
University of Catania
Department of Matemathics and Computer Sciences

XXXIV Ph.D. in Computer Science (International)

Carmelo Fabio Longo

A Family of Reactive-Cognitive Architectures based on

Natural Language Processing, as Decision-Making Helpers for

IoT, in the Closed- or Open-World Assumption

Doctoral Thesis

University advisor: Prof. Corrado Santoro

Academic Period 2018 - 2021

i

“I’ve seen things you people wouldn’t believe. Attack ships on fire off the shoulder of

Orion. I watched C-beams glitter in the dark near the Tannhauser gate. All those

moments will be lost in time, like tears in rain...”

Roy Batty, Blade Runner

ii

Abstract

This thesis investigates and proposes different solutions in the scope of cognitive

architectures leveraging natural language processing. Although the number of exist-

ing cognitive architectures has reached a significant number (several hundred), many

of them have been mainly used as research tools so far, and none of them has been

specifically designed for the Internet of Things. On the other hand, nowadays com-

panies producing vocal assistants aim more at increasing their pervasiveness than at

improving their native reasoning, due to their inability of combining facts with rules

in order to infer new knowledge and help the user in decision-making tasks. Such

a motivations led to the design of Caspar, a novel architecture for instantiating

cognitive agents based of natural language. Such agents are not based on clouds and

do not require any semantic training, plus they are able of deduction on facts and

axioms in first-order logic inferred directly from natural language. A case-study is

provided to show the effectiveness of the approach, in cases of direct commands and

routines subordinated also by a meta-reasoning in a conceptual space, by parsing

utterances with promising real-time performances. The lack of Caspar to obtain

results in the presence of non-unifying clauses and to manage large knowledge bases

as well, led afterwards to the design of AD-Caspar, capable of both abduction as

pre-stage of deduction and of being also an interesting tool for instantiating think-

ing Telegram chatbots. Finally, the chance to make Caspar suitable for different

scenarios in the open-world assumption, led to the design of SW-Caspar, which

is also a valid tool for the task of learning ontologies serialized in OWL 2. Such

ontologies respond to the specifications of LODO, which is a fondational ontology

aiming to fill the gap between natural language and human-like fashioned reasoning.

iii

Acknowledgements
My acknowledgement, first of all, goes to my Ph.D. advisor and friend, Prof. Cor-

rado Santoro, who supported me even after eighteen years elapsed from my degree

in Computer Science. Under his guide, what I previously saw far and almost un-

reachable, became feasible and close at hand.

I would like also to express my gratitude to Prof. Giovanni Gallo, who made

it possible the collaboration between the University of Catania and the previous

company I worked for, in order to develop applications for the Pepper robots and

start my journey towards the Ph.D course.

I would like to manifest my gratitude to Prof. Fabrizio Messina, who involved

me often in academic experiences and he was always ready to assist me in whatever

I needed, even for a coffee.

I would like to thank also Prof. Daniele Francesco Santamaria, Prof. Mari-

anna Nicolosi Asmundo and Prof. Domenico Cantone, for their contribution to my

knowledge of the Semantic Web.

I want to thank my friend Prof. Ilaria Frana, for her support concerning linguistic

science.

I would kindly thank also Prof. Valeria Seidita and Prof. Giuseppe Vizzari, who

have accepted being reviewers of this thesis and are part of the friendly community

of the WOA1, which I have begun to know even before the Ph.D course.

Finally, I want to thank myself for not doubting my chances and accomplish such

a academic experience, showing that it is never too late to grow and improve one’s

condition through study and will.

1Working On Agents workshops.

iv

Contents

Abstract ii

Acknowledgements iii

1 Introduction 1

1.1 Artificial Cognition . 3

1.2 The Issue of Consciousness . 5

1.3 The role of Language in Cognitive Science 8

1.4 The Issue of Natural Language Ontology 10

1.5 Thesis Outline . 13

2 CASPAR: Cognitive Architecture System Planned and Reactive 15

2.1 Introduction . 15

2.2 Related works . 17

2.3 The Architecture . 20

2.3.1 The Translation Service . 23

Information Representation 23

Automatic Speech Recognition 26

Dependency Parsing . 26

Entities Uniquezation . 27

Macro Semantic Table builder 28

The FOL Builder . 34

2.3.2 The Reactive Reasoner . 37

2.3.3 The Cognitive Reasoner . 39

2.3.4 Synsets Selection and Word Sense Disambiguation 43

2.3.5 Nested Reasoning and Clause Conceptual Generalizations . . . 45

2.3.6 Algorithms . 50

2.3.7 The Smart Environment Interface 52

v

2.4 Case-study . 53

2.4.1 The Sensor Instances . 56

2.4.2 IoT Commands Processing . 57

2.4.3 Reasoning and Meta-Reasoning 60

2.4.4 Evaluation . 63

3 AD-CASPAR: Abductive-Deductive evolution of CASPAR 66

3.1 Introduction . 66

3.2 The Architecture . 68

3.3 Question Answering . 70

3.4 Algorithm . 71

3.4.1 Polar Questions . 73

3.4.2 Wh-Questions . 73

3.5 Case-study . 75

3.5.1 Asserting and Querying the Chatbot 77

3.5.2 Failing Queries . 79

3.5.3 Nested Reasoning . 79

3.5.4 Runtime Evaluation . 82

4 SW-CASPAR: Semantic Web based translation of CASPAR 85

4.1 Introduction . 85

4.2 Related works . 86

4.3 The Architecture . 88

4.3.1 The Translation Service . 90

4.3.2 The Reactive Reasoner . 90

4.3.3 The Smart Environment Interface 90

4.3.4 The Cognitive Reasoner . 91

4.4 The Ontology Learning . 91

4.5 Case-Study . 96

5 Overall Evaluation 103

5.1 MCG Evaluation . 106

5.1.1 Functional/Structural Ratio 106

5.1.2 Generality . 107

vi

5.1.3 Performance match . 107

5.2 SMM Evaluation . 108

5.2.1 Structure and Processing Mechanisms 108

5.2.2 Memory and Content . 108

5.2.3 Learning Processes . 108

5.2.4 Perception and Motor Mechanisms 109

6 Conclusions 110

7 Publications 114

Bibliography 116

vii

List of Figures

2.1 The Software Architecture of Caspar. 21

2.2 The Data Flow Schema in Caspar. 22

2.3 Python implementation of the Sensor Istances HotwordDetect and

UtteranceDetect. 53

2.4 The Smart Environment Interface. 54

2.5 Caspar Clauses KB changes, after assertions. 55

3.1 The Software Architecture of AD-Caspar 68

3.2 The Data Flow Schema in AD-Caspar 69

3.3 The Python Mongodb aggregate operator implementing the function

get relevant clauses from db at line 2 of Algorithm 4. 72

3.4 AD-Caspar Hi and Low Clauses KBs changes, after assertions. . . . 76

3.5 Starting a Telegram chat session with an instance of AD-Caspar. . 76

3.6 Querying with who and when questions, after chatbot rebooting and

Low Clauses KB fed. 78

3.7 AD-Caspar execution of a Internet of Thing command in a Telegram

chat session. 78

3.8 Abductive results with confidence threshold = 0.6, after querying

with when questions. 79

3.9 Colonel West KB assertions (part. 1). 80

3.10 Colonel West KB assertions (part. 2). 80

3.11 A successful reasoning on the Colonel West KB before and after chat-

bot rebooting, getting clauses through abduction (with confidence

threshold = 0.6) from the Low Clauses KB. 81

4.1 The Software Architecture of SW-Caspar. 88

4.2 The Data Flow Schema of SW-CASPAR 89

4.3 A simple instance of LODO ontology related to the sentence 4.2. . . 91

viii

4.4 The LODO taxonomic relations and instances from the Colonel West

KB. 97

4.5 The LODO non-taxonomic relations related to the individual Be.426837

from the Colonel West KB. 98

4.6 The LODO rules from the Colonel West KB. 98

4.7 Inferred LODO membership after reasoning from the Colonel West

KB. 99

4.8 The LODO taxonomic relations and instances of the case-study . . . 100

4.9 The LODO non-taxonomic relations of the case-study 101

4.10 The LODO rules of the case-study 102

4.11 Inferred LODO membership after reasoning. 102

ix

List of Tables

2.1 Type of metrics of an unsupervised naive synset choice, for a lemma

l of the sentence S. 43

2.2 Generalization scheme related to the sentence (2.12). 48

2.3 Realtime performances (in seconds) in the case of consecutive suc-

cessful executions of the command: turn off the light in the living

room. 64

2.4 Realtime performances (in seconds) in the case of consecutive suc-

cessful executions of the command: turn off the alarm in the garage,

subordinated by: The house is safe and a KB made of: Robert is

an inhabitant, Robert is at home, When an inhabitant is at home the

house is safe. 64

2.5 Realtime performances (in seconds) in the case of the command: turn

off the alarm in the garage, subordinated by: Colonel West is a crim-

inal and the KB in Fig. 2.5. 65

3.1 A simple instance of Clauses and related Features. 72

3.2 Realtime cognitive performances (in seconds) of a Telegram chatbot

engine based on AD-Caspar, in the case of the question: Colonel

West is American? and three distinct KBs containing the clauses in

Fig. 2.5 (with confidence threshold = 0.6). 82

1

Chapter 1

Introduction

This dissertation reports the research activities carried on during the Ph.D. program

in Computer Science I attended at the University of Catania - Departments of

Mathematics and Computer Science. My research area is mainly concerned on

agents leveraging natural language processing, in order to fulfill deductive tasks

and execute related plans. Possible applications spans from Robotics to Internet of

Things, or whatever other scenario where parsing from natural language to logical

forms is required to perform deductive/reactive operations.

The motivation to begin the journey of such a Ph.D. course was born with my

past experience with the robot humanoid Pepper1 and also with my passion for Philip

K. Dick literature. I clearly remember the exciting moment in which I took two

Peppers out of the boxes, in the company where I worked before the Ph.D. course.

I gave the robots the names Roy and Pris, like the two charming androids from

Philip K. Dick’s 1968 novel Do Androids Dream of Electric Sheep? 2. As I learned

the interesting mobility of the two robots, thanks to their great number of junctions,

sensors and interfacing features, I realized also they were just going to be a couple of

complex toys for the price3 of a subcompact car, unless they acquired some kind on

human-like deductive capability. Pepper is sold together with Choregraphe, a visual

programming software developed by SoftBank Robotics, known for its interactive

interface and ease of use. But the chance given by Choregraph of creating even

complex behaviour routine, involving movement, image recognition and sounds, is

far away from what I meant above as human-like deductive capabilities.

1https://www.softbankrobotics.com/emea/en/pepper
2The book served as the primary basis for the 1982 Blade Runner movie.
3Now on sale for e9900.

https://www.softbankrobotics.com/emea/en/pepper

Chapter 1. Introduction 2

The field of cognitive architectures is rich of approaches featuring a wide range

of typical abilities of human mind, like perception, action selection, learning, reason-

ing, meta-reasoning and others. In light of this, as we can see in detail in the next

chapters, I can affirm that the framework I designed, namely Caspar, can be consid-

ered cognitive architecture as well. Such a statement complies also with Thagard[1]

definition of cognitive architecture: “a general proposal about the representations

and processes that produce intelligent thought.”. Nonetheless, Caspar has been

first presented in a workshop[2] on agents, then published in a good impact factor

journal[3], while its two evolutions AD-Caspar and SW-Caspar were presented

in international conferences[4, 5] as well, which constitutes a solid proof about their

contribution to the state-of-the-art.

Considering the limitations of nowadays artificial intelligence systems, I wanted

to investigate deeply the scientific literature, in order to find out actually how far the

reality is from the imagination. After that, I pursued the road of natural language

processing as gateway to the thought-shape in human-like fashion, in order to put

an agent in condition of creating new knowledge starting from an ontology made

of facts and rules, then fulfilling the task of decision-making helper with reactive

interaction with environment. This activity led first to the birth of Caspar, a

scalable architecture able to instantiate intelligent agents based on natural language

processing, then AD-Caspar and SW-Caspar. The former is able of abduction

as pre-stage of deduction; the latter is focused on reasoning over the Semantic Web.

The common core of these three architectures is a production rule system leveraging

semantic dependencies, in order to create meta-structures that permit to infer logical

forms with ease. Such operations are carried out by specific modules embedded

in a Belief-Desire-Intention[6] framework, whose design got inspiration from the

Bratman[7] theory on practical human reasoning.

In Section 1.1 of this introduction, after a brief overview about the historical

motivations and features of the first cognitive architectures, it will be anticipated

in a nutshell what actually the contribution of Caspar is. Such a contribution will

be made more explicit in the rest of the thesis; Section 1.2 introduces briefly the

implications occurring whether we consider consciousness as possible variable among

others, in the measure of how much it could influence agent’s behavior; Section

1.3 introduce the foundation of the deep linkage between language and cognition;

Chapter 1. Introduction 3

Section 1.4 concerns the issues of having a knowledge base (ontology) inferred from

utterances in natural language, as arbitrary description of a domain given by a

speaker, when such a knowledge base has to be used for reasoning purposes; finally,

Section 1.5 provides a brief outline about the chapters ahead.

1.1 Artificial Cognition

In the scope of cognitive architectures, the first pioneers who wondered how the brain

works attempted a reverse-engineer of such a complex biological system. Worth

of mention is the Unified Theory of Cognition[8], with the purpose of providing

comprehensive insights for the design of a cognitive system. Although interesting,

it didn’t convince widely researchers in the behaviour science, or maybe it was too

ambitious. Instead, many of them focused on characterizing the mechanisms of small

parts of the brain, down to single interactions between neuronal cells.

There are several impressive examples of large-scale, single-cell neural simula-

tions; among the best known there is Izhikevich’s simulation[9], which is on the

scale of human cortex, running approximately 100 billion neurons. Modha’s Cogni-

tive Computation project[10] at Almeda Labs is on the scale of cat cortex (1 billion

neurons) but is faster than Izhikevich’s simulations, although both share largely

random connectivity in their networks. Markram’s simulation[11] takes in account

of approximately 1 million neurons with a deeper biological detail than respect to

other simulations, reflecting accurately connectivity, synaptic and neural dynam-

ics. Despite a growing interest in these simulations, none of these past models have

demonstrated perceptual, cognitive of motor functions. According to the authors of

this [12] survey, focusing on neuronal-cell interactions make it unclear what kinds

of inputs the model should have and how to interpret its output.

In 1963 Newell and Simon presented a program which they called General Prob-

lem Solver (GPS)[13], which was the first in a line of explanations of human cognitive

performance relying on production systems. Historically, production systems has

been the most influential approach towards cognitive systems building. The general

interest in GPS led to the development of other cognitive architectures, all of which

with production systems as their core: Soar[14], EPIC[15] and ACT[16] were among

the best known. Although their early success, such architectures was not suitable

Chapter 1. Introduction 4

to interact with fast environments with difficult-to-predict dynamics of the world.

As a result, in Robotic, in order to control low-level behaviour of robots, differential

equations, statistics and signal processing are preferred rather than production sys-

tems. On the other hand, it remain unclear how to use these mathematical method

for characterizing high-level cognitive behaviour, like language, complex planning,

deductive reasoning, etc. Hence, the presence of a gap in our understanding of real

cognitive systems appears evident.

There are many other cognitive architecture implementing human-like behaviors,

beyond the ones cited above: according to this [17] recent survey, the number of

existing cognitive architectures has reached several hundred, but most of the existing

surveys do not reflect this growth and instead focus on a handful of well-established

solutions. In such a plethora, the aim of Caspar, as we will see in Chapter 2, is

to fill the above gap making usage of meta-reasoning, in order to subordinate fast-

dynamic real-world perception and actions with high-level cognition encoded in a

conceptual space.

Another important distinction among artificial cognitive systems is between

”natural/cognitive/biological” inspired systems and ”machine” oriented systems.

The former tend to imitate (at different levels of abstraction) the behaviour of sys-

tems existing in nature. While machine oriented ones, without taking any inspiration

from nature, tackle computational challenges posed by the problem itself. Worth of

mentioning is what reported in [18], where authors state that ”the quest for artificial

flight succeeded when the Wright brothers and others stopped imitating birds and

started using wind tunnels and learning about aerodynamics”. This example, also

highlighted by Lieto in his recent book[19], is relevant to realize that ”functional

resemblance” in term of generated output (i.e. the ability to fly in this case) be-

tween organism and machines, is not sufficient for explaining that function through

a model capable of reproducing the essential features of that organism. Still Lieto,

in his book, proposes the Minimal Cognitive Grid, a pragmatic methodological tool

to rank the different degrees of structural accuracy of artificial systems in order to

project and predict their explanatory power. Such a metric will be used in Chapter 5

to evaluate all three novel cognitive architectures introduced in this dissertation.

Another example where full functional resemblance is different than respect

Chapter 1. Introduction 5

what was experimental achieved, although inspired, is the technique called Back-

Propagation, which is the keystone of the deep learning revolution and sub-symbolic

approaches. It is known that bio-electric information flow in humans brain’s neu-

rons is unidirectional and without any backward interaction, unlike in the design of

modern artificial neural networks. Drawbacks and trade-off between the usage of

symbolic and sub-symbolic approaches are widely addressed here [20]. Regarding to

the architectures described in this thesis, as it will shown ahead, they take advan-

tages of both symbolic and sub-symbolic approaches, because one of the adopted

component integrates a neural dependency parser, whose outcomes are afterward

parsed with a production rule system; therefore, in a certain sense, Caspar and

its derivations can be considered hybrids solutions, floating between such two main

widespread approaches (sub-symbolic and symbolic).

1.2 The Issue of Consciousness

In a research activity concerning cognitive architectures, each of which reflects some

aspect of human cognitive capabilities, for a comprehensive analysis it does make

sense to consider the foggier, but which might influence the human behaviour as well:

the consciousness, also known as self. But before going further, what definition to

provide for such a word, in the scope of Artificial Intelligence? Instead of providing

whatever kind of definition of consciousness, one could refuses utterly the idea of

self as mental substance and consider it a mere illusion. According to Metzinger[21],

through our experience we develop models of the self, which are just information

processes of the brain. However, since we have not free access to these mental

processes, we tend to presuppose the presence of an entity at the base of our own

model of the self. Thus, such entity is characterized as the self. From such a point

of view, the consciousness would exist only when we ask ourselves about it. On the

other hand, if we don’t want to refuse the idea of a self and keep arguing about it,

together with its definition, since this is an exact science thesis, we could identify

the neural correlates of consciousness and quantify them, forcing us abandoning

philosophical theories to delve into neuroscience.

James[22] affirms that a conscious system in human-like fashion should have a

kind of awareness about both environment and its internal status, together with

Chapter 1. Introduction 6

memory and executive functions. Intuitively we can deduce also that the most such

features the most the system’s deductive capabilities should increase as well, in a

human-like fashion; but the thing is that, while it has been easy to deduce that

such features are necessary conditions for a consciousness, no one has yet provided

strong proofs concerning sufficient ones. A comprehensive explaining of conscious-

ness would require solving what Chalmers[23] calls the hard problem of conscious-

ness. According to Chalmers, the easy problem of consciousness is explaining how

the brain generates the behavior associated with consciousness. In contrast, the

hard problem requires a theory to address the question of why any physical process

generates (or is) consciousness.

The widely discussed Tononi’s Integrated Information Theory (IIT)[24] attempts

to identify the essential properties of consciousness (axioms) and, from there, infers

the properties of physical systems that can account for it (postulates). Based on the

postulates, it permits in principle to derive, for any particular system of elements in

a state, whether it has consciousness, how much, and which particular experience

it is having. IIT postulates that consciousness is equal to integrated information

Φ, which is the total amount of information that is exchanged (integrated) between

distinct parts of the brain. The author of [25] argues that IIT is just a theory of

protoconsciousness, which fails in its stated goal of quantifying consciousness and it

is vulnerable to one of the strongest arguments in philosophy of mind: the Chalmers

Principle of Organizational Invariance[23, 26]. Differently from IIT, which attributes

an emergent consciousness to a system as long as its distinct parts exchanges data,

the Chalmers Principle start from two thought-experiments, namely fading/dancing

qualia, addressing the question about what sort of physical systems can give rise to

conscious experience. His suggestion is that when experience arises from a physical

system, it does so in virtue of the system’s functional organization.

Among detractors of IIT there is also Aaronson[27], who argued that something

as uncomplicated as a network of XOR gates arranged in an n x n square grid could

generate
√
n Φ. By expanding the size of n, a network of XOR gates could be created

with arbitrarily large values of Φ. Nonetheless, Aaronson’s vision of consciousness is

closer to the type of subjective experience humans and animals when awake, which

guides their behavior and which they lack when asleep or anesthetized; thus, it is

clear that he is not using the word consciousness in the same way as Tononi. It

Chapter 1. Introduction 7

seems IIT being a theory of a much more general form of subjective experience

and, hence, measures protoconsciousness rather than consciousness. Rosenberg[28]

suggests protoconscious experiences have no mind associated with them and that

“the experiences we might attribute to noncognitive systems do not contain ‘little

pains’ or ‘little specks of blue’ but instead have some kind of qualitative character

very alien to us”.

In light of above, as far as we know, no one has yet the magic recipe for creating

a non-simulated artificial consciousness, unless being a chatbot with the aim to pass

the well-known Turing test [29], i.e., to fool an interlocutor about who is talking

with. Therefore I agree with [30] and other detractors that it cannot be used as

test base to evaluate conscious intelligent systems. The most important objection

is because it only refers to the manifest behaviour of a given system, while no claim

can be made about the internal mechanism that have led to that behaviour. An-

other objection is about its excessive anthropocentrism, because it targets explicit

human-like thinking, so cannot be used to provide a universal criterion for attribut-

ing intelligence. A further problem concerns also the subjective evaluation of the

interrogator, since different human interrogators, indeed, might judge in a different

way the same behaviour.

Summing up, after such a brief overview, in my humble opinion a third person

description of a phenomenon related to a strictly first person point of view is not

feasible, for the same reason that only lovers should talk about love: by an outside

observer who is not a lover, love can only be seen as something that either positively

or negatively affects mood and consequently behavior; therefore, without any chance

and will of detecting the subjective-qualitative aspects of such mental processes.

What remains is somehow a step backwards in cognitive studies as in the early

days of psychology, when most theories of the mind were generated by the method

of introspection, that is sitting and thinking very carefully, so as to discern the

components of cognitive processing. But in those times, different people introspected

different things, so there was a crisis in “introspectionist” psychology. This crisis

was resolved by “behaviorist” psychologists who simply disallowed introspection.

The only relevant data for understanding cognitive systems were data that could be

inferred from the “outside” (that is, from behavior).

Chapter 1. Introduction 8

Hence, at this point it make sense to introduce the concept of relative conscious-

ness, that is more related to the level of self which appears to the evidence of an

observer. Moreover, a test to evaluate such a relative consciousness in a cognitive

system, should measure its deductive/abductive capabilities and the consequent level

of (auto)awareness as well. That’s what I am interested in more, in the scope of this

thesis. The relative consciousness could be measured also in human beings, putting

in the middle of the interest just the external effects of their supposing feelings and

their relation with the environment, which is an alternative and more constructive

way to endorse Metzinger theory. Furthermore, such a vision of consciousness it is

strictly related to the system’s functional organization, being a direct consequence

of the latter, therefore it doesn’t not contrast the above cited Principle of Organi-

zational Invariance.

In light of the above, my personal insight about consciousness is that it might

emerge from a structural chaos made of unrelated with each other information, on

the basis of needs aimed to avoid uncomfortable conditions. Nevertheless, such

pieces of information will take their part in a functional organization made of spe-

cific patterns, whom can be formalized in production rules, in a sort of reinforcement

learning aimed to avoid already seen uncomfortable scenarios, by favoring instead

those leading to satisfactory outcomes. Such kind of reactive learning will produce

also an auto-awareness leading to a semi-continuous verification of being in a op-

timal general (or particular one) condition. In a hyperbole of humanistic achieved

knowledge, such a process will lead an agent potentially to enquire himself also

about consciousness itself, similarly to any sentient being, while the issue would be

otherwise discarded in order to privilege more instinctive drives.

1.3 The role of Language in Cognitive Science

In this subsection it will briefly highlighted the relations between language and con-

scious experience as mental process. The psychologist Euan Macphail[31] affirms

that language and self awareness are necessary for consciousness; thus, both new-

borns and animals should be involved in such a lack. Kock[32] argues strongly

against this, as IIT endorser, but starting from the arbitrary assumption that ex-

perience and consciousness are the same thing, embracing somehow the thesis of

Chapter 1. Introduction 9

panexperientialism4. Beyond that, there are also proofs about which the ability of

language is not necessary for conscious experience: worth of mention are aphasia5

cases[33, 34] of patients, in a temporary inability of language usage, which kept

making experience of all feelings linked to incoming sensory stimulus. On the other

hand, during a human being growing, in normal conditions the language assumes

a fundamental role in order to encode in semantic structures what otherwise would

be cloudy feelings mapped in some region of the brain. In particular, the language

contributes deeply in the way we do experience of the world and in our sense of self

as narrative center of past and present.

Jaynes[35] provides a palentology of consciousness, where the language assume a

key role in both human beings mnemonic ability and the acquired skill of narrativize

memories in definite structure. According to the author, such a narrativization was

born as encoding of past event relations and epic poems. Before that, the usage of

written language was primarily a tool for compilation of inventories, record stocks

and property exchanges.

In a much-quote passage, Whorf[36] wrote: ”We dissect nature along lines laid

down by our native language. The categories and types that we isolate from the

world of phenomena we do not find there because they stare every observer in the

face; on the contrary, the world is presented in a kaleidoscopic flux of impressions

which has to be organized by our minds - and this means largely by the linguistic

system of our minds. We cut nature up, organize it into concepts, and ascribes

significances as we do, largely because we are party to an agreements to organize

it in this way - an agreement that holds throughout our speech community and is

codified in the pattern of our language. The agreement is, of course, an implicit and

unstated one, but its terms are absolutely obligatory ; we cannot talk at all except

by subscribing to the organization and classification of data which the agreement

decrees.”

In light of above, we can consider language as the more external substrate of

cognitive information useful to retrace backwards an inferred meaning of thoughs

and concept. That’s because for the novel cognitive architectures introduced in this

thesis, instead of a reverse-engineering of the brain, I chose to start from words

4The Panexperientialism claims that everything has experience.
5Language disorder given by a limited cerebral damage, usually but not always in the left

cortical hemisphere.

Chapter 1. Introduction 10

as bricks to builds concepts from utterances, by leveraging also ontologies to ac-

quire commons sense knowledge of known semantic structures. The drawback in

such a process is that concepts inferred from natural language might be arbitrarily

interpreted and are subject to ambiguities. For instance, the utterance Roy goes

to the red room with a light can be interpreted in at least two distinct ways: one

interpretation would be Roy goes to the red room whose light is turned on, while

another interpretation is Roy goes to the red room while holding a light. In the next

subsection such biases are discussed, for the task of ontology learning from natural

language.

1.4 The Issue of Natural Language Ontology

The task of modelling an ontology reflecting a domain, by the means of a descrip-

tion in natural language of the domain itself, implies several bias that must be

considered. Ontology learning from natural language can be accomplished in three

ways: manual modelling, leveraging the effort of experts of the domain; cooperative

modelling, where most or all the task are supervised by experts; semi-automatic

modelling, where the ontology construction process is performed automatically with

limited intervention by users or experts. According the authors of [37], full auto-

matic modelling by a system is still a significant challenge and it is not likely to be

possible. When sentences are not specifically well-formed, such a task can be quite

hard, because of all possible semantic ambiguities of idioms and their arbitrary de-

scriptive nature of the world, which can induce morphologically distinct sequences

of words to express the same concept.

