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INTRODUCTION

Nuclear charge exchange transitions are one of the most versatile

research tool, because they are involved in many processes underlying

variuos physical phenomena, from astrophysics to particle physics, so

that their study allow to gain relevant information on a wide range of

physics. Such transitions can be “spontaneous” processes (weak decays)

or can be induced by weak or strong external fields, like lepton-nucleus

and meson{nucleon{nucleus-nucleus scatterings, respectively.

In the last decades, particular interest has been turning towards heavy

ion nuclear charge exchange transitions for studying new possible nuclear

states, such as the double Gamow-Teller giant resonance, the formation

and properties of exotic nuclei, high multipolarity transitions and, above

all, the investigation of physics beyond the Standard Model.

The latter topic is of most “transversal” nature than the others.

One of the main probes of physics beyond the Standard Model is rep-

resented by the theorized Neutrinoless Double Beta decay process (0νββ),

not experimentally observed, yet. This decay is forbidden by the Stan-

dard Model and can happen only if neutrinos are Majorana particles.

0νββ represents the only process with physical observables directly re-

lated to Majorana phases and so the only process able to distinguish
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Introduction

between Dirac and Majorana neutrinos.

The main physical observable is represented by 0νββ half-life; in-

deed, the inverse of the half-life of nuclei which could undergo 0νββ

is proportional to the Nuclear Matrix Element (NME) square modulus,

the phase-space factor and a function that embodies all particle physics

information, including also the neutrino effective mass, which contains

Majorana phases.

In order to gain information on Majorana effective mass from half-

life measurements with high precision, it is necessary to determine NME

with high accuracy. Unfortunately, present different nuclear structure

models calculations give values of the latter quantity differing up to a

factor of 3; hence, it is desirable to proceed in another way. One of the

most promising tools, in this direction, is just represented by heavy ion

double charge exchange (DCE) nuclear reactions. Indeed, one can note

that there are a lot of analogies between 0νββ and heavy ion “direct”

DCE nuclear reactions [1], in particular initial and final states involved

in both processes and the spin -isospin operators describing both tran-

sitions are the same, although the first one is a weak process, while the

second one proceeds via nuclear strong interaction. While the relation

between light [2] or heavy ions (part of this work) “direct” SCE forward

angular distribution and β decay nuclear matrix element is well estab-

lished, through the factorization of such cross section into the product

of a nuclear structure term and a reaction term, unfortunately this is

not the case for heavy ion “direct” DCE processes, even if one would

be able to factorize the cross section. Indeed, DCE processes can be

described as a one step process or as a second order charge exchange

reaction, in terms of a convolution of two SCE processes, according to

perturbation theory. In the latter case, the nuclear matrix element in-

volved in the strong field - induced process exhibits a structure similar to

the one describing 2νββ decay (intermediate states and the momentum

2



Introduction

transferred to the intermediate states can be different), which represents

the huge irreducible background of the experiments looking for 0νββ de-

cay. The former description of DCE reactions deals with a strong process

which diagrammatically resembles the wanted 0νββ decay; in fact, dif-

ferent nuclear structure models calculations [3, 4] show a nearly linear

proportionality relation between heavy ion DCE Double Gamow - Teller

(DGT) transition and 0νββ decay nuclear matrix elements, but the dif-

ferent nature of the propagators involved in the two (weak and strong)

processes makes the determination of an analytical relation between the

two nuclear matrix elements not trivial [5], thus questioning the direct

extraction of the 0νββ NME from heavy ion “direct” DCE Cross Sections

measurements.

Nowadays the latter topic is representing the main goal of the NU-

MEN experiment at INFN/LNS in Catania.

The present PhD work focuses on the investigation on low and inter-

mediate energy heavy ion charge exchange processes induced by strong

external fields, looking at the study of the role of the different ingredients

of the cross section of such reactions, within DWBA framework:

• kinematical factors in which the dependence on the Q´value of the

reaction is encoded;

• nuclear structure components, calculated within Quasiparticle Ran-

dom Phase Approximation (QRPA);

• initial and final state reactions, dealing with elastic processes, ac-

counted for by microscopic optical potentials.

with the aim to provide for the first time an extention to heavy ions [6],

in low and intermediate energy regime, of the theoretical description of

“direct” single charge exchange reactions given by Taddeucci et al. for

light ions [2].
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Introduction

Moreover, while it has been widely tested [2, 7, 8] the proportionality

relation between the zero degree “direct” single charge exchange (SCE)

cross section and single β decay strength, proposed by Goodman and

co-workers [7] and theoretically described by Taddeucci [2], since ’80s,

the present PhD thesis aims at investigating Single and Double Charge

Exchange Cross Section factorization at low and intermediate energies,

in particular for heavy ion reactions studied within the NUMEN col-

laboration, by using the Distorted Wave Born Approximation (DWBA),

justified by the direct nature of such nuclear reactions.

This PhD thesis is organized in 6 chapters treating the above topics

as follows:

1. The first chapter starts with a rapid overview on nuclear charge

changing transitions. Then, the main features of single beta de-

cay are described, together with a brief review on neutrino mass

and on the problem of its smallness and its Dirac or Majorana na-

ture, hinting at the see-saw meachanism as the one most naturally

explaining the smallness of neutrino mass. Then, 0νββ and 2νββ

decays are introduced, stressing how the former represents the main

tool allowing to distinguish between Dirac and Majorana neutrinos.

Moreover, this chapter briefly shows the problems in experimentally

extracting information on neutrino Majorana effective mass, in this

regard pointing to the study of heavy ion double charge exchange

nuclear reactions as a smart tool to overcome these challenges. In

this way, the attention is turned to light and heavy ion “direct”

single and double charge exchange, due to meson (mainly pion)

exchange, and to single and double charge changing processes orig-

inating by a sequence of nucleon transfer processes. The chapter

ends with a review on these three types of charge exchange nuclear

reactions.

2. The second chapter presents a review on the basic concepts of nu-
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clear reaction theory, describing the different kind of possible nu-

clear reactions, from compound nucleus to direct reactions, focusing

on the latter ones, in view of a deeper treatement of “direct” sin-

gle and double charge exchange processes, then giving an overview

of the most important approximation used in such context and on

nuclear structure models used to describe heavy ion (single) charge

exchange reactions.

3. The third chapter starts with a brief overview on the theoretical

fomalism on light ion single charge exchange at high energies, by

Taddeucci in ’80s, and then provides the theoretical formalism de-

veloped within the present PhD work for the description of heavy

ion single charge exchange reactions at low and intermediate ener-

gies, moreover showing the existence of a proportionality relation

between beta decay nuclear matrix element and heavy ion SCE an-

gular distribution at forward angles, thus extending the previous

work to heavy nuclear systems.

4. The fourth chapter shows the formalism developed within the present

PhD thesis for heavy ion double charge exchange reactions at low

and intermediate energies, together with the possibility to factorize

the cross section for such processes, following just the same proce-

dure as for SCE case, and in particular focusing on the analogy

with 2νββ decay, thus giving the chance of gaining information on

the main process competing with the theorized 0νββ decay.

5. The fifth chapter illustrates the main numerical codes used in per-

forming simulations both on single and double charge exchange

reactions. Among these codes, the one simulating heavy ion DCE

reactions, in the case of close analogy with 2νββ decay, has been

developed within the present PhD work.

5
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6. The sixth chapter presents the results of the simulations performed

with the formalism and the codes discussed in the previous chap-

ters, together with a preliminary comparison with the experimental

results by the NUMEN experiment.

In the end, conclusions about this work are drawn.

6



CHAPTER 1

NUCLEAR CHARGE CHANGING

TRANSITIONS

The term Nuclear Charge Changing transitions refers to all nuclear

processes characterized by the only change of the charge of the initial

nucleus, by one or more units, in one or more steps.

These kind of processes can be of different nature: they can be nuclear

weak processes, like beta, double beta decays, charged lepton capture

and neutrino - nucleus scattering, or strong ones, induced by nuclear

reactions. They represent very important tools towards an understanding

of a very wide range of Physics, e. g. they can give information on both

single particle and collective features of nuclear structure (e. g. isobaric

analog and Gamow-Teller giant resonances [8–10]), on stellar evolution

(Standard Solar Model) and on the production of secondary nuclei in

the interstellar medium [11] and hence on the relative abundances of the

elements in the universe, on Physics beyond the Standard Model (e. g.

the search of the theorized 0νββ decay [1, 12]) and so on [13].

The present work deals with the study of nuclear reaction induced

charge changing transitions in order to gain information on the behaviour

of nucleons within the nuclear medium, paying particular attention on

7



1.1 Nuclear Weak Decays

spin - isospin components of the effective nucleon - nucleon interaction in

nuclear medium and on their possible relation with the operators describ-

ing single and double beta decays (both with and without neutrinos).

1.1 Nuclear Weak Decays

Nuclear weak decays are spontaneous charge changing processes, char-

acterized by the exchange of the massive bosonsW˘ and Z0, with masses

mW » 80.38GeV and mZ0 “ 91.19GeV , respectively. Due to the large

mass of the weak bosons, i. e. the very short range of weak interactions,

weak processes at energy scales characteristic of nuclear reactions can

be well described as effective point-like interactions, as confirmed by the

huge success of Fermi’s theory of beta decay in describing experimental

results [14].

Nuclear weak decays can change the charge of the parent nucleus by

one unit (single beta decay and electron capture) or by two units (double

beta decay), as discussed in the following sections.

1.1.1 Single beta decay

Within the Standard Model, the single beta decay is a nuclear process

characterized by the decay of a neutron into a proton (third component of

the isospin changes by one unit, ∆Tz “ ´1), an electron and an electronic

antineutrino (β´ decay)

pA,Zq Ñ pA,Z ` 1q ` e´ ` νe (1.1)

or by the transition of a proton, inside the nuclear medium, into a neutron

(third component of the isospin changes by one unit, ∆Tz “ `1), a

8



1.1 Nuclear Weak Decays

positron and an electronic neutrino (β` decay)1

pA,Zq Ñ pA,Z ´ 1q ` e` ` νe (1.2)

In both cases the charge of the parent nucleus is changed by one unit

and orbital angular momentum does not change, ∆L “ 0.

A Feynman diagram representation of both β´ and β` decays is rep-

resented in fig. 1.1.

Figure 1.1: Feynman diagram of β´ (left panel) and β` (right panel) decay.

In the final channel, the energy of the system is divided among the

daughter nucleus and the charged (e´{e`) and neutral (νe{νe) leptons,

so that charged lepton energy (or momentum) spectrum is given by a

continuum distribution, as shown in fig. 1.2 both for the β´ (upper

panel) and β` (lower panel) particles emitted by 64Cu [15].

β` energy (momentum) spectrum of a given nucleus is peaked at an

energy (momentum) value higher than that for β´ decay of the same nu-

cleus, due to Coulomb repulsion between the positron and the positively

charged (daugther) nucleus.

According to Fermi’s theory of beta decay, formulated in 1934 [14], the

decay rate per energy interval can be obtained through Fermi’s Golden

1Another nuclear weak process characterized by the change of a proton into a
neutron is represented by the Electron Capture (EC), pA,Zq`e˘ Ñ pA,Z˘1q`νe{νe,
not treated in this work.

9



1.1 Nuclear Weak Decays

Figure 1.2: Momentum (left column) and energy spectrum (right column) of electrons
(upper panel) and positrons (lower panel) from beta decay of 64Cu.

rule and is given by

dΓ

dEe

“ G2
Fm

5
e

2π3
cos2 θC |Mβ|2F pZ,EeqEepeEνpν (1.3)

where GF is Fermi coupling constant, θC is Cabibbo’s angle, Ee (Eν) and

pe (pν) are the electron (neutrino) energy and momentum, respectively,

F pZ,Eeq is Fermi’s function, which describes the final state electron´
nucleus electromagnetic interaction (taking into account the presence of

the electrons surrounding the nucleus in the final channel), the factors

Eipi (i “ e, ν) in eq. (1.3) come from final channel phase space fac-

tor d3pi “ p2idpid cos θidφi “ piEidEid cos θidφi, and Mβ is the nuclear

matrix element, given by

Mβ “ gxψB|
ÿ

i

Oi|ψAy (1.4)

where the sum
ř

i is over all the nucleons of the decaying nucleus, ψA

(ψB) represents the total wave function of the parent (daughter) nucleus

and O is the operator describing the transitions in spin and isospin space.

10



1.1 Nuclear Weak Decays

For “superallowed” beta decays, characterized by no change both in total

angular momentum and parity of the nucleus (∆J “ 0, ∆π “ 0), called

Fermi transitions, the coupling constant g identifies the weak vector cou-

pling constant (often named gV ) and the transition operator, e. g. for

β´ decay, is O “ τ`, being τ` the isospin raising operator, that increase

the isospin of the system by one unit, thus accounting for the transition

of a neutron into a proton2; for “allowed” beta decays, characterized by

a change of the total angular momentum of the decaying isotope by one

unit, leaving unchanged its parity (∆J “ 0,˘1 and ∆π “ 0), called

Gamow-Teller transitions, this operator can be expressed as O “ στ`,

where σ ” pσ1, σ2, σ3q the vector of Pauli spin matrices, and in this case

the constant g is identified with the axial weak coupling constant (often

indicated as gA) associated to the weak process.

The hypothesis about the existence of neutrino was formulated by

Pauli in 1930 and then borrowed by Fermi in order to justify the con-

tinuum energy spectrum of electrons produced in beta decay processes,

thus ensuring energy conservation. Indeed, experimentally a two´body

decay was observed, pA,Zq Ñ pA,Z ` 1q ` e´; in a two´body problem

the energy of each of the two objects is determined uniquely, through

energy´momentum conservation laws, which in turn means that the elec-

trons energy spectrum should have been characterized by a peak at the

energy corresponding to the Q´value of the process. Instead, from beta

decay experiments a continuum energy spectrum is found, as shown in

fig. 1.2, which can be explained by supposing a 3´body, instead of

a 2´body, decay process, because the energy is not divided uniquely

among the objects, in a 3´body process. This means that the “missing”

electron energy is carried by a third particle, which cannot be detected:

the neutrino. Because the latter particle is not directly detected, it was

2In particle physics, the isospin associated to neutrons is ´ 1

2
and that for protons

is ` 1

2
, while in nuclear physics the inverse convention is used. In this thesis, the latter

convention is adopted.

11



1.1 Nuclear Weak Decays

supposed that this new particle must have zero electromagnetic charge

(in order to preserve charge conservation), it must have a mass smaller

than that of the electron and it must not interact via strong interac-

tion. Moreover, to preserve the angular momentum conservation and the

statistics, the neutrino must be 1
2
-spin fermion.

1.1.1.1 Neutrino mass

One of the most debated neutrino features is its mass: are neutrinos

massless or massive particles?

The experimental observation of neutrinos flavour oscillations (Super-

Kamiokande and Subdury Neutrino Observatory [16, 17] ) made it pos-

sible to establish that the neutrino is not a massless particle. Unfortu-

nately, from these kind of experiments it is not possible to gain informa-

tion on the absolute value of neutrino mass, but only on the differences

between the squared masses of the different neutrino species.

The main observable sensible to the absolute value of neutrino mass3

is just represented by the measurement of energy spectrum of the charged

leptons emitted in beta decays [18].

Observing that the daughter nucleus mass is greater than that of

the two leptons emitted, its kinetic energy can be neglected, and thus

neutrino energy can be expressed in terms of energy and masses of the

charged beta particle and of the daugther nucleus, from energy conser-

vation, as follows

Eν “ Qβ ´ T (1.5)

where T “ Ee ´ me is electron kinetic energy and Qβ represents the

Q-value of the process, defined as (neglecting neutrino mass, mν)

Qβ “ MA ´ MB ´ me (1.6)

3Properly speaking, it is the effective neutrino mass, defined in footnote 11.

12



1.1 Nuclear Weak Decays

being MA and MB parent and daughter nuclei masses (including excita-

tion energy, if an excited nuclear state is populated), respectively. Hence,

using mν » 0 approximation, the Q-value represents the maximum pos-

sible value of electron kinetic energy; instead, if neutrino mass is taken

into account, then the maximum electron energy will be

Tmax “ Qβ ´ mν (1.7)

Neutrino momentum is given by

pν “
a

E2
ν ´ m2

ν “
b

pQβ ´ T q2 ´ m2
ν (1.8)

By using eq. (1.8), the decay rate, in eq. (1.3), becomes

dΓ

dT
“ G2

Fm
5
e

2π3
cos2 θC |Mβ|2F pZ,EeqEepepQβ ´ T q

b

pQβ ´ T q2 ´ m2
ν

(1.9)

knowing that dT “ dEe.
4

Thus, if neutrino mass is very small, but non zero, its effect is maxi-

mum, i. e. perceptible, near the end´point of the electron energy spec-

trum, i. e. when T » Tmax, which implies Eν “ Qβ ´ T » mν . The

problem is that it’s hard to make measurements of the end´point of the

electron energy spectrum, because of very low statistics in this energy

range.

4Sometimes, instead of the decay rate, it is convenient to consider beta decay
half-life

T
pβq
1{2 “

lnp2q

λ
“

lnp2q
G2

F
m5

e

2π3 cos2 θC |Mβ|2
ş8

0
dT F pZ,EeqEepepQβ ´ T q

a

pQβ ´ T q2 ´ m2
ν

“
lnp2q

G2

F
m5

e

2π3 cos2 θC |Mβ |2fpZ,Qβq

where in the last line Fermi’s integral function, fpZ,Qβq, has been introduced, which
represents the integrated number of states available for both charged and neutral
leptons, sharing the energy equal to the Q´value of the decay. In order to directly
gain information both on nuclear structure and on weak interaction, the product

fpZ,QβqT
pβq
1{2 , called ft´product, or comparative half-life, is often used, being this

product inversely proportional to the square modulus of the nuclear matrix element
and to the second power (fourth power for double beta decay, described in the follow-
ing sections) weak coupling constant, respectively.

13



1.1 Nuclear Weak Decays

In order to estimate the relative number of events in an energy range

∆T near the end-point spectrum, one can proceed in the following way:

neglecting neutrino mass, the total number of events is

ntot “
ż Qβ

0

dΓ

dT
dT9

ż Qβ

0

EepepQβ ´ T q2 dT (1.10)

“
ż Qβ

0

pT ` meq
a

T pT ` 2meqpQβ ´ T q2 dT (1.11)

which, in the Qβ " me limit, becomes

ż Qβ

0

dΓ

dT
dT9Q5

β (1.12)

The number of events in a small range near the end´point, i. e. for

T » Qβ, is given by

np∆T q “
ż Qβ

Qβ´∆T

dΓ

dT
dT9 (1.13)

ż Qβ

Qβ´∆T

dT pQβ ` meq
b

QβpQβ ` 2meqpQβ ´ T q29 (1.14)

pQβ ` meq
b

QβpQβ ` 2meqp∆T q3 (1.15)

that, in the Qβ " me limit, is 9Q2
βp∆T q3. Hence, the relative number

of events is obtained from the ratio

np∆T q
ntot

9
ˆ

∆T

Qβ

˙3

(1.16)

Eq. (1.16) shows that the smaller the Q-value is, the greater is the

number of events near the end´point energy [18].

Indeed, the most stringent upper limit on the absolute value of neu-

trino mass comes from the end-point of β´ energy spectrum obtained

from 3H β - decay measurements (Qβp3Hq “ 18.574 keV ) [19]. The main

reason why tritium β-decay experiments are the most sensitive to the

electron neutrino mass is that tritium β-decay has one of the smallest

14



1.1 Nuclear Weak Decays

Q-values among all known β-decays. Moreover, tritium β-decay is a su-

perallowed transition between mirror nuclei with a relatively short half-

life (about 12.3 years), which implies an acceptable number of observed

events during the experiment lifetime. Another advantage of tritium

β-decay is that the atomic structure is less complicated than those of

heavier atoms, leading to a more accurate calculation of atomic effects

[18]. Ifmν ‰ 0, then the β´ end´point energy spectrum would be shifted

from Tmax “ Qβ to Tmax “ Qβ ´ mν .

To determine neutrino mass from the end´point shift, it is convenient

to define Kurie ’s function (or Fermi - Kurie’s function)

KpT q ”
g

f

f

e

dΓ
dT

G2

Fm5
e

2π3 cos2 θC |Mβ|2F pZ,EeqEepe

“
„

pQβ ´ T q
b

pQβ ´ T q2 ´ m2
ν


1

2

“
a

Eνpν (1.17)

Hence, if mν “ 0, Kurie’s function would depend linearly from electron

kinetic energy T

KpT q|mν“0 “ Qβ ´ T (1.18)

Thus a neutrino mass different from zero implies a deviation of KpT q
from linear behaviour.

In fact, what is done in experiments based on the study of the energy

spectrum of the electrons (positrons) emitted in a β´ (β`) decay, is

just to catch such KpT q deviations from linearity. In this way, Mainz

e Troitzk experiments, studying tritium beta decay established the first

upper limit for neutrino mass [20], [21]

mν ă 2.3 eV p95%C.L.q (1.19)

mν ă 2.5 eV p95%C.L.q (1.20)

respectively. The most recent KATRIN experiment, based on the analisys

of such KpT q deviations, lowers the neutrino mass upper limit to 0.35 eV

[22].
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1.1 Nuclear Weak Decays

Figure 1.3: Kurie function vs electron kinetic energy (Kurie plot), for tritium β decay.
The plot illustrates the zero neutrino mass case (dotted curve), the case
of non - zero mass, mνe “ 5 eV (dashed line) and the two neutrino mixing
case, considering the two mass eigenstates m1 “ 5 eV and m2 “ 15 eV
(solid curve).

1.1.1.1.1 Dirac and Majorana Neutrinos: main differences

Before the discovery of neutrino flavour oscillations, i. e. mν ‰
0, due to the experimental observation of only left neutrinos and right

antineutrinos (if neutrino does not coincide with its own antiparticle),

these leptonic fields were initially treated in terms of left (neutrino), ψL,

and right (antineutrino), ψR, Weyl spinors5, respectively characterized

by the following Lagrangian densities

LL “ iψ
:
Lσ

µBµψL (1.21)

LR “ iψ
:
Rσ

µBµψR (1.22)

from which the following equations of motion are obtained

σµBµψL “ 0 (1.23)

σµBµψR “ 0 (1.24)

5Weyl spinors are spinors with two components, which are elicity eigenstates, i. e.
they are solutions of an equation, Weyl’s equation, characterized by an Hamiltonian
that commutates with the elicity operator.
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1.1 Nuclear Weak Decays

both describing particles with zero mass, m “ 0 (in fact, by multiplying

each equation by its own complex conjugated, one finds Klein Gordon

equation for massless particles); in the above equations, σµ ” pI, ~σq and

σµ ” pI,´~σq, being ~σ ” pσ1, σ2, σ3q the vector of Pauli spin matrices6.

Moreover, considering, for example, a positive energy solution of eq.(1.23)

ψLpxq “ uLe
´ipx|p0“Ep

“ uLe
p´iEt`i~p¨~xq|

E“
?

~p2
(1.25)

where uL is a constant spinor, and substituting this expression to ψLpxq
in eq.(1.23) one finds

´

~S ¨ p̂
¯

uL “ ´1

2
uL (1.26)

which means that uL spinor is an eigenstate of the elicity operator,
´

~S ¨ p̂
¯

, being ~S ” 1
2
~σ, with eigenvalue ´1

2
(in the same way it is possible

to show that uR is an elicity eigenstate with eigenvalue `1
2
).

A left field can be transformed into a right field (and viceversa)

through Charge Conjugation operator C, defined as

CψL “ iσ2ψ˚
L (1.27)

where the right hand side of eq. (1.27) is a right spinor (because it is

possible to show that it’s a solution of the eq. (1.24)). The problem

of neutrinos description in terms of Weyl spinors is that the latter ones

do not provide a representation of parity transformation group, because

under parity transformation a left spinor is changed into a right one and

viceversa (this comes just from parity operator definition), thus coming

out of the initial left, or right, Weyl spinors space. Because electromag-

netic and strong interactions are parity conserving, it is convenient work-

ing with fields which give a parity transformation representation. Just

for this reason, Weyl spinors were abandoned in place of Dirac fields; in-

deed, the latter ones allow to describe massive 1
2
´spin fermions, in terms

6For particle physics arguments relativistic notation is used.
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1.1 Nuclear Weak Decays

of 4´components spinors (bispinors or Dirac spinors), which evolve ac-

cording to the following equation of motion

piγµBµ ´ mqψ “ 0 (1.28)

A Dirac spinor can be expressed in terms of Weyl spinors (chiral repre-

sentation)

ψ “
ˆ

ψL

ψR

˙

(1.29)

where ψL and ψR are spinors indipendent of each other, i. e. they are

not linked to each other by a charge conjugation transformation. Dirac

equation in terms of Weyl spinors becomes

#

iσµBµψL “ mψR

iσµBµψR “ mψL

(1.30)

whose corresponding Lagrangian density is

LD “ iψ
:
Lσ

µBµψL ` iψ
:
Rσ

µBµψR ´ mpψ:
LψR ` ψ

:
RψLq (1.31)

which is just invariant under parity transformation. It is important to

note that the mass term (Dirac mass) mixes left and right states, which

in turn implies that Dirac spinors are not elicity eigenstates (as it must

be for massive particles). Defining γ5 matrix (chirality operator)

γ5 “ iγ0γ1γ2γ3 “
ˆ´1 0

0 1

˙

(1.32)

it is possible to define the left and right Weyl spinor space projection

operators as follows

PLψ ” 1 ´ γ5

2
ψ “ 1 ´ γ5

2

ˆ

ψL

ψR

˙

“
ˆ

ψL

0

˙

(1.33)

PRψ ” 1 ` γ5

2
ψ “ 1 ` γ5

2

ˆ

ψL

ψR

˙

“
ˆ

0
ψR

˙

(1.34)

respectively.
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1.1 Nuclear Weak Decays

All weak charged current7 experiments show the “pV ´ Aq nature”

of weak interactions, i. e. only left chirality projection of particle (e. g.

neutrino) fields (and right projection of antiparticle fields) take part to

the interaction8; this behaviour is formalized, within the Standard Model

framework, through the following formalism for the charged current (CC)

interaction

J
µ
CC “ 1?

2
ψeγ

µ

„p1 ´ γ5q
2

ψν



` h.c. (1.35)

Majorana found that it is also possible to describe massive particles just

through one Weyl spinor, by taking ψL e ψR, within the Dirac spinor,

not indipendent of each other, but related by charge conjugation trans-

formation [18, 23, 24]; e. g.,

ψR “ ψC
L “ iγ2ψ˚

L (1.36)

By using the right field given by eq. (1.36), the two equations in (1.30)

reduces to the same equation; this implies a reduction of the degrees of

freedom of the system, from 4 to 2. Moreover, ψR “ ψC
L is a solution of

Klein Gordon equation for massive particles, too. Hence, in this way one

can describe a massive, 1
2
- spin fermion by using only one Weyl spinor.

The bispinor with chiral components satisfying the relation in (1.36) is

called Majorana spinor

ψM “
ˆ

ψL

iγ2ψ˚
L

˙

(1.37)

With this new spinor, the equation of motion becomes

piγµBµ ´ mqψM “ 0

or

piC ´ mqψM “ 0 (1.38)

7Weak charged current is a weak interaction mediated by charged bosons W˘.
8Another possibility is to mantain right neutrino components under the hypothesis

that the latter ones interact only gravitationally (sterile neutrino hypothesis).
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1.1 Nuclear Weak Decays

which is identical to Dirac equation only formally, because if we could

write the Lagrangian density for Majorana fields like the Dirac Lagrangian

density, then we would have the following mass term (à la Dirac)

ψMψM “ p´iψLσ
2, ψ˚

Lq
ˆ

ψL

iσ2ψ˚
L

˙

“ ´iψT
Lσ

2ψL ` iψ˚T
L σ2ψ˚

L

“ ´iψT
Lσ

2ψL ` c.c.

“ ´ipψLqapσ2qabpψLqb ` c.c.

“ ´i pσ2qab
loomoon

antisymm.

pψLqapψLqb
looooomooooon

symm.

`c.c. “ 0

(1.39)

which would imply that we are using classical anticommuting fields, in

order to ensure that the product pψLqapψLqb is antisymmetric, instead of

symmetric. This is just a first signal of the differences between Majorana

and Dirac fields. In quantum field theory (QFT) it is possible to derive

Majorana fermions equation of motion starting from a Lagrangian density

formally Dirac - like, because spinor fields can be represented through

anticommuting operators.

LM “ 1

2
ν piC ´ mq ν pMajoranaq (1.40)

L “ ψ piC ´ mqψ pDiracq (1.41)

The 1
2
factor in eq. (1.40) is inserted to avoid double counting, due to

the halving of the spinor field degrees of freedom, because we are using

Majorana fields; the definition of the latter fields implies that eq. (1.40) is

no more Up1q - symmetric, differently from the Dirac case, meaning that

only neutral fermions can be described by Majorana fields. Moreover,

Majorana condition, ν “ νC , implies that Majorana particles coincide

with their own antiparticles. All these features suggest that the only

possible Majorana particle candidate is the neutrino9.

9Other neutral fermions, like the neutron together with other Standard Model
neutral barions, cannot be Majorana particles, i. e. they do not coincide with their
own antiparticle, because they can be distinguished by their non zero magnetic mo-
ment [25].
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1.1.1.1.2 How to explain the small neutrino mass: see-saw

mechanism

The discovery of neutrino flavour oscillations, allowed only for mas-

sive neutrinos, confirmed that neutrinos have non - zero mass. Direct

experiments (e.g. tritium beta particle energy spectrum measurements)

give upper limits showing that neutrinos should have a very small mass.

It is very tricky to explain the smallness of neutrino mass, as one can

guess from the plethora of mechanisms, within and beyond the Standard

Model, proposed up to now [26–32]; the simplest and most convincing

one is represented by the so called see-saw mechanism.

There are 3 kinds of see - saw mechanisms, all giving a light neutrino

mass inversely proportional to a huge mass, setting the energy scale of

physics beyond the Standard Model. The most important one is the type

I see - saw, based on the use of Standard Model fields, while type II and

type III See - Saw mechanisms use fields not accounted for within the

Standard Model [33] [34]. In type I see - saw [18] [35], right neutrinos,

νR, are introduced as fields which transform like SUp3qCxSUp2qLxUp1qY
singlets, meaning that right neutrinos would be sterile, i. e. they do not

interact with any field, but with the Higgs one. According to type I see

- saw mechanism, neutrino mass is given by

mν “ m2
D

mR

(1.42)

where mD is a Dirac mass (like quarks and charged leptons masses),

generated by the Higgs mechanism allowed by the Standard Model.

Eq. (1.42) implies that the larger right neutrino (not observed, be-

cause sterile) mass mR is, the smaller is light neutrino mass mν (the one

which is “observed”).

Hence, this mechanism provides “spontaneously” the many orders of

magnitude among neutrino mass and that of the other Standard Model

fermions.
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1.1.1.1.3 Consequences of neutrino mass nature

If neutrinos have Majorana mass, then they would be low - energy

manifestation of physics beyond the Standard Model. Moreover, in su-

persymmetric theories, fotino and neutralino are Majorana particles and

the latter would be one of the possible candidates of Dark Matter.

Finally, a Majorana mass would support the leptogenesis theory, in

which it is supposed that in the early Universe, due to the high energies,

there should exist a lot of heavy neutrinos; in thermal non-equilibrium

conditions, the CP - violating phases10 [37] would lead to different decay

rates for heavy neutrinos and this, in turn, would generate the asymmetry

between leptons and anti-leptons, which would be converted into barion

anti-barion asymmetry [38, 39] through the “sphaleron” fields. The lat-

ter are non-perturbative time-independent solutions of the electro-weak

equations of motion; because of their non-pertubative nature, sphalerons

cannot be represented within Feynman diagram framework. Therefore,

sphalerons would violate barion (B) and lepton number (L) conservation,

but would preserve their difference, B ´ L [39].

