justified by their high content of bioactive
molecules, such as amino acids, peptides, proteins, carbohydrates, polysaccharides, polyunsaturated fatty acids (as ω-3 fatty
acids), pigments (as ⊎-carotene, astaxanthin, fucoxanthin, phycocyanin, zeaxanthin and lutein), or mineral elements. Suchmol-
ecules are of interest for human and animal nutrition, cosmetic and biofuel production, for which microalgae are potential
renewable sources. Microalgae, also, represent effective biological systems for treating a variety of wastewaters and can be
used as a CO2 mitigation approach, helping to combat greenhouse gases and global warming emergencies. Recently a growing
interest has focused on extremophilic microalgae species, which are easier to cultivate axenically and represent good candi-
dates for open pond cultivation. In some cases, the cultivation and/or harvesting systems are still immature, but novel tech-
niques appear as promising solutions to overcome such barriers. This review provides an overview on the actual microalgae
cultivation systems and the current state of their biotechnological applications to obtain high value compounds or ingredients.
Moreover, potential and future research opportunities for environment, human and animal benefits are pointed out.
© 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of
Chemical Industry.
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INTRODUCTION
The term ‘algae’does not refer to a specific taxonomic group but it is
commonly used to indicate microscopic and macroscopic photo-
synthetic organisms, including three wide groupings: macroalgae,
microalgae and cyanobacteria.1 Actually, the term ‘microalgae’ lacks
a clear taxonomic value, it refers to unicellular, colonial or filamen-
tous organisms, prokaryotic or eukaryotic, which are estimated to
be between 200 000 and several millions of species.2 Microalgae
are considered the most primitive and dominant photosynthetic
organisms on the Earth's surface. It has been estimated that they
have occupied the Earth's surface for more than 3 billion years, con-
tributing to the creation of the current terrestrial atmospheric com-
position and being responsible for fixing 40% of carbon dioxide
(CO2).

3,4 Prokariotic microalgae include cyanobacteria, traditionally
known as blue-green algae (divisions Cyanophyta and Prochloro-
phyta), which are gram-negative bacteria; whereas eukaryotic
microalgae, for which the systemic classification is essentially based
on their pigment composition, include Chlorophyceae (green
algae), Phaeophyceae (brown algae), Pyrrophyceae (dinoflagellates),

Chrysophyceae (golden brown algae), Bacillariophyceae (diatoms),
Rhodophyceae (red algae), Euglenophyta, Cryptophyta, Hapto-
phyta, Dinophyta and Xantophyceae.5 Microalgae synthesize a
broad range of molecules with different structures and functional
roles, a large amount of proteins are produced both for biological
and structural functions, whereas secondary metabolites are
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accumulated to interact with external environmental conditions.
Moreover, microalgae structural (polar) and reserve (neutral) lipids
have a diversified composition of fatty acids, often related to the
ecological niches, including polyunsaturated fatty acids (PUFAs)
ω-3 and ω-6.6 Carbohydrates, obtained through photosynthesis,
are a wide category encompassing sugars (monosaccharides) and
their polymers (disaccharides, oligosaccharides, and polysaccha-
rides) and the most abundant are glucose, rhamnose, xylose, and
mannose.7 Regarding pigments, they comply with the light capture
ability in the first phases of photosynthesis and chlorophylls (five
types: a, b, c, d and e), carotenoids (carotenes and xanthophylls)
and phycobilins are the three main classes produced by
microalgae.8

A key relevant aspect of microalgae is their metabolic versatility.
They can growheterotrophically, autotrophically or photoheterotro-
phically, namely mixotrophically,9 and this makes microalgae as
interesting solutions for treatment of wastewater coming from sev-
eral productive sectors. Contextually, agricultural facilities and agro-
industries encounter serious problems due to the co-products and
by-products generated during their production processes. The
recovery of such products to obtain microalgae biomass would
mean to exploit agricultural by-products as growth substrate, being,
in many cases quite similar to media for microbial growth. For
instance, the vinasse from ethanol distillation (from beet and cane
molasses fermentation) is a brown liquid containing mostly organic
matter and a high amount of inorganic salts.10 Indeed, several stud-
ies have been performed on microalgal cultivation systems or on
treatment of industrial and domestic wastewaters,11 whereby they
are widely used for secondary or tertiary treatments. Nevertheless,
the contemporary presence of bacteria, fungi and other microor-
ganisms, considered as contaminants, could have adverse results
for microalgal performance affecting productivity, or in the worst-
case scenario, causing culture crash, as documented in a 10-year
comprehensive study in Singapore.12 An interesting strategy is
based on using extremophilic microalgae. The extreme pH, temper-
ature or salinity conditions limit the growth of competitors and
predators, as bacteria, improving the efficacy of microalgae-based
treatment.13

The aim of this review is to explore the use of unconventional
microalgae species and their cultivation systems pointing out
the current state of their applications, with a view on potential
and future research opportunities.