The author of [38] reports that ”Natural Language Ontology is a branch of

both methaphysics and linguistic semantic. Its aims to uncover the ontological

categories, notions and structures which are implicit in the use of natural language,

that is, the ontology that a speaker accept when using a language”. But such

an acceptance implies several issues to address for an ontology learning system

designer. For instance, for a speaker would be quite natural and simple to express

that a certain object does not exits. In a closed-world assumption we can limit

to not assert such a concept, or at least to retract the representation of it from a

knowledge base. But how to operate in an open-world assumption, in order to let

Chapter 1. Introduction 11

participate such information in a reasoning process in human-like fashion? How to

keep consistency when an information and its complement are possibly present (like

it could happen in text given by a speaker) both in an ontology? In linguistic science,

intentional object as nonexistent are considered particularly problematic[39]; for

instance, given an ontology A representing a domain of existing entities and another

ontology B representing a description in natural language of the same domain: we

cannot definitively say that A and B are equivalent, due to a possible introduction

in B of entities which not exist but are functional to the arbitrarily descriptive use

of words present in the source text of B.

Let us consider now the following two sentences: Robert walked down the street

and Robert had a walk down the street ; how to infer that they express the same

concept in a decision process? In the second sentence we are in presence of the so-

called deverbal nominalization of the verb walk versus a noun expressing the action of

walking. So we are forced to create somehow a bridge between the two sentences, in

order to achieve the same result when both are participating in a reasoning process.

Similarly, let us consider also the simple verbal phrase: the friends are happy and

the snipplet: happy friends. As for the former, we are in presence of a deadjectival

nominalization, because the adjective happy become the object of a copular6verb

(be), thus the subject (friends) has the property denoted by the adjective; so, how

to express, by means of an ontology, that the two pieces of information lead the

same concept?

Pinker[40] describes an hypothetical language of the mind, the so-called men-

talese, which should stand above all ambiguities, universally homogeneous across

languages. He affirms also that whatever language people speak is hopelessly un-

suited to serve as our internal medium of computation, because of five different type

of issues: ambiguity, lack of logic precision, coreferencing, deixis and synonymy. As

for ambiguity, generally is when the same word might have different meaning de-

pending on the context. In 2.3.4 it is shown how Caspar addresses such a issue

with its disambiguation strategy. As for lack of logical precision, let us consider the

example devised by the computer scientist Drew McDermott:

6A copular verb is a special kind of verb used to join an adjective or noun complement to a
subject. Common examples are: be (is, am, are, was, were), appear, seem, look, sound, smell,
taste, feel, become and get. A copular verb expresses either that the subject and its complement
denote the same thing or that the subject has the property denoted by its complement.

Chapter 1. Introduction 12

Ralph is an elephant.

Elephants live in Africa.

Elephant have tusks.

In this case an inference-making device would deduce: Ralph lives in Africa and

Ralph have tusks. The issue is that Africa is the common place where all elephants

live in, but Ralph’s tusks are his own and the device doesn’t know that, because the

distinction is nowhere to be found in any of the statements. The third issue called

”co-reference”7 concerns the resolution of pronouns referencing nouns in the scope

of the same discourse. The state-of-the-art comprises several tools acting as coref-

erencers: one of these I have been testing is Neuralcoref8, which can work also on

different level of greediness depending on domain. The forth issue comes from those

aspects of language that can only be interpreted in the context of a conversation or

text - what linguistic call ”deixis”. Considering article like a and the, what is the

difference between killed a policeman and killed the policeman? Only that in the

second sentence it is assumed that some specific policeman was mentioned earlier

or is salient in the context. Thus in isolation the two phrases are synonymous, but

in the following context (the first from an actual newspaper article) their meaning

are completely different:

A policeman’s 14-year-old son, apparently enraged after being disciplined for

a bad grade, opened fire from his house, killing a policeman and wounding

three people before he was shot dead.

A policeman’s 14-year-old son, apparently enraged after being disciplined for

a bad grade, opened fire from his house, killing the policeman and wounding

three people before he was shot dead.

Outside of a particular conversation or text, then, the words a and the are quite

meaningless. The fifht issue, which is the synonymy, is when different sentences

refer to the same event and therefore licence many of the same inferences, similarly

7Also called anaphora resolution.
8https://github.com/huggingface/neuralcoref

https://github.com/huggingface/neuralcoref

Chapter 1. Introduction 13

to deverbal and deajectival nominalization. For instance, considering thr following

sentences:

Sam sprayed paint into the wall.

Sam sprayed the wall with paint.

Paint was sprayed into the wall by Sam.

The wall was sprayed with paint by Sam.

in all four cases one can conclude that wall has paint on it. But despite the four

distinct arrangement of words mean the same thing, no simple processor would infer

implicitly such a conclusion.

Those seen above and many other issues related to the natural language ontology,

for the sake of shortness, are described here [38], which can be a good start point in

order to fill the gap between a domain and an arbitrary description of it given by a

speaker.

1.5 Thesis Outline

The content of Chapter 2 is the outcome of more of two years of study and experi-

ments in the field of natural language processing and reasoning. The way that led

me to the design of Caspar, whose related article has been recently included in a

issue of the journal Engineering Applications of Artificial Intelligence published by

Elsevier, was full of non-trivial choices: the information representation, the reasoner,

the container where to embed all the interacting modules, etc. The final result is

a scalable framework for instantiating agents based on natural language processing,

i.e., vocal assistants operating in Internet of Things scenarios. The scalability is

meant for both descriptiveness of knowledge bases and for the interfacing features

with the environment.

Chapter 3 is referred to the first of the two evolution of Caspar, namely AD-

Caspar, presented in the 4th Workshop on Natural Language for Artificial Intelli-

gence co-located with the 19th International Conference of the Italian Association

for Artificial Intelligence. AD-Caspar inherited all its predecessor features, plus

the chance of abductive reasoning as pre-stage of deduction. This process, unlike

Chapter 1. Introduction 14

deductive reasoning, yields one or more plausible conclusions but does not positively

verify them, expressing also uncertainty levels. Furthermore, AD-Caspar uses ab-

ductive outcomes as input to attempts deduction and the Caspar’s so-called nested

reasoning described in Subsection 2.3.5. Such a strategy is useful in order to opti-

mize processing in presence of large knowledge bases, focusing only to more relevant

clauses and discarding the others.

Chapter 4 concerns the second evolution of Caspar, namely SW-Caspar,

which has been presented in 22st Workshop ”From Objects to Agents” (WOA 2021)

and selected for a special issue of the journal Intelligenza Artificiale9. Such a archi-

tecture inherits all its predecessor features, but with the difference that the meta-

reasoning is achieved in the open-world assumption, by leveraging the Semantic

Web.

Chapter 5 argues the overall evaluation of the Caspar’s cognitive architectures

family with a pragmatic methodological tool to rank the different degrees of struc-

tural accuracy of artificial systems in order to project and predict their explanatory

power.

Chapter 6 sums up the overall conclusions about strengths and weaknesses of the

Caspar’s cognitive architectures family, plus a perspective about continuing such

a research.

Finally, Chapter 7 is about all works published during my Ph.D. course, where

I figure as an author.

9https://www.iospress.com/catalog/journals/intelligenza-artificiale

https://www.iospress.com/catalog/journals/intelligenza-artificiale

15

Chapter 2

CASPAR: Cognitive Architecture

System Planned and Reactive

2.1 Introduction

The introduction of the Internet of Things (IoT), in the last years, has changed the

lifestyle of thousands of people, thanks to a large number of sensors and actuators,

interconnected with each other, that makes the diversity of the available systems

bounded only by the imagination of the designer. Any person or sensor might trigger

a proper device or group of them, at any moment and under whatever conditions,

giving the feeling the home is somehow alive and capable of autonomous behaviour.

This phenomenon is extended also in domains other than the domestic one, such as

smart cities, remote e-healthcare, industrial automation, and so on. In most of them,

especially the domotic case, vocal assistants, working together with the rest of the

compatible devices, assume an important role; firstly, because it’s quite comfortable

triggering devices behaviours, scheduling reminders or requesting general culture

informations (e.g., like news, biography of known people, etc.) by means of the

voice; secondly, because many of nowadays users grew up with the cultural heritage

of science fiction literature and filmography, where vocal assistants at the service of

humans, performing complex reasoning tasks, make human being’s workflow easier.

We can think of HAL 9000 in ”2001: a Space Odyssey”, or the more recent ”OS 1”

(self-named: ”Samantha”) of the movie: ”Her”. So, in one word, because it’s cool.

Nowadays, companies producing vocal assistants, aim more at increasing their

pervasiveness than at improving their native reasoning capabilities. Amazon, for

example, after the success of the Echo line (Echo Dot, Echo Plus, Echo Show, etc.),

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 16

recently proposed to put its vocal assistant Alexa in our cars (Echo Car) and even

on top of a pair of glasses (with the announced product baptized as Echo Frames),

while no news is available about the improvement of their reasoning capabilities.

Additional features can be included by developers with the so-called “Skills” or

leveraging external cloud services like IFTTT1, but we are far away from what we

mean: with “reasoning capabilities”, we can intend not only the ability to infer

the proper association command → plan from utterances, but also to be capable

of combining facts with rules in order to infer new knowledge and help the user in

decision-making tasks. To let vocal assistants help us in our cognitive processes

using a form of logic reasoning, we must provide them with facts and rules to

be combined together, or more simply, we must give assistants the basis and the

options to freely and implicitly extract all they need in order to do that, from texts

in natural language. The latter was the start point of this research, whose goal has

been achieved by subordinating direct command Reasoning with a Meta-Reasoning

in the conceptual space.

The concept of Meta-Reasoning in the cognitive sciences is often associated to

the utterance: Thinking about Thinking, which expresses only marginally what in

this work is proposed.

Except the well known [41] cloud-based vocal assistants, other kind of solu-

tions [42–44] are based on neural models exclusively trained on the domotic domain,

or exploit chat engines [45, 46] whose understanding skills are strictly depending on

syntax. This makes the range of their capabilities quite limited.

In light of the above considerations, our aim is the design of a cognitive archi-

tecture which we called Caspar, based on Natural Language Processing (NLP),

that make it possible the implementation of cognitive agents able to transcend the

available ones in performing reasoning activities. Such agents could be used for both

domotic purposes and any other kind of applications involving common deductive

processes based on natural language. A first overview of such an architecture has

been provided here [2], in the course of a conference on agents.

As a further motivation, we have to highlight that, as claimed in [17], cognitive

architectures have been mainly used as research tools so far, and very few of them

have been developed outside of academia; plus, none of them has been specifically

1https://ifttt.com/.

https://ifttt.com/

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 17

designed for IoT. Of course, most of them have features and resources which could

be exploited in such a domain, but the starting motivations were different from ours.

As shown in the rest of this Section, the proposed cognitive architecture is made

of four main components: (i) Translation Service, a Natural Language Processing

(NLP) pipeline which converts natural language utterances in logical axioms; (ii) Re-

active Reasoner, a multi-frame system expressed in a prolog-like semantic provided

by the BDI framework Phidias [47], with the role of parser for both cognitive and

reactive purposes; (iii) Cognitive Reasoner, a module implementing novel algorithms

for asserting/querying knowledge bases composed by clauses possibly nested inside

one another; (iv) Smart Environment Interface, an interface providing connection

between the agent engine and the so-called Smart Home representing the outside

world.

Although cognitive architectures should be distinguished from models that im-

plement them, we can affirm that our architecture can be used as domotic agent as

is, after the definitions of both the involved entities and the I/O interfaces. However,

at the same time, our architecture can be used as a basis for the integration of extra

features not included in our original prototype.

This chapter is structured as follows: Section 2.2 describes the state of the art

of related literature; Section 2.3 shows in detail the semantic notation used and all

the architecture’s main components and underlying modules; Section 2.4 shows how

to put in practice what theoretically explained in prior sections, providing also an

experimental evaluation of real-time performances;

A Python implementation of Caspar is also provided for research purposes in

a Github repository2.

2.2 Related works

Since the framework proposed in this chapter wants to be a sort of crossover between

cognitive architectures and IoT, in order to instantiate cognitive agents, this section

is focused on those works addressing the common issue of NLP plus IoT and logical

deduction.

2http://www.github.com/fabiuslongo/pycaspar

http://www.github.com/fabiuslongo/pycaspar

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 18

In [48] a theoretical comparison between three of the most popular cognitive ar-

chitecture is presented, which inspired several subsequent works: SOAR, CLARION,

LIDA. In particular, SOAR is the oldest cognitive architecture developed. Origi-

nally coined by Newell and his colleagues, it was an acronyms for State Operate

AndResult, which synthesized its main theme: the fact that cognitive tasks are rep-

resented by symbolic problem spaces containing a series of states. Such spaces are

searched by production rules grouped into operators. This heuristic search driven

behaviour was inherited directly from the GPS system. Exactly as in GPS, SOAR

accomplishes problem solving by selecting, given a certain goal state to reach, ap-

propriate operators able to reduce the symbolic distance between the goal state and

current state. Although interesting, since it is was directly inspired by the cognitive

psychology research, such an approach cannot be suitable to support real-time appli-

cations aiming at human-fashioned timing responses. Instead, for the latters, more

vertical and focused approaches are required, than the one considering the hope of

reducing randomly the symbolic distance from a goal. In any case, the architectures

of this dissertation got also inspired by SOAR for two reasons: firstly, the usage of

production rules; secondly, for the derivation of subgoals of the original ones, when

the formers cannot be achieved3, through a constrained run-time expansion of the

knowledge base.

The authors of [49] present a computational model called MoralIDM, which inte-

grates multiple AI techniques to model human moral decision-making, by leveraging

a two-layer inference engine which takes in account of prior cases decisions and a

knowledge base of a formal representation of moral qualitative-weighted facts. Such

facts are extracted from natural language by using a semi-automatic translator from

simplified English (which is the major weakness of such approach) into predicate cal-

culus.

The authors of [50] present a system called LUCIA built on Embodied Con-

struction Grammar (ECG) and the SOAR cognitive architecture, which combines

cognitive linguistics with known properties of human language processing, in order

to process simple instructions for making reasoning. Furthermore, they propose the

evaluation of computational models that are able to perform language comprehen-

sion using methods that approximate properties of human language processing; to

3A particular state which is defined as impasse.

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 19

this aim they introduce ten cognitive criteria. Its easy to demonstrates that Cas-

par, with a proper tuning, fulfills largely those criteria thanks to its native mapping

between semantic and ontologies, as with the one (number seven) related to the se-

lection of meanings according to contexts; in Subsection 2.3.4 it is shown how such

a issue has been addressed.

In [51] the authors describe three different spoken dialog system, one of them

based on the architecture FORR for the task of ordering books from the public

library by phone. All three dialog systems are based on a local Speech-to-Text

engine called PocketSphinx which is notoriously less performing than cloud-based

systems[52]. This leads to a greater struggle to reduce the bias between user’s

requests and results.

The architecture DIARC[53] has been designed for addressing the issue of rec-

ognize morally and socially charged situations in human-robot collaborations. Al-

though it exploits several known resources for NLP (such as Sphinx, Verbnet and

Framenet), it has been tested only on trivial examples in order to trigger robot

reactions, using an own symbolic representation of both known and perceived facts.

In general, we can say cognitive architectures[50, 54–56] leveraging NLP are lim-

ited in both in their domain of application, because they work only on small subsets

of the idiom in exam, and also in terms of the syntactic structures recognition.

In the scope of IoT, as far as we know, there is not any IoT framework in the

state-of-the-art for the implementation of true cognitive agents making usage of

natural language as Caspar does. An agent based on natural language might also

simulates different moods, showing a sort of human-like consciousness or reacting on

specific utterances (like the commercial ones Alexa or Google); but currently they

are no capable of combining acquired knowledge in order to infer new one. Apart

such a important distinction, the IoT paradigm is rapidly growing with the new

development, design, and integration of technology. As a result, several frameworks

have been developed to fulfill some of the new requirements and needs.

The authors of [57] present a technical comparison of IoT frameworks engaged

in the current industrial context that provide SoS solutions to Industry 4.0 issues.

In the scope of home applications, there are several frameworks aspiring to be

competitive to the well-kwown commercial ones. One of them worth to be mentioned

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 20

is Wit.ai4, an open NLP platform which can be used via Web or as cloud service,

allowing developers to build bot/conversational applications. Wit.ai provides an

interface and an API to perform training of human conversations; the objective is

to have a platform able to parse incoming messages (voice or text) into a structured

data. The process is based on intents and entities: an intent is simply what the

user intends to do (e.g. change Temperature), while entities are variables containing

details of the user’s task.

Mycroft5 is another IoT framework built to be an open source answer to the

commercial ones, whom instead are considered as black boxes because they allow

some flexibility to create new Skills, but still usually strictly controlled. Mycroft

gives also the user the chance to use different known Speech-to-Text engines either

locals (Sphinx, DeepSpeech) or clouds (Google). Despite the considerable amount

of packages for the framework installation, the user is still bound to logon to its web

portal either for pairing devices or get new Skills.

Other surveys[58–60] reflect the remarkable advances and the interest around the

paradigm of the IoT, although they are mostly focused on protocols, sensors and

other technological aspects whom are on lower layers of processing than NLP.

2.3 The Architecture

We baptized our architecture as Caspar: Cognitive Architecture System Planned

andReactive; the name summarizes its two main features. The core of Caspar pro-

cessing is managed by Phidias [47], a Belief-Desire-Intention[6] framework able to

give Python programs the ability of performing logic-based reasoning (in the Prolog

style); moreover, it lets developers write reactive procedures, i.e., pieces of program

that can promptly respond to environment events.

In Fig. 2.1, all interacting components are depicted, each filled with a distinct

colour. The main component of this architecture, namely the Reactive Reasoner

(central box in Fig. 2.1), acts as ”core router” by delegating operations to other

components, and providing all needed functions to make the whole system fully

operative. The agent’s Knowledge Base (KB) is divided into two distinct parts

4https://wit.ai/
5https://mycroft.ai/

https://wit.ai/
https://mycroft.ai/

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 21

ASR

Dependency
Parser

Uniquezer

MST Builder

FOL Builder

PHIDIAS Engine

Sensor
Instances

STT
Front-End

Direct commands
Parser

Routines Parser

Beliefs KB

Definite clauses
Builder

Clauses KB

FOL Reasoner

Physical
 Sensors

Devices

Devices Groups

Translation Service Reactive Reasoner Cognitive Reasoner

Smart Environment
Interface

Smart
Home

Figure 2.1: The Software Architecture of Caspar.

operating separately, whom we will distinguish as Beliefs KB and Clauses KB : the

former contains information of physical entities which affect the agent and which we

want the agent affect on; the latter contains conceptual information not perceived

by agent’s sensors, but on which we want the agent makes logical inference.

The Beliefs KB provides exhaustive cognition about what the agent could expect

as input data coming from the outside world; as the name suggests, this cognition

is managed by means of proper beliefs that can - in turn - activate proper plans in

the agent’s behaviour.

The Clauses KB is defined by the means of assertions/retraction of First Order

Logic (FOL) definite clauses, and it can be interrogated providing answer to any

query (True or False).

The two KBs represent, somehow, two different kind of human being memory:

the so called procedural memory or implicit memory [61], made of thoughts directly

linked to concrete and physical entities; the conceptual memory, based on cognitive

processes of comparative evaluation.

As well as in human being, in this architecture the two KBs can interact one another

in a very reactive Decision Making process, as shown in Subsection 2.4.3.

In Fig. 2.2 it is shown a simplified data flow schema in Caspar. Each sensor

in the upper ovals can get information either from a microphone (in the case of

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 22

Sensor #1 Sensor #2 Sensor #n
...

Beliefs Knowledge Base

Translation ServicespaCy WordNet

Reasoning Conceptual Space

meta-reasoning

Smart Environment Interface

Actuator #1 Actuator #2 Actuator #m
...

D
at

a
Fl

ow

D
at

a
Fl

ow

Figure 2.2: The Data Flow Schema in Caspar.

vocal command) or from whatever other kind of device able of capturing physical

quantities from environments. Each information coming from sensors is translated

in specific beliefs and stored in the Beliefs KB. In the case a belief is not related to

an utterance, the former will be sent directly to the Smart Environment Interface,

without passing through the Translation Service, where libraries for piloting devices

actuators are invoked. Otherwise, in the case of vocal commands, beliefs containing

text of utterances will pass thought the Translation Service, in order to produce

logical forms by leveraging the dependency parser spaCy6 and the lexical resource

WordNet [62]. Depending on the utterances content, vocal commands might be

also subordinated by meta-reasoning in the conceptual space; otherwise, specific

beliefs producted on the basis of logical forms, will trigger their related plan without

involving meta-reasoning but directly the interaction with devices. Such a data flow

will be explained in details in the next subsections.

In Section 1.2 it was briefly addressed the topic of consciousness, whose defini-

tion in this work has to be considered in the measure of how much it can affect

6https://spacy.io/

https://spacy.io/

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 23

on agent’s behaviour. Since Caspar agents-derived behaviour is affected by meta-

reasoning in conceptual spaces, we can consider consciousness just a further beliefs

producer Sensor7 as the upper ovals in Fig. 2.2, which gives its contribution to the

current conceptual space. For what concerns how such beliefs would be asserted,

and of what cognitive processes they may be the result, it is out of the scope of

this work. I can just affirm that such architecture, in the presence of many sensors

coming from the equivalent of the human senses, it would generate high values of Φ

as Integrated Information, which in Section 1.2 we identified a necessary condition

for the emergence of the consciousness of a system. Nonetheless, being made of pro-

duction rules and FOL clauses, Caspar does not contradict the Chalmers Principle

of Organizational Invariance.

2.3.1 The Translation Service

This component (left box in Fig. 2.1) is a pipeline of modules with the task of taking

a sound stream in Natural Language, provided by a software interface called Sensor

Instance within the Reactive Reasoner, then translating it in a FOL expression.

The central module of such a component, and the only one which changes across

languages, is the so-called Macro Semantic Builder, which is a production rules

system that capture utterances semantic starting from their dependencies, in order

to create a meta-structure that facilitates logical form extractions.

The details of the modules and the related process is dealt with in the follow-

ing; however, before proceeding with the modules illustration, next it is shown a

background about the semantic notation produced by this component.

Information Representation

The choice of FOL representation has been made because of well-known algorithms

of Unification (for comparing formulas) and reasoning like Backward-Chaining (for

querying a KB), whose features we are aware, as we are confident due to the large

amount of theory behind.

The Translation Service generates logical expressions inheriting the shape from

the event-based formal representation of Davidson[63], with from-one-to-three-arity

7Although operating internally to the agent’s engine.

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 24

predicates, labeled using lemmas and the so-called “Part-Of-Speech” (POS) tags; the

latters give a shallow terms typization, useful for disambiguation/role distinction.

So, every term t of this representation can be as follows:

t:= x | L:POS(t) | L:POS(t1, t2, t3) | L:POS(t1, t2)

where x is a variable bound either to universal or existential quantifier, L is a lemma,

POS is a Part-of-Speech tag. Also implication symbols are included in such a nota-

tion, when a group of predicates subordinate the remaining ones.

For this semantic notation, we took into account also the analysis done in [64]

about the so-called slot allocation, which indicates specific policies about entity’s

location inside each predicate, depending on verbal cases. Moreover, terms with

only one argument are used for both noun representation and quality modificators

(adjectives and adverbs), which will share one argument to link them together.

Each verb and its relation with subjects and object are represented by a three

arguments predicate: the first argument, defined as davidsonian variable, identifies

uniquely the related action linked to the verb semantically described by the label,

while the other two arguments represent subject and object. The latters order will

be inverted in the presence of passive verbs, morphologically described by specific

dependencies as nsubjpass and agent, whom implicitly summarize the agent-driven

Parsons[65] approach (usually called “neo-Davidsonian”); in case of intransitive or

imperative verbal phrases, respectively, subject or object slots will be left empty.

Adverbs are represented by one-arity terms, whose arguments will be equal to

the davidsonian variable of the verb which are referred to.

Finally, prepositions are represented by two-arguments predicates; the first ar-

gument is either a davidsonian or common variable, while the second argument is

the object of the preposition.

Here are some examples for each of the different cases. Let our utterance be the

following one:

Robert drinks wine (2.1)

This case is represented by the conjunction of the following predicates (the existential

operator is omitted):

Robert:NNP(x1) ∧ wine:NN(x2) ∧ drink:VBZ(e1, x1, x2)

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 25

The predicate Robert:NNP(x1) represents the fact that x1 has Robert as lemma

and NNP as POS. The same concept is applied to wine:NN(x2). While, the predicate

drink:VBZ(e1, x1, xs) represents the fact that x1 and x2 are part of a verbal phrase

with drink as lemma, VBZ as POS and e1 as identificator of the action described by

such entities interaction; for the rest of the paper we will refer to such predicates as

actions.

Let us now suppose to add some additional informations to the utterance:

Robert slowly drinks good wine

In this case the two following predicates will be joined to the previous formula:

slowly:RB(e1) ∧ good:JJ(x2)

which are modificators both of the verbal phrase (adverb) and its object (adjective).

In detail, slowly:RB(e1) means that an adverb as slowly is applied to the unique

action identified by e1 and good:JJ(x2) means that an adjective as good is applied

to all predicates having x2 as argument.

Let us suppose to apply a further modification to the utterance, in order to include

a verbal preposition as well:

Robert slowly drinks good wine in the living room

still, three more predicates will join to the conjuction:

in:IN(e1, x3) ∧ living:NN(x3) ∧ room:NN(x3)

Some dependencies permit us to extract even interactions between different verbal

phrases like the following:

Robert knows that Barbara drinks wine

in this case two actions are linked together by the means of davidsonian variable as

follows:

know:VBZ(e1, x1, e2) ∧ Robert:NNP(x1) ∧ drink:VBZ(e2, x2, x3) ∧
Barbara:NNP(x2) ∧ wine:NN(x3)

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 26

As we can see, the object of the action labeled with know:VBZ is a davidsonian

variable representing another action (drink:VBZ). Even non-davidsonian variables

can be actions-crossing, like in the following example:

The man called Robert is a good man (2.2)

In this case the representation is:

man:NN(x1) ∧ Robert:NNP(x3) ∧ call:VBN(e1, x1, x3) ∧ man:NN(x2) ∧
good:JJ(x2) ∧ be:VBZ(e2, x1, x2)

Here the two actions labeled with call:VBN and be:VBZ share the same subject x1.

Automatic Speech Recognition

This module allows a machine to understand the user’s speech and convert it into

a series of words through a computer program, thus creating a kind of natural and

mutual communication [66–68].

Although it is actually encapsulated inside a Sensor Instance, whom will be

shown in detail in Subsection 2.4.1, we decided to represent it at the top of the

Translation Service, because it embodies the very beginning of the pipeline which

will produce the final formula to be sent to the Reactive Reasoner.

Dependency Parsing

This module aims at extracting the semantic relationships between all words in a

utterance coming from the ASR. Such relationships, which are also called dependen-

cies, in this work play a key role in FOL expressions building. In the last years we

had a significant advancement in developing fast and accurate dependency parser,

for many idioms and developing languages, together with its employment in NLP

applications. In [69] the authors present a comparative analysis of ten leading sta-

tistical dependency parsers on a multi-genre corpus of English. The study of the

outcomes of these dependency parsers helped us to fill the gap between utterances

in natural language and the machine information representations used for this work.

In the following subsections it will be shown how to build the so-called Macro

Semantic Table proposed in this paper, i.e., a meta-structure between dependencies

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 27

and FOL expressions, resuming in a canonical shape all semantic relations of a single

utterance, from which it is possible to extract FOL expressions with ease.

Entities Uniquezation

When an utterance is interpreted and transformed into a set of words, according

to the phrase itself, one or more words can be duplicated: as an example, in the

sentence (2.2) the word “man” appears two times, however its role in the semantic,

as well as its dependency with other terms, is different according to the place in

which the word appears. For this reason, each word that appears more than one

time must be properly identified. This is the task of this module, that aims at

renaming these duplicated entities to ensure the correctness of the next pipeline

module (Macro Semantic Table) outcome, whose data structures need a distinct

reference to each entity coming from the dependency parser.

