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Deep, persistent problems are never solved by accident; they are solved
only by people who are obsessed with them and set out to solve them directly.

Lee Smolin

A good scientist is someone who works hard enough to make every possible
mistake before coming to the right answer.

R. Feynmann

It’s better to be connected with your neighbour than with the Pope, at
least if you need salt.

Constantino Tsallis
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Introduction

The world seems to be relational. Many, probably the majority of, natural and artificial
systems show emergent behavior, i.e. properties that cannot be explained within a
reductionist framework, rather they appear because of the relations between the elements
of the system. All phenomena seem to show relational properties whether you look at a
very small spatial/energy scale (fundamental particles, many-body systems, molecules,
proteins. etc..) or at a very large one (planetary systems, systems of stars, galaxies,
orbiting black holes).

Modern theories of quantum gravity indicate that spacetime itself is relational [1–14],
if that will reveal true, it would mean that relationalism is ubiquitous: even at the
deepest level the cosmos is filled with relations. Therefore it does make sense to describe
Nature via relational mathematical tools: by construction Graph Theory is such a tool.
Indeed in section §1.1 I briefly intruduce basic graph-theoretical definitions and metrics
to give to the reader a first approach to the tools we are using today to describe a very
huge spectrum of phenomena.

Many systems show some complex characteristics: what we call complex systems
(CS). Someone says it is easier to tell what is not a complex system than what it is,
however everyone agrees upon some of those characteristics. Among the others, CS are
made of a large number of elements that in themselves can be simple, the interactions
are non-linear, CS are far from equilibrium, show emerging behavior (and when you take
only part of the original system seldom you get similar behavior, think about taking
half the human body, you pick the half!). During the last decades the field has grown
so much to include brand new disciplines, Socio-physics and Econophysics among the
others; no time but now could be more exciting for a complex scientist.

When a system is relational and complex you talk about a complex network (CN).
CN theory [15] has become a field in its own and, funny enough, it seems to growth
non-linearly with hundreds of articles popping up every month. In section §1.2 I shortly
describe some model of CN somehow in historical order (but not giving a complete
historical picture) and discuss the utility of this new formalism.

As the field has grown, some generalizations of graphs and CN appeared; hypergaphs
is the name (preferred by mathematicians). Two possible generalizations of CN are
Multilayer Networks and Simplicial Complexes (names preferred by physicists, even
though they are a subclass of hypergraphs). In section §1.3 I will only scratch the surface
of the latter giving to the reader the essential informations needed for the work that
follows in chapter 3. For the former see [16–18].

Of particular importance, and representative of many natural systems, are the so-
called asymptotically-scale free networks, or simply scale-free networks. In all those
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models a major role is played by the attachment rule, that is the way in which each
element (node) of the system (network) gets new connections (links). The attachment
probability for a node to win over the others could be proportional to its degree, i.e.
how many connections it already has (full description will be depicted in the following
chapters). If the system is geographically constrained, as for ecological systems, power
grids, public transportation, social face-to-face interactions, there will be (usually an
inverse) proportionality to the geographical distance between the nodes. In this case
the importance of the distance between the nodes can be regulated by the introduction
of a parameter (αA in what follows). Furthermore, if each node has any ability (or
inability) to attract new nodes, a fitness parameter can be introduced for every node.
The possible values that the fitness parameter can take, i.e., the fitness parameter
distribution, and the importance of the distances between nodes, open the doors for
different models to emerge. Among these the Barabási-Albert model [21] where there is
no dependence on the distances and all the nodes have the same ability to attract new
ones (fitness parameter equal one for all nodes). A possible extension of this model is the
well-known Bianconi-Barabási one [22] where now the fitness parameter is (introduced
and chosen) uniformly between zero and one.

As I will explain better later, it turned out that these are particular cases of more
general models [39, 40] where the dependence on the distance of the growing mechanism
and therefore the role of dimensionality of the system is introduced. The nodes are
placed in a specific geographical position (in dimension 1,2,3 and 4) based on an isotropic
distribution; then the topology of the network is dictated by the degree, the fitness and
distances of the nodes. In one of the works presented in this thesis, and as the result of
a research conducted together with prof. Constantino Tsallis at Centro Brasileiro de
Pesquisas Fisica (CBPF) (and prof. Andrea Rapisarda) [19], we generalized the fitness
distribution obtaining a new landscape of models of which the above cited are particular
cases. We recover them by tuning a new introduced parameter to particular values as
illustrated in chapter §2.

The cited Bianconi-Barabási model is also a classical example of the phenomenon
in which the dynamics of a classical network is mathematically described by quantum
statistics (QS). QS have been shown to emerge spontaneously in the description of
growing network models with fitness of the nodes. The implications of this mapping
are profound. In particular the mapping of the Bianconi-Barabási model with a Bose
gas is able to predict a topological phase transition [56,65] in the network in which the
dynamics of the networks is not stationary anymore but instead it is dominated by the
sequence of nodes with high fitness that arrive in the network and eventually become
super-hubs. Similarly the mapping of a so-called growing Cayley tree with fitness of
nodes to the Fermi-Dirac distribution [58] leads to the analytical description of Invasion
Percolation on these structures.

Recently these classical results of network theory have been related to the properties
of growing simplicial complexes [66–70]. A simplicial complex [71–75] is a generalized
network structure that allows the description of many-body interactions between a
set of nodes (see §1.3 for more on that). In particular simplicial complexes are not
only formed by nodes and links, like in the networks, but they are also formed by
triangles, tetrahedra and so on. Given that a simplicial complex is built by geometrical
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blocks, simplicial complexes are natural structures to study network geometry. As
such simplicial complexes have been widely used in quantum gravity to describe the
discrete (or discretised) structure of space-time [76–79]. In the last five years simplicial
complexes are becoming increasingly popular to describe complex systems as well
including collaboration networks, social networks, financial networks, nano-structures,
and brain networks [74,75,80–85].

In that respect Network Geometry with Flavor (NGF) [66–70] is a non-equilibrium
model of growing simplicial complexes with fitness that has been proposed to study
emergent network geometry. In fact the NGFs evolve thanks to purely combinatorial
rules that make no use of any embedding space, but when the same length is attributed
to each link of the simplicial complex they are able to generate structures with an
emergent hyperbolic geometry [68].
The flavor (s in what follows) of the NGF is a parameter that can change the topological
nature of the simplicial complexes and their evolution. For different values of the flavor
(see chapter §3 and references therein) you can get manifolds or networks that grow by
uniform attachment or still networks evolving according to a generalized preferential
attachment rule.

Interestingly NGFs have a stochastic topology that is described by quantum statistics
[66, 67]. In particular, as explained later, for s = −1 the (d − 1)-dimensional faces
are described by the Fermi-Dirac statistics. Moreover the lower dimensional faces are
described by either the Boltzmann or the Bose-Einstein statistics. For instance in a NGF
with flavor s = −1 and dimension d = 3 the statistical properties of the triangles, links
and nodes of the simplicial complexes are described by the Fermi-Dirac, the Boltzmann
and the Bose-Einstein statistics respectively.

In the work presented in this thesis, as the result of my period of research at
Queen Mary University (a winner of an Erasmus scholarship), in collaboration with
prof. Ginestra Bianconi (and prof. Andrea Rapisarda) [20], we extended the study
of this model to Network Geometry with Fractional Flavor. In principle, for reasons
that will become clearer in what follows, for these networks we might expect to find
that (d− 1)-faces are described by fractional statistics [86–88]. Contrary to this naive
expectation we found that also in this case (d− 1)-dimensional faces are described by
the Fermi-Dirac statistics and that instead the main difference with the NGF with
integer flavor is that we do not find any face described by the Boltzmann statistics. This
result sheds light on the effect that dimensionality and flavor have on the emergence of
quantum statistics in NGFs.
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Chapter 1

Basic concepts

1.1 What is a graph?

Let start with some useful basic definitions so to prepare the terrain for what comes
next in this work. For more on the mathematical description of graphs see [26–35]. As
we said graph theory is the natural tool to describe relational systems, let’s start then
with the following

Definition. A graph G is a triple consisting of a vertex set V (G), an edge set E(G)
and a relation R that associates with each edge two vertices called its endpoints.

One can draw the graph on paper by placing each vertex at a point and represanting
each edge by a curve joining the locations of its endpoints. This is a representation of
the graph G.

Definition. A loop is an edge whose endpoints are equal. Multiple edges are edges
having the same pair of endpoints. A simple graph is a graph having no loops or
multiple edges.

A simple graph can be specified by its vertex set and edge set. To refer to a specific
edge e with endpoints i,j or its (whatever) property p, one can simply write eij and
pij respectively. When i and j are the endpoints of an edge, they are adjacent and are
neighbors.

Definition. A graph is finite if its vertex set and edge set are finite.

In this dissertation we will consider, if not otherwise specified, finite simple graphs.
In graph theory and network science can be useful to know if an element is connected
to all the others (or a subset of them) in that case the following definitions hold

Definition. A clique in a graph is a set of pairwise adjacent vertices.

Definition. A complete graph is a simple graph whose vertices are pairwise adjacent;
the complete graph with n vertices is denoted kn.
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Figure 1.1: Example of a clique; it can be a subgraph (see definition below) of a graph G

While a complete graph is defined as a graph whose vertices are pairwise adjacent, a
clique is a set of pairwise adjacent vertices in a graph.

Definition. A path is a simple graph whose vertices can be ordered so that two vertices
are adjacent if and only if they are consecutive in the list. A cycle is a graph with an
equal number of vertices and edges whose vertices can be placed around a circle so that
two vertices are adjacent if and only if they appear consequtively along the circle.

Figure 1.2: A path on the left, a cycle on the right: dropping an edge from a cycle
produces a path

Definition. A subgraph of a graph G is a graph H such that V (H) ⊆ V (G) and
E(H) ⊆ E(G) and the assignment of endpoints to edges in H is the same as in G. We
write H ⊆ G and say that G contains H.

Definition. A graph is connected if each pair of vertices in G belongs to a path;
otherwise, G is disconnected.

Instead of listing the vertices and edges a more useful representation of a graph is
obtained via its adjacency matrix defined as follows (if not otherwise specified, in the
rest of the chapter we refer to graphs without loops).