MICROALGAL BIOMASS PRODUCTION
Since 1953, when ‘Algae Culture, from Laboratory to Pilot Plant’,
edited by J.S. Burlew,14,15 was published ‘where were Brought
almost all of the work done including the first larger scale outdoor
trials made to date in the USA, Germany, Japan and Israel’, many
designs have been developed. They can be classified essentially
into two categories: traditional open systems and enclosed
photobioreactors (PBRs), and their main traits are listed in
Table 1. Recently, new designed multi-technology (hybrid) sys-
tems have been introduced, sharing the common feature to uti-
lize suspended cultures in an aquatic environment.11,21

The most typical open system, extensively used since the 1950s
for algae cultivation, is the raceway pond. The algal culture is con-
stantly mixed and circulated around the raceway track, in either
concrete or compacted earth, by paddlewheels, where the flow
is driven around bends by baffles placed in the flow channel. Dur-
ing daylight, in front of the paddlewheel, where the flow begins,
the culture is continuously fed, while, broth is harvested behind

the paddlewheel, at the end of the circulation loop.16 The pond
is usually about 0.3 m deep to provide sufficient sunlight for pho-
tosynthesis. Currently, the most commercial scale algae cultiva-
tion systems are open ponds, being relatively inexpensive to
build and easy to scale up. Nevertheless, numerous limitations,
such as: temperature fluctuations between day and night and
among seasons as well as geographic location, evaporative water
loss, low CO2 and high oxygen (O2) concentrations, large optically
dark zones or contaminations with unwanted algae or microor-
ganisms, make the open system much less efficient than PBRs.17

Nowadays, PBRs are successfully used for producing large quanti-
ties of microalgal biomass from single-species culture, thanks to
the possibility of maintaining optimal parameters, avoiding con-
tamination, by continuously adjusting light intensity, CO2 and
O2 concentrations, pH and temperature values, and so forth.
There are many available configurations for PBR systems: such
as typical closed reactors, that include flat plate reactors, tubular
PBRs, and bag systems.22 Tubular PBRs are the most commonly
used at industrial scale. A tubular PBR consists of an array of
straight transparent tubes, generally 0.1 m or less in diameter,
usually in plastic or glass, adapted to capture sunlight. Microalgal
culture is kept constantly circulating from a reservoir to the solar
collector and back to the reservoir, by highly turbulent flow pro-
duced using either a mechanical pump or a gentler airlift pump.
Despite biomass yield obtained in PBRs being generally 30 times
higher than that obtained in raceways,16 the cultivations, at com-
mercial scale production, require several crucial considerations, such
as: design, cost, risk of contamination and cleaning. An alternative
strategy consisting of a hybrid system is obtained by coupling open
and closed systems in a two-stage cultivation system. The first stage
uses closed PBRs to culture the inoculum and for the second stage
algae are cultivated in an open pond. In this way, microalgae are
cultivated in optimal conditions for cell growth before being trans-
ferred into a growth-limited environment, as open pond which, for
instance, can enhance lipid production.22,23 However, large-scale
applications have been limited by the cost of the first stage.11 Bilad
et al. used both a closed PBR and a hybrid system, and the mem-
brane photobioreactor (MPBR) for microalgal cultivation.24 The
MPBR consists of an additional filtration tank where a membrane
provides the retention of microalgal cells, preventing the wash out
and increasing biomass concentration, while the medium passes
as permeate. This system achieved nine times higher biomass pro-
ductivity with a 77% smaller footprint than PBR.24 Overall, microal-
gae cultivations for commercial biofuel production are usually
performed in raceway ponds, whereas PBR designs are suitable for
productions of high value products.20

Cultivation strategy
Depending on the selected species and objectives to be achieved
a proper cultivation system is required. Despite the disadvantage
of CO2 required, O2 accumulation, light-growth limitation,18,25 the
most common strategy for microalgae cultivation is the photoau-
totrophic way. Alternatively, heterotrophic cultures are commonly
performed in conventional fermenters (stirred tank fermenter)
where the O2 required is obtained by intensive aeration.26 Never-
theless, heterotrophic growth has been observed exclusively
within fewmicroalgal species, and its productivity is still much less
efficient than that obtained by Candida utilis, which although pre-
sents about the same size, shows a maximum specific growth rate
(0.19 per h) about 2–5 times faster than Chlorella, which is mainly
heterotrophically produced using glucose or acetic acid.26,27

Moreover, darkness can lead to reduced pigmentation, limiting

www.soci.org PS Occhipinti et al.

wileyonlinelibrary.com/jsfa © 2023 The Authors.
Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

