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1. Introduction

The motivation behind this paper was the recent fundamental enrichment to the functional analysis of 
integrodifferential operators. We mainly refer to the pioneering contributions of Luis Caffarelli and Luis 
Silvestre who studied the construction of fractional Laplacian operator (−Δ)s, where 0 < s < 1, from 
an extension problem to the upper half space for a specific elliptic partial differential equation [10]. This 
operator is considered as an extension of the previously known operator (−Δ) 1

2 and contributed to treat 
more problems involving integrodifferential operators.

The first main objective of our work is to introduce a new fractional G-Laplacian operator and its 
corresponding function space.

Given an open set Ω ⊂ Rn, n ≥ 1, this paper is concerned with a new type of fractional Orlicz-Sobolev 
space with variable order defined by
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W s(.),G(Ω) :=
{
u ∈ LG(Ω) :

¨

Ω×Ω

G
(λ|u(x) − u(y)|

|x− y|s(x,y)

) dxdy
|x− y|n < ∞ for someλ > 0

}
, (1.1)

where s : Ω ×Ω →]0, 1[ is a measurable function and G is an Orlicz function. See section 2 for more details. 
This space is a natural extension of the classical fractional constant-order Orlicz-Sobolev space, namely

W s,G(Ω) :=
{
u ∈ LG(Ω) :

¨

Ω×Ω

G
(λ|u(x) − u(y)|

|x− y|s
) dxdy
|x− y|n < ∞ for someλ > 0

}
.

Also, the space given in (1.1) is an extension of fractional variable-order Sobolev space with constant 
exponent, namely

W s(.),p(Ω) :=
{
u ∈ Lp(Ω) :

¨

Ω×Ω

|u(x) − u(y)|p
|x− y|n+ps(x,y) dxdy < ∞

}
.

Naturally, the space W s(.),G(Ω) is associated with the new fractional G− Laplacian operator under the 
form

(−Δ)s(.)G u(x) := p.v.

ˆ

Rn

G′
( |u(x) − u(y)|
|x− y|s(x,y)

) u(x) − u(y)
|u(x) − u(y)|

dy
|x− y|s(x,y)+n

,

where G′ is the right derivative of G and p.v. stands for principal value.

The first documented appearance of the concept of fractional order was through papers exchanged be-
tween the two mathematicians Leibniz and L’Hôpital during the seventeen century in which they discussed 
the interpretation of the operators dα

dtα when α is not integer. The fractional derivative and pseudodifferential 
operators with variable order have been discussed and studied by many mathematicians and physicists from 
different research areas. In [21], Hartley and Lorenzo first presented the physical motivation toward vari-
able order operators. In particular, some diffusion processes reacting to temperature changes may be better 
described using variable order derivatives in a nonlocal integro-differential operator [22]. Xiang et al. [33]
discussed the multiplicity of solutions for variable order fractional Laplacian problems with concave-convex 
nonlinearity involving variable exponent. In [7], the authors studied the existence and multiplicity results for 
variable-order nonlocal Choquard problems with variable exponents. Choudhuri et al. [12] proved the multi-
plicity of solutions for critical nonlocal degenerate Kirchhoff problems with a variable singular exponent. In 
2020, Patnaik et al. [27] gave a review and applications of these type of operators in mechanical engineering, 
evolution differential equations, anomalous transport, variable control and mathematical modelling.

Partial differential equations driven by nonhomogeneous operators have been extensively investigated and 
received much attention since they can be presented as models for many physical phenomena. As examples, 
the field of nonlinear elasticity, plasticity and electro-rheological fluids, see [28–30]. A simple example of 
problem with nonhomogeneous operator which illustrates the need for more inclusive classes of function 
spaces than W s(.),p(Rn) is driven by the following equation

p.v.

ˆ

Rn

2q
(
1 + |u(x) − u(y)|2

|x− y|2s(x,y)

)q−1
(u(x) − u(y)) dy

|x− y|2s(x,y)+n
= 0 in Rn. (1.2)

The energy functional associated to the Euler-Lagrange equation (1.2) is defined by

E(u) =
¨ ((

1 + |u(x) − u(y)|2
|x− y|2s(x,y)

)q

− 1
) dxdy
|x− y|n .
R2n
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It seems to be difficult to deal with the functional E on the usual fractional variable-order Sobolev space 
W s(.),p(Rn). Indeed, it is clear that

(1 + t2)q − 1 ∼ qt2 t → 0 ,

(1 + t2)q − 1 ∼ t2q t → ∞.

When q �= 1, neither W s(.),2(Rn) nor W s(.),2q(Rn) includes the other. Consequently, the functional E is 
not well defined on neither of them. The most natural Sobolev space on which E is defined is the fractional 
variable-order Orlicz-Sobolev space associated with the Orlicz function G(t) = (1 + t2)q − 1.