Definition. Given a graph G with vertex set V (G) = {v1, . . . , vn} and edge set E(G) =
{e1, . . . , en}. The adjacency matrix of G, A(G), is the n-by-n matrix in which entry
ai,j is the number of edges in G with endpoints {vi, vj}

Definition. If vertex v is an endpoints of edge e then v and e are incident. The
degree of vertex v is the number of incident edges.

Every adjacency matrix is simmetric (ai,j = aj,i). An adjacency matrix of a simple
graph G has entries 0 and 1, with 0s on the diagonal. The degree of v is the sum of the
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entries in the row for v in A(G).
The ith row and column in A(G) correspond to the ith vertex of the graph. This means
that the adjacency matrix names the vertices by the order of the row. Nevertheless
many properties of interest do not depend on the names. The structural properties of G
and H will be the same if we can rename the vertices of G using the vertices in H so
that G will become H. It could be useful to keep in mind the following

Definition. An isomorphism from a simple graph G to a simple graph H is a bijection
f : V (G)→ V (H) such that uv ∈ E(G) if and only if f(u)f(v) ∈ E(H). We say "G is
isomorphic to H" and we write G ∼= H.

Definition. A walk is a list v0, e1, v1, . . . , ek, vk of vertices and edges such that, for
1 ≤ i ≤ k, the edge ei has endpoints vi−1 and vi. A u, v-walk has first vertex u and last
vertex v, its endpoints. A u, v-path is a path whose vertices of degree 1 (its endpoints)
are u and v, the others are internal vertices.

Proposition 1. If G is a simple graph in which every vertex has degree at least k, then
G contains a path of length at least k. If k ≥ 2, then G also contains a cycle of length
at least k + 1.

When studing a relational system one can be intersested in knowing if from an element
of it any other element can be reached (to pass information, energy etc..)

Definition. A graph is connected if it has a u,v-path whenever u, v ∈ G, otherwise
is disconnected.

This means that a graph is connected if from each vertex there is a walk to one particular
vertex.

Definition. A cut-edge or cut-vertex of a graph is an edge or vertex whose deletion
increases the number of components. We write G− e or or G−M for the subgraph of
G obtained by deleting an edge e or set of edges M . We write G− v or or G− S for
the subgraph of G obtained by deleting a vertex v or set of vertices S.

Definition. The union of graphs G1, . . . , Gk is the graph with vertex set
⋃k
i=1 V (Gi)

and edge set
⋃k
i=1E(Gi).

Proposition 2. Every graph with a nonloop edge has at least two vertices that are not
cut-vertices.
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As we will see, the degrees of the vertices of a graph are fundamental parameters.
Let’s give again the definition with more notations.

Definition. The degree of vertex v in a graph G, written dG(v) or (stealing the
notation from Networks Science) k, is the number of edges incident to v. The maximum
degree is ∆(G), the minimum degree is δ(G), and G is regular if ∆(G) = δ(G). It is
k-regular if the common degree is k.

Proposition 3. If G is a graph, then∑
v∈V (G)

dG(v) = 2e(G) (1.1)

Definition. The degree sequence or degree distribution of a graph is the list of
vertex degrees.

Definition. A graph with no cycle is acyclic. A forest is an acyclic graph. A tree is
connected acyclic graph. A spanning subgraph of G is a subgraph with vertex set
V(G). A spanning tree is a spanning subgraph that is a tree.

Theorem 1. For an n-vertex graph G, the following are equivalent (and characterize
the trees with n vertices).
A)G is connected and has no cycles.
B)G is connected and has n− 1 edges.
C)G has n− 1 edges and no cycles.
D) For u, v ∈ V (G), G has exactly one u, v-path.

In the next section we will introduce different kind of network models and one of the
way to differentiate them is related to their diameter

Definition. If G has a u, v-path, then the distance from u to v, written dG(u, v), is the
least length of a u, v-path. If G has no such path, then dG(u, v) =∞. The diameter
(diam G) is maxu,v∈V (G)d(u, v).

An entire book would not be enough to describe all the beauty and power of graph
theory; we focused on some very basic definitions in order to give to the reader a wide
self-consistent picture of the main work treated in this thesis.
When sociologists first and physicists later, put their hands on graph theory, the subject
turned into a new field with a wider range of applications. Let’s have a look at models
useful to those applications.
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1.2 What can you do with that? - Complex Networks

Physiscists prefer to talk about nodes (and set of nodes N) instead of vertices (and set
of vertices V ), and links instead of edges. Usually the notation is, let’s say i and j for
the nodes and lij for the link connecting them. A part a change of notation, networks
theory borrows definitions and theorems from graph theory.
One of the key characteristics in the study of networks is the degree distribution P (k)
(or pk) i.e. the fraction of nodes with degree k. One can calculate the nth-moment of
P (k)

〈kn〉 =
∑
k

knP (k) (1.2)

that gives useful informatiions on the degree distribution. For instance the first moment
〈k〉 gives the mean of the degrees of the network, the 2nd moment gives the variance
and so on.
It could happen that the probability of a node of degree k of being connected to a node
of degree k′ depends on k, we say the graphs are correlated and we write P (k|k′); the
two following relations hold ∑

k′

P (k|k′) = 1 (1.3)

kP (k′|k)P (k) = k′P (k|k′)P (k′) (1.4)

Using the adjacency matrix defined in the previous section one can define the the first-
neighbors mean degree of a node i, knm,i = 1

ki

∑N
j=1 aijkjand in terms of the conditional

probability above the first-neighbors mean degree of a node of degree k is defined as

knm(k) =
∑
k′

k′P (k′|k). (1.5)

Assortative graphs are graphs whose nodes tend to attach to others that are similar
usually in terms of degree (knm(k) increasing function of k); dissortative graphs are
graphs whose nodes tend to attach to others that are not similar; high degree nodes
tend to attach to low degree ones (knm(k) decreasing function of k).
Another very useful coefficient is the so-called local clustering coefficient, for a node i

ci =

∑
j,m;jm aijajmami

k1(ki − 1)
(1.6)

from which the (total) clustering coefficient

C = 〈c〉 =
1

N

∑
i

ci (1.7)

which is just the probability of a pair of neighbors to be interconnected.
What do real networks look like and how can we describe them? Let’s start with some
models?
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1.2.1 RANDOM GRAPHS

The simplest type of networks are the random graphs introduced by Erdös and Rényi in
1959. One can construct a random graph by starting with N nodes and connecting pairs
of them at random. In principle you can add up to N(N−1)

2
links (obtaining a complete

graph). There are a large number of ways to distribute the links, therefore a particular
random graph would be an element of a statistical ensamble. You can build a random
graph by starting with N isolated nodes and connecting pair of them with probability
0 < p < 1. The probability that a particular realization of a random graph has exactly
L links is

PL =

(N(N−1)
2

L

)
pL(1− p)N(N−1)/2−L (1.8)

Taking p equal for each pair gives rise to the Erdös-Rényi version of random networks.
Changing it gives rise to different random models. Given the critical probability pc = 1

N
,

it can be shown

• if p < pc, almost certaintly the graph doesn’t contain subgraphs of size bigger than
O(lnN) and no component has more than one cycle;

• if p = pc almost certaintly the biggest component is of size O(N2/3);

• if p > pc the graph has about O(N) components with O(N) cycles and no other
component has more than O(lnN) nodes and more than one cycle.

The expected number of links in a random graph is

〈L〉 = p
N(N − 1)

2
(1.9)

from which one can obatin the average degree of a random graph

〈k〉 =
2〈L〉
N

= p(N − 1) (1.10)

where N − 1 is the maximum number of links a node can have (in a graph of size N).
The number of links in a random graph is therefore determined only by two numbers,
N and p. Increasing the latter makes the graph denser, that is the average number of
links increases from 〈L〉 = 0 to Lmax while the average degree of a node increases from
〈k〉 = 0 to 〈k〉 = N − 1. In random networks some nodes gain numerous links, while
others only a few, this is captured by the degree distribution

pk =

(
N − 1

k

)
pk(1− p)N−1−k (1.11)

that is a binomial distribution.
In most real networks it happens that 〈k〉 << N , in this case we say that they are sparse.
In this limit the degree distribution can be approximated by the Poisson distribution

pk = e−〈k〉
〈k〉k

k!
. (1.12)
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Random network models predict that all nodes have comparable number of links;
this is not in agreement with real networks, where the so-called hubs exist (elements
with a very high number of links).
As we saw before, in the p < 1

N
case for 〈k〉 = 0 the network consists of N isolated

nodes. As we increase 〈k〉 we add N〈k〉 = pN(N − 1)/2 links to the network. Therefore
we observe numerous tiny components of comparable sizes and no giant components. A
giant component appear as p > 1

N
(with a phase transition at p = 1

N
). Near the critical

point (〈k〉 = 1) the size of the giant component is

NG ≈ (p− pc)N (1.13)

it means it contains a finite fraction of nodes. As you move from the critical point, a larger
fraction of nodes will be included. As a consequence numerous isolated components
(trees) coexist with the giant component (as soon as 〈k〉 = 1). When 〈k〉 > lnN ,
NG ≈ N the giant component absorbs all nodes and the network becomes connected
with no isolated nodes.
Summarizing, in random network models as you vary 〈k〉 the isolated nodes and small
components (for small valus of 〈k〉) collapse into a giant component (for high values of
〈k〉) through a phase transition.
These two characteristics of random networks (that a giant component emerge for 〈k〉 > 1
and it contains all nodes for 〈k〉 > lnN) are seldom satisfied by real networks: they
exceed the 〈k〉 = 1 treshold and are fragmented into multiple components.
Given a node, what is the density of links between its neighborhood? It can be easily
shown that the local clustering coefficient of a random network is

ci =
〈k〉
N

(1.14)

i.e., the larger the network, the smaller the clustering coefficient; moreover for each
node it is independent of the node’s degree. The average clustering coefficient 〈C〉 also
follows eq. 1.14.
For real networks, if one plots 〈C〉/〈k〉, it is independent of N , not decreasing as N−1
thus eq. 1.14 is violated. Also the average clustering coefficient does depend on the
node degree C = C(k) contrary to what the random model predicts.