1.1.2 Double beta decay

From experiments on neutrino flavour oscillations it is possible to get

information only on the differences between squared neutrino masses,

through the determination of flavour oscillation probability

PναÑνβpE,Lq “
ÿ

k,j

U˚
αkUβkUαjU

˚
βje

´i
∆m2

kj
L

2E (1.43)

where α, β “ e, µ, τ are the flavour indices and k, j “ 1, 2, 3 identify

the mass eigenstates, Uβk are the neutrino mixing matrix elements, L

is the distance between neutrinos source and the detector, E represents

10In 1967 Sakharov suggested that it is possible to provide the actual Universe
barion-antibarion asymmetry, starting from a symmetric condition, i. e. zero net
barion number, ∆B “ 0, thanks to CP violation in non equilibrium conditions, so
that the CP violating processes do not compensate each other.
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neutrino energy and ∆m2
kj “ m2

k ´ m2
j is the difference between the

square of neutrino masses; the latter ones are the eigenvalues of neutrino

mass eigenstates, which combine each other through the mixing angles

so as to “reproduce” flavour eigenstates, that correspond to the observed

neutrinos.

Such experiments allow to indentify two neutrino mass hierarchies:

• Normal: 2 “heavy” neutrinos, characterized by a difference between

squared masses „ ∆m2
sun » 7.92p1 ˘ 0.09qx 10´5 eV 2 and one light

neutrino, with a difference of squared masses with respect to the

two heavy neutrinos, equal to ∆m2
atm » 2.4

`

1`0.21
´0.26

˘

eV 2.

• Inverted: 2 light and one heavy neutrinos, with the same prescrip-

tion as for the normal hierarchy.

An experiment which could give information both on the value and

the nature of (effective) neutrino mass (Dirac or Majorana), is the neu-

trinoless double beta decay (0νββ), which is indeed sensible to Majorana

phases.

The double beta decay is a nuclear process that can occur only in

those nuclei for which the single beta decay is energetically forbidden, i.

e. when ground state (g. s.) energy of the parent nucleus pA,Zq is lower
than g. s. energy of the daughter nucleus pA,Z ˘ 1q plus electron mass.

Indeed, if a nucleus can decay both β and ββ, then the latter process

is practically hidden at all by the former, because it is characterized by

a half-life longer than that of single β decay, being the double beta de-

cay a second order (and so one order higher than the single beta decay)

process. Moreover, double beta decay is characterized by the emission

of two charged leptons (e`{e´) together with two neutral leptons (neu-

trinos/antineutrinos) or without any emission of neutral leptons. The

former case, known as two neutrino double beta decay (2νββ), is allowed

by the Standard Model (see sect. 1.1.2.2), while the latter case refers to
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1.1 Nuclear Weak Decays

the not yet observed 0νββ [40](see sect. below).

There exist three experimental methods to study double beta decay-

ing nuclei, all based on half - life determination:

• geochemical: the abundance of the final nucleus in a ore sample

containing the candidate isotope is monitored;

• radiochemical: the procedure is like the geochemical case, but

using artificial samples;

• direct: study of the energy spectrum of electrons/positrons emet-

ted by the candidate nucleus.

The first two methods are of indirect kind and do not allow to distinguish

between 0 and 2νββ, while the last does, even if it requires very precise

and clean measurements, which up to now led to the discovery of most

of 2νββ decaying nuclei, but no 0νββ decaying ones.

1.1.2.1 0νββ

If neutrinos are Majorana particles, then the double beta decay can

proceed both with and without two neutrinos emission, so that the latter

process

pA,Zq Ñ pA,Z ˘ 2q ` 2e˘

would represent a good tool to discriminate between Dirac and Majorana

neutrinos. 0νββ, proposed by Furry in 1939 [41], has not been observed,

yet. The spectrum of the couple of charged leptons emitted in this case

should be discrete, peaked at the Q-value of the process, Qββ , but how-

ever it would be hidden by the tale of the continuous energy spectrum

of the two charged leptons from 2νββ decay. Neutrinoless double beta

decay is forbidden by the Standard Model, because it would violate to-

tal lepton number conservation by 2 units. The experimental observable
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1.1 Nuclear Weak Decays

Figure 1.4: Feynman diagrams for 2νββ (left panel) and for 0νββ (right panel) [24].

checked is the half-life of the given candidate nucleus,

T 0ν
1{2 “ “

G0ν |M0ν |2|fpmββ, mq|2‰´1
(1.44)

which depends on the phase space element, G0ν9Q5
ββ, and on the nuclear

matrix element (NME), M0ν . At first, Furry estimated a 0νββ half-

life shorter than that of the competing 2νββ decay, because He didn’t

take into account that if neutrinos are massive particles, then they are

no more helicity eigenstates and so there is a mixing between big and

small components of neutrino field; indeed, this mixing leads to a factor

„ pmνi{Eνiq´2 in 0νββ half-life, thus increasing the latter by about 5´ 6

orders of magnitude with respect to 2νββ decay half - life [42]. Eq. (1.44)

also shows the T 0ν
1{2 dependence on neutrino effective mass11

mββ “ |
ÿ

k

U2
ekmk| “ |m1U

2
e1 ` m2U

2
e2 ` m3U

2
e3| (1.45)

11The main sources of information on neutrino mass are three:

1) the high energy tale of beta particles spectrum, which is very sensitive to the
electron neutrino effective mass mβ “

a

c2
13
c2
12
m2

1
` c2

13
s2
12
m2

2
` s2

13
m2

3
(in this

case there is no destructive interference, because mβ is the sum of positive
quantities);

2) the double beta decay experiments, probing the effective Majorana mass,
mββ “ |c213c

2
12m1 ` c213s

2
12m2e

2iλ2 ` s213m3e
2ipλ3´δ13q| (in this case destructive

interference could happen);

3) the cosmological observable given by the sum of the 3 neutrino masses, Σ “
m1 ` m2 ` m3 » 0.61 eV , which can influence the formation of large - scale
structures.

where cij “ cos θij and sij “ sin θij , being θij the mixing angle between the two
species i and j (i, j “ 1, 2, 3); mi (i “ 1, 2, 3) are the three neutrino mass eigenvalues.
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and on m in eq. (1.44), whose value depends on the scenarios considered

[43–45]:

1. light neutrino (mν ! 1MeV ) exchange scenario: m corre-

sponds to the electron mass;

2. heavy neutrino (mν " 1GeV ) exchange scenario: m is equal

to the proton mass;

3. Majoron emission scenario: m represents the Majoron mass;

4. Sterile neutrino exchange scenario: m is the sterile neutrino

mass.

It can be shown that 0νββ NME can be written, in momentum space, as

M0νppq “ RxB, Jπ
f |

ÿ

i,j

tτ˘
i τ

˘
j

“´hF ppq ` hGT ppqσi ¨ σj ` htppqSp
ij

‰u|A, 0`y

“ R
´

g2AM
pGT q
0ν ´ g2VM

pF q
0ν ` g2AM

ptq
0ν

¯

(1.46)

where A and B denote the parent and daughter nuclei with total angular

momentum and parity 0` and Jπ
f , respectively; R “ 1.2A1{3 is the nu-

clear radius in femtometers, introduced to make M0νppq dimensionless

[46]; p is the momentum transfer, viz. the difference between initial and

final nuclear linear momenta, Sp
ij “ 3 pσi ¨ p̂q pσj ¨ p̂q´σi ¨σj is the rank-2

tensor in momentum space and the sum is over the nucleons involved in

the transition. hpiqppq, i “ F,GT, t, represent Fermi (F), Gamow-Teller

(GT) and tensor (t) contributions, which can be further factorized into

the product hpiqppq “ νppqh̃piqppq, where νppq is called “neutrino poten-

tial” and h̃piqppq represents the form factor. Gamow-Teller and tensor

contributions for the latter term can in turn be expressed as the follow-

ing sums [45]

h̃GT ppq “ h̃GT
AAppq ` h̃GT

AP ppq ` h̃GT
PP ppq ` h̃GT

MMppq
h̃tppq “ h̃tAP ppq ` h̃tPP ppq ` h̃tMMppq

(1.47)
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where the expressions of all the terms in the sums are given in tab.

1.1. The form factors contain all the information relative to the weak

interaction, because they are functions of the weak vector (gV ) and axial

(gA) coupling constants, as shown in tab. 1.1.

The tensor term can be neglected, because it has been provided that

it affects the total 0νββ NME only by a few percent [49–51]. The ex-

pressions of neutrino potential and of the function fpmββ , mq depend on

the “scenario” considered12, i. e. they depend on the particle exchanged

between the two decaying nucleons, as shown in table 1.2 [52], and on

the approximations used in the calculations. The expressions of neutrino

potential in tab. 1.2 have been obtained by using closure approximation,

i. e. by neglecting the denominator dependence on the energy of the in-

termediate nuclear states (which is approximated with a proper average

value, called closure energy), so that the completeness of the (virtual) nu-

clear intermediate states can be exploited to give the unitary operator of

Hilbert space of such nuclear states; in this way, the NME of a 2´body

nuclear transition operator must be evaluated. Closure approximation

turns out to be very useful, because it eliminates the need of calculating

a very large number of nuclear states in the intermediate channel, which

could be computationally challenging, especially for heavy systems [53].

Actually, different nuclear structure models give M0ν values differing

by about a factor of 3 [52, 54], as shown in fig. 1.5, unlike G0ν , which is

totally under control.

The large differences in the values of the 0νββ nuclear matrix ele-

ment, determined by using different nuclear structure models, lead to

an even greater uncertainty in mββ determination. For this reason, al-

ternative methods for NME determination have been explored: the first

attempts were made by studying the (π˘,π¯) double charge exchange

12Of course, for 2νββ decay there are no scenarios and so there is a unic expression

for neutrino potential, νppq “ δppq
p2 .
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terms h̃ppq

h̃F ppq
g2V

p1 ` p2{M2
V q4

h̃GT
AAppq

g2A

p1 ` p2{M2
Aq4

h̃GT
AP ppq g2A

«

´2

3

1

p1 ` p2{M2
Aq4

p2

p2 ` m2
π

ˆ

1 ´ m2
π

M2
A

˙

ff

h̃GT
PP ppq g2A

«

1?
3

1

p1 ` p2{M2
Aq2

p2

p2 ` m2
π

ˆ

1 ´ m2
π

M2
A

˙

ff2

h̃GT
MMppq

2

3
h̃F ppqκ

2
βp

2

4m2
p

h̃tAP ppq ´h̃GT
AP ppq

h̃tPP ppq ´h̃GT
PP ppq

h̃tMMppq
1

2
h̃GT
MMppq

Table 1.1: Fermi, Gamow-Teller and tensor terms appearing in the corresponding
form factors, according to Šimkovic’s formulation [45]. mp is proton mass,
mπ is pion mass, M2

A “ 1.09GeV 2 [47], M2

V “ 0.71GeV 2 [48] and κβ “
3.70 is the isovector anomalous magnetic moment of the nucleon.
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scenarios fpmββ, mq νppq

1
mββ

me

2

π

1

ppp ` Ãq

2

mpx 1

mνh

y

x 1

mνh

y “
ÿ

k“heavy

|Uek|2mνk

2

π

1

mpme

3 xgy
2

π

1

ppp ` Ãq

4
mN

me

2

π

1
a

p2 ` m2
N

´

a

p2 ` m2
N ` Ã

¯

Table 1.2: Expressions for fpmββ,mq and neutrino potential for the different neutrino

exchange scenarios in 0νββ. Ã “ 1.12A1{2MeV is the closure energy, g
is the effective Majoron coupling constant and mN is the sterile neutrino
mass, which can vary on a wide mass range (eV ´ TeV ).
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Figure 1.5: Nuclear matrix element for 0νββ, for different candidate nuclei, in case
of light neutrino exchange. Calculations are performed through different
nuclear structure models [52].

(DCE) pion-nucleus (π ´N) reactions, but such processes are described

by different kind of spin-isospin operators [55–57], so that they do not

give information about 0νββ NMEs; recentely, increasing interest is re-

versed in heavy ion double charge exchange nuclear reactions, because

of several analogies between such process and neutrinoless double beta

decay weak process [1], as will be shown in the next sections.

1.1.2.2 2νββ

If neutrinos are Dirac particles, then double beta decay can occur

only with the emission of two neutrinos, together with the two charged

leptons.

pA,Zq Ñ pA,Z ˘ 2q ` 2e˘ ` 2νepνeq
This decay mode was proposed by M. Goeppert-Meyer in 1935 [58] and

was first recorded in 1950 in a geochemical experiment with 130Te [59];

then, in 1967 2νββ was observed for 82Se also in a geochemical experi-

ment [60] and has been observed through direct experiments only in 1987

[61]. In the next few years, direct experiments were able to detect such

decay in many other nuclei [62]. Nowadays, 2νβ´β´ decay has been
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observed in 10 nuclei (while 2νβ`β`, 2νβ`EC and 2νECEC processes

have been observed only in 130Ba isotope, from geochemical experiments)

[63]: 48Ca, 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 128Te, 130Te, 150Nd and 238U

(from radiochemical experiments [64]). Double beta decay half-lives de-

pend on the axial coupling constant to the fourth power, so that they are

extremely sensible to gA value; since 2νββ has been measured in several

nuclei, it provides a tool, much powerful than single beta decay, for esti-

mating the effects of the nuclear medium on gA, i. e. its effective value,

g
eff
A , or the quenching factor q ” g

eff
A {gA “ M

pGT q
exp {MpGT q

theo , given by the

ratio of experimental to theoretical GT nuclear matrix elements [46].

Because 2νββ is a 5-body decay, the energy spectrum of the two

electrons/positrons emitted is continuous, with end-point energy equal to

the maximum energy available for the couple of charged leptons, Qββ “
MA ´ MB ´ 2me, as shown in fig. 1.6.

Figure 1.6: Example of an energy spectrum of the couple of charged leptons emitted
in double beta decay process with the emission of 2 neutrinos (continuous
spectrum) and without neutrinos emission (a quite sharp peak at the Q-
value of the process, zoomed of many orders of magnitude), if the latter
were observed.

The calculation of 2νββ nuclear matrix element, Mp2νq, turns out to

be more complex than for 0νββ [46]. Indeed, in general, the inverse of

2νββ half-life cannot be factorized into the product of the phase space

factor, G2ν , and the square modulus of Mp2νq, because both these terms

depend on the states of the odd-odd nucleus involved in the intermediate
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1.1 Nuclear Weak Decays

Figure 1.7: Nuclear energy level scheme for 2νββ decay of 100Mo [46].

channel, as shown in fig. 1.7 and in eq. (1.48), e. g. for 2νβ`β` decay,

”

T
p2νq
1{2

ı´1 “
ÿ

n

Gp2νq
n |Mp2νq

n |2

“
ÿ

n

Gp2νq
n |

´

g2VM
p2νq
pF qn ´ g2AM

p2νq
pGT qn

¯

|2

“
ÿ

n

Gp2νq
n

˜

|g2V
xψB| ř

i τ
`
i |nyxn| ř

j τ
`
j |ψAy

En ´ 1
2
pMA ` MBq

´g2A
xψB| ř

i σiτ
`
i |nyxn| ř

j σjτ
`
j |ψAy

En ´ 1
2
pMA ` MBq |2

¸

(1.48)

where the indices i and j run over all nucleons of the decaying nucleus,

n runs over all intermediate nuclear states, each with energy En, which

for allowed or superallowed beta decays can be only 1` or 0` states,

starting from a nucleus with 0` ground state. Thus, 2νββ decay half-life

cannot generally be factorized, because on the one side it is necessary

to sum the contributions calculated for each intermediate 0` and 1`

nuclear state, and on the other side closure approximation should not be

good, due to the small momentum transfer (of the order of few MeV )

characterizing 2νββ. However, the closure approximation is still valid if

a proper average value of the intermediate state energy (closure energy)

is chosen, so that phase-space factor can be separated from 2νββ nuclear
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1.1 Nuclear Weak Decays

matrix element, given by the following expression [46]

Mp2νq “ g2V

˜

xB, 0`|
ř

i,j τ
`
i τ

`
j

xE0`
n

y ´ 1
2
pMA ` MBq |A, 0`y

¸

´ g2A

˜

xB, 0`|
ř

i,j σiσjτ
`
i τ

`
j

xE1`
n

y ´ 1
2
pMA ` MBq |A, 0`y

¸

“ g2VM
p2νq
F ´ g2AM

p2νq
GT

(1.49)

taking into account that the closure energies xE0`
n

y and xE1`
n

y, respec-
tively for double Fermi and double GT transitions, are different. How-

ever, 2νββ decay matrix elements involving only Fermi transitions can

often be neglected [46, 51].

Another approximation allowing to separate phase-space factor from

Mp2νq is the single state dominance (SSD) [65–69], through which nuclear

matrix element becomes

Mp2νq “ g2V

˜

xB, 0`|
ř

i,j τ
`
i τ

`
j

E0` ´ 1
2
pMA ` MBq|A, 0`y

¸

´ g2A

˜

xB, 0`|
ř

i,j σiσjτ
`
i τ

`
j

E1` ´ 1
2
pMA ` MBq|A, 0`y

¸ (1.50)

Hence, 2νββ decay half-life can be expressed, both in closure approxi-

mation and in SSD, as

T
p2νq
1{2 “ “

Gp2νq|Mp2νq|2‰´1
(1.51)

2νββ half-life measurements give directly the value of 2νββ nuclear ma-

trix element through eq. (1.51), thus offering a sensitive test of nuclear

structure calculations, but from the particle physics point of view, no in-

formation on Dirac or Majorana nature of neutrino mass can be gained,

because it can be shown that 2νββ half-life is free of unknown particle

physics parameters [70] (like neutrino effective mass).

Moreover, the existence of a proportionality relation between 2νββ

and 0νββ nuclear matrix elements would represent a lifeline for determin-

ing the latter, but unfortunately the state - of - art calculations, within
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1.2 Charge Exchange Nuclear Reactions

Quasiparticle Random Phase Approximation (QRPA), lead to results

disfavouring such proportionality relation [71].

1.2 Charge Exchange Nuclear Reactions

Together with the weak processes shown above, there exist many

other different tools to gain information on the organization of nucle-

ons inside the nucleus, from photon beams off nuclei and charged-lepton

nucleus scattering, giving information on charge distribution, magnetic

moment and other electromagnetic properties of nuclei, to meson-nucleus,

nucleon-nucleus and nucleus-nucleus scattering, carrying information on

nuclear mass distribution and on a plethora of other nuclear structure

properties, both of collective and of single particle nature.

Since several decades, a special interest has been reversed on the study

of charge exchange (CE) nuclear reactions induced by the strong inter-

action, which can be studied through pion-nucleus, nucleon-nucleus or

nucleus-nucleus scattering. These reactions can take place in a unic step

(“direct” charge exchange) or in more steps (multi - nucleon transfer).

All these processes are characterized by the change of the charge of both

projectile and target nuclei by one or more units, leaving unchanged their

mass number

ApZA, NAq ` apZa, Naq Ñ BpZA ˘ n,NA ¯ nq ` bpZa ¯ n,Na ˘ nq
or

ApZA, NAq ` π˘ Ñ BpZA ˘ k,NA ¯ kq ` π¯pk´1q

(1.52)

where n “ 1, 2 ¨ ¨ ¨mintZA, NA, Za, Nau represents the number of nucle-

ons exchanged, while k “ 1, 2 indicates the change in charge of both

pion and nucleus. The first line of eq. (1.52) refers both to direct and

multi - nucleon transfer processes, because only initial and final channels

are indicated, omitting possible intermediate states, leading to the same
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1.2 Charge Exchange Nuclear Reactions

final nuclear system, while the second line of course refers only to direct

charge changing nuclear reactions. These kind of processes could help

in further constraining the existing plethora of nuclear structure models,

that offer discrepant descriptions of many properties of nuclei (magnetic

moments, energy levels in odd - odd nuclei and spin - isospin resonances

[9]). Particular interest has been reversing on direct single pn “ 1, k “ 1q
and double pn “ 2, k “ 2q charge exchange reactions due to their wide

range of exploration about the properties of nucleons within the nuclear

medium, as shown in the next two sections.

1.2.1 Single Charge Exchange Reactions

After the first pioneering explorations [72, 73], the study of “direct”

single charge exchange (SCE) reactions, both pion [74, 75] and light ion

induced, was soon extended to transitions associated to spin degrees of

freedom [76, 77]. High energy light ion SCE reactions, like high en-

ergy pp, nq and pn, pq processess, have been widely studied [2, 9, 78, 79],

giving important information on charge exchange resonances (e. g. Iso-

baric analog resonance and Gamow-Teller giant resonance) and on spin

- isospin effective interactions. In particular, considerable interest has

been reversed on the monopole component, ∆L “ 0, of light ion induced

SCE reactions, since the operator describing such transitions in spin -

isospin space is analogous to the one describing GT β decays [80].

Heavy ion SCE reactions carry informations complemetary to light ion

ones, allowing the study higher multipolarity transitions, thus extending

the investigation to the nuclear structure of the so called forbidden tran-

sitions, not accessible through β decays.

The theoretical formalism of SCE reactions was developed in ’80s by

Taddeucci et al. [2] for high energy pp, nq reactions, while a theory for

heavy ion charge exchange reactions at low and intermediate energies

is for the first time provided by the present PhD work together with an
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1.2 Charge Exchange Nuclear Reactions

Figure 1.8: Example of “direct” single charge exchange reaction, for 116Cd Ñ116 In
transition, as indicated by the arrow.

extension to heavy ions of the proportionality relation found between the

forward angular distribution for pp, nq reactions and beta decay nuclear

matrix element [2, 7], as shown in chapter 3.

1.2.2 Double Charge Exchange Reactions

“Direct” double charge exchange (DCE) nuclear reactions consist in

the simultaneous exchange of two nucleons (∆Tz “ ˘2) between projec-

tile and target nuclei

ApNA, ZAq ` apNa, Zaq Ñ BpNA, ZA ˘ 2q ` bpNa, Za ¯ 2q (1.53)

While SCE processes can be studied both with light and heavy ions,

DCE reactions with light nuclei present difficulties like dealing with the

measurement and reconstruction of the trajectory of three different final

projectile particles, problems avoided by using heavy ions both for pro-

jectile and target [81]; however, light ions represent an interesting tool

for searching of exotic systems, e. g. the tetra-neutron system through

the reaction 4Hep8He,8 Beq4n [82].

Heavy ion DCE processes can be regarded as multipurpose probes,
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1.2 Charge Exchange Nuclear Reactions

further constraining nuclear structure models, because such reactions al-

low to:

• probe spin - isospin terms of nuclear effective interaction;

• probe high multipolarity collective modes;

• probe new nuclear physics phenomena, like double Gamow-Teller

resonance [83];

• probe nucleon - nucleon pairing correlations inside nuclei;

• get information on double beta decay nuclear matrix element.

In the present work main attention is turned to the latter point.

As shown in the next chapters, heavy ion DCE processes are mainly

direct (i. e. surface) nuclear reactions, so that a perturbative approach

allows to describe such processes in terms of two SCE reactions, by two

different mechanisms:

1. DCE processes can be interpreted as a sequence of two independent

SCE reactions, i. e. the two nucleons are exchanged incoherently,

thus revealing the analogy with 2νββ, both for zero angular and

(also small) linear momentum transfer.

2. In DCE reactions, the two nucleons are exchanged coherently (co-

herent sum of two SCE processes), thus allowing to obtain a dia-

grammatical structure strongly resembling the one describing 0νββ

decay. The different nature of the off - shell propagators describ-

ing the two processes made the determination of a proportionality

relation between DCE cross section and 0νββ decay strength quite

difficult, in that it is first of all necessary to be sure of the anal-

ogy between the nuclear matrix elements of the two processes; very

recently, different nuclear structure calculations (non - relativistic
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1.2 Charge Exchange Nuclear Reactions

energy density functional model, shell - model [3] and interacting

boson model [4]) reveal the existence of a nearly linear proportion-

ality relation between heavy ion DCE - DGT and 0νββ nuclear

matrix elements, even if an analytical determination of such rela-

tion is anything but straightforward and is still a subject under

study [5].

The above different DCE mechanisms are shown in fig. 1.9, together

with the weak decay processes they look like, and an example of the
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Figure 1.9: In the upper part, a scheme of 2νββ-like DCE process (left panel) and the
analog weak 2νββ process (right panel) is shown; in the lower part of the
figure, 0νββ-like DCE process, i. e. two correlated SCE nuclear reactions,
(left panel) and the analog 0νββ decay (right panel) are illustrated.

corresponding patterns crossed in the nuclear chart are illustrated in fig.

1.10.

However, it is anything but straightforward to extract information on

0νββ decay strength, because of the competition between the two DCE

mechanisms listed above. Nevertheless, it is pleasing that the second

mechanism strongly depends on nuclear correlations, which become more

38



1.2 Charge Exchange Nuclear Reactions

Figure 1.10: Example of “direct” double charge exchange nuclear reaction, leading to
the transition 116Cd Ñ116 Sn. The first mechanism, described in the
text, is the one given by the reactions indicated by the two short arrows,
while the second mechanism in the text is represented by the long arrow,
directly linking initial and final nuclei.

and more important as energy decreases [84], so that the low - energy

range would be a promising research tool.

In this thesis main attention has been focused on the point 1, de-

scribed below in the present chapter, in order to understand to what ex-

tent this “competing” process dominates or is dominated by the “golden”

one.

As stated in the previous sections, the reason why a lot of interest

is turning toward the determination of a relation between the nuclear

matrix elements of DCE reaction and of 0νββ decay lies in the large dif-

ferences among 0νββ NME values determined by using different nuclear

structure models [52].

The first alternative attempt for 0νββ NME determination was made

by studying the (π˘,π¯) DCE pion-nucleus (π ´ N) reactions [83, 85–

87], but such processes are described by different kind of operators [55,

56, 88], so that they do not give information on 0νββ NMEs. Early

studies of heavy-ion induced DCE reactions didn’t lead to significant

results, because of the lack of zero degree data and the poor yields in the
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1.2 Charge Exchange Nuclear Reactions

measured energy spectra and angular distributions, due to the very low

cross sections observed [80], ranging from about 5 ´ 40nb{sr [89, 90] to

10µb{sr [91, 92].
Recently, high resolution and large acceptance spectrometers are avail-

able, allowing to overcome the main experimental challenges of heavy ion

DCE reactions. This has been leading to a renewed increasing interest

on the study of the latter nuclear reactions, guided by the analogies be-

tween heavy ion DCE processes and 0νββ decays [1], despite the former

is mediated by the nuclear strong interaction (charged meson exchange)

and the latter by weak interaction (weak charged boson exchange):

1. the same initial and final nuclei are involved;

2. both processes can be described by the same Gamow-Teller, Fermi

and rank-2 tensor operators, but combined through different coef-

ficients, whose weight varies changing beam energy;

3. in the intermediate off-shell states, large angular and linear mo-

mentum („ 100MeV {c) are involved;

4. both processes are non-local and characterized by 2 vertices local-

ized in the same pair of valence nucleons;

5. the same nuclear medium is involved, so that in medium effects are

expected to influence the system in both cases (giving the possibil-

ity to extract information on gA quenching);

6. both processes are characterized by an off-shell propagator.

Moreover, “direct” DCE processes can be mimicked by different com-

peting mechanisms, which do not give any information on 0νββ strength

(for example all combinations of two two-nucleon transfer processes and

the combination of two-nucleon transfer with single charge exchange pro-

cesses), so that their effect must be minimized.
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1.2 Charge Exchange Nuclear Reactions

Nowadays there are three main experiments on heavy ion DCE reac-

tions:

1. NUMEN at INFN ´ LNS (Italy), looking for a link between heavy

ion DCE and 0νββ nuclear matrix elements, which already per-

formed DCE reaction experiments for 40Cap18O,18 Neq40Ar (pilot

experiment [1]) and 116Snp18O,18 Neq116Cd heavy systems, both at

15AMeV , but many other systems, invoving candidate 0νββ nu-

clei, are work in progress [93];

2. HIDCX at RCNP (Japan), looking for double Gamow-Teller res-

onance (which is related to 0νββ decay [3]) by using heavy ions

[94, 95].

3. RIBF at RIKEN (Japan), exploring exotic nuclear systems (neu-

tron drip-line nuclei) through DCE reactions with radioactive beams

[82].

the first two looking for a connection with ββ decays, which is the focus

of the present work. In particular, the formalism developed for heavy ion

DCE reactions, described in terms of a sequence of two SCE processes is

illustrated in chapter 4.

1.2.3 Transfer Reactions

Transfer reactions are nuclear processes characterized by the exchange,

or a sequence of exchanges, of nucleons (or cluster of nucleons) between

projectile and target nuclei, caused by nuclear mean field potential in-

teractions; hence, such reactions bring on changes in the mass number

and/or in the charge of both target and projectile nuclei. Multi-nucleon

transfer transitions can lead to a change of the only charge of the interact-

ing nuclei, like the “direct” single and double charge exchange reactions,

described above. Transfer reactions represent the main processes com-

peting with the direct charge exchange: already at single charge exchange
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1.2 Charge Exchange Nuclear Reactions

level, transfer processes are described by operators of completely differ-

ent nature with respect to those describing Gamow-Teller- and Fermi-

like transitions [92, 96–99], thus do not carrying any information on beta

decay matrix element.

Fig. 1.11 shows the nuclei involved in multi - nucleon transfer transi-

tions e. g. for the nucleus 116Cd, which is one of the ions used as target

in NUMEN experiment. The upper panel of fig. 1.11 shows the two

Figure 1.11: Example of the pattern, in nuclear chart, followed by nuclear transfer re-
actions leading from 116Cd to 116In (upper panel) and to 116Sn (central
and lower panels). The blue and the red arrows, in the figure, repre-
sent neutron and proton exchange, respectively. E. g. the single charge
exchange transition 116Cd Ñ116 In can proceed, by means of transfer
processes, via two possible patterns: 116Cd Ñ115 Cd Ñ116 In (lower
path) or 116Cd Ñ117 In Ñ116 In (upper path). The same holds for
double charge exchange processes, which can proceed via different SCE
direct and transfer combinations (third order processes), shown in the
intermediate panels, or by four-nucleon transfer (fourth order processes),
in the two lower panels.
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possible patterns, across the table of nuclides, through which the single

charge exchange via two nucleon transfer can proceed:

by one neutron pick-up and one proton stripping (see chapter 2), viz.

ApZA, NAq ` apZa, Naq Ñ CpZA, NA ´ 1q ` cpZa, Na ` 1q
Ñ BpZA ` 1, NA ´ 1q ` bpZa ´ 1, Na ` 1q

(1.54)

or by one proton stripping and one neutron pick-up

ApZA, NAq ` apZa, Naq Ñ CpZA ` 1, NAq ` cpZa ´ 1, Naq
Ñ BpZA ` 1, NA ´ 1q ` bpZa ´ 1, Na ` 1q

(1.55)

both cases revealing that they are second order processes, while direct

single charge exchange is of first order (see fig. 1.8).

The intermediate and lower panels of fig. 1.11 illustrate three (two

- nucleon transfer plus direct single charge exchange) and four nucleon

transfer processes, respectively, leading to a double charge exchange tran-

sition. The former ones are third order and the second are fourth order

processes against the “direct” double charge exchange reactions, which

are second or first order processes, depending on the DCE mechanism

explored.

Because transfer reactions are higher order processes than the cor-

responding direct charge exchange transitions, they are expected to be

neglegible with respect to the latter ones.