Let us comment a little more on the motivation of this space. A. Alberico et al. [2] gave sufficient 
structural conditions for an embedding theorem of fractional constant-order Orlicz-Sobolev space when Ω
is a bounded Lipschitz domain, namely

1ˆ

0

( z

G(z)

) s
n−s dz < ∞ (1.3)

and

∞̂

1

( z

G(z)

) s
n−s dz = ∞. (1.4)

Under the conditions (1.3) and (1.4), the authors detected the target space LGn
s (Ω) where Gn

s
is the optimal 

Orlicz function that plays the role of a critical function in the class of Orlicz functions. Specifically, they 
showed the embedding

W s,G(Ω) ↪→ L
Gn

s (Ω). (1.5)

A natural question is to seek embedding results in the case where s is no longer constant. To this purpose 
for more inclusive classes of function space than W s,G(Ω), we introduce the operator (−Δ)s(.)G and its 
corresponding Sobolev space. Certainly, some new classes of nonlinear equations will appear. For more 
papers on the study of problems involving (−Δ)sG, we refer, for instance, to [4,6,8,9,31] for a list of references 
and results from the variational analysis and regularity theory.

Let us now describe our results in further details. In this manuscript, we define first the space given in 
(1.1). We will study in details its main properties. We prove structural results of these spaces. Precisely, 
under the condition:

There exist a ≥ 1 such that

G(t)
t

≤ a
G(s)
s

for all 0 < t ≤ s,

we show that

u 
→ inf
{
λ > 0 :

ˆ

Ω

G( |u(x)|
λ

)dx +
¨

Ω×Ω

G
( |u(x) − u(y)|
λ|x− y|s(x,y)

) dxdy
|x− y|n ≤ 1

}
(1.6)
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is a quasi-additive functional in W s(.),G(Ω) and the constant of quasi-additivity is smaller or equal to 8a. 
Moreover, under structural conditions “almost-increasing, almost-decreasing”, we prove the relation between 
the functional (1.6) and the modular functional

u 
→
ˆ

Ω

G(|u(x)|)dx +
¨

Ω×Ω

G
( |u(x) − u(y)|
|x− y|s(x,y)

) dxdy
|x− y|n .

Also, we give criteria for which W s(.),G(Ω) is separable, reflexive and uniformly convex. As far as we know, 
it seems to be the first time where fractional Sobolev space W s(.),G(Ω) with G following “almost-increasing, 
almost-decreasing” structural conditions is introduced. Even in the case where s is constant, we never found 
it in the literature. For more information about these properties, see subsection 3.1. For a special case, see 
[5].

In [12], the authors established the embedding

W s(.),2(Ω) ↪→ Lq(.)(Ω), (1.7)

where the variable exponent q(.) can be close to the exponent 2�(.) := 2n
n−2s(x,x) . Specifically, the function 

q(.) follows the conditions:

• q(.) : Ω̄ → R is continuous and 1 < q− ≤ q(x) ≤ q+ for all x ∈ Ω̄.
• There exists ε = ε(x) > 0 such that

sup
y∈Ωx,ε

q(y) ≤ 2n
n− 2 inf(y,z)∈Ωx,ε×Ωx,ε

s(y, z) ,

where Ωx,ε = Bε(x) ∩ Ω, for x ∈ Ω.

This result extends the classical continuous embedding when the order s is constant. Our main contribution 
is the overall to sharp counterparts of the embeddings (1.5) and (1.7). Especially, we prove that our space 
W s(.),G(Ω) embedded in a large space that includes a Lebesgue space with variable exponent and a Lebesgue-
Orlicz space. Using interpolation arguments and a suitable auxiliary function in our conditions, we guarantee 
the stability of the continuous embedding (1.5) when s is constant. Also, we show that our space is related 
with Lebesgue-Musielak space. Under the continuity condition of the order function, we give an embedding 
theorem that allows us to identify one of the functions that can play the role of a critical function in a class 
of Musielak functions. Obviously, this space can raise delicate mathematical questions, in particular, with 
regard to the critical function, as well as to the question concerning the target space and whether it can be 
determined under the restrictive condition of the order function continuity.

Our abstract results are motivated by the existence of solutions to the following singular elliptic problem:
⎧⎨
⎩ (−Δ)s(.)G u(x) = g(x)f ′(x, |u|) u

|u| in Ω

u = 0 in Rn \ Ω,
(1.8)

where f ′ is a generalized singular term and g is a positive function. See section 4 for more details about 
conditions on g and f.

In the recent years, many authors have treated singular elliptic problems with a G-Laplacian operator, 
see [11,15], where the authors have used various methods. To the best of our knowledge, this is the first work 
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examining singular elliptic equations by using variational arguments combined with the theory of Musielak 
functions and Musielak-Lebesgue spaces. Below, we describe the novelty of our equation:

1. It is considered a large class of singular term which includes the singular term of the form f(x, t) = tγ(x)

where 0 < γ(x) < 1.
2. Related to our approach, we are using new and optimal assumptions on singular term.
3. We are using a new general embedding theorem.
4. We are using new inhomogeneous operators.

Let us present some relevant articles in this approach where the authors used monotonicity arguments, 
algebraic calculations on the variable exponent combined with Hölder’s inequality and some properties of 
the norm. In [23], Kefi-Saoudi investigated the existence of solutions for the following variable exponent 
elliptic equation involving the biharmonic operator, namely

{
Δ(|Δu|p(x)−2Δu) = g(x)u−γ(x) + λf(x, u) in Ω

Δu = u = 0 on ∂Ω,

where Ω ⊂ Rn(n ≥ 3), g ∈ L
p�(x)

p�(x)+γ(x)−1 (Ω), 0 < γ < 1 is a continuous function and f is a subcritical 
nonlinearity.