Since dependency parsers basically are classifiers trained on recognizing relations

between words, they will never work properly whether such words are concatenated

with numbers in the body of a sentence. In light of this, we cannot expect from a

dependency parser the same outcome after having concatenated an assigned number

(occurrence in the utterance) to every word.

While it is a trivial task to give a proper enumeration to every dependency

entity when any word is not repeated, we cannot say the same in presence of more

occurrences of the same word. Considering the dependencies shape, each of them is

represented as it follows:

dependency(governor, dependent)

where dependency is a tag remarking a semantic relation between the two entities in

the round brackets; governor and dependent are words within the sentence, which

they always will be distinct with each other except for the ones related to the ROOT

dependency. If we look at the dependencies structure, it will be easy to give a proper

number to all dependents, because they follow the same words order in the body of

each sentence. For instance, considering the dependencies of the sentence (2.2):

det(man,the)

nsubj(be,man)

acl(man,call)

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 28

oprd(call,Robert)

ROOT(be,be)

det(man,a)

amod(man,good)

attr(be,man)

the first basic renaming step will give the following result, where all dependents have

been concantenated with their actual occurrency in the body of the sentence:

det(man,the01)

nsubj(be,man01)

acl(man,call01)

oprd(call,Robert01)

ROOT(be,be01)

det(man,a01)

amod(man,good01)

attr(be,man02)

At this point, the question would be: what about governors? How can we give the

proper enumeration, for example, of every occurrency of governors whose value is

man? In other words, the governor inside acl or amod or wherever man can be found,

has to be renamed as man01 or man02? The solution to such a issue comes from

a special feature of the dependency parser which we used for this work. Such a

tool, which is spaCy[70], together with the dependencies gives information about all

entities offset within the body of the utterances, then linking together entities and

offsets we’ll obtain in any case unique entities within every dependency.

The contribution of this module is mandatory to ensure the correctness of the

Macro Semantic Table building, which we will see in detail in the next subsection.

Macro Semantic Table builder

The purpose of this module, which is made of a system of production rules, is to

build a novel semantic structure called Macro Semantic Table (MST) summarizing

in a canonical shape all the semantic features of a sentence, in order to derive FOL

expressions as described in subsection 2.3.1.

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 29

MSTs can only represent verbal phrases and are built through a matching of

each dependency with a production rule, taking into account of languages diversity

and dependency tagset. The same MST might be generated starting from two

or more distinct set of dependencies, in a non-deterministic fashion-way. With a

good knowledge of any idiom, the MST Builder can be shaped in order to create

MST starting from different languages/dependency tags in a flexible way. Worth of

mentioning it is that the first version of this module, for the sake of experimentation,

was attempted by using classical procedural code and loops, but it was very difficult

to handle in order to cover all dependencies. Moreover, as it can be inspected in

the Github code8, the current version not only is very compact and straightforward,

but permits also to scale with ease on the final outcome’s expressiveness.

Here is a general schema of a MST, referred to the utterance u:

MST(u) = {ACTIONS, VARLIST, PREPS, BINDS, COMPS, CONDS}

where:

ACTIONS = [(labelk, ek, xi, xj),...]

VARLIST = [(x1, label1),...(xn, labeln)]

PREPS = [(labelj, (ek | xi), xj),...]

BINDS = [(labeli, labelj),...]

COMPS = [(labeli, labelj),...]

CONDS = [e1, e2,...]

All tuples inside such lists are populated with variables and labels whose indexing

is considered disjoint between distinct lists, although there are significant relations

which will be discussed ahead.

All dependencies we will take in exam for the rest of this chapter are part of the

Clear NLP tagset[71] coupled with the Penn Treebank Part-of-Speech[72].

The VARLIST list

This list contains tuples representing either nouns or adverbs, defined as:

(var, lemma:POS)

8https://github.com/fabiuslongo/pycaspar/blob/master/mst_builder.py

https://github.com/fabiuslongo/pycaspar/blob/master/mst_builder.py

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 30

where var is an assigned variable, lemma:POS is the lemma and Part-of-Speech ei-

ther noun or adverb; the same value of var might have place either in ACTIONS or

PREPS.

The ACTIONS list

Each tuple into ACTIONS have a cohesive role among other predicates, represent-

ing a natural language verbal phrase. Each tuple contains four entities:

(lemma:POS, dav, subj, obj)

where lemma:POS is the lemma and Part-of-Speech of a verb, dav an assigned david-

sonian variable and subj/obj are variables in some tuples of VARLIST.

A new action is created by production rules matching with tags as: nsubj, csubj,

nsubjpass, or implicitly (whether not already existing) in the case of: ccomp, acl,

relcl, dobj, xcomp.

Whenever an ACTION is going to be created, the davidsonian and subject/object

index counters (related to the same distinct sentence) get incremented on distinct

counting threads, in order to populate all its initially emply slots and VARLIST with

informations carried by the dependency in exam. Otherwise their values will remain

an unknown default value (question mark) in case of other lexical forms (intransitive,

imperative, passive).

For instance, considering the sentence (4.2), as uniquezed dependencies we will have:

nsubj(drink01, Robert01)

ROOT(drink01, drink01)

dobj(drink01, wine01)

At runtime, after the first dependency (nsubj) analysis, the corresponding MST will

be:

ACTIONS = [(drink01:VBZ, e1, x1, x2)]

VARLIST = [(x1, Robert01:NNP), (x2, ?)]

The ROOT tags will not be parsed. After the parsing of the third dependency dobj,

we’ll obtain a further information about the action’s object, then VARLIST will

change as it follows:

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 31

VARLIST = [(x1, Robert01:NNP), (x2, wine01:NN)]

Dependecies as ccomp, acl and relcl, might carry additional informations about in-

teractions between distinct actions, which we’ll see later for creating one another

merged predicates.

The PREPS list

This list is made of tuples containing informations carried by the prep and pobj

dependencies. The general schema is:

(lemma:POS, dav/var, obj)

where lemma:POS is the lemma and Part-of-Speech of a preposition: the second

argument can be either a davidsonian variable or a normal one, obj a variable

present in a tuple of VARLIST as well. For instance, let the sentence be:

Robert drinks wine in the living room

and its dependencies:

nsubj(drink01, Robert01)

ROOT(drink01, drink01)

dobj(drink01, wine01)

prep(drink01, in01)

det(room01, drink01)

compounds(room01, living01)

pobj(in01, room01)

As a rule matches with the dependency prep, we still not have enough informations

to finalize completely a tuple in PREPS until pobj is reached, due their connection

by means of the word in01, but we can create a pending tuple inside VARLIST as it

follows:

ACTIONS = [(drink01:VBZ, e1, x1, x2)]

VARLIST = [(x1, Robert01:NNP), (x2, wine), (x3, ?)]

PREPS = [(in01:IN, e1, x3)]

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 32

with the reference of x3 still undetermined.

As the last dependency pobj is parsed, which carries the value room01 for x3, the

preposition can be finalized as it follows:

VARLIST = [(x1, Robert01:NNP), (x2, wine01:NN), (x3, room01:NN)]

PREPS = [(in01:IN, e1, x3)]

COMPS = [(room01:NN, living01:NN)]

Due to the presence of the compound dependency, we take the chance to spend some

words about the lists COMPS. The base concept is quite simple: all multi words nouns

will share the same argument, which is this list purpose. Each couple in it contains

a referred noun as first argument (that is within some couple in VARLIST as well)

and the referring nouns as second argument.

The BINDS list

This list, whose name is the contraption of BINDINGS, is made of tuples as it

follows:

(label:POS1, label:POS2)

where label:POS1 is a tuple in VARLIST and label:POS2 a new one encountered in

a parsed dependency. Such a list is modeled by rules matching with the following

dependencies group: amod, poss, nummod, nmod, appos, quantmod, with the purpose

of storing information about adjectives and additional adverbs.

For instance, let the utterance in exam be:

Robert is a nice, calm and good fellow (2.3)

and its dependencies:

nsubj(drink01, Robert01)

ROOT(be01, be01)

det(fellow01, a01)

amod(fellow01, nice01)

punct(nice01, ,:,)

conj(nice01, calm01)

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 33

cc(calm01, and01)

conj(calm01, good01)

attr(be01, fellow01)

In this case, as dependencies carrying informations about modifiers we have amod

and two occurrencies of conj ; but they cannot be used as they come and put inside

BINDS, unless they are rectified, i.e., shaped in the form (referred, referent), where

referred is a known label within one couple in VARLIST and referent a new label

during the parsing, in order to obtain the following result:

VARLIST = [(x1, Robert01:NNP), (x2, fellow01:NN)]

BINDS = [(fellow01:NN, nice01:NN), (fellow01:NN, calm01:JJ),

(fellow01:NN, good01:JJ)]

Considering the sentence (2.3) dependencies, we take also the chance to introduce the

interaction between the last dependency attr with the MST: together with acomp,

it assumes the role of value giver for a variable in VARLIST, previously instantiated

with some action. Furthermore, in this case the dependency conj has the role of

modificator extensor, then it will populate the BINDS list as well, which usually is

fed also by another dependencies group made of: advmod, neg, npadvmod.

The COMPS list

As anticipated during the PREPS analysis, this list is made of tuples as it follows:

(lemma:POS1,lemma:POS2)

where label:POS1 have place within a tuple in VARLIST due to some already parsed

dependency, while label:POS2 is a new entity. Its population is fulfilled by a pro-

duction rule matching with the dependency compound.

The CONDS list

This list contains davidsonian variables whose actions will be used to create

predicates subordinating other ones in the FOL expression. It is modeled by a pro-

duction rule matching with the dependency advmod, whether the entity is an explicit

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 34

conditional word like when, if or while; otherwise the entity will be put in BINDS as

modificator (adverb/adjective). For instance, let the utterance be:

When the sun shines strongly, Robert is happy (2.4)

in this case the related MST will be:

ACTIONS = [(shine01:VBZ, e1, x1, x2), (be01:VBZ, e2, x3, x4)]

VARLIST = [(x1, sun01:NN), (x2, ?), (x3, Robert01:NNP),

(x4, happy01:JJ)]

CONDS = [e1]

As for the question mark coupled with the variable x2 inside VARLIST, since there

was not any dependencies having changed its value, the verbal action related to

shine01:VBZ is considered intransitive.

The FOL Builder

This module aims to build FOL expression starting from the MST structures seen

in the prior subsection.

Since (virtually) all approaches to formal semantics assume the Principle of Com-

positionality9, formally formulated by Partee[73], every semantic representation can

be incrementally built up when constituents are put together during parsing. By

virtue of this, it is possible to build FOL expressions straightforwardly starting from

a MST, which summarize all semantic features in a sentence.

Now we will focus on each list within the MST and their role in the FOL ex-

pressions building. For each tuple (var, lemma:POS) in VARLIST the following

predicate10 will be created:

lemma:POS(var)

which represents a noun like tiger:NN(x1) or Robert:NNP(x1), etc. var can be

also a davidsonian variable when POS has the value of RB. In such cases the tuples

represent adverbs like Hardly:RB(e1) or Slowly:RB(e2), etc.

9“The meaning of a whole is a function of the meanings of the parts and of the way they are
syntactically combined.”

10In this subsection the enumeration coming from the Uniquezer is omitted.

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 35

For each tuple (lemma:POS, dav, subj, obj) in ACTIONS the following predi-

cate will be created:

lemma:POS(dav, subj, obj)

representing a verbal action like:

be:VBZ(e1, x1, x2) or shine:VBZ(e2, x3, x4), etc.

For each tuple (lemma:POS, dav/var, obj) in PREPS the following predicate

will be created:

lemma:POS(dav/var, obj)

where dav/var is a variable either respectively in a tuple of ACTIONS or VARLIST,

while obj is a variable in a tuple of VARLIST as well. Such predicates will represent

verbal/noun prepositions. For instance, considering the sentence:

Robert travels in Italy

starting from (In:IN, e1, x3) the following predicate will be created:

In:IN(e1, x3)

together with:

Travel:VBZ(e1, x1,)

Robert:NNP(x1)

Italy:NNP(x3)

Similarly, The State of Alabama will be represented as:

State:NNP(x1)

Of:IN(x1, x2)

Alabama:NNP(x2)

For each tuple (lemma:POS1,lemma:POS2) in COMPS, whose first entity lemma:POS1

is in a tuple of VARLIST as well, a predicate will be created as it follows:

lemma:POS2(varnn)

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 36

where varnn is the variable of a the tuple in VARLIST with lemma:POS1 as second

entity. In case of multi-word nouns, each further noun over the first of them in

VARLIST will be encoded within COMPS. For instance, considering the multi-word

noun: Barack Hussein Obama, it will be encoded as:

Barack:NNP(x1) ∧ Hussein:NNP(x1) ∧ Obama:NNP(x1)

where first Barack:NNP(x1) will be extracted from VARLIST, then the rest from

COMPS.

The list BINDS is reserved to create future predicates representing adjectives with

almost the same function of COMPS, with the slight difference that varnn might be

either in VARLIST or COMPS. For instance, good man will be represented as:

Man:NN(x1) ∧ Good:JJ(x1)

As for CONDS, it contains davidsonian variables whose actions (plus their related

predicates) subordinate all other predicates in the corresponding FOL expressions.

For instance, considering the sentence (2.4), such expressions would be an implica-

tion like it follows:

∀ e1 LEFT HAND SIDE(e1) =⇒ ∃ e2 RIGHT HAND SIDE(e2)

where LEFT HAND SIDE(e1) incorporates the following predicates with x1 as universal

bound variable:

shine:VBZ(e1, x1,) ∧ sun:NN(x1)

and RIGHT HAND SIDE(e2) incorporates:

be:VBZ(e2, x3, x4) ∧ Robert:NNP(x3) ∧ happy:JJ(x4)

with x3 and x4 as existential bound variables.

It appears clear that whether a davidsonian variable is found inside CONDS, its

related actions (together with all related predicates) will migrate to the left-hand

side as subordinating conditions of the overall logical expression.

In the next subsections we will see how to obtain nested formulas, which means

to substitute all action’s variables with their own subject/object related predicates

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 37

and eliminating the not more useful davidsonian variables, in order to obtain definite

clauses.

Since the MST Builder is made of production rules taking in account of relations

(dependencies) between words, as long as such relations are treated properly by some

rule, the accuracy of the conversion from natural language to logical form can be

clearly considered equal to the accuracy of the dependency parser. As for the latter

employed for this work’s case-study, which is spaCy[70], in the author’s website11 it

is reported to have a state-of-the-art accuracy of 90% for all trained models available

for the English idiom. Moreover, out of the accuracy, in this comparison [69] spaCy

is also recommended for its speed, hence it can be considered an optimal choice in

the scope of NLP real-time applications, as the one proposed in this chapter.

2.3.2 The Reactive Reasoner

This component (central box in Fig. 2.1) has the central task of letting other com-

ponent communicate with each other; it also embed modules as the Speech-To-Text

(STT) Front-End, IoT Parsers (Direct commands Parser and Routines Parser), Sen-

sor Instances and Definite Clauses Builder. The Reactive Reasoner incorporates also

the Beliefs KB, which supports both Reactive and Cognitive Reasoning.

The Reactive Reasoner processes the FOL expressions provided by the Transla-

tion Service by delegating the parsing work to its modules, depending on the required

operation. Among such modules there is the Direct commands Parser, which has the

task of extracting from an IoT command what needed (operations and parameters)

in order to select a specific plan and execute all related operations.

When subordinating conditions within the IoT command are detected, the parsing

work is delegated to the Routines Parser, which will schedule operations execution

accordingly to other parameters provided by the Sensor Instances. In the case-study

of Section 2.4 direct commands and routines examples are provided.

In the field of IoT, the parsing of natural language commands so far has been

addressed mostly by encoding utterances and training neural models with their fea-

tures. Such a strategy has been one of the most favorite and often even performative,

although quite vertical to be used only on specific domains. As for this paper ap-

proach, the idea of less specific agents is preferred, which, of course, requires an

11https://spacy.io/models/en#en_core_web_lg

https://spacy.io/models/en#en_core_web_lg

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 38

utterances recognizer able to work on a wider domain. That’s because the modules

of the Reactive Reasoner work on logical representations of natural language com-

mands. In any case a training is needed, but in this work is provided at the level

of semantic word relations given by a pre-trained dependency parser; even if, in

order to leverage such a technology, as we have seen in the prior subsections, several

operations and choices must be accomplished before.

In this work, a production rules system is used as reactive tool to trigger proper

plans in the presence of specific asserted beliefs. In [74] we have shown the effec-

tiveness of this approach leveraging the BDI framework Profeta[75], even with a

shallower analysis of the semantic dependencies, as well as an operations encod-

ing via WordNet in order to make the operating agent multi-language and multi-

synonimous.

Furthermore, together with direct commands, next we will also see how to infer

routines from natural language, involving entities and devices; the same kind of

operations which, in commercial products, one can obtain only by operating on a

complex menu system within a proprietary apps.

The core of Caspar processing is managed by Phidias[47]; the latter, as Profeta

successor, is able to give Python programs the ability of performing logic-based

reasoning (in the Prolog style); plus, it let developers to write reactive procedures,

i.e. pieces of program that can promptly respond to environment events.

An important module of the Reactive Reasoner is the Definite Clauses Builder,

which is responsible of combining FOL expression predicates with common variables,

via a production rules system, in order to produce nested definite clauses (made

possible of composite terms). Considering the sentence (2.4) and its related FOL

expression producted by the Translation Service, the Definite Clauses Builder, taking

in account of the Part-of-Speech of each predicate, will produce the following definite

clause:

shine01:VBZ(sun01:NN(x1),) =⇒ be01:VBZ(Robert01:NNP(x3),

happy01:JJ(x4))

The rationale behind such a notation choice is explained next: a definite clause is

either atomic or an implication whose antecedent is a conjunction of positive literals

and whose consequent is a single positive literal. Because of such restrictions, in

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 39

order to make MST derived clauses suitable for doing inference with the Backward-

Chaining algorithm (which requires a KB made of definite clauses), we must be able

to incapsulate all their informations properly. The strategy followed is to create

composite terms, taking into account of the Part-of-Speech tags and applying the

following hierarchy to every noun expression as it follows:

IN(JJ(NN(NNP(x))), t) (2.5)

where IN is a preposition label, JJ an adjective label, NP and NNP are noun and

proper noun labels, x is a bound variable and t a predicate.

As for the verbal actions, the nesting hierarchy will be the following:

ADV(IN(VB(t1, t2), t3))

where ADV is an adverb label, IN a preposition label, VB a verb label, and t1, t2, t3

are predicates; the nesting hierarchy of ADV and IN can also be swapped; in the case

of imperative or intransitive verb, instead of respectively t1 or t2, the arguments of

VB will be left void. As we can see, a preposition (IN) might be related either to a

noun or a verb.

2.3.3 The Cognitive Reasoner

This component (right bottom in Fig. 2.1) allows an agent to assert/query the

Clauses KB with nested definite clauses, built by the Definite Clauses Builder de-

scribed in the prior subsection.

Beyond the nominal FOL reasoning made by the Backward Chaining algorithm, this

framework exploits also another class of FOL expressions here defined as assignment

rules. We refer to a class of rules of the type ”P is-a Q” implicitly entailed, where

P is a predicate whose variable travels across one hand-side to another with respect

to the implication symbol.

For example, if we want to express the concept: Robert is a man, we can use the

following closed formula:

∀x Robert(x) =⇒ Man(x) (2.6)

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 40

but before that, if we create FOL expressions like those shown in the previous

subsections, we must do a premise: the introduction of such rules in a KB can be

possible only by implicitly shifting all its predicates from a strictly semantic domain,

to a pure conceptual one, because in a semantic domain we have just the knowledge

of morphological relationships between words given by their syntactic properties.

In other terms, in a conceptual domain the predicate P(x) means that x has the

property of being P, which is different than L:POS(x), i.e. x is a gramatical term

identified by the lemma L and the Part-of-Speech POS.

Basically we need a medium to give additional meaning to our predicates, which is

provided by WordNet. This will allow us to make logical reasoning in a conceptual

space, by means of the following functions:

FI : PS −→ PC (2.7)

FArgs(FI) : X
n
S −→ Y n

C (2.8)

FI is the Interpreter Function between the space of all semantic predicates PS which

can be yield by the MST sets and the space of all conceptual predicates PC having

a synset as label; it is not injective, because a single semantic predicate might have

multiple correspondences in the codomain, depending on the context incorporating

the lemmatized word (which is part of the predicate label in the domain).

FArgs(FI) is between domain and codomain (both with arity equal to n) of all pred-

icate’s arguments of FI .

For instance, considering the FOL expression of Robert is a man:

be:VBZ(e1, x1, x2) ∧ Robert:NNP(x1) ∧ man:NN(x2) (2.9)

after an analysis of be, we find this lemma within the WordNet synset encoded by

be.v.01 and defined by its gloss as: have the quality of being (referred to a subject

and an object/adjective). This is the medium we need for the domain shifting which

gives a common sense meaning to our predicates.

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 41

In light of above, in the new conceptual domain given by the functions 2.7 and 2.8,

the expression 2.9 can be rewritten as12:

be.v.01 VBZ(d1, y1, y2) ∧ Robert NNP(y1) ∧ man.n.01 NN(y2)

where VBZ indicates the present tense of be.v.01, Robert NNP(y1) means that y1

identify the person Robert, and man.n.01 NN(y2) means that y2 identify an adult

person who is male (as opposed to a woman).

Considering the meaning of be.v.01 VBZ and that be is considered a copular verb,

i.e., an intransitive verb but identifying a subject with an object, it does make sense

also to rewrite the previous expression as:

∀y Robert NNP(y) =⇒ man.n.01 NN(y) (2.10)

Having such a rule in a KB means that we can implicitly admit additional clauses

having man.n.01 NN(y) as argument instead of Robert NNP(y).

The same expression, of course, in a conceptual domain can also be rewritten as

a composite fact, where Robert NNP(y) becomes argument of man.n.01 NN(y) as

it follows:

man.n.01 NN(Robert NNP(y)) (2.11)

which agrees with the hierarchy of 2.5 as outcome of the Definite Clauses Builder.

It is relevant to say that an utterance might contain more than one occurrence of

the lemma be, so the following question arises: what to do in those cases? The policy

is to check only the label of the so-called utterance verb driver among available ones,

which is provided by the dependency ROOT.

We explain better considering another utterance as example:

Robert is a guy who is fine

In such case there are two occurrences of the verb be, but only the first will be

classified as ROOT by the dependency parser. In light of this, the corresponding

assignment rule will be the following:

Robert NNP(y) =⇒ be.v.01 VBZ(guy.n.01 NN(y), fine.s.04 JJ(y4))

12In the new conceptual domain, the semicolon between lemmas and POS is replaced by the
underscore.

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 42

For a proper synset choice, the reader is referred to the subsection 2.3.4.

As with the assignment rules, intuitively, the so-called causal rules could also be

defined, when in presence of verbs like induce, cause, entail, etc. as ROOT entity.

In those cases, the FOL expression could also be splitted into two hand sides as

antecedent and consequent. Such rules, might be inferred regardless the idiom, by

checking the belonging of the lemma to the synset induce.v.02, whose gloss is defined

as: cause to do; cause to act in a specific manner. A comprehensive result could also

be obtained by checking the kinship of hyperonym as induce.v.02, which will include

the policy also the verbs entails, imply, mean, lead, etc. Unfortunately, in the scope

of this work a causal rule not always can be inferred as is, unlike assignment rules,

unless to deal with a pure causal KB, because there is some aspect to take in account

to hold the overall coherence.

For instance, let the sentence be the following one:

smoking causes lung cancer

whose FOL expression is:

cause:VBZ(e1, x1, x2) ∧ smoking:NN(x1) ∧ lung:NN(x2) ∧ cancer:NN(x2)

About the American Lung Association, it has been estimated that active smoking is

responsible for close to 90 percent of lung cancer cases. In light of such an estimate,

we cannot represent realistically the prior utterance like it follows:

smoking:NN(x1) =⇒ lung:NN cancer:NN(x2)

without expressing the domain-dependent uncertainty level as well (which could

also be zero). Such a issue could be addressed by introducing a fuzzy knowledge

representation, which has been out of the scope of this research so far.

In order to make logical reasoning with the Backward Chaining algorithm, we

need to obtain definite clauses from our representation, either to feed or query the

KB. As claimed in [18], not every KB can be converted into a set of definite clauses,

because of the single-positive-literal restriction, but many KB can, like the one

related to this work for the following reasons:

1. In our Clauses KB no single literal will ever be negative due to the closed-world

assumption, since negations (treated like whatever adverb) when detected and

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 43

related to ROOT dependency, are considered as polarity inverter of verbal

phrases; so, in this case, the tell operation will be turned into retract.

2. When the right hand-side of a clause is made by more than one literals, it is

easy to demonstrate that, by applying the implication elimination rule and

the principle of distributivity of ∨ over ∧, a non-definite clause can be splitted

into n definite clauses (where n is the number of consequent literals).

Name Synset
GLOSSl,S argmaxSynsetsim(S, Synset.glossl)

EXAMPLESl,S argmaxSynsetsim(S, Synset.examplel)
BESTl,S argmaxSynsetmax(GLOSSl,S, EXAMPLESl,S))

AVERAGEl,S argmaxSynsetavg(GLOSSl,S, EXAMPLESl,S))
COMBINEDl,S argmaxSynsetsim(S, concat(Synset.glossl, Synset.examplel))

Table 2.1: Type of metrics of an unsupervised naive synset choice, for a lemma l of the
sentence S.

2.3.4 Synsets Selection and Word Sense Disambiguation

A proper synset choice for each predicate’s label fulfills the task of Word Sense

Disambiguation, because in the case of the usage of the same lemma in two sentence

expressing different meaning for it, the difference is implicit for a human being;

but not for a machine. So, to let an agent differentiates two predicates expressing

different meaning, taking in account of the context, the usage of synsets (properly

selected) can be a suitable solution. A synset expresses exactly a meaning of a word,

described by its gloss and conveyed through its lemmas.

The task of synset choice in this work is strictly related with the so-called

Common-Sense Conceptual Categorization. Different psychological studies[76–78]

started by Rosch results13 achieved in the mid-1970s, suggest that people can use

either of prototypes or exemplars in organization tasks. In this work it was taken in

account the second categorization type, which in literature is known as ”exemplar-

based categorization”. A more prototype-alike categorization might also be achieved

13Rosch’s result indicates that conceptual knowledge is organized in our mind in term of proto-
types.

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 44

by considering WordNet hypernym instead of synsets, which would give a more gen-

eral meaning to each predicate’s label.

In order to achieve a proper synset choice, we considered the insight about which

in a common sense words embedding, the ”bag of words” (context) used for the

gloss/examples related to a synset comprising a lemma, should be vectorially closer,

among all synsets comprising that lemma, to another bag of words making effective

usage of such a lemma in a similar context. In light of this, we had interesting

results by exploiting an unsupervised naive strategy, taking in account of different

combinations of doc2vect[79] similarity (sim) between the sentence in exam and

the informations within the related WordNet synsets, thus considering one of the

following options for each lemma l of the sentence S as in Table 2.1, depending on

the semantic richness of the domain. The same information have been exploited

in other works as well, based on vectorial similarity involving synset glosses and

mentioned in a survey[80] on Word Sense Disambiguation.

For instance, considering EXAMPLESl,S from the Table 2.1, the target word bass and

the following two sentences:

He likes to eat a bass

He likes to play the bass

In the first case, it is easy to verify that the selected synset for bass will be:

Sea bass.n.01, whose gloss is: the lean flesh of a saltwater fish of the family Ser-

ranidae.