Studies performed in the early ’70s show that heavy ion transfer cross

section, for beam energies well above Coulomb barrier, can be large if

some kinematical conditions (Brink’s kinematical conditions), depending

on theQ´value of the transfer reaction, are satisfied [100]. Conversely, by

properly choosing beam energy, projectile and target nuclei, it is possible

to mismatch these conditions, thus keeping transfer cross section (for

heavy nuclei) lower than that for “direct” processes.

In fact, a work of the late ’80s [101] proved that for heavy systems

(A „ 12) at energies E „ 100AMeV the “direct” charge exchange pro-
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1.2 Charge Exchange Nuclear Reactions

cesses safely dominate over the transfer ones, as illustrated in fig. 1.12.

Figure 1.12: Comparison between “direct” (dotted-dashed line) and two-nucleon
transfer (dashed line) single charge exchange angular distributions, for
the reaction 12Cp12C,12 N

1
`
g.s.

q12B
1

`
g.s.

, for incident energies (per nucleon)

in the range r10; 100sMeV [101].

Recent preliminary studies on the competition between “direct” and

transfer single charge exchange processes for heavier nuclear systems at

low and intermediate energies show a dominance of the “direct” process

for small angular momentum transfer (∆J ď 1) [102]; other preliminary

results show that “direct” DCE processes dominate over all competing

mechanisms [81], illustrated in the central and lower panels of fig. 1.11.
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CHAPTER 2

CHARGE EXCHANGE NUCLEAR

REACTIONS

2.1 Nuclear Reaction theory: some basic

concepts

The main tool to get information on a nucleus is represented by the

scattering of a given probe off the nucleus of interest; the probe can be

a photon, a lepton, a meson, a nucleon or a complex nucleus, depending

on the type of information one wants to get.

In this chapter, some basic theoretical concepts of the scattering the-

ory are shown.

A free particle, moving with momentum k,1 is simply described by

a plane wave, φkprq “ xr|φky “ e´ik¨r, which is eigenfunction of the

kinetic hamiltonian operator (in non-relativistic regime) Ĥ0 “ k̂2

2m
, with

eigenvalue E, i. e. it is a solution of the time-independent Schrödinger

equation

Ĥ0|φky “ E|φky (2.1)

A scattering process of a free particle (projectile) off the nucleus of

1Natural units, ~ “ c “ 1, are used in the whole thesis, unless otherwise indicated.
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interest (target) can be described in terms of a free particle encountering

a short-ranged potential V prq, i. e. V prq « 0 for r " a, where a is

the size of the target; thus, the wave function describing the system is a

solution of the following Schrödinger equation

pĤ0 ` V̂ q|ψky “ E|ψky (2.2)

One can immediately see that the latter equation reduces to the Schrödinger

equation for free particles, eq. (2.1), for r " a. In order to solve eq.

(2.2), i. e. to determine in which way the free hamiltonian eigenfunction

is modified by the presence of the potential V prq, it is usefull to reorder

eq. (2.2) as

pE ´ Ĥ0q|ψky “ V̂ |ψky (2.3)

so that it can be treated as an inhomogeneous partial differentail equation

(p.d.e.), with the inhomogeneity term just given by the potential; the

total solution of such a p.d.e. is obtained by summing the solution of the

corresponding homogeneous p.d.e., which is nothing but eq. (2.1), and a

particular solution, given by |ψp˘q
k y “ Gp˘qpEqV̂ |ψp˘q

k y, where Gp˘qpEq “
1

E´H0˘iǫ
is the Green function; thus, the total solution is

|ψp˘q
k y “ |φky ` 1

E ´ Ĥ0 ˘ iǫ
V̂ |ψp˘q

k y (2.4)

or equivalentely, by introducing a transition operator, T̂ , such that T̂ |φky “
V̂ |ψp`q

k y, and by multiplying both sides of eq. (2.4) by V̂ on the left,

V̂ |ψp`q
k y “ V̂ |φky ` V̂

1

E ´ Ĥ0 ˘ iǫ
V̂ |ψp`q

k y

ñ T̂ |φky “ V̂ |φky ` V̂
1

E ´ Ĥ0 ˘ iǫ
T̂ |φky

(2.5)

Eq.s (2.4) and (2.5) represent the well known Lippmann - Schwinger

equation [103, 104] for scattering states and for the transition operator

T̂ , respectively; both are integral equations, as can be seen by projecting,
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for example, eq. (2.4) on the coordinate space

xr|ψp˘q
k y “ xr|φky `

ż

d3r1 xr| 1

E ´ Ĥ0 ˘ iǫ
|r1yxr1|V̂ |ψp˘q

k y (2.6)

It is possible to show that the kernel of eq. (2.6),

Gp˘qpr, r1q ” 1

2m
xr| 1

E ´ Ĥ0 ˘ iǫ
|r1y (2.7)

is just the solution of Helmholtz equation

p∇2 ` k2qGp˘qpr, r1q “ δpr ´ r1q (2.8)

i. e.

Gp˘qpr, r1q “ ´ 1

4π

e˘ik|r´r1|

|r ´ r1| (2.9)

Hence, (2.6) becomes

xr|ψp˘q
k y “ xr|φky ´ 2m

ż

d3r1 1

4π

e˘ik|r´r1|

|r ´ r1| xr1|V̂ |ψp˘q
k y (2.10)

Gp˘qpr, r1q is also called “propagator” of the interaction. It is straightfor-

ward to note that the total wave function can be written as the sum of

the incident wave, xr|φky, and the “scattered” wave function. Experimen-

tally, it is possible to gain information on the physical system through

its interaction with the deterctors, which are placed at a distance r much

greater than the interacton potential range, r1, i. e. detectors are placed

in the asymptotic region; thus, in the limit r " r1, the modulus |r´ r1| in
the exponential of the propagator can be approximated to r ´ r̂ ¨ r1 and

|r ´ r1| at the denominator simply reduces to r, so that the propagator

simplifies to

Gp˘qpr, r1q ÝÑ
rÑ8

´ 1

4π

e˘ikre¯ik1¨r1

r
(2.11)

where k1 ” kr̂ is the momentum of the (elastically) scattered nucleus.

Hence, asymptotically eq. (2.10) becomes

xr|ψp`q
k y ÝÑ

rÑ8
xr|φky ´ m

2π

eikr

r

ż

d3r1 e´ik1¨r1xr1|V |ψp`q
k y (2.12)
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or

ψ
p`q
k prq ÝÑ

rÑ8

1

p2πq3{2

„

eik¨r ` eikr

r
fpk,k1q



(2.13)

i. e. the total scattered wave function can be expressed as the sum of the

original incoming plane wave plus an outcoming spherical wave, which

represents the effect of the scattering, with “scattering amplitude” given

by

fpk,k1q ” ´m

2π
p2πq3{2xφk1|V̂ |ψp`q

k y (2.14)

or, in terms of transition operator T̂

fpk,k1q ” ´m

2π
p2πq3{2xφk1|T̂ |φky (2.15)

The solution ψ
p´q
k prq, which corresponds to the time-reversed of ψ

p`q
k prq,

has not been taken into account because it corresponds to the original

plane wave plus an incoming spherical wave, but there is no source at

r Ñ `8 producing the latter one. The scattering amplitude is of funda-

mental importance in scattering theory, because it is directly related to

the differential scattering cross section, which is a physical observable,

by the well known relation

dσ

dΩ
“ |fpk,k1q|2 (2.16)

as can be derived from cross section definition.

It is important to note that in general the interaction potential V pr, r1q
can be non-local, but sometimes effective local potentials are used, i.e.

V pr, r1q “ V prqδpr´r1q, so that the matrix element xr1|V |ψp`q
k y simplifies

to

xr1|V |ψp`q
k y “

ż

d3r2xr1|V pr1, r2q|r2yxr2|ψp`q
k y

» V pr1qxr1|ψp`q
k y

“ V pr1qψp`q
k pr1q

(2.17)
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so that eq. (2.12) becomes

ψ
p`q
k prq ÝÑ

rÑ8

eik¨r

p2πq3{2
´ m

2π
p2πq3 e

ikr

r

ż

d3r1 e
´ik1¨r1

p2πq3{2
V pr1qψp`q

k pr1q

“ φkprq ´ m

2π

eikr

r

ż

d3r1 φ˚
k1pr1qV pr1qψp`q

k pr1q
(2.18)

Even if simplified with respect to (2.12), in eq. (2.18) one still has the

unknown wave function, ψ
p`q
k prq, inside the integral, inhibiting a general

analytical resolution of the problem.

By observing that plane waves, |φky, represent a basis (of the Hilbert

space of free particle states), equation (2.5) can be trasformed into a

relation among operators

T “ V ` V
1

E ´ H0 ˘ iǫ
T (2.19)

The solution of this equation can be found iteratively, as

T “ V ` V
1

E ´ H0 ˘ iǫ
V ` V

1

E ´ H0 ˘ iǫ
V

1

E ´ H0 ˘ iǫ
V ` ¨ ¨ ¨ (2.20)

which gives an exact expression for T . In this way, it is possible to express

the scattering amplitude as a series

fpk,k1q “
8
ÿ

n“1

f pnqpk,k1q (2.21)

2.1.1 Plane Wave Born Approximation

Hence, in order to analytically solve Lippmann Schwinger equation, it

is necessary to make some approximation. The most simple approxima-

tion is represented by the (first order) Born approximation. The first or-

der Born approximation (or Plane Wave Born Approximation, PWBA),

just consists in the identity T “ V , which means nothing but replac-

ing ψ
p`q
k prq inside the integral with a plane wave, so that the scattering

amplitude simplifies to

fpk,k1q “ fk,k1pθq “ ´m

2π

ż

d3r1 eiq¨r1

V pr1q (2.22)
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where θ is the angle between k and k1, i. e. the scattering angle; eq.

(2.22) is just the Fourier transform of the interaction potential and is a

function of the momentum transfer q “ k ´ k1. It is well known that

first order Born approximation violates the Optical Theorem

σtot “ 4π

k
Impfk,k1pθ “ 0qq (2.23)

being k the modulus of the initial momentum of the projectile nucleus;

indeed, first order Born scattering amplitude is purely real, so that one

obtaines zero total cross section. This problem can be overcome by noting

that the Optical Theorem gives an exact expression, so that it is necessary

to stop at the correct order of the Born amplitude; thus, because at first

order fk,k1pθq has zero imaginary part, it is necessary to stop at the second

order Born amplitude to calculate the first order Born scattering cross

section.

The PWBA is a (non-perturbative) expansion of the transition matrix

element in powers of the potential V , around V “ 0, and works only when

the following condition is satisfied:

Cpkq “ |φkp0q ´ ψkp0q
φkp0q | ! 1 (2.24)

Using eq. (2.10) for ψkprq at r “ 0, the condition (2.24) becomes

|2mp2πq 3

2

ż

d3r1 1

4π

eikr
1

r1
xr1|V̂ |φky| ! 1 (2.25)

which is verified at high energies, i. e. for k " 1, so that eikr
1 Ñ 0,

because of its rapid oscillations, while, at low eneriges, i. e. when k is

small compared with the inverse of the range of the interaction potential

p„ 1{r1q, so that eikr
1 » 1, the above condition is realized when the

potential is neither too much intense nor too long ranged.

2.1.2 Distorted Wave Born Approximation

When Born approximation cannot be applied, as for the very strong

potentials involved in nuclear reactions, a more sophisticated method,
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called distorted wave Born approximation (DWBA), is often used. This

approximation can be applied whenever the interaction potential can be

expressed as the sum of two potentials, V “ VI ` VII , such that the

Schrödinger equation for a particle subject to VI is exactly (or at least

within a good approximation) solvable and the effects of the remaining

term, VII , are small compared to VI , so that its wave function can be

calculated within the first order Born approximation. Thus, in DWBA

the eigenfunction of the hamiltonian ĤI “ Ĥ0 ` V̂I , i. e. the solution of

the Lippmann-Schwinger equation

χkprq ÝÑ
rÑ`8

φkprq ´ m

2π

eikr

r

ż

d3r1 e´ik1¨r1

VIpr1qχkpr1q (2.26)

can be easily calculated; χkprq is called distorted wave. Then, the total

scattering wave function must solve the Schrödinger equation

´

EI ´ ĤI

¯

ψ
p`q
k prq “ VIIψ

p`q
k prq (2.27)

or the equivalent Lippmann-Schwinger equation

ψ
p`q
k prq “ χ

p`q
k prq `

ż

d3r1 GIpr, r1qVIIpr1qψp`q
k pr1q (2.28)

where now GI describes the propagation of the wave function in presence

of the distorting potential VI , i. e. GIpr, r1q “ xr| 1

EI´ĤI`iǫ
|r1y, which

asymptotically becomes GIpr, r1q ÝÑ
rÑ`8

´ 1
4π

eikr

r
χk1pr1qp´q˚, thus leading

to the asymptotic scattering wave function

ψ
p`q
k prq ÝÑ

rÑ`8
χ

p`q
k prq ´ m

2π

eikr

r

ż

d3r1 χk1pr1qp´q˚VIIpr1qψp`q
k pr1q

DWBA» χ
p`q
k prq ´ m

2π

eikr

r

ż

d3r1 χk1pr1qp´q˚VIIpr1qχp`q
k pr1q

(2.29)

In order to derive the DWBA expression for the scattering amplitude,

let’s consider the Lippmann-Schwinger equations for distorted and total

scattering wave functions in terms of kets

|χp`q
k y “ |φky ` Gp`qVI |χp`q

k y (2.30)
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and

|ψp`q
k y “ |φky ` Gp`q pVI ` VIIq |ψp`q

k y (2.31)

The transition matrix element is defined as

xφk1|T |φky ” xφk1| pVI ` VIIq |ψp`q
k y (2.32)

using eq. (2.30), the plane wave bra on the right hand side can be

expressed in terms of the distorted wave χ
p`q
k , so that

xφk1| pVI ` VIIq |ψp`q
k y “ txχp`q

k1 | ´ xχp`q
k1 |VIGp`qu pVI ` VIIq |ψp`q

k y
“ xχp`q

k1 |VII |ψp`q
k y ` xχp`q

k1 |VI |φky
DWBA» xχp`q

k1 |VII |χp`q
k y ` xχp`q

k1 |VI |φky
“ tI ` xχp`q

k1 |VII |χp`q
k y

(2.33)

where in the second step eq. (2.31) is used and tI is the transition

matrix element obtained from VI . Thus, the second term in the DWBA

transition amplitude can be interpreted as the Born approximation for

scattering by VII in the presence of the distorting potential VI . From eq.

(2.33) it is straightforward to derive the DWBA scattering amplitude

fDWBApk,k1q “ fIpk,k1q ´ eikr

4πr

ż

d3r1 χ
p´q˚
k1 pr1qVIIpr1qχp`q

k pr1q (2.34)

being fIpk,k1q the scattering amplitude for a particle interacting only

through VIprq.
Often, in nuclear reaction theory the distorted waves account for elas-

tic scattering, while the effect of the inelastic nuclear interaction under

study is described by the potential VII . Hence, the validity of the DWBA

depends upon elastic scattering being the most important event which

occurs when two nuclei collide, so that other events can be treated as

perturbations [105]. The DWBA, differentely from PWBA, allows to ob-

tain good predictions of absolute cross sections and works pretty well for

different nuclear systems in a wide energy range [106], [96].
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2.1.3 Optical Potential

An improvement of the DWBA can be obtained by using a complex

VI potential,VI “ UI ` iWI , in order to take into account both elas-

tic scattering and all inelastic channels other than the reaction channel

considered, constituting the so called ”initial/final state interactions”.

Indeed, it is the analogy between optical diffraction phenomena and the

diffraction pattern shown by most of the nuclear reaction angular distri-

butions, that leads to the introduction of a complex potential, with real

and imaginary parts playing the same role as that of a complex refraction

index in optics: the real part describes the scattering of the projectile

nucleus (the incident wave) on the target nucleus (the obstacle) while

the imaginary part deals with the loss of probability flux from the elas-

tic channel and the channel of interest (light does not pass through the

obstacle, i. e. light is absorbed) into other open reaction channels. In

this way, the introduction of an imaginary potential takes into account

the inelastic reaction channels competing with the process of interest.

Optical potentials are often parameterized in terms of energy - de-

pendent Woods - Saxon functions as follows

RepUoptprqq “ V prq “ ´V0fpr, R, aq
ImpUoptprqq “ W prq “ WV prq ` WSprq “
´ W0V pEqfpr, RIV , aIV q ` 4aISWIS

dfpr, RIS , aISq
dr

RepULS
opt prqq “ V LSprq “ V LS

0 pEq1
r

dfpr, RLS, aLSq
dr

ImpULS
opt prqq “ WLSprq “ WLS

0 pEq1
r

dfpr, RW , aW q
dr

(2.35)

where E is the beam energy and fpr, Ri, aiq “
”

1 ` e
r´Ri
ai

ı´1

, with pa-

rameters determined by fitting elastic scattering cross section data. The

subscripts V , S and LS indicate volume, surface and spin-orbit compo-

nents of the interaction potentials, respectively, the latter term, in turn

including a volume and a surface component, too.
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In case of lack of experimental elastic cross section data, both real

and imaginary parts of the optical potential can be derived through sin-

gle or double folding of a phenomenological nucleon-nucleon potential

with projectile and target nuclear density profiles; such phenomenologi-

cal potential depends on parameters that are optimized to fit nucleon -

nucleon available elastic cross sections.

For treating inelastic scattering processes in which initial and final

channels can be related by more than one step, the coupled channel

method [107][108] is often used, instead of higher order expansion of

PWBA and DWBA. Indeed, the coupled channel method accounts also

for the couplings among all the possible reaction channels leading to the

final channel of interest (e. g. all those channels of the direct reaction

model space) [108], while the coupling with the inelastic processes, in-

volving channels other than the one of interest, is taken into account by

means of complex optical potentials.

2.1.4 Partial wave expansion

DWBA scattering amplitude, eq. (2.34), cannot be simply expressed

as the Fourier transform of the interaction potential, like in PWBA case,

and in general distorted waves cannot be combined easily as for plane

waves; hence, in order to simplify calculations, it is convenient to work

in terms of partial wave componets of the system wave function.

It is well known that for spherically symmetric potentials, the wave

function of the system can be factorized into the product of radial (Rprq)
and angular (F pr̂q) functions and the 3D Schrödinger equation

`

∇2 ` k2
˘

ψkprq “ Uprqψkprq (2.36)
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reduces to 1D radial equation plus a centrifugal barrier2,
„

d2

dρ2
` 2

ρ

d

dρ
` 1 ´ lpl ` 1q

ρ2



Rlpρq “ UpρqRlpρq (2.37)

being the angular dependence described by the spherical harmonics,

F pr̂q “ Ylmpr̂q. The solution for the easiest scenario, a free system,

is given by the plane wave,

ψkprq “ eik¨r

p2πq3{2
“ă r|k ą (2.38)

on the one side; on the other side, eq. (2.37) in the free case reduces to

the well known Ricatti - Bessel equation, whose solutions are given by

the spherical Bessel functions, jlpρq, thus leading to a total wave function

of the form

ψkprq “ CljlpkrqYlmpr̂q “ă r|Elm ą (2.39)

being Cl a normalization constant. Due to the unicity of the solution of

a partial derivative differential equation with fixed boundary conditions,

the two solutions of the Schrödinger equation must coincide; in fact, it is

possible to link the two solutions, simply by writing

ă r|k ą“
ÿ

l,m

ż

dE ă r|Elm ąă Elm|k ą (2.40)

where ă Elm|k ą is nothing but the complex conjugated of the Fourier

transform of (2.39),

ψpkq “ Blδ

ˆ

~
2k2

2µ
´ E

˙

Ylmpk̂q (2.41)

where Bl is a normalization constant. After some simplifications, the

relation (2.40) leads to the well known partial wave expansion of the

plane wave

ϕkprq “ 4π
ÿ

l

iljlpkrq
ÿ

m

Ylmpr̂qY ˚
lmpk̂q (2.42)

2After some standard passages, like posing ρ “ kr and Upρq “ U{E, being E the
total energy of the system.
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that can be easily generalized to the case of a spherical symmetric po-

tential

χkprq “ 4π
ÿ

l

il
χl,kprq
kr

ÿ

m

Ylmpr̂qY ˚
lmpk̂q (2.43)

Thus, the 3-dimensional Schrödinger equation for the distorted wave

can be simplified into a sum of 1-dimensional radial Schrödinger equa-

tions, by making the partial wave decomposition of the distorted wave, i.

e. making an expansion of the angular dependence of the wave function

in terms of spherical harmonics. Moreover, working with partial waves

allows to have a deeper insight into the angular components contributing

to the total wave function of the system and hence to the cross section.

In terms of partial waves, the scattering amplitude can be expressed

as the sum of partial wave scattering amplitudes, flpEq
fkk1pθq “ ´µp2πq2 ă k1|T̂ |k ą
“ ´µp2πq2

ÿ

l,m

ÿ

l1,m1

ż

dE

ż

dE 1 ă k1|E 1l1m1 ąă E 1l1m1|T̂ |Elm ąă Elm|k ą

“ ´π

k

ÿ

l

p2l ` 1qTlpEqPlpcos θq

“
ÿ

l

p2l ` 1qflpEqPlpcos θq
(2.44)

where µ is the reduced mass of the system; now the information on

the scattering process is decomposed into its angular momentum compo-

nents, with the radial part stored into the partial wave scattering ampli-

tude, through the partial wave transition matrix TlpEq,
flpEq ” ´π

k
TlpEq (2.45)

In the absence of inelastic processes (loss of probability flux out of the

elastic channel), the partial wave scattering matrix Sl ” 1 ´ 2πiTl is

a unitary operator and so it can be expressed as a phase shift term,

Sl “ e2iδl , so that partial wave scattering amplitude becomes

flpEq “ Sl ´ 1

2ik
“ 1

k
eiδl sin δl “ 1

k pcgtδl ´ iq (2.46)
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Hence, the total cross section can be expressed as

σtotpEq “ 4π

k
Im rfkk1pθ “ 0qs “

ÿ

l

σlpEq “ 2π

k2

ÿ

l

p2l ` 1q p1 ´ Re rSlsq
(2.47)

being the elastic and inelastic cross sections components

σelastpEq “
ż

dΩ |fkk1pθq|2

“ 4π

k2

ÿ

l

p2l ` 1q sin2 δl

“ π

k2

ÿ

l

p2l ` 1q|Sl ´ 1|2
(2.48)

and

σreactpEq “ σtotpEq ´ σelastpEq “ π

k2

ÿ

l

p2l ` 1q `

1 ´ |Sl|2
˘

(2.49)

respectively. Thus, in the absence of scattering, all cross sections are

zero, which implies Sl “ 1; in case of pure elastic scattering, |Sl| “ 1, e.

g. Sl “ e2iδl , and the elastic scattering cross section maxiumum value is

obtained for Sl “ ´1, that is also the value maximizing the total cross

section, which in turn implies that the total cross section can reach its

maximum only in the case of pure elastic scattering process. The cross

section for inelastic processes reaches its maximum value for Sl “ 0;

moreover, for this value, elastic and inelastic cross sections are equal.

2.1.5 Nuclear interaction potential

The nucleus is clearly a many body system. In order to simplify

the description of many - body interactions, it is often useful to start

with an effective two body interaction, thus assuming that only two -

body interaction among nucleons dominates [109]. In general, a two -

body interaction potential is a non - local operator, depending on the

following quantities

V p1, 2q “ V pr1,p1,σ1, τ 1, r2,p2,σ2, τ 2q (2.50)
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where the indices p1, 2q identify the two interacting nucleons, σi and τ i

are the spin and isospin Pauli matrices, respectively, and the momentum

dependence follows from the non - locality of the operator. The form of

this general function can be restricted through symmetry considerations

[109]:

• In order to preserve the antisymmetric nature of the total wave

function of the system of two fermions, the potential must be sym-

metic under exchange of all coordinates of the two interacting nu-

cleons.

• Imposing translational invariance implies that the interaction po-

tential depends only on the relative coordinate rα,β “ r1 ´ r2.

• The potential must be the same in every inertial rest frame (Galileian

invariance), i. e. it depends only on the relative momentum k “
k1´k2

2
.

• Because strong interactions do not violate parity, then the interac-

tion potential must be symmetric under space reflection.

• Because strong nuclear interactions preserves isospin symmetry (as

widely confirmed by nuclear scattering experiments), the corre-

sponding potential must be symmetric under isospin transforma-

tion.

• Nuclear interaction potential must preserve time - reversal symme-

try, this implying that transition matrix element must be invariant

under time - reversal.

• Moreover, one can impose rotational invariance in coordinate space.

• Finally, in order to simplify the description, a local effective nu-

clear potential is often used; the locality implies the momentum

independence of such potential.
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All these symmetries lead to the following expression of the effective

nucleon - nucleon interaction potential

V p1, 2q “ VCp1, 2q ` Vtp1, 2q ` VLSp1, 2q ` VLLp1, 2q
“

ÿ

T

t
ÿ

S

V C
ST prqpσ1 ¨ σ2qS ` V t

1T prqS12 ` V LS
T prqL ¨ S

` V LL
T prq

„

pσ1σ2qL2 ´ 1

2
ppσ1Lqpσ2Lq ` pσ2Lqpσ1Lqq



upτ 1 ¨ τ 2qT

(2.51)

where VCp1, 2q accounts for the central interaction, depending only on

the modulus of the relative coordinate rα,β; unfortunately, pure cen-

tral force cannot explain some experimental data, like the quadrupole

moment of the deuteron; for this reason tensor interactions have been

included, through the term Vtp1, 2q, in which the well known rank ´2

tensor operator, S12 “ 3
r2α,β

pσ1 ¨ rα,βq pσ2 ¨ rα,βq ´ σ1 ¨ σ2, appears. The

spin - orbit term, VLSp1, 2q, is considered, because it allows to explain

nuclear magic numbers; one can also take into account the second - order

spin - orbit term, VLLp1, 2q, in order to improve calculations, together

with other correction terms (relativistic and higher order corrections),

not shown here. In eq. (2.51), L, is the relative orbital angular momen-

tum operator of the two interacting nucleons, L “ pr1 ´r2qˆpk1 ´k2q{2,
while S “ 1

2
pσ1 ` σ2q is the total two - nucleon spin operator [9].

In the calculations discussed in chapters 3 and 4, we focus on the

analogy with beta decay processes and thus on small momentum transfer

region, so that only central and tensor interaction terms are considered,

while spin - orbit terms can be neglected.

2.1.6 Direct reactions

Nuclear reactions can be classified into two big groups [105, 110]:

• compound nucleus reactions are processes characterized by the

formation of a compound system, obtained from projectile and tar-

get thermalization, living within a time interval ∆tc „ 10´19 ´
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10´14 s, which is longer than the characteristic time of the nuclear

strong interactions, (∆ts „ 10´21 s); actually, ∆tc is sufficiently

long to ensure thermalization of projectile and target nucleons; the

thermalization implies that the probability to obtain certain nuclei

from compound nucleus decay is independent of the initial channel

system, i. e. there is a loss of memory about the initial channel

(Bohr’s hypothesis of independence); this characteristic has been

verified experimentally by S. N. Ghoshal [111] in 1950, through the

study of the two reactions p `63 Cu and α `60 Ni, both leading to

the same compound nucleus, 64Zn˚, which in both cases decays into

one of the three channels 63Zn ` n, 62Cu ` n ` p and 62Zn ` 2n,

with nearly the same branching ratios. Hence, the decay mode of

the compound nucleus depends only on its mass, atomic number,

excitation energy and angular momentum. Due to the thermaliza-

tion of all projectile and target nucleons, forming the compound

nucleus, these kind of reactions are characterized by an energy dis-

tribution à la Boltzmann; moreover, because of the equilibration,

the information on the beam direction is lost and, consequently,

angular distributions are symmetric with respect to the direction

of the total angular momentum of the compound system. The ex-

treme limit of compound nucleus reactions is represented by nuclear

fusion processes.

• direct reactions, differently from the former, are processes which

happen in one step, i. e. processes where there are not two time

scales and so where no compound nucleus can be formed. Hence,

no thermalization occurs, this meaning that such reactions strongly

depend on the nuclei involved in the entrance channel. This makes

direct reactions an important source of information about nuclear

structure [96]. These kind of processes are mainly surface reactions,

that is they involve only projectile and target surface nucleons, thus
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involving less degrees of freedom with respect to compound nucleus

reactions; this in turn implies that such reactions are only weakly

coupled to the bulk of nuclear reactions and, hence, are character-

ized by small momentum transfer, thus allowing the use of DWBA

and of the optical potentials in the description of the nuclear reac-

tion, both for light and heavy ion systems. Moreover, they domi-

nate in a narrow range around the partial wave angular momentum

corresponding to the grazing angle of the process, because of their

surface nature.

The separation between these two extreme cases is not at all sharp. In-

deed, nuclear reactions experiments reveal the existence of intermediate

processes, referred to by the expression of pre-equilibrium nuclear reac-

tions, where the projectile undergoes more than one scattering inside the

target nucleus, in a time interval not sufficient to reach thermalization,

so that no compound nucleus can be formed; finally, the projectile can es-

cape from the target nucleus, leaving the latter in an excited state (multi

- step direct reactions) or can stay bound with the target nucleus, emit-

ting particles before forming a compound state (multi - step compound

reactions).

Of course, in a nuclear reaction all these kinds of processes can oc-

cur, each one with a certain probability; the relative weight of the two

processes depends on the excitation energy of the system (and so on the

beam energy) and on the scattering angle: direct reactions dominate at

forward scattering angles and for low excitation energies, which means

high energies of the projectile - like ejectile, as shown in fig. 2.1.

In order to extract the nuclear matrix element, which contains the

whole nuclear structure information on the system, it is mandatory to

study reactions of the second type.

The term “direct reaction” indicates a broad class of nuclear reactions:

• transfer reactions, that are processes characterized by the ex-
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change of one or more nucleons between target and projectile nuclei.

Transfer reactions can be further classified into

– stripping reactions, where a particle from the projectile is

absorbed (stripped) by the target, e. g. Apd,nq rB “ p ` As;
– pick up reactions, where a particle from the taget nucleus is

absorbed (picked up) by the projectile, which is nothing but

the time - reversed of stripping processes;

– knock out reactions, where due to the interaction between

projectile and target nuclei, a nucleon or light cluster is ejected

(“knocked out”) from the target by the projectile.

– break up reactions, in which a loosely bound projectile (like

the deuteron) dissociates (“breaks up”) in the field of the tar-

get nucleus.

• charge exchange reactions, where in a single step the two inter-

acting nuclei change their charge, but leaving each of their mass

number unchanged; this process is due to the (off - shell) exchange

of charged mesons among projectile and target nucleons and is fully

treated in the next chapters.

• collective excitations describing the excitation of collective (vi-

brational and/or rotational) nuclear states.

The use of DWBA to describe direct reactions allows one to write the

differential cross section3 as

d2σ

dEdΩ
“ EαEβ

4π2p~cq4
kβ

kα

1

p2JA ` 1q
1

p2Ja ` 1q
ÿ

ma,mA
mb,mB

|
ÿ

τ“C,T
SO

ÿ

ij

ż

d3sα

ż

d3sβ χ
p´q˚
kβ

prβq ă ψBφb|V̂pτq
αβ pξα, ξβq|ψAφa ą χ

p`q
kα

prαq|2

(2.52)

3Cross section in the center of mass rest frame is used, in order to simplify calcu-
lations.
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Figure 2.1: Example of double differential cross section as a function of the energy of
the projectile - like ejectile and of the scattering angle, for the inelastic
Snpα, α1q reaction [105].

where α (β) represents the entrance (exit) reaction channels and rα

(rβ) and kα (kβ) are the relative projectile - target space and momentum

coordinates in the initial (final) channel, respectively, sα “ r,1 ´ r,2 “
rα ` rj ´ ri (sβ “ rβ ` rj ´ ri) and rα “ r2 ´ r1 (rβ “ r2f ´ r1f) are

the relative nucleon - nucleon and nucleus - nucleus spatial coordinate

in the entrance (exit) channel, respectively; the sums over i and j are

over projectile and target nucleons and are embedded in rα,β definition

and ξα,β ” psα,β ,σα,β, τα,βq. The coordinate system used is that illus-

trated in fig.2.2. According to such reference system and resembling the

experimental situation, it follows that ri , rj ! r1,2, r
,
1,2, being ri and rj

both of the order of projectile and target nuclear radii and r1,2 and r,1,2

representing the distance between the scattering point and the detectors,

so that one can approximate r1,2 « r
,
1,2 and then sα,β « rα,β.
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Figure 2.2: Reference frame used to describe nucleus - nucleus scattering. For nucleon
- nucleus (p ´ A) scattering, projectile coordinate ri “ 0 and r

,
1

” r1, so
that sα “ rα ` rj (the same for the exit channel, β).