1.2.2 SMALL-WORLD NETWORKS

Whether a network is random or not it can show small world properties. The small world
phenomenon or six degrees of separation, implies that if you choose any two elements of
a network you will find a short path (of at most six elements) between them.
In a random network with average degree 〈k〉 a node has on average, up to a distance d,
a number of nodes

N(d) ≈ 1 + 〈k〉+ 〈k〉2 + · · ·+ 〈k〉d =
〈k〉d+1 − 1

〈k〉 − 1
(1.15)

but because it cannot be bigger than the total number of nodes there must be a maximum
distance dmax (the diameter of the network) that can be found imposing

N(dmax) ≈ N (1.16)
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and assuming that 〈k〉 >> 1 we find

dmax ≈
lnN

ln〈k〉
. (1.17)

Since lnN << N , distances in a random network are smaller than the size of the
network. Usually this is the definition of the "small world phenomenon": the diameter
depends logaritmically on the size of the system. For random network models this
property is due to the fact that the number of nodes at distance d from a node increases
exponentially with d.
Real networks are not random but still show small world properties. They also have a
higher clustering coefficient with respect to the one predicted by random models. Watts
and Strogatz [42] proposed an extension of random networks to account for high 〈C〉
and the small world property.
You start from a reguar lattice, actually a ring of nodes connected to their immediate
and next neighbors, which has high clustering coefficient but no small-world property.
Some links are re-wired with probability p to a node choosen at random. For a certain
range of values of the rewiring parameters the long-range links decrease the distances
between the nodes. This gives rise to a low average path length mantaining the high
clustering coefficient. At p = 1 all links have been rewired and the network becomes a
random one.
The resulting degree distrubution is Poisson-like, thus nodes with high degree are absent
and also it predicts a k-independent clustering coefficient

C(p) ≈ 3(m− 1)

2(2m− 1)
(1− p)3 (1.18)

with m = kmin the minimum degree.
In order to get model closer to real networks we must start from the correct degree
distribution and then look for small-world and high clustering properties.

1.2.3 SCALE-FREE NETWORKS

Empirical observations show that many real networks present a degree distribution quite
different from the Poissson-like, they show a degree distribution well approximated with

pk ≈ k−γ (1.19)

this is called a power law distribution, while the exponent its degree exponent. We call
a scale-free network a network whose degree distribution follows a power law. A more
precise formula for the degree distribution is

p(k) = (γ − 1)k
(γ−1)
min k−γ (1.20)

The main difference between a random and a scale-free network comes in the high-k
region of the degree distribution pk. A scale-free network has a large number of small-
degree nodes (absent in a random network) much more high-degree nodes, or hubs, and

14



less nodes with degree k ≈ 〈k〉 compared to a random network.
For scale-free networks one can easily compute the maximum (and the minimum) degree,
kmax (kmin), of the degree distribution pk and estimate the expected size of the largest
hub

kmax = kmin +
lnN

λ
(1.21)

using eq.1.20 one gets
kmax = kminN

1
γ−1 (1.22)

this means that the larger the network, the larger the biggest hub’s degree. In very large
scale-free network there are orders of magnitude diferences in size between the smallest
node and the biggest one. While in random networks most nodes have comparable
degrees and there are no hubs, in scale-free networks hubs are common and their size
grows polynomially with the network size (in random networks the size of the largest
node grows logaritmically with N).
Consider now the nth moment of the degree distribution

〈kn〉 =
∞∑
kmin

knpk ≈
∫ ∞
kmin

knp(k)dk (1.23)

that is

〈kn〉 = C
kn−γ+1

max − kn−γ+1
min

n− γ + 1
(1.24)

since the degree of the largest hub, kmax, increases with the system size, we take the
limit kmax →∞ for very large networks.
If n− γ + 1 ≤ 0 all the moments (up to γ − 1) are finite. If n− γ + 1 > 0 all moments
larger than γ− 1 diverge. For many networks the exponent γ is between 2 and 3 thus, in
those cases, in the N →∞ limit only the first moment is finite, higher moments go to
inifinity. The divergence of the second moment, 〈k2〉 and hence the standard deviation,
indicates that the fluctuations around the average can be arbitrarily large. From this
the name scale-free: there is no internal scale, nodes with very different degrees coexist
in the same network. A large number of real networks have been found to be scale-free,
from biological to social networks, but not all networks display the scale-free property;
many important networks, from the power grid to networks appearing in material science,
among the others, are not scale-free. Moreover, many degree distributions observed in
real networks deviate from a pure power law and often this can be attributed to the
processes that give rise to a particular network. In general, the scale-free property is
absent in systems that limit the number of links a node can have.
What about small-world properties in scale-free networks? It can be shown that the
average distance 〈d〉 for scale-free networks is

〈d〉 ≈


cost. for γ = 2

ln lnN for 2 < γ < 3
lnN

ln lnN
for γ = 3

lnN forγ > 3

(1.25)
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In the case γ = 2 all nodes connect to the same central hub and the average path length
does not depend on N . In the case 2 < γ < 3 the many hubs reduce the path length
creating short distances between nodes of small degree. At the critical point γ = 3 (the
second moment of the degree distribution no longer diverges), due to the correction
ln lnN distances are shorter compared to a random network of similar size. For γ > 3
small-world properties hold as in random models, hubs exist but are not enough to
significantly impact the distance between the nodes. We can conclude that the larger
and more numerous the hubs are, the more they shrink the distances between nodes.
Hubs is the main difference between random and scale-free networks. In order to under-
stand why scale-free property is so common in real networks is good to try to model
them and figure out the mechanism that allows the emergence of such property.

1.2.4 Barabási-Albert model

In random network models the number of nodes N is fixed, while in real networks it
grows since new nodes are continually added. Morevover, in real networks (contrary to
random models) nodes tend to link to more connected nodes. This alone can make a
huge difference in the shape of the degree distribution of a network. The first model
introduced to take into account the growth and the preferential attachment was the
so-called Barabási-Albert model [21]. One starts with m0 nodes, with arbitrarily chosen
links between them. At each time step a new node is added with m links connected to
m nodes already present in the network. The probability Π(k) that a link of the new
node connects to a node i depends on the degree ki

Π(k) =
ki∑
i ki

(1.26)

while each node is free to connect to any other node a high-degree node has higher
probability to attract the node. At time t you get a network of size N = t + m0 and
m0 +mt links.
It can be shown that the degree of a node i at time t is

ki(t) = m

(
t

ti

)β
(1.27)

hence all nodes follow the same law (with the same dynamical exponent β); each new
node has more nodes to link to than previous nodes and the earlier the node i arrived,
the higher its degree ki(t): older nodes have an advantage and eventually turn into hubs.
The degree distribution of the Barabási-Albert model is

pk =
2m(m+ 1)

k(k + 1)(k + 2)
(1.28)

that for large k reduces to pk ≈ k3 giving a power-law with exponent degree y = 3.
Notice that γ is independent of m in agreement with observations of many real networks.
Also the degree distribuiton pk is indipendent of the time t and the size of the system
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N , indicating that the model generates a stationary scale-free network and explaining
why networks with different evolution, size and age develop similar (power-law) degree
distributions.
It is worth to notice that if the probability that a new node links to a node with degree
ki is independent of ki (new nodes choose randomly the nodes to link to) the degree
increases logarithmically with time

ki(t) = m ln

(
e
m0 + t− 1

m0 + ti − 1

)
(1.29)

therefore slower than the power law and as a consequence the degree distribution is an
exponential

p(k) =
e

m
exp

(
− k
m

)
(1.30)

which decays faster than a power law not supporting hubs.
The absence of preferential attachment seems to lead to a growing network with an
exponential degree distribution. This indicates that preferential attachment is necessary
for the emergence of scale-free property, at least for ordinary complex networks. In-
deed in chapter §3 I will show that this does not necessarily apply to simplicial complexes.

To conclude the section let’s look at the small-world properties of this model. It can
be shown that, for m > 1 and large N the average distance scales as

〈d〉 ≈ lnN

ln lnN
(1.31)

thus distances in Barabási-Albert networks are smaller than those observed in random
networks. At same time, the clustering coefficient of the Barabási-Albert model turns
out to be

〈C〉 ≈ (lnN)2

N
(1.32)

larger than the clustering coefficient (1/N) of random networks. This makes Barabási-
Albert model more clustered than a random graph.

The Barabási-Albert model is a very basic one which, while being useful to explain
the emergence of the scale-free property, does not fully capture details and characteristics
of real networks.

1.2.5 Bianconi-Barabási model

In reality the growth rate of a node in real networks does not depend only on its age.
Nodes have qualities or abilities that influence the rate at which they aquire links.
The ability of a node to attract nodes is called its fitness. In order to take it into
account, Barabási-Albert model can be generalized introducing a fitness parameter η.
The resulting model is called fitness model or Bianconi-Barabási model. The network
is built as follows: At each timestep a new node j with m links and fitness ηj is added
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to the network. A node’s fitness does not change over time; it is chosen from a fitness
distribution p(η). The probability that a link of a new node connects to node i is

Π(k) =
ηiki∑
j ηjkj

(1.33)

This implies that between two nodes with same degree, the one with higher fitness is
selected with a higher probability. This way even a node with initially few links can
aquire more links if it has larger fitness with respect to other nodes. Assuming that the
time evolution of ki follows a power law

k(t, ti, ηi) = m

(
t

ti

)β(ηi)
(1.34)

(since a node with higher fitness will increase its degree faster) it can be shown that the
degree distribution is

pk ≈ C

∫
dη
p(η)

η

(m
k

)C
η
+1

(1.35)

which when all fintesses are equal to η = 1, thus p(η) = δ(η− 1), yealds to C = 2. With
β = 1/2 you get pk ≈ k−3 i.e. the Barabási-Albert model.
If η is uniformly distributed in the [0, 1] interval, nodes can have different fitness picked at
random in that interval, the dynamic exponent become β(ηi) = ηi/C

′ and consequently
the degree distribution becomes

pk ≈
∫ 1

0

dη
C ′

η

1

k1+C′/η
≈ k−(1+C

′)

ln k
(1.36)

where C ′ = 1.255 (estimated numerically). Hence the degree distribution follows a power
law with exponent γ = 2.255 with a logarithmic correction 1/ ln k.
This model accounts for the ability of nodes to aquire links at different rates. The node’s
growth rate is determined by its fitness η, choosen uniformly from the distribution p(η).
For most fitness distributions the degree of each node is ultimately detemined by its
fitness. The fittest node becomes the largest hub, and at any moment the degree
distribution follows a power law, indicating that the generated network has a scale-free
topology. The largest hub is closely followed by slightly smaller hubs, with almost the
same number of links as the fittest node. The model with uniform fitness distribution is
in this scale-free phase. Changing the fitness distribution p(η) can change the topology
of the network and/or its degree distribution, as we will see in later sections.