The existence of a solution for the fractional Laplacian operator with Kirchhoff term and critical nonlin-
earity has been proved by A. Fiscella [16] who studied the problem

⎧⎪⎨
⎪⎩

(¨
R2n

|u(x) − u(y)|2
|x− y|n+2s dxdy

)θ−1
(−Δ)su = λ

1
uγ

+ u2�
s−1 in Ω

u = 0 in Rn \ Ω,

where Ω is an open bounded subset of Rn with continuous boundary, n > 2s, 0 < s < 1, 2�s := 2n
n−2s and 

0 < γ < 1.

Recently, Bahrouni-Rădulescu treated a singular double phase system with variable growth for the 
Baouendi-Grushin operator [3], namely

{
−ΔΦ(x,y)u +|u|q(z)−2u + |u|p(z)−2u = a1(z)u−γ1(z) − b(z)α(z)|v|β(z)|u|α(z)−2u,

−ΔΦ(x,y)v +|v|q(z)−2v + |v|p(z)−2v = a2(z)v−γ2(z) − b(z)β(z)|u|α(z)|v|β(z)−2v,

with z = (x, y) ∈ RN , a1, a2, b, p, q, β ∈ C(RN , R), γ1, γ2 : RN →]0, 1[ are continuous functions such that 
γ1 < γ2 and ΔΦ(x,y) stands for the Baouendi-Grushin operator with variable coefficient, which is defined by

ΔΦ(x,y)u =
n∑

i=1

(
|∇xu|Φ(x,y)−2uxi

)
xi

+ |x|γ
m∑
i=1

(
|∇yu|Φ(x,y)−2uyi

)
yi

,

where Φ : RN →]1, ∞[ is a continuous function and RN ≈ Rn ×Rm.

In our case, the situation is more general since we deal with a larger variety of singular terms. This forces 
us to use flexible algebraic calculations compatible with these functions.

Organization of paper: In the second section, we recall some properties of Musielak-Lebesgue spaces 
and first order Orlicz-Sobolev space. The third section is devoted to proving some properties of the new 
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fractional variable-order Orlicz-Sobolev space and finally, in section 4, we present our existence result for 
problem (1.8).

2. Preliminaries

The basics on Musielak functions and Musielak-Lebesgue spaces may be found in the monographs [19,
25,26] but we recall here some necessary results. Let Ω be a measurable subset of Rn. We denote by L0(Ω)
the set of measurable functions on Ω. We say that a quasi-normed space X is continuously embedded 
into a quasi-normed space Y , denoted, X ↪→ Y , if X ⊂ Y and there exists a constant c > 0 such that 
||x||Y ≤ c||x||X for all x ∈ X. The embedding of X into Y , denoted, X ↪→↪→ Y , if X ↪→ Y and bounded 
sets in X are precompact in Y .

2.1. Musielak functions

Definition 2.1.

• A function G : Ω × [0, ∞[−→ [0, ∞[ is called a weak Musielak function if the following conditions hold:

(1) x 
→ G(x, |u(x)|) is measurable for all u ∈ L0(Ω);
(2) for a.e. x ∈ Ω, G(x, .) is continuous and strictly increasing;
(3) There exists a ≥ 1 such that

G(x, t)
t

≤ a
G(x, s)

s
, (2.1)

for a.e. x ∈ Ω and for all 0 < t ≤ s.

• A weak Musielak function is called a Musielak function, if G(x, .) is convex for a.e. x ∈ Ω.
• A weak Musielak function is called an N-Musielak function if for a.e. x ∈ Ω,

lim
t→0+

G(x, t)
t

= 0 and lim
t→∞

G(x, t)
t

= ∞.

• When G is independent of the variable x, i.e. G(x, t) = G(t), G is called a weak Orlicz function, Or-
licz function or N-Orlicz function instead of weak Musielak function, Musielak function or N-Musielak 
function respectively.

Remark 2.1.

1. By continuity and assumption (2.1), we have

G(x, 0) = 0 and lim
t→∞

G(x, t) = +∞,

for a.e. x ∈ Ω.
2. If G(x, .) is convex and G(x, 0) = 0 for a.e. x ∈ Ω, then G(x, .) is strictly increasing for a.e. x ∈ Ω and 

satisfies (2.1) with a=1.
3. A Musielak function can be represented as

G(x, t) =
tˆ

0

G′(x, s) ds,
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where G′(x, .) is the right-hand derivative of G(x, .). The function G′(x, .) is right-continuous and nonde-
creasing.

Let G be a weak Musielak function. We consider the condition (A) that will be used throughout this 
paper.

There exist two constants g0 ≥ g0 > 1 such that

1 < g0 ≤ tG′(x, t)
G(x, t) ≤ g0, (A)

for a.e. x ∈ Ω and for all t > 0.

Under the condition (A), we have the following remarks.

Remark 2.2. [25] Let G be a weak Musielak function satisfying (A). Then, for a.e. x ∈ Ω we have

• G(x, βt) ≤ βg0
G(x, t), for all t ≥ 0, β > 1;

• G(x, βt) ≥ βg0G(x, t), for all t ≥ 0, β > 1.

Definition 2.2. Let G be a weak Musielak function. Define G� : Ω × [0, ∞[→ [0, ∞] for a.e. x ∈ Ω, by

G�(x, s) := sup
t≥0

(st−G(x, t)) s ≥ 0.

G� is called the complementary or conjugate function of G.