2.1.7 Useful approximations

Hence, the main ingredient of the Cross Section is represented by the

transition matrix element

M
pτq
αβ pkα,kβq “

ż

d3rα

ż

d3rβ χ
p´q˚
kβ

prβq ă ψBφb|V̂pτq
αβ pξα, ξβq|ψAφa ą χ

p`q
kα

prαq (2.53)

carrying the whole information on the nuclear reaction process, through

the nuclear interaction potential V̂
pτq
αβ pξα, ξβq, which is non - local, in

general.

2.1.7.1 Zero-range approximation

In order to simplify calculations, very often the realistic non - local

potential is replaced by an effective local one [112], because of the short
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range nature of the nuclear interaction between target and projectile

nuclei; this in turn implies that the main contribution in the integrals,

appearing within the transition matrix element, is obtained for rα » rβ ”
r, thus justifying the use of the following approximation

V̂pξα, ξβq » V̂psα,σα, τα, sβ,σβ, τ βqδpri ´ rjq (2.54)

and then

V̂prα,σα, τα, rβ,σβ, τ βq » V̂ prα,σα, τα,σβ , τ βqδprα ´ rβq (2.55)

called zero range approximation, where V̂ is an effective local nuclear

interaction potential, generally depending on internal coordinates of the

sistem.

2.1.7.2 Effective local Potential

Because the interaction involves nucleons, it is necessary to take care

of their fermionic nature through the Pauli principle, which is often im-

plemented by multiplying the effective nuclear potential by the exchange

operator [9, 96, 97, 113]

Px “ 1 ´ PσPτPl (2.56)

which exchanges spin, isospin and space coordinates of one nucleon in the

projectile with that of another nucleon in the target [9]; in this way, the

interaction potential can be replaced by the following effective expression

V̂pξα, ξβq Ñ V̂pξα, ξβqPx (2.57)

By using the zero range approximation and the effective local poten-

tial in (2.57), eq. (2.53) simplifies to

M
pτq
αβ pkα,kβq “

ż

d3r χ
p´q˚
kβ

prq ă ψBφb|V̂ pτq
αβ pr,σα, τα,σβ, τ βqPx|ψAφa ą χ

p`q
kα

prq (2.58)
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2.1.7.3 Impulse Approximation

Another important feature to be taken into account, both for light

(p ´ A) and heavy ion (A ´ A) reactions, is that the nuclear interaction

potential deals with nucleon - nucleon (N ´ N) interaction within the

nuclear medium. It is widely used to describe nucleus - nucleus (A´A)

reactions in terms of N ´ N bare interactions, by means of the single -

scattering approximation, where it is assumed that each projectile nucleon

interacts only with one nucleon, inside the target; the latter approxima-

tion relies upon the fact that typical nuclear reaction cross sections are

of the order of „ 10mb, which implies a mean free path of the order of

some fm, that is the typical dimension of nuclei. The single scattering

approximation allows to express A ´ A scattering amplitude as a sum,

over all target and projectile nucleons, of single scattering amplitudes.

Each of these single scattering amplitudes contains information on the

nuclear medium effects on N ´ N interaction and this effects are quite

difficult to calculate. For this reason another important hypothesis is

often used to further simplify calculations: the impulse approximation,

which consists in neglecting the interaction between each projectile nu-

cleon with every target nucleon; hence, this approximation allows the

substitution of the in - medium single scattering amplitudes with the

bare (free - nucleons) ones, i. e. the effective interaction potential V̂ can

be replaced by the bare one, V̂NN .

The validity range of the impulse approximation is expressed by the

following relation

τcoll ! τnucl ô τcoll

τnucl
! 1 (2.59)

which depends on two time - scales:

• the reaction time, τnucl » 2π
ωnucl

» 2π~
B
, that is the time characteris-

tic of nuclear response and is, thus, related to the typical nuclear
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frequency, ωnucl, and so to the binding energy4, B „ ωnucl~, which

is characteristic of the given nuclear system;

• the collision time, τcoll » Rint

v
, which is the time taken by the pro-

jectile to cross the region of nuclear interaction, having dimension

Rint; hence, it is related to the velocity v of the projectile.

The relation (2.59) means that the impulse approximation works well

when the nuclear response time is greater than the collision time.

Thus, the impulse approximation is valid for beam energies greater

than E “ 5AMeV , starting from which the ratio τcoll
τnucl

» 0.1 is already

sufficientely small.

2.1.7.4 Eikonal Approximation

If beam energy corresponds to a De Broglie wavelenght, λ “ 1
k
, much

smaller than the characteristic lenght - scale of the interaction potential,

that is

V pr ` ∆rq ´ V prq „ const ∆r » λ (2.60)

then, it is possible to express the wave function of the scattered particle as

the product of a plane wave, propagating along z axis5, times a function,

φpz,bq, which varies slowly with z and the impact parameter b

ψprq » eikzφpz,bq (2.61)

being

|∇2φ| ! k|∇φ| (2.62)

Such approximation is called eikonal approximation.

The condition (2.62) implies that, making Taylor expansion of φ with

respect to the reaction point (generally coinciding with z “ 0), the second

and higher order terms can be neglected, so that φ » φ0 ` ∇φ ¨ δz „
4Typical nuclear binding energy values are about 6 ´ 8MeV .
5Genarally, z axis coincides with the beam direction.
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φ0 ` ∇φ ¨ k, just meaning that φ varies slowly with z and b. Hence, the

latter assumption implies that the function φ, containing all information

about the interaction, can be simply expressed as a phase.

Thus, the eikonal approximation means that at sufficientely high ener-

gies the projectile is mainly forward scattered, so that one should expect

an angular distribution strongly peaked at small scattering angles. It

is important to note that the validity condition of the eikonal approxi-

mation is different from that for the Born approximation; indeed, while

the latter one requires that the interaction potential does not modify the

scattered wave function too much with respect to the plane wave, the

condition (2.60) for sufficientely high beam energies, and so high mo-

menta, k, is always valid, no matter what the shape and the magnitude

of the interaction potential is.

From the expression of the scattered wave in eq. (2.61) it is straight-

forward to note that in the eikonal approximation, considering the sim-

plest case of spherically symmetric potential, the physical system “looses

one degree of freedom”, in the sense that the spherical symmetry reduces

to a cilindrical one, i. e. the system does no more depend on the orienta-

tion of b. Thus, an explicit expression of ψ as function of the interaction

potential can be obtained by solving the time - independent Schrödinger

equation in cilindrical coordinates

´ ~
2

2µ
eikzt∇2φ ` 2ik

Bφ
Bz ´ k2φ ´ 2µ

~2
V prqφ` 2µ

~2
Eφu “ 0 (2.63)

thus obtaining

φpb, zq “ e´ i
~v

şz

´8 dz1 V pb,z1q “ eiχpb,zq (2.64)

where v “ ~k
µ
is the velocity of the system with mass equal to the reduced

mass, µ, of projectile - target nuclei and momentum given by the relative

momentum k (relative system) and the coordinate space vector is splitted

into its transversal and longitudinal components, r “ pb, zq. χpb, zq is

called eikonal phase.
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In this way, the scattered wave function can be expressed as a plane

wave, moving along z axis times a phase shift, representing the effect of

the interaction, as stated above

ψprq “ eikz`iχpb,zq (2.65)

In order to relate the eikonal phase to the scattering amplitude, let’s

consider, for the sake of simplicity, the elastic scattering case, hence the

case in which |k1| “ |k|). The scattering amplitude is

fkk1pθq “ ´ 2µ

4π~2

ż

d3r e´ik1¨rV prqψkprq

“ ´ 2µ

4π~2

ż

d2b

ż `8

´8

dz e´ipk1¨b`k1¨k̂zqV pb, zqeikze´ i
~v

şz
´8 dz1 V pb,z1q

“ ´ 2µ

4π~2

ż

d2b eipk´k1q¨b

ż `8

´8

dz eipk´k1q¨k̂zV pb, zq expt´ i

~v

ż z

´8

dz1 V pb, z1qu
(2.66)

where in the last line the hypothesis k{{~z is used, so that 1 “ eik¨b.

The eikonal approximation implies θ ! 1, so that pk ´ k1q ¨ k̂ “
k2p1 ´ cos θq » 0; thus, the integral in dz becomes

ż `8

´8

dz V pb, zq expt´ i

~v

ż z

´8

dz1 V pb, z1qu

“ i~v expt´ i

~v

ż z

´8

dz1 V pb, z1qu|`8
´8 “ i~v

“

eiχpbq ´ 1
‰

(2.67)

defining χpbq “ χpb, z “ `8q. The difference between initial and final

channel relative momenta, q “ k´k1, represents the momentum transfer

of the system.

For spherically symmetric potentials, V pb, zq “ V pb, zq, the eikonal

phase becomes indipendent from the orientation of the trasversal vector

b, χpb, zq “ χpb, zq, so that the scattering amplitude becomes

fkk1pθq “
ż

db b

ż

dϕeiqbcosϕ

looooomooooon

2πj0pqbq

pi~vq “

eiχpbq ´ 1
‰

“ ´ik
ż

db b j0pqbq “

eiχpbq ´ 1
‰

(2.68)
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and can be determined just by solving two one dimensional integrals: the

integral within the eikonal phase and that in the transverse coordinate,

db.

2.1.7.5 Black Disk Approximation

Another important approximation, very useful for treating heavy ion

reactions, is the black sphere or black disk approximation (BDA). This

approximation is based on the assumption that distorted waves are to-

tally absorbed inside the nucleus, i.e. the imaginary part of the optical

potential dominates on the real optical and Coulomb potentials. An es-

timate of black disk radius, RBD, can be obtained from the evaluation of

the total absorption cross section, that for a totally absorbing sphere is

roughly given by

σabs “ 2µα

kα

ż

d3r |χp`q
kα

prq|2W prq » πR2
BD (2.69)

where W prq represents the imaginary part of the optical potential, µα

is the reduced mass of the nuclear system in the entrance channel and

χ
p`q
kα

prq is the incoming distorted wave describing initial state interactions.

For heavy ion reactions at intermediate energies, Ep „ 10AMeV , typical

Cross Section values are σabs „ 1 ´ 3 b, that imply RBD „ 5 ´ 10 fm.

Of course, the higher beam energy is, the worst is the BDA. Eq. (2.69)

shows that black disk radius is related to the imaginary part of the optical

potential, so that a very preliminary estimation of RBD can be obtained

by taking the coordinate space value at which W prq “ 0.01W p0q.

2.2 Nuclear Structure Theory for direct re-

actions

Nuclei are very complex many - body systems. The simplest way to

treat them is to consider nucleons inside the nucleus as independent par-

ticles, each one feeling the presence of the other nucleons by means of a
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mean field (Hartree - Fock) potential. Most of the nuclear structure the-

ories, used for the description of spin - isospin excitations in nuclei, have

an independent particle picture as starting point. In this first approxi-

mation, energy spectrum of the nucleus shows a “shell” structure and its

ground state is described by a Slater determinant of single - particle or-

bitals, where all the lowest energy single - particle states are occupied up

to Fermi energy [9]; the single - particle wave functions are eigenfunctions

of the single - particle Hamiltonian

Hsp “ T ` Uprq (2.70)

where T is the sum of single - particle kinetic energy operators and Uprq “
Vlocprq ` VSLprqL ¨ S ` VCprq ` Vsymprq is the full two - body interaction

potential, being Vlocprq a local two - body potential, VSLprq the spin -

orbit, VCprq the Coulomb and, finally, Vsymprq the symmetry potential6.

An analytical expression for the single - particle potential is quite difficult

to be determined, so that Hartree and Fock suggested that Uprq can be

written as the sum of a mean field potential, UMF prq, plus a residual

potential, Vresprq “ Uprq´UMF prq , the latter being neglegible within the

independent - particle framework. The mean field potential is expressed

in terms of single - particle wavefunctions, according to the following

relation

UMF prqφkprq “
˜

ż

d3r1 V pr ´ r1q
A

ÿ

i“1

|φipr1q|2
¸

φkprq

´
A

ÿ

i“1

φiprq
ż

d3r1 V pr ´ r1qφ˚
i pr1qφkpr1q

(2.71)

where the first term, inside round parenthesis, has the simple interpreta-

tion of the potential generated by the density distribution of the nucleons

6The symmetry potential is proportional to the symmetry parameter pN´Zq
A

, en-
hancing the ground state energy of the system and thus favoring a nuclear configura-
tion with an equal number of protons and neutrons
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inside the nucleus [114], while the last term properly accounts for the an-

tisymmetrization of the total wavefunction of the system; in this way, the

Hartree - Fock mean field potential can be calculated by means of a self

- consistent - field iterative method: once a set of trial single - particle

wave functions are chosen and used to build a “trial” mean field, the

variational principle is used to minimize the eigenvalues (single - particle

ground state energies) of the corresponding hamiltonian, thus allowing

to determine its “new” eigenfunctions, which in turn will be iteratively

used to build the “new” mean field potential, until convergence in the

ground state energy value is reached. The many - body ground state

thus obtained is called Hartree - Fock ground state and is characterized

by a Fermi - Dirac density distribution at zero temperature: all energy

levels below Fermi energy (ǫF ) are occupied, while all states above ǫF are

empty.

By promoting one particle from a state φi below the Fermi sea (ǫi ă
ǫF ) to a state φm with eigenenergy ǫm ą ǫF , a “1-particle - 1-hole” (1p´
1h) excited state is obtained [9]. By considering different combinations

of independent 1p´ 1h states, one can in principle obtain all the excited

states. Up to this level, where only independent 1p ´ 1h configurations

are considered, it is possible to describe well the ground state and low-

lying excited states of doubly - closed - shell nuclei. In order to describe

(spherically and not spherically7 symmetric nuclei) higher excited states,

such as the giant resonances, which are identified as collective states, it

is necessary to take into account correlations between nucleons. This can

be achieved by considering the residual interaction, previously neglected.

Hence, one can start from the Hartree - Fock ground state and then

construct all the excited states though a coherent superposition of 1p ´
1h states (Tam - Dankoff Approximation, TDA) or take into account

7Restricting the attention to nuclei with a small number of valence nucleons out-
side a filled shell.
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correlations among nucleons already in the ground state (Random Phase

Approximation, RPA). In the latter case a better explaination of the

experimental energy spectra is obtained, as long as the ground state

correlations are not too strong with respect to that of excited states.

For describing weakly - bounded open-shell nuclei, pairing correla-

tions between nucleons have to be explicitely taken into account, by

considering pairing interaction already in the ground state. This can be

achieved by the Hartree - Fock - Bogoliubov (HFB) theory, based on

the Bogoliubov - Valatin transformations (shown in the next section),

through which the quasi - particle formalism is introduced. In this way,

the ground state of a weakly bounded nucleus is no more characterized

by a zero temperature Fermi - Dirac distribution of nucleons, but it re-

sembles a Fermi - Dirac distribution for non - zero temperature system,

i. e. the Fermi surface of weakly bounded nuclei has a significant dif-

fuseness, which in turn means that the ground state occupation numbers

are no more 1 below and 0 above Fermi surface, but in both regions the

occupation probability becomes a number between 0 and 1.

2.2.1 QRPA formalism

As stated above, for nuclei away from closed shells the pairing cor-

relations play a fundamental role. Bohr, Mottelson, and Pines (1958)

and Belyaev (1959) introduced pairing interactions in nuclei in analogy

to the BCS theory (Bardeen, Cooper and Schrieffer, 1957) of supercon-

ductors. The self - consistent version of BCS theory is represented by

the HFB theory, where one determines the most general wave function

of independently moving quasiparticles by minimizing the ground - state

energy simultaneously with respect to the long - ranged Hartree - Fock

field and the short - ranged, attractive, pairing field [9][109]. Similarly to

HF theory, the BCS ground state can be determined from a variational
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principle, leading to the following expression

|0y “
ź

ką0

´

uk ` vkâ
:
kâ

:

k

¯

|y (2.72)

where the product runs over half the configuration space (k ą 0) to

avoid double counting, |y represents the bare vacuum, â:
k (âk) is the single

particle creation, or hole annihilation, operator (hole creation, or particle

annihilation operator) and uk and vk are the variational parameters. The

index k represents the set of quantum numbers describing the system

(particle), e. g. it can coincide with the ones giving the spherical basis,

k “ pnlmlsmsq or equivalentely k “ pnjmq; in the latter case, the index

k “ pnj ´ mq, which identifies the conjugate state (hole), such that the

set pk, kq identifies the whole particle - hole space [109].

It is possible to describe the system of pairwise interacting particles

in terms of non - interacting Bogoliubov’s quasiparticles, by introducing

the so called Bogoliubov - Valatin transformations [109]

α̂
:
k “ ukâ

:
k ´ p´1qj`mvkâk

α̂k “ ukâk ´ p´1qj`mvkâ
:

k

(2.73)

which allow to convert particle - hole into quasiparticle states, being

α̂:
k and α̂k the 1 - quasiparticle (1QP) creation and annihilation oper-

ators, respectively; uk and vk represent the emptiness and occupation

amplitudes, respectively, for the nuclear state with quantum numbers k,

satisfying the following condition

u2k ` v2k “ 1 (2.74)

The relation (2.74) implies that quasiparticle operators, defined by eq.s

(2.73), satisfy fermionic anticommutation relations

tαk, αk1u “
!

α
:
k, α

:
k1

)

“ 0
!

αk, α
:
k1

)

“ δkk1 (2.75)

Thus, Bogoliubov’s quasiparticles are fermions represented by a linear

combination of particle and hole states; in the limit of vanishing pairing
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correlations such quasiparticles reduce to a particle or a hole, depending

on whether their kinetic energy ǫk is higher or lower than Fermi energy,

ǫF , respectively. By introducing α:
k and αk, BCS ground state, |0y, can

be defined as

α̂k|0y “ 0 @k (2.76)

In order to determine the emptiness and occupation amplitudes, one

can start from the single - particle hamiltonian (containing the kinetic

and the two - body interaction operators) in the particle - hole second

quantization formalism

Ĥsp “
ÿ

k1,k2

Tk1,k2â
:
k1
âk2 ` 1

2

ÿ

k1,k2
k3,k4

Vk1,k2,k3,k4â
:
k1
â

:
k2
âk3 âk4 (2.77)

where the index ki identifies the different nuclear states, Tk1,k2 and Vk1,k2,k3,k4

are the kinetic and the antisymmetrized two - body potential matrix ele-

ments, respectively; then, intorducing quasiparticle operators, by invert-

ing the relations (2.73), one obtaines a quasiparticle hamiltonian contain-

ing a term which violates particle number conservation; by imposing that

the latter term is zero, the expressions (2.78) for vk and uk are obtained,

u2k “ 1

2

˜

1 ` ǫk
a

ǫ2k ` ∆2
k

¸

v2k “ 1

2

˜

1 ´ ǫk
a

ǫ2k ` ∆2
k

¸

(2.78)

as a function of the single particle energy ǫk and of the state - depen-

dent pairing potential ∆k k1, called gap parameter. The simplest case of

diagonal potential, ∆k k1 “ ∆kδk k1 is often used, with ∆k defined as

∆k “ ´
ÿ

k1ą0

Vk,k,k1,k1uk1vk1 (2.79)

In eq.s (2.78),
a

ǫ2k ` ∆2
k is the quasiparticle energy [114]. By inserting

eq. (2.78) into eq. (2.79) the gap equation

∆k “ ´1

2

ÿ

k1

Vk,k,k1,k1

∆k1

a

ǫ2k1 ` ∆2
k1

(2.80)
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is obtained. The gap equation can be solved analytically only in few very

simplified cases, but is very useful for the numerical determination of ∆k.

A nuclear excited state can be obtained from BCS ground state by

applying the 2 - quasiparticle (2QP) creation operator

Q̂
:
K “

ÿ

m,m1

xjmj1m1|JMyα̂:
kα̂

:
k1 (2.81)

creating a quasiparticle in the excited state with total angular momen-

tum j and magnetic quantum number m and another quasiparticle in the

state characterized by quantum numbers j1 and m1, so that the excited

state created is characterized by quantum numbers J and M , embed-

ded into the index K. In the case of single charge exchange reactions,

which represents the starting point of the present work, the 2QP oper-

ator Q:
K creates e. g. a quasiproton with quantum numbers pj,mq and

a quasineutron in the state pj1, m1q. The complete operator for charge

exchange excitation is

ω̂
:
K “

ÿ

j,j1

”

xKpj, j1qQ̂:
Kpj, j1q ´ p´1qJ´MyKpj, j1qQ̂Kpj, j1q

ı

(2.82)

where xK and yK represent the QRPA amplitudes for a charge exchange

process, or in general for the exchange of a quasiparticle, and its time

reversed, respectively.

In order to describe some nuclear energy states, it is necessary to take

into account higher order quasiparticle (e. g. 4QP and higher) configu-

rations, so that the true nuclear eigenstates are given by the excitation

operator

Ω̂:
K “

ÿ

i

zJi ω̂
:
Kpiq ` η̂

:
K (2.83)

where the sum is over all 2QP configurations, zJi is the spectroscopic

amplitude representing the probability amplitude to find the model state,

obtained by using the operator ω̂:
Kpiq, distributed over the states obtained

from Ω̂:
K , generally characterized by an energy different from the one
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obtained by simply considering 2QP configurations only; finally, η̂:
K is

the excitation operator, orthogonal to ω̂:
Kpiq, accounting for all higher

order configurations. Both ω̂
:
K and Ω̂:

K operators describe a transition

and its time reversed, e. g. for a single charge exchange process they

account for p Ñ n (n Ñ p) and n Ñ p (p Ñ n) transitions, respectively;

of course in a charge exchange transition, one nucleus can only undergo

one of the two transformations and this is accounted for by means of the

lowering (τ´) or raising (τ`) isospin operators.

HFB theory represent an extention of the BCS one, being based on

more general quasiparticles, generated (annihilated) by creation (annihi-

lation) operators which are linear combinations of α̂:
k (α̂k)

β̂
:
k “

ÿ

k1

Ckk1α̂
:
k1 (2.84)

where Ckk1 are the elements of the unitary matrix, allowing to express

the HFB Hamiltonian of the many - body system in the canonical basis

where the (normal) density matrix becomes diagonal. The indices k and

k1 now allow to distinguish between paired states (0 ă up ă 1, 0 ă vp ă
1, like in BCS case) and blocked levels, which in turn can be occupied

(vi “ 1, ui “ 0) or empty (vm “ 0, um “ 1).

HFB Hamiltonian mixes all possible long - range ph-interactions (ac-

counted for by the self - consistent HF mean field potential) and the short

- range pairing one (described by the BCS pairing field, ∆kk1), thus al-

lowing to describe both closed shell and open shell nuclei, together with

possible ground state deformations, in terms of mean field potentials

[109].

The description of nuclear structure properties by means of nuclear

wavefunctions is not very satisfactory when closely - spaced - high excited

and continuum states are taken into account and becomes impracticable

in the limit of a large number of particles, implying the use of a huge

configuration space.
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A more powerfull method to obtain nuclear structure information,

overcoming these limitations, is represented by the Green’s function for-

mulation of the QRPA [109, 114], consisting in the determination of the

nuclear response function, rather than solving Schrödinger equation.

The response function, R, is a measure of the change of nuclear prop-

erties, and thus of nuclear observables [115], in the presence of an external

field, Pλ, where the index λ specifies the nature of the external field used

to probe the nuclear system, e. g. λ “ 1, σ, τ, στ, .... Indeed, the response

function is defined in terms of the transition probability from the QRPA

ground state, |0y, to the excited state, |ny, with energy ωn, determined

by the action of the external field, Pλ,

Rpω, Pλq “
ÿ

n‰0

|xn|Pλ|0y|2δpω ´ ωnq (2.85)

By introducing the interacting Green function, Gpωq, of the total Hamil-

tonian H of the nuclear system

Gpωq “ 1

H ´ ω ´ iǫ
` 1

H ` ω ´ iǫ
(2.86)

the response function can be equivalentely expressed as

Rpω, Pλq “ 1

π
Im

ÿ

n‰0

|xn|Pλ|0y|2
„

1

ωn ´ ω ´ iǫ
` 1

ωn ` ω ´ iǫ



“ 1

π
Imx0|P :

λGpωqPλ|0y
(2.87)

i. e. as the imaginary part of the polarization propagator [116], Πλ,

defined as the QRPA vacuum expectation value of the external field Pλ

combined with the interacting Green function Gpωq,

Πλ “ x0|P :
λGpωqPλ|0y (2.88)

The response function integral

SNpPλq “
ż

dω ωNRpω, Pλq (2.89)
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2.2 Nuclear Structure Theory for direct reactions

gives the energy - weighted (N “ 1) or non - energy weighted (N “ 0)

sum rules, which have the peculiarity to be model - independent quan-

tities. In particular, for Fermi (λ “ τ) and Gamow - Teller (λ “ στ)

transitions, the difference between the non - energy weighted sum rule

(NEWSR) for a transition and that for its time reversed is simply related

to the number of nucleons of the given nucleus

S0pτ´q ´ S0pτ`q “
ÿ

n‰0

|xn|τ´|0y|2 ´
ÿ

n‰0

|xn|τ`|0y|2 “ N ´ Z

S0pστ´q ´ S0pστ`q “
ÿ

n‰0

|xn|στ´|0y|2 ´
ÿ

n‰0

|xn|στ`|0y|2 “ 3pN ´ Zq
(2.90)

These relations are known as Ikeda’s sum rules [117], which represent a

powerfull way to check the consistency of numerical calculations and

constitute a guideline for analyzing total Fermi and Gamow - Teller

strenghts.
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CHAPTER 3

SINGLE CHARGE EXCHANGE

NUCLEAR REACTIONS

Single charge exchange nuclear reactions are well established tools for

nuclear spectroscopic studies [80].

“Direct” single charge exchange (SCE) nuclear reactions are mainly

due to the long range tail of the strong nuclear interaction, scilicet the

main contribution is represented by pion exchange. For momentum trans-

fer sensibly smaller than the pion mass, an “effective” description of SCE

processes is possible, where the corresponding mesonic form factors can

be safely replaced by smoothly energy dependent coupling factors, on

the same line of Fermi’s coupling constant in the homonymous effec-

tive theory of beta decay. In this way, the analogy between Fermi and

Gamow-Teller modes in the beta decay and in SCE nuclear reactions

becomes closer [80]. Both light and heavy ion charge exchange nuclear

reactions are characterized by high linear and angular momentum trans-

fer, differently from weak processes which strongly select ∆L “ 0 modes;

thus, beta decay - forbidden nuclear matrix elements become also avail-

able with such nuclear reactions, allowing the study of spin- and spin-

isospin flipping collective excitations, like the spin dipole resonance and
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3.1 First single charge exchange attempts

Gamow-Teller giant resonance, together with non-spin flipping and high

multipolarity collective modes of nuclei.

3.1 First single charge exchange attempts

A proportionality relation between β´ decay strenght, extracted from

β decay measurements, and the zero degree pp, nq cross section, has been
found in 1980 by Goodman and coworkers, at IUCF SWINGER facility

[7], by using a 120MeV proton beam on 7Li, 12,13C, 25,26Mg, 27Al, 28Si

and 90Zr target nuclei; some year later, the corresponding theoretical

framework has been provided by Taddeucci [2], on the basis of previous

formulations of the charge exchange part of the effective two-body inter-

action potential [118–120], and tested with pp, nq data for the following

reactions: 7Lipp, nq7Be, 12,14Cpp, nq12,14N, 28Sipp, nq28P, 42Capp, nq42Sc,
54Fepp, nq54Cn, 90Zrpp, nq90Nb and 208Pbpp, nq208Bi at intermediate beam

energies (120 ´ 200MeV ).

Theoretical formulations of light ion “direct” single charge exchange

reactions were then summarized by Osterfeld [9], while experiments per-

formed up to the late ’90s were reviewed by Alford [13].

Heavy ion nuclear reactions can involve linear and angular momentum

transfer higher than light ion ones, so that it is possible to gain informa-

tion on higher multipolarity collective modes and to get simultaneously

information both on target and projectile SCE (and also DCE) nuclear

matrix elements and so on the corresponding beta decay strengths.

Heavy ion charge exchange reactions represent the core of the NU-

MEN experiment, currentely performed at INFN/LNS (Italy). As stated

in chapter 1, NUMEN experiment is ambitiously lookig for a determina-

tion of 0νββ nuclear matrix element from heavy ion DCE cross section

measurements at forward scattering angles, possible thanks to MAGNEX

spectrometer, which allows to performe high mass, angle and energy res-

olution measurements at zero degree, also for very low yields, even if an
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3.1 First single charge exchange attempts

increase of beam intensity (to increase statistics) and a consequent up-

grade of the materials constituting the detectors (so as to improve their

radiation hardness) are needed in order to get results with an accuracy

significant for neutrino physics community [80]. This goal presupposes

the existence of a proportionality relation between heavy ion DCE for-

ward angular distribution and 0νββ nuclear matrix element, which is

still a matter of study [5] and is providing a very tricky task, so that at

the actual state-of-art the analogy between the nuclear matrix elements

involved in these two (weak and strong) processes is still not guaran-

teed. To further increase statistics, beam energy, projectile and target

nuclei have been properly chosen in order to set the kinematical con-

dition disfavouring multi-nucleon transfer processes and enhancing the

magnitude of DCE (and SCE) cross sections [1, 80], which is expected

to be small in heavy ions, because they are strongly absorbing systems.

Thus, in order to increase the magnitude of such charge exchange cross

sections, it should be desirable to use nuclei belonging to the same SUp4q
spin-isospin multiplet and characterized by a Gamow-Teller strength not

much fragmented.

For this reasons, e. g. 18O projectile has been chosen, because 18O

and 18Ne (DCE) belong to the same isospin multiplet (T “ 1) and the

former nucleus represents the lightest non-radioactive isotope belonging

to this multiplet, so that it can be produced easily and with high beam

intensity [121]; moreover, both p18O,18 Fq and p18F,18Neq transitions are

characterized by large values of GT strengths, which are mainly concen-

trated in the ground state of 18F p1`q.
p18O,18 Neq reactions probe β`β` transitions in target nuclei, while

most of the research on 0νββ decay is focusing on β´β´ transitions.

For this reason, also p20Ne,20 Oq, or alternatively p12C,12 Beq, probing

β´β´ transitions in target nuclei, are being taken into account, even if

they are characterized by a strength smaller than the one of p18O,18 Neq
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3.2 Light ion single charge exchange reactions

reactions. In 2013, NUMEN first experiment has been performed for

the reaction 40Cap18O,18 Neq40Ar, used as “pilot” process to test the

feasibility of the experiment, indicating that suitable information from

DCE reactions can be extracted [80]. In view of the study of reac-

tions involving nuclei which are 0νββ decay candidates1 both p18O,18 Neq
and p20Ne,20Oq reactions with target nuclei heavier than the pilot ones

are being studied, such as 116Snp18O,18 Neq116Cd, 116Cdp20Ne,20 Oq116Sn,
76Sep18O,18Neq76Ge, 76Gep20Ne,20 Oq76Se and 130Tep20Ne,20 Oq130Xe, all

with beam energy of 15AMeV and it is planned to study the reaction

106Cdp18O,18Neq106Pd, at 15AMeV beam energy, too. Within the NU-

MEN collaboration, a study of heavy ion SCE processes, involved in the

DCE reactions described above, is also performed to further constraining

models regarding both nuclear structure and nuclear reaction dynamics

and is also useful for DCE calculations (see chapter 4).