J Sci Food Agric 2023

2

 10970010, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jsfa.13136 by C

inzia C
aggia - C

ochraneItalia , W
iley O

nline L
ibrary on [05/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://wileyonlinelibrary.com/jsfa


the potential of heterotrophic cultivation for phytochemicals
large-scale production. In myxotrophy, the simultaneous pres-
ence of two energy sources (light and reduced organic carbon)
can significantly increase biomass productivity because of both
heterotrophic and autotrophic metabolisms operate concurrently
within a single microalgal monoculture, overcoming both auto-
trophic and heterotrophic limitations.28 Nevertheless, mixo-
trophic cultivation cannot be adapted in open cultivation
systems because the presence of organic carbon improves bacte-
rial contaminant growth, holding closed system the only practical
possibility. Recently, Abiusi and coworkers have designed an O2

balanced mixotrophic process that does not require any gas
exchange.29,30 Chlorella sorokiniana, cultivated in enclosed PBR,
as both autotrophic and heterotrophic cultures, was supplied with
an optimal rate of acetic acid, showing a doubled biomass pro-
duction, as the sum of the twometabolisms. Extreme growth con-
ditions aid in preventing contamination and predation of
microalgae, therefore facilitating their outdoor cultivation. During
the last two decades, particular attentions have been paid toward
acidophilic and acid tolerant microalgae and their biotechnologi-
cal application, for example for production of pigments, as
phycocyanin,31 and most of the researches on acidophilic micro-
algae has been focused on Galdieria genus. Interesting results
were reached using Galdieria sulphuraria in mixotrophic cultiva-
tion, where at pH 1.7 the biomass productivity was 1.8 times
higher than in autotrophic culture, and the culture remained
axenic for the whole experiment.31

Microalgae harvesting
Microalgae are grown in large water volumes and for the harvesting
process a concentration step, a process with intensive energy
demand, is required. Therefore, the selection of harvesting technol-
ogies depends on microalgae specie and on the economically and
energetically suitable process.32 The choice formicroalgal harvesting
has to take into account the cell structure, the growth rate and the
lipid content. Several techniques could be adopted for harvesting
and thickening: screening, coagulation–flocculation and sedimenta-
tion, flotation, centrifugation, magnetic separation, electrophoresis
and dewatering and drying.33

The screening consists of introducing microalgal biomass onto a
screen of given aperture size. The efficiency of the screening opera-
tion depends on the size of the screen hole and algal particle dimen-
sions. Microstrainers and vibrating screens are commonly employed
as screening devices.34 The harvesting through coagulation and
flocculation is based on negative surface charge of microalgal cells,
density near to the growth medium, in dispersed state, results in a
stable system with a slow natural sedimentation.33 The
coagulation-flocculation ofmicroalgal cells, useful at large scale with

a wide range of microalgal species, can be induced by using chemi-
cals, namely flocculants, causing aggregation of microalgal cells to
form larger clumps, which are easier to filter and/or settle.35 In the
flotation process, air or gas bubbles are used to move to the top
of growth medium the suspended matter that are then collected
by a skimming process.36 The filtration culture suspension is based
on forcing to flow across filter medium using driving force derived
from gravity, vacuum, pressure, or magnets.37

The harvesting through centrifugation is generally character-
ized by high separation efficiency, > 90% at 13 000 × g, as
reported by Heasman et al.38 However, Dassey and Theegala
demonstrated that high biomass separation efficiency could be
sacrificed when large volume of culture is processed, resulting in
a lower energy intake.39 Indeed, the large energy consumption,
the long treatment time make the process very expensive, mainly
for large-scale applications.19

Due to the negative charge on microalgal cell surface, harvest-
ing based on electrical approaches, as electrophoresis, electro-
flocculation, or electroflotation can be adoptable strategies.
Exposing the medium to an electric field by metallic electrodes
energized with a DC voltage, microalgal cells can thicken close
to the electrode (electrophoresis), to the bottom (electrofloccula-
tion) or to medium surface (electroflotation).32 Alternatively, the
use of natural coagulant inmicroalgae harvesting have been stud-
ied and proven to exceed the alum.40 Biopolymers derived from
plant wastes and fruit pieces, as nirmali, moringa and surjana
seed, maize seed, Cactaceae, and so forth, have shown significant
coagulant capacities, and recently the moringa native to Sudan,
has received the greatest level of attention.40,41 Proteoglycan
coagulant, produced by Bacillus mojavensis strain 32A has shown
an interesting flocculating activity, as 96% at pH 10.42 Lastly,
chitosan-based compounds, derived from marine crustaceans,
are also potentially eco-friendly coagulants and flocculants in
the harvesting process. Generally, the mechanism involved
in the harvesting process of chitosan is based on bridging and
chitosan is commonly used in laboratory for harvesting, for exam-
ple, Chlorella sp. from cultivation medium.43