1.2.6 Geographically-constrained networks: The role of dimensionality

Many real networks have physical background, meaning that they are located somewhere
in the physical world: their elements are geographically constrained. We say those
networks are geographically-constrained networks. Clearly the dimensionality d of the
constraint can make a huge difference for the network topology and eventually for its
degree distribution. Usually, a high-dimensional system have more degrees of freedom
than a low-dimensional one. Distances in physical world can play a major role. Closer
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nodes can have higher probability to link to each other due to their proximity. Therefore
the dimensionality and the actual physical distances must be taken into account when we
study physical networks. The Bianconi-Barabási model can be generalized [40] to include
them and still have a preferential attachment mechanism (for simplicity, each new node
will bring only one link to connect to another node, thus m = 1). The model is built as
follow: you fix a reference frame and place a node at the origin. At each time step a
new node is added and located at a certain euclidean distance r ≥ 1 from the center of
mass (r = |x| in one dimension, r =

√
x2 + y2, in two dimensions, r =

√
x2 + y2 + z2

in three dimensions and so on).
The distance is picked from the d-dimensional isotropic distribution

p(r) =
1

rd+αG
(1.37)

where αG > 0 ("G" stands for growth) is introduced to make the distribution p(r)
normalizable. The newly arrived node will then be connected to one of the pre-existing
nodes of the network through the preferential attachment rule given by

Π(k) =
ηikir

−αA
ij∑

j ηjkjr
−αA
ij

(1.38)

where αA controls the importance of the distance and the subindex A stands for
attachment. In this model three factors can influence the probability of the nodes to
receive the new connections: the nodes degree, the Euclidean distance of these nodes
to the new arrived node, and the fitness of these nodes. Notice that the importance
of the distance is less pronounced when αA is close to zero and completely disappears
for αA = 0. In this limit, we recover the Bianconi-Barabási model. When αA > 0 no
exact solution is known but numerical simulations strongly suggest that the degree
distribution is well fitted by a q-exponential

pk = p0e
−k/κ
q (1.39)

with q > 1 and κ > 1. For αA →∞ (q → 1) the BG limit is reached and pk tends to the
standard exponential function. In this limit, independently of the system dimension, the
network present typical connectivity between sites, characteristic of random networks.
In fact fact this represents a phase transition (from scale-free to random networks)
associated with the αA parameter.
As we further generalized this model [19], in the next chapter, I will explain in details
more properties of it that are in common with our model.

1.3 More than graphs: Simplicial complexes

Graphs/networks can be (and indeed have been) extended in what is the very general
concept of hypergraphs. In chapter 3, I describe a model, and its behavior, of a particular
class of hypergraphs: growing simplicial complexes. Let me give here a few basic
definitions; for further reading on hypergraphs see [36–38]
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A simplicial complex describes the many body interactions between a set of N nodes.
In particular a simplicial complex is formed by simplices glued along their faces. A
δ-dimensional simplex is a set of δ + 1 nodes. Therefore a 0-dimensional simplex is a
node, a 1-dimensional simplex is a link, a 2-dimensional simplex is a triangle, and so on.
A δ′-dimensional face α′ of a δ-dimensional simplex α, is a simplex formed by a subset
of δ′ + 1 nodes of α, i.e. α′ ⊂ α. A d-dimensional simplicial complex K is formed by a
set of simplices of dimensions 0 ≤ δ ≤ d (including at least a d-dimensional simplex)
that obey the following two conditions:

(a) if a simplex α belongs to the simplicial complex, i.e. α ∈ K then also all its faces
α′ ⊂ α belong to the simplicial complex, i.e. α′ ∈ K;

(b) if two simplices α and α′ belong to the simplicial complex, i.e. α ∈ K and α′ ∈ K,
then either their intersection is the null set α∩α′ = ∅ or their intersection belongs
to the simplicial complex, i.e. α ∩ α′ ∈ K.

A d-dimensional simplicial complex is called pure if it is only formed by d-dimensional
simplices and their faces. From a simplicial complex it is always possible to extract a
network called the 1-skeleton by considering only the nodes and links of the simplicial
complex.
We will focus on pure d-dimensional simplicial complexes K. In the following we will
indicate with Qδ(N) the set of all possible δ simplices in a simplicial complex of N nodes
and with Sd,δ the set of all the δ-dimensional faces of the pure d-dimensional simplicial
complex K.
The topology of a pure d-dimensional simplicial complex K is fully specified by the
adjacency tensor a of elements aα with α ∈ Qd(N) given by

aα =

{
1 if α ∈ K,
0 otherwise. (1.40)

The generalized degree kd,δ(α) [67, 73] of the δ-face α is defined as the number of d-
dimensional simplices incident to it. Using the adjacency tensor we can evaluate kd,δ of
a δ-face α as

kd,δ(α) =
∑

α′∈Qd(N)|α′⊃α

aα′ . (1.41)

Therefore, in d = 2, the generalized degree k2,1(α) is the number of triangles incident to
a link α while the generalized degree k2,0(α) indicates the number of triangles incident
to a node α. Similarly in a pure d = 3 dimensional simplicial complex, the generalized
degrees k3,2, k3,1 and k3,0 indicate the number of tetrahedra incident respectively to a
triangular face, a link or a node. The generalized degrees of faces are not independent of
the generalized degree of the simplices to which they belong [73]. In fact the generalized
degree of a δ−face α is related to the generalized degree of the δ′-dimensional faces
incident to it, with δ′ > δ, by the simple combinatorial relation

kd,δ(α) =
1(

d− δ
δ′ − δ

) ∑
α′∈Qd(N)|α′⊃α

kd,δ′(α
′). (1.42)
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Moreover, since every d-dimensional simplex belongs to
(
d+ 1
δ + 1

)
δ-dimensional faces,

in a simplicial complex with M d-dimensional simplices we have∑
α∈Sd,δ

kd,δ(α) =

(
d+ 1
δ + 1

)
M. (1.43)

The (d− 1)-dimensional faces of a pure d-dimensional simplicial complex deserve some
special attention. In particular to each (d − 1)-dimensional face α we associate an
incidence number nα given by the number of incident d-dimensional simplices minus one,
i.e.

nα = kd,d−1(α)− 1. (1.44)

Interestingly a simplicial complex can define a discrete d-dimensional manifold only if
nα ∈ {0, 1}, i.e. a discrete d-dimensional manifold must have all its (d− 1)-dimensional
faces incident at most to two d-dimensional simplices. Therefore if nα > 1 at least for
one face α ∈ Sd,d−1 then the simplicial complex is not a discrete manifold.
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Chapter 2

Case 1: Asymptotically-scale-free geographical
networks

As a representative example of the role of fitness in complex networks I present the
work (submitted to JSTAT at the time of writing) in which we generalized the fitness
distribution by introducing a new parameter that allows us to regulate it. This model
turned out to be a very general case able to include many well-known ones, as explained
in the following sections.

2.1 How to build the network

2.1.1 The parameters

We build the network by successively including one node at a time. We start with the
first node placed at the origin, then we add a second node, a third one and so on up
to N . Each node is located at a certain Euclidean distance r ≥ 1 from the center of
mass calculated among all the preexisting nodes, and it is picked from a d-dimensional
isotropic distribution

p(r) ∝ 1

rd+αG
(2.1)

where d = 1, 2, 3 and αG > 0 is chosen to make the distribution p(r) normalizable. Here
G stands for geographical to distinguish it from the other parameter introduced here
below. As it was shown in [39], αG does not relevantly affect the growth of the network.
Therefore we shall typically fix it to αG = 2.
At each time step the degree k of each node is updated (after the connections are created
as explained here below). Also a fitness parameter η ∈ [0, 1] is attached to the new
arrived node. The main novelty of the present model is the probability distribution of η
(see Fig. 2.1).

P (η) =


(1 + ρ)ηρ, for ρ > 0

1, for ρ = 0

(1− ρ)(1− η)−ρ, for ρ < 0

(2.2)
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where the prefactors (1 + ρ) and (1− ρ) come from the normalization. The new intro-
duced parameter ρ ∈ (−∞,∞) regulates the fitness parameter distribution. Tuning it
to particular values allows us to recover various well-known models and a variety of new
possibilities that we shall discuss along the thesis.

Figure 2.1: Fitness distributions P (η) for typical values of ρ ∈ (−∞,∞).

2.1.2 Preferential attachment rule

When a new node j is added it will be attached to one of the preexisting nodes i following
the preferential attachment rule

Πi =
kiηir

−αA
ij

Σikiηir
−αA
ij

(αA ≥ 0) (2.3)

where rij is the geographical distance between node i and node j and αA is the param-
eter that regulates the importance of distances in the attachment rule (A stands for
attachment). Clearly, in the αA = 0 limit distances play no role and the connectivity
is dictated only by how many connections a node already has (k) and its ability to
get new ones (η). Basically the topology associated with our model is influenced by a
couple of parameters (αA, ρ), in addition to the dimensionality d of the system. Despite
its simplicity, the present model is able to reproduce a landscape of models, some
well-known plus a variety of previously unexplored ones (see the following section for
the details).

2.2 Role of dimensionality and of stochastic fitness

2.2.1 Degree distribution

The first natural thing to check is the digree distribution. It is found of the form
P (k) ∝ e

−k/κ
q (see Fig.2.2) where the q-exponential

ezq ≡ [1 + (1− q)z]1/(1−q) (2.4)
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optimizes the nonadditive entropy

Sq = k
1− Σip

q
i

q − 1
(2.5)

(q ∈ IR;S1 = −kΣipi log pi). Since this q-exponential distribution optimizes the nonad-
ditive entropy Sq, this model constitutes but a particular system within nonextensive
statistical mechanics (see [44] for a review), where k plays the role of energy and κ plays
the role of temperature. Later we show how (q, κ) depend on (αA/d, ρ). As expected
we found that the generated networks are asymptotically scale-free.