In the following sections the formalism by Taddeucci for pp, nq reac-

tions at high energies and then its extention to heavy ion reactions at

low energies, above the Coulomb barrier, developed during the present

work, are illustrated.

3.2 Light ion single charge exchange reac-

tions

The simplest strong interaction-mediated charge changing nuclear re-

action is represented by single charge exchange via pp, nq or pn, pq re-

1The nuclei candidate to decay 0νββ

48Ca,76 Ge,82 Se,96 Zr,100 Mo,110 Pd,116 Cd,124 Sn,
128, 130Te,136 Xe,148, 150 Nd,154 Sm,160 Gd,198 Pt

for β´β´ decay and

78Kr,92 Mo,96 Ru,106 Cd,124 Xe,130 Ba,136 Ce

as β`β`, β`EC or ECEC candidates [80].
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3.2 Light ion single charge exchange reactions

SCE β decay

pS “ 1q ř

ij Vστ prijqσi ¨ σjτ i ¨ τ j gA
ř

i σiτ i

pS “ 0q ř

ij Vτ prijqτ i ¨ τ j gV
ř

i τ i

Table 3.1: Comparison between the spin - isospin operators describing the central part
of the nuclear strong interaction involved in direct SCE nuclear reaction
and the weak interaction in single beta decay process, both in the two
cases of spin - flip pS “ 1q, i. e. Gamow - Teller (GT), and non spin - flip
pS “ 0q, i. e. Fermi (F), transitions.

actions. As stated in chapter 1, these kind of processes can be due to

two-nucleon transfer or “direct” one - step reactions, i. e. a simultaneous

exchange of two nucleons between target and projectile; the latter type

of processes, from now on simply referred to as single charge exchange

(SCE) nuclear reactions, are due to meson exchange (hard process) and

are described by the same spin - isospin structure of single beta decay

[2, 96, 122, 123], as shown in Tab. 3.1, while the former processes are

caused by nuclear mean field interaction (soft processes) and are char-

acterized by spin - isospin operators different from the one involved in

Gamow-Teller and Fermi beta decays [105].

Guided by the analogies in tab. 3.1, it is immediate to look at the

SCE nuclear reactions as a tool to gain information on beta decay nuclear

matrix element for a candidate nucleus. This peculiarity, together with

the plethora of nuclear structure information provided by such nuclear

reactions (from single particle to collective modes), led to pay special

attention to the development of a formalism of SCE reactions, starting

from the simplest case of pp, nq processes.

Taddeucci (1987) starts from pp, nq double differential cross section,
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3.2 Light ion single charge exchange reactions

in the center of mass frame,

d2σ

dEdΩ
“ EαEβ

4π2p~cq4
kβ

kα

1

p2JA ` 1q
1

2

ÿ

mA,mB
ma,mb

|
ÿ

τ

M
τ
αβpkα,kβq|2 (3.1)

by using DWBA together with impulse2 and zero-range approximations,

so that the transition matrix element reduces to that of eq. (2.58), re-

ferred to nucleon - nucleon interaction, and for pp, nq processes further

simplifies to

M
pτq
αβ pkα,kβq “

ÿ

S,T

ż

d3r χ
p´q˚
kβ

prq ă ψB, n|V̂τ,pST q
αβ pr,σα, τα,σβ, τ βqPx|p, ψA ą χ

p`q
kα

prq

“
ÿ

S,T

ż

d3r χ
p´q˚
kβ

prq ă ψB, n|
ÿ

j

V̂
pτq
ST prqOjOpPx|p, ψA ą χ

p`q
kα

prq

(3.2)

where |py and |ny represent proton and neutron wave functions in spin-

isospin space, respectively3; the sum
ř

j in the last line of eq. (3.2)

runs over all nucleons in the target and the spin - isospin dependence of

nucleon-nucleon effective potential has been made explicit through the

introduction of the spin - isospin operators Oj and Op accounting for

the transition in target and projectile nuclei, respectively. By writing

the transition matrix element in momentum space, so that projectile and

target coordinates are separated, and considering only central effective

nucleon-nucleon interaction (τ “ C), eq. (3.2) becomes

M
pτq
αβ pkα,kβq “

ż

d3q tτ,pST qpqqρST pqqdpq,kα,kβq (3.3)

where

tC,pST qpqq “ 4π

ż 8

0

dr r2V
pCq
ST prq “

j0pqrq ` p´1qlj0pkαrq‰

(3.4)

2DWBA plus impulse approximation will be refered with the acronym DWIA.
3The coordinate space wave functions for proton and neutron do not appear,

because for energies less than 1GeV , nucleons can be treated as point-like particles.

85



3.2 Light ion single charge exchange reactions

is nothing but the Fourier transform of the direct (first term inside square

parenthesis) and exchange (second term inside square parenthesis) com-

ponents of V
pCq
ST (the factor p´1ql in the exchange term, i. e. the term

obtained through the action of the antisymmetrizing operator Px intro-

duced in chapter 2, accounting for a properly antisymmetrized conversion

between S, T and singlet-triplet even-odd representation of the effective

potential),

ρST pqq “ xψB|
ÿ

j

Oje
´iq¨rj |ψAyxn|Op|py (3.5)

represents the Fourier transform of the transition density, which contains

all information on the nuclear structure of the target nucleus, thus playing

a major role in nuclear spectroscopic studies, and

dpq,kα,kβq “ 1

p2πq3
ż

d3r χ
p´q˚
kβ

prqχp`q
kα

prqe´iq¨r (3.6)

is the distortion coefficient, which contains all the information on initial

and final state interactions, encoded into the distorted waves, and is

crucial in the determination of a proportionalty relation between forward

pp, nq angular distribution and beta decay strength.

3.2.1 Light ion single charge exchange cross section

factorization

Considering the small linear momentum transfer range and assuming

that only ∆L “ 0 transition is important for small scattering angles (so

as to reproduce the kinematical conditions characterizing beta decays),

after few passages exploiting Wigner 3´ j symbol properties, the Fourier

transform of the transition density reduces to

ρST pqq “
a

2JA ` 1
?
2∆S ` 1

?
8e´ 1

6
q2xr2yρMST pXq

ÿ

Ms

ˆ

JA JB ∆S
mA ´mB MS

˙

p´1qJB´mA´Ms

ˆ

1
2

1
2

∆S
mp ´mn MS

˙

(3.7)

where ∆S is the spin transferred in the reaction, xr2yρ is the mean square

radius of the transition density, mi pi “ A,B, p, nq are the eigenval-
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3.2 Light ion single charge exchange reactions

ues associated to the third component of total angular momentum and

MST pXq is the reduced nuclear matrix element of the target nucleus, with

X “ GT, F identifying Gamow-Teller or Fermi transitions. The square

modulus of nuclear matrix element is just equal to beta decay strength

of the same nucleus, as illustrated by the following well - established re-

lations (first line for Gamow-Teller transitions and second line for Fermi

transitions) [118]

BpGT q “ 1

2JA ` 1
|xJB||στ´||JAy|2 ” |MST pGT q|2

BpF q “ 1

2JA ` 1
|xJB||τ´||JAy|2 ” |MST pF q|2

(3.8)

with both Fermi and Gamow-Teller strengths normalized to the corre-

sponding nucleon strengths.

In the small momentum transfer limit, tC,pST qpqq simplifies to

tC,pST qpqq » J
C,pST q
0 e´ 1

6
q2xr2yt (3.9)

being J
C,pST q
0 the volume integral of both direct and exchange terms of

the central effective nuclear interaction potential V
pCq
ST prq and xr2yt is the

mean square radius of the effective interaction.

Moreover, treating distorted waves by means of the eikonal approxi-

mation, making the naive assumption of a three-dimensional square-well

optical potential, choosing zero impact parameter and properly fitting

the dependence on the target mass number A, the distortion coefficient

reduces to

dpq,kα,kβq “ e
1

2r´xA1{3`ppωqsδpq ´ qαβqeiφ (3.10)

where qαβ “ kα´kβ is the relative momentum transfer, φ is a real eikonal

phase due to the real part of the optical potential, x “ 4r0Wα{~cβα, being
Wα the maximum value of the imaginary part of the optical potential,

r0 “ 1.2 fm, βα the projectile velocity and ppωq “ a0 ` a1ω ` a2ω
2 is

a second order polynomial of the “energy loss” ω “ Ex ´ Qreac, with
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3.2 Light ion single charge exchange reactions

Ex the target excitation energy and Qreac the Q´value of the reaction,

according to the formailsm in [2].

Through the distortion coefficient of eq. (3.10), Taddeucci provided a

proportionality relation between pp, nq cross section at small momentum

transfer and beta decay strength of the given target nucleus, as shown

by the following (factorized) expression

d2σ

dEdΩ
“ EαEβ

π2p~cq4
kβ

kα
|JC,pST q

0 |2e´ 1

3
q2αβxr2ye´xA1{3`ppωqBpXq

“ KpEb, ωq|JC,pST q
0 |2NDBpXq

” σ̂XpEb, AqFXpq, ωqBpXq

(3.11)

where Eα “ a

µ2
α ` k2α (Eβ “

b

µ2
β ` k2β) is the reduced energy of the

initial (final) channel that in non relativistic limit reduces to µα (µβ); in

the second line of eq. (3.11), the kinetic factor

KpEb, ωq “ EαEβ

π2p~cq4
kβ

kα
(3.12)

is introduced, which depends on ω and on beam energy Eb, and

ND “ e´ 1

3
q2αβxr2ye´xA1{3`ppωq (3.13)

which in the limit of zero momentum transfer and zero energy loss reduces

to the distortion factor definition, given by Goodman [7][133]

ND “ pd2σ{dEdΩqpDWBAq
0o

pd2σ{dEdΩqpPWBAq
0o

(3.14)

In the last line of eq. (3.11), the so called “unit cross section” has been

introduced, defined as

σ̂XpEb, Aq ” KpEb, 0q|J pST q
0 |2e´xA1{3`a0 (3.15)

and

FXpq, ωq “ KpEb, ωq
KpEb, 0q e

´ 1

3
q2αβxr2yeppωq´a0 (3.16)
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3.2 Light ion single charge exchange reactions

Figure 3.1: Cross section from eq. (3.11) (dashed line) versus momentum transfer,
normalized to full DWIA calculations for 1` transitions (squares) obtained
by using only central (left panel) and central plus tensor effective nuclear
interaction (right panel) [2].

is the factor accounting for the shape of the cross section and goes to

unity for pq, ωq Ñ p0, 0q [2], thus stressing the importance of the unit

cross section, which represents the proportionality factor between the

zero degree cross section and the beta decay strength.

The gaussian momentum dependence of light ion SCE cross section

at intermediate energies, thus found by Taddeucci, represents a quite re-

alistic approximation, in that the agreement with full DWIA calculations

(i. e. relaxing small momentum, ∆L “ 0 only, eikonal and square well

optical potential approximations) is good for a large range of momentum

transfer values, while reduces to qαβ ď 0.25 fm´1 if compared with full

calculations including tensor effective nuclear interaction, as shown in

the two plots in fig. 3.1, and, above all, because it fits pretty well the

shape of the data for 1` transitions, even if the fit becomes worst for

0` transitions to isobaric analog state, as shown in fig. 3.2, the latter

discrepancy probabily due to transition density shapes differing from a

gaussian one.

An analogous factorized expression has been deduced for heavy ion

single charge exchange reactions, within the present PhD work, following
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3.2 Light ion single charge exchange reactions

Figure 3.2: Cross section from eq. (3.11), normalized to the data for 1` (left panel)
and 0` (right panel) transitions, as a function of momentum transfer [2].

the same validation procedure, as shown in the section below and in the

last chapter, where the results are illustrated.

The most recent high energy resolution p3He, tq experiment performed

at RCNP, Osaka University [8][126] shows a good correlation between

SCE and β´decay Gamow - Teller strengths for same nuclear states, as

shown in fig. 3.3.

Figure 3.3: Gamow - Teller strength from 41Kp3He, tq41Ca reaction cross section mea-
surements, BpGT qhet, versus the corresponding beta decay strength, ob-
tained from 41Tipβ`q41Sc β´decay measurements at RCNP [8].
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3.3 Heavy ion single charge exchange reactions

Similar results have been found also for β` transitions, through pd,2Heq
reactions at KVI (Netherlands) [127–130] and RIKEN (Japan) [131, 132]

laboratories.

3.3 Heavy ion single charge exchange reac-

tions

Within the present PhD work, the formalism developed by Taddeucci

for pp, nq reactions at intermediate energies, has been extended to heavy

ion SCE processes at low energies. Of course, heavy ion SCE reaction

cross section calculation is more involved than that for pp, nq reactions,

because for heavy ions the internal degrees of freedom of projectile nu-

cleus have to be also taken into account, as dealt with in the following.

The direct nature of charge exchange reactions and the short range

nature of the strong nuclear interactions allow to use DWBA and zero

range approximation, so that the transition matrix element becomes

M
pτq
αβ pkα,kβq “

ż

d3r χ
p´q˚
kβ

prq ă ψBφb|V̂ pτq
αβ pr,σα, τα,σβ, τ βqPx|ψAφa ą χ

p`q
kα

prq (3.17)

which is just eq. (2.58).

Generally, calculations are performed in momentum space, where pro-

jectile and target coordinates are separated, due to Fourier transform

properties, so that transition matrix element becomes

M
pτq
αβ pkα,kβq “

ÿ

ST

ż

d3pK
pST q
αβ ppqNDppq (3.18)

where

NDppq “
ż

d3r

p2πq3 χ
˚
kβ

prqχkαprqe´ir¨p (3.19)

is just the distortion coefficient introduced by Taddeucci, which is noth-

ing but the Fourier transform of the product of the distorted waves in
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3.3 Heavy ion single charge exchange reactions

the initial (χkαprq) and final (χkβ
prq) channels, thus accounting for the

reaction dynamics of the process, and

K
pST q
αβ ppq “ V

pCq
ST ppqF pST q:

ab ppq ¨ F pST q
AB ppq

` δS1

c

24π

5
V

pT q
ST ppqY ˚

2 pp̂q ¨
”

F
pST q:
ab ppq b F

pST q
AB ppq

ı

2

(3.20)

called “reaction kernel”, accounts for the whole nuclear structure infor-

mation of the process, being a combination of the Fourier transform of

the radial coordinate component of the effective local nuclear interac-

tion potential, V
pτq
ST ppq, with projectile (lowercase letter subscripts) and

target (capital letter subscripts) form factors. The latter terms are just

the equivalent of Taddeucci’s transition density in momentum space; in-

deed, they are given by the matrix element of the operators O
pST q
AB and

O
pST q
ab , accounting for spin-isospin transition in target and projectile nu-

clei, respectively, as shown by the following expression e. g. for projectile

nucleus

F
pST q
ab ppq “ă Jbmb| 1

4π
eip¨raO

pST q
ab |Jama ą

“
ÿ

L,ML
J1,M1

pJa, ma, Jb, mb|J1,M1q pL,ML, S,MS|J1,M1q ρpL,S,J1q
ab ppqiLYL,ML

pp̂q

(3.21)

(same expression holds for target). The scalar product in the first term

(central potential) of eq. (3.20) implies the contraction of spin and isospin

z-projection indices, while the rank - 2 tensorial term couples the spin

degrees of freedom only, as follows

Y ˚
2 pp̂q ¨

”

F
pST q:
ab ppq b F

pST q
AB ppq

ı

2
“

ÿ

M

Y ˚
2Mpp̂q

”

F
pST q:
ab ppq b F

pST q
AB ppq

ı

2M

(3.22)

being

”

F
pST q:
ab ppq b F

pST q
AB ppq

ı

2M
“

ÿ

m1,m2

p1, m1, 1, m2|2,MqF pST qm1:
ab ppqF pST qm2

AB ppq
(3.23)
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3.3 Heavy ion single charge exchange reactions

The radial term

ρ
pL,S,J1q
ab ppq “ 4π

ż 8

0

dr r2ρabprqjLpprq (3.24)

is the Fourier transform of the radial transition density, which at low

momentum transfer reduces to

ρ
pL,S,J1q
ab pp Ñ 0q “ 4π

pL

p2L` 1q!!
ż 8

0

dr r2`Lρabprq ` Opp2q (3.25)

The integral in the first order term, i. e.

b
pL,S,J1q
ab “

ż 8

0

dr r2`Lρabprq (3.26)

is directly related to the Fermi/Gamow - Teller multipole operator

B
pL,S,T qJ1,M1

ab prq “ rL
“

YL b pσqS‰

J1M1

pτ qT (3.27)

by the following proportionality relation [6]

|bpL,S,J1q
ab |2 “ 1

2J1 ` 1
|xJb||BpL,S,T qJ1,M1

ab prq||Jay|2 (3.28)

being J1 the total angular momentum transfer.

3.3.1 Heavy ion single charge exchange cross sec-

tion factorization

An euristic extention to heavy ions, at low and intermediate energies,

of Taddeucci’s factorized expression of the cross section, can be given by

noting that, due to the direct nature of charge exchange reactions, it is

possible to identify two momentum scales:

• the one describing the range in which the distortion factor is not

negligible, that depends on the optical potential momentum scale,

given by ∆kreac » 1
Ropt

ď 50MeV , where Ropt is the optical poten-

tial radius.
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3.3 Heavy ion single charge exchange reactions

• the one describing the reaction kernel momentum dependence, which

is governed by nuclear form factors, characterized by a momentum

range of the order of Fermi momentum of protons and neutrons,

∆knucl » kF » 300MeV .

From these observations, it follows that the distortion factor can be

treated as a Dirac delta distribution, peaked at the “on - shell” mo-

mentum transfer, qαβ ; hence, the reaction kernel, which varies over a

wider momentum range, can be expressed as the product of a term cal-

culated at qαβ and the residual function depending on the “off - shell”

(i. e. the integrated) momentum, q.

On a quantitative level, in order to obtain a proportionality relation

between Fermi/Gamow - Teller β decay strength and SCE cross section,

it is necessary to take out of momentum integral in eq. (3.18) at least one

of the two factors shown above, in particular the reaction kernel, which

contains the wanted projectile and target strengths.

Observing that direct reactions are surface processes, one expects that

the corresponding radial transition densities can be described through

gaussian distributions, peaked at the nuclear surface; this has been nicely

verified by performing simulations through the HIDEX code [106], as

shown in fig. 3.4, for SCE nuclear reactions 40Cap18O,18 Fq40K1`
2.3MeV

,

40K1`
2.3MeV

p18F,18Neq40Ar, 116Snp18O,18 Fq116In, 116Inp18F,18Oq116Cd, lead-
ing to pn (np) transitions in target (projectile) nuclei, 116Cdp20Ne,20 F1`

1.056MeV
q

116In and 116Inp20F1`
1.056 MeV

,20Oq116Sn, inducing np (pn) transitions in tar-

get (projectile) nuclei, studied within the NUMEN collaboration. These

radial transition densities are calculated for zero angular momentum

transfer4, L “ 0, for example, for the SCE transitions with Jπ “ 1`.

The slightly different position of the peaks for 40Cag.s. Ñ40 K1`
2.3MeV

and

40Arg.s. Ñ40 K1`
2.3MeV

transition densities shows shell effects, because 40Ca

is a doubly magic nucleus, while 40Ar is not; this is the same reason of the

4This may allow the non - zero value of ρpr “ 0q.
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3.3 Heavy ion single charge exchange reactions

peak shift for the heavier nuclei transition densities 116Sng.s. Ñ116 Ing.s.

and 116Cdg.s. Ñ116 Ing.s., because
116Sn is a magic nucleus (the proton

shell is closed, while neutron shell is not), while for 116Cd both proton

and neutron shells are not closed.

0 2 4 6 8 10 12

0

0,01

0,02

0,03

ρ
 (

r)
  
 [

fm
-3

]

2 4 6 8 10 12
0

0,00025

0,0005

0,00075

0,001

0 2 4 6 8 10 12

0
0,01
0,02
0,03
0,04
0,05

2 4 6 8 10 12

0

0,0025

0,005

0,0075

0,01

0 2 4 6 8 10 12
-0,02
-0,01

0
0,01
0,02
0,03
0,04

0 2 4 6 8 10 12
-0,005

0

0,005
0,01

0,015
0,02

0 2 4 6 8 10 12

r   [fm]

-0,02

0

0,02

0,04

0,06

0 2 4 6 8 10 12

-0,01

0

0,01

0,02

116
Sn

g.s.
→

116
In

g.s.

18
O

g.s.
→

18
F

g.s.

40
Ca

g.s.
→

40
K

(1
+
, 2.3 MeV)

20
Ne

g.s.
→

20
F

(1
+
, 1.056 MeV)

116
Cd

g.s.
→

116
In

g.s.

20
O

g.s.
→

20
F

(1
+
, 1.056 MeV)

40
Ar

g.s.
→

40
K

(1
+
, 2.3 MeV)

18
Ne

g.s.
→

18
F

g.s.

Figure 3.4: Radial transition densities for different projectiles (left panels), and tar-
gets (right panels), for zero angular momentum transfer, L “ 0.

The gaussian shape of both projectile and target radial transition

densities, shown in fig. 3.4 in coordinate space, allows to write each of

the two transition form factors in terms of properly normalized gaussians,

peaked at the nuclear surface and with standard deviation proportional

to the surface thickness of the corresponding nucleus, which in coordinate

space means

F
pST q
XY prq “ U0Xe

´
pr´RX q2

2σ2
X (3.29)

being XY “ AB for target and ab for projectile transitions and Ra (RA)

and
?
2σa (

?
2σA) are projectile (target) nuclear radius, R “ 1.2A

1

3 , and
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projectile (target) nuclear surface thickness, respectively.

For the increasingly deformed nuclei 116Sn, 116Cd and 40Ar, the transi-

tion densities can be fit through gaussians with peak position parameter

smaller than the nuclear radius, because spherically symmetric transition

densities are considered, but just the same results are obtained by using

gaussians with parameter RA corresponding to the nuclear radius and by

slightly increasing the value of the other parameter, σA.

Switching from spatial to momentum coordinates, the form factor in

eq. (3.29) of course remains a gaussian, according to the properties of

gaussian distributions, as shown in eq. (3.30)

F
pST q
XY ppq “ U 1

0Xe
´ 1

2
σ2

Xp2eip¨RX (3.30)

From eq. (3.20), one can note that the reaction kernel is given by a com-

bination of projectile and target transition form factors and in particular

the central term contains their product; thus, after performing an inves-

tigation on the interplay between central and tensor components of the

effective nuclear interaction potential (by means of HIDEX simulations

[106]), which confirm that central components dominate over tensor ones

at small scattering angles (for details, see chapter 6), one can safely con-

sider only the central part of the reaction kernel, i. e. the reaction kernel

simply given by the product of the effective nuclear interaction potential

with projectile and target transition form factors.

The gaussian trend of the transition form factors, together with the

smooth momentum dependence of effective NN interaction potential Fourier

transform, shown in fig. 3.5, allows in turn to describe the whole reaction

kernel in terms of a gaussian

K
pST q
αβ pp,Rq “ V

pCq
ST pp “ qαβqU0aU0Ae

´ 1

2
σ2
ap

2

eip¨Rae´ 1

2
σ2

Ap2eip¨RA

“ V
pCq
ST pp “ qαβqU0aU0Ae

´ 1

2pσ2
a`σ2

Aqp2eip¨pRa`RAq

“ U 1
0e

´ 1

2
σ2p2eip¨R

(3.31)
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Figure 3.5: Direct (black lines) and exchange (green lines) components of central ef-
fective local NN interaction potential, both for Fermi and Gamow - Teller
channels pS, T q “ p0, 1q and p1, 1q, respectively. The curves are obtained,
through HIDEX code, by using M3Y potential.

depending on the two parametersR “ a

R2
a ` R2

A and
?
2σ “ a

2σ2
a ` 2σ2

A,

which are nothing but the sum in quadrature of projectile and target nu-

clear radii and surface thicknesses, respectively, while the square of the

parameter U 1
0 “ V

pCq
ST pp “ qαβqU0aU0A gives the magnitude of the reac-

tion cross section corresponding to a scattering angle and an excitation

energy fixed by the value of the momentum transfer modulus, qαβ .

The dependence on the “on - shell” momentum transfer, qαβ , is made

explicit through the change of integration variable, p “ qαβ ´ q, so that

the reaction kernel becomes

K
pST q
αβ pq,qαβ,Rq “ U 1

0e
´ 1

2
σ2q2αβeiqαβ ¨Re´ 1

2
σ2q2e´iq¨Reσ

2q¨qαβ

“ K
pST q
αβ pqαβ ,RqhpST q

αβ pq,ρq
(3.32)

where

h
pST q
αβ pq,ρq “ e´ 1

2
σ2q2e´iq¨Reσ

2q¨qαβ (3.33)
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called “separation function”, still depends on momentum transfer, qαβ ,

through the complex vector (pseudo - radius) ρ “ R ` 2iσ2qαβ .

Eq. (3.32) shows that reaction kernel factorizes into the product of

two terms: K
pST q
αβ pqαβ ,Rq, which can be taken out of the momentum

integral in eq. (3.18), and the separation function, h
pST q
αβ pq,ρq, still de-

pending on the integration variable q. Inserting expression (3.32) into

eq. (3.18), the desired transition matrix element (and thus cross section)

factorization is obtained

M
pτq
αβ pkα,kβq “

ÿ

ST

K
pST q
αβ pqαβq

ż

d3q h
pST q
αβ pq,ρqNDpqq (3.34)

even if the factorization is exact only for qαβ “ 0, because the integrand

still depends on qαβ , through the separation function.

3.3.1.1 Analytical expression for Distortion factor: Black Disk
Approximation

Within BDA, the distortion coefficient can be expressed as the dif-

ference between a Dirac delta, peaked at the momentum transfer, i. e.

q “ 0, and a term accounting for the absorption effects, ND
BDpqq,

NDpqq “ δpqq ´ ND
BDpqq (3.35)

being δpqq nothing but the distortion coefficient in PWBA case and

ND
BDpqq “ 1

2π2

RBD

q

ˆ

´ B
Bq

˙

j0pqRBDq (3.36)

By using eq. (3.35), the transition matrix element can be expressed as

M
pτq
αβ pkα,kβq »

ÿ

ST

K
pST q
αβ pqαβq

ˆ

1 ´
ż

d3q h
pST q
αβ pq,ρqND

BDpqq
˙

“
ÿ

ST

K
pST q
αβ pqαβq p1 ´ nBDq

(3.37)

where

nBD “
ż

d3q h
pST q
αβ pq,ρqND

BDpqq (3.38)
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3.3 Heavy ion single charge exchange reactions

so that the cross section, for a specific pS, T q channel, becomes

d2σpST q

dExdΩ
“ EαEβ

4π2p~cq4
kβ

kα

1

p2JA ` 1q
1

p2Ja ` 1q
ÿ

ma,mA
mb,mB

|KpST q
αβ pqαβq|2|1 ´ nBD|2 (3.39)

The spherical symmetry implied by black disk approximation allows to

assume a spherically symmetric distortion coefficient and thus angular

integration can be easily performed, obtaining the following expression

for transition matrix element

M
pτq
αβ pkα,kβq »

ÿ

ST

K
pST q
αβ pqαβq

ˆ

1 ´
ż

dq q2h
pST q
αβ pq, ρqNDpqq

˙

(3.40)

with h
pST q
αβ pq, ρq “ 4πe´ 1

2
σ2q2j0pqρq, where ρ “

b

R2 ´ σ4q2αβ ` 2iσ2qαβ ¨ R
is still complex. By using this angular averaged expression for h

pST q
αβ pq, ρq,

the integral in nBD can be analytically solved, obtaining the following ex-

pression

nBD “ 1

2

„

erf

ˆ

1?
2σ

pRBD ´ ρq
˙

` erf

ˆ

1?
2σ

pRBD ` ρq
˙

´ 1?
2π

σ

ρ

”

e´ 1

2σ2
pRBD´ρq2 ´ e´ 1

2σ2
pRBD`ρq2

ı

(3.41)

Eq. (3.41) shows that the distortion coefficient is a complex function

for qαβ ‰ 0, because of the dependence on the pseudo - radius ρ, and

gives a distortion factor, |1 ´ nBD|2, i. e. the reaction term appearing

in the cross section as given by eq. (3.39), with a dependence on the

absorption radius shown in fig. 3.6, where one can note that the greater

the absorption radius is, the stronger the absorption is, i. e. the smaller

is the distortion factor, as expected.

The distortion coefficient takes into account all multipolarities in-

volved in the nuclear transition, which are encoded in the non - zero

value of the linear momentum transfer qαβ , contained in the argument
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Figure 3.6: Distortion factor as a function of the black disk radius, i. e. the absorption
radius, RBD, for example, for the reaction 40Cap18O,18 Fq40K at 15AMeV

[6].

of the zeroth - order spherical Bessel function of the first kind, in the

expression of the separation function h
pST q
αβ .

Thus to get deeper insight into the multipole structure, it is useful to

consider the multipole expansion of j0pqρq

j0pqρq “
ÿ

lm

ilYlmpq̂αβqY ˚
lmpR̂qjlpqRqilpσ2qαβqq (3.42)

where ilpxq “ iljlpixq is the modified spherical Bessel function of the first

kind.

In the limit of small momentum transfer (qαβ ! 1{σ » 200MeV ),

the monopole component dominates in this multipole expansion, so that

the separation function becomes

h
pST q
αβ pq, ρq “ e´ 1

2
σ2q2j0pqRqi0pσ2qαβqq (3.43)

It is important to underline that due to the residual dependence on

qαβ inside momentum integral, the factorization procedure shown above
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3.3 Heavy ion single charge exchange reactions

is not exact, but for qαβ “ 0; thus, an important check is to establish the

range of momentum transfer values within which this factorization works.

Thus, on the same vein of Taddeucci’s work, SCE transition matrix el-

ements have been calculated in PWBA, in full DWBA (i. e. without

using any factorized expression) and by using the separation function

at three different levels of approximation, which represent nothing but

different approximations for the reaction kernel: the full, angular aver-

aged, expression, its monopole component and the simplified expression

for qαβ “ 0. The results of this check are shown in the next chapter,

together with the ones for heavy ion “direct” double charge exchange

cross section at low beam energy.

In order to derive an explicit analytical expression for energy and

mass dependence of the distortion factor the following procedure has

been used [6], based on the eikonal approximation:

a spherically symmetric optical potential of Gaussian shape

W prq “ ´W0e
´r2{R2

W (3.44)

has been assumed, where the radius parameter RW is fixed by fitting the

full DWBA results, obtained by using HIDEX code [106] (see chapter

5), turning out to be RW “ 0.783

b

pA2{3
P ` A

2{3
T q, and the maximum

value parameterized in terms of projectile and target mass numbers as

W0 “ w0

´

A
2{3
P ` A

2{3
T

¯´ 3

4

, according to the so called URα´law found by

Hodgson [124, 125], with the fit parameter w0 “ 5902.743MeV [6].

Looking at the reactions performed within the NUMEN collaboration,

in particular at the SCE processes 40Cap18O,18 Fq40K and 116Snp18O,18 Fq116In
at 15AMeV , one can note that the product of the relative momentum in

the initial channel, kα » 11 fm´1, and the radius characterizing the op-

tical potential describing such transitions (see chapter 5 on simulations),

Ropt » 4 fm, is kαRopt „ 40 " 1, thus satisfying the eikonal condition

(2.60). Hence, by using eikonal approximation to treat distorted waves
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in eq. (2.69) and by using a gaussian imaginary optical potential W prq,
like in eq. (3.44), it is possible to calculate analytically the integral in the

definition of eikonal phase and that in the absorption cross section, eq.