BIOTECHNOLOGICAL APPLICATIONS
Microalgae are fast-growing organisms able to survive in several
environmental conditions. The biomass production is faster and
higher than that of high plants, with a less seasonal variation, pro-
ducing abundant raw materials characterized by easy biomole-
cule extraction processes. As well as for the biofuel production,
for which microalgae are a potential renewable source, different
commercial applications are possible, such as: wastewater treat-
ment and CO2 capturing, human nutrition, feed for animal and
aquatic life, active ingredients for cosmetic industry, high-value

Table 1. Microalgae cultivation: open versus closed systems

Parameters Open systems Enclosed photobioreactors (PBRs) References

Biomass production (kg/m3) 0.14 (raceway pond) 4 (tubular photobioreactor) 16
Operation costs Low High 17
Light utilization efficiency Poor Highly efficient 18
Process control Difficult Accurate 17
Species control Difficult Possible 19
Contamination risk High Low 19
Value of produced biomass Low High 20

Biotechnological applications of conventional and non-conventional microalgae www.soci.org
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compounds, pigments like astaxanthin, ⊎-carotene, and phycobi-
liproteins, stable isotope production, biofertilizer, or pharmaceuti-
cal means, as antimicrobial, antiviral, antibacterial and anticancer
drugs. In Table 2 an overview on microalgae biotechnological
applications is shown.

Production of nutraceutical compounds
Microalgae, according to the belonging species, are a source of
several biological molecules, such as proteins, PUFAs, peptides,
minerals and pigments with high nutraceutical value.1 Since the
early 1950s, microalgae have been explored as an alternative pro-
tein source to face global food demand, and their large-scale
production has been successfully established since the 1980s, in
several countries.53 As already established by the World Health
Organization (WHO) and Food and Agriculture Organizations of
the United Nations (FAO), microalgae are eligible as substitutes
of animal proteins.54 The Cyanobacterium Arthrospira platensis
presents a calcium content higher than 180% than milk, proteins
higher than 670% than tofu, ⊎-carotene higher than 3100% than
carrot, and iron higher than 5100% than spinach, reasons why
microalgae has been promoted as ‘superfood’ by WHO.55 Both
A. platensis and Arthrospira maxima are the species most com-
monly and intensively investigated. They are rich in PUFAs, such
as γ-linolenic acid (18:3 ω-6), arachidonic acid (ARA, 20: ω-6) eico-
sapentaenoic acid (EPA, 20:5 ω-3), and docosahexaenoic acid
(DHA, 22:6 ω-3).56 Many microalgae species are reported to be
producers of edible oil. Isochrysis galbana, Nannochloropsis sp.,
Tetraselmis sp. and Phaeodactylum tricornutum are EPA-producers,
while Porphyridium cruentum is an ARA producer.57,58 Further-
more, as largely reported by Spolaore et al.,59 for the high content
of B vitamins and phycobiliproteins these species are considered
as healthy promoters with antioxidant, cholesterol-lowering and
other beneficial effects. Moreover, Arthrospira has gained signifi-
cant popularity in the health and food industry, as primary food
source in Asian countries, mainly in China, Korea, and Japan, while
in other parts of the world it has been used as a nutrition supple-
ment. The green algae Chlorella vulgaris is the second most rele-
vant species for human nutrition, to be rich in proteins (48% of
dry weight) and phosphorous (1761.5 mg/100 g of dry weight
biomass). Furthermore, its nutraceutical benefits are related to
⊎-1,3-glucan, macromolecules with immunostimulant effects.60

Dunaliella salina, containing carotenoids (9-cis-⊎-carotene) known
to prevent intracellular oxidative damage, has been consumed as
dietary supplements for human health in the form of pills, capsules,
and fortified nutritional mixtures, or as natural food and bever-
ages.61 Other species have been investigated for their nutraceutical
value, as the halophilic Picochlorum sp. for its folate content, that
appeared higher than that detected in Chlorella.62 The biomass of
Picochlorum sp. showed a total folate content of 6470 μg/100 g,
which is currently the highest total folate content detected in algae,
reported as 1700 and 2600 μg/100 g.63 Similar results were reported
by Fujii et al. that, in microalgae collected from Japanese ponds,
found total folate contents in the range between 1500 and
3600 μg/100 g in dry biomass.64 Within the halophilic Dunaliella ter-
tiolecta species, known for production of carotenoid from natural
seawater, the strain Dunaliella tertiolecta mp3 was found able to
accumulate zeaxanthin, under different growth conditions.50

Furthermore, a recent study, carried out by Fields et al., revealed
that consumption of Chlamydomonas reinhardtiimitigatedweight
loss in a murine model of acute colitis and positively affected
gastrointestinal health in humans.65