Figure 2.2: Tipical examples of P (k) for ρ = −100 (as a good approximation for
ρ→ −∞ )

As said before, the model strictly depends on the couple of parameters (αA, ρ) plus
the dimensionality of the system d. In particular for (αA, ρ) = (0, 0) and (αA, ρ) = (0,∞)
this model recovers respectively the Bianconi-Barabási and the Barabási-Albert ones
since for ρ = 0 from eq. (2.2) the fitness does not enter anymore in the model while
for ρ→∞ you get a Dirac-delta function. The region where ρ ∈ [−∞, 0) is brand new
and has never been explored before. We built networks with ρ varying in the interval
[−∞,∞]; as espected and shown in fig. 2.3 (for extreme cases) the parameter ρ doesn’t
affect much the topology of the network while αA does.
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Figure 2.3: d = 2 stochastic realizations with N = 100.

Notice in the same figure that the spatial disposition of the nodes is not influenced
neither from ρ nor from αA as for they enter after the positions are choosen.

2.2.2 Universal behavior

As anticipated (q, κ), coming from the q-exponential distribution (2.4), depend on (αA/d,
ρ). Consider first the case q versus ρ see fig.2.5. Is interesting to notice that q varies
from a maximum constant value for the part of the spectrum where ρ → −∞ to a
minimum constant value for the part of the spectrum where ρ → +∞. In the region
near ρ = 0 a more drastic change happens for the values of q (even though all values of q
stay in a small interval). In particular ρ = 0 constitutes an infletion point for q, ∀αA/d.
Observe the collapse of the curves when αA/d = 1 (the upper set of points) or αA/d = 2
(the middle set of points) showing the main dependence of q on the ratio αA/d more
then αA and d taken alone. The value of q for 0 ≤ αA/d ≤ 1 numerically approaches
3/2, 7/5 and 4/3 for ρ approaching −∞, 0 and ∞ respectively. Intriguingly enough,
these three values of q respectively correspond to the divergences of the moments 〈k〉,
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〈k3/2〉 and 〈k2〉 of a q-exponential distribution.
q = 3

2
for ρ→ −∞ < k >→∞

q = 7
5

for ρ = 0 < k
3
2 >→∞

q = 4
3

for ρ→∞ < k2 >→∞
(2.6)

Similar but opposite behavior for κ as a function of ρ. It goes from a minimum
value, when ρ → −∞ to a maximum value when ρ → +∞, in the region near ρ = 0,
that constitutes again an inflection point, κ values change more rapidly. In any case all
points distribute in a narrow interval. Notice also the same collapse of the curves as for
the case of q showing the strict dependence of κ on the ratio αA/d more then αA and d
taken alone. The inflexion point emerges for q and κ as a function of ρ for ρ = 0, ∀αA/d.
The opposite behavior of q and ρ shows up in the relation we found between the two
(see the lowest graph in fig.2.5). All the (q, κ) data closely lie within the straight line

q = 1.54− 0.29κ ∀ (αA/d, ρ) (2.7)

A collapse of the data could be observed also plotting q and κ as functions of αA/d see
fig. 2.4.

We analized different cases, changing the ρ parameter, and we found that the behavior
is very similar for the entire spectrum of ρ. Here we show the case for ρ→ −∞, that
is an interesting previously unexplored case. In the top two plots you can see the
dependnce of q and κ, for diffrent dimensions, on the values of αA. They have similar
behavior but differentiate for different dimensions d. In the low two plots it is shown
the collapse of the curves when one considers q and κ as functions of αA/d. All the
curves collapse in a single universal one. As said, this is true for the whole spectrum
of ρ, showing that our model, with the new introduced parameter is able to reproduce
many well-known models and that the universal dependence of q and κ on αA/d is valid
for ρ ∈ [−∞,∞], therefore it is a universal behavior for a pletora of models.
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Figure 2.4: q and κ as funtions of αA and αA/d for ρ = −100.
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Figure 2.5: q and κ as functions of ρ for typical values of αA/d.
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Chapter 3

Case 2: Network Geometry with Fractional
Flavor

3.1 Network Geometry with Flavor

3.1.1 Energy and fitness of the simplices

In the Network Geometry with Flavor each simplex α ∈ K is associated to an energy
εα that does not change in time. The energy of a face describes its intrinsic and
heterogeneous properties and has an important effect on the simplicial complex evolution.

The energy εi of node i is drawn randomly from a given distribution g(ε). To every
δ-face α ∈ Sd,δ with 0 < δ ≤ d we associate an energy εα given by the sum of the energy
of the nodes that belong to the face α,

εα =
∑
i∈α

εi. (3.1)

Therefore, the energy of a link is given by the sum of energies of the two nodes that
belong to it, the energy of a triangular face is given by the sum of the energy of the
three nodes belonging to it and so on. The energy ε(i,j) of the generic link α = (i, j)
belonging to any given triangle of the NGF formed by the nodes i, j and r satisfy the
triangular inequality

|ε(i,r) − ε(j,r)| ≤ ε(i,j) ≤ ε(i,r) + ε(j,r). (3.2)

This result remains valid for any permutation of the order of the nodes i, j and r
belonging to the triangle. Therefore it is possible to consider the energy of the link as a
possible candidate for the length of the link.

Finally to each simplex α ∈ K we associate a fitness ηα given by

ηα = e−βεα , (3.3)

where β ≤ 0 is an external parameter of the model called inverse temperature. If β = 0
we have that ηα = 1 for every simplex α ∈ K, therefore every simplex has the same
fitness independently of their differences in energy. On the contrary when β is large
small differences in energy lead to large differences in the fitness of different simplices.
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3.1.2 Evolution of the Network Geometry with Flavor

Network Geometry with Flavor (NGF) is a growing model generating pure d-dimensional
simplicial complexes. The stochastic evolution of NGF is determined by a parameter
s called the flavor and by the fitness of the simplices of the simplicial complex. The
evolution of the NGF obeys a simple iterative algorithm.
Initially at time t = 1 the simplicial complex is formed by a single d-dimensional simplex.
At each time t > 1 we glue a d-dimensional simplex to a (d − 1)-face α chosen with
probability

Πd,d−1(α) =
ηα(1 + snα)

Z [s]
, (3.4)

where Z [s] is called the partition function of the NGF and is given by

Z [s](t) =
∑

α′∈Sd,d−1

ηα′(1 + snα′). (3.5)

3.1.3 Possible values of the flavor and their topological implications

The Network Geometry with Flavor describes a growing simplicial complex that depends
on the value of the flavor s. Let us consider the attachment probability Πd,d−1(α) for
β = 0 and the integer flavors s ∈ {−1, 0, 1}. In this case we have that the attachment
probability satisfies

Πd,d−1(α) ∝ (1 + snα) =


1− nα for s = −1,
1 for s = 0,
kd,d−1(α) for s = 1.

(3.6)

Therefore the flavor s = −1 enforces the generation of a manifold. In fact we have
Πd,d−1(α) > 0 if nα = 0 and Πd,d−1(α) = 0 if nα = 1. Therefore nα ∈ {0, 1} for every
(d − 1)-dimensional face α of the simplicial complex. However in both cases s = 0
and s = 1 the incidence number can take any integer value nα ≥ 0. The flavor s = 0
corresponds to a uniform attachment of d-dimensional simplices of (d− 1)-dimensional
faces, while s = 1 corresponds to a higher dimensional preferential attachment of
d-dimensional simplices of (d− 1)-dimensional faces.

The NGF with integer flavor reduces to several known models for different values of
the parameters s, d and β. For d = 1, s = 1, β = 0 the NGF reduces to the Barabási-
Albert [89] model while for d = 1, s = 1, β > 0 it reduces to the Bianconi-Barabási
model [56, 57]. For d = 2, s = 0, β = 0 it reduces to the model proposed in Ref. [90]
Finally for d = 3, s = −1, β = 0 it reduces to a random Apollonian network [91].

Values of the flavor s different from the values {−1, 0, 1} are also allowed as long as
they lead to a suitable probability Πd,d−1(α) ∈ [0, 1] for every face α ∈ K. Therefore
positive values of the flavor s ∈ R+ are always allowed. In this case via a rescaling of
the attachment probability it is easy to show that NGFs display a stochastic topology
with statistical properties equivalent to NGF with flavor s = 1.
For negative values of the flavor s the requirement of observing a well defined attachment
probability Πd,d−1(α) ∈ [0, 1] implies instead some restriction on the possible values of s.
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Table 3.1: Distribution of generalized degrees of faces of dimension δ in a d-dimensional
NGF of flavor s at β = 0. For d ≥ 2δ + 2− s the power-law distributions are scale-free,
i.e. the second moment of the distribution diverges.

flavor s = −1 s = 0 s = 1
δ = d− 1 Bimodal Exponential Power-law
δ = d− 2 Exponential Power-law Power-law
δ ≤ d− 3 Power-law Power-law Power-law

Table 3.2: The average 〈kd,δ − 1|ε〉 of the generalized degrees kd,δ − 1 of δ-faces with
energy ε in a d-dimensional NGF of flavor s follows either the Fermi-Dirac, the Boltzmann
or the Bose-Einstein statistics depending on the values of the dimensions d and δ.

flavor s = −1 s = 0 s = 1
δ = d− 1 Fermi-Dirac Boltzmann Bose-Einstein
δ = d− 2 Boltzmann Bose-Einstein Bose-Einstein
δ ≤ d− 3 Bose-Einstein Bose-Einstein Bose-Einstein

In particular if s < 0, then s should be of the form

s = − 1

m
, (3.7)

with m ∈ N. For such values of the flavor s the incidence number of any (d − 1)-
dimensional face α can only take m+ 1 values, i.e.

nα ∈ {0, 1, 2, . . . ,m}. (3.8)

Therefore as long as m > 1 NGF with s = −1/m are not anymore manifolds, but they
have a generalized degree of the (d− 1)-dimensional faces bounded by m+ 1, i.e.

kd,d−1(α) ∈ {0, 1, 2, . . . ,m+ 1}. (3.9)

This case, that we will call NGF with Fractional Flavor, is therefore expected to display
statistical properties that are not equivalent to the ones observed for any of the integer
flavors s ∈ {−1, 0, 1}.