(2.69), obtaining the following relation for the absorption radius RBD, in

eq. (3.41),

RBD “ f
1

2 pξpWα, kαqqRW (3.45)

where the variable ξ depends on initial channel imaginary optical poten-

tial parameters, relative momentum and on kinetic energy in the center

of mass frame (TCM) through the following expression

ξpWα, kαq “ ?
πkαRW

W0, α

TCM

(3.46)

and

fpξq “ γ ` logpξq ` Eip1, ξq (3.47)

being γ “ 0.5772... the Eulero-Mascheroni’s constant and Eip1, ξq an ex-

ponential integral. Fig. 3.7 and the upper panel of fig. 3.8 show mass

and energy dependence, respectively, of the distortion factor calculated

within BDA, with RBD obtained through the above (eikonal) procedure,

for different projectile mass numbers. Compairing such energy depen-

dence of the distortion factor with the one obtained by using the distor-

tion factor definition in eq. (3.14), illustrated in the lower panel of fig.

3.8, one can note that the energy trend is similar in the two cases, thus

giving a first confirmation of the validity of the above approximations.

3.3.1.2 Heavy ion single charge exchange unit cross section

Let’s consider the kinematical conditions in the “beta decay” limit, i.

e. zero angular momentum transfer ∆L “ 0 and qαβ Ñ 0, and only the

central part of the effective nuclear interaction potential; thus, by using

the Taylor expansion of Bessel function in eq. (3.24) up to the second

order (j0pxq » 1 ´ 1
6
x2 » expp´1

6
q2αβxr2ya,Aq, with xr2ya,A indicating the
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Figure 3.7: Distortion factor as a function of the target mass, fixing projectile nucleus
as 18O with a beam energy of 15AMeV , with RBD from eq. (3.45) [6].

mean square radius of projectile/target transition density), heavy ion

SCE cross section in eq. (3.39) can be recast in the form

d2σ

dEdΩ
“ EαEβ

4π2p~cq4
kβ

kα
p2S ` 1q|V pCq

ST pqαβ “ 0q|2

|bp0,S,Sq
ab |2|bp0,S,Sq

AB |2e´ 1

3
qαβpxr2ya`xr2yAq|1 ´ nBD|2

“ KfpTlab, ωqp2S ` 1q|V pCq
ST pqαβ “ 0q|2

|bp0,S,Sq
ab |2|bp0,S,Sq

AB |2e´ 1

3
q2αβpxr2ya`xr2yAq|1 ´ nBD|2

“ σ̂pTlab, A, aqF pqαβ, ωq|bp0,S,Sq
ab |2|bp0,S,Sq

AB |2

(3.48)

where the spin multiplicity factor p2S ` 1q originates from the sum over

target and projectile total angular momentum z-projections in the cross

section expression in eq. (3.39).

In the second line of eq. (3.48), the kinematical factor KfpTlab, ωq,
defined as in light ion case, has been introduced, essentially depending

on beam energy, Tlab, and on the energy loss ω “ Ex ´Qreac, introduced

just in analogy to Taddeucci’s formalism, with Ex “ E
pbq
x ` E

pBq
x now
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Figure 3.8: Distortion factor ,fBD ” |1 ´ nBD|2, as a function of the beam energy,
[6], by using BDA approximation with RBD from the eikonal procedure,
shown in this section, for different projectiles and by fixing 40Ca as target
nucleus (upper panel). Lower panel shows distortion factor dependence
on beam energy, obtained by making the ratio of PWBA to DWBA cross
sections, at zero degree, for the SCE reactions 40Cap18O,18 Fq40K and
116Snp18O,18 Fq116In and for total excitation energy fixed at projectile
ground state and the first 1` target excited state. The latter cross sections
have been obtained by means of HIDEX simulations [106].
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representing the sum of the total excitation energy of ejectile and target-

like nuclei.

In the last line of eq. (3.48), the “unit cross section”

σ̂pTlab, A, aq “ Kf pTlab, 0q|V pCq
ST p0q|2|1 ´ nBD|2 (3.49)

whose dependence on projectile and target mass numbers is encoded in

the distortion factor, has been introduced together with the factor

F pqαβ , ωq “ KfpTlab, ωq
KfpTlab, 0q e

´ 1

3
q2αβpxr2ya`xr2yAq (3.50)

accounting for the shape of cross section and reducing to unity for pqαβ , ωq Ñ
p0, 0q.

Thus the cross section expression reached in the last line of eq. (3.48)

strongly resambles the one obtained by Taddeucci for pp, nq reactions,

given by the last line of eq. (3.11).

In plane wave limit, the unit cross section reduces to

σ̂pTlab, A, aq “ KfpTlab, 0q|V pCq
ST p0q|2 (3.51)

so that it is characterized by a weak mass dependence. On the other

hand, the distortion factor |1 ´ nBD|2 may vary significantly with the

system mass, as shown by figs. 3.7 and 3.8 [6].
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CHAPTER 4

DOUBLE CHARGE EXCHANGE

NUCLEAR REACTIONS

In analogy to single charge exchange, double charge exchange nuclear

reactions can be classified among surface processes (direct reactions),

which can proceed via (charged) isovector mesons exchange, this lead-

ing to a simultaneous exchange of two nucleons between projectile and

target nuclei (collisional DCE reactions), or via mean field forces, this

giving a sequential transfer of nucleons between the interacting nuclei

(multi-nucleon transfer reactions). As a general feature, inelastic two -

step processes represent the basic mechanism of multi - step direct re-

action (MSDR) theory [135–137]; moreover, as stated in chapter 1, both

collisional and sequential charge exchange processes are very important

tools for nuclear spectroscopy and for studying pairing interaction fea-

tures [134]. In particular, the collisional mechanism (DCE) could carry

precious information on new nuclear matter phenomena, like the exci-

tation of the double Gamow-Teller giant resonance [127–132], and on

double beta decay nuclear matrix elements. Heavy ion DCE reactions at

low energies, but above the Coulomb barrier, turn out to be particularly

useful systems for investigating the latter topic and are exploited by the
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NUMEN experiment, with a special interest on the possibility to deter-

mine a relation with 0νββ decay nuclear matrix elements, as stated in

the previous chapters.

4.1 Brief review on double charge exchange

experiments

First attempts on heavy ion double charge exchange reactions have

been performed at LBNL (California, USA) by employing the reactions

24, 26Mgp18O,18Neq24, 26Ne, at beam energy of 124MeV [138], for deter-

mining mass and spectroscopic features of exotic light nuclei, but these

reactions were characterized by low yelds and high background, thus not

allowing a significant comparison among the various nuclear structure

theoretical approaches. Few years later, studies on exotic nuclei were per-

formed through an experiment on 40Cap14C,14 Oq40Ar reaction at 51MeV

[91], i. e. close to the Coulomb barrier, exploiting projectile and ejec-

tile ground states belonging to the same isospin triplet (T “ 1), like for

the previous experiment, to enhance double charge exchange cross sec-

tion, thus finding a “surpraisingly large” cross section ( dσ
dΩ

„ 10µb{sr);
but the kinematical conditions of this experiment were such to make

the multi - nucleon transfer mechanism (two neutron stripping and two

proton pick up) dominant over other possible double charge exchange

reaction mechanisms [92], as confirmed by the large values of cross sec-

tions for other multi - nucleon transfer processes performed by the same

experiment, like 40Cap14C,16 Oq38Ar ( dσ
dΩ

„ 1mb{sr). In 1982 the first

heavy ion double charge exchange experiment involving projectile and

ejectile nuclei not belonging to the same isospin triplet, was performed by

Naulin and coworkers [89], by means of the reaction 48Cap18O,18Cq48Ti
at 100MeV , for studying the properties of neutron - drip line nuclei,

but with poor results, due to the very low reaction cross section of that
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process ( dσ
dΩ

„ 40nb{sr).
The hypothesis of a connection between heavy ion induced - double

charge exchange reactions and double beta decays was first moved by

Blomgren et al. [90], resuming the reaction 24Mgp18O,18Neq24Ne pre-

viously performed at LBNL, but at energies of 100AMeV (at NSCL-

MSU) and 76AMeV (at GANIL), in order to look for double Gamow-

Teller excitations. Unfortunately they observed that the cross section

for double Gamow-Teller transitions induced by heavy ion reactions are

strongly suppressed with respect to the pion - induced ones, probabily

due to a destructive interference between direct and sequential mecha-

nisms. For this reason such reactions were abandoned until recent high

resolution experiments, performed on the reactions 12Cp18O,18 Neq12Be
and 9Bep18O,18Neq9He at RCNP facilities [94, 139, 140], provided that

heavy ion -induced double charge exchange reactions represent a powerful

tool for the study of nuclear systems far from stability.

In the wake of this renewed interest, the NUMEN experiment fits [1,

80, 93, 142, 143]. As stated before (see chapters 1 and 3), this experiment

focuses on the connection between heavy ion - induced DCE reactions,

at low energies (15 ´ 20AMeV ), and double beta decays, waiting for a

theoretical framework able to establish such a connection, in the hope

to make future experimental results, on 0νββ decaying candidate nuclei,

useful for extracting significant information on the wanted 0νββ nuclear

matrix element. Of course, from the theoretical point of view, the road

is still long and winding.

The state - of - art of the theoretical formalism for heavy ion DCE

processes described in terms of two uncorrelated SCE ones, is shown in

the next sections.
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4.2 Heavy ion double charge exchange reactions

4.2 Heavy ion double charge exchange re-

actions

As stated in chapter 1, double charge exchange nuclear reactions can

proceed via “direct” (DCE) or sequential (multi - nucleon transfer) mech-

anisms. The latter kind of nuclear reaction is at least of fourth order.

On the basis of the DWBA approach to collisional single charge exchange

(SCE) processes, it is straightforward to interpret “direct” double charge

exchange nuclear reactions as second order DWBA processes. Thus, dou-

ble charge exchange nuclear reactions via transfer mechanism can be

safely neglected, because they are higher order processes with respect to

the ones proceeding via “direct” mechanism, in particular when kinemat-

ical conditions are set to further suppress multi - nucleon transfer cross

section.

The formalism developed during the present PhD work, and shown in

the following, applies only to heavy ion double charge exchange reactions

dominated by the “direct” mechanism.

Within the collisional description, two further DCE mechanisms can

be distinguished, as illustrated in chapter 1. The formalism developed in

the following refers to heavy ion DCE reactions described as second order

DWBA processes, i. e. like a sequence of two independent SCE reactions

where, after the first event, the system propagates before a second charge

exchange occurs [80], as first proposed by Satchler in ’80s [141]. In this

way, the theoretical framework used to describe heavy ion DCE cross

section takes up very closely the one for SCE ones [6]. Indeed, each one

of the two SCE processes is described by a one - body transition operator,

in perfect agreement to second order perturbation theory approach, thus

leading to the following DWBA transition matrix element

M
pτ,DCEq
αβ pkα,kβq “ xβ|V̂pτ,DCEq

ST |αy
” xβ|V̂pτ,SCEq

ST ĜV̂
pτ,SCEq
ST |αy

(4.1)
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4.2 Heavy ion double charge exchange reactions

where |α ą“ |χkα , φa, φA ą and |β ą“ |χkβ
, φb, φB ą represent entrance

and exit channels, respectively, V
pτ,SCEq
ST is given by the first two terms of

eq. (2.51) in chapter 2, χkα and χkβ
denote the distorted waves obeying

incoming and outgoing spherical wave boundary conditions, respectively

[80]; Ĝ is the full Green function operator, called “propagator”, in that it

accounts for the propagation of the (off - shell) nuclear system obtained

from the first SCE process. To simplify the description of this interme-

diate channel, it is convenient to expand the propagator in terms of its

eigenvalues and eigenfunctions

Ĝ “
ÿ

γ

|γyGpωγ, ωαqxγ̃| (4.2)

where the eigenvectors represent a complete set of DWBA nuclear eigen-

states, |γy “ |χkγ , φc, φCy, reached through the first SCE process, while

each (for a given channel γ) eigenvalue, Gpωγ, ωαq, is the reduced Green

function, which embeds only the energy - dependence, while the angular

dependence remains encoded into the nuclear intermediate states |γy. At
the lowest order (tree - level) of perturbation theory, the reduced Green

function coincides with the one describing a non - interacting projectile

- target nuclear system, i. e.

Gpωγ, ωαq “ 1

ωα ´ ωγ ` iη
(4.3)

depending only on the total energy of the system (projectile and target)

propagating in the intermediate channel,

ωγ “ Mc ` MC ` k2γ

2µγ

(4.4)

and on total center - of - mass energy,

ωα “ Ma ` MA ` k2α
2µα

(4.5)

being Ma and Mc (MA and MC) initial and intermediate channel pro-

jectile (target) mass plus its excitation energy, respectively, µγ (µα) the
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4.2 Heavy ion double charge exchange reactions

reduced mass of projectile - target nuclei in the intermediate (initial)

channel and kγ the (off - shell) relative momentum of the system after

the first SCE process, while kα denotes the relative momentum in the

entrance channel.

It is important to underline the different notation adopted for indicat-

ing the intermediate nuclear eigenstates (|γy) and their counterparts in

dual Hilbert space (xγ̃|), in the context of a DWBA formulation involving

complex optical potentials, instead of real ones. Indeed, the complex na-

ture of the optical potentials breaks the hermiticity of the hamiltonian de-

scribing initial and final state interactions of the nuclear system, so that a

given nuclear state, |γy, and its dual counterpart, xγ̃| “ xχ̃kγ , φc, φC |, con-
tain distorted waves which are no more solutions of the same Schrödinger

equation. This is not the case for the wave functions describing inter-

nal structure of the two nuclei (involved in the intermediate channel), if

real effective nucleon - nucleon interaction potential is used. Hence, the

intermediate channel distorted waves must satisfy the bi - orthogonality

condition

Iγ “
ż

d3k

p2πq3 |χ̃p˘q
kγ

yxχp˘q
kγ

| (4.6)

instead of the orthogonality one, characterizing eigenstates of hermitian

hamiltonians, being Iγ the identity operator for the channel γ.

In particular, one can note that the dual distorted wave function

χ̃kγ is eigenstate of the hamiltonian containing an optical potential with

a positive imaginary part, `iW prq, that acts as a probability current

source term, instead of an absorption one, which in turn implies the

use of boundary conditions more sophisticated with respect to the ones

linking up with a spherical wave.

Inserting eq. (4.2) into eq. (4.1), DCE transition matrix element
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4.2 Heavy ion double charge exchange reactions

becomes

M
pτ,DCEq
αβ pkα,kβq “

ÿ

γ

xχp´q
kβ
, φb, φB|V̂pτ,SCEq

ST |χp`q
kγ
, φc, φCyGpωγ, ωαq

xχ̃p`q
kγ
, φc, φC |V̂pτ,SCEq

ST |χp`q
kα
, φa, φAy

(4.7)

which, projected in momentum space, translates into the following ex-

pression

M
pτ,DCEq
αβ pkα,kβq “

ÿ

γ“c,C

ż

d3kγ

p2πq3 M
pτ,SCEq
βγ pkγ ,kβqGpωγ, ωαqM̃pτ,SCEq

γα pkα,kγq
(4.8)

showing that DCE transition amplitude can be expressed as superposi-

tion of SCE transition amplitudes

M
pτ,SCEq
βγ pkγ,kβq “

ÿ

S,T

ż

d3q2K
pSCEq
βγ pq2,qβγqND

βγpq2q (4.9)

and

M̃pτ,SCEq
γα pkα,kγq “

ÿ

S,T

ż

d3q1K
pSCEq
γα pq1,qγαqÑD

γαpq1q (4.10)

The SCE reaction kernels are just the ones introduced within SCE for-

malism, eq. (3.20), by simply replacing the subscripts β Ñ γ, B, b Ñ C, c

in the first SCE transition and α Ñ γ, A, a Ñ C, c in the second SCE

transition, with the dependence on the half - off - shell relative momen-

tum transfer, qβγ “ kγ ´ kβ and qγα “ kα ´ kγ , respectively, embedded

in the integration variable q1,2; likewise SCE distortion coefficients are

given by

ÑD
γαpq1q “

ż

d3r

p2πq3 χ̃
˚p`q
kγ

prqχp`q
kα

prqe´iq1¨r (4.11)

which accounts for initial and final state interactions of the first SCE

step and by

ND
βγpq2q “

ż

d3r

p2πq3 χ
˚p´q
kβ

prqχp`q
kγ

prqe´iq2¨r (4.12)
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for the second SCE transition. The same conventions adopted for SCE

formalism have been used.

Of course, SCE reactions select T1,2 “ 1 isospin channel in both steps,

while the spin degrees of freedom can vary, within the constraints due

to the angular dependence encoded in the reaction kernels, through the

transition form factors, defined in eq. (3.21) of chapter 3; the further

constraint over the spin transfer during the whole DCE process (e. g.

S “ 0 for double Fermi or S “ 2 for double Gamow-Teller transitions)

follows directly from the “matching” of the angular terms involved in the

two SCE transition form factors.

4.3 Approximations used

To simplify the calculation of heavy ion DCE transition matrix el-

ement illustrated above, eq. (4.8), some approximation is needed. In

close analogy to double beta decay nuclear matrix elements calculations,

two main approximations have been used to calculate heavy ion DCE

cross sections: closure approximation and single state dominance. The

present PhD thesis focuses on the development of the formalism and the

numerical simulations regarding the latter case.

4.3.0.3 Closure approximation

By properly choosing the total energies of the intermediate states

(closure energies), appearing in the propagator of eq. (4.8), one can

exploit the completeness of the intermediate nuclear states in order to

add them all, getting unity, thus realizing the closure approximation

[144]. In this way, the intermediate propagator reduces to

Gpωγ, ωαq “ 1

MA ` Ma ´ MC ´ M c ` k2α
2µα

` k2γ
2µγ

` iη
(4.13)

where the overlined characters indicate the use of properly chosen target

and projectile masses in the intermediate channel. In this way, after a
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4.3 Approximations used

proper rearrangement of the spin degrees of freedom involved within the

two SCE reactions, the DCE transition form factor becomes [144]

F
pDCEq
αβ pkα,kβq “ p´1q2pS1`S2´2q

xφB|eipq1`q2q¨r rσsS1

1 rσsS2

2 τ˘
1 τ

˘
2 |φAyxφb|eipq1`q2q¨r rσsS1

1 rσsS2

2 τ¯
1 τ

¯
2 |φay

MA ` Ma ´MC ´ M c ` k2α
2µα

` k2γ
2µγ

` iη

“
ÿ

m1,m2

xφB| pS1, m1, S2, m2|SMq eipq1`q2q¨r rσm1
sS1 rσm2

sS2 τ˘
1 τ

˘
2 |φAy

MA ` Ma ´ MC ´ M c ` k2α
2µα

` k2γ
2µγ

` iη

xφb| pS1, m1, S2, m2|SMq eipq1`q2q¨r rσm1
sS1 rσm2

sS2 τ¯
1 τ

¯
2 |φay

(4.14)

where in the last line the spin spherical tensors are introduced. This

DCE transition form factor is weighted by the second order product of

the effective nuclear interaction potentials, each one proportional to the

square of (charged) meson1 - nucleon - nucleon coupling constant, thus

playing the role of the effective low - energy Fermi’s coupling constant

squared, times the axial/vector coupling constants to the fourth power

in weak double beta decays. Moreover, the outgoing leptonic wave func-

tions, contributing to the normalization of ββ nuclear matrix element,

are replaced, in heavy ion DCE transition matrix element, by the second

order product of the distortion coefficients, which reduces to a simple

scaling factor in the limit of zero momentum transfer and considering

only ∆L “ 0 transitions, as will be illustrated in fig. 6.22, in chapter 6.

Hence, on the one side, closure approximation leads to an interpreta-

tion of DCE reactions as one - step processes, described by two - body

transition operators, thus making such processes diagrammatically closer

to 0νββ decay; on the other side, closure approximation does not allow

to eliminate the off - shell momentum integral, still involved in the two

- body effective local nuclear potential and in the two distortion coeffi-

cients, together with the bi - orthogonality problems carried by the latter

ones, as one can see from eq. (4.8).

1The main contributions come from π, ρ, ω, σ and δ mesons.
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4.3 Approximations used

Thus, other approximations have been checked in order to disentangle

as much as possible the relation between heavy ion DCE cross section

and the corresponding nuclear matrix elements.

4.3.0.4 Pole approximation

For simplifying the integral over the off - shell relative momentum,

kγ, in eq. (4.8), one can note that the main contribution to this integral

comes from the pole of the Green function, so that by exploiting Plemelij

- Sokhotskij formula

lim
ηÑ0

1

x˘ iη
“ P

ˆ

1

x

˙

¯ iπδpxq (4.15)

and neglecting the principal value of Green function, the propagator can

be replaced by

Gpωγ, ωαq “ ´iπδpωγ ´ ωαq “ ´iπ dkγ
dωγ

δpkγ ´ kδq (4.16)

being kδ the relative momentum value at the pole, which can be expressed

as kδ “ a

2pµγωα ´ MCmcq, in non - relativistic energy regime, or kδ “
b

pωα ` µδ ´ MC ´ mcq2 ´ µ2
δ, relativistically.

Thus, the two -step DCE transition matrix element becomes

M
pτ,DCEq
αβ pkα,kβq “ ´iπ

ÿ

γ“c,C

ż 2π

0

dϕγ

ż π

0

dθγ sin θγ

ż

dkγk
2
γ M

pτ,SCEq
βγ pkγ ,kβqδpkγ ´ kδqdkγ

dωγ

M̃pτ,SCEq
γα pkα,kγq

“ ´iπ
ÿ

γ“c,C

ż 2π

0

dϕγ

ż π

0

dθγ sin θγ

k2δM
pτ,SCEq
βδ pkδ,kβq dkδ

dωα

M̃
pτ,SCEq
δα pkα,kδq

(4.17)

Hence, pole approximation allows to eliminate the integral over the mod-

ulus of the intermediate - channel relative momentum, but still the inte-

gration over all its possible orientations remains to be performed.

115



4.3 Approximations used

4.3.0.5 Single State Dominance approximation

By assuming that exists an intermediate projectile - target nuclear

state giving the main contribution in the sum
ř

γ“cC , in eq. (4.17),

then single state dominance (SSD) approximation can be used, so that

only one term remains in this sum. Thus, heavy ion DCE cross section

becomes

d2σ

dEdΩ
“ EαEβ

4p~cq4
kβ

kα

1

p2JA ` 1q
1

p2Ja ` 1q
µ2
δk

2
δ

p2πq6
ÿ

ma,mA
mb,mB

|
ÿ

τ

ż 2π

0

dϕδ

ż π

0

dθδ sin θδM
pτ,SCEq
δβ pkδ, kβ, θδβqM̃pτ,SCEq

αδ pkα, kδ, θαδq |2

(4.18)

where

θδβ “ arccos psin θαβ sin θδ cosϕδ ` cos θαβ cos θδq (4.19)

so that only the intermediate state angular integration must be per-

formed. The presence of such angular integrals do not allow to separate

DCE transition matrix element into the product of two SCE ones.

Moreover, the absorption term (´iW prq) speeds up strongly the con-

vergence of numerical calculations, while the opposite situation is verified

in the presence of the source term `iW prq, whose effects are described

within M̃
pSCEq
δβ pθδβq; in order to skip this problem, one can introduce the

normalization matrix element

S̃δ ” 1

p2πq3 xχ̃p´q
δ |χ̃p`q

δ y “
ż

d3r

p2πq3
´

χ̃
p`q
δ prq

¯2

(4.20)

so that eq. (4.18) becomes, e. g. in non - relativistic energy regime,

d2σ

dEdΩ
“ EαEβ

4p~cq4
kβ

kα

1

p2JA ` 1q
1

p2Ja ` 1q
µ2
δk

2
δ

p2πq6
ÿ

ma,mA
mb,mB

|
ÿ

τ

ż 2π

0

dϕδ

ż π

0

dθδ sin θδS̃
:
δM

pτ,SCEq
αδ pkα, kδ, θαδ ” θδqMpτ,SCEq

δβ pkδ, kβ, θδβq |2

(4.21)
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4.4 Heavy ion double charge exchange cross section factorization

where in the last line the choice of identifying the initial relative momen-

tum kα with the z-axis is revealed by setting the polar scattering angle

related to the first SCE process, θαδ, equal to the polar integration vari-

able, θαδ ” θδ. Moreover, both SCE transition matrix elements depend

only on the polar angle, because azimuthal symmetry is assumed, justi-

fied by a possible comparison with data from reactions with unpolarized

beams.

Furthermore, from the bi - orthogonality relation (4.6), it follows that

the normalization matrix element for χ̃δ is related to the one for χδ by

the simple relation

S̃
:
δSδ “ Iδ (4.22)

so that S̃:
δ can be replaced with Iδ{Sδ in eq. (4.21). In this way, one can

note that the DCE transition matrix element reduces to the product of

two SCE transition matrix elements both dealing with absorptive effects,

normalized to the distorted waves in the intermediate channel, so that

the proper magnitude of the cross section is recovered; this normalization

makes complete DWBA two - step DCE cross section calculation equiva-

lent to normalize the cross section obtained through eq. (4.21), without

considering S̃:
δ , to the cross section obtained by considering plane waves

in the intermediate channel, as shown in chapter 6.

4.4 Heavy ion double charge exchange cross

section factorization

In chapter 3, heavy ion SCE reaction cross section is factorized, start-

ing from the gaussian shape of SCE radial transition densities and thus

transition form factors. This feature, together with the nearly constant

trend of the central effective local nuclear interaction potential, as a func-

tion of momentum, led to the use of a gaussian reaction kernel. By con-

sidering only central effective nuclear interaction potentials in both SCE
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4.4 Heavy ion double charge exchange cross section factorization

processes involved in the two - step heavy ion DCE reaction, one can use

gaussian approximation for both SCE reaction kernels; their product still

returns a gaussian trend, so that DCE transition matrix element in eq.

(4.8) becomes

M
pC,DCEq
αβ pkα,kβq “

ÿ

γ“c,C

ÿ

S1,S2

T1“T2“1

ż

d3kγ

p2πq3 K
pC,SCEq
βγ pqγβqGpωγ, ωαqKpC,SCEq

γα pqαγq

ż

d3q1

ż

d3q2 h
pS1,T1q
βγ pq1,ρ1qhpS2,T2q

γα pq2,ρ2qÑD
αγpq2qND

γβpq1q

»
ÿ

γ“c,C

ÿ

S1,S2

T1“T2“1

ż

d3kγ

p2πq3 U1e
´ 1

2
σ2
1
q2γβeiqγβ ¨R1U2e

´ 1

2
σ2
2
q2αγeiqαγ ¨R2Gpωγ, ωαq

ż

d3q1

ż

d3q2 h
pS1,T1q
βγ pq1,ρ1qhpS2,T2q

γα pq2,ρ2qÑD
αγpq2qND

γβpq1q
(4.23)

In this way, the integrand of the off - shell relative momentum integral

factorizes into the second order product of reaction factors, dealing with

distortion effects in initial, intermediate and final channels, times a DCE

nuclear structure term (which can be related to 2νββ decay nuclear ma-

trix element), in turn given by the product of two SCE reaction kernels

and an intermediate propagator. Thus, because of sum over all possi-

ble intermediate states and the off - shell relative momentum integral,

the “exact” factorization of DCE transition matrix element, and conse-

quentely of DCE cross section, cannot be reached. Hence, one can assume

SSD, so that the sum
ř

γ“c,C reduces to only one term, but the depen-

dence on kγ remains; by using pole approximation, the Green function

reduces to a Dirac delta projecting the intermediate relative momentum

on - shell, thus allowing to eliminate the radial part of the integral on

the relative intermediate - channel momentum, but not the corresponding

angular part.

To further simplify calculations, σ1 » σ2 ” σ and R1 » R2 ” R can

be assumed, as justified by the shapes of the radial transition densities
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4.4 Heavy ion double charge exchange cross section factorization

for each SCE reaction (see fig. 3.4), and one can focus to the range of

small scattering angles, θαβ « 0, so that eq. (4.19) reduces to

cos θδβ « cos θδ (4.24)

To get deeper insight on the effects of optical potentials in the in-

termediate channel, simulations have been performed first by naively

assuming the DCE reaction kernel as simply given by the product of

two SCE reaction kernels, fixing the intermediate channel - angular de-

pendence encoded in both, compairing the results obtained by adopting

different approximations for the expression of each SCE separation func-

tion, and then by using eq. (4.21), implemented (not only in SSD) in

a Fortran code (DCEx), developed during the present PhD work. Such

results are shown and discussed in chapter 6, together with the other

results obtained in the course of this thesis.
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CHAPTER 5

NUMERICAL SIMULATIONS

Relying on the formalism developed in chapters 3 and 4 for heavy ion

SCE and DCE reactions, respectively, the corresponding cross sections,

at low beam energy, have been calculated through simulations performed

by means of three main codes: HIDEX, FRESCO and DCEx. All these

codes need nuclear structure inputs, i. e. projectile and target form

factors, in order to calculate the transition matrix element and thus the

reaction cross section. To produce such inputs, a sequence of Fortran

codes has been used, developed by H. Lenske [101, 106, 145], customized

for SCE nuclear reactions, both for light and heavy nuclei and for a wide

energy range, working within QRPA nuclear transition densities and by

employing the Michigan-3-Yukawa (M3Y) effective local nucleon - nu-

cleon interaction potential. For consistency, the same effective potential

has been used in the calculation of the transition form factors, as ex-

plained below.

120



5.1 Nuclear structure inputs: QRPA transition densities and nuclear
interaction potential

5.1 Nuclear structure inputs: QRPA tran-

sition densities and nuclear interaction

potential

Nuclear structure term, viz. the reaction kernel of eq. (3.20) is cal-

culated, in coordinate space, according to the following formalism

KST
αβ pr, ωq “

ż

d3q

p2πq3 ρ
ST
aÑbpq, ωqV ST pq, ωqρSTAÑBpq, ωqeiq¨r (5.1)

where V ST pq, ωq is the Fourier transform of the local effective nucleus -

nucleus interaction potential, discussed in the previous chapters, and

ρaÑbpq, ωq “ xφb|
A

ÿ

j“1

Oλe
iq¨rj |φay (5.2)

is nuclear transition density1, i. e. the probability amplitude that the

initial nucleus transforms, by means of the operator Oλ, into the final

nuclear system of interest; Oλ is a generic transition operator and ω is

the total excitation energy of projectile - target system, encoded in nu-

clear wave functions φa{φA pφb{φBq of projectile/target (ejectile/product
- nucleus); the operator Oλ for single charge exchange transition repre-

sents the spin and isospin components of the operator shown in the first

column of tab. 3.1.

5.1.1 Transition densities

Transition densities are calculated according to the Green function

formulation of the QRPA, in coordinate space, through the following

expression

ρaÑbpr, ωq “ 1

π
Im

ş

dr1GRPApr, r1, ωqM˚
λ pr1q

b

ş

dωRpω, Pλq
(5.3)

1All quantities corresponding to the target are indicated by capital subscripts
while that for projectile are indicated by lower - case subscripts.
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where λ “ pS, T q, as stated above, GRPApr, r1, ωq is the many - body

Green function; Rpω, Pλq is the nuclear response function associated to

the “probe” operator Pλ, that e. g. for Gamow - Teller transitions,

corresponds to the multipole operator in eq. (3.27); M˚
λ pr1q is an aux-

iliary external field, used only for computational reasons and is chosen

to account for pS, T q properties of the probe function Pλ.
2 The response

function is calculated according to the expression

Rpω, Pλq “ 1

π
Imx0|P :

λGRPAPλ|0y (5.4)

so that the poles of the RPA Green function lead to peaks in the response

function, thus identifying resonances and other excited nuclear states

populated by the transition.