Production of active compounds for cosmetic applications
If macroalgae are already widely exploited in the cosmetic indus-
try, microalgae are still less used. Among the different pharmaco-
logical activities, some microalgae compounds could be applied
in cosmetics.66,67 Pigments, such as ⊎-carotene, astaxanthin,
lutein, have been largely described as natural ingredients to be
incorporated into moisturizing, antiaging, photoprotection, and
skin lightening products.68,69 ⊎-Carotene is known for its provita-
min A activity and it is largely used in antiaging products. In par-
ticular, the halotolerant Dunaliella salina species is described as
the main producer of ⊎-carotene, up to 10% of its dry weight.68

Astaxanthin is also applied in antiaging products because of its
remarkable antioxidant properties, which are much greater than
that detected for tocopherol.70 Haematococcus pluvialis is the
richest source of natural astaxanthin (it can accumulatemore than
3 g of astaxanthin per kilogram of dry biomass) and nowadays it is
produced on an industrial scale.68 Lutein has been used for skin
combating sunburn, reducing wrinkles, and for other cosmetic
benefits. Within the product-type segment, the lutein segment
accounts for the largest value, sharing around 19%. Furthermore,
lutein produced by Scenedesmus sp. has been successfully used to
slow eye macular degeneration. The specific composition and
quantity of lipids are species-dependent and the most common
oleaginous microalgae are Chlorella sp., Nannochloropsis sp., Sce-
nedesmus sp., and Dunaliella sp.71 A fundamental aspect in pig-
ment production is downstream processing, in particular their
extraction from microalgal cells. The high consumption of toxic
solvents can be a burden to the environment and longer proces-
sing time result on lower profit.72 The downstream processing
technique, proposed by Chia et al.,73 to extract C-phycocyanin
from Arthrospira spp., based on a sonication treatment coupled
to a liquid biphasic system (to purify the phycobiliproteins), was
described as able to achieve a purification fold of 6.17 and a
recovery yield of 94.89%. At the same time, for extraction of astax-
anthin from H. pluvialis, an alternative solution, to overcome the
criticisms explained earlier, has been proposed by Khoo et al.74

In particular, the use of CO2-based alkyl carbamate ionic liquids
has been proposed and results stated that DIMCARB (dimethy-
lammonium dimethylcarbamate) gave the highest yield of
astaxanthin (27.99 ± 1.01 mg/g of astaxanthin) under the
optimized extraction conditions, namely 100% (w/w) of DIMCARB,
75 min of incubation, at 45 °C.

Production of food ingredients
Microalgae have a great potential to be used as ingredients in
innovative and sustainable food products, improving protein con-
tent, valuable nutrients, such as phenolic compounds, vitamins
and minerals, or as pigments in food dyes, such as astaxanthin
(red), lutein (yellow), chlorophyll (green), or phycocyanin (bright
blue). Chlorella vulgaris has been used as food coloring or antiox-
idant agent, while Isochrysis galbana as aω-3 PUFAs provider.75 As
reported by Hossain et al.,76 when 15% (w/w) of astaxanthin from
H. pluvialiswas added to cookies, there was a significant reduction
in glucose released in in vitro digestion, and an increase in total
phenolic content and antioxidant capacity was observed. Further-
more, when I. galbana and Diacronema vlkianum biomass were
added to pasta a significant increase of PUFAs, in particular EPA
and DHA, both in raw and cooked pastas were detected.77 In
2016, a study explored the effect of adding 10% of Arthrospira pla-
tensis biomass to bread and an increase, from 7.40% to 11.63%, in
protein andmineral contents, especially calcium,magnesium, and
iron was noted.78 In 2019, supplementation of 2%, 6%, and 10% of
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Arthrospira biomass in crostini, a bakery product, was evaluated
and results showed higher protein and antioxidant content along
with the increase of microalgal addition.79 Nevertheless, digest-
ibility of microalgal biomass is still a crucial aspect because the
robust cell walls, composed of peptidoglycan or cellulose, or
the high amount of nucleic acid or neurotoxins, could represent
a risk for human health.44,80,81 To overcome this aspects, numer-
ous pretreatments are available, such as bead milling, high pres-
sure homogenization, heat treatment and many others,
however further studies are required to find higher efficient and
cost-effective technologies to increase digestibility without hin-
dering quality of the high value compounds.82 Furthermore, con-
sumer and government acceptance play a key role in developing
and marketing food products containing microalgae. Moreover,
application of microalgae in functional foods is still restricted
since limited data are available about allergenic compounds or
effect on human health.83 Contextually, due to the considerable
amount of microalgae biomass added to explicate their benefits,
often adverse effects on food taste and texture occurred.84 Differ-
ent microalgal properties affect their potential use as food ingre-
dients, such as gelation, emulsification, and miscibility.85,86

Incorporation of Chlorella in processed cheese led to increased
hardness and reduced meltability,87 while addition of Arthrospira
into pasta enhanced the firmness and the cohesiveness, without
affecting cooking properties.88 Nevertheless, sensorial data
revealed that consumers are generally positive about both green
color andmarine taste. Moreover, it is interesting to highlight that
the addition of Arthrospira platensis and Chlorella vulgaris into pro-
biotic fermented milks resulted in an enhancing of probiotic via-
bility.89 Currently, many of these products are present on the
global market. New and unconventional food, such as vegetable
creams (with higher protein content), are becoming very popular
thanks to the increased demand for healthy products, and some
new recipes meet the criteria to be labeled as ‘high-protein con-
tent’ following the current European Union (EU) legislation.90

Unfortunately, commercial companies do not clarify the used
microalgae species and, in most cases, the label only describes
the microalgae genus.