If G�(x, .) is finite for a.e. x ∈ Ω, it is also a Musielak function and can be represented as

G�(x, t) =
tˆ

0

(
G�(x, .)

)′
(s)ds,

with
(
G�(x, .)

)′
(s) = sup{t ≥ 0 : G′(x, t) ≤ s}.

By definition of G�,

st ≤ G(x, t) + G�(x, s),

for a.e. x ∈ Ω and for all s, t ≥ 0. This is called Young’s inequality.

Definition 2.3. Let G be a weak Musielak function. We denote G−1(x, .) : [0, ∞[→ [0, ∞[ for a.e. x ∈ Ω the 
inverse function of G(x, .). Furthermore, we define G−1 : Ω × [0, ∞[→ [0, ∞[ such that:

G−1(x, s) = t,

where G(x, t) = s.

The next proposition establishes that the conjugate function G� satisfies also the condition (A).
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Proposition 2.1. [8] Let G be a Musielak function satisfying (A), then the following relations hold

(1) For a.e. x ∈ Ω, we have

G�(x,G′(x, t)) ≤ (g0 − 1)G(x, t), for all t ≥ 0;

(2) For a.e. x ∈ Ω, G�(x, .) satisfies

g0

g0 − 1 ≤
t
(
G�(x, .)

)′
(t)

G�(x, t) ≤ g0

g0 − 1 , for all t ≥ 0;

(3) For a.e. x ∈ Ω, G−1(x, .) satisfies

1
g0 ≤

t
(
G−1(x, .)

)′
(t)

G−1(x, t) ≤ 1
g0

, for all t ≥ 0.

When we study continuous and compact embeddings, we need the notion of comparison between func-
tions. For this purpose, we have the next definition.

Definition 2.4.

(1) Let Φ, Ψ : Ω × [0, ∞[→ [0, ∞[. Ψ is larger than Φ, denoted by Φ ≤ Ψ, if there exist C > 0 and h ∈ L1(Ω)
such that

Φ(x, t

C
) ≤ Ψ(x, t) + h(x),

for a.e. x ∈ Ω and for all t ≥ 0.
(2) Ψ is essentially larger than Φ, denoted by Φ � Ψ, if for any c > 0

lim
t→∞

(
sup
x∈Ω̄

Φ(x, ct)
Ψ(x, t)

)
= 0,

where Ω is a bounded domain and Φ, Ψ are continuous functions on Ω̄ × [0, ∞[.
(3) Two functions Φ, Ψ : Ω × [0, ∞[→ [0, ∞[ are equivalent, denoted by Φ ≈ Ψ, if there exists L ≥ 1, such 

that

1
L

Ψ(x, t) ≤ Φ(x, t) ≤ LΨ(x, t),

for a.e. x ∈ Ω and for all t ≥ 0.

Remark 2.3. [1] It is easy to see that, Φ � Ψ if and only if

lim
t→∞

(
sup
x∈Ω̄

Ψ−1(x, t)
Φ−1(x, t)

)
= 0,

where Φ, Ψ are weak Musielak continuous functions on Ω̄ × [0, ∞[.
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2.2. Musielak-Lebesgue spaces and first order Orlicz-Sobolev spaces

Given a weak Musielak function G and an open set Ω ⊂ Rn, we consider the Lebesgue-Musielak space 
LG(.)(Ω) defined as follows:

LG(.)(Ω) :=
{
u ∈ L0(Ω) :

ˆ

Ω

G(x, λ|u|) dx < ∞ for someλ > 0
}
.

This space is endowed with the so-called Luxemburg quasi-norm defined as:

∣∣∣∣∣∣u∣∣∣∣∣∣
G

:=
∣∣∣∣∣∣u∣∣∣∣∣∣

LG(.)(Ω)
= inf

{
λ > 0 :

ˆ

Ω

G(x, |u(x)|
λ

) dx ≤ 1
}
.

A Hölder’s type inequality holds [19]:

ˆ

Ω

u(x)v(x) dx ≤ 2
∣∣∣∣∣∣u∣∣∣∣∣∣

G

∣∣∣∣∣∣v∣∣∣∣∣∣
G�

, (2.2)

for all u ∈ LG(.)(Ω) and v ∈ LG�(.)(Ω).

Remark 2.4. If G is a weak Orlicz function, we write LG(Ω) instead of LG(.)(Ω).

Also, we have the following known results.

Theorem 2.1. [19,26] Let G be a Musielak function satisfying (A). Then LG(.)(Ω) is a reflexive separable 
Banach space.

Theorem 2.2. [19,26]

1. Let Φ, Ψ be two weak Musielak functions. If Φ ≤ Ψ, then LΨ(.)(Ω) embedded continuously into LΦ(.)(Ω).
2. Let Φ, Ψ be two weak Musielak functions. If Φ−1 ≈ Ψ−1, then LΦ(.)(Ω) = LΨ(.)(Ω).

Proposition 2.2. [25] Let G be a weak Musielak function satisfying (A), then

min
{∣∣∣∣∣∣u∣∣∣∣∣∣g0

G
,
∣∣∣∣∣∣u∣∣∣∣∣∣g0

G

}
≤
ˆ

Ω

G(x, |u(x)|) dx ≤ max
{∣∣∣∣∣∣u∣∣∣∣∣∣g0

G
,
∣∣∣∣∣∣u∣∣∣∣∣∣g0

G

}
,

for all u ∈ LG(.)(Ω).