The interacting many - body Green function can be derived from the

Dyson equation,

GRPApωq “ G0pωq ` G0pωqVresGRPApωq (5.5)

involving the independent particle Green function, G0, i. e. the Green

function corresponding to the mean field (MF) hamiltonianH0 “ ´ ř

i

~2∇2
i

2mi
`

UMF and the residual potential, Vres “ VNN ´ UMF , introduced in chap-

ter 2, eqs. (2.70) and (2.71). For excitation energies near excited nuclear

states, the full RPA Green function propagator, which tends to a Dirac

delta, is approximated by a Lorentzian distribution, with a finite width

due to the imaginary part of quasi-particle self - energy, accounting for

the lifetime the quasi-particle3.

For all other excitation energies, Dyson equation is solved recursively,

once the free propagator G0 is calculated. In order to evaluate the latter

2Since the response function in the denominator of (5.3) is calculated using the
same auxiliary field, the dependence of the transition density on Mλ is neglegible.

3Possible non - Lorentzian trends in the response function, near excited nuclear
states, are taken into account by using different methods to calculate the integral, in
eq. (5.4), in the two energy intervals befor and after the given resonance; in particular,
in one interval the integral is replaced by its analytical solution, while in the other
interval is solved numerically by means of trapezoids method.
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quantity, it is necessary to know nucleons single particle wave functions,

which are obtained, separately for protons and neutrons, as eigenfunc-

tions of a potential, given by the sum of a central nuclear (two Woods

- Saxon functions shape), a spin - orbit (one Woods - Saxon derivative

shape) and a Coulomb term, whose parameters are determined by fitting

HFB nuclear energy levels.

According to the formalism shown above, the response functions, scil-

icet the square modulus of the Fourier transform of the radial transition

densities (a part of a factor 2J ` 1, where J is the total angular mo-

mentum transfer), have been calculated for the nuclei 40Ca, 40Ar, 116Sn,

116Cd, 18O, 18Ne, 20O and 20Ne, chosen to investigate the experiments

performed within the NUMEN collaboration [1, 80, 93, 142, 143], as

shown in fig.s 5.1 ´ 5.8, respectively. The different curves represent nu-

clear charge exchange transitions, each one characterized by total angular

momentum, J , and parity, π. Transitions can be of natural or unnatural

parity: the former case is characterized by π “ p´1qJ , while the latter

refers to the processes with π “ p´1qJ`1; both processes must fulfill the

condition π “ p´1qL, so that natural parity transitions are characterized

by J “ L and can be realized both for spin - flip (S “ 1) and non - spin

- flip (S “ 0) processes, while unnatural parity transitions can occur for

two values of total orbital angular momentum transfer L (L “ J ˘ 1)

and thus they are characteristic of spin - flip (S “ 1) processes only.

Response function peaks represent excited states of the final nucleus

and the magnitude of each peak is related to the probability that such

states are populated. QRPA calculations describe pretty well binding

energies, density and charge root - mean - square radii and low lying

energy states [6], despite some shift in the excitation energy and some

spurious (“intruder”) peak, which can be effects of the limited configu-

ration space considered within QRPA calculations and of possible stable

nuclear deformations which have not been taken into account (all nuclei
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Figure 5.1: Response functions for 40Ca nucleus subjected to the action of the pp Ñ nq
single charge exchange operator Oλ, thus accounting for the transition
40Ca Ñ40 K. For details see the text.

are assumed to be spherically symmetric within the codes used). These

nuclear structure calculations are customized for nuclei with Jπ “ 0`

ground state.

Moreover, nuclear structure calculations, which refer only to SCE

transitions, have been further constrained by performing a “general” and

a “particular” check:

• the “general” check consists in verifying that both Fermi and Gamow-

Teller numerical sum rules, for the particular transition under inves-

tigation, are in agreement with the corresponding analytical (and

model - independet) values expected according to Ikeda’s sum rules,

eq. (2.90);

• the “particular” check is based on the comparison between exper-

imental (if available) and numerical strength corresponding to the

transition of the initial nucleus to a particular excited state (excita-

tion energy, angular momenta and parity are fixed); in particular,

124



5.1 Nuclear structure inputs: QRPA transition densities and nuclear
interaction potential

0 3 6 9 12 15
0.001

0.01

0.1

1

10

100

R
  
 [

M
eV

-1
]

L = J - 1 , S = 1

0 3 6 9 12 15
0.0001

0.01

1

100

L = J + 1 , S = 1

0 3 6 9 12 15

E
x
 (

40
K)  [MeV]

0.0001

0.01

1

100
L = J , S = 0

0 3 6 9 12 15

0.01

1

100
L = J , S = 1

1
+

2
-

5
+

4
-

3
+

0
-1

+

2
-

3
+

4
-

5
+

0
+

1
-

2
+

3
-4

+ 5
-

1
-

2
+

4
+

3
-5

-

Figure 5.2: Response functions for 40Ar nucleus subjected to the action of the pn Ñ pq
single charge exchange operator Oλ, thus accounting for the transition
40Ar Ñ40 K. For details see the text.
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Figure 5.3: Response functions for 116Sn nucleus subjected to the action of the pp Ñ
nq single charge exchange operator Oλ, thus accounting for the transition
116Sn Ñ116 In. For details see the text.
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Figure 5.4: Response functions for 116Cd nucleus subjected to the action of the pn Ñ
pq single charge exchange operator Oλ, thus accounting for the transition
116Cd Ñ116 In. For details see the text.
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Figure 5.5: Response functions for 18O nucleus subjected to the action of the pn Ñ pq
single charge exchange operator Oλ, thus accounting for the transition
18O Ñ18 F. For details see the text.
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Figure 5.6: Response functions for 18Ne nucleus subjected to the action of the pp Ñ nq
single charge exchange operator Oλ, thus accounting for the transition
18Ne Ñ18 F. For details see the text.
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Figure 5.7: Response functions for 20O nucleus subjected to the action of the pn Ñ pq
single charge exchange operator Oλ, thus accounting for the transition
20O Ñ20 F. For details see the text.
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Figure 5.8: Response functions for 20Ne nucleus subjected to the action of the pp Ñ nq
single charge exchange operator Oλ, thus accounting for the transition
20Ne Ñ20 F. For details see the text.

this check has been performed compairing experimentally known

Fermi and Gamow-Teller strengths, from beta decays, with the

one obtained numerically by integrating the peak of the response

function corresponding to the same transition (of course selecting

∆L “ 0 contributions only) and then evaluating the corresponding

Fermi/Gamow-Teller strength according to the formula [147]

IExp2J ` 1qg
2
A

g2V
(5.6)

where IEx represents the value of the integral of the response func-

tion peak of interest, the axial and vector coupling constants values

used are gA “ 1.26 and gV “ 1, respectively.

Both the above checks have led to good agreement with Ikeda’s sum rules

and experimental strengths, respectively.

Table 5.1 lists the nuclear excited states populated through the SCE

transitions considered in the present work, while table 5.2 illustrates the
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5.1 Nuclear structure inputs: QRPA transition densities and nuclear
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projectile
nucleus

Jπ Ex rMeV s target
nucleus

Jπ Ex rMeV s

18O 0` 0.0 (g.s.) 40Ca 0` 0.0 (g.s.)

18F 1`

0`

0.0 (g.s.)
1.042

40K 4´

2´

5´

0`

1`

0.0 (g.s.)
0.80
0.89
1.64
2.29

18Ne 0` 0.0 (g.s.) 40Ar 0` 0.0 (g.s.)

20O 0` 0.0 (g.s.) 116Sn 0` 0.0 (g.s.)

20F 1`

0`

1.057
3.526

116In 1`

5`

0.0 (g.s.)
0.127

20Ne 0` 0.0 (g.s.) 116Cd 0` 0.0 (g.s.)

Table 5.1: Nuclei and corresponding excited states considered in both SCE and DCE
simulations.

values of the strengths (only Gamow-Teller ones, BpGT q, are listed) de-

duced from beta decay or pp, nq{pn, pq experiments and from the present

calculation, for SCE nuclear transitions of interest (in view of DCE cal-

culations).

5.1.2 Effective nuclear interaction potential

In order to take into account the “hard” (due to mesons exchange)

nature of charge exchange nuclear interactions, nucleon - nucleon (NN)

charge exchange reactions are described by means of an effective local
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5.1 Nuclear structure inputs: QRPA transition densities and nuclear
interaction potential

SCE transition BpGT qnum. BpGT qexp

40Ca0`
g.s.

Ñ40 K1`
2.29

0.015 0.014 [1]

40Ar0`
g.s.

Ñ40 K1`
2.29

1.175 1.03
[1, 153]

18O0`
g.s.

Ñ18 F1`
g.s.

2.86 3.27 [1]

20Ne0`
g.s.

Ñ20 F1`
1.057

0.18 0.161 [150]

20O0`
g.s.

Ñ20 F1`
1.057

0.98 1.124 [152]

116Sn0`
g.s.

Ñ116 In1`
g.s.

0.263 0.256 [151]

116Cd0`
g.s.

Ñ116 In1`
g.s.

0.27 0.28 [151]

Table 5.2: Gamow-Teller transition strengths from experiments and from the present
calculations, for the nuclear SCE transitions indicated in the first column;
the experimental Gamow-Teller strengths are shown in the second column,
while the ones obtained through the present calculations are listed in the
third column.
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5.2 Initial and final state interaction inputs: optical potentials

nuclear Michigan-3-Yukawa (M3Y) interaction potential, with strengths

parameterized according to [146] and ranges chosen to represent the long

- range tail (1.414 fm) of the One Pion Exchange Potential (OPEP),

corresponding to pion exchange, and medium and short - range parts,

corresponding to σ (0.40 fm), ω, ρ and δ (0.25 fm) meson exchange.

The nucleus - nucleus effective potential in the reaction kernel, eq. (5.1),

is then obtained by multiplying the NN one by the kinematical correction

factor
ǫ2
0

ǫpǫt
, according to [122], where ǫ0 is the total projectile energy, per

nucleon, in NN center of mass system, while ǫp{t is the total projectile /

target nucleus energy in nucleus - nucleus center of mass system.

Thus, once nuclear transition densities and effective nuclear inter-

action potential are determined, the reaction kernel can be calculated

through the expression (5.1). For consistency, the same M3Y effective

nuclear interaction has been used both for QRPA and reaction kernel

calculations. Fig. 5.9 show the radial nuclear reaction kernels for single

charge exchange transitions in different nuclear systems, involving the

nuclei listed in the above subsection, fixing excitation energy, total an-

gular momentum and parity, Jπ, of both target- and projectile-like final

nuclear states, as indicated on the figures.

5.2 Initial and final state interaction in-

puts: optical potentials

Due to the lack of ion - ion elastic scattering data, both real and

imaginary part of the optical potential can be calculated microscopically

within the double folding approach:

Uoptpr, ωq “
ÿ

τ“0,1

ż

d3q

p2πq3 ρ
τ
apqqV τ

NNpq, ωqρτApqqeiq¨r (5.7)
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Figure 5.9: Radial reaction kernel as a function of the relative nucleus - nucleus dis-
tance, r, describing nuclear single charge exchange transitions for different
nuclear systems.
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5.3 Cross Section calculation: HIDEX, FRESCO and DCEx codes

scilicet the effective nucleon - nucleon interaction potential, VNNpq, ωq,
parameterized according to [146], for p0, 0q and p0, 1q pS, T q´ channels4,

is folded with projectile and target HFB 1´body ground state mass den-

sities (ρτapqq and ρτApqq, respectively)5, parameterized by means of Fermi

distributions, with proton and neutron density parameters from Skyrme

systematics. In this way, smoothly- and slowly- energy dependent optical

potentials are obtained.

Coulomb potential is calculated by folding the potential of a point -

like charge with projectile and target nuclear charge density distributions.

Both optical and Coulomb potentials are illustrated in fig. 5.10, for

40Ca `18 O and 116Sn `18 O nuclear systems.

At beam energies close to the Coulomb barrier, the double folding

model fails in fitting the elastic scattering cross section data [148], over-

estimating the absorption effects, viz underestimating the probability of

peripheral nuclear reactions.

5.3 Cross Section calculation: HIDEX, FRESCO

and DCEx codes

The following subsections give a brief description of the main codes

used in the SCE and DCE cross sections analysis performed during the

PhD course, pointing out the importance of optical potentials and above

all of nuclear structure inputs, described above.

All the results obtained by means of these codes (mainly HIDEX and

DCEx) are shown in chapter 6, dedicated to the discussion of the results

obtained.

4The spin - dependent parts of the optical potential are neglected, because an
unpolarized heavy ion system is considered.

5For pS, T q ” p0, 0q channel isoscalar mass densities are used, while for pS, T q ”
p0, 1q channel isovector mass densities are considered.
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Figure 5.10: Potentials describing, as an example, initial state interactions for the
two systems 40Ca`18O (left column) and 116Sn`18O (right column) at
15AMeV . Coulomb potentials are displaied in the upper panels, while
real (green line) and imaginary (red line) part of the optical potentials
are shown in lower panels.

5.3.1 HIDEX code

HIDEX [101, 106] is a Fortran code, developed by H. Lenske in ’80s,

working within DWBA formalism. The code allows to calculate SCE re-

action cross section (in the center of mass reference frame), as a function

of the scattering angle, of projectile and target excitation energies6 (or

equivalentely as functions of momentum transfer, q), together with the

angular integrated absorption cross section as a function of total excita-

tion energy and the elastic angular distribution. All cross sections are

obtained by means of the corresponding partial wave formalism shown

in chapter 2.

6The energy of the projectile is fixed, so that faster numerical calculations can be
performed.
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5.3 Cross Section calculation: HIDEX, FRESCO and DCEx codes

To calculate these cross sections, initial and final state interactions

must be taken into account; for this purpose, initial and final channel

microscopic optical potentials, together with Coulomb potentials, de-

scribed in the previous section, are used as input for solving the radial

Schrödinger equation for partial distorted waves, by means of Numerov’s

numerical method and by linking up solutions to incoming/outcoming

Coulomb wave functions, asymptotically behaving like spherical waves.

Thus, once the radial component of partial distorted waves is determined,

they are directly used to calculate elastic cross section, by a proper com-

bination with Clebsch - Gordan coefficients and with Legendre polynomi-

als, accounting for the dependence on the scattering angle, in the center

of mass rest frame. The total absorption cross section, accounting for

inelastic channels (including compound nucleus ones) other then the one

under investigation, is calculated for each target and projectile excita-

tion energy, according to the definition in the first line of eq. (2.69). To

calculate reaction cross section, the radial partial distorted waves must

be properly folded with the radial reaction kernel, discussed above, and

with the factors accounting for the angular momentum and scattering

angle dependeces. The radial reaction kernel is given as input to HIDEX

code for each target and projectile excitation energy and for each value of

the orbital angular momentum transfer involved in the transitions con-

sidered.

Calculations can be performed both for light and heavy nuclei and

for a wide energy range.

5.3.2 FRESCO code

FRESCO code was developed by I. J. Thompson in the late ’80s [108],

employing coupled reaction channel formalism, within DWBA approach

[105, 108].

The modified Numerov’s method is used to numerically integrate the
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5.3 Cross Section calculation: HIDEX, FRESCO and DCEx codes

Schrödinger equation, which is expressed in its coupled form [108, 149].

As a first step (first, or initial, channel), Schrödinger equation is cal-

culated for each partial wave component of the initial channel distorted

wave, χα,
”

Eα ´ U
pαq
opt ` ∇2

α,l

ı

χα,l “ 0 (5.8)

where the centrifugal barrier is encoded within ∇2
α,l; in this way the

elastic scattering of projectile off target nucleus is accounted for. As a

second step (second channel), initial channel distorted waves thus found,

are coupled to the distorted waves in the second channel (exit channel,

for collisional SCE reactions) and to the matrix element of the interaction

potential (i. e. the transition form factor), accounting for SCE transition,

”

Eβ ´ U
pβq
opt ` ∇

2
β,l

ı

χβ,l “ xφb, φB|V̂αβ |φa, φAyχα,l (5.9)

thus enabling to describe inelastic scattering and its effect on the elastic

channel [105]. To calculate two - step DCE nuclear reactions a third cou-

pled equation must be solved, in the same way as for eq. (5.9) (replacing

β Ñ γ in the second channel and α Ñ γ in the third channel).

Hence, once partial wave components of the distorted waves are eval-

uated elastic angular distribution is calculated by properly combining

partial waves, according with the formalism of chapter 2. Moreover,

once the total wave functions are evaluated, the transition matrix ele-

ment can be calculated and from this the corresponding reaction cross

section, for fixed total excitation energy, as a function of the scattering

angle, in center of mass rest frame.

For the purposes of this PhD work, results from FRESCO code, kindly

provided by research-team Colleagues, has been used to check the dom-

inance of collisional SCE and DCE mechanism over the multi - nucleon

transfer processes, involving same initial and final nuclear states, and also

to check the validity of the DCE formalism introduced in chapter 4 and

the code DCEx, built on such formalism and described in the following
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5.3 Cross Section calculation: HIDEX, FRESCO and DCEx codes

subsection.

5.3.3 DCEx code

DCEx is a Fortran code developed during the present PhD work and

customized for light and heavy ion collisional SCE and DCE reactions,

both in relativistic and non - relativistic regime. In particular, heavy ion

DCE reactions are treated in the hypothesis of two uncorrelated SCE

processes (dSCE), by means of the expression (4.21), in which the in-

termediate propagator is treated in pole approximation. Cross sections

can be calculated as a function of the scattering angle, in the center

of mass rest frame, and as a function of total excitation energy. This

code simply performs the angular convolution of the two SCE transition

matrix elements, i. e. the folding of the SCE reaction kernel with the

distorted waves, according to eq. (4.21), taking care of referring all mo-

menta involved in the two SCE processes to the same reference frame,

chosen so that its z-axis coincides with the relative initial momentum,

kα. SCE transition matrix elements inputs are produced by HIDEX code

and given to DCEx code separately for each excitation energy, for each

orbital angular momentum transfer and for each of the corresponding

z-projections.

DCEx code calculates dSCE cross section, with the possibility to

introduce any projectile/target nuclear state in the intermediate channel,

thus allowing to perform calculations within SSD, but also relaxing this

approximation. In this sense the code can be used to provide a first check

to assess the quality of SSD approximation.
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CHAPTER 6

RESULTS

The present chapter shows the simulations performed for heavy ion

collisional SCE and DCE reactions, focusing on the reactions under in-

vestigation within the NUMEN collaboration, as previously stated. The

first studies of the present work have been performed, mainly for the

SCE reaction 40Cap18O,18 Fq40K at 15AMeV ; then, the corresponding

DCE reaction, 40Cap18O,18Neq40Ar, and other DCE processes involving

A “ 116 nuclei, still for 15AMeV beam energies have been analyzed.

6.1 Single Charge Exchange simulations

In this section, all the results for heavy ion SCE reactions, at 15AMeV ,

are illustrated.

First of all, the effect of the microscopically derived optical potentials

have been checked by examining elastic, absorption and SCE reaction

cross sections.

Fig. 6.1 shows the ratio between elastic and Rutherford cross sections

for the entrance channel of the reaction 40Cap18O,18 Fq40K, for different

beam energies, exhibiting that at small momentum transfer the elastic

scattering process is nearly purely Coulomb, while the higher the mo-

138



6.1 Single Charge Exchange simulations

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6 6,5

q [fm
-1

]

1e-05

0,0001

0,001

0,01

0,1

1
σ

el
.  (

q
,E

x
 )

5 AMeV
15 AMeV
25 AMeV
35 AMeV
45 AMeV
55 AMeV

Figure 6.1: Elastic to Rutherford cross sections ratio for the system 40Ca `18 O as a
function of momentum transfer, in the center of mass reference frame; the
different curves refer to different beam energies and are obtained through
HIDEX simulations [6].

mentum transfer is, the smaller the ratio is, indicating that the short

- ranged nuclear interaction takes over, thus leading to the increasingly

dominance of channels other than the elastic one: the reaction channel of

interest (e. g. SCE) and all the other possible (open) channels; the lat-

ter ones are accounted for by the imaginary part of the optical potential.

Moreover, the higher beam energy is, the smaller is momentum transfer

value at which this ratio decreases.

The absorption cross section, as a function of beam energy, exhibits

a rapid increase for low energies and a flat behaviour for higher beam

energies, as shown in fig. 6.2 for the two reactions 40Cap18O,18 Fq40K
and 116Snp18O,18 Fq116In. The trend of the absorption cross section is

in total agreement with that of the elastic cross section; moreover, the

absorption cross section is higher for heavier nuclear systems, except

for the value at very low energy, which however is not good because

the double folding approach fails in describing nuclear reactions near
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Figure 6.2: Absorption cross sections for the reactions 40Cap18O,18 Fq40K and
116Snp18O,18 Fq116In as a function of beam energy [6].

Most of the simulations shown in the following refer to the SCE reac-

tion 40Cap18O,18 Fq40K only, but the results that come out do not loose in

generality, because they are aimed at providing global features of heavy

ion collisional SCE processes. Moreover, compairing the absorption cross

section and the “complementary” distortion factor as a function of beam

energy, shown in the lower panel of fig. 3.8, the slow increase of the

distortion factor (lowering of the absorption effects) for increasing beam

energy and above all its lowering (stronger absorption) at low beam en-

ergies are in contrast with the behaviour of absorption cross section, as

shown in fig. 6.2; these aspects reveal that black disk approximation, that

only considers the effects of the imaginary part of the optical potential,

is too strong for energies close to the Coulomb barrier [6].

According to the formalism illustrated in chapter 3 for heavy ion SCE

reactions, the closest resemblance to nuclear beta decays is found in pure
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6.1 Single Charge Exchange simulations

Gamow-Teller (spin-isospin flipping Jπ “ 1`) and pure Fermi (isospin

flipping Jπ “ 0`) excitations; but nuclear reactions via strong interac-

tions allow to explore a wider multipolarity range of nuclear excitations,

as stated in the previous chapters, thus giving the opportunity to in-

vestigate also the so called “β´decay forbidden” transitions, referred to

as Gamow-Teller-like (spin-isospin flip) and Fermi-like (only isospin flip)

excitations. Figs. 6.3 and 6.4 show DWBA cross sections for Fermi-like

transitions, as a function of target-like excitation energy and as a function

of scattering angle, respectively, while figs. 6.5 and 6.6 illustrate the cor-

responding observable for Gamow-Teller-like transitions. In both cases,

simulations have been performed for the reaction 40Cap18O,18 Fq40K, char-

acterized by a Q´value of Qval “ ´2.967MeV , while the complementary

SCE reaction 40Cap18O,18Nq40Sc has not been treated here, in that it is

kinematically suppressed, because of its Q´value, Qval “ ´28.22MeV .

Gamow-Teller (Fermi) transitions have been obtained by considering the

transition leading to the 1` ground state (first 0` excited state) of the

ejectile nucleus, 18F, and Gamow-Teller-like (Fermi-like) transitions of

different multipolarities, populating several excited states of 40K, identi-

fyed by total angular momentum J , parity π and excitation energy Ex.

From figs. 6.3 - 6.6, it is straightforward to note that Jπ “ 0` and

Jπ “ 1` target transitions contribute significantly to the cross section

at low excitation energies and dominate at small scattering angles. Still

for the global character of the present investigation on heavy ion SCE

reactions, only pure Gamow-Teller transitions both in projectile and tar-

get nuclei have been focused; in fact the distortion effects, the relation

between PWBA and DWBA cross sections together with the existence

of a relation between the reaction kernel and beta decay strengths are

nearly independent on the multipolarity of the transition, at least at small

momentum transfer, as it transpires from SCE formalism, in chapter 3.

Another important feature emerging from the latter plots is that SCE
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Figure 6.3: DWBA SCE cross section for the reaction 40Cap18O,18 Fq40K at
15AMeV , as a function of target-like excitation energy, integrated over
the full angular range, for different target multipolarities and considering
only (pure) Fermi transition, Jπ “ 0`, for projectile nucleus [6].
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Figure 6.4: DWBA SCE angular distribution for the reaction 40Cap18O,18 Fq40K at
15AMeV , for fixed target-like and ejectile excitation energy Ex “ 0, for
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tion, Jπ “ 0`, for projectile nucleus [6].
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cross sections, whatever the multipolarity is, are very small (about 4´ 6

order of magnitude) with respect to the absorption one, this signaling the

strongly absorptive character of (low energy) heavy ion reactions, which

in turn justifies the use of black disk approximation to get an “effective”

simplification of the calculations.

In order to gain information on the contribution of the different in-

gredients flowing into the SCE reaction cross section, simulations have

been performed by probing the effect of each component of the optical

potentials. Fig. 6.7 illustrates SCE cross section for 40Cap18O,18 Fq40K
reaction, at 15AMeV , as a function of target-like excitation energy, in-

tegrated over full solid angle; the different curves have been obtained

first in PWBA, i. e. setting optical potential equal to zero, then turning

on the components of the optical potential (real, V prq, and imaginary,

W prq) and the Coulomb potential and finally in full DWBA. Already

at the PWBA level, one can appreciate the main excitation peaks con-

tributing to Jπ “ 1` transition in the target. Likewise, fig. 6.8 deals

with the contribution of Coulomb potential, real and imaginary part of

the optical potentials to the angular distribution for the same SCE reac-

tion considered in fig. 6.7, fixing both ejectile and target-like excitation

energies to their ground states1.

Moreover, from the latter two figures, it is possible to observe that

the cross section decreases when the effect of the Coulomb repulsion is

taken into account or increases when considering the contribution of the

(attractive) real part of the nuclear optical potential; however, the most

striking feature is the strong suppression, by about a factor of 500´ 600,

obtained just taking into account the imaginary part of the optical po-

tential, which essentially brings the cross section down to the value as-

1Note that the Jπ “ 1` peak in correspondence to target-like ground state, Ex “ 0
in fig. 6.5, is an intruder peack, because experimentally the ground state of 40K is a
Jπ “ 4´ one. But for the purpose of this first analysis, it is important just to select
an excitation energy value corresponding to a peak in the SCE cross section.
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sociated with the full DWBA calculation and also lead to a prominent

diffraction pattern, reflecting the size of the absorbing region and above

all strongly resembling the one of full DWBA case. These features indi-

cate that the DWBA result is mainly explained in terms of strong absorp-

tion effects, as expected in heavy ion reactions, and justifies the strong

absorption approach, viz. the black disk approximation, for modeling

the ion-ion initial and final state interactions.

0 3 6 9 12 15
E

x
 [MeV]

1e-06

1e-05

0,0001

0,001

0,01

0,1

1

10

d
σ

/d
E

  
[m

b
/M

eV
]

PWBA
PW + iW (r)
PW + V (r)
PW + U

C
 (r)

DWBA

Figure 6.7: Cross sections for 40Cap18O,18 Fq40K reaction, at 15AMeV , as a function
of target-like excitation energy, for Jπ “ 1` transition both in projectile
and target nuclei, fixing ejectile excitation energy to its ground state. The
red curve corresponds to PWBA calculations, the black one refers to full
DWBA case, while the other curves are obtained by considering only the
imaginary part of the optical potential (magenta curve), only the real part
of the optical potential (green curve) and only Coulomb potential (blue
curve) [6].

Then, the effect of central and tensor parts of the effective local nu-

clear interaction potential has been analyzed, together with the two or-

bital angular momentum contributions (L “ 0, 2) leading to Jπ “ 1`

transitions, as shown in figs. 6.9 and 6.10. The latter two plots illustrate

that the central interaction contribution to the angle integrated cross

section and the angular distribution, at small scattering angles, are dom-

inated by the L “ 0 transition. Considering the tensor component of the
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Figure 6.8: Angular distribution for 40Cap18O,18 Fq40K reaction, at 15AMeV , con-
sidering Jπ “ 1` transition both in projectile and target nuclei and fixing
Ex “ 0 both in ejectile and target-like nuclei. The red curve corresponds
to PWBA calculations, the black one refers to full DWBA case, while
the other curves are obtained by considering only the imaginary part of
the optical potential (magenta curve), only the real part of the optical
potential (green curve) and only Coulomb potential (blue curve) [6].

effective local nuclear interaction potential leads to a slight decrease of

the magnitude of the whole PWBA cross section and of the main excita-

tion peaks of DWBA cross section; moreover, tensor interaction causes

a shift of PWBA and DWBA angular distribution towards larger scat-

tering angles, particularly evident for PWBA calculations, owing to the

dominant role of L “ 2 (in this case).

The target mass dependence of the distortion factor provided by BDA,

with black disk radius determined through the eikonal approximation

(see chapter 3), has been tested by considering SCE reactions involving

heavier target nuclei. As shown in fig. 3.7, for target mass numbers

A “ 116 it is expected a distortion factor smaller, by less than one order

of magnitude, with respect to the one found for A “ 40; in fact, this

trend is in agreement with the distortion factor value obtained by per-

forming the ratio between zero degree DWBA and PWBA cross sections
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Figure 6.11: Cross section for 116Snp18O,18 Fq116In SCE reaction, at 15AMeV , as a
function of target-like excitaiton energy, taking into account only zero
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for 116Snp18O,18 Fq116In reaction, at 15AMeV , shown in fig. 6.11.

6.1.1 Testing SCE cross section factorization

The next step of the analysis of SCE reactions consists in a check to

assess the quality of the factorized expression of SCE cross section al low

beam energies. In light of the previous results, for the sake of simplic-

ity, only central interactions and L “ 0 transitions have been taken into

account. Within the formailsm developed in chapter 3, the angular mo-

mentum dependence of the radial transition densities, eq. (3.24), implies

that they can be interpreted as the multipole components of the corre-

sponding reaction kernel, eqs. (3.20), (3.21); thus, by assuming gaussian

transition densities and considering only their L “ 0 components is equiv-

alent to consider only the monopole term in the multipole expansion of

the gaussian reaction kernel. Fig. 6.12 illustrates the comparison be-

tween the monopole component of the reaction kernel calculated within
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Figure 6.12: Monopole component of the reaction kernel, by using its factorized ex-
pression, eq. (3.32), (dashed lines) and without perfoming factorization
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transfer, qαβ , [6].

its factorized expression, eq. (3.32), where only the monopole term of

the multipole decomposition of the separation function, eq. (3.43), has

been taken into account, and its expression obtained relaxing any fac-

torization hypothesis, just determined by performing the Fourier-Bessel

transform of the corresponding gaussian in coordinate space (obtained by

folding projectile and target radial transition densities, as illustrated in

fig. 3.4). The different colours in fig. 6.12 refer to different values of mo-

mentum transfer, qαβ : one can note that for small momentum transfer,

qαβ » 20MeV , (black curves) the two curves overlap, i. e. the factorized

expression for the reaction kernel works quite well; the curves start to

separate, thus becoming distinguishable, for higher momentum transfer

(red curves) and are very different for qαβ Á 100MeV . A as a further

check, the validity of the factorized expression for SCE cross section has

been provided by analyzing the trend of the monopole component of

the transition matrix element square modulus as a function of momen-

tum transfer, qαβ, in PWBA, DWBA and within factorized formulas,
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adopting different degrees of approximation of the separation function

(see fig. 6.13): the small momentum transfer limit, eq. (3.43), (green

curve) and by assuming hαβpq, Rq “ e´ 1

2
σ2q2j0pqRq (blue curve). As ex-

pected, the latter case leads to the same trend obtained in PWBA, just

reduced by a multiplicative factor, while the dependence on the momen-

tum transfer is evident in the narrower diffraction patterns of green and

full DWBA curves; in particular, the changes in the diffraction pattern

between PWBA and DWBA cases strongly resembles the ones observed

in the complete HIDEX calculations. The main result emerging from

fig. 6.13 is that blue, green and red curves coincide, scilicet the factor-

ized expression for SCE cross section works, up to a momentum transfer

qαβ ď 25 ´ 30MeV , as observed for the reaction kernel, in fig. 6.12.