Safety concerns and legislation
Like other microorganisms, including yeast and bacteria, some
species of microalgae are safe for human consumption and have
obtained the GRAS (Generally Recognized as Safe) status from the
US Food and Drug Administration (FDA). In such a case the purifi-
cation costs are significantly reduced and the applications as valu-
able food and/or feed ingredients are potentially expanded. The
few microalgae that have obtained the GRAS status are: Arthros-
pira platensis, Chlamydomonas reinhardtii, Auxenochlorella proto-
thecoides, Chlorella vulgaris, Dunaliella bardawil, and Euglena
gracilis. In the EU, the European Food Safety Authority (EFSA), fol-
lowing the ‘precautionary principle’ approach, stated that foods
that have been consumed within the EU before May of 1997 are
deemed safe to be consumed, whilst any other food have to be
labeled as ‘novel food’ and must undergo a safety assessment
by the EFSA, before being marketed.91 In the EU the approved
species are only Arthrospira platensis, Chlorella pyrenoidesa, and
Chlorella vulgaris.91

Nevertheless, among the thousands of existing microalgae spe-
cies, around 200 showed concerns about safety traits and about
100 species have been proven to produce toxins.92,93 A compre-
hensive data on toxic species can be found at www.
marinespecies.org, an updated list of microalgae species

producing or suspected to produce toxins or toxic effects (IOC
Harmful Algal Bloom Program and the World Register of Marine
Species). In the last years, important advances have been
achieved towards the development of more specific, sensitive,
and rapid methodologies that allow the identification of different
microalgae species and toxins.94 In addition, legislations and reg-
ulatory aspects on the commercialization of carotenoids from
microalgae biomass are recently described for food and cosmetic
products in the United States, Japan, China, and Europe.95 Thus,
microalgal-derived astaxanthin, ⊎-carotene, and chlorophyll are
regulated and approved by the FDA, based on their non-toxic
and non-carcinogenic properties.96 Moreover, astaxanthin from
H. pluvialis has been approved as a color additive in Europe, the
United States, and in Japan. In details, the EFSA Panel on Nutrition,
Novel Foods, and Food Allergens concluded that an intake of
8 mg of astaxanthin through food supplements is safe for adults91

and the FDA approved it for direct human consumption.97

Livestock and aquaculture feed
Aquaculture is an important sector as terrestrial agriculture that pro-
vides food for the human population. Fishmeal is usually supplied as
feed in fish farming and it is produced from small fishes or fishwaste
which are cooked, pressed, dried and ground to form a solid.98 An
environmentally and economically sustainable alternative for repla-
cing fishmeal can be the microalgae-based feed, which showed sig-
nificant results in production of zooplankton, mollusks, crustaceans,
shrimp and fish farming,99 providing a high value nutrition, improv-
ing the color of aquatic organisms and disease resistance.100 How-
ever, only some microalgal species are proven species to be used
as feed in aquaculture, in particular microalgae belonging to the
genera Isochrysis, Pavlova, Nannochloropsis, Arthrospira, Chlorella,
Scenedesmus, Dunaliella, Haematococcus, and Schizochytrium.60,101

For instance, the carotenoids, as astaxanthin from H. pluvialis, or
⊎-carotene from Dunaliella salina, phycocyanin from Arthrospira,
are used as sources of natural pigments for culturing salmonid fish,
prawns, and ornamental fish.102 Besides aquafeed, livestock feed for
pets, horses, broilers and ruminant animals are other potential
microalgal applications. At low percentages, microalgal biomass,
has been recommended to be included in feed for animals such
as pigs, cows, sheep, chicken and other domestic animals, in order
to improve their immune systems, lipid metabolism and gut func-
tions.103 However, ruminants are the most suitable animals to feed
on algae because they are even able to digest unprocessedmicroal-
gal biomass.103 However, the technology to produce microalgae is
still immature and the main drawbacks and challenges are the high
production costs,102 the low digestibility of cell walls, for some
microalgae, and the presence of contaminants.104