Now, we recall the definition of the first order Orlicz-Sobolev space and also some continuous and compact 
embedding results. We define

W 1,G(Ω) :=
{
u ∈ LG(Ω) : |∇u| ∈ LG(Ω) in the distribution sense

}
.

This space is equipped with the norm
∣∣∣∣∣∣u∣∣∣∣∣∣

1,G
:=

∣∣∣∣∣∣u∣∣∣∣∣∣
G

+
∣∣∣∣∣∣∇u

∣∣∣∣∣∣
G
.
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In order for the Sobolev embedding results to hold, one needs to impose some condition on G. We consider 
the following assumption:

1ˆ

0

( z

G(z)

) 1
n−1 dz < ∞ and

∞̂

1

( z

G(z)

) 1
n−1 dz = ∞. (2.3)

Under assumption (2.3), we define the optimal critical function by:

Gn(t) = GoH−1
n (t),

where

Hn(t) =
( tˆ

0

( z

G(z)

) 1
n−1 dz

)n−1
n

.

The following fundamental Orlicz-Sobolev embedding theorem can be found in [13].

Theorem 2.3. Let Ω be a Lipschitz bounded domain in Rn and G be an Orlicz function satisfying (2.3). 
Then, we have

W 1,G(Ω) ↪→ LGn(Ω).

Moreover, given Ψ any Orlicz function, the embedding

W 1,G(Ω) ↪→ LΨ(Ω)

is compact if only if Ψ � Gn.

3. New class of fractional Sobolev spaces

In this section, we look for the properties of a new class of fractional-Sobolev spaces under optimal 
assumptions on generating weak Orlicz-function.

3.1. Almost increasing-almost decreasing properties

Let G : Ω × [0, +∞[→ [0, +∞[ be a function and Ω is a measurable subset of Rn. We consider the 
following structure conditions:

(AInc)g0,a: There exist g0 > 0 and a ≥ 1 such that

G(x, t)
tg0

≤ a
G(x, z)
zg0

,

for a.e. x ∈ Ω and for all 0 < t < z.
(ADec)g0,b: There exist g0 > 0 and b ≥ 1 such that

G(x, t)
tg0 ≤ b

G(x, z)
zg0 ,

for a.e. x ∈ Ω and for all 0 < z < t.
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From now on, we consider that a and b as the smallest constants characterizing the properties (AInc)g0,a

and (ADec)g0,b.

Remark 3.1.

(1) Every weak Musielak function satisfies (AInc)1,a for some a ≥ 1.
(2) Let G be a Musielak function satisfying the condition (A), then G satisfies (AInc)g0,1 and (ADec)g0,1.
(3) Let G(x, .) ∈ C2(]0, +∞[) be a weak Orlicz function such that

0 < g0 − 1 ≤ tG′′(x, t)
G′(x, t) ≤ g0 − 1 for all t > 0.

Then, it is easy to see that

g0 ≤ tG′(x, t)
G(x, t) ≤ g0 for all t > 0.

Conversely, if G satisfies

g0 ≤ tG′(x, t)
G(x, t) ≤ g0 for all t > 0, (3.1)

then G′(x, .) satisfies (AInc)
g0−1, g0

g0
and (ADec)

g0−1, g0
g0

. It is for this reason that we are interested in 

these properties.

Indeed, by (3.1), for all t > 0 we have

G(x, t)
tg0

≤ 1
g0

G′(x, t)
tg0−1 and G′(x, t)

tg0−1 ≤ g0G(x, t)
tg0

. (3.2)

Let 0 < t < z then, by (3.2), we have

G′(x, t)
tg0−1 ≤ g0G(x, t)

tg0
≤ g0G(x, z)

zg0
≤ g0

g0

G′(x, z)
zg0−1 ,

therefore

G′(x, t)
tg0−1 ≤ g0

g0

G′(x, z)
zg0−1 ,

hence G′(x, .) satisfies (AInc)
g0−1, g0

g0
. Similarly, G′(x, .) satisfies (ADec)

g0−1, g0
g0

.
(4) If Ψ is a Musielak function satisfying (AInc)ψ0,a and (ADec)ψ0,b with ψ0 > 1, then Ψ satisfies the 

condition (A) (see Lemma 2.2.6 in [19]).

Note that the condition (A) is used by Lieberman [24] and Simonenko [32]. The structure conditions 
almost increasing-almost decreasing are considered by Harjulehto-Hästö in [20] and also by Ragusa et al. in 
[18].

Now, we define a function that plays an important role in our hypotheses of problem (1.8).

Let Ψ, Φ : Ω × [0, ∞[→ [0, ∞[. We define ΨoΦ : Ω × [0, ∞[→ [0, ∞[ by:

ΨoΦ(x, t) := Ψ(x,Φ(x, t)).
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If Ψ, Φ are two functions independent of the variable x, then the definition above ΨoΦ matches with the 
classical composition of two functions.

Proposition 3.1.