3.2 Network Geometry with Integer Flavor

The distribution Pd,δ(k) of generalized degrees kd,δ = k of δ-dimensional faces on the
d-dimensional NGF has been derived for integer flavors s ∈ {−1, 0, 1} in Ref. [67]. It
has been found that for β = 0 the generalized degree distribution Pd,δ(k) can follow
a bimodal, exponential or power-law distribution (see Table 3.1) depending on the
dimension δ and the flavor s of the NGF.
For β > 0 emergent quantum statistics describe the statistical properties of NGFs as
long as the NGF has a stationary generalized degree distribution, i.e for sufficiently
low value of β ≤ βc. Specifically it has been found in Ref. [66, 67] that the average
of the generalized degree minus one, kd,δ − 1, over δ-dimensional faces of energy ε can
follow the Fermi-Dirac, the Boltzmann or the Bose-Einstein distribution depending
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Table 3.3: Distribution of generalized degrees of faces of dimension δ in a d-dimensional
NGF of flavor s at β = 0. Only for d − 2δ ≥ 2 + 3

m
the power-law distributions are

scale-free, i.e. the second moment of the distribution diverges.
flavor s = −1/m
δ = d− 1 Bounded k ≤ m+ 1
δ ≤ d− 2 Power-law

on the dimension δ and the flavor s of the NGF (see Table 3.2). For instance in a
NGF with s = −1 and d = 3 the average of the generalized degree distribution minus
one performed over faces of energy ε follows the Fermi-Dirac, the Boltzmann or the
Bose-Einstein distribution for triangular faces, links and nodes respectively.

In the next section we will show how these statistical properties change for NGF
with Fractional Flavor.

3.3 Network Geometry with Fractional Flavor and β = 0

3.3.1 Main results

In this section we will evaluate the generalized degree distribution Pd,δ(k) of NGF with
Fractional flavor s = −1/m and m > 1 for β = 0. In particular we will show that
differently from the cases s = −1 and s = 0 the generalized degree distributions are
never exponential. In fact for s = −1/m and m > 1 we obtain that the (d− 1)-faces
have a generalized degree distribution with bounded support with k ≤ m+ 1 and the
δ-dimensional faces with 0 ≤ δ < d− 1 have a generalized degree distribution which is
power-law (see Table 3.3). In order to proof these results, in the following paragraph
we first derive the generalized attachment probability. Subsequently we derive the
generalized degree distribution first using the mean-field approximation and finally using
the master equation approach providing exact asymptotic results.

3.3.2 Attachment probability

For fractional flavor s = − 1
m

the attachment probability for β = 0, given by Eq. (3.4)
can also be expressed as

Πd,d−1(α) =
m− nα
Z̃

=
m+ 1− kd,d−1(α)

Z̃
, (3.10)

where Z̃ is given by

Z̃ =
∑

α∈Sd,d−1

(m− nα) =
∑

α∈Sd,d−1

(m+ 1− kd,d−1(α)).

Therefore the normalization constant Z̃ counts each (d− 1)-dimensional face α with a
degeneracy m− nα ∈ {0, 1, 2, . . . ,m}.
Since at time t = 1 we have d+ 1 (d− 1)-dimensional faces with degeneracy m we have
that Z̃(t = 1) = m(d + 1). Moreover at each time we add d new (d− 1)-dimensional

32



faces with degeneracy m and we reduce the degeneracy of the (d− 1)-faces α to which
we add the new d-dimensional simplex by 1. Therefore at each time Z̃ increases by
md− 1. It follows that the normalization constant Z̃ is given by

Z̃ = = (md− 1)t+ 1 +m ' (md− 1)t, (3.11)

where the last expression is valid for t � 1. The probability Πd,δ(α) that a new
d-dimensional simplex is attached to a δ ≤ d− 2 dimensional face α is given by

Πd,δ(α) =
∑

α′∈Sd,d−1|α′⊃α

m− nα′
Z̃

. (3.12)

In order to calculate the numerator of this expression we make the following considera-
tions. If we assume that the face α has incidence number nα = 0, then the numerator
of Eq. (3.12) is given by d− δ. In fact every δ-dimensional face α with δ < d− 1 and
generalized degree kd,δ(α) = 1 is incident to(

d− δ
d− δ − 1

)
= d− δ (3.13)

(d− 1)-dimensional faces with degeneracy m. This follows from the fact that its incident
(d− 1)-dimensional faces must contain d− δ − 1 nodes that do not belong to the face α.
These nodes should chosen among the (d− δ) nodes of the single d-dimensional simplex
that contains the face α and are external to face α. Following a similar argument it is
easy to check that at each time we add a d-dimensional simplex to the δ-dimensional
face the number of (d− 1)-dimensional faces with degeneracy m increases by(

d− δ − 1

d− δ − 2

)
= d− δ − 1 (3.14)

and additionally we reduce the degeneracy of the (d− 1)-dimensional face to which we
attach the new d-dimensional simplex by one. Therefore for t� 1 we have

Πd,δ(α) '


m+1−kd,δ(α)

(md−1)t for δ = d− 1,

[m(d−δ−1)−1]kd,δ(α)+m+1

(md−1)t for δ ≤ d− 2.

(3.15)

Finally given the above expression we can express the probability Π̃d,δ(k) that a new
d-dimensional simplex is attached to a δ-dimensional face α with generalized degree
kd,δ(α) = k as

Π̃d,δ(k) '


m+1−k
(md−1)t for δ = d− 1,

[m(d−δ−1)−1]k+m+1
(md−1)t for δ ≤ d− 2.

(3.16)
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3.3.3 Mean-field approach

In order to find an approximated generalized degree distribution we can consider the
popular mean field approach [92]. In this case we assume that the generalized degrees
can be approximated by their average over different network realizations and that they
evolve by a deterministic equation

dkd,δ(α)

dt
= Πd,δ(α). (3.17)

Let us consider separately the case in which δ = d − 1 and the case δ ≤ d − 2. The
mean-field equation for the generalized degree of δ = d− 1 dimensional faces is given by

dkd,d−1
dt

=
m+ 1− kd,d−1

(md− 1)t
, (3.18)

with initial condition kd,d−1(tα) = 1. It follows that in the mean-field approximation the
generalized degree of a (d− 1)-face added at time tα evolves in time as

kd,d−1(t) = m+ 1−m
(
tα
t

)1/(md−1)

. (3.19)

If follows that, as expected, the generalized degrees of the (d − 1)-dimensional faces
are bounded and asymptotically in time saturate to the the value kd,d−1 = m+ 1. In
order to derive the generalized degree distribution in the mean-field approximation we
calculate the probability P(kd,δ > k). This is given by

P(kd,d−1 > k) = P

(
tα <

(
m+ 1− k

m

)md−1
t

)

=

(
m+ 1− k

m

)md−1
. (3.20)

Therefore in the mean-field approximation the generalized degree distribution is given
by

P̃d,d−1(k) = −P(kd,d−1 > k)

dk
=
md− 1

m

(
m+ 1− k

m

)md−2
, (3.21)

valid for 1 ≤ k ≤ m. Let us now consider the mean-field equation for the δ ≤ d − 2
dimensional faces. This equation reads

dkd,d−1
dt

=
[m(d− δ − 1)− 1]kd,δ +m+ 1

(md− 1)t
(3.22)

with initial condition kd,d−1(tα) = 1. Therefore in the mean field approximation the
generalized degree of a δ-face added at time tα grows in time as

kd,d−1(t) = (1 + 1)

(
t

tα

)m(d−δ−1)−1
md−1

− a (3.23)
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where for convenience we have defined the constant a as

a =
m+ 1

m(d− δ − 1)− 1
. (3.24)

Given this definition we can express the generalized degree distribution of δ ≤ d − 2
faces in the mean field approximation. In fact we have that the cumulative generalized
degree distribution is given by

P(kd,δ > k) = P

(
tα <

(
1 + a

k + a

) md−1
m(d−δ−1)−1

t

)

=

(
1 + a

k + a

) md−1
m(d−δ−1)−1

. (3.25)

By differentiating this expression we find the generalized degree distribution of δ ≤ d− 2
faces in the mean field approximation is given by

P̃d,δ(k) = −P(kd,δ > k)

dk

=
md− 1

m(d− δ)

(
1 + a

k + a

) md−1
m(d−δ−1)−1

+1

. (3.26)

Therefore we find in this approximation that generalized degrees have a bounded
distribution for δ ≤ d− 1 faces and a power-law distribution for δ ≤ d− 2 faces.

3.3.4 Master equation approach

The mean-field approach gives only approximate results for the generalized degree
distribution. In order to get the exact asymptotic results we need to consider the master
equation approach [92]. The master equation describes the evolution of the average
number N t

d,δ(k) of δ-dimensional faces that at time t have generalized degree k in a
d-dimensional NGF with flavor s = − 1

m
. We notice that at each time we add

md,δ =

(
d

δ

)
number of δ-faces of generalized degree kd,δ = 1 and the average number of δ-faces of
generalized degree kd,δ = k increases by

Πd,δ(k − 1)N t
d,δ(k − 1)

if k > 1 and decreases by
Πd,δ(k)N t

d,δ(k).

Therefore the master equation reads

N t+1
d,δ (k) = N t

d,δ(k) + Πd,δ(k − 1)N t
d,δ(k − 1)(1− δk,1)

−Πd,δ(k)N t
d,δ(k) +md,δδk,1. (3.27)
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Figure 3.1: Generalized degree distribution Pd,δ(k) of nodes (δ = 0), links (δ = 1) and
triangles (δ = 2) of a NGF with N = 5000 nodes, flavor s = −1/6, dimension d = 3 and
inverse temperature β = 0. The symbols indicate the results of simulations, the solid
lines indicate the theoretical predictions obtained using the master equation approach.
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For large network sizes when t� 1 the average number of δ-dimensional faces is given
by

N t
d,δ(k) ' md,δtPd,δ(k) (3.28)

where Pd,δ(k) is the generalized degree distribution of the δ-dimensional faces. Inserting
this asymptotic expression in the Eq. (3.27) we can derive the generalized degree
distribution as explained in the following by distinguishing between the case in which
δ = d− 1 and the case in which δ ≤ d− 2.