Wastewater treatment
Wastewater treatment by means of microalgal systems is a tech-
nology that has been applied for longer than 60 years.
Microalgae-based wastewater treatment has been recently inten-
sively studied, with a focus on the production of algal biomass
and the associated removal of inorganic nutrients from a wide
variety of wastewaters.105 The pioneering studies of Oswald, in
California, set the fundamentals of wastewater treatment in the
so-called ‘high-rate algal ponds’ (HRAPs), originally focused on
removing organic matter and nutrients.106,107 Nowadays, the bio-
transformation of pollutants from wastewater, as xenobiotics,
nutrients and CO2 from polluted air by macroalgae or microalgae
is known as phycoremediation. The main aim of the phycoreme-
diation is to depurate wastewater for irrigation or other aims
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and concurrently, exploiting wastewater as growing medium
based on the high concentration of nitrogen and phosphorus.108

Also the organic-rich anaerobic digestate, which is difficult to be
purified by conventional techniques, is appropriate to be used
as a low-cost nutrient source for the economic viability and sus-
tainability of microalgae production.109 Chlorella vulgaris has been
extensively exploited for biomass production from food waste,
sludge extracts, corn steep liquor, cheese whey, vinasse, tofu
wastewater, and industrial dairy effluents.110-112

Recently the ability of Arthrospira platensis to accumulate lipids
during mixotrophic growth on dairy wastewater has been
evaluated,113 obtaining about 5 g/L of total biomass concentra-
tion with about 30% of lipid content. Arthrospira platensis has also
been applied to treat piggery wastewater, confectionary effluent,
composite media containing minerals, beet vinasse, and distillery
wastewater.112 Typically, treatment of municipal and agricultural
wastewaters by microalgae is performed in outdoor systems,
without any adjustment of temperature and pH. However, the
wastewater parameters can be widely different, from highly acidic
pH values and high temperatures (spanning from 10 to 40 °C),
high organic loads (> 100 g/L) and a high load of contaminant
population. An interesting strategy to successfully treat a wide
type of wastewaters can be the extremophile microalgae.
G. sulphuraria, known as Cyanidium caldarium, has been exploited
for its interesting extremophilic growth properties, being able to
grow both in neutral and highly acidic conditions, down to pH
value of 1.8,114 acidifying the medium by an active proton efflux,
reducing the costs of pH control and, in turn, the risk of contami-
nation.115 Moreover, the versatile metabolism, able to grow auto-
trophically, heterotrophically and mixotrophically, exploiting
more the 50 different sugars and alcohols, makes G. sulphuraria
a promising candidate for treating wastewaters.116,117 As recently
reported, G. sulphuraria showed to grow heterotrophically and
mixotrophically on cultivation medium containing a by-product
of the dairy industry (buttermilk) as carbon source.118 A further
promising acidophilic microalgal species is Chlamydomonas acid-
ophila, isolated from acidic river in a mining area, at pH values
ranging from 1.7 to 3.1.119 It has been shown that Chlamydomo-
nas acidophila can grow mixotrophically without CO2 addition
by using different carbon sources, such as glucose, glycerol or
starch, at acidic conditions (pH 2.5) removing ammonia.119,120

Chlorella sorokiniana, a well-studied thermophilic green micro-
alga, has revealed high photoautotrophic growth rates, up to
43 °C.121 Despite microalgal feedstock for biofuel use being con-
sidered an ideal scenario, many disadvantages must be solved,
as for example the expensive harvesting process required in a
high-rate algal ponds (HRAP), for microalgal biomass, avoid the
fact that the biomass settles to the bottom of the ponds, where
it decomposes, releasing methane and degrading water
quality.122

Bio-fertilizers and bio-stimulants for promoting plant
growth
Microalgae can be utilized for sustainable agriculture by partial
substituting chemical fertilizers. Recently detailed insights on
algal biochar as a potential fertilizer for sustainable agriculture
have been produced.123 The mechanism responsible for biofertili-
zation is still unclear, biomass is provided to soil, but it should be
available for plants and their roots. The most accredited theory,
explained by Perin and Morosinotto,124 is that microalgal biomass
could be degraded by soil microbiota present in rhizosphere, thus
releasing nutrients over a prolonged period. Alternatively,

symbiotic interactions could be established, as in cyanobacterium
nitrogen fixators case, where bioavailable forms of nitrogen are
released in return for carbonic compounds from plants. Further-
more, after providing biomass in soil, the nutrient status, water
retention capacity, pH and electrical conductivity results
improved.1 Among the most reported responses, an increased
content in proteins, carbohydrates and photosynthetic pigments
has been registered in plants treated with microalgal extract, in
particular from Scenedesmus quadricauda.125-127 However, the
microalgae biomechanisms in the plant physiology and the differ-
ent effects for each bioactive compound remain still unclear, since
the effect of the microalgal biomass is considered a complex of
reactions.128,129 In addition, biochemical composition of microal-
gal cells, rich in micro- and macro-nutrients, makes their biomass
a promising source for biofertilizer.
Unfortunately, only a few microalgal genera are industrially

exploited as microalgae-based commercial products,130,131 con-
firming how young the sector is, and of how little is known on
microalgal species, considering they are several million.