In the second case, the selected synset will be: Bass.n.07, whose gloss is: the

member with the lowest range of a family of musical instruments.

Instead, for semantic richer domains, could be better to use COMBINEDl,S from

the Table 2.1. For instance, considering the target word bank and the following

sentences:

Three masked men stolen all cash money from the bank

In this case the selected synset will be:

depository financial institution.n.01, whose gloss is: a financial institution

that accepts deposits and channels the money into lending activities.

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 45

The boy leapt from the bank into the cold water

Here the selected sysnet will be: bank.n.01, whose gloss is: sloping land (especially

the slope beside a body of water).

For this first prototype of Caspar, we chose to follow the above approach also

because the common sense words embedding used to compute the metrics in Table

2.1 is contained in the same model exploited by the dependency parser (spaCy);

indeed, such a choice favors times performances over all.

We haven’t accomplished an accuracy analysis of this kind of disambiguation, due to

its dependence on the domain and especially for the presence/absence of the fields

examples in WordNet, whom sometimes are not populated; a possible strategy

to address such a lack could be to integrate other lexical resources (ConceptNet,

VerbNet, etc.). But considering that also the best performative state-of-the-art

approach not reaches the 100% of accuracy, since even slight differences in the synset

choice might lead also to unsuccessful reasoning, we thought to a strategy to address

such a issue, which in this work is defined as Grounded Meaning Context. In the

scope of a distinct session, during a normal conversation, it is most likely that words

with same lemmas are considered to have the same meaning. In light of this, by

setting in the Caspar configuration file a parameter named GMC ACTIVE to the value

of True, it is possible to set all labels with the same lemma to the first encountered

synset value of them, in the scope of the same session.

In order to achieve a lighter clause processing/reasoning, Caspar gives the also

chance to restrict the synset choice only to a specific subset of Part-of-Speech, by

changing a specific parameter in the configuration file.

2.3.5 Nested Reasoning and Clause Conceptual Generaliza-

tions

The aim of the Cognitive Reasoner is to query a KB made of nested definite clauses

that are also made closer to any possible related query, thanks to an appropriate

pre-processing at assertion-time. Such a pre-processing, which creates a runtime

expansion of the KB for every asserted clause, takes advantage of the already seen

assignment rules for derivation of new knowledge.

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 46

The Backward Chaining algorithm, as is, in presence of clauses differing one

another only in the arguments, when the latters are not variables and could be

replaced consistently with the KB, cannot be effective. To achieve such a goal, when

required clauses are not present in the KB but deductible by proper arguments

substitutions, clauses evaluations at reasoning-time can be quite heavy and not

feasible in term of complexity, because the process requires unifications at every

single step. Instead it will be shown how, by expanding properly the KB at assertion-

time, the reasoning itself can be achieved acceptably.

In order to obtain the above goal, in this work two novel algorithms called

Nested-Tell and Nested-Ask are proposed, whom extend the radius of the nominal

Backward Chaining through an expansion of the KB with new clauses generated by

arguments substitutions at assertion-time.

For instance, considering a KB made, at most, of one-level14 nested predicates,

like the following:

P1(G1(x1)) ∧ P2(G2(x2)) =⇒ P3(F3(x3))

P1(F1(x1))

P2(F2(x2))

F1(x) =⇒ G1(x)

F2(x) =⇒ G2(x)

H3(x) =⇒ F3(x)

querying such a KB with P3(H3(x)) using the Backward Chaining algorithm will re-

turn False, because there are not any unifiable literals present, neither as consequent

of a clause. Instead, by applying the substitution related to H3(x) =⇒ F3(x), we

can also query the KB with P3(F3(x)) which is present as consequent of the first

clause; that’s what Caspar achieves by means of Nested-Ask (algorithm 3).

Now, to continue the reasoning process, we should check about the premises of

such clause, which is made of the conjunction of two literals, namely P1(G1(x1))

and P2(G2(x2)). Such literals, although not initially present in the KB as asserted

clauses, can be obtained by replacing their argument leveraging other clauses in the

same KB, in order to assert what is required for making the Backward Chaining

return True; that’s what the Nested-Tell (algorithm 2) achieves, implicitly asserting

the following clauses together with P1(F1(x1)) and P2(F2(x2)):

14Supposing a zero-level nested predicate be P(x).

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 47

P1(F1(x1)) =⇒ P1(G1(x1))

P1(F1(x1)) =⇒ P2(G2(x2))

Since we cannot know in advance what a future successful nested reasoning

requires, along with the previous clauses also the so defined Clause Conceptual

Generalizations can be asserted:

P1(G1(x1)) ∧ P2(G2(x2)) =⇒ F3(x3)

F1(x1)

F2(x1)

where the antecedent of the implication is unchanged to hold the quality of the

rule, while F1(x1), F2(x1), F3(x3), as satisfiability contributors of respectively

P1(F1(x1)), P2(F2(x2)), P3(F3(x3)), are assumed asserted together with the lat-

ters. In other terms, the predicates: P1, P2, P3 can be considered as modifiers of

respectively F1, F2, F3.

A generalization of the implication’s antecedent is possible only through a weaker

assertion of the entire expression, by changing =⇒ with ∧ as it follows:

G1(x1) ∧ G2(x2) ∧ F3(x3)

which is not admitted as definite clause in this KB, being not a single positive literal.

In any case, the existence of the triple (x1, x2, x3) which satisfies such a conjunction

is already subsumed by the implication.

After such a theoretic premise, let’s make a more practical example considering

the following natural language utterance:

When the sun shines hard, Barbara drinks slowly a fresh lemonade (2.12)

the corresponding definite clause will be (omitting the POS tags for the sake of

readability):

Hard(Shine(Sun(x1),)) =⇒ Slowly(Drink(Barbara(x3),

Fresh(Lemonade(x4))))

Considering as modifiers adjectives, adverbs and prepositions, following the schema

in Table 2.2 where: A=Applied, NA=Not Applied, all the clauses generalizations

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 48

Hard Slowly Fresh
A NA NA
A A NA
A NA A
A A A

Table 2.2: Generalization scheme related to the sentence (2.12).

(corresponding to the first three rows of the table, while the forth is the initial

clause) can be asserted as it follows:

Hard(Shine(Sun(x1),)) =⇒ Drink(Barbara(x3), Lemonade(x4)))

Hard(Shine(Sun(x1),)) =⇒ Slowly(Drink(Barbara(x3), Lemonade(x4)))

Hard(Shine(Sun(x1),)) =⇒ Drink(Barbara(x3), Fresh(Lemonade(x4)))

where the adverb Hard, being common part of all the antecedents composition, is

always Applied to hold the quality of the rules, while the consequent shape will range

on all possible variations of its modifiers, which will be 2n with n=#modifiers.

Although in the previous example the number of generalizations is equal to 4, in

general might be quite higher: it has been observed, after an analysis of more text

corpus from the Stanford Question Answering Dataset[81], that the average number

of modifiers in a single non-implicative utterance is equal to 6: in such cases the

number of generalizations would be equal to 64; but greater number of modifiers

would make the parsing less tractable, considering also arguments analysis for pos-

sible substitutions. In order to limit such a phenomenon, depending on the domain,

Caspar gives the chance to limit the number of generalizations by changing15 the

policies of selective inclusion/exclusion of modifiers categories (adjectives, adverbs

or prepositions).

In any case, as shown in the case-study of Section 2.3, the synergy between gen-

eralization assertions and Nested-Tell gives the chance to Nested-Ask to achieve

a successful reasoning on a wider range of cases, whom otherwise would not be

achieved with the nominal Backward Chaining.

In such a scenario, of course, the more the combinatorial possibilities, the more

the number of clauses in the Clauses KB. It will appear clear for the reader this

15Check out config.ini in the Github repository.

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 49

approach sacrifices space for a lighter reasoning, but we rely on three distinct points

in favor of our choice:

1. An efficient indexing policy of the Clauses KB, in order to obtain a fast re-

triving of any clause.

2. The usage of the class Sensor of Phidias for every clauses assertion, which

works asynchronously with respect to the main production rules system, will

make the agent immediately available after every interrogation without any

latency, while additional clauses will be asserted in background.

3. We point to keep the Clauses KB as small as possible, in order to limit the

combinatorial chances. In this chapter we assume the assignment rules prop-

erly chosen, among the most likely ones which can get the query closer to a

proper candidate. In the next chapter a custom balancing between two distinct

Clauses KB working on different levels has been presented as possible solution:

in the lower level (long-term memory) only clauses pertinent with the query

will be searched, then put in the high one (short-term memory) for attempting

a successful reasoning. Similar approaches have also been used with interesting

outcomes in some of the widespread Cognitive Architectures[48].

The only issue which cannot be ignored is that a Clauses KB expansion, due to

the Clause Conceptual Generalization, of course depends on the assertions order (as

we will see better in Section 2.4). For giving an idea, the reader might imagine a

Matryoshka toy with all its combining chances: only one combination will reduce

all the pieces in one (the biggest doll), one within each other, while whatever other

combination will left useful pieces out, whether not used in the proper sequence.

A possible strategy to address such a issue, for a future work, could be to attempt

a further expansions reconsidering already processed clauses (without assert the

already existing ones) after the assertion of other possible related ones, selected

under efficient heuristics, which might participate in the process. But such a strategy

must be employed under proper constraints, in order to avoid a useless and excessive

expansion of the KB.

In the next subsection we will see in detail the Nested-Tell and Nested-Ask

algorithms, which we have briefly described in this subsection.

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 50

2.3.6 Algorithms

Algorithm 1 shows the pseudo-code of function produce clauses() which produces

a set of single positive literals derived from an initial literal (parameter literal),

accordingly to a specific knowledge base (parameter KB). It is implemented as a

recursive function and takes an additional parameter (derived) representing the set

of new single positive literals progressively produced by the recursive calls. The

algorithm goes through all the clauses in the knowledge base (line 4) and, for each

argument in the input literal (line 5), it checks for possible unification (line 6). If the

left hand side of a clause in the knowledge base can be unified with the considered

argument, the latter can be replaced (in a copy of literal) with the correspondent

right hand side of the input literal, producing a derived literal (line 8) which differ

in the presence of the new standardized argument. The new literal is checked for

possible unification with other in derived, to avoid similarities differing on variables

name (line 11) and included in the list derived (line 15). Of course, in order to assure

completeness of the algorithm, the same procedure needs to be invoked for the newly

generated literal (line 16). This happens until no new arguments unification is found.

Algorithm 1 produce clauses(KB, literal, derived)

Input: (i) KB : set of definite clause, (ii) literal : single positive literal, (iii) derived : set of single

positive literal, should be empty in the first call.
Output: A set of single positive literal, derived from the literal.

1: declare kb clause: definite clause;
2: declare arg, arg std, new literal : single positive literals;
3: declare clause unified : boolean flag;
4: foreach kb clause in KB do
5: foreach arg in ARGS(literal) do
6: if UNIFY(GET LHS(kb clause), arg) is not fail then do
7: arg std ←− standardize(arg);
8: new literal ←− REPLACE(literal, arg std, GET RHS(kb clause));
9: clause unified ←− False

10: foreach derivation in derived do
11: if UNIFY(derivation, new literal) is not fail then do
12: clause unified ←− True;
13: break
14: if clause unified is False then do
15: derived ←− derived ∪ new literal ;
16: produce clauses(KB, new literal, derived);

Algorithm 2 shows the pseudo-code of function nested tell() which includes a new

clause (parameter clause) into a knowledge base (parameter KB), together with all

the other clauses, in the form of implications, that can be derived by it accordingly

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 51

to the current content of the knowledge base. Note that the derived clauses should

be computed only if the input clause is a single positive literal.

The algorithm checks if the input clause is an implication (line 3). If this is the

case, then the clause should be inserted in the knowledge base without any further

work (line 12). Otherwise, if the input clause is a single positive literal, all the

derived clauses are obtained by invoking Algorithm 1 (line 5) and by using all the

single positive literals in the returned set (lines 6) to generate new implications (line

8) in the case the two hand sides are not unifiable (line 7)16. In these implications,

the left hand side is the initial clause (line 9) while the right hand side is one of the

the returned literals (line 10).

Algorithm 2 nested tell(KB, clause)

Input: (i) KB : set of definite clauses, (ii) clause: definite clause

Output: A new knowledge base (set of definite clause) in which the clause has been inserted together with all
the other clauses derived by it

1: declare derived : set of single positive literals;
2: declare derived clause: definite clause;
3: if GET LHS(clause) is ∅ then do
4: derived ←− ∅;
5: produce clauses(KB, clause, derived);
6: foreach derived clause in derived do
7: if UNIFY(clause, derived clause) is fail then do
8: declare new clause: definite clause;
9: SET LHS(new clause, clause);

10: SET RHS(new clause, derived clause);
11: ASSERT(KB, new clause);
12: ASSERT(KB, clause);

Finally, Algorithm 3 shows the pseudo-code of function nested ask() which pro-

vides a domain extension to the classical Backward Chaining algorithm, when the

latter fails. This algorithm takes into consideration all the possible candidates that

can be derived from the original query (parameter candidates) through unifications

and substitutions. If the original query or one of the derived candidates is found to

be true, the function returns the set of substitutions that supports the proof. The

function returns False otherwise.

The algorithm is implemented as a recursive function so parameter candidates

should be set equal to the empty set when calling the function for the first time,

then it goes through all the clauses in the knowledge base (line 5) and for each

argument of the goal (line 6) it checks for possible unification with the left hand side

16The assertion of a clause having their handsides unifiable with each other would make the
Backward Chaining algorithm hang.

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 52

of the considered clause (line 7). If a unification is possible, then a new candidate

is produced from a copy of the goal by replacing its argument in exam with the

corresponding standardized right hand side of the clause (line 9). If no unifiable

candidates with the new one have been discovered so far (line 11, 12), the latter is

inserted in the set of the candidates (line 16) and the classical Backward Chaining

algorithm is invoked (line 17). If the reasoning is successful, then the function

exits providing the related set of substitutions (line 19). Otherwise, a recursive call

is performed passing the candidate as new goal. If all the clauses present in the

knowledge base are considered without finding a possible derived candidate which

is provable to be true, the function simply returns False.

Algorithm 3 nested ask(KB, goal, candidates)

Input: (i) KB : set of definite clause, (ii) goal : single positive literal, (iii) candidates: set of single

positive literal, should be empty in the first call.
Output: A ¡single positive literal, substitution¿ for the goal or for another candidate or false

1: declare clause: definite clause;
2: declare arg, candidate: single positive literal;
3: declare result : substitution;
4: declare clause unified : boolean flag;
5: foreach clause in KB do
6: foreach arg in ARGS(goal) do
7: if UNIFY(GET LHS(clause), arg) is not fail then do
8: new arg ←− standardize(GET RHS(clause));
9: candidate ←− REPLACE(goal, arg, new arg);

10: clause unified ←− False
11: foreach cand in candidates do
12: if UNIFY(cand, candidate) is not fail then do
13: clause unified ←− True;
14: break
15: if clause unified is False then do
16: candidates ←− candidates ∪ candidate;
17: result ←− Ask(KB, candidate);
18: if result is not false then do
19: return result ;
20: return nested ask(KB,candidate, candidates);
21: return false;

2.3.7 The Smart Environment Interface

This component provides a bidirectional interaction between the architecture and

the outer world. As shown in Fig. 2.1 and with further details in the Section 2.4,

such an interface includes a production rules system containing different types of

entities definitions and operation codes involving the entities themself, which trigger

specific procedures expressed in high level language. The latter should contain all

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 53

�
1 class HotwordDetect(Sensor):

2 def on_start(self):

3 self.running = True

4 print("\nStarting Hotword detection ...")

5 # put instantiation hotword code here

6
7 def on_stop(self):

8 print("\nStopping Hotword detection ...")

9 self.running = False

10
11 def sense(self):

12 while self.running is True:

13 # --------------> put hotword detection code here <---------------

14 # when right hotword is detected: self. assert_belief (HOTWORD_DETECTED ("ON "))

15
16
17 class UtteranceDetect(Sensor):

18 def on_start(self):

19 self.running = True

20 print("\nStarting utterance detection ...")

21 # instantiate hotword engine here

22
23 def on_stop(self):

24 print("\nStopping utterance detection ...")

25 self.running = False

26
27 def sense(self):

28 while self.running:

29 # --------------> put utterance detection code here <---------------

30 # when incoming new utterance detected: self. assert_belief (STT(utterance))
� �
Figure 2.3: Python implementation of the Sensor Istances HotwordDetect and
UtteranceDetect.

required functions for piloting each device in order to get the wanted behaviour,

whose implementation in this work is left to the developer.

2.4 Case-study

In this prototype implementation of Caspar, Python was chosen as developing

language for two main factors: firstly, the availability of Phidias, which is Python-

based; secondly, the increasing popularity of the language itself, which was ranked

first in 2020 [82] with a share of 30.09% and a trend of +3.9%. In regard of the

dependency parser, the spaCy [70] framework was exploited, which is written in

Python as well and provides neural models of different sizes, trained on a good

range of idioms. As hardware platforms, the framework has been tested in both

a common Windows OS architecture (i5 6600K, 16GB ram) and a Raspberry Pi 4

(4Gb). The latter has lately become quite popular in the field of home automation,

especially for the low price (on sale now for $55) and its interesting interfacing

features.

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 54

�
1 # Routine conditionals management

2 +SENSOR(V, X, Y) >> [check_conds ()]

3 check_conds () / (SENSOR(V, X, Y) & COND(I, V, X, Y) & ROUTINE(I, K, J, L, T)) >> [-COND(I, V, X, Y),

4 +START_ROUTINE(I), check_conds ()]

5 check_conds () / SENSOR(V, X, Y) >> [-SENSOR(V, X, Y)]

6
7 Routines execution

8 +START_ROUTINE(I) / (COND(I, V, X, Y) & ROUTINE(I, K, J, L, T)) >> [show_line("routine not ready!")]

9 +START_ROUTINE(I) / ROUTINE(I, K, J, L, T) >> [-ROUTINE(I, K, J, L, T), +INTENT(K, J, L, T), +START_ROUTINE(I)]

10
11 # turn on

12 +INTENT(X, "light", "kitchen", T) / lemma_in_syn(X, "switch.v.03") >>

13 [exec_cmd("switch.v.03", "light", "kitchen", T)]

14 +INTENT(X, "light", Y, T) / lemma_in_syn(X, "switch.v.03") >> [show_line("Result: invalid location")]

15
16 # turn off

17 +INTENT(X, "light", "living room", T) / lemma_in_syn(X, "change_state.v.01") >>

18 [exec_cmd("change_state.v.01", "light", "living room", T)]

19 +INTENT(X, "alarm", "garage", T) / (lemma_in_syn(X, "change_state.v.01") &

20 eval_cls("Be(House(x1), Safe(x2))")) >> [exec("change_state.v.01", "alarm", "garage", T)]

21
22 # open

23 +INTENT(X, "door", "living room", T) / lemma_in_syn(X, "open.v.01") >>

24 [exec_cmd("open.v.01", "door", "living room", T)]

25 +INTENT(X, "door", "kitchen", T) / lemma_in_syn(X, "open.v.01") >> [exec_cmd("open.v.01", "door", "kitchen", T)]

26 +INTENT(X, "door", Y, T) / lemma_in_syn(X, "open.v.01") >> [show_line("Result: invalid location")]

27
28 # specify , set , determine , define , fix , limit

29 +INTENT(X, "cooler", "bedroom", T) / lemma_in_syn(X, "specify.v.02") >>

30 [exec_cmd("specify.v.02", "cooler", "bedroom", T)]

31 +INTENT(X, "cooler", Y, T) / lemma_in_syn(X, "specify.v.02") >> [show_line("Result: invalid location")]

32
33 # cut

34 +INTENT(X, "grass", "garden", T) / lemma_in_syn(X, "cut.v.01",) >> [exe_cmd("cut.v.01", "grass", "garden", T)]

35 +INTENT(X, "cut.v.01", "grass", Y, T) / lemma_in_syn(X, "cut.v.01",) >> [show_line("Result: invalid location")]

36
37 # any other commands

38 +INTENT(V, X, L, T) >> [show_line("Result: failed to execute the command: ", V)]
� �
Figure 2.4: The Smart Environment Interface.

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 55

�
1 > +FEED("Nono is an hostile nation")

2
3 Be(Nono(x1), Nation(x2))

4 Be(Nono(x1), Hostile(Nation(x2)))

5 Nono(x) ==> Nation(x)

6 Nono(x) ==> Hostile(Nation(x))

7 --

8 4 definite clauses added to Knowledge Base

9
10 > +FEED("Colonel West is American")

11
12 Be(Colonel_West(x1), American(x2))

13 Colonel_West(x) ==> American(x))

14 --

15 2 definite clauses added to Knowledge Base

16
17 > +FEED("missiles are weapons")

18
19 Be(Missile(x1), Weapon(x2))

20 Missile(x) ==> Weapon(x)

21 --

22 2 definite clauses added to Knowledge Base

23
24 > +FEED("Colonel West sells missiles to Nono")

25
26 Sell(Colonel_West(x1), Missile(x2)) ==> Sell(American(v_0), Missile(x4))

27 Sell(Colonel_West(x1), Missile(x2)) ==> Sell(American(x3), Weapon(v_1))

28 Sell(Colonel_West(x1), Missile(x2)) ==> Sell(Colonel_West(x1), Weapon(v_2))

29 Sell(Colonel_West(x1), Missile(x2))

30 To(Sell(Colonel_West(x1), Missile(x2)), Nono(x3)) ==> To(Sell(Colonel_West(x1), Missile(x2)), Nation(v_4))

31 To(Sell(Colonel_West(x1), Missile(x2)), Nono(x3)) ==> To(Sell(American(v_5), Missile(v_6)), Nation(v_4))

32 To(Sell(Colonel_West(x1), Missile(x2)), Nono(x3)) ==> To(Sell(American(v_7), Weapon(v_8)), Nation(v_4))

33 To(Sell(Colonel_West(x1), Missile(x2)), Nono(x3)) ==> To(Sell(Colonel_West(v_9), Weapon(v_10)), Nation(v_4))

34 To(Sell(Colonel_West(x1), Missile(x2)), Nono(x3)) ==> To(Sell(Colonel_West(x1), Missile(x2)), Hostile(Nation(v_11))

35 To(Sell(Colonel_West(x1), Missile(x2)), Nono(x3)) ==> To(Sell(American(v_12), Missile(v_13)), Hostile(Nation(v_11))

36 To(Sell(Colonel_West(x1), Missile(x2)), Nono(x3)) ==> To(Sell(American(v_14), Weapon(v_15)), Hostile(Nation(v_11))

37 To(Sell(Colonel_West(x1), Missile(x2)), Nono(x3)) ==> To(Sell(Colonel_West(v_16), Weapon(v_17)), Hostile(Nation(v_11))

38 To(Sell(Colonel_West(x1), Missile(x2)), Nono(x3)) ==> To(Sell(American(v_18), Missile(v_19)), Nono(x3))

39 To(Sell(Colonel_West(x1), Missile(x2)), Nono(x3)) ==> To(Sell(American(v_22), Weapon(v_23)), Nono(x3))

40 To(Sell(Colonel_West(x1), Missile(x2)), Nono(x3)) ==> To(Sell(Colonel_West(v_26), Weapon(v_27)), Nono(x3))

41 To(Sell(Colonel_West(x1), Missile(x2)), Nono(x3))

42 --

43 16 definite clauses added to Knowledge Base

44
45 > +FEED("When an American sells weapons to a hostile nation , that American is a criminal")

46
47 To(Sell(American(x1), Weapon(x2)), Hostile(Nation(x3))) ==> Be(American(x4), Criminal(x5))

48 --

49 1 definite clauses added to Knowledge Base

50
51 > +QUERY("Colonel West is a criminal")

52
53 Reasoning

54
55 Query: Be(Colonel_West(x1), Criminal(x2))

56
57 ---- NOMINAL REASONING ---

58
59 Result: False

60
61 ---- NESTED REASONING ---

62
63 Result: {v_211: v_121 , v_212: x2, v_272: v_208 , v_273: v_209 , v_274: v_210 , v_358: v_269 , v_359: v_270 , v_360: v_271}
� �

Figure 2.5: Caspar Clauses KB changes, after assertions.

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 56

For the sake of shortness, we will not report in this chapter the whole agent’s

code, referring the reader to the Github repository. Instead, we will give a limited

overview about the application-specific modules which need modifications, in order

to customize the architecture for the user’s purposes.

Before going further in this section, an important thing to highlight is that

Caspar is also ready to exploit Phidias multiagent features, in order to send beliefs

in the KB of other instances, even if they are microcontroller units (MCU) with very

few resources (as reported in [47]).

Phidias gives also the chance to instantiate a service to fulfill the interoperability

between heterogeneous systems, even when they use different native communication

protocols. In the case of MCUs providing a small memory footprint, there will be

no need to install the entire Caspar framework, but just the Smart Environment

Interface or a Sensor Instance (depending on the type of interaction), together with

Phidias.

After such a premise, in the subsections ahead we will see in details the code of

the Sensor Instances, how they work with some examples, finally a discussion about

run-time performances for the two architectures as experimental evaluation.

2.4.1 The Sensor Instances

As shown in Figure 2.1, the connection of Caspar with the outer world is fulfilled

by the Smart Environment Interface, which exchanges data with its counterparts

Sensor Instances within the Reactive Reasoner. Such Sensor Instances can be seen in

detail in Fig. 2.3, namely HotwordDetect and UtteranceDetect, which are instances

of the superclass Sensor provided by Phidias. The latter let each instance work

asynchronously with respect to the main agent’s engine.

The instance HotwordDetect has the task of waiting for a waking word which

will pull out the agent from its idle state. The method on start(self) at the line

2 has the task of initialize the Speech-to-Text (STT) engine; another method at

line 7, namely on stop(self), has the task of stopping the activity of the Sensor

Instance; at line 11, the method sense(self), when running and a proper word is

detected, will assert the belief HOTWORD DETECTED. Such a Sensor Instance is specific-

designed for STT engines trained on recognize few specific words, because they

have to be fast without accessing continuously to possible external clouds for the

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 57

detection and recognition of multi-words utterances. The latter task is fulfilled by

the second Sensor Instance in Fig. 2.3 at the line 18, namely UtteranceDetect,

whose working schema is similar to HotwordDetect and produces the belief STT(X)

with X as detected multi-words utterance.

The reader can notice, by the commented lines 5, 13, 14 and 21, 29, 30, that

we have left the developer the freedom to choose his preferred engines, for both

hotwords [83, 84] and general utterances [52] recognition, among the recommended

ones.

In a similar way, whatever other kind of Sensor can be instantiated by asserting

the related beliefs inside the method sense, when specific physical parameters are

detected. In this case, one or more rule must be added among the others in the

Smart Environment Interface and related plans must be create for them, to make

the agent deal with the new beliefs.

2.4.2 IoT Commands Processing

As the voice-related beliefs are asserted by Sensor Istances, the STT Front-End

(within the Reactive Reasoner) will handle the user’s utterance for extracting the

related intentions together with associated parameters; but before that, the Hot-

wordDetect sensor must be started. When a hotword is detected, HotwordDetect is

stopped and, together with the assertion of the belief WAKE(ON), UtteranceDetect is

started: the latter will waits for fifteen17 seconds for some input, otherwise it will

return to its initial state.

On the agent’s WAKE(ON) state, for this prototype the user can:

1. Give IoT commands/routines, which they will be parsed by the Direct Com-

mands/Routines Parser.

2. Feed the Clauses KB, after giving the further hotword listen, this time man-

aged by UtteranceDetect.

3. Query the previously populated Clauses KB, after giving the further hotword

reason, this time managed by UtteranceDetect.

17This value can be changed in the config.ini file of this work github repository.

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 58

4. End the cognitive phase at once (started either with listen or reason), giving

the keyword done.