(1) Let Ψ, Φ : Ω × [0, ∞[→ [0, ∞[ satisfying (AInc)ψ0,a1 and (AInc)φ0,a2 respectively. If for a.e. x ∈ Ω, 
Φ(x, .) is strictly increasing and Φ(x, 0) = 0, then ΨoΦ satisfies (AInc)

φ0ψ0,a1a
ψ0
2

.
(2) Let Ψ, Φ : Ω × [0, ∞[→ [0, ∞[ satisfying (ADec)ψ0,b1 and (ADec)φ0,b2 respectively. If for a.e. x ∈ Ω, 

Φ(x, .) is strictly increasing and Φ(x, 0) = 0, then ΨoΦ satisfies (ADec)
φ0ψ0,b1b

ψ0
2

.
(3) If Ψ, Φ are weak Musielak functions, then ΨoΦ is a weak Musielak function.
(4) If Ψ, Φ are Musielak functions, then ΨoΦ is a Musielak function.
(5) If Ψ, Φ are N-Musielak functions, then ΨoΦ is an N-Musielak function.

Proof.(1) Let 0 < t < z. Then, for a.e. x ∈ Ω we have

Ψ(x,Φ(x, t))
tφ0ψ0

= Ψ(x,Φ(x, t))(
Φ(x, t)

)ψ0

(
Φ(x, t)

)ψ0

tφ0ψ0

≤ a1
Ψ(x,Φ(x, z))(

Φ(x, z)
)ψ0

(
a2

Φ(x, z)
zφ0

)ψ0

≤ a1a
ψ0
2

Ψ(x,Φ(x, z))
zφ0ψ0

.

Therefore, ΨoΦ satisfies (AInc)
φ0ψ0,a1a

ψ0
2

. In the same way, the other assertions are proved. �
Examples 3.1.

(1) Ψ1(x, t) = tp(x)
(
(p(x) + 1)Log(e + t) + t

e+t

)
satisfies (AInc)

p−, p
++1

p−+1
and (ADec)

p+, p
++1

p−+1
, where p is a 

measurable function on Ω, p+ = supx∈Ω p(x) < ∞ and p− = infx∈Ω p(x) > 0.
(2) Ψ2(x, t) = tp + b(x)tpLog(e + t) satisfies (AInc)p,1 and (ADec)p+1,1, where b ∈ L∞

+ (Ω).
(3) Ψ3(x, t) = et − t − 1 is not satisfying almost decreasing property.

3.2. Fractional variable-order Orlicz-Sobolev space

Given an open set Ω ⊂ Rn and a measurable function s : Ω × Ω →]0, 1[, to simplify the notations, we 
denote dμ = dxdy

|x−y|n the regular Borel measure on Ω × Ω, and we define the s(.)− Hölder quotient by:

∇su(x, y) := u(x)−u(y)
|x−y|s(x,y) .

Remark 3.2.

(1) If s(x, y) = s(y, x), then we have ∇su(x, y) = −∇su(y, x).
(2) ∇s(u + v) = ∇su + ∇sv.
(3) ∇sλu = λ∇su, for all λ ∈ R.
(4) ∇s(uv)(x, y) = u(x)∇sv(x, y) + v(y)∇su(x, y).
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Let G be a weak Orlicz function, we introduce the fractional variable-order Orlicz-Sobolev space 
W s(.),G(Ω) as follows:

W s(.),G(Ω) :=
{
u ∈ LG(Ω) :

¨

Ω×Ω

G(λ|∇su|)dμ < ∞ for someλ > 0
}
.

For any u ∈ W s(.),G(Ω), let

MG(u) :=
ˆ

Ω

G(|u|)dx +
¨

Ω×Ω

G(|∇su|)dμ

and
∣∣∣∣∣∣u∣∣∣∣∣∣

s(.),G
:= inf

{
λ > 0 : MG(u

λ
) ≤ 1

}
.

The next theorem proves that 
∣∣∣∣∣∣.∣∣∣∣∣∣

s(.),G
is a quasi-norm in W s(.),G(Ω) and the constant of triangle quasi-

norm is smaller or equal to 8a, where a is the constant of (AInc)1,a property.

Theorem 3.1. Let G be a weak Orlicz function, then we have:

(1)
∣∣∣∣∣∣.∣∣∣∣∣∣

s(.),G
is a quasi-norm;

(2) If G is an Orlicz function, then 
∣∣∣∣∣∣.∣∣∣∣∣∣

s(.),G
is a norm.

Proof. 1. By standard arguments, we have absolute homogeneity and positive definiteness. We prove quasi-
triangle inequality. Let u, v ∈ W s(.),G(Ω), α >

∣∣∣∣∣∣u∣∣∣∣∣∣
s(.),G

, β >
∣∣∣∣∣∣v∣∣∣∣∣∣

s(.),G
and x, y ∈ Ω. By definition of ∣∣∣∣∣∣.∣∣∣∣∣∣

s(.),G
, we have

MG(u
α

) ≤ 1 and MG( v
β

) ≤ 1.

Since G satisfies

G(t)
t

≤ a
G(z)
z

for all 0 < t ≤ z,

we get the following inequalities:

G( |u(x)|
4aα ) ≤ 1

4G( |u(x)|
α ), G( |v(x)|

4aβ ) ≤ 1
4G( |v(x)|

β ),

G( |∇
su(x,y)|
4aα ) ≤ 1

4G( |∇
su(x,y)|

α ) and G( |∇
sv(x,y)|
4aβ ) ≤ 1

4G( |∇
sv(x,y)|

β ).