Biofuel production
Many efforts have been done to find biofuel production technol-
ogies, but both the first and the second generations have been
discovered as not suitable for environmental incompatibility for
requiring more arable agricultural lands and modern innovations,
respectively.132 For this reason, the attention is now shifting to the
third generation technology which uses defined species of micro-
algae as feedstocks, thanks to the high oil content and biodiesel
yield, the low land area needed and absence of lignin, that is recal-
citrant and needs several pretreatment processes for carbohy-
drates to be realized.48,133

Many microalgae species can supply several different types of
renewable biofuels such as biomethane, produced by anaerobic
digestion of algal biomass; bioethanol, produced via fermentation
and anaerobic digestion of the remaining algal biomass.49 Micro-
algal species widely investigated belong to the green algae gen-
era Chlorella, Scenedesmus, Dunaliella, Porphyridium and Euglena,
that show particular attitudes for bioethanol production, thanks
to their high polysaccharide content.48

Microcystis aeruginosa, a freshwater blue green alga (cyanobac-
terium), and Scenedesmus obliquus (green alga), with lipids con-
tent as 28% and 40%, respectively,49 were considered the most
promising specie for biodiesel production. To produce biodiesel,
as reported by Leong et al.,134 it seems very promising to use a
microalgal-bacterial consortium. Also, biohydrogen, currently
produced by techniques such as steam reforming or electrolysis
and not entirely free from the involvement of fossil fuels,135 can
be produced by cultivation of Cyanobacteria and green algae,
through direct and indirect pathways, as explained by Show
et al.136 Unlike other well-established biofuels, as biodiesel and
bioethanol, biohydrogen from microalgae is still at its preliminary
stage of development. Criticisms in microalgal biohydrogen cen-
tered on its practicality and sustainability.136 There are still various
difficulties in biofuel production from microalgal biomass feed-
stock. Current data indicate that the cost of biofuel production
from microalgal biomass is still higher than that of different other
sources, and actually, it is not yet proven to be an economically
sustainable source of biofuel.132 A great challenge is to reduce
the harvest cost, which is estimated as 40% of the whole produc-
tion cost. Furthermore, designing efficient and innovative oil
extractingmethods could improve the biodiesel yield frommicro-
algal cells. Nguyen et al. showed the highest fatty acid ester yield
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(96.0% w/w) under wet microalgae conditions with 650 mol/mol
and 10 000 mol/mol of sulfuric acid and methanol concentra-
tions.137 Furthermore, employing transgenic strains to produce
high-value products and using residual by-products to boost pro-
duction economics, microalgal production can be scaled-up to an
industrial level.132

CONCLUSION AND FUTURE PERSPECTIVES
According to the FAO report on ‘The future of Food and Agriculture:
trends and challenges’,138 about one-third of global food produced
is still lost or wasted along the food chain, from production to con-
sumption highlighting an inefficiency of current food systems. At
the same time, increasing healthcare spending, growing geriatric
population, food innovations, changing lifestyles, and medical dis-
coveries have benefited demand for superfoods. Furthermore, the
increasing awareness regarding superfoods as natural, nutrient-rich
agro-foods containing vitamins and minerals are some of the key
aspects shaping the popularity of microalgae products in the world.
In this scenario, microalgae represent a promising candidate for
both food/feed and energy production as well as for valorization
of by-products aimed to create a virtuous recycling system, in accor-
dance with the United Nation 2030 Agenda goals.139 As Pikaar
et al.140 theorized in a model simulation, microbial sources of food
and feed hold great promise for achieving a future food production
system that is both more sustainable and resilient. In particular, it
would be feasible to replace 10–19% of conventional crop-based
protein feedwithmicrobial biomass by 2050, with significant reduc-
tions in global cropland area, nitrogen leakage and agricultural
emission. Despite several species being already commercially used,
they are still not produced in high-enough quantities or in a cost-
effective manner, required for fuels and feeds. Nowadays, total soy
oil and meal production, estimated to be around 200 million t/yr,
with a current price below 0.5 €/kg, is far away from themicroalgae
oil and meal production, which amount to about 25 000 t/yr with a
market price of 20–50 €/kg. Although, it has been estimated that, if
production reached 10 000 t of biomass per year, the cost price will
fall below 5 €/kg, and further industrialization could reduce it below
1 €/kg.103,141,142 Hence, optimization initially of the manufacturing
and then commercialization of microalgae products is required. In
this context, several strategies can be adopted to overcome these
limits: open pond cultivation systems based on poly-extremophile
microalgae can be a strategy to cut down production costs; innova-
tive and natural methods to harvest, extract and processmicroalgae
represent opportunities to develop themost promising sectors such
as food, energy and cosmetic productions. Finally, microalgae can
be a great opportunity to develop new production systems to com-
plement or improve traditional agriculture in order to satisfy the
world's food and feed demand.
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