5. Wait for a custom value in seconds and let the agent return to its idle state.

As an input utterance is processed by the Translation Service, whether its FOL

expression contains an implication, it will be automatically classified as routine,

parsed and stored in the Beliefs KB; otherwise, it will be treated as direct command.

The Direct Command Parser (within the Reactive Reasoner) has the task of

combining specific beliefs containing common variables, with the final aim of trig-

gering one of the production rules in the Smart Environment Interface in Fig. 2.4.

For instance, let the direct command be:

Set the cooler at 27 degrees in the bedroom

In this case, the Translation Service will produce the following FOL expression:

set:VB(d1, , x1) ∧ cooler:NN(x1) ∧ at:IN(d1, x2) ∧ 27:CD(x2) ∧
degree:NNS(x2) ∧ in:IN(x2, x3) ∧ bedroom:NN(x3)

The Direct Command Parser, invoked by the Reactive Reasoner, will produce the

following belief:

INTENT(set, cooler, bedroom, (at 26 degree))

which contains as arguments: operation type, subject, object and other parameters.

Such a belief will trigger the rule in line 29 of Fig. 2.4, then the associated plan

inside the square brackets will be executed, whose parameters will be sent to the

devices by the means of the procedure exec cmd ; the latter is subclass of the base

class Action of Phidias and has the following arguments:

specify.v.02, cooler, bedroom, (at 26 degree)

where the operation type is encoded by specify.v.02, being a synset code provided

by WordNet.

The same result can be achieved using also words like: specify, determine, define,

fix or limit, instead of set. This can be possible by subordinating the rule triggering

with the so-called Active Belief lemma in syn(X, Synset), which will be True only

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 59

when X is a lemma contained into the specified WordNet Synset. The usage of such a

condition, after a proper entities definition, makes the rule system multi-synonimous

and multi-language, because the WordNet synset codes are the same across different

languages. Each entity except the operation type, of course, will be language-specific

and the designer can choose to encode them either as single or group of devices.

As for the Routine Parser, it has the task of combining proper beliefs in order to

produce commands that cannot be executed without the presence of other specific

beliefs, which might be asserted by some Sensor Instance. For instance, let the

command be:

Turn off the lights in the living room, when the temperature is 25 and the time is 12

In this case, the Translation Service will produce the following FOL expressions:

be:VBZ(d2, x3, x4) ∧ be:VBZ(d3, x5, x6) ∧ temperature:NN(x3) ∧
25:CD(x4) ∧ time:NN(x5), 12:CD(x6) =⇒ turn:VB(d1, , x1) ∧
off:RP(d1) ∧ light:NNS(x1) ∧ in:IN(d1, x2) ∧ living:NN(x2) ∧

room:NN(x2)

then the Routines Parser, invoked by the Reactive Reasoner, will produce the fol-

lowing beliefs:

COND(337538, be, temperature, 25)

COND(337538, be, time, 12)

ROUTINE(337538, turn, light, living room, off)

Such beliefs represent a routine and its related two conditionals, all linked together

by the same code 337538 (a timestamp of the daytime in milliseconds). All rou-

tines and relatives conditionals reside in the Beliefs KB until some Sensor Instance

produces beliefs which meet the conditionals themself (line 3 of Fig. 2.4). In detail,

whether some sensor produces both the following beliefs:

SENSOR(be, temperature, 25)

SENSOR(be, time, 12)

then, the routine and its conditionals are retracted from the Beliefs KB and the

following belief is asserted:

INTENT(turn, light, living room, off)

which will trigger the rule at line 17 of Fig. 2.4.

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 60

2.4.3 Reasoning and Meta-Reasoning

In this subsection we will show the outcomes of a command processing inferred from

a natural language utterance, taking also part in a meta-reasoning process during a

functional interaction between Beliefs KB and Clauses KB. But before introducing

meta-reasoning, let us see how Caspar processes a slightly rephrased KB (Colonel

West) treated in [18], achieving also a successful reasoning on the related query.

The main utterance of the Colonel West case is the following one:

It is a crime for an American to sell weapons to hostile nations

which was arbitrarily encoded as:

American(x) ∧ Weapons(y) ∧ Sells(x, y, z) ∧ Hostile(z) =⇒
Criminal(x)

The subjectivity of such encoding raise the issue of the so-called tailorability, making

logical forms entailed from the same sentence potentially distinct one another.

The natural language query is the following one:

West is a criminal?

which is encoded as the ground literal:

Criminal(West)

Now, if we asserted a Caspar’s representation of the main utterance whose subject

is crime, in order to obtain a successful reasoning for the specified query which

refers on being a criminal, we should also introduce an additional clause regarding

the relation between crime and criminal ! Since we want to avoid this, for the sake

of shortness we allow ourselves to rephrase the main utterance as it follows:

When an American sells weapons to a hostile nation, that American is a criminal

In common spoken language, one would gladly use the pronoun he, instead of the

second occurrency of American (without that). In such a case, before Caspar’s

parsing, an anaphora Resolution is needed. Among open-source tools, as already

mentioned in Section 1.4, we had interesting results by using NeuralCoref [85] espe-

cially for its fully integration with SpaCy.

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 61

In Fig. 2.5 all new clauses18 producted after every assertion by using Caspar are

shown. Althought this prototype is designed to work as vocal assistant, one can

alike verify the reasoning by asserting manually the belief FEED in the Phidias shell,

instead of STT at line 30 of Fig. 2.3.

Since representing-query literal is the following:

Be(Colonel West(x1), Criminal(x2))

we can clearly see that there is no definite clause in Fig. 2.5 having as such a literal as

right-hand side. Among all, the closer literal is at line 51, but it has American(x4)

instead of Colonel West(x1) as first argument of Be; in such case the nominal

Backward Chaining algorithm will return False.

Instead, by querying with the Nested-Ask algorithm, the following new candidate

leading to a successful reasoning can be inferred by leveraging the clause at line 13:

Be(American(x1), Criminal(x2))

The rest of the work will be accomplished by the nominal Backward Chaining, by

leveraging the clauses at lines 47, 37, 41.

Next, taking in exam a more IoT-relevant KB, we will show how a meta-reasoning

will take part in a direct commands processing. Let the initial utterances be the

following ones (supposing they are asserted after the agent start-up):

When an inhabitant is at home the house is safe.

Robert is an inhabitant.

The corresponding clauses produced by the Definite Clauses Builder will be:

At(Be(Inhabitant(x1),), Home(x5)) =⇒ Be(House(x3), Safe(x4))

Be(Robert(x5), Inhabitant(x6))

Robert(x) =⇒ Inhabitant(x)

where the third clause expresses the same meaning of the second one, but in the

shape of an assignment rule.

Lets suppose now a further clause asserted by another Sensor Instance, exchanging

18Part-of-Speech tags are obmitted

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 62

data with an image recognition system. Successful tests have been conducted by

connecting a Camera Module V2 to a second Raspberry Pi4, than the main one with

a full installation of Caspar; In the former, only the Sensor Instance was running.

After the face recognition of the camera, the Sensor Instance of the second device

will assert a belief containing a natural language utterance, into the KB of the first

one, related to the recognized person in the nearby of the home entrance:

+FEED("Robert is at home")

The Definite Clauses Builder, in synergy with the Nested-Tell algorithm, will assert

the following further clauses:

Be(Robert(x20),)

At(Be(Robert(x20),), Home(x22))

At(Be(Robert(x20),), Home(x22)) =⇒ At(Be(Inhabitant(v 1),),

Home(x22)))

At this point, supposing to give the agent the command: Turn off the alarm in the

garage, the rule at the line 19 of Fig. 2.4 will be triggered only after a successful

evaluation of the following clause:

Be(House(x3), Safe(x4))

It is easy to verify how the Backward Chaining algorithm fulfills such a evaluation, in

a KB composed by the previous two groups of clauses. The meta-reasoning related to

such evaluation is possible thanks to a special belief native of Phidias (Active Belief),

namely eval cls(Y), subordinating the plan together with the other conditionals

and querying the Clauses KB with Y.

In the case of routines, the second device should assert also a further belief,

together with +FEED("Robert is at home"), to let a time-subordinated routine

become an effective intent and trigger the rule, as seen in Subsection 2.4.2. This

further belief could be as the following one:

SENSOR(be, person, detected)

together, for instance, to a time-subordinated one as it follows:

SENSOR(be, time, 22:00)

after which, when the time is 22.00 the agent will take (in an autonomous way) the

decision of executing the command, on the basis of the meta-reasoning.

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 63

2.4.4 Evaluation

In this subsection, we report the results of some experiments conducted on the

two architectures mentioned at the beginning of this section, by taking the response

times on three different scenarios. Although six distinct users have tested the frame-

work, differentiated by age and gender but with results quite close one another, the

following results were obtained by the first author of this paper which is not an

English-native speaker. All three tables discussed in the following are made of 4

columns: Architecture, Detect Time (STT Detection Time, comprising the utter-

ance pronunciation), Parsing Time (pure Caspar processing) and Overall (Detect

Time + Parsing Time). In every scenario, the STT detection is achieved by using

the Google API cloud.

In Table 2.3, we can see only a slight difference between the performance of

the two architectures, working on a direct command after the agent start-up: an

average loss on the overall performance of -0,15% on the Raspberry over Windows

i5-6600K. The difference become even more thin in Table 2.4 (-0,12%) and Table

2.5 (-0,11%), even if the related commands are subordinated by a meta-reasoning.

The loss depends on both the STT service and the dependency parser; the latter

remains in the cache after the first parsing and make the subsequent operations

lighter, which is what happen in Tables 2.4, 2.5, due to the pre-population of the

Clauses KB.

In light of the above, in general we can affirm that in a Caspar-based IoT

system the real-time performances will depend mostly on both the responsiveness of

the actuators devices and the quality of the Internet connection (on which, in this

experiment, relays the Translation Service); the latter, in this case-study, was 80/20

Mbit download/upload.

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 64

Architecture Detect Time Parsing Time Overall
3,802 1,675 5,477
3,243 0,065 3,308

Win i5-6600K 3,050 0,089 3,139
3,146 0,053 3,199
3,099 0,062 3,161
4.101 2,017 6,118
3,852 0,156 4,008

Raspberry Pi4 B 3,640 0,194 3,834
3,338 0,185 3,523
3,212 0,333 3,545

Table 2.3: Realtime performances (in seconds) in the case of consecutive successful exe-
cutions of the command: turn off the light in the living room.

Architecture Detect Time Parsing Time Overall
3,656 0,064 3,720
3,215 0,059 3,274

Win i5-6600K 3,175 0,056 3,231
3,375 0,074 3,449
3,056 0,053 3,109
4,695 0,103 4,798
3,554 0,059 3,613

Raspberry Pi4 B 3,600 0,086 3,686
3,527 0,052 3,579
3,439 0,055 3,494

Table 2.4: Realtime performances (in seconds) in the case of consecutive successful exe-
cutions of the command: turn off the alarm in the garage, subordinated by: The house is
safe and a KB made of: Robert is an inhabitant, Robert is at home, When an inhabitant
is at home the house is safe.

Chapter 2. CASPAR: Cognitive Architecture System Planned and Reactive 65

Architecture Detect Time Parsing Time Overall
3,068 0,072 3,140
3,029 0,096 3,125

Win i5-6600K 2,942 0,086 3,028
3,042 0,095 3,137
3,044 0,069 3,113
4,523 0,059 4,582
2,793 0,070 2,863

Raspberry Pi4 B 3,253 0,055 3,308
3,144 0,061 3,205
3,810 0,060 3,870

Table 2.5: Realtime performances (in seconds) in the case of the command: turn off the
alarm in the garage, subordinated by: Colonel West is a criminal and the KB in Fig. 2.5.

66

Chapter 3

AD-CASPAR:

Abductive-Deductive evolution of

CASPAR

3.1 Introduction

Among applications NLP, those related to chatbots systems are growing very fast

and present a wide range of choices depending on the usage, each with different com-

plexity levels, expressive powers and integration capabilities. The first distinction

between the chatbot platforms divides them into two big macro-categories: goal-

oriented and conversational. The former is the most frequent kind, often designed

for business platforms support, assisting users on tasks like buying goods or execute

commands in domotic environments. In this case, it is crucial to extract from a

utterance the intentions together with the related parameters, then to execute the

wanted operation providing a proper feedback to the user. As for conversational

ones, they are mainly focused on having a conversation, giving the user the feeling

to communicate with a sentient being returning back reasonable answers, optionally

taking into account discussions topics and past interactions. The early shared aim

for conversational chatbot systems was to pass the Turing test, hence to fool the

user about his interlocutor; the state-of-art of such chatbot systems can be probed

in the scope of the Loebner Prize Competition [86].

One of the most common platforms for building conversational chatbot is AIML [87]

(Artificial Intelligence Markup Language), based on words pattern-matching defined

Chapter 3. AD-CASPAR: Abductive-Deductive evolution of CASPAR 67

at design-time; in the last decade it has become a standard for its flexibility to cre-

ate conversation. In [88] AIML and Chatscript [89] are compared and mentioned

as the two widespread opensource frameworks for building chatbots. On the other

hand, AIML chatbots are difficult to scale if patterns are manually built, they have

great limitations on information extraction capabilities and they are not suitable

for task oriented chatbots. Other kinds of chatbots are based on deep learning

techniques [90], making usage of huge corpus of conversations to train generative

models that, given an input, are able to generate answers. In general, all chatbots

are not easily scalable without writing additional code or re-train models with fresh

datasets. As for the latters, unfortunately neural networks (in particular, deep neu-

ral networks used in deep learning applications) suffer from the problem known as

catastrophic interference: a process where new knowledge overwrites, rather than

integrates, previous knowledge. At this regard, the usage of neural models working

at more deep semantic level as a dependency parser, in order to build logical models

of utterances in natural language, prevents much more such a drawback.

In this chapter, a cognitive architecture called AD-Caspar based on NLP and

FOL reasoning is presented, as baseline platform for implementing scalable and

flexible chatbots with both goal-oriented and conversational features; nevertheless,

this architecture leverages question-answering techniques and it is able of combining

facts and rules in order to infer new knowledge monotonically from its own knowledge

base. This first prototype is not yet capable of instantiating chatbots with complex

dialog systems; but differently from other platforms, in order to handle additional

question-answer couples, the user has to provide just the related sentences in natural

language, raising an implicit horizontal scaling of acquired responsiveness on possible

questions. After every parsed sentence, as we will show in the next sections, the

system made of agent+knowledge base is able to act as a deductive database [91].

AD-Caspar inherits most of its features directly from its predecessor Cas-

par seen in Chapter 2. The additional features introduced in AD-Caspar are

the usage of abduction as pre-stage of the deduction (that’s why the presence of

AD before Caspar), in order to make inference only on a narrow set of query-

related clauses, plus the application of question-answering techniques to deal with

wh-questions and give back factoid answers (single nouns or snippets) in the best

cases; otherwise, optionally, only a relevance-based output will be returned.

Chapter 3. AD-CASPAR: Abductive-Deductive evolution of CASPAR 68

Sensor Instance

Dependency
Parser

Uniquezer

MST Builder

FOL Builder

PHIDIAS Engine

Sensor
Instances

STT
Front-End

Direct Commands
Parser

Routines Parser

Beliefs KB

Definite Clauses
Builder

High Clauses KB

FOL Reasoner

Physical
 Sensors

Devices

Translation Service Reactive Reasoner Cognitive Reasoner

Smart Environment
Interface

Smart
Home

Low Clauses KB

QA Shifter

ASR CHAT

Figure 3.1: The Software Architecture of AD-Caspar

This chapter is structured as follows: Section 3.2 shows in detail all the architec-

ture’s components and underlying modules; Section 3.3 shows howAD-Caspar deals

with polar and wh-questions; Section 3.5 is about a case-study where it is shown

an instance of thinking Telegram chatbot. A Python prototype implementation of

AD-Caspar is also provided for research purposes in a Github repository1.

3.2 The Architecture

In this section all interacting components of this architecture are explained. AD-

Caspar inherits all its features from Caspar, plus specific modules for question-

answering, and abductive reasoning supported by a NoSql engine to deal with large

knowledge bases.

The main component of this architecture, namely the Reactive Reasoner (central

box in Fig. 3.1), acts as ”core router” by delegating operations to other components,

and providing all needed functions to make the whole system fully operative. The

Reactive Reasoner contains a further module than respect toCaspar, which is called

QA Shifter, having the task of recombining grammatical terms from a question shape

to more possible answer shapes, as shown in Section 3.3.

1http://www.github.com/fabiuslongo/ad-caspar

http://www.github.com/fabiuslongo/ad-caspar

Chapter 3. AD-CASPAR: Abductive-Deductive evolution of CASPAR 69

Chatbot Microphone Sensor #n
...

Beliefs Knowledge Base

Translation ServiceDependency Parser WordNet

Reasoning
meta-reasoning

Smart Environment Interface

Actuator #1 Actuator #2 Actuator #m
...

D
at

a
Fl

ow

D
at

a
Fl

ow

Short-term memory

Long-term memory

Figure 3.2: The Data Flow Schema in AD-Caspar

As for AD-Caspar, its Knowledge Base (KB) is divided into Beliefs KB and

Clauses KB, where the latter is further divided in two distinct layers: High Clause

KB and Low Clauses Kb. The totality of the knowledge is stored in the low layer,

but the logical inference is achieved in the high one by means of the FOL Reasoner.

Among all clauses, only the most relevant for the query in exam will be transferred

from Low Clauses KB to High Clauses KB, taking into account of a confidence

threshold based on specific features which will be discussed ahead. The two layers

of the Clauses KB can be seen as Short-Term Memory (High Clauses KB) and

Long-Term Memory (Low Clauses KB).

The Translation Service (left box in Fig. 3.1) shares the same features inherited

from Caspar and seen in Subsection 2.3.1, excepting for the Sensor Instance at

the beginning of the pipeline, which can alternatively obtains utterances from a

chat window as well. Finally, the Smart Environment Interface (upper right box in

Fig. 3.1) is also entirely inherited from Caspar.

In Figure 3.2 it is shown a simplified data flow schema in AD-Caspar. Each

sensor in the upper ovals can get information either from a chatbot, a microphone

Chapter 3. AD-CASPAR: Abductive-Deductive evolution of CASPAR 70

(in the case of vocal commands) or whatever other kind of device able of capturing

physical quantities from the environment. Each information coming from sensors

is translated in specific beliefs and stored in the Beliefs KB. In case a belief is not

related to an utterance, the former will be sent directly to the Smart Environment

Interface, without passing through the Translation Service, where libraries for pi-

loting devices actuators are invoked. Otherwise, in the case of vocal commands,

beliefs containing text of utterances will pass through the Translation Service, in

order to produce logical forms by leveraging a dependency parser and the lexical

resource WordNet. Depending on the utterances content, vocal commands might

be also subordinated by meta-reasoning in the conceptual space, which is made of

Short- and Long-term memory, before interacting with devices.

3.3 Question Answering

In this section it is shown how this architecture deals with question-answering.

Differently from its predecessor, which works with a single-volatile Clauses KB, AD-

Caspar can count on a two-layer Clauses KB: High Clauses KB and Low Clauses

KB. Every assertion is made on both the layers, but the logical inference is made

only on the High one. As for queries, whether a reasoning fails, the Low Clauses KB

is used to populate the High one with relevance-based clauses, taking into account of

common features between clause-query and clauses stored in the Low Clauses KB.

Each record in the Low Clauses KB is stored in a NoSQL database and is made

of three fields: nested definite clause, features vector and the sentence in natural

language. The features vector is made of all labels composing a clause. For instance

let’s considering the following sentence:

Barack Obama became president of United States in 2009

In this case, the record stored in Low Clauses KB will be as it follows2:

- In IN(Become VBD(Barack NNP Obama NNP(x1), Of IN(President NN(x2),

United NNP States NNP(x3))), N2009 CD(x4))

- [In IN, Become VBD, Barack NNP Obama NNP, Of IN, President NN,

United NNP States NNP, N2009 CD]

2Considering the nested notation seen in the prior chapter including also POS tags.

Chapter 3. AD-CASPAR: Abductive-Deductive evolution of CASPAR 71

- Barack Obama became president of United States in 2009

The abductive strategy of transfer from Low Clauses KB to High Clauses KB

takes in account of a metric defined as Confidencec between all records in Low

Clauses KB and a query:

Confidencec =
|
⋂︁
(Featsq, Featsc)|

|Featsq|
(3.1)

where Featsq is the features vector extracted from the query, and Featsc is the features

vector in a record stored in Low Clauses KB.

Once obtained the sorted list of all features occurrences, together with the related

clauses, the most relevant clauses will be copied in the High Clauses KB. Such a

operation is accomplished via the aggregate clauses greedy algorithm shown in

Algorithm 4, which with a greedy euristic takes in input the query clause, the set

aggregated and the wanted limitation of confidence threshold for abduction. As

output, it gives back the set aggregated of clauses from the db that are going to be

transferred in the High Clauses KB, considering the wanted distance (3.1) from the

query.

3.4 Algorithm

First, at line 1 of Algorithm 4, aggregate clauses greedy extracts the vector con-

taining all the features of clause; at line 2 it creates a list of tuples in descending

order (by the first field) containing an integer value and a lists of clauses having in

common such a value. For instance, considering the Table 3.1, having a query with

the features [a, b, c], the function get relevant clauses from db will create a

list made of the following two tuples:

(3, [cls 4, cls 5])

(2, [cls 2, cls 3])

The rationale behind such function’s output is that the first value of the each tuple

is the size of the intersection between the features of the query and the features

of Table 3.1, while the second value is a vector containing the clauses themselves

having in common such a intersection size. At line 4, the first value of each tuple

Chapter 3. AD-CASPAR: Abductive-Deductive evolution of CASPAR 72

�
1 aggr = db.clauses.aggregate ([

2 {"$project": {

3 "value": 1,

4 "intersection": {"$size": {"$setIntersection": ["$features", features]}}

5 }},

6 {"$group": {"_id": "$intersection", "group": {"$push": "$value"}}},
7 {"$sort": {"_id": -1}},

8 {"$limit": 2}

9])
� �
Figure 3.3: The Python Mongodb aggregate operator implementing the function
get relevant clauses from db at line 2 of Algorithm 4.

Clauses Features
cls 1 [a, x, z, y]

cls 2 [a, b]

cls 3 [a, b, x, y]

cls 4 [a, b, c, d]

cls 5 [a, b, c, w]

Table 3.1: A simple instance of Clauses and related Features.

is extracted and used in line 5 to calculate the confidence (3.1). In the loop at line

6, all clauses having the same features occurrences are considered, and at line 7 the

algorithm checks whether the clause has an admitted confidence level and it is not

already in aggregated. In this case, the clause will be appended to the aggregated

list. At line 9, there is a recursive call taking in input cls (the current clause which

is being processed) instead of clause, the updated aggregated and the threshold of

the same procedure call. Finally, at line 10, the list aggregated is returned.

Although there can be more strategies to implement the function at line 2 of

Algorithm 4, for the prototype in the Github repository the desired result has been

achieved by leveraging the Mongodb aggregation operator, in a single fast and effi-

cient database operation shown in Fig. 3.3. The latter is a pipeline of four different

operations: the first, at line 4, is the processing of all possible sizes of intersections

between features fields in the db and the features of the query clause. At line 6 all

clauses with the common value of such a size are grouped in tuples. At line 7 such

tuples are sorted by the intersection size. Finally, at line 8 the output is limited to

the two most significant tuples.

Chapter 3. AD-CASPAR: Abductive-Deductive evolution of CASPAR 73

Algorithm 4 aggregate clauses greedy(clause, aggregated, threshold)

Input: (i) clause: a definite clause, (ii) aggregated : a set of definite clauses (empty in the first call), (iii)
threshold : the minimum confidence threshold

Output: a set of definite clauses.

1: ft ←− extract features(clause);
2: aggr ←− get relevant clauses from db(ft);
3: foreach record in aggr do
4: occurrencies found ←− record.features occurrencies
5: confidence ←− occurrencies found / size(ft)
6: foreach cls in record.clauses do
7: if cls not in aggregated and confidence ≥ threshold then do
8: aggregated.append(cls);
9: aggregate clauses greedy(cls, aggregated, threshold);

10: return aggregated

3.4.1 Polar Questions

Polar questions in the shape of nominal assertion (excepting for the question mark

at the end) are transformed in definite clauses and treated as query as they are,

while those beginning with an auxiliary term, for instance:

Has Margot said the truth about her life?

can be distinguished by means the dependency aux(said, Has) and they will be

treated by removing the auxiliary and considering the remaining text (without the

ending question mark) as source to be converted into a clause-query.

3.4.2 Wh-Questions

Differently from polar questions, for dealing with wh-question we have to transform

the question into assertions one can expect as likely answers. To achieve that,

after an analysis of several types of questions for each category3, by leveraging the

dependencies of the questions, we found it useful to divide the sentences text into

specific chunks as it follows:

[PRE AUX][AUX][POST AUX][ROOT][POST ROOT][COMPL ROOT]

The delimiter indexes between every chunk are given by AUX and ROOT dependen-

cies. On the basis of the latters, all remaining chunks are obtained. In regard of

likely answers composition, the module QA Shifter has the task of recombining the

question chunks in a different order, depending on the idiom in exam, considering

3Who, What, Where, When, How

Chapter 3. AD-CASPAR: Abductive-Deductive evolution of CASPAR 74

also the type of wh-question. Such a operation, which is strictly language specific,

is accomplished thanks to an ad-hoc production rule system which takes in account

of languages diversity. For instance, let the question in exam be:

Who could be Biden?

In this case, the chunks sequence will be as it follows:

[PRE AUX][could][POST AUX][be][Biden][COMPL ROOT]

where only AUX, ROOT and POST ROOT are populated, while the other chunks are

empty. In this case a specific production rule of the QA Shifter will recombine the

chunks in a different sequence, by adding also another specific word (Dummy), in

order to compose a proper likely assertion like it follow:

[PRE AUX][POST AUX][Biden][could][be][COMPL ROOT][Dummy]

At this point, by joining all words in such a sequence, a likely assertion to use as

query will be the following:

Biden could be Dummy

The meaning of the keyword Dummy will be discussed next. In all verbal phrases

where ROOT is a copular verb4 (like be), i.e., a non-transitive verb but identifying the

subject with the object (in the scope of a verbal phrases), the following sequence

will also be considered as likely assertion.

Dummy could be Biden

All wh-questions for their own nature require a factoid answer, made of one or

more words (snippet); so, in the presence of the question: Who is Biden? as answer

we expect something like: Biden is something. But something surely is not what we

are looking for as information, but the elected president of United States or something

else. This means that, within the FOL expression of the query, something must be

represented by a mere variable and not a ground term. In light of this, instead

of something, this architecture uses the keyword Dummy : during the creation of

4The verbs for which we want to have such a behaviour can be defined by a parameter in
a configuration file. For further details we refer the reader to the documentation in this work’s
Github repository.

Chapter 3. AD-CASPAR: Abductive-Deductive evolution of CASPAR 75

a FOL expression containing such a word, the Translation Service will impose the

Part-of-Speech DM to Dummy, whose parsing is not expected by the Clauses Builder,

thus it will discarded. At the end of this process, as FOL expression of the query

we’ll have the following literal:

Be VBZ(Biden NNP(x1), x2) (3.2)

which means that if the High Clauses KB contains the representation of Biden is

the president of America, namely:

Be VBZ(Biden NNP(x1), Of IN(President NN(x2), America NNP(x3)))

querying with the (3.2) by using the Backward Chaining algorithm, the latter as

result will return back a unifying substitution with the previous clause as it follows:

{v 41: x1, x2: Of IN(President NN(v 42), America NNP(v 43))} (3.3)

which contains, in correspondence of the variable x2, the logic representation of the

snippet: president of America as possible and correct answer. Furthermore, starting

from the lemmas composing the only answer-literal within the substitution, with a

simple operation on a string it is possible to extract the minimum snippet from the

original sentence containing such lemmas as response in natural language.