Using the inequality

G(t1 + t2) ≤ G(2t1) + G(2t2) for any t1, t2 ≥ 0,

we obtain
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ˆ

Ω

G( |u(x) + v(x)|
8a(α + β) )dx ≤

ˆ

Ω

G(2|u(x)|
8aα )dx +

ˆ

Ω

G(2|v(x)|
8aβ )dx

≤ 1
4

ˆ

Ω

G( |u(x)|
α

)dx + 1
4

ˆ

Ω

G( |v(x)|
β

)dx

≤ 1
2 .

Similarly, we have
¨

Ω×Ω

G( |∇
s(u + v)|

8a(α + β) )dμ ≤ 1
2 .

Thus
∣∣∣∣∣∣u + v

∣∣∣∣∣∣
s(.),G

≤ 8a(α + β),

therefore
∣∣∣∣∣∣u + v

∣∣∣∣∣∣
G,s(.)

≤ 8a
(∣∣∣∣∣∣u∣∣∣∣∣∣

G,s(.)
+
∣∣∣∣∣∣v∣∣∣∣∣∣

s(.),G

)
.

This means that 
∣∣∣∣∣∣.∣∣∣∣∣∣

s(.),G
is a quasi-norm.

2. Assume that G is an Orlicz function. Let α >
∣∣∣∣∣∣u∣∣∣∣∣∣

s(.),G
and β >

∣∣∣∣∣∣v∣∣∣∣∣∣
s(.),G

. By the convexity of MG,

MG

( α

α + β

u

α
+ β

α + β

v

β

)
≤ α

α + β
MG(u

α
) + β

α + β
MG( v

β
)

≤ α

α + β
+ β

α + β
= 1.

Thus 
∣∣∣∣∣∣u + v

∣∣∣∣∣∣
G,s(.)

≤ α + β, which yield 
∣∣∣∣∣∣u + v

∣∣∣∣∣∣
G,s(.)

≤
∣∣∣∣∣∣u∣∣∣∣∣∣

G,s(.)
+
∣∣∣∣∣∣v∣∣∣∣∣∣

G,s(.)
, as required for (2). �

Remark 3.3.

1. On W s(.),G(Ω), the following quasi-norms:

∣∣∣∣∣∣.∣∣∣∣∣∣G
s(.)

: W s(.),G(Ω) −→ R+

u 
→ ||u||G + [u]s(.),G

,

∣∣∣∣∣∣.∣∣∣∣∣∣max

s(.),G
: W s(.),G(Ω) −→ R+

u 
→ max
(
||u||G, [u]s(.),G

)

and ∣∣∣∣∣∣.∣∣∣∣∣∣
s(.),G

: W s(.),G(Ω) −→ R+

u 
→ inf
{
λ > 0 : MG(uλ ) ≤ 1

}
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are equivalent, where [u]s(.),G := inf
{
λ > 0 :

¨

Ω×Ω

G( |∇
su|
λ

)dμ ≤ 1
}

.

2. If G is an Orlicz function, then 
∣∣∣∣∣∣.∣∣∣∣∣∣G

s(.)
and 

∣∣∣∣∣∣.∣∣∣∣∣∣max

s(.),G
are also norms.

The following proposition gives the relation between the quasi-norm and the corresponding modular 
function MG under the minimal assumptions on the generating weak Orlicz function G.

Proposition 3.2. Let G be a weak Orlicz function satisfies (AInc)g0,a and (ADec)g0,b properties with g0 ≥
g0 ≥ 1. Let u ∈ W s(.),G(Ω), then the following properties hold:

∣∣∣∣∣∣u∣∣∣∣∣∣
s(.),G

> 1 implies 1
a

∣∣∣∣∣∣u∣∣∣∣∣∣g0

s(.),G
≤ MG(u) ≤ b

∣∣∣∣∣∣u∣∣∣∣∣∣g0

s(.),G
. (3.3)

∣∣∣∣∣∣u∣∣∣∣∣∣
s(.),G

< 1 implies 1
ab

∣∣∣∣∣∣u∣∣∣∣∣∣g0

s(.),G
≤ MG(u) ≤ a

∣∣∣∣∣∣u∣∣∣∣∣∣g0

s(.),G
. (3.4)

Proof. Let u ∈ W s(.),G(Ω) such that 
∣∣∣∣∣∣u∣∣∣∣∣∣

s(.),G
> 1 and x, y ∈ Ω. By (ADec)g0,b property, we have

G
(
||u||s(.),G. |u(x)|

||u||s(.),G

)
|u(x)|g0 ≤ b

G
(

|u(x)|
||u||s(.),G

)
(

|u(x)|
||u||s(.),G

)g0

and

G
(
||u||s(.),G. |∇

su(x,y)|
||u||s(.),G

)
|∇su(x, y)|g0 ≤ b

G
(

|∇su(x,y)|
||u||s(.),G

)
(

|∇su(x,y)|
||u||s(.),G

)g0 .

Hence, we have

ˆ

Ω

G(|u(x)|)dx +
ˆ

Ω

ˆ

Ω

G(|∇su(x, y)|)dμ

≤ b
( ˆ

Ω

G( |u(x)|
||u||s(.),G

)dx +
ˆ

Ω

ˆ

Ω

G( |∇
su(x, y)|

||u||s(.),G
)dμ

)∣∣∣∣∣∣u∣∣∣∣∣∣g0

s(.),G
.