For the δ = d− 1 dimensional faces, by using the expression

Πd,d−1(k) =
m+ 1− k
(md− 1)t

, (3.29)

and the asymptotic scaling of N t
d,δ(k) given by Eq. (3.28) the master equation can be

re-written in terms of the generalized degree distribution obtaining

Pd,d−1(k) =
m+ 2− k
(md− 1)

Pd,d−1(k − 1)(1− δk,1) +

−m+ 1− k
(md− 1)

Pd,d−1(k) + δk,1. (3.30)

obtaining

Pd,d−1(k) =
md− 1

m(d+ 1)− 1

Γ(m+ 1)

Γ(md+m− 1)

Γ(md+m− k)

Γ(m− k + 2)
,

valid for 1 ≤ k ≤ m.
For the δ ≤ d− 2 dimensional faces by using the expression

Πd,δ(k) =
[m(d− δ − 1)− 1]k +m+ 1

(md− 1)t
, (3.31)

and the asymptotic scaling of N t
d,δ(k) given by Eq. (3.28) the master equation can be

re-written in terms of the generalized degree distribution obtaining

Pd,δ(k) =
[m(d− δ − 1)− 1]k +m+ 1

md− 1
Pd,δ(k − 1)(1− δk,1)

− [m(d− δ − 1)− 1]k +m+ 1

md− 1
Pd,δ(k) + δk,1.

This latter recursive equation has explicit solution

Pd,δ(k) =
md− 1

m(2d− δ)− 1

Γ
(

2 + m(d+1)
m(d−δ−1)−1

)
Γ
(

1 + m+1
m(d−δ−1)−1

)
×

Γ
(
k + m+1

m(d−δ−1)−1

)
Γ
(
k + 1 + m(d+1)

m(d−δ−1)−1

) . (3.32)
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This distribution for large k � 1 decays as a power-law

Pd,δ(k) ' k−γd,δ (3.33)

with

γd.δ = 1 +
md− 1

m(d− δ − 1)− 1
. (3.34)

These distributions are therefore scale-free, i.e. γ ≤ 3 if and only if

d− 2δ ≥ 2 +
3

m
. (3.35)

These theoretical predictions show that the generalized degree distribution is indeed
bounded for δ = d− 1 dimensional faces and power-law for δ ≤ d− 2 dimensions. As
expected these results perfectly match the simulation results providing exact asymptotic
expression for the generalized degree distribution Pd,δ(k) for NGF with fractional flavor
s = − 1

m
(see Figure 3.1).

3.4 Network Geometry with Fractional Flavor and β > 0

3.4.1 Main results

Quantum statistics have been shown to characterize the statistical properties of NGF
with integer flavor s ∈ {−1, 0, 1}. In particular d-dimensional NGFs with flavor s = −1
have an average degree of δ faces with energy ε described by the Fermi-Dirac (for
δ = d − 1), the Boltzmann (for δ = d − 2) and the Bose-Einstein distribution (for
δ ≤ d− 3). On the contrary on NGF with flavor s = 0 the average degree of δ faces with
energy ε can be only described by the Boltzmann and the Bose-Einstein distribution.
Finally in NGF with flavor s = 1 all the faces, independently of their dimension δ, have
an average degree described only by the Bose-Einstein distribution. Interestingly if
we consider integer flavors s ∈ {−1, 0, 1} the Fermi-Dirac distribution emerges as the
natural distribution characterizing the statistical properties of δ = d− 1 faces only if the
flavor is given by s = −1, which corresponds to the case in which the incidence number
nα fo the δ = d− 1 faces can only take the values nα ∈ {0, 1}. This suggests a relation
between the emergence of the Fermi-Dirac statistics and the constraint imposed by the
flavor s = −1 on the possible values of the incidence number. It is therefore interesting
to investigate the properties of NGF with factional flavor s = − 1

m
in which the only

allowed values of the incidence number are nα ∈ {0, 1, . . . ,m}. In principle one could
expect that in this case the statistical properties of the generalized degree of the NGF
would be described by generalized quantum statistics such as the Gentile statistics [86]
or the anyons statistics [87,88]. To our surprise instead the result of our calculations
has revealed that in NGF with fractional flavor s = − 1

m
and m > 1 does not display

any fractional statistics (see Table 3.4). If we compare the results obtained for to the
NGFs with fractional flavor s = − 1

m
and m > 1 to the results obtained for NGF with

s = −1 we observe that
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Table 3.4: The average 〈kd,δ − 1|ε〉 of the generalized degrees kd,δ of δ-faces with energy
ε minus one in a d-dimensional NGF of flavor s = − 1

m
follows either the Fermi-Dirac or

the Bose-Einstein statistics depending on the values of the dimensions d and δ.
s=-1/m

δ = d− 1 Fermi-Dirac
δ ≤ d− 2 Bose-Einstein

• the average degree of (d− 1)-dimensional faces with energy ε still remain described
by the Fermi-Dirac statistics also if the incidence number of δ = d− 1 faces can
take values nα ∈ {0, 1, . . . ,m} with m > 1;

• the average degree of δ = (d − 2) dimensional faces with energy ε is already
characterized by the Bose-Einstein statistics and not by the Boltzmann statistics;

• the average degree of δ < d− 2-dimensional faces with energy ε is characterized
by the Bose-Einstein statistics like in the case s = −1.

In particular these results imply that when we consider the fractional flavor s = − 1
m

and m > 1 we have that already for d = 2 dimensional NGF we can observe the
coexistence of faces with statistical properties described respectively by the Fermi-Dirac
and Bose-Einstein distribution while for observing the co-existence of these two statistics
in NGF with flavor s = −1 we should have dimension d ≥ 3.

3.4.2 Attachment probability and chemical potentials

When β > 0 the generalized degree distribution of the NGF can be solved by extending
the self-consistent approach proposed for solving the Bianconi-Barabási model [56,57]
which constitutes the NGF model for s = 1 and d = 1. In this approach it is assumed
that the statistical properties of the NGF reach a steady state and that it is possible
to define suitable parameters µd,δ called chemical potentials. In particular the chemical
potential µd,d−1 of the δ = d− 1 faces is defined as

eβµd,d−1 = lim
t→∞

t

mZ [s]
, (3.36)

while the chemical potential µd,δ of the δ < d− 1 faces is defined as

eβµd,δ = lim
t→∞

〈∑
α′∈Sd,d−1|α⊂α′ e

−β(εα′−εα)(1 + snα′)t

Z [s](a+ kd,δ(α))

〉
,

where here the average is done over δ-dimensional faces α ∈ Sd,δ. In both cases it is
assumed that if the network evolution reaches a stationary state, then the chemical
potential is self-averaging, i.e. it does not depend on the specific network realization of
the NGF over which the limit t→∞ is performed. As long as the chemical potentials
are well determined and self-averaging quantities the attachment probabilities can be
expressed in terms of the chemical potentials ,and it can be easily shown that the
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Figure 3.2: Average generalized degree minus one, over faces of energy ε and dimension
δ = 0 (panel a) δ = 1 (panel b) or δ = 2 (panel c) for d = 3 dimensional NGF with
fractional flavor s = −1/2 are plotted for different values of β (symbols) and compared to
the theoretical expectations (Fermi-Dirac and Bose-Einstein statistics). The simulations
are performed for NGF with N = 3000 nodes. The data are averaged over 50 NGF
realizations.

probability Πd,δ(α) that a new d-dimensional simplex is attached to a new δ-dimensional
face α is given by

Πd,δ(α) '

{
e−β(εα−µd,d−1)m+1−kd,δ(α)

t
for δ = d− 1,

e−β(εα−µd,d−1) kd,δ(α)+a

t
for δ ≤ d− 2,

(3.37)

where a is given by Eq. (3.24). From this it follows that the probability Π̃d,δ(k) that a
new d-dimensional simplex is attached to a δ-face with generalized degree kd,δ(α) = k is
given by

Π̃d,δ(k) '


e−β(εα−µd,d−1)m+1−k

t
for δ ≤ d− 1,

e−β(εα−µd,d−1) k+a
t

for δ ≤ d− 2.
(3.38)

3.4.3 Mean-field approach

Let us consider first the results that can be obtained within the mean field approximation.
As mentioned before for the case β = 0 in the mean-field approximation we neglect the
fluctuations and we consider a deterministic evolution of the generalized degree that is
assumed to be equal to the average generalized degree over different NGF realizations.
Let us consider separately the case in which the cases δ = d − 1 and δ ≤ d − 2 . By
assuming that the chemical potential µd,d−1 is well defined, and using Eq. (3.38) for
the attachment probability, the mean-field equation (Eq. (3.17)) for generalized degree
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kd,d−1(α) = kd,d−1 of the generic (d − 1)-face α with energy εα = ε can be written
explicitly as

dkd,d−1
dt

=
e−β(ε−µd,d−1)(m+ 1− kd,d−1)

t
, (3.39)

with initial condition kd,d−1(tα) = 1. This equation has solution

kd,d−1(t|ε) = m+ 1−m
(
tα
t

)e−β(ε−µd,d−1)

, (3.40)

which like in the case β = 0 clearly implies that the generalized degree of the (d− 1)-
dimensional faces is bounded. Interestingly in the mean-field approximation we can
evaluate the average of the generalized degrees minus one over faces with energy ε getting

〈kd,d−1 − 1|ε〉 =
m

eβ(εα−µd,d−1) + 1
= mnF (ε). (3.41)

Therefore this quantity is proportional to the Fermi-Dirac distribution nF (ε) with
chemical potential µd,d−1. Interestingly, as we will show in the next paragraph this
result is exact, in fact it is a result that concerns the average of the generalized degrees
and therefore is not affected by the mean-field approximation. However the generalized
degree distribution of d− 1 faces that can be derived from the mean-field approach is
instead an approximation. By proceeding similarly to the case β = 0 we obtain that in
the mean field approximation the probability P̃d,d−1(k|ε) that a (d− 1)-dimensional face
with energy ε has generalized degree kd,d−1(α) = k is given by

P̃d,d−1(k|ε) =
1

m
eβ(ε−µd,δ)

(
m+ 1− k

m

)eβ(ε−µd,δ)−1
. (3.42)