3.5 Case-study

In this section it is shown a simple instance of Telegram chatbot based on the

AD-Caspar architecture, and how it deals with assertions and queries. The out-

put of each interaction, which in this section is made of substitutions, has to be

considered aimed to clarify the logical inference behind the logical processing. In

a classical chatbot instance, such output should be replaced with proper snippets,

custom answers or further questions, following possibly the schema of a dialog sys-

tem. The Github repository reports detailed instructions about both installation

and configuration of a base chatbot instance.

Chapter 3. AD-CASPAR: Abductive-Deductive evolution of CASPAR 76

�
1
2 eShell: main > hkb()

3
4 In_IN(Become_VBD(Barack_NNP_Obama_NNP(x1), Of_IN(President_NN(x2), United_NNP_States_NNP(x3))), N2009_CD(x4))

5
6 1 clauses in High Knowledge Base

7
8 eShell: main > lkb()

9
10 In_IN(Become_VBD(Barack_NNP_Obama_NNP(x1), Of_IN(President_NN(x2), United_NNP_States_NNP(x3))), N2009_CD(x4))

11 [’In_IN’, ’Become_VBD ’, ’Barack_NNP_Obama_NNP ’, ’Of_IN’, ’President_NN ’, ’United_NNP_States_NNP ’, ’N2009_CD ’]

12 Barack Obama became the president of United States in 2009.

13
14 1 clauses in Low Knowledge Base
� �

Figure 3.4: AD-Caspar Hi and Low Clauses KBs changes, after assertions.

Figure 3.5: Starting a Telegram chat session with an instance of AD-Caspar.

Chapter 3. AD-CASPAR: Abductive-Deductive evolution of CASPAR 77

After the agent is started, to begin a new session the user has to provide the

keyword hello (Fig. 3.5), for making the agent to come out from its idle state, then

choose the type of interaction in the chat window as it follows:

1. Assertion, with a dot at the end of sentence (Fig. 3.5).

2. Question, with a question mark at the end of sentence (Fig. 3.6).

3. Direct command or routine definition, without any dot or question mark at

the end (Fig. 3.7).

In regard of the first interaction type, the agent’s behaviour will be as like as Cas-

par, having in addition the parallel population of the Low Clauses KB. As for the

second type, its outcome will be a set of logical inferential substitutions containing

composite literals (when not returning False) as answers to the questions. The out-

come of the third type of interaction is the same seen for Caspar in Chapter 2,

considering also meta-reasoning; which means that a Telegram instance can be used

also as Internet of Things agent as in Figure 3.7.

3.5.1 Asserting and Querying the Chatbot

In Figure 3.4 it is shown the content of both High and Low Clauses KB, after the

events of Figure 3.5, by means the AD-Caspar native commands hkb() and lkb().

In Figure 3.6 we can see how the chatbot is queried with wh-questions, giving back

a substitution as result from the High Clauses KB (From HKB: True) containing a

literal, which is a logic representation of a snippet-result in natural language. In this

case the substitution of the variable x1 is the literal representing the snippet Barack

Obama, whose words are concatenated together to their Part-of-Speech5, while x7

is the representation of the number 2009.

After the chatbot rebooting6, as we can see in Figure 3.6, the result will be

extracted from the Low Clauses KB (From LKB: True) taking in account of the

confidence threshold (3.1), because the High Clauses KB is still empty (From HKB:

False). Such a threshold, depending on the domain, can be changed by modifying

the value of the parameter MIN CONFIDENCE in config.ini (LKB Section).

5Optionally, Part-of-Speech can be excluded by a specific setting in the config.ini.
6The user has to provide again the word hello to start a new session, after the latter is expired.

Chapter 3. AD-CASPAR: Abductive-Deductive evolution of CASPAR 78

Figure 3.6: Querying with who and when questions, after chatbot rebooting and Low
Clauses KB fed.

Figure 3.7: AD-Caspar execution of a Internet of Thing command in a Telegram chat
session.

Chapter 3. AD-CASPAR: Abductive-Deductive evolution of CASPAR 79

Figure 3.8: Abductive results with confidence threshold = 0.6, after querying with when
questions.

3.5.2 Failing Queries

In the bot closed-world assumption, the agent can give back only answers unifying

with the content of its own knowledge base, otherwise it will return False. Optionally,

with the value of the parameter SHOW REL set to True in the config.ini, the closest

results can be shown together with their confidence (Fig. 3.8).

3.5.3 Nested Reasoning

SinceAD-Caspar inherits most features from its predecessor Caspar, among them

there is the one which triggers the expansion of the Clauses KB (both High and Low),

due to the assertion of both assignment rules and clause conceptual generalization.

Such a behaviour permits what in the prior chapter was defined as Nested Reasoning.

The expanded knowledge base in Fig. 2.5 can be achieved also in a Telegram chatbot:

in Figure 3.9 and Fig. 3.10 there are all chatbot interactions required to feed the

so-called Colonel West case’s KB; in Figure 3.11 a successful reasoning is shown,

considering the case in which all required clauses are within the High Clauses KB

Chapter 3. AD-CASPAR: Abductive-Deductive evolution of CASPAR 80

Figure 3.9: Colonel West KB assertions (part. 1).

Figure 3.10: Colonel West KB assertions (part. 2).

Chapter 3. AD-CASPAR: Abductive-Deductive evolution of CASPAR 81

Figure 3.11: A successful reasoning on the Colonel West KB before and after chatbot
rebooting, getting clauses through abduction (with confidence threshold = 0.6) from the
Low Clauses KB.

Chapter 3. AD-CASPAR: Abductive-Deductive evolution of CASPAR 82

Knowledge Base HKB LKB+HKB

0,377 0,469
West25 0,378 0,353 (19/25)

0,437 0,385 (19/25)
0,374 0,366 (19/25)
0,355 0,399 (19/25)
0,423 0,426

West104 0,362 0,327 (19/104)
0,342 0,327 (19/104)
0,353 0,388 (19/104)
0,731 0,323 (19/104)
0,407 0,463

West303 0,421 0,357 (19/303)
0,377 0,333 (19/303)
0,461 0,368 (19/303)
0,443 0,387 (19/303)

Overall AVG 0,416 0,378

Table 3.2: Realtime cognitive performances (in seconds) of a Telegram chatbot engine
based on AD-Caspar, in the case of the question: Colonel West is American? and three
distinct KBs containing the clauses in Fig. 2.5 (with confidence threshold = 0.6).

(From HKB: True); otherwise, after the chatbot rebooting, in the same picture it

is shown how the agent gets from the Low Clauses KB all needed clauses through

an abductive step with confidence threshold equal to 0.6, then how it achieves a

successful reasoning after the transferring of the clauses in the High Clauses KB

from the Low one (From HKB: False, From LKB: True).

3.5.4 Runtime Evaluation

In the scope of chatbot applications, the issue of responsiveness is worth of attention,

because the user should have the feeling, somehow, of relating to a sentient being

providing an average reasonable response time. In light of above, to address such

a issue, since a chatbot relays on the internet, its realtime performances depends

firstly on the bandwidth of the internet connection, secondly on the chatbot engine.

For this reason in order to achieve a runtime evaluation of the engine an instance

of AD-Caspar was tested, whose timings in seconds are shown in Table 3.2. The

hardware platform the chatbot has been tested on is Intel i7-8550U 1.80Ghz with

Chapter 3. AD-CASPAR: Abductive-Deductive evolution of CASPAR 83

8GB RAM. The first column Knowledge Base of Table 3.2 refers to three distinct

KBs, each with different size, containing the clauses seen in Fig. 2.5. Such clauses

are asserted starting from the already seen (in Section 2.3) five sentences related to

the Colonel West case, namely:

• Colonel West is American.

• Cuba is a hostile nation.

• missiles are weapons.

• Colonel West sells missiles to Cuba.

• When an American sells weapons to a hostile nation, that American is a crim-

inal.

Together with each sentence’s related clause, assignment rules and clause conceptual

generalizations seen in Section 2.3 are also asserted, making possible the expansion

of useful clauses from 5 up to 25, thanks to Algorithm 1 and Algorithm 2 seen in

Subsection 2.3.6. The first KB, namely West25, contains exactly such 25 clauses,

while West104 and West303 contain either such clauses, but respectively plus 78

and 278 random unrelated clauses. The column HKB of Table 3.2 refers to five

computation timings for each of the KBs, considering only the High Clauses KB

and the query: Colonel West is a criminal?. We remind that an instance of AD-

Caspar attempts firstly to achieve a reasoning making usage of only the High

Clauses KB, as in the case of Caspar, otherwise it will get likely candidates from

the Low Clauses KB, considering their relevance to the query according to a specific

threshold confidence (3.1). The third column LKB+HKB of Table 3.2 shows timings

in the case the High Clauses KB is initially empty, thus both High Clauses KB and

Low Clauses KB are involved. Focusing on the third column, it appear clear timings

in general are lesser than the second column, excepting for the value in the first

row, which comprises the Mongodb access time and the filling of the High Clauses

KB with clauses coming from the Low one, via the aggregate clauses greedy

algorithm. The other values in the third column are lower than in the second one

because the reasoning is achieved over a lesser number of clauses (19) for each distinct

knowledge base. The average timings in the bottom row show how the first row’s

Chapter 3. AD-CASPAR: Abductive-Deductive evolution of CASPAR 84

value is amortized, by compensating the loss with the gain achieved by reasoning

on a fewer number of clauses than respect the initial content of all knowledge bases

in exam (West25, West104 and West303). Intuitively it is expected such bias to

be increased for larger knowledge bases, which demonstrates the effectiveness of

such approach for two distinct tasks: firstly, to deals with larger knowledge bases

considering only the most relevant clauses in the reasoning process; secondly, to

permit abduction as pre-stage of deduction in order to give back closer results also

in presence of non-successful reasonings.

85

Chapter 4

SW-CASPAR: Semantic Web

based translation of CASPAR

4.1 Introduction

In Chapter 2 we have seen the novel architecture Caspar and how it can be used

to instantiate agents with both cognitive and reactive features. Such agents are

able to reason in a process subordinated by a further level of reasoning, namely

meta-reasoning, in a conceptual space, whose content is made of facts and axioms in

first-order logic with the closed-world assumption. An important variation of such

architecture, which would make it suitable for different scenarios and represents the

main motivation behind this chapter, consists in reasoning over shared ontologies in

the open-world assumption, i.e., by leveraging the Semantic Web.

Ontologies are formal, explicit specification of a shared conceptualization [92]. The

Semantic Web, with all its layers and frequent updates, can be considered the very

backbone of nowadays ontologies.

The closed-world assumption applies when a system has complete information,

like many database applications. On the contrary, the open-world assumption ap-

plies when a system has incomplete information. For example, consider a patient’s

clinical history system. If the patient’s clinical history does not include a particular

allergy, it would be incorrect to state that the patient does not suffer from that al-

lergy; it is unknown if the patient suffers from that allergy, unless more information

is given to disprove the assumption.

On the basis of the above a variation of Caspar, namely SW-Caspar, was

designed. The latter is capable of parsing IoT commands from natural language,

Chapter 4. SW-CASPAR: Semantic Web based translation of CASPAR 86

subordinating them by a meta-reasoning over the Semantic Web. An important

contribution in the development of such architecture came from the Owlready[93]

library, which gives also the chance of reasoning in the local closed world1 as reported

in [94].

SW-Caspar relies on the support of a module called Ontology Builder, which

dynamically creates domain-legacy ontologies serialized in OWL 2, in order to allow

for meta-reasoning. Nonetheless, it can can be used also as an alternative stand-

alone tool for creating ontologies, in substitution of other state-of-the-art tools, for

several reasons that will be clarified in later on. A Python prototype implementation

of SW-Caspar is also available as a Github repository.2

This chapter is structured as follows: Section 4.2 describes the state of the art

of related literature; Section 4.3 shows in detail all the architecture’s components

and underlying modules; Section 4.4 illustrates the strategy applied for the task of

the Ontology Learning; finally, Section 4.5 depicts a case-study of an agent working

on a health scenario, making usage of both reasoning and meta-reasoning in the

Semantic Web.

4.2 Related works

The architecture explained in this chapter inherits all the cognitive IoT features

from its predecessor Caspar, so the reader is referred to Chapter 2 for more details

about. Hence, this section is focused more on the scope of ontology learning from

natural language, which is the main additional contribute of this chapter.

The disruptive growing of textual data on the web, coupled with an increasing

trend to promote the semantic web, have made the automatic ontology construction

from text a very promising research area. However, manual construction of ontolo-

gies is time consuming as well as an extremely laborious and costly process. For

this reason, several approaches have been designed to automatize the ontology learn-

ing from text, each with different level of human interaction. Such approaches can

be divided into two categories: linguistic based and machine learning approaches.

Among linguistic based approaches, the authors of [95] use semantic templates and

1Owlready reasoning capability in the local closed world is limited to a set of individuals and
classes.

2http://www.github.com/fabiuslongo/sw-caspar

http://www.github.com/fabiuslongo/sw-caspar

Chapter 4. SW-CASPAR: Semantic Web based translation of CASPAR 87

lexico-syntactic patterns such as “NP is type NP” to extract hypernym and meronym

relations. Although it is well known that these approaches have reasonable precision

but low recall [37]. In order to achieve terms extraction, [96] leverages POS tagging

to assign parts-of-speech to each word and a rule-based sentence parser. However

many words are ambiguous, so this approach will lead possibly to a low accuracy,

without a valid disambiguation strategy. SW-Caspar approach, although similar,

makes usage also of a performative disambiguation module described in details in

Subsection 2.3.4, extracting also conditional-word based axioms. The authors of

[97] make use of a dependency parser to map syntactic dependencies into semantic

relations. Such approaches are useful for terms and concepts extraction and also

for relations discovery, even though they need to cooperate with other algorithms

and/or rules for better performance.

As for machine learning approaches, the system ASIUM [98] adopts agglom-

erative clustering for taxonomy relations discovery, even if axioms only express

subsumption relationship (IS-A) between unary predicates and concepts. The sys-

tem OntoLearn [80] extracts only taxonomic relations, taking in account of hy-

pernyms from WordNet. The system HASTI [99] builds automatically ontologies

from scratch, using logic-based, linguistic-based and statistical-based approaches.

It is one of the few systems which try to learn axioms using inductive logic pro-

gramming, even though they are very general. Furthermore, such a system has the

limitation that each intermediate node, in the conceptual hierarchy, has at most

two children. Worth of mentioning there is also Text-to-Onto [100], which builds

taxonomic and non-taxonomic relations that make use of data mining and natural

language processing. Other approaches [101–103] are also interesting, although ei-

ther they have limitations on the composition of learned concepts or they generate

too many hypotheses, making the involved calculation unmanageable.

Besides a large analysis of the state-of-the-art, the authors of [104] discuss on

reasons and techniques about the usage of deep neural networks in the Ontology

Learning. In these cases, neural network are often hard to train, although in many

cases they give better results by using large, domain-related datasets.

Chapter 4. SW-CASPAR: Semantic Web based translation of CASPAR 88

4.3 The Architecture

In this section all interacting components of this architecture are explained, which

are also depicted in Fig. 4.1 each filled with distinct colours.

SW-Caspar inherits most of Caspar features, apart the Ontology Builder in-

stead of the Definite Clause Builder within the Reactive Reasoner (central box in

Fig. 4.1), and the Ontology in OWL 2 instead of the Clauses KB, which is integrated

together with a reasoner (Pellet [105]) within the Cognitive Reasoner (bottom right

in Fig. 4.1). As already pointed out in the introduction, the architecture’s name

derives directly from its predecessor, namely Semantic Web-Cognitive Architecture

System Planned and Reactive, which synthesized its main theme: the transposition

of Caspar in the Semantic Web.

The main component of this architecture, namely the Reactive Reasoner, acts

as “core router” by delegating operations to other components, and providing all

needed functions to make the whole system fully operative.

ASR

Dependency
Parser

Uniquezer

MST Builder

FOL Builder

PHIDIAS Engine

Sensor
Instances

STT
Front-End

Direct Commands
Parser

Routines Parser

Beliefs KB

Ontology Builder

Ontology

Pellet

Physical
 Sensors

Devices

Devices Groups

Translation Service Reactive Reasoner Cognitive Reasoner

Smart Environment
Interface

Smart
Environment

Figure 4.1: The Software Architecture of SW-Caspar.

This architecture’s knowledge base (KB) is divided into two distinct parts oper-

ating separately, which we will distinguish as Beliefs KB and Ontology : the former

contains information about physical entities which affect and are affected on the

agent, whereas the latter contains conceptual information not perceived by agent’s

sensors, but on which the agent can make inference with the open-world assumption.

Chapter 4. SW-CASPAR: Semantic Web based translation of CASPAR 89

Sensor #1 Sensor #2 Sensor #n
...

Beliefs Knowledge Base

Translation ServiceDependency parser WordNet

Reasoning Ontology

meta-reasoning

Smart Environment Interface

Actuator #1 Actuator #2 Actuator #m
...

D
at

a
Fl

ow

D
at

a
Fl

ow

Figure 4.2: The Data Flow Schema of SW-CASPAR

The Beliefs KB provides exhaustive cognition about what the agent could expect

as input data coming from the outside world; as the name suggests, such a KB is fed

by specific beliefs that can - in turn - activate related plans in the agent’s behaviour;

Ontology is defined by triples in OWL 2, and is fed by the Ontology Builder within

the Reactive Reasoner.

The two KBs represent, somehow, two different kinds of human being mem-

ory: the so called procedural memory or implicit memory [106], made of thoughts

directly linked to concrete and physical entities, and the conceptual memory, based

on cognitive processes of comparative evaluation.

As well as in human being, in this architecture the two KBs can interact with

each other in a very reactive decision-making process.

In Fig. 4.2 it is shown a simplified data flow schema of SW-Caspar. Each

sensor in the upper ovals can get information either from a microphone (in the case

of vocal commands) or from whatever other kind of device able of capturing physical

quantities from the environment. Each information coming from sensors is translated

in specific beliefs and stored in the Beliefs KB. In case a belief is not related to an

Chapter 4. SW-CASPAR: Semantic Web based translation of CASPAR 90

utterance, the former will be sent directly to the Smart Environment Interface,

without passing through the Translation Service, where libraries for piloting devices

actuators are invoked. Otherwise, in the case of vocal commands, beliefs containing

text of utterances will pass through the Translation Service, in order to produce

logical forms by leveraging the dependency parser and the lexical resource WordNet.

Depending on the utterances content, vocal commands might be also subordinated

by meta-reasoning in the conceptual space, before interacting with devices.

4.3.1 The Translation Service

This component (left box in Fig. 4.1) is a pipeline of five modules with the task of

taking a sound stream in natural language and translating it in a neo-davidsonian

FOL expression inheriting the shape from the event-based formal representation of

Davidson [63]. The reader is referred to Subsection 2.3.1 for a detailed description

of such a component.

4.3.2 The Reactive Reasoner

This component (central box in Fig. 4.1) has the task of letting other modules com-

municate with each other; it also includes additional modules such as the Speech-To-

Text (STT) Front-End (which transforms information coming from other modules

in beliefs as well as for Caspar), IoT Parsers (Direct Command Parser and Routine

Parser), Sensor Instances, and Ontology Builder. The Reactive Reasoner contains

also the Beliefs KB, which supports both reactive and cognitive reasoning.

The core of this component processing is managed by the Belief-Desire-Intention

framework Phidias [47], which gives Python programs the ability to perform logic-

based reasoning (in Prolog style) and lets developers write reactive procedures, i.e.,

pieces of programs that can promptly respond to environment events. For further

detail about such a component, readers are referred to Section 2.3.

4.3.3 The Smart Environment Interface

This component (upper right box in Fig. 4.1) provides a bidirectional interaction

between the architecture and the outer world. In [74] we have shown the effective-

ness of this approach by leveraging the Phidias predecessor Profeta [75], even with

Chapter 4. SW-CASPAR: Semantic Web based translation of CASPAR 91

Drink Robert In Good Slowly

Drink.123

Robert.123

Wine.123

Living_
Room.123

In.123 Good.123 Slowly.123

hasAdj

hasObj

hasPrep

hasObj

hasSubj

hasAdv

Id

hasId

Legend

Instance

Class

Membership relation

Defined property

123

Verb Entity Preposition Adjective Adverb

Living_Room

Wine

Figure 4.3: A simple instance of LODO ontology related to the sentence 4.2.

a shallower analysis of the semantic dependecies, as well as an operation encod-

ing via WordNet in order to make the operating agent multi-language and multi-

synonymous. For more details, the reader is referred to Subsection 2.3.7.

4.3.4 The Cognitive Reasoner

This component (bottom right box in Fig. 4.1) allows an agent to implicitly invoke

the Pellet reasoner at runtime, in order to achieve a meta-reasoning subordinating

agent’s IoT commands. This component comprises the Ontology as well, which is

fed by the Ontology Builder within the Reactive Reasoner.

4.4 The Ontology Learning

Differently from most approaches to ontology learning from text, this time we give

up the idea that whatever such approach will be it will suffer from the biases related

Chapter 4. SW-CASPAR: Semantic Web based translation of CASPAR 92

to the ontology of natural language described in Section 1.4. In light of this, firstly

we create a FOL representation directly linked to the linguistic features of the sen-

tences in exam, which is provided by the Translation Service component; secondly,

whether required, we provide the ontology-specific SWRL [107] rules, whom extend

the OWL 2 expressiveness by adding Horn-like axioms. Such rules, as we can see

next in this chapter, will contribute to fill the gap between the ontology itself and

the expected reasoning in human-like fashion. The core module of the Translation

Service, as depicted in Fig. 4.1, is the MST Builder described in Section 2.1. The

Translation Service translates a text in natural language into a FOL expression,

inheriting the shape from the event-based formal representation of Davidson [63].

Thus, having such a FOL expression, the module STT Front-End, taking in account

of the Part-of-Speech which are parts of each label’s predicates, will assert specific

beliefs triggering the production rules system of the Ontology Builder. The latter

has the task of physically creating the OWL 2 domain-legacy ontology containing

the triples representing all verbal phrases and their satellite semantic parts (nouns,

adjectives, prepositions and adverbs). For its direct derivation from Davidson no-

tation, in this work we defined such a family of ontologies as L.O.D.O. (Linguistic

Oriented Davidsonian Ontology). The latter can be considered a foundational on-

tology, i.e., a specific type of ontology designed to model high-level and domain

independent categories about the real world.

The general schema of LODO is quite straightforward. We define regular verbal

phrase a set of triples in OWL 2 made by the following classes and their instances:

- Verb. Each instance of this class represents what comes as verbal phrase in the

Davidsonian notation, from the Translation Service. Each individual has the

following object properties: hasId, having the values of a unique timestamp;

hasSubject representing the verb subject in the domain of Entity ; hasObject,

representing the verb object in the domain of either Entity or Verb (in the case

of embedded verbal actions). Another property, namely isPassive, possibly

indicates whether a verbal action is passive or not.

- Id. Each instance of this class represents a unique timestamp related to a

verbal actions. It takes the value of the object property hasId from some

instance of Verb. As in temporal logic, such value can be useful to deal with

inconsistency cases: the higher is the Id, the more valid is the related instance

Chapter 4. SW-CASPAR: Semantic Web based translation of CASPAR 93

of Verb, even with such an instance has the property hasAdverb equal to the

value of Not3; to be noticed that a proper SWRL axiom could be also used

to invalidate such obsolete individuals, in order to let them not participate in

a reasoning process. Furthermore, taking into account of the Part-of-Speech,

it can also be introduced an object property hasTime of such instance, in

order to express the tenses of the verbal actions (Present, Past Tense, Past

Participle, Gerund) than respect the timestamp.

- Entity. Each instance of this class represents an entity referenced by the

object property either hasSubject or hasObject. Compound nouns are possible

concatenated in order to form a single individual, of expressed through the

property hasCpmd referencing other entities.

- Adjective. Each instance of this class takes the values of the object property

hasAdj of some instance of Entity.

- Preposition. Each instance of this class represents a preposition and it is

referenced by the object property hasPrep of some instance of either Verb or

Entity. Moreover, each of such instance has the object property hasObject

referencing some instance of Entity

- Adverb. Each instance of this class represents an adverb and has the values of

the object property hasAdv of some instance of Verb.

Together with such taxonomic and non-taxonomic relations, LODO comprises also

a group of axioms (or part of them) implicitly created by SW-Caspar, with the aim

of increasing the chances of reasoning/graph matching. Such axioms are summarized

as follows:

- Assignment Rules. Such rules are implicitly asserted in the presence of a cop-

ular verb Cop representing expression (possibly identified also by its synset),

which will be useful in order to assign the class membership of the verb’s object

to its subject. Formarly, the following expression:

Subject:POS(x1) ∧ Cop:POS(e1, x1, x2) ∧ Object:POS(x2)

3Negations are treated as whatever adverb.

Chapter 4. SW-CASPAR: Semantic Web based translation of CASPAR 94

where each predicate has its own POS tag. Such a expression will trigger the

assertion of the following SWRL rule (omitting the POS which can be also

included in classes labelling):

Subject(?x) → Object(?x) (4.1)

- Legacy Rules. Such rules are implicitly asserted together with the assignment

rules, to let a copular verb’s subject inherit both adjectives and prepositions

properties of the verb’s object. Formally, considering (4.1), the corresponding

legacy rule will be the following:4

Subject(?x2), Object(?x1), hasAdj(?x1, ?x3), Adjective(?x3) → hasAdj(?x2,

?x3)

- Deadjectival Rules (optional). In the presence of an instance of Adjective, Such

rule assert a new deadjectivated instance of the latter as new membership of

the adjective related noun. Formally:

Entity(?x1), hasAdj(?x1, ?x2), Adjective(?x2) → Entity(?x2)

- Deverbal Rules (in progress of development). In the presence of an instance

of Verb, such rules assert a new deverbalized instance of the latter having the

same entities of the former.

- Implicative Copular Rules. Such rules take in account of implicative axioms,

possibly coming from the Translation Service in FOL Davidsonian notation

and containing a single copular verbs in the implication’s head. They are

useful to infer new memberships of the initial sentence subject, which must

be present also in the body. The production rule of the Ontology Builder for

such rules assertion matches with the following pattern:

Subject(xbody) ∧... =⇒ Subject(xsubj) ∧ Object(xobj) ∧ Cop(ecop, xsubj, xobj)

4Similarly for preposition, by changing hasAdj with hasPrep.

Chapter 4. SW-CASPAR: Semantic Web based translation of CASPAR 95

As shown above, the label Subject must be in both left and right-hand side

of the FOL expression; otherwise, in order to replace possible pronouns that

invalidate the pattern, an anaphora resolution pre-processing could be required

before the Translation Service pipeline in Fig. 3.1. Cop is the label of a copular

verb which will be absorbed, permitting the formal assertion of the following

pattern:

Subject(?xobj), ... → Object(?xobj)

Any other implicative FOL expression with non-copular verb in the head will

be discarded, due to the non-monotonic features of SWRL.

- Value Giver Statements (optional). Such a statement contributes to give a

value to a data property hasValue related to a specified individual, which is

parsed by the Ontology Builder by matching the following pattern of beliefs:

GND(FLAT, X, Y), ADJ(FLAT, X, ”Equal”), PREP(FLAT, X, ”To”, S),

VALUE(FLAT, S, V)

The first argument (FLAT) of all beliefs is for distinguishing non-implicative

expressions from implicative ones, and also either right- or left-hand side. The

belief GND is related to a ground term with label Y coming from a FOL

expression, which corresponds to a couple of class-individual in the ontology.

The beliefs ADJ and PREP specify a lexical content (Equal and To) among

their arguments, while VALUE specifies the value that must be given to the

individual corresponding to label Y. The property hasValue might be involved

in comparison operations in the composition of a SWRL axiom.