Simulations are illustrated in figs. 6.12 - 6.13 for 40Cap18O,18 Fq40K (but

the same results hold for heavier nuclear systems, by properly changing

the parameters of the gaussian reaction kernel).
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6.2 Double charge Exchange simulations

Once outlined the main features of low energy heavy ion SCE re-

actions, we have moved on to the study of heavy ion DCE reactions,

within the same energy range as for SCE ones. As stated in the previous

chapters, the focus has been placed on the formalism describing DCE

processes as a tree - level convolution of two uncorrelated SCE reactions

(dSCE).

6.2.1 Towards dSCE simulations: the two uncorre-
lated SCE reactions

In view of the study of heavy ion DCE reactions, within their inter-

pretation in terms of two uncorrelated SCE processes, complete HIDEX

calculations have been performed for six spin-isospin flipping Jπ “ 1`

SCE transitions, relaxing the above simplifications, i. e. by consid-

ering both central and tensor components of the effective nuclear in-

teraction potential and all orbital angular momentum contribution to

the given transition. Fig.s 6.14 ´ 6.16 show HIDEX simulations of

SCE cross sections at forward scattering angles, for the reactions under

study within the NUMEN collaboration [80] 40Cap18O,18 Fq40Kp1`
2.29q and

40Kp1`
2.29qp18F,18Neq40Ar, 116Snp18O,18 Fq116In and 116Inp18F,18Neq116Cd,

116Cdp20Ne,20 Fp1`
1.057qq116In and 116Inp20Fp1`

1.057q,20Oq116Sn, where the

subscripts refer to the experimental energy (MeV ) of the excited state

studied, while the absence of subscripts implies that ground state is con-

sidered.

In all the three latter plots, solid curves represent forward angular

distributions for the SCE nuclear reactions constituting the first step of

a DCE process, scilicet the exit channel of each of these SCE reactions

acts as intermediate channel of the corresponding DCE process and is

also used as the entrance channel of the second step SCE reactions, whose
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Figure 6.14: PWBA and DWBA SCE angular distributions, for the
two reactions 40Cap18O,18 Fq40Kp1`, Ex “ 2.29MeV q and
40Kp1`, Ex “ 2.29MeV qp18F,18 Neq40Ar, involved in the dSCE
process 40Cap18O,18 Neq40Ar. Simulations are performed by assuming a
beam energy of 15AMeV .

angular distributions are indicated by the dashed curves of figs. 6.14 -

6.16. Moreover, each of these plots contain PWBA and DWBA cross sec-

tions. The calculations of physical interest are the DWBA ones; PWBA

simulations can be used to perform the ratio of DWBA to PWBA cross

sections at θ “ 0˝, evaluating in this way the distortion factor, which

is relevant for extracting the square modulus of nuclear matrix element

from cross section measurements. The simulations in figs. 6.14 - 6.16

confirm the mass - dependent trend of the distortion factor, thus point-

ing out its general character. Referring to the latter figures, one can also

note that SCE reaction cross section is smaller for heavier systems2, ac-

cording to the absorption cross section trend3 and further confirming the

2This is consequentely true also for DCE reactions (see the sections below).
3Absorption cross section for 116Cdp20Ne,20 Fq116In have not been shown, because

trend and magnitude are nearly the same of that for 116Snp18O,18 Fq116In; similarly,
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Figure 6.15: PWBA and DWBA SCE angular distributions, for the two reactions
116Snp18O,18 Fq116In and 116Inp18F,18 Neq116Cd, considering both nuclei
in the exit channel in their ground states. This two processes have
been exploited to determine dSCE cross section for the nuclear reac-
tion 116Snp18O,18 Neq116Cd. Simulations are performed by assuming a
beam energy of 15AMeV .

mass - dependence of the distortion factor. The magnitude of reaction

cross sections is of course strongly influenced by the nuclear structure of

the reacting ions, by means of the reaction kernel. For istance, for the

reaction 40Cap18O,18 Fq40K, starting from a doubly magic nucleus (40Ca),

the latter is lower than that for 40Kp18F,18Neq40Ar, involving no magic

nuclei (see fig. 5.9, in chapter 5); the same considerations hold for the

Q´value of the reaction, much more negative in the former case than

in the latter. On the contrary, the radial reaction kernels of the heavier

systems are of the same order of magnitude, because no doubly magic

nucleus is involved in the reaction processes considered, so that the dif-

the absorption cross sections for the “second step” SCE reactions have not been shown
too, because trends and magnitudes are nearly the same of the corresponding “first
step” SCE processes.
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Figure 6.16: PWBA and DWBA SCE angular distributions, for the two re-
actions 116Cdp20Ne,20 F1.057q116In and 116Inp20F1.057,

20 Oq116Sn, suc-
cessively used to evaluate the cross section for the dSCE process
116Cdp20Ne,20 Oq116Sn. Simulations are performed by assuming a beam
energy of 15AMeV .

ferent magnitudes of the corresponding cross sections are mainly due to

kinematics.

6.2.2 Heavy ion dSCE simulations

By means of the above SCE calculations, dSCE reaction cross sec-

tions have been determined, according to the formalism discussed in

chapter 4. Figs. 6.17 - 6.19 show simulations performed by means of

DCEx code, assuming SSD, for the low energy collisional DCE reactions

40Cap18O,18Neq40Ar, 116Snp18O,18Neq116Cd and 116Cdp20Ne,20 Oq116Sn, re-
spectively. In particular, the first heavy ion DCE reaction has been ob-

tained by convoluting the transition matrix elements relative e. g. to the
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6.2 Double charge Exchange simulations

two Jπ “ 1` SCE reactions (Gamow-Teller-like)
40Cap18O,18 Fq40K1`

2.29
(I step)

40K1`
2.29

p18F,18 Neq40Ar (II step)

considering only the SCE transition leading to the ground state of 18F

and the first 1` excited state of 40K, at Ex “ 2.29MeV , in the inter-

mediate channel; the latter nuclear state has been chosen, instead of

that at 2.7MeV , characterized by an experimental higher Gamow-Teller

strength, because QRPA calculations give a response function, associ-

ated to Jπ “ 1` and L “ 0 transitions, with only one peak in the

region between these two energies and this is also the first “true” (i. e.

not intruder) peak, so that it has been identified with the first 1` ex-

cited state. Similarly, fig. 6.18 show DCEx simulations for the reaction

116Snp18O,18Neq116Cd obtained by folding the SCE processes
116Snp18O,18 Fq116In (I step)

116Inp18F,18 Neq116Cd (II step)

considering the 1` transition leading to the ground state both in ejectile

and target-like nuclei in both SCE processes. In the same way, fig. 6.19

illustrates simulations for 116Cdp20Ne,20Oq116Sn DCE reaction involving
116Cdp20Ne,20 Fq116In (I step)

116Inp20F,20Neq116Sn (II step)

1` SCE transitions leading to 116In ground state and to the first excited

state of 20F, at 1.057MeV , in the first step, and to ejectile and target-like

ground states, in the II SCE step.

All these three heavy ion DCE reactions have been performed consid-

ering projectile nuclei with a kinetic energy of 15AMeV (according to

NUMEN experiments). The quality of the above dSCE calculations ob-

tained through DCEx code has been confirmed by simulations performed

with FRESCO code4 [108], represented by solid curves in fig. 6.17 for

the pilot reaction 40Cap18O,18Neq40Ar, for PWBA and DWBA cases.

4Courtesy of Dr. S. Burrello and Dr. J. A. Lay.
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Figure 6.17: DCE cross section for 40Cap18O,18 Neq40Ar at Elab “ 15AMeV , ob-
tained within the framework of two uncorrelated SCE processes (dSCE).
The solid curves are obtained by performing FRESCO simulations, while
the dashed ones are obtained through the new DCE code; in particular,
black curves refers to PWBA case, the solid red line refers to the com-
plete, DWBA, case, while the dashed red curve refers to the folding of
the two DWBA SCE cross sections (i. e. in the intermediate channel,
W prq appears always negative); finally, the dashed blue curve is obtained
by using plane waves in the intermediate channel and the magenta one
is obtained by scaling the dashed red curve for reproducing the order of
magnitude of the dashed blue curve.

Referring to the latter three figures, one can note that the distortion

factor in the DCE processes, described through the dSCE reaction mech-

anism within SSD, is higher than the product of the distortion factors

of the two SCE events, so that the absorption effects do not act twice,

i. e. the effects of the absorption potentials partially compensate each

other, due to the constructive interference among distorted waves in the

intermediate channel. The compensating effect is not fully achieved, as
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Figure 6.18: dSCE cross sections for 116Snp18O,18 Neq116Cd DCE reaction. Black
curve refers to PWBA case, the red one to DWBA calculations, obtained
simply by folding two SCE transition matrix elements (from HIDEX
code), the blue one to calculations performed by assuming plane waves
in the intermediate channel and, finally, the magenta curve represents
the DWBA cross section normalized to the blue curve, scilicet obtained
through eq. (4.21).

one can see comparing the calculations obtained by assuming plane waves

in the intermediate channel (thus mimicking a perfect compensation of

distortion effects) with the full DWBA ones (FRESCO and DCEx codes).

Moreover, in fig. 6.17 it is shown that the DCE cross section obtained

by using plane waves in the intermediate channel (dashed blue line) al-

lows to recover the order of magnitude of the complete (DWBA) case,

represented by the solid red curve.

As expected, dSCE cross section magnitude is smaller than SCE one,

showing that a dSCE process is rarer than a SCE one, because the former

is a process of higher order (in transition matrix element) with respect

to the latter. Of course, this argument is anything but straightforward
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Figure 6.19: dSCE cross sections for 116Cdp20Ne,20 Oq116Sn DCE reaction. Black
curve refers to PWBA case, the red one to DWBA calculations, obtained
simply by folding two SCE transition matrix elements (from HIDEX
code), the blue one to calculations performed by assuming plane waves
in the intermediate channel and, finally, the magenta curve represents
the DWBA cross section normalized to the blue curve, scilicet obtained
through eq. (4.21).

for DCE processes described in terms of two correlated SCE reactions,

which are still under study [5].

In order to improve DCE calculations, SSD hypothesis has been re-

laxed and more than one state has been considered in the intermediate

channel, this leading to increasingly large dSCE cross sections, as can

be seen e. g. for 40Cap18O,18Neq40Ar, in fig. 6.20, with diffraction

patterns arising from the coherent superposition of transition matrix el-

ements for the different multipolarity transitions. The nuclear states in

the intermediate channel have been chosen according to the value of the

corresponding cross sections, strongly influenced by the Q´value of the

SCE processes populating that intermediate channel and by shape and
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6.2 Double charge Exchange simulations

magnitude of the transition form factors involved, so that the magnitude

of dSCE cross section turns out to be very sensitive to nuclear structure

calculations, as expected. In particular, adding more than one interme-

diate state shows that only few nuclear states really contribute to the

reaction cross section.
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Figure 6.20: Comparison between DCE cross sections, for 40Cap18O,18 Neq40Ar
reaction, at 15AMeV , obtained by considering only
40Kp1`, 2.3MeV q `18 Fp1`, g.s.q (dashed lines) and adding
40Kp0`, 1.64MeV q `18 Fp0`, 1.04MeV q to the former state (squares
+ solid line), in full PWBA (black lines), DWBA obtained without

considering the normalization matrix element, S̃
:
δ , (red curves) and

by considering plane waves in the intermediate channel (blue lines).
Magenta curve fefers to the complete DWBA case, obtained by
normalizing the red curve (squares ` solid line) to the magnitude of the
blue one (squares ` solid line).

The introduction of the 5` excited state of 116In at 0.1273MeV , in-

teresting because experimentally decaying β´ [154], in the intermediate
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6.2 Double charge Exchange simulations

channel of the reactions 116Snp18O,18 Neq116Cd and 116Cdp20Ne,20 Oq116Sn,
does not lead to any significant contribution to the corresponding dSCE

reaction cross sections and for this reason these results are not shown

here.

Finally, fig. 6.21 shows preliminary calculations performed for all

the DCE reactions, previously treated in SSD, by assuming closure ap-

proximation, so that all possible intermediate nuclear states are taken

into account, in opposition to the SSD hypothesis. These preliminary

results are obtained through HIDEX code, assuming the 2 - body reac-

tion kernel as given by the product of the propagator, evaluated at a

constant intermediate energy of about 4MeV , and two 1 - body reac-

tion kernels, properly weighted through Clebsch - Gordan coefficients,

in order to account for angular momentum combinations, matching the

angular momenta of the final channel; in particular, the total energy of

the intermediate channel (closure energy) has been selected as the one

corresponding to the mean value of the integrand of the off - shell relative

momentum integral in eq. (4.8), which is in turn roughly given by the

energy allowing to recover half of the transition strength.

The dSCE mechanism in closure approximation is the most interesting

case, in that it resembles the Majorana, one - step mechanism, even if in

Majorana - like one - step processes other contributions can occur, which

can enhance or lower the DCE reaction cross section. Comparing the

above preliminary closure approximation results with the ones obtained

assuming SSD, one can note that the trend of all the above three DCE

angular distributions is nearly the same; moreover, the distortion factor

for the nuclear reaction 40Cap18O,18 Neq40Ar, treated within SSD (dSCE),

is of the same order of magnitude as the one from closure approximation

calculations, while for the other two reactions, involving heavier nuclei,

SSD calculations give a distortion factor smaller than the one obtained

from simulations within closure approximation. Furthermore, the closure
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Figure 6.21: DCE cross sections, for 40Cap18O,18 Neq40Ar reaction, at 15AMeV ,
obtained within the closure approximation, both in full PWBA (black
line) and full DWBA (red curves). For details, see the text.

approximation (cDCE) cross sections are from 2 to 3 orders of magnitude

greater than the corresponding dSCE ones, depending on the Q-value and

on projectile and target masses and transition densities characterizing the

reaction, thus bringing hope to neglect the competing dSCE mechanism

in favor of the one mimicking Majorana - like processes.

6.2.3 Some insight on possible full dSCE cross sec-
tion factorization

The dSCE mechanism makes heavy ion DCE reactions very close to

2νββ decays, even though different intermediate nuclear states and mo-

menta can be involved in the two processes. As stated in the previous

chapters, to extract the nuclear matrix element (embedded into the re-

action kernel) it is necessary to factorize heavy ion DCE reaction cross
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6.2 Double charge Exchange simulations

section into the product of a nuclear reaction term and a nuclear struc-

ture term, with the aim to provide a proportionality relation between

the latter observable and the nuclear matrix element. In chapter 4, we

have shown that it is anything but straightforward to provide such pro-

portionality relation, because of the integral over the off - shell relative

momentum involved in the intermediate channel, which is not completely

removed even assuming Gaussian SCE reaction kernels, pole approxima-

tion and SSD, thus leaving a partially - factorized expression for dSCE

cross section.

To assess the quality of the partially - factorized dSCE formalism thus

developed, simulations have been performed by näıvely describing dSCE

reaction kernel as simply given by the product of the only monopole

component of the two SCE Gaussian reaction kernels and fixing their

intermediate channel - angular dependence, so that a fully - factorized

expression for dSCE cross section has been in fact implemented. In the

same vein of SCE simulations shown in fig. 6.13, the square modulus of

the dSCE transition matrix element, thus obtained, has been studied as

a function of momentum transfer, as illustrated in fig. 6.22, for the DCE

reaction 40Cap18O,18 Neq40Ar, interpreted as combination of the same two

SCE nuclear reactions considered in the calculations performed in SSD.

The different curves in fig. 6.22 refer to DCE transition matrix elements

calculated by using the same approximations displayed in fig. 6.13 for

each of the two SCE reaction kernels. These simplified dSCE calculations

well reproduce the diffraction pattern of the angular distribution, which

presents narrower minima passing from PWBA to DWBA calculations,

and the ratio between DWBA and PWBA cross section at zero degrees, i.

e. the distortion factor, as compared to DCEx and FRESCO simulations

(fig. 6.17).

Comparing dSCE simulations in fig. 6.22 with the analogous SCE

ones (fig. 6.13), one can also note that the former are characterized by
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ements obtained in the cases illustrated in fig. 6.13.

a distortion factor greater (stronger absorption5) than the one of each

SCE reaction, even if smaller than the product of the distortion factors

of the two SCE component processes; for this simplified calculations the

latter effect is merely related to the reaction kernels used, in that the

intermediate channel has been neglected, so that it does not affect the

dSCE distortion factor for this simple simulations; of course, the absence

of the intermediate angular integration in the DWBA dSCE curve of fig.

6.22 leads to a trend different from the one of DWBA dSCE complete

calculations (fig. 6.17).

Moreover, similarly to SCE calculations, comparing the red curve with

the green and blue curves, one can note that these three functions over-

lap up to qαβ » 25 ´ 30MeV , thus defining a range of values of (DCE)

momentum transfer within which the above näıvely fully factorized cal-

culation for heavy ion dSCE cross section (and a fortiori the partially -

5More processes that remove the probability flux from the elastic channel.
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factorized one, implemented in DCEx code) works quite well. In this way,

an approximate proportionality relation is provided between dSCE reac-

tion cross section and the corresponding nuclear matrix element, which

in turn can only approximately be expressed as the product of two SCE

ones.

6.3 Preliminary comparison with data

In order to perform a (preliminary) comparison with experimental

data, it is important to stress that for SCE processes the collisional

mechanism dominates the sequential one for high beam energies, Ebeam Á
100AMeV , as provided by Lenske et al. for the nuclear reaction 12Cp12C,12Nq12B
[101], whatever the angular momentum transfer is, while for heavier sys-

tems at intermediate and low energies6 SCE reactions dominate for small

angular momentum transfer [81], while sequential mechanisms are sup-

pressed with respect to direct DCE ones, because the former represent

higher order processes, since their contributions are at least of the 4th

order in transition matrix element.

Once checked the quality of the formalism developed to describe heavy

ion SCE and dSCE reactions, at low energies, together with approxima-

tions used to factorize charge exchange cross sections, one can move to

perform a comparison with the experimetal data, in order to extract SCE

and dSCE nuclear matrix elements. It is important to stress that such

factorization is independent of the nuclear structure model adopted, be-

cause it lays down its basis simply on the direct nature of charge exchange

processes; what changes is the value of the parameters in the gaussian

reaction kernel together with the magnitude of the transition densities,

and thus of the cross section.

Hence, both SCE and DCE cross sections can be influenced by the

6This is the range of interest for the experiments performed within the NUMEN
collaboration.
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nuclear structure peculiarities of the nuclei involved in the transition; the

diffraction pattern is also influenced by the imaginary part of the optical

potential used, so that the availability of elastic cross section data plays

a crucial role in the comparison of charge exchange reaction calcultations

with the experimental charge exchange cross sections.

Fig. 6.23 shows a preliminary comparison with the data, obtained

from experiments performed by the NUMEN collaboration, for the pilot

SCE reaction 40Cap18O,18 Fq40K. The energy range r0.7, 1.4sMeV has

been set, because in this interval the experimental energy spectrum [80]

presents two peaks that can be identified with the transitions to the 2´

and 5´ excited states of 40K at 0.8 and 0.891MeV , respectively, indicated

in the legend.
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The plot also shows other transitions characterized by a total (pro-

jectile ` target) excitation energy falling within the interval of interest.

One can immediately note that the main contribution within this energy

interval comes from the lowest multipolarity transition involved, i. e. the

one populating the 2´ excited state of 40K. All these angular distribu-

tions are obtained by integrating each HIDEX SCE reaction cross section

with respect to the proper target - like excitation energy range. In order

to take into account the different ejectile excitation energies involved in

these transitions, the sum of the above cross sections have been properly

weighted by ejectile excitation energy range, thus getting the black curve

in fig. 6.23. The latter shows a clear diffraction pattern, in contrast to

the quite smooth trend of data. This reveals that some interference with

other competing transitions may attenuate the diffraction pattern of the

angular distribution at forward angles. Possible sources of discrepancy

are represented by the optical model potentials, coming from microscopic

calculations, and by the limitations of the nuclear structure model used.

In this sense calculations must be improved, by fitting optical potential

parameters with the experimental elastic cross section, once available,

and checking the effect of different nuclear structure models on shape

and magnitude of the cross section. Considering the state - of -art of the

calculations we consider satisfactory that SCE simulations already allow

to reproduce the magnitude of the data.

DCE cross section data [1] also show a smooth trend, which is steeper

for θCM À 6 deg than for larger scattering angles; this behaviour could

indicate the dominance of a given DCE mechanism at small angles and of

another one for higher angular values or one low multipolarity (because

of the peak at small scattering angles) transition at forward angles and

higher multipolarity transitions for larger scattering angles. Unfortu-

nately, the state - of - art of the theoretical framework of DCE reactions

is still in its infancy, so that the above interpretations of DCE data are
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merely speculative.

A very preliminary comparison with DCE experimental results is

shown in fig. 6.24, where one can see that the dSCE angular distribu-

tion obtained by considering two low momentum transfer nuclear states

in the intermediate channel, 18Fg.s. `40 Kp1`, 2.29MeV q and 18Fg.s. `40

Kp0`, 1.64MeV q, that should be the ones giving the main contributions

in the intermediate channel of dSCE processes, underestimates experi-

mental results by about a factor of 100, while the magenta curve obtained

within closure approximation allows to recover the order of magnitude of

the data, but not the trend.
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Figure 6.24: DCE angular distribution data [1] for the pilot reaction, compared with
dSCE calculations including two dominant states in the intermediate
channel (red line) and with a preliminary calculation of DCE cross sec-
tion in closure approximation (magenta curve).

As in the case of the SCE cross section, the differences in the diffrac-

tion pattern may be caused by the choice of the optical potentials (now

considering also that involved in the intermediate reaction channel), still

derived microscopically because of the absence of DCE elastic scattering
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data. A further complication is related to the two possible mechanisms

describing a DCE nuclear reaction: calculations within SSD underesti-

mate the data by about a factor of 100, which could be recovered by

considering the contributions of different excited states of both projec-

tile - like and target - like nuclei in the intermediate channel, but this is

still under study; closure approximation simulations need also further im-

provement in the calculation of the corresponding cDCE reaction kernel,

hoping to reproduce also the trend of the experimental results.
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Summarizing, the present PhD work has been dedicated to the study

of heavy ion charge exchange reactions, focusing in particular on the

range of low energies, which up to now lacks of a theoretical framework.

The main goal of the present thesis is just represented by the formula-

tion of a theory describing both single and double charge exchange heavy

ion reactions in the energy range mentioned above. This target has been

reached by providing an elegant and simple extension of the ‘80s and

‘90s formalism developed by Taddeucci for pp, nq reactions to heavy ion

single and double charge exchange processes, at low and intermediate en-

ergies; moreover, factorization of both single and double charge exchange

cross sections into the product of a reaction and a nuclear structure term

has been reached, starting from the simple assumption of nuclear sur-

face peaked gaussian reaction kernels, that is supported by the direct

nature of charge exchange nuclear reactions. All calculations have been

performed within the DWBA formalism.

First of all, a study of the influence of the different optical potential

components to the single charge exchange heavy ion cross section has

been checked, together with the role of central and tensor components of

the effective nuclear interaction potential [6], in order to have under con-
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trol single charge exchange reactions. This is particularly important also

because SCE rections constitute the basic processes in terms of which

heavy ion double charge exchange reactions can be explained. In this

way, we noted that at low and intermediate energies, heavy ion reactions

are dominated by central interactions and low angular momentum trans-

fer at forward scattering angles while higher angular momenta and tensor

interaction start to give significant contribution at larger scattering an-

gles, as expected. Finally, the dominant role of the absorption effects has

been confirmed.

Once got deeper insight into the different elements taking part to the

single charge exchange reaction cross section, a study of low energy heavy

ion DCE reactions has been performed within the hypothesis of two - step

process. Then a code has been developed, DCEx, through which it has

been possible to simulate dSCE reactions proceeding via SSD and then

considering more than one nuclear state in the intermediate channel in

order to assess the quality of SSD assumption; in this way, it has been

evidenced how dSCE reactions strongly depend on the nuclear structure

features.

Moreover, very preliminary calculations have been performed for low

energy heavy ion DCE reactions within closure approximation, by means

of HIDEX simulations by employing naive 2-body operators.

Finally, once noted that the radial SCE transition densities can be

nicely fitted by gaussians peaked at the nuclear surface, as expected for

direct reactions, it has been developed a simple model of cross section

factorization, depending on parameters related to the features of the op-

tical potential (reaction part) and to magnitude and shape of the tran-

sition densities (nuclear structure part), the latter being proportional to

β (single charge exchange) and 2νββ decay strengths. The factorization

procedure thus obtained is valid indipendentely of the nuclear structure

model adopted, in that changes in nuclear structure only lead to varia-
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tions of the values of the parameters of the gaussian reaction kernel. The

factorization framework developed can be extended to dSCE processes,

because they are still direct reactions, simply tuning the value of the

parameters appearing in the gaussian reaction kernel.

An analytical expression of the whole reaction cross section has been

derived within the black disk approximation, justified by the dominance

of absoption effects in heavy ion reactions.

Within such a context, cross section factorization procedure, provided

in the present work, is exact for zero linear momentum transfer, but it has

been tested that it works pretty well for momentum transfer values less

than 25´30MeV , both for single and double charge exchange reactions.

Simulations have been perfomed for nuclear systems investigated by

the NUMEN collaboration, by using HIDEX and DCEx codes. It should

be noticed that the latter code, fully developed within the present thesis

work, has been tested by comparisons with FRESCO simulations, kindly

provided by Seville University collegues, who moreover have provided the

conditions under which the contribution from transfer reactions, mimick-

ing the channel under study, can be neglected.

The validity of the black disk hypothesis has been tested for different

beam energies, finding that such approximation takes into account pretty

well the strong absorption effects in heavy ion nuclear reactions for ener-

gies greater than about 10AMeV , while starts to fail for beam energies

close to the Coulomb barrier, overestimating absorption effects. Through

this approximation it has been obtained a distortion factor strongly de-

screasing with the target mass and mildly increasing with the beam en-

ergy (both for single and double charge exchange processes).

A preliminary comparison with experimental results (NUMEN, [1])

for 40Cap18O,18 Fq40K single charge exchange reaction turned out to be

quite satisfactory, providing the correct order of magnitude of the cross

section, even if the trend of the data is not correctly reproduced.
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Double charge exchange reactions can proceed via two main mech-

anisms [80, 144]: sequence of two uncorrelated single charge exchange

processes (dSCE) and combination of two correlated single charge ex-

change reactions (cDCE). In the present work, main attention has been

focused on the former mechanism, which can give information on 2νββ,

thus representing a mechanism competing with the second one, which

is still under study and should allow to gain information on the desired

0νββ decay strength.

A preliminary comparison with double charge exchange data has been

performed, indicating that the dSCE mechanism underestimates experi-

mental data, thus leaving some hope that the “golden” cDCE mechanism

dominates, getting closer to the possibility of gaining information on the

wanted 0νββ decay strength, but the work in this direction is still too

long and tricky.

Concluding, the factorizaton procedure formulated in this PhD thesis

represents a nice “trick” to gain information on double charge exchange

nuclear matrix elements, in the perspective to get a deeper insight on the

different mechanisms realizing double charge exchange processes and on

the possible analogy with 0 and 2νββ nuclear matrix elements. Work is in

progress along this direction, in the hope to be able to understand which

one of the two “strong-analogous” processes dominates and possibly gain

information on 0νββ nuclear matrix elements.

172



BIBLIOGRAPHY

[1] F. Cappuzzello, M. Cavallaro, C. Agodi, M. Bond̀ı, D. Carbone, A.

Cunsolo, A. Foti, Eur. Phys. J. A (2015), 51.

[2] T. N. Taddeucci et al., Nucl. Phys. A 469 (1987) 125-172.

[3] N. Shimizu, J. Menéndez and K. Yako, Phys. Rev. Lett. 120 (2018)

142502.

[4] E. Santopinto, H. Garc̀ıa - Tecocoatzi, R. I. Magaña - Vsevolodovna

and J. Ferretti, “Heavy-ion double-charge-exchange and its relation

to neutrinoless double beta decay”, available on arXiv: 1806.03069v2

[nucl-th] 27 Jun 2018.

[5] H. Lenske, “Probing Double Beta - Decay by Heavy Ion Charge Ex-

change Reactions”, IOP Conf. Series: Journal of Physics: Conf. Series

1056 (2018) 012030.

[6] H. Lenske, J. I. Bellone, M. Colonna, J. A. Lay, Phys. Rev. C 98

(2018) 044620.

[7] C. D. Goodman et al., Phys. Rev. Lett. 44 (1980) 1755.

[8] Y. Fujita et al., PPNP 66 (2011) 549-606.

173



BIBLIOGRAPHY

[9] F. Osterfeld, Rev. Mod. Phys., Vol. 64, 2 (1992) 491-550.

[10] M. Ichimura, H. Sakai, and T. Wakasa, Prog. Part. Nucl. Phys., 56,

446 (2006).

[11] G. Mart́ınez-Pinedo, J. Phys. G: Nucl. Part. Phys. 35, 014057 (2008).

[12] O. Cremonesi andM. Pavan, Adv. High Energy Physics 2014, 951432

(2014).

[13] W. P. Alford and B. M. Spicer, Adv. Nucl. Phys. 24, 1 (1998).

[14] E. Fermi, Z. Phys. 88, (1934) 161.

[15] P.Christmas et al., Nuclear Instruments and Methods in Physics

Research 215 (1983) 397 - 408.

[16] Y. Fukuda et al., Phys. Rev. Lett., 81 (1998), 1562-1567.

[17] Q. R. Ahmad et al., Phys. Rev. Lett., 89 (2002) 011301.

[18] C. Giunti, C.W. Kim, Fundamentals of Neutrino Physics and As-

trophysics, (2007).

[19] E. Holzschuh, Rept. Prog. Phys., 55, 1035-1091, 1992.

[20] C. Kraus et al., Eur. Phys. J., 40 (2005) 447.

[21] V. M. Lobashev et al., Phys. Lett. B 460 (1999) 227-235.

[22] L.Bornschein, the KATRIN-Collaboration, Nucl. Phys. A, 752

(2005), 14-23.

[23] E. Majorana, Nuovo Cimento 14, 171 (1937).

[24] Maggiore M., A modern introduction to quantum field theory, Ox-

ford University Press (2005). Peskin M. E., Schroeder D. V., An In-

troduction to Quantum Field Theory, Westview Press (1995).

174



BIBLIOGRAPHY

[25] G. Racah, Nuovo Cimento 14, 322 (1937).

[26] M. Jezabek, Y. Sumino, Phys. Lett. B 440 (1998) 327-331.

[27] S. Antusch, S. F. King, New J. Phys. 6 110 (2004).

[28] S. F. King, Phys. Lett. B 718 (2012) 136-142.

[29] S. F. King, J. Phys. G: Nucl. Part. Phys. 42 (2015) 123001.

[30] R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980).

[31] A. Abada and M. Lucente, Nucl. Phys. B 885 (2014) 651 - 678.

[32] A. G. Dias et al. Phys. Rev. D 86 (2012) 035007.

[33] M. Mitra et al., Phys.Rev. D95 (2017) 3, 035042.

[34] F. R. Joaquim and A. Rossi, AIP Conf. Proc. 1078, 372

(2009) [arXiv:0809.2859 [hep-ph]]. A. de Gouvêa and P. Vogel
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[70] F. Šimkovic, G. Panits and A. Faessler, Prog. in Part. and Nucl.

Phys. 40 (1998) 285 - 294.
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