We can proceed similarly for the δ ≤ d− 2 dimensional faces. In particular in this case
the mean-field equations read

dkd,δ
dt

=
e−β(ε−µd,δ)(kd,δ + a)

t
, (3.43)

with initial condition kd,δ(tα) = 1. Here we have assumed that the chemical potential
µd,δ is well defined and we have used Eq. (3.38) for the attachment probability Πd,δ.
The above mean-field equations have the solution

kd,δ(t|ε) = (1 + a)

(
t

tα

)e−β(εα−µd,δ)
− a. (3.44)

By using this expression it is possible to calculate the average of the generalized degree
minus one over faces of energy ε finding

〈kd,δ − 1|ε〉 = Aδ
1

eβ(εα−µd,δ) − 1
= AδnB(ε), (3.45)

where

Aδ = 1 + a =
m(d− δ)

m(d− δ − 1)− 1
. (3.46)
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Therefore we find that δ ≤ d− 2 dimensional faces of energy ε have statistical properties
described by the Bose-Einstein distribution nB(ε) with chemical potential µd,δ. However
in the mean-field approximation the derived generalized degree distribution is not exact
but approximated. Proceeding as in the previous case we find that in the mean field
approximation the probability P̃d,d−1(k|ε) that a (d− 1)-dimensional face with energy ε
has generalized degree kd,d−1(α) = k is given by

P̃d,δ(k|ε) = eβ(ε−µd,δ)(1 + a)

(
1 + a

k + a

)eβ(ε−µd,δ)+1

(3.47)

3.4.4 Master equation approach

For β > 0 we can find the exact asymptotic result for the generalized degree distribution
of faces of given energy ε. The master equation from which we start is written for the
number N t

d,δ(k|ε) of δ-dimensional faces with energy ε and reads

N t+1
d,δ (k|ε) = N t

d,δ(k|ε) + Πd,δ(k − 1)N t
d,δ(k − 1|ε)(1− δk,1)

−Πd,δ(k)N t
d,δ(k|ε) + ρd,δ(ε)δk,1.

where Πd,δ(k − 1) is given by Eq. (3.38) and where ρd,δ(ε) indicates the density of new
faces with energy ε that we add at time t. For large network sizes when t � 1 the
average number of δ-dimensional faces with energy ε is given by

N t
d,δ(k|ε) ' ρd,δ(ε)tPd,δ(k|ε). (3.48)

Inserting this asymptotic expression we get the exact asymptotic result for the generalized
degree distribution Pd,δ(k|ε) of δ-dimensional faces with energy ε. Specifically in the
case δ = d− 1 we obtain the bounded distribution

Pd,d−1(k|ε) =
eβ(ε−µd,d−1)

(eβ(ε−µd,d−1) +m)

Γ (m+ 1)

Γ
(
m+ eβ(ε−µd,d−1)

)
×

Γ
(
m− k + 1 + eβ(ε−µd,d−1)

)
Γ (m− k + 2)

, (3.49)

for 1 ≤ k ≤ m+ 1. For δ ≤ d− 2 we obtain instead the power-law distribution

Pd,δ(k|ε) =
eβ(ε−µd,δ)[m(d− δ − 1)− 1]

eβ(ε−µd,δ)[m(d− δ − 1)− 1] +m(d− δ)

×
Γ
(
2 + a+ eβ(ε−µd,δ)

)
Γ (1 + a)

× Γ (k + a)

Γ
(
k + 1 + a+ eβ(ε−µd,δ)

) . (3.50)

Therefore for k � 1 the generalized degree distribution of δ-dimensional faces with
energy ε decays as a power-law with an energy dependent power-law exponent γ(ε), i.e.

Pd,δ(k|ε) ' k−γ(ε) (3.51)
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with

γ(ε) = 1 + eβ(ε−µd,δ). (3.52)

Having the exact asymptotic results of the generalised degree distribution Pd,δ(k|ε) valid
as long as the chemical potentials µd,δ are well defined, we can perform the average over
all δ-faces with energy ε, i.e.

〈kd,δ − 1|ε〉 =
∑
k

(k − 1)Pk,δ(k|ε). (3.53)

In this result, we obtain total agreement with the mean-field results, i.e.

〈kd,d−1 − 1|ε〉 = mnF (ε) for δ = d− 1, (3.54)
〈kd,δ − 1|ε〉 = AδnB(ε) for δ ≤ d− 2. (3.55)

Therefore the generalized degree minus one averaged over faces of energy ε is proportional
to the Fermi-Dirac distribution for δ = d−1 while it is proportional to the Bose-Einstein
distribution for faces of dimension δ ≤ d− 2. In Figure 3.2 we compare the simulation
results with the theoretical predictions showing very good agreement as long as the
inverse temperature β is sufficiently low. For higher values of β the system does not
reach a stationary state and the description of this phase transition is beyond the scope
of this work.

3.5 Spectral properties of the NGF with Fractional Flavor

The spectral dimension [93] determines the properties of a diffusion process defined on
the 1-skeleton of the NGF, i.e. the network constructed by starting from the simplicial
complex by considering exclusively its nodes and links. Given the Laplacian matrix L
with elements defined as

Lij = Kiδij − aij (3.56)

where a is the adjacency matrix of the network, Ki indicates the degree of the generic
node i, and the density of eigenvalues ρ(λ) for λ� 1 obeys the power-law scaling

ρ(λ) ' λdS/2−1 (3.57)

we say that the network has spectral dimension dS. Note that in this case the cumulative
density of eigenvalues ρc(λ) obeys the scaling

ρc(λ) ' λdS/2 (3.58)

for λ � 1. The NGFs with integer flavor s ∈ {−1, 0, 1} have been shown to display
a finite spectral dimension [70, 94, 95]. Therefore it is interesting to investigate here
how the spectral dimension changes for NGF with fractional flavor. By calculating
numerically the spectrum of large NGF we found that for β = 0 the spectral dimension
dS of the NGF with flavor s = − 1

m
is an increasing function of m. Therefore it achieves

its smallest value for s = −1 and increases as m increases (see Figure 3.3a). Moreover
the spectral properties of the NGF changes also with β. In particular numerical results
indicate that the spectral dimension dS decreases as the inverse temperature β increases
(see Figure 3.3b).
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Figure 3.3: Cumulative distribution ρc(λ) of the eigenvalues of the Laplacian for NGFs
of dimension d = 3 formed by N = 5000 nodes. In panel (a) we show the cumulative
distribution ρc(λ) as a function of s for β = 0. In panel (b) we show the cumulative
distribution ρc(λ) as a function of β for s = −1/2. Every spectrum is averaged over 10
realizations of the NGFs.
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Conclusion

As we have seen complex networks are ubiquitous and the tendency (very often in
science) is either to generalize models able to reproduce the previously known ones,
fitting the data (with an equal or better precision) or to extend the range of applicabilty
and study the behavior of the new case. With the works presented here we did exactly
that.

In chapter 2 we have presented a network model with a wider spectrum for the fitness
of the nodes. We did this by introducing a new probability distribution for the fitness, eq.
(2.2): we considered the parameter ρ that allows us to fix several different distributions.
In particular, fixing ρ =∞ (and αA = 0) allows to recover the Barabási-Albert model,
while fixing ρ = 0 (and αA = 0) it is possible to recover the Bianconi-Barabási one. The
degree distribution is numerically shown to be p(k) ∝ e

−k/κ
q . We have also shown that

q and κ depend on ρ and αa/d. In the first case, as functions of ρ ∈ [−∞,∞], all the
values lie in a narrow decreasing (increasing) interval respectively. On the other hand,
ρ = 0 turned out to be an inflection point for both the parameters, ∀αA/d.
It was also shown that q and κ are dependent on the ratio αA/d more then αA and d
taken alone. Interestingly the value of q for 0 ≤ αA/d ≤ 1 numerically approaches 3/2,
7/5 and 4/3 for ρ approaching −∞, 0 and∞ respectively. These values of q respectively
correspond to the divergences of the moments 〈k〉, 〈k3/2〉 and 〈k2〉 of a q-exponential
distribution.
We have also found, see fig. 2.5, an unespected universal relation between q and κ since
all the data closely lie within the straight line q = 1.54− 0.29κ, ∀ (αA/d, ρ) (eq. 2.7).
Moreover the new introduced ρ parameter, as shown in fig. 2.3, does not affect much
the topology of the network, as αA does. This actually is good news for our model to be
a generalization for asymptotically-scale-free networks.

In chapter 3 we have extended the model Network Geometry with Flavor to fractional
negative values of the flavor s = − 1

m
. This choice of parameters enforces the condition

that each (d − 1)-dimensional face of the pure d-dimensional simplicial complexes
generated by the model is incident at most to m+ 1 d-dimensional simplices. For the
limiting case m = 1 this model generates discrete manifolds where (d− 1)-dimensional
faces have incidence numbers nα ∈ {0, 1}. For m > 1 instead the simplicial complexes
generated by the model are not anymore manifolds and have incidence number nα ∈
{0, 1, 2, . . . ,m}. In previous studies it has been shown that NGF displays emergent
quantum statistics. In particular the generalized degrees of δ faces for energy ε in
the NGFs with s = −1 can be simply related to the Fermi-Dirac, Boltzmann and
Bose-Einstein statistics depending on the dimensionality δ. This result implies that
for a NGF in d = 3 with s = −1 the triangles, the links, and the nodes of given
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energy ε have an average generalized degree minus one given by the Fermi-Dirac, the
Boltzmann and the Bose-Einstein statistics respectively. Here we show that when we
consider NGF with flavor s = − 1

m
we still observe different statistics as a function of

the dimensionality of the faces but the only two types of statistics emerging are the
Fermi-Dirac and Bose-Einstein statistics as long as the NGF evolution reaches a steady
state. This implies that for d = 2 we observe links and nodes of energy ε whose average
generalized degree follows the Fermi-Dirac and Bose-Einstein distribution respectively.
Therefore already in d = 2 we observe the co-existence of the two quantum statistics
determining properties of faces of different dimension.

As a main conclusion, whether you consider generilzed complex network models or
extended definitions of a network (the simplicial complexes) the geometry is shaped by
a couple of parameters; the fitness, togheter with the flavor in the second case, plays a
major role.
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