- Values Comparison Conditional (optional). Such conditionals are parsed from

sentences similarly to the Value Giver Statement, but they will take place

within the body of implicative copular rules.

For instance, considering the following sentence:

Robert slowly drinks good wine in the living room. (4.2)

The Translation Service will give the following FOL expression as result:

Chapter 4. SW-CASPAR: Semantic Web based translation of CASPAR 96

Robert:NNP(x1) ∧ wine:NN(x2) ∧ drink:VBZ(e1, x1, x2) ∧ slowly:RB(e1) ∧
good:JJ(x2) ∧ in:IN(e1, x3) ∧ living:NN(x3) ∧ room:NN(x3)

Then, the STT Interface on the basis of POS and arguments cardinality will produce

the following set of beliefs:

PREP(FLAT, e1, In, x3), ACTION(ROOT, FLAT, Drink, e1, x1, x2), GND(FLAT, x3,

Living), GND(FLAT, x1, Robert), GND(FLAT, x2, Wine), GND(FLAT, x3, Room),

ADV(FLAT, e1, Slowly), ADJ(FLAT, x2, Good)

Since implicative copular rules can be applied only one time for sentence, the label

ROOT as first argument of the belief ACTION has the aim of distinguishing the

main verbal action from possible other verbs in the same sentence. The final step

is done by the Ontology Builder (within the Reactive Reasoner in Fig. 4.1), whose

production rules will match in a specified order such beliefs, in order to interface

with the Owlready libraries and to create the OWL 2 ontology.

In Fig. 4.3 such an ontology is depicted. The classes in the upper level (Verb, Entity,

Preposition, and Adverb) are meant to be subclasses of Things ; the remaining ones in

the circles are subclasses of the former. The diamond shaped boxes are individuals

whose label contains also a reference of verbal action’s Id (the value 123 is not

indicative). The latter is also an individual itself, being instance of the class Id.

Due to the presence of the adjective good related to the individual wine, optionally

one might activate the SW-Caspar deadjectival generation rule; then, invoking an

OWL reasoner, the individual wine will achieve the new deadjectivated membership

good.

4.5 Case-Study

In this section, first of all it will be shown how the Ontology Builder module of

SW-Caspar deals with the same KB seen in Subsection 2.4.3, namely the Colonel

West case KB, which is achieved starting from the following sentences:

• Colonel West is American.

• Cuba is a hostile nation.

Chapter 4. SW-CASPAR: Semantic Web based translation of CASPAR 97

Figure 4.4: The LODO taxonomic relations and instances from the Colonel West KB.

• missiles are weapons.

• Colonel West sells missiles to Cuba.

• When an American sells weapons to a hostile nation, that American is a crim-

inal.

In Fig. 4.4 all classes and instance are shown in the Protégé environment. In

particular, Fig. 4.5 shows all non-taxonomic relations related to the individual

Be.426837: hasSubject, hasObject and hasId. In Fig. 4.6 all generated axioms

are shown, while in Fig. 4.7 two new inferred5 membership related to the individual

Colonel West.791305 are shown, which are the representations of Colonel West is

American and Colonel West is a criminal. The latter is the sentence-query already

seen in Subsection 2.4.3.

Next, a simple case of ontology building and reasoning/meta-reasoning is pre-

sented, showing how IoT agents based on SW-Caspar are able to parse natural

5With the reasoner Hermit or Pellet.

Chapter 4. SW-CASPAR: Semantic Web based translation of CASPAR 98

Figure 4.5: The LODO non-taxonomic relations related to the individual Be.426837 from
the Colonel West KB.

Figure 4.6: The LODO rules from the Colonel West KB.

language commands and reason about their execution in the open-world assump-

tion. Inspired by [94], where the author shows a use-case consisting in reasoning

on drugs contraindications in presence of food intolerances, in this case-study we

mainly focus on clinical information of patients and known issues of drugs.

We suppose to provide a hospital with a (semi-)automatized drug distribution

system based on natural language recognition, or even to build a robot performing

such a task. In such a scenario, we suppose to define one or more agents assisting

doctors in the decision-making task related with the administration of drugs, on

the basis of known drug’s issues and clinical picture of patients. In order to address

such a task, we extended the Smart Environment Interface of SW-Caspar with the

following set of two production rules given by Phidias,6 which considers a known

6For the sake of the shortness we consider a simplified form of rules.

Chapter 4. SW-CASPAR: Semantic Web based translation of CASPAR 99

Figure 4.7: Inferred LODO membership after reasoning from the Colonel West KB.

contraindication of the drug Rinazina for hypertensive patients:

+INTENT(”Rinazina”, T) / eval sem(T, ”Hypertensive”)) >> [say(”Nope. Patient is hypertensive”)] (4.3)

+INTENT(”Rinazina”, T) >> [exec cmd(”Rinazina”, T), say(”Execution successful”)] (4.4)

As seen in Fig. 2.4, each production rule (which begins with +) is expressed in a

Prolog-like sintax, where the left hand-side encompasses a belief we want the rule to

match with (INTENT), conditioned by other beliefs (in this case the Active Belief

eval sem); the right-hand side encompasses in square brackets the plan to execute

when the rule is triggered.

We now generate the domain-legacy ontology exploiting LODO with all the required

information about the patient Robinson Crusoe and his health disorders starting

from the following sentences:

• Robinson Crusoe is a patient.

• Robinson Crusoe has diastolic blood pressure equal to 150.

• When a patient has diastolic blood pressure greater than 140, the patient is

hypertensive.

The first sentence is parsed as both regular verbal phrase and assignment rule, whose

related classes and individuals are shown in Fig. 4.8. A unique timestamp is adopted

for all the elements of the same verbal phrase.

Chapter 4. SW-CASPAR: Semantic Web based translation of CASPAR 100

Together with classes and individuals, the corresponding legacy rules are also

asserted (first and third rule of Fig. 4.10) allowing Robinson Crusoe to inherit all the

features of the individual patient in analogous way as the speaker’s knowledge flow in

the scope of the same discourse. The developer might also provide customized IRI,7

either manually or automatically, by means of possible pre-compiled association

tables.

Figure 4.8: The LODO taxonomic relations and instances of the case-study

As shown in Fig. 4.10, the second sentence is parsed as regular verbal phrase

containing also a value giver statement (depicted in Fig. 4.9).

The third sentence is parsed by the Translation Service as FOL expression con-

taining an implication such as:

Have:VBZ(e1, x1, x2) ∧ Blood:NN(x2) ∧ Patient:NN(x1) ∧ Pressure:NN(x2) ∧
Than:IN(x2, x5) ∧ Diastolic:JJ(x2) ∧ Great:JJR(x2) ∧ 140:CD(x5) =⇒ Patient:NN(x3)

∧ Hypertensive:JJ(x4) ∧ Be:VBZ(e2, x3, x4)

In the presence of such a expression, the Ontology Builder will asserts an implica-

tive copular rule containing a values comparison conditional (the second entry in

Fig. 4.10), without creating any individuals linked together by the same timestamp.

At the end of the ontology building process, the agent is ready to parse a command

containing the following text:

7Internationalized Resource Identifier

Chapter 4. SW-CASPAR: Semantic Web based translation of CASPAR 101

Figure 4.9: The LODO non-taxonomic relations of the case-study

Give Rinazina to Robinson Crusoe

As the agent invokes the Pellet reasoner and checks for the membership of Robin-

son Crusoe to the class Hypertesive (as well as in Fig. 4.11 with Protégé), after a

successful meta-reasoning of the Active Belief eval sem, the production rule 4.3 will

match with the content of Belief KB and the command will be discarded with an ob-

jection message from the agent. Otherwise, the production rule 4.4 will match and

the command will be executed without any objection message. Of course, the meta-

reasoning could involve also more complex queries expressed in SPARQL language

and even in local closed world.

Chapter 4. SW-CASPAR: Semantic Web based translation of CASPAR 102

Figure 4.10: The LODO rules of the case-study

Figure 4.11: Inferred LODO membership after reasoning.

103

Chapter 5

Overall Evaluation

This chapter is focused on a overall evaluation of the cognitive architectures reported

in the prior chapters, especially whether literally they can be considered cognitive

systems. In general, to evaluate a new model, in the case its performances can be

quantified somehow, a comparison is usually made with gold standards or other

model’s scores from the state-of-the-art (accuracy, precision, response times, etc.).

Such an evaluation was achieved in the case of Caspar andAD-Caspar considering

timings related to specific functions, even if without taking in account of any gold

standard but a reasonable human-fashioned response time. In the case of a more

general evaluation, without considering just any specific functions, it is required to

shift to wider evaluations encompassing more and different criteria. In the scope of

of biological inspired artificial systems, several general criteria have been proposed to

characterize the design of biologically plausible models. In this regard, the roboticist

Barbara Webb[108] identified a list of dimensions for the characterization of different

design aspects of bio-inspired models, which are:

- Biological relevance: it indicates if a computational model can be consid-

erate close to a given biological system taken as a source of inspiration.

- Level: it indicates how much the model takes in account of internal structures,

than respect to its biological counterpart.

- Generality: it indicates how many different biological systems can be repre-

sented by a model.

- Abstraction: it indicates how many details are explicit in the artificial model,

than respect to the natural systems taken as a source of inspiration. It

Chapter 5. Overall Evaluation 104

shouldn’t be confused with the ”level” dimension, since a more abstract model

could also be more complex than the corresponding lower-level brain model.

- Structural accuracy: it estimates the similarity between the mechanisms

underlying the behaviour of an artificial model with respect those of the target

biological system.

- Performance match: it estimates the performances of the model than re-

spect the ones of the target biological system.

- Medium: it refers to the physical medium used to implement the model.

In his recent book[19], Lieto proposes a much more synthetic list of elements

that subsumes some of Webb’s dimensions and that, additionally, can be applied

not only to biological inspired systems but also to cognitively inspired ones. Such a

list is defined as Minimal Cognitive Grid and encompasses the following evaluation

criteria:

- Functional/Structural Ratio: this dimension synthesizes and subsumes

the ”biological relevance” and ”structural accuracy” individuated by Webb by

enabling, in principle, the possibility of performing both a quantitative and

qualitative comparison between different artificial systems (whether they are

cognitively inspired or not). The lower the ratio, the better.

- Generality: this features aim at evaluating how general is a given system/ar-

chitecture and whether it can be used to simulate a set of cognitive functions

and not just a narrow one.

- Performance match: this dimension involves a direct comparison between

natural and artificial systems in terms of the obtained results for specific or

general tasks. Along this line, Lieto proposes two additional specific require-

ments that refers to such an aspect:

1. The analysis of system errors (which, in human-like artificial systems,

should be similar to those committed by humans).

2. The execution time of the tasks (which, again, should converge toward

human performances).

Chapter 5. Overall Evaluation 105

Another interesting proposal within the field of cognitive AI and cognitive mod-

elling research is represented by the so-called Standard Model of Mind1, based

on an abstraction from some of the most adopted cognitive architectures, namely

SOAR[14], ACT-R[109] and SIGMA[110]. This abstraction is based on the consen-

sus reached in the community over decades of research, which has been grouped into

different levels of analysys:

1. Structure and Processing Mechanisms: it concerns that processing in

human-like architecture is assumed to be based on a small number of task-

independent modules, and should support both serial and parallel information

processing mechanisms. All three architectures taken as source of inspiration

converge towards the necessity of distinguishing between a Long-Term Declara-

tive Memory and a Procedural one, as well as a control interface for the mutual

interaction between the Procedural Module, Perception/Motor modules and

Declarative Memory.

2. Memory and Content: in this case the main point of convergence regards

the integration of hybrid symbolic-subsymbolic representations.

3. Learning Processes: in this case, the elements of convergence regard the

following assumptions:

(i) All types of long-term knowledge should be learnable from a human-like

architecture.

(ii) Learning is seen as an incremental process typically based on some form

of a backward flow of information through internal representations of past

experiences.

(iii) Learning over times scales is assumed to arise from the accumulation of

learning over short-term experiences.

4. Perception and Motor Mechanisms: perceptual and motor modules are

assumed to be modality specific (e.g. auditory, visual, etc.) and associated

with specific buffers for the access to the working memory.

1Later on called Common Model of Cognition.

Chapter 5. Overall Evaluation 106

In the next subsections, the Minimal Cognitive Grid (MCG) and the Standard

Model of Mind (SMM) will be used to evaluate the novel cognitive architectures

proposed in this dissertation.

5.1 MCG Evaluation

In this section, all Minimal Cognitive Grid criteria are used to evaluate the novel

cognitive architectures seen in the prior chapters, on the basis of which it is evident

that such a family can be considered made of cognitive systems.

5.1.1 Functional/Structural Ratio

The architecture of Caspar encompasses some features which also come from differ-

ent assumptions about mental or brain processes. The first assumption concerns the

BDI framework Phidias on which Caspar has been built, whose concept is inspired

by Bratman[7] theory on practical human reasoning.

Another assumption language-based comes from the component Translation Ser-

vice (left box in Fig. 2.1, 3.1 and 4.1), which fulfills the function of the brain areas

that are responsible for understanding words and sentences. Such brain areas are

mainly located in two regions, in the left side of the brain, they are connected by

nerves, and together they form a network that provides the hardware for language.

The Translation Service is also responsible of modelling the conceptual space used

for the meta-reasoning, where each predicates’s label can also be a WordNet synset

selected with a Disambiguation technique explained in Subsection 2.3.4. Compos-

ite common sense representations relies on the Principle of Compositionality for-

mally formulated by Partee[73], as seen in Subsection 2.3.1, where “The meaning

of a whole is a function of the meanings of the parts and of the way they are syn-

tactically combined.”. Such a representation is built in its basic components on

exemplar-based [111] categorization, because it chooses the best candidate among

all synsets related examples, optionally using also other fields of synsets records or

various combinations of them.

The cerebellum functions, which in human brain plays an important role in

motor control, are simulated by the Smart Environment Interface (Fig. 2.1) working

together with the Beliefs KB.

Chapter 5. Overall Evaluation 107

In the case of AD-Caspar, the two layers of the Clauses KB simulate Short

Term Memory (High Clauses KB) and Long Term Memory (Low Clauses KB),

in order to achieve abduction as pre-stage of deduction and to deals with large

knowledge base.

In light of the above, it is clear that Caspar and its derivative architectures

have both functional and structural features.

5.1.2 Generality

As explained in Subsection 2.3.2, for what concerns language the base assumption

of Caspar2 is to be as general as possible, because instead of working with a

limited set of recognized sentences related to distinct functions, the integration of

the dependency parser permits higher levels of expressiveness, which is required to

build domain-related conceptual spaces.

5.1.3 Performance match

As for possible errors produced by instances of Caspar and its derivative architec-

tures, as explained in Subsection 2.3.1, as long as dependencies are treated properly

by some production rule in the MST Builder, the accuracy of the conversion from

natural language to logical form can be clearly considered equal to the accuracy of

the dependency parser, which in the case of spaCy is 90% for the English idiom.

The usage of out-of-commons-sense utterances, might lead to unexpected logical

form which would make reasoning failed.

In regard of time performances, in Fig. 2.5 it was shown how Caspar reaches

very promising timing performances, on devices with limited hardware resources

like Raspberry. In the case of AD-Caspar, Table 3.2 shows also good timing

performances featuring a balancing between Low and High Clauses KB when KB

size increases.

2Which is in common also with both AD-Caspar and SW-Caspar.

Chapter 5. Overall Evaluation 108

5.2 SMM Evaluation

In this section, it is addressed a comparative evaluation between convergence criteria

related to the Standard Model of Mind and Caspar’s family, even if, as the authors

themselves admit, such a model is currently underspecified. In any case, such a

model represents a starting point, a platform for developing high-profile research in

both AI and (computational) Cognitive Science.

5.2.1 Structure and Processing Mechanisms

In regard of such criteria, Caspar and its derivative architectures are endowed of

asynchronous sensors instances which permit both parallel and serial information

processing mechanisms (Fig. 2.3). Furthermore, as seen in Section 2.1, such cogni-

tive architectures are endowed also with a KB divided in Declarative Memory and

Procedural one, and a specific interface (the Smart Environment Interface seen in

Section 2.3.7) for direct interaction with Perception/Motor modules.

5.2.2 Memory and Content

The working memory of Caspar’s family has a native integration of hybrid symbolic-

subsymbolic representations. The subsymbolic representation comes from the neu-

ral dependency parser (in this case spaCy), which is trained for the classification of

common-sense semantic relations (dependencies) between words in natural language

utterances. In regard of the symbolic representation, it is achieved in the shape of

beliefs, each of whom interact with a system of production rules, and in the shape of

clauses in first-order logic. As explained in Section 2.2, such two group of symbolic

information can interact with each other in a (meta-)reasoning process.

5.2.3 Learning Processes

As for such a criteria, apart Caspar which has not a long-term memory but just a

volatile one, for both AD-Caspar and SW-Caspar all types of long-term knowl-

edge is learnable from a human-like architecture, which is made of the pipeline

Translation Service. The learning process, which at this stage of the designs don’t

Chapter 5. Overall Evaluation 109

take in account of tout court machine learning and similar ones approach3, is based

on information (in the form of clauses) provided by past interactions based on nat-

ural language. Moreover, especially for AD-Caspar whose Clauses KB is splitted

in two layers representing Short- and Long-Term memory, learning over times scales

is arised from the accumulation of learning over short-term experiences.

5.2.4 Perception and Motor Mechanisms

All cognitive architectures derived from Caspar support fully any kind of interac-

tion with perceptual and motor modules, through the Sensor Instances, which will

have their specific buffers for the access to the working memory. As long as there

will be production rules taking in account of beliefs related to such external per-

ceptions, specific plan containing high-level code for reactive interaction with the

environment will be triggered.

3Although Sensor Instances can be fully compatible with them.

110

Chapter 6

Conclusions

In this research, the road of natural language processing was chosen and pursued,

as a means for achieving mutual understanding between human and machine, with

the aim of decision-making coadiuvation. The first result comes with the design of

the cognitive architecture Caspar, described in Chapter 2, from which it is possible

to instantiate cognitive agents capable of both reactive and cognitive reasoning.

It works by using a knowledge base divided into two distinct parts (Beliefs KB

and Clauses KB) which can also interact one another in a meta-reasoning process.

In particular, the more the Clauses KB increases, the more Caspar’s cognitive

features improve, due to an implicit and native capability of inferring monotonically

additional axioms from its own KB. Thanks to novel algorithms leveraging existing

knowledge or producted by themself, Caspar is able to transcend the limit of the

known Backward Chaining algorithm given by the nested semantic notation, which is

also as highly descriptive as compact. Moreover, such a architecture is able to parse

complex direct IoT commands and routines, letting the user to easily customize

its own interfacing with environments, with whatever Speech-to-Text engine, at

the condition that logical expressions producted by Caspar will be coherent as

long as parsed natural language utterances have syntactic structure known by the

dependency parser; which means that out of common sense expressions or particular

idiomatic ones could lead to unexpected results, depending on the datasets the

dependency parser has been trained on (which can be considered an acceptable limit

for this architecture).

In complex production rule systems, when these rule bases grow in size, they

possible become very hard to understand and maintain, due to their flat nature in

which basically it is hard to define or identify modules. To address such a issue,

Chapter 6. Conclusions 111

Caspar was divided in three distinct hierarchical levels of production rules: the

first and second level1, which are very compact, are related to the semantic of lan-

guage and does not never grow in size depending on domain. The third level2, that

potentially grows together with domains and functional properties of instantiated

agents, is related to the interaction with environments. In this level, all rules might

be parameterized in a very extensive way through the usage of Phidias Active Be-

liefs, including also possible interaction with databases in order to give values to

such beliefs only when requested, and then make the operating range of matching

chances at run-time expanded. In this way, since all production rules are loaded into

the agent memory at start-up, by limiting the rule base size through parametriza-

tion, the main inner Phidias loop will surely work faster than respect to consider

each combination of couples device-command explicitly stated inside rules, therefore

addressing efficiently rule bases size increase. Indeed, such a rule parametrization

should also minimize accesses to database.

Since a successful reasoning achieved with Caspar pass through only unifying

predicates (via the Backward Chaining algorithm), the natural evolution is the one

which takes in account of closer results as well, in cases of non-successful reasoning:

that’s what was achieved with AD-Caspar. In Chapter 3 such a cognitive architec-

ture is described, which inherits all Caspar features plus the chance of abductive

reasoning as pre-stage of deduction and the inclusion of a Telegram chatbot. Fur-

thermore, AD-Caspar is able to rephrase wh-questions into likely assertions one

can expect as likely answer, thanks to a production rule system which leverages

also a dependency parser. The combination of Translation Service/Definite Clause

Builder and QA Shifter makes the chatbot proposed in 3.5 easily scalable on the

knowledge we want it to deals with, because the user has to provide just new sen-

tences in natural language at runtime, like in a normal conversation. The Python

prototype proposed is at a very early stage, although it is already able to reason

on a wide range of knowledge bases. For an extensiver usage, a dialog system must

be still designed, in order to extract snippet-result in natural language from the

substitutions shown in Fig. 3.6 and Fig. 3.11, or give back custom answers on the

basis of results, optionally (re-)asking the user a question. A further add-on, for

future works, might be the design of an additional module inspired to the human

1MST Builder and Definite Clauses Builder.
2The Smart Environment Interface.

Chapter 6. Conclusions 112

hippocampus, to let the agent spontaneously link together knowledge for relevance

in order to enhance such a dialog system.

One of the weakness of Caspar, which is fully described at the end of Subsec-

tion 2.3.5, is that distinct sequences of assertions give rise to distinct Clauses KB

expansions, due to the Clause Conceptual Generalization. That’s will not happen

for what concerns the third cognitive architecture described in Chapter 4, which is

SW-Caspar, because its conceptual KB is made of triples and it makes reasoning

over the Semantic Web, even if rules expressiveness is below3 than respect to what

achieved with FOL nested clauses asserted by instances of Caspar. Moreover, the

choice of replacing the Clauses KB with an ontology made of triples in OWL 2 makes

SW-Caspar suitable for different scenarios in the open-world assumption.

The role of decision-making helper can be fulfilled, by an agent, only when the

latter uses a language compliant with what a human counterpart can make usage

of, in order to receive instructions and give back understandable feedback. Whether

such instructions are extracted from natural language, we have seen (in Section

1.4) different biases from the proper understanding of utterances’ meaning. Such a

gap between words sequences and meanings can be partially corrected with a set of

specific corrective rules, which possible lead two (or more) morphological distinct

utterances expressing the same meaning to have equivalent role in a deductive pro-

cess. Such rules are expressed formarly with the novel fondational ontology LODO,

described in Section 4.4, through which it is possible to correct ambiguities of natu-

ral language in order to build an ontology representing meaning sentences. Indeed,

ambiguities of natural language ontologies can be addressed in more depth, in or-

der to include additional rules in LODO, thus leading to a more human-fashioned

reasoning.

In light of above, the results from each chapter demonstrate that one can choose

to employ eitherCaspar orAD-Caspar or SW-Caspar for the design of cognitive-

reactive system based on natural language processing, depending on the domain and

the intended usage. Furthermore, their specific onion-shape designs, give also the

chance to integrate modules into one another with ease, in order to create different

combinations of interactive features.

3Due to the non-monotonic features of SWRL.

Chapter 6. Conclusions 113

Finally, in Chapter 5 two different group of criteria from the state-of-the-art

have been used, in order to evaluate the Caspar’s family in the scope of cognitive

architectures. The evaluation analysis showed that Caspar is a powerful starting

point, endowed of functional and structural cognitive features, for the design of

computational cognitive models integrating different types of perception, especially

reasoning from natural language and (meta-)reasoning.

114

Chapter 7

Publications

• C. F. Longo, C. Santoro, D. F. Santamaria, M. N. Asmundo, and D. Cantone.

“SW-CASPAR: Reactive-Cognitive Architecture based on Natural Language

Processing for the task of Decision-Making in the Open World Assumption”.

In: 22st Workshop ”From Objects to Agents” (WOA 2021). 2021.

• C. F. Longo, F. Longo, and C. Santoro. “Caspar: Towards decision mak-

inghelpers agents for IoT, based on natural language and first order logic

reasoning”. In: Engineering Applications of Artificial Intelligence 104 (2021),

Elsevier, p. 104269. issn: 0952-1976.

• C. Santoro, Carmelo Fabio Longo. “AD-CASPAR: Abductive-Deductive Cog-

nitive Architecture based on Natural Language and First Order Logic Reason-

ing”.In: 4th Workshop on Natural Language for Artificial Intelligence (NL4AI2020)

co-located with the 19th International Conference of the Italian Association

for Artificial Intelligence (AI*IA 2020). 2020.

• C. F. Longo, F. Longo and C. Santoro. “A Reactive Cognitive Architecture

based on Natural Language Processing for the task of Decision-Making using

a Rich Semantic”. In: 21st Workshop ”From Objects to Agents” (WOA2020).

2020.

• F. D’Urso, C. F. Longo, and C. Santoro. “Programming Intelligent IoT Sys-

tems with a Python-based Declarative Tool”. In: The Workshops of the 18th

International Conference of the Italian Association for Artificial Intelligence.

2019.

Chapter 7. Publications 115

• D. Cantone, C. F. Longo, M. Nicolosi-Asmundo, D. F. Santamaria, and S.

Santoro. “Towards an Ontology-Based Framework for a Behavior-Oriented

Integration of the IoT”, in Proceedings of the 20th Workshop From Objects

to Agents, 26-28 June, 2019, Parma, Italy, CEUR Workshop Proceeding Vol.

2404, pp. 119–126, 2019.

• C. F. Longo, C. Santoro, and F. F. Santoro. “Meaning Extraction in a Do-

motic Assistant Agent Interacting by means of Natural Language”. In: 28th

IEEE International Conference on Enabling Technologies: Infrastructure for

Collaborative Enterprises. IEEE. 2019.

• C. F. Longo, C. Santoro. ”A Python-based Assistant Agent able to Inter-

act with Natural Language”. In: 19st Workshop ”From Objects to Agents”

(WOA2018). 2018.

• D. Cantone, C. F. Longo, M. Nicolosi-Asmundo, D. F. Santamaria, and S.

Santoro. “Ontological Smart Contracts in OASIS: Ontology for Agents, Sys-

tems, and Integration of Services”, in Proceedings of the XIV International

Symposyium on Intelligent Distributed Computing (IDC 2021).

116

Bibliography

[1] P. Thagard. “Critical thinking and informal logic: Neuropsychological per-

spectives.” In: Informal logic, 51 (2011), pp. 152–170. doi: https://doi.

org/10.22329/il.v31i3.3398.

[2] C. S. Carmelo Fabio Longo Francesco Longo. “A Reactive Cognitive Architec-

ture based on Natural Language Processing for the task of Decision-Making

using a Rich Semantic”. In: 21st Workshop ”From Objects to Agents” (WOA

2020). 2020.

[3] C. F. Longo, F. Longo, and C. Santoro. “Caspar: Towards decision making

helpers agents for IoT, based on natural language and first order logic rea-

soning”. In: Engineering Applications of Artificial Intelligence 104 (2021),

p. 104269. issn: 0952-1976. doi: https://doi.org/10.1016/j.engappai.

2021.104269. url: https://www.sciencedirect.com/science/article/

pii/S0952197621001160.

[4] C. S. Carmelo Fabio Longo. “AD-CASPAR: Abductive-Deductive Cognitive

Architecture based on Natural Language and First Order Logic Reasoning”.

In: 4th Workshop on Natural Language for Artificial Intelligence (NL4AI

2020) co-located with the 19th International Conference of the Italian Asso-

ciation for Artificial Intelligence (AI*IA 2020). 2020.

[5] C. F. Longo, C. Santoro, D. F. Santamaria, M. N. Asmundo, and D. Cantone.

“SW-CASPAR: Reactive-Cognitive Architecture based on Natural Language

Processing for the task of Decision-Making in the Open World Assumption”.

In: 22st Workshop ”From Objects to Agents” (WOA 2021). 2021.

[6] A. Rao and M. Georgeff. “BDI agents: From theory to practice”. In: Proceed-

ings of the first international conference on multi-agent systems (ICMAS-95).

San Francisco, CA. 1995, pp. 312–319.

https://doi.org/https://doi.org/10.22329/il.v31i3.3398
https://doi.org/https://doi.org/10.22329/il.v31i3.3398
https://doi.org/https://doi.org/10.1016/j.engappai.2021.104269
https://doi.org/https://doi.org/10.1016/j.engappai.2021.104269
https://www.sciencedirect.com/science/article/pii/S0952197621001160
https://www.sciencedirect.com/science/article/pii/S0952197621001160

Bibliography 117

[7] M. E. Bratman. Intentions, Plans and Practical Reason. Harvard University

Press, 1987.

[8] A. Newell. Unified theories of cognition. Cambridge, MA: Harvard University

Press., 1990.

[9] G. M. Izhikevich E. M. Edelman. “Large-scale model of mammalian thala-

mocortical systems.” In: Proceedings of the National Academy of Sciences of

the United States of America, 105(9). 2008, pp. 3593–3598.

[10] D. S. Ananthanarayanan R. Modha. “Anatomy of a cortical simulator.” In:

Proceedings of the 2007 ACM/IEEE conference on Supercomputing - SC ’07,

(p.˜1), New York. ACMPress, 2007.

[11] H. Markram. “The blue brain project.” In: Nature reviews. Neuroscience,

7(2) (2006), pp. 153–160.

[12] H. de Garis, C. Shuo, B. Goertzel, and L. Ruiting. “A world survey of artificial

brain projects, Part I: Large-scale brain simulations.” In: Neurocomputing,

74(1–3) (2010), pp. 3–29.

[13] A. Newell and H. A. Simon. GPS, a program that simulates human thought.

Computers and thought. New York: McGraw-Hill., 1976.

[14] P. S. Rosenbloom, J. E. Laird, and A. Newell. The Soar papers: Research on

integrated intelligence. Cambridge, MA: MIT Press., 1993.

[15] D. E. Kieras D. E. Meyer. “An overview of the EPIC architecture for cogni-

tion and performance with application to human-computer interaction.” In:

Human-Computer Interaction, 4(12) (1997), pp. 391–438.

[16] J. R. Anderson. The architecture of cognition. Cambridge, MA: Harvard Uni-

versity Press, 1983.

[17] I. Kotseruba and J. K. Tsotsos. “40 years of cognitive architectures: core cog-

nitive abilities and practical applications”. In: Artificial Intelligence Review

(2018), Rev 53, 17–94 (2020). doi: https://doi.org/10.1007/s10462-

018-9646-y.

[18] P. N. Stuart J. Russel. “Artificial Intelligence: A Modern Approach”. In:

Pearson, 2010. Chap. 9.3.

https://doi.org/https://doi.org/10.1007/s10462-018-9646-y
https://doi.org/https://doi.org/10.1007/s10462-018-9646-y

Bibliography 118

[19] A. Lieto. Cognitive Design for Artificial Minds. Routledge, 2021. Chap. 3.

[20] A. Darwiche. “Human-Level Intelligence or Animal-Like Abilities?” In: Com-

munications of the ACM 61 No. 10 (2018), pp. 56–67. doi: 10.1145/3271625.

[21] T. Metzinger. Being No One: The Self-Model Theory of Subjectivity. MIT

Press, 2003.

[22] J. W. The principles of psychology. Cambridge, MA: Harvard University

Press, 1983.

[23] C. D. The Conscious Mind: In Search of a Fundamental Theory. New York:

Oxford University Press, 1996.

[24] T. Giulio. “Consciousness as integrated information: A provisional mani-

festo”. In: The Biological bulletin (2008), 215(3), 216–242.

[25] M. A. Cerullo. “The Problem with Phi: A Critique of Integrated Information

Theory”. In: PLOS Computational Biology (2015). doi: 10.1371/journal.

pcbi.1004286.

[26] C. D. Absent qualia, fading qualia, dancing qualia. Metzinger T. (Ed.), Con-

scious experience (pp. 309–328). Imprint Academic, 1995.

[27] S. Aaronson. Giulio Tononi and Me: A Phi-nal Exchange. Available at http:

//www.scottaaronson.com/blog/?p=1823. 2014.

[28] R. G. A Place for Consciousness: Probing the Deep Structure of the Natural

World. Oxford: Oxford University Press, 2004.

[29] A. Turing. “Computing machinery and intelligence”. In: Mind, 1950, pp. 433–

60.

[30] F. Bianchini. Turing and the evaluation of intelligence. Isonomia: Online

Philosophical Journal of the University of Urbino:1-18, 2014.

[31] E. M. Macphail. The evolution of consciousness. Oxford University Press,

1998. doi: https://doi.org/10.1093/acprof:oso/9780198503248.001.

0001.

[32] C. Koch. The Feeling of Life Itself: Why consciousness can’t be computated.

Massachussets Institute of Technology, 2019. isbn: 9780262042819.

https://doi.org/10.1145/3271625
https://doi.org/10.1371/journal.pcbi.1004286
https://doi.org/10.1371/journal.pcbi.1004286
http://www.scottaaronson.com/blog/?p=1823
http://www.scottaaronson.com/blog/?p=1823
https://doi.org/https://doi.org/10.1093/acprof:oso/9780198503248.001.0001
https://doi.org/https://doi.org/10.1093/acprof:oso/9780198503248.001.0001

Bibliography 119

[33] J. B. Taylor. My Stroke of Insight: A Brain Scientist’s Personal Journey.

London: Hodder Stoughton, 2008, p. 183. isbn: 978-0-340-98048-4.

[34] R. M. Lazar, R. S. Marshall, G. D. Prell, and J. Pile-Spellman. “The experi-

ence of Wernicke’s aphasia”. In: Neurology (2000). doi: https://doi.org/

10.1212/WNL.55.8.1222.

[35] J. Julian. The Origin of Consciousness in the Breakdown of the Bicameral

Mind. Mariner Books/Houghton Mifflin Company, 2000.

[36] J. Carrol. Language, Thought and Reality: Selected writings of Benjamin Lee

Whorf. Massachussets Institute of Technology, 1956.

[37] A. Browarnik and O. Maimon. “Ontology Learning from Text”. In: The First

International Conference on Big Data, Small Data, Linked Data and Open

Data. 2015.

[38] F. Moltmann.Natural Language Ontology. Mar. 2017. doi: 10.1093/acrefore/

9780199384655.013.330. url: https://oxfordre.com/linguistics/

view/10.1093/acrefore/9780199384655.001.0001/acrefore-9780199384655-

e-330.

[39] S. G. Williams. “Ontology, Identity and Modality By Peter van Inwagen,

Cambridge University Press, 2001, pp. 261.” In: Philosophy 79.2 (2004),

pp. 335–342. doi: 10.1017/S0031819104120305.

[40] S. Pinker. The Language Instinct. William Morrow and Company, 1994. isbn:

0-688-12141-1.

[41] V. Kepuska and G. Bohouta. Next- Generation of Virtual Personal Assistants

(Microsoft Cortana, Apple Siri, Amazon Alexa and Google Home). 2018.

[42] I. H. Heesij Jeon Hyung Rai Oh and J. Kim. “An Intelligence Dialog Agent

for the IoT Home”. In: The Workshops of the Thirtieth AAAI Conference on

Artificial Intelligence. 2016.

[43] P. E.V., M. M.S., R. A.Y., V. L.S., K. M.V., and P. S.V. “Investigation and

Development of the Intelligent Voice Assistant for the Internet of Things

Using Machine Learning”. In: in Moscow Workshop on Electronic and Net-

working Technologies. 2018.

https://doi.org/https://doi.org/10.1212/WNL.55.8.1222
https://doi.org/https://doi.org/10.1212/WNL.55.8.1222
https://doi.org/10.1093/acrefore/9780199384655.013.330
https://doi.org/10.1093/acrefore/9780199384655.013.330
https://oxfordre.com/linguistics/view/10.1093/acrefore/9780199384655.001.0001/acrefore-9780199384655-e-330
https://oxfordre.com/linguistics/view/10.1093/acrefore/9780199384655.001.0001/acrefore-9780199384655-e-330
https://oxfordre.com/linguistics/view/10.1093/acrefore/9780199384655.001.0001/acrefore-9780199384655-e-330
https://doi.org/10.1017/S0031819104120305

Bibliography 120

[44] B. S. Mahnoosh Mehrabani Srinivas Bangalore. “Personalized Speech Recog-

nition for Internet of Things”. In: IEEE 2nd World Forum on Internet of

Things (WF-IoT). 2015.

[45] R. H. Rohan Kar. “Applying Chatbots to the Internet of Things: Oppor-

tunities and Architectural Elements”. In: International Journal of Advanced

Computer Science and Applications 7(11) (2016). doi: 10.14569/IJACSA.

2016.071119.

[46] S. J. Cyril Joe Baby Faizan Ayyub Khan. “Home Automation using IoI

and a Chatbot using Natural Language Processing”. In: IEEE International

Conference on Innovation in Power and Advanced Computing Technologies.

2017.

[47] F. D’Urso, C. F. Longo, and C. Santoro. “Programming Intelligent IoT Sys-

tems with a Python-based Declarative Tool”. In: The Workshops of the 18th

International Conference of the Italian Association for Artificial Intelligence.

2019.

[48] D. F. Lucentini and R. R. Gudwin. “A Comparison Among Cognitive Archi-

tectures: A Theoretical Analysis”. In: 2015 Annual International Conference

on Biologically Inspired Cognitive Architectures. 2015.

[49] K. F. Morteza Dehghani Emmett Tomai and M. Klenk. “An Integrated Rea-

soning Approach to Moral Decision-Making”. In: Proceedings of the Twenty-

Third AAAI Conference on Artificial Intelligence. 2018.

[50] J. E. L. Peter Lindes. “Toward Integrating Cognitive Linguistics and Cogni-

tive Language Processing”. In: Proceedings of the 14th International Confer-

ence on Cognitive Modeling. 2016.

[51] J. G. Susan L. Epstein Rebecca J. Passonneau and T. Ligorio. “The Role of

Knowledge and Certainty in Understanding for Dialogue”. In: Advances in

Cognitive Systems: Papers from the 2011 AAAI Fall Symposium (FS-11-01).

2011.

[52] V. Këpuska and G. Bohouta. “Comparing Speech Recognition Systems (Mi-

crosoft API, Google API And CMU Sphinx)”. In: Int. Journal of Engineering

Research and Application Vol. 7, Issue 3, (Part -2) (March 2017), pp. 20–24.

https://doi.org/10.14569/IJACSA.2016.071119
https://doi.org/10.14569/IJACSA.2016.071119

Bibliography 121

[53] J. K. Matthias Scheutz Paul Schermerhorn and D. Anderson. “First steps

toward natural human-like HRI”. In: Auton Robot (2007), 22, 411–423 (2007).

doi: https://doi.org/10.1007/s10514-006-9018-3.

[54] P. Bustos, L. J. Manso, J. P. Bandera, A. Romero-Garcés, L. V. Calderita,

R. Marfil, and A. Bandera. “A Unified Internal Representation of the Outer

World for Social Robotics”. In: Robot 2015: Second Iberian Robotics Con-

ference. Ed. by L. P. Reis, A. P. Moreira, P. U. Lima, L. Montano, and V.

Muñoz-Martinez. Cham: Springer International Publishing, 2016, pp. 733–

744. isbn: 978-3-319-27149-1.

[55] P. Lison and G.-J. Kruijff. “Salience-driven Contextual Priming of Speech

Recognition for Human-Robot Interaction”. In: Frontiers in Artificial Intel-

ligence and Applications. Vol. 178. 2008. isbn: 978-1-60750-355-2.

[56] T. A. Vasanth Sarathy Jason R. Wilson and M. Scheutz. “Enabling Ba-

sic Normative HRI in a Cognitive Robotic Architecture”. In: 2nd Workshop

on Cognitive Architectures for Social Human-Robot Interaction 2016 (CogA-

rch4sHRI 2016). 2016.

[57] C. Paniagua and J. Delsing. “Industrial Frameworks for Internet of Things:

A Survey”. In: IEEE SYSTEMS JOURNAL (2020). doi: https://doi.org/

10.1109/JSYST.2020.2993323.

[58] P. Ray. “A survey on Internet of Things architectures”. In: Journal of King

Saud University – Computer and Information Sciences (2016). doi: http:

//dx.doi.org/10.1016/j.jksuci.2016.10.003.

[59] J. D. Hasan Derhamy Jens Eliasson and P. Priller. “A Survey of Commercial

Frameworks for the Internet of Things”. In: 2015 IEEE 20th Conference on

Emerging Technologies and Factory Automation (ETFA) (2015). doi: https:

//doi.org/10.1109/ETFA.2015.7301661.

[60] S. S. Sabry, N. A. Qarabash, and H. S. Obaid. “The Road to the Internet of

Things: a Survey”. In: 2019 9th Annual Information Technology, Electrome-

chanical Engineering and Microelectronics Conference (IEMECON). 2019,

pp. 290–296. doi: 10.1109/IEMECONX.2019.8876989.

https://doi.org/https://doi.org/10.1007/s10514-006-9018-3
https://doi.org/https://doi.org/10.1109/JSYST.2020.2993323
https://doi.org/https://doi.org/10.1109/JSYST.2020.2993323
https://doi.org/http://dx.doi.org/10.1016/j.jksuci.2016.10.003
https://doi.org/http://dx.doi.org/10.1016/j.jksuci.2016.10.003
https://doi.org/https://doi.org/10.1109/ETFA.2015.7301661
https://doi.org/https://doi.org/10.1109/ETFA.2015.7301661
https://doi.org/10.1109/IEMECONX.2019.8876989

Bibliography 122

[61] D. Schacter. “Implicit memory: history and current status”. In: Journal of

Experimental Psychology: Learning, Memory, and Cognition vol. 13, 1987,

pp. 501–518 (1987).

[62] G. A. Miller. “WordNet: A Lexical Database for English”. In: Communica-

tions of the ACM Vol. 38, No. 11: 39-41. 1995.

[63] D. Davidson. “The logical form of action sentences”. In: The logic of decision

and action. University of Pittsburg Press, 1967, pp. 81–95.

[64] S. Anthony and J. Patrick. “Dependency Based Logical Form Transforma-

tions”. In: SENSEVAL-3: Third International Workshop on the Evaluation

of Systems for the Semantic Analysis of Text. 2015.

[65] T. Parsons. “Events in the Semantics of English: A Study in Subatomic

Semantics”. In: MIT Press, 1990.

[66] X. Huang and L. Deng. “An Overview of Modern Speech Recognitiong”. In:

Indurkhya/Handbook of Natural Language Processing C5921C01. Microsoft

Corporation, 2009, pp. 339–344.

[67] R. Rajan Mehla Mamta. “Automatic Speech Recognition: A Survey”. In:

International Journal of Advanced Research in Computer Science and Elec-

tronics Engineering Volume 3, Issue 1 (January 20147), pp. 20–24.

[68] A. D. Saliha Benkerzaz Youssef Elmir. “A Study on Automatic Speech Recog-

nition”. In: Journal of Information Technology Review Volume 10, Number

3 (August 2019).

[69] A. S. Jinho D. Choi Joel Tetreault. “It Depends: Dependency Parser Com-

parison Using A Web-based Evaluation Tool”. In: Proceedings of the 53rd

Annual Meeting of the Association for Computational Linguistics and the

7th International Joint Conference on Natural Language Processing. 2015,

pp. 387–396.

[70] H. Matthew. spaCy: Industrial-Strength Natural Language Processing. https:

//spacy.io. 2017.

[71] ClearNLP. Clear NLP Tagset. url: https://github.com/clir/clearnlp-

guidelines.

https://spacy.io
https://spacy.io
https://github.com/clir/clearnlp-guidelines
https://github.com/clir/clearnlp-guidelines

Bibliography 123

[72] L. D. Consortium. Treebank-3. url: https://catalog.ldc.upenn.edu/

LDC99T42.

[73] B. H. Partee. “Lexical Semantics and Compositionality”. In: vol. 1. Lila R.

Gleitman and Mark Liberman editors, 1995, pp. 311–360.

[74] C. F. Longo, C. Santoro, and F. F. Santoro. “Meaning Extraction in a Do-

motic Assistant Agent Interacting by means of Natural Language”. In: 28th

IEEE International Conference on Enabling Technologies: Infrastructure for

Collaborative Enterprises. IEEE. 2019.

[75] L. Fichera, F. Messina, G. Pappalardo, and C. Santoro. “A Python Frame-

work for Programming Autonomous Robots Using a Declarative Approach”.

In: Sci. Comput. Program. 139 (2017), pp. 36–55. doi: 10.1016/j.scico.

2017.01.003. url: https://doi.org/10.1016/j.scico.2017.01.003.

[76] J. D. Smith and J. P. Minda. “Prototypes in the mist: The early epochs of

category learning”. In: Journal of Experimental Psychology: Learning, Mem-

ory, and Cognition 24(6) (1998), pp. 1411–1436. doi: 10.1037/0278-7393.

24.6.1411.

[77] B. C. Malt. “An on-line investigation of prototype and exemplar strategies in

classification”. In: Journal of Experimental Psychology: Learning, Memory,

and Cognition 15(4) (1989), pp. 539–555. doi: 10.1037/0278-7393.15.4.

539.

[78] M. J. Smith J.D. Murray M.J.Jr. “Straight talk about linear separability”.

In: Journal of Experimental Psychology: Learning, Memory, and Cognition

23(3) (1997), pp. 659–680. doi: 10.1037/0278-7393.23.3.659.

[79] T. M. Quoc Le. “Distributed Representations of Sentences and Documents”.

In: Proceedings of the 31st International Conference on Machine Learning,

Beijing, China. 2014.

[80] R. Navigli. “Word Sense Disambiguation: A Survey”. In: ACM Computing

Surveys Vol. 41, No. 2, Article 10 (2009). doi: 10.1145/1459352.1459355.

[81] stanford. The Stanford Question Answering Dataset SQuAD2.0. 2018. url:

https://rajpurkar.github.io/SQuAD-explorer/.

https://catalog.ldc.upenn.edu/LDC99T42
https://catalog.ldc.upenn.edu/LDC99T42
https://doi.org/10.1016/j.scico.2017.01.003
https://doi.org/10.1016/j.scico.2017.01.003
https://doi.org/10.1016/j.scico.2017.01.003
https://doi.org/10.1037/0278-7393.24.6.1411
https://doi.org/10.1037/0278-7393.24.6.1411
https://doi.org/10.1037/0278-7393.15.4.539
https://doi.org/10.1037/0278-7393.15.4.539
https://doi.org/10.1037/0278-7393.23.3.659
https://doi.org/10.1145/1459352.1459355
https://rajpurkar.github.io/SQuAD-explorer/

Bibliography 124

[82] PYPL. PopularitY of Programming Language. http://pypl.github.io/PYPL.html.

2020.

[83] Snowboy. Snowboy, a hotword detection engine. url: https://https://

snowboy.kitt.ai.

[84] Picovoice. Porcupine. url: https://https://github.com/Picovoice/

porcupine.

[85] Huggingface. NeuralCoref 4.0: Coreference Resolution in spaCy with Neural

Networks. url: https://github.com/huggingface/neuralcoref.

[86] H. Loebner. The Loebner Prize. Available at https://www.ocf.berkeley.

edu/~arihuang/academic/research/loebner.html.

[87] A. fondation. Artificial Intelligence Markup Language. Available at http:

//www.aiml.foundation/.

[88] H. Madhumitha.S Keerthana.B. “Interactive Chatbot Using AIML”. In: Int.

Jnl. Of Advanced Networking Applications Special Issue (2019).

[89] B. Wilcox. Chatscript. Available at https://github.com/ChatScript/

ChatScript.

[90] Q. V. L. Ilya Sutskever Oriol Vinyals. “Sequence to Sequence Learning with

Neural Networks”. In: Advances in Neural Information Processing Systems

27 (2014).

[91] J. H. Kotagiri Ramamohanarao. “An Introduction to Deductive Database

Languages and Systems”. In: The International Journal of Very Large Data

Bases Journal, 3, 107-122 (1994).

[92] D. Oberle, N. Guarino, and S. Staab. What is an ontology? Handbook on

Ontologies, 2nd edition. Springer, 2009.

[93] L. Jean-Baptiste. Owlready2 0.31. 2021. url: https://pypi.org/project/

Owlready2/.

[94] J.-B. Lamy. “Owlready: Ontology-oriented programming in Python with au-

tomatic classification and high level constructs for biomedical ontologies”.

In: Artificial Intelligence in Medicine 80 (2017), pp. 11–28. issn: 0933-3657.

doi: https://doi.org/10.1016/j.artmed.2017.07.002. url: https:

//www.sciencedirect.com/science/article/pii/S0933365717300271.

https://https://snowboy.kitt.ai
https://https://snowboy.kitt.ai
https://https://github.com/Picovoice/porcupine
https://https://github.com/Picovoice/porcupine
https://github.com/huggingface/neuralcoref
https://www.ocf.berkeley.edu/~arihuang/academic/research/loebner.html
https://www.ocf.berkeley.edu/~arihuang/academic/research/loebner.html
http://www.aiml.foundation/
http://www.aiml.foundation/
https://github.com/ChatScript/ChatScript
https://github.com/ChatScript/ChatScript
https://pypi.org/project/Owlready2/
https://pypi.org/project/Owlready2/
https://doi.org/https://doi.org/10.1016/j.artmed.2017.07.002
https://www.sciencedirect.com/science/article/pii/S0933365717300271
https://www.sciencedirect.com/science/article/pii/S0933365717300271

Bibliography 125

[95] M. Finkelstein-Landau and E. Morin. “Extracting semantic relationships be-

tween terms: supervised vs. unsupervised methods”. In: International Work-

shop on Ontological Engineering on the Global Information Infrastructure,

Dagstuhl Castle, Germany. 1999.

[96] A. S. “Part-of-Speech Tagging and Partial Parsing”. In: Young S., Bloothooft

G. (eds) Corpus-Based Methods in Language and Speech Processing. Text,

Speech and Language Technology, Springer, Dordrecht vol 2 (1997), pp. 501–

518. doi: https://doi.org/10.1007/978-94-017-1183-8_4.

[97] P. Gamallo, M. Gonzalez, A. Agustini, G. Lopes, and V. S. de Lima. “Map-

ping Syntactic Dependencies onto Semantic Relations”. In: Proceedings of the

ECAI Workshop on Machine Learning and Natural Language Processing for

Ontology Engineering. 2002.

[98] D. Faure and C. Nedellec. “Knowledge acquisition of predicate argument

structures from technical texts using machine leraning: The system ASIUM”.

In: Knowledge Acquisition, Modelling and Management (1999), pp. 329–334.

[99] A. A. B. Mehrnoush Shamsfard. “Learning ontologies from natural language

texts”. In: Int. J. Human-Computer Studies 60 vol 60 (2004), pp. 17–63.

[100] A. Maedche and S.Staab. “The text-to-onto ontology learning environment”.

In: Software Demonstration at ICCS-2000-Eight International Conference on

Conceptual Structures. 2000.

[101] S. Gillani and A. Kő. “ProMine: A Text Mining Solution for Concept Extrac-

tion and Filtering”. In: Corporate Knowledge Discovery and Organizational

Learning: The Role, Importance, and Application of Semantic Business Pro-

cess Management. Ed. by A. Gábor and A. Kő. Cham: Springer International

Publishing, 2016, pp. 59–82. isbn: 978-3-319-28917-5. doi: 10.1007/978-3-

319-28917-5_3.

[102] M. R. U. Hahn and S. Schulz. “MediSynDiKATe–design considerations for

an ontology-based medical text understanding system”. In: Proceedings of

the AMIA Symposium (p. 330), American Medical Informatics Association.

2000.

https://doi.org/https://doi.org/10.1007/978-94-017-1183-8_4
https://doi.org/10.1007/978-3-319-28917-5_3
https://doi.org/10.1007/978-3-319-28917-5_3

Bibliography 126

[103] K. Z. E. Drymonas and E. Petrakis. “Unsupervised ontology acquisition from

plain text: The OntoGain system”. In: Natural Language Processing and In-

formation System (2010), pp. 277–287.

[104] H. Y. Al-Aswadi Fatima N. Chan and K. H. Gan. “Automatic ontology con-

struction from text: a review from shallow to deep learning trend”. In: Arti-

ficial Intelligence Review (2020).

[105] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. “Pellet: A prac-

tical OWL-DL reasoner”. In: Web Semantics 5.2 (2007), pp. 51–53. issn:

1570-8268.

[106] D. L. Schacter. “Implicit memory: history and current status”. In: Journal

of Experimental Psychology: Learning, Memory, and Cognition vol. 13, 1987

(1987), pp. 501–518.

[107] World Wide Web Consortium. SWRL: A Semantic Web Rule Language Com-

bining OWL and RuleML. 2004. url: http://www.w3.org/Submission/

SWRL/.

[108] B. Webb. “Can robots make good models of biological behaviour?” In: Be-

havioral and Brain Sciences 24.6 (2001), pp. 1033–1050. doi: 10 . 1017 /

S0140525X01000127.

[109] F. E. Ritter, F. Tehranchi, and J. D. Oury. “ACT-R: A cognitive architecture

for modeling cognition”. In:Wiley interdisciplinary reviews. Cognitive science

10.3 (May 2019), e1488. issn: 1939-5078. doi: 10.1002/wcs.1488. url:

https://doi.org/10.1002/wcs.1488.

[110] P. S. Rosenbloom. “The Sigma cognitive architecture and system”. In: (2013).

[111] R. M. Nosofsky. “Formal Approaches in Categorization: The generalized con-

text model: an exemplar model of classification”. In: 2011.

http://www.w3.org/Submission/SWRL/
http://www.w3.org/Submission/SWRL/
https://doi.org/10.1017/S0140525X01000127
https://doi.org/10.1017/S0140525X01000127
https://doi.org/10.1002/wcs.1488
https://doi.org/10.1002/wcs.1488

	Abstract
	Acknowledgements
	Introduction
	Artificial Cognition
	The Issue of Consciousness
	The role of Language in Cognitive Science
	The Issue of Natural Language Ontology
	Thesis Outline

	CASPAR: Cognitive Architecture System Planned and Reactive
	Introduction
	Related works
	The Architecture
	The Translation Service
	Information Representation
	Automatic Speech Recognition
	Dependency Parsing
	Entities Uniquezation
	Macro Semantic Table builder
	The FOL Builder

	The Reactive Reasoner
	The Cognitive Reasoner
	Synsets Selection and Word Sense Disambiguation
	Nested Reasoning and Clause Conceptual Generalizations
	Algorithms
	The Smart Environment Interface

	Case-study
	The Sensor Instances
	IoT Commands Processing
	Reasoning and Meta-Reasoning
	Evaluation

	AD-CASPAR: Abductive-Deductive evolution of CASPAR
	Introduction
	The Architecture
	Question Answering
	Algorithm
	Polar Questions
	Wh-Questions

	Case-study
	Asserting and Querying the Chatbot
	Failing Queries
	Nested Reasoning
	Runtime Evaluation

	SW-CASPAR: Semantic Web based translation of CASPAR
	Introduction
	Related works
	The Architecture
	The Translation Service
	The Reactive Reasoner
	The Smart Environment Interface
	The Cognitive Reasoner

	The Ontology Learning
	Case-Study

	Overall Evaluation
	MCG Evaluation
	Functional/Structural Ratio
	Generality
	Performance match

	SMM Evaluation
	Structure and Processing Mechanisms
	Memory and Content
	Learning Processes
	Perception and Motor Mechanisms

	Conclusions
	Publications
	Bibliography