Therefore

MG(u) ≤ b
∣∣∣∣∣∣u∣∣∣∣∣∣g0

s(.),G
.

Let α ∈
]
1, 
∣∣∣∣∣∣u∣∣∣∣∣∣

s(.),G

[
and x, y ∈ Ω. By (AInc)g0,a property, we have

G
(

|u(x)|
α

)
(

|u(x)|
α

)g0 ≤ a
G
(
|u(x)|

)
(
|u(x)|

)g0

and
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G
(

|∇su(x,y)|
α

)
(

|∇su(x,y)|
α

)g0 ≤ a
G
(
|∇su(x, y)|

)
(
|∇su(x, y)|

)g0 .

Hence
ˆ

Ω

G(|u(x)|)dx +
ˆ

Ω

ˆ

Ω

G(|∇su(x, y)|)dμ

≥ αg0
1
a

( ˆ
Ω

G( |u(x)|
α

)dx +
ˆ

Ω

ˆ

Ω

G( |∇
su(x, y)|
α

)dμ
)
.

Since α <
∣∣∣∣∣∣u∣∣∣∣∣∣

s(.),G
, then we obtain

ˆ

Ω

G( |u(x)|
α

)dx +
ˆ

Ω

ˆ

Ω

G( |∇
su(x, y)|
α

)dμ > 1,

therefore
ˆ

Ω

G(|u(x)|)dx +
ˆ

Ω

ˆ

Ω

G(|∇su(x, y)|)dμ ≥ 1
a
αg0 .

It follows that, letting α ↗
∣∣∣∣∣∣u∣∣∣∣∣∣

s(.),G
, we deduce (3.3).

Let u ∈ W s(.),G(Ω) such that 
∣∣∣∣∣∣u∣∣∣∣∣∣

s(.),G
< 1. By (AInc)g0,a property, we have

G
(
|u(x)|

)
(
|u(x)|

)g0 ≤ a
G
(

|u(x)|
||u||s(.),G

)
(

|u(x)|
||u||s(.),G

)g0

and

G
(
|∇su(x, y)|

)
(
|∇su(x, y)|

)g0 ≤ a
G
(

|∇su(x,y)|
||u||s(.),G

)
(

|∇su(x,y)|
||u||s(.),G

)g0 .

Using the definition of the quasi-norm, we obtain

MG(u) ≤ a
∣∣∣∣∣∣u∣∣∣∣∣∣g0

s(.),G

(ˆ
Ω

G( |u(x)|
||u||s(.),G

)dx +
ˆ

Ω

ˆ

Ω

G( |∇
su(x, y)|

||u||s(.),G
)dμ

)
,

hence

MG(u) ≤ a
∣∣∣∣∣∣u∣∣∣∣∣∣g0

s(.),G
.

Now, let β ∈
]
0, 
∣∣∣∣∣∣u∣∣∣∣∣∣

s(.),G

[
with 

∣∣∣∣∣∣u∣∣∣∣∣∣
s(.),G

< 1. Since β < 1, then by (ADec)g0,b property we have

G
(
|u(x)|

)
(
|u(x)|

)g0 ≥ 1
b

G
(

|u(x)|
β

)
(

|u(x)|
)g0
β
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and

G
(
|∇su(x, y)|

)
(
|∇su(x, y)|

)g0 ≥ 1
b

G
(

|∇su(x,y)|
β

)
(

|∇su(x,y)|
β

)g0 .

It follows that
ˆ

Ω

G(|u(x)|)dx +
ˆ

Ω

ˆ

Ω

G(|∇su(x, y)|)dμ (3.5)

≥ 1
b
βg0

(ˆ
Ω

G( |u(x)|
β

)dx +
ˆ

Ω

ˆ

Ω

G( |∇
su(x, y)|
β

)dμ
)
. (3.6)

If we take v = u
β , we obtain

∣∣∣∣∣∣v∣∣∣∣∣∣
s(.),G

=
∣∣∣∣∣∣u
β

∣∣∣∣∣∣
s(.),G

.

Using (3.3), we find

ˆ

Ω

G( |u(x)|
β

)dx +
ˆ

Ω

ˆ

Ω

G( |∇
su(x, y)|
β

)dμ ≥ 1
a

∣∣∣∣∣∣v∣∣∣∣∣∣g0

s(.),G
≥ 1

a
. (3.7)

Combining (3.6) and (3.7), we deduce that

ˆ

Ω

G( |u(x)|
β

)dx +
ˆ

Ω

ˆ

Ω

G( |∇
su(x, y)|
β

)dμ ≥ 1
ab

βg0
.

Letting β ↗
∣∣∣∣∣∣u∣∣∣∣∣∣

s(.),G
, we obtain (3.4). �

The following theorem gives criteria for which fractional variable-order Orlicz-Sobolev space is reflexive, 
uniformly convex and separable.

Theorem 3.2. Let G be a weak Orlicz function.

(1) If G satisfies (ADec)g0,b property, then 
(
W s(.),G(Ω), 

∣∣∣∣∣∣.∣∣∣∣∣∣
G,s(.)

)
is a quasi-Banach space.

(2) If G satisfies (ADec)g0,b property with g0 > 1, then 
(
W s(.),G(Ω), 

∣∣∣∣∣∣.∣∣∣∣∣∣
G,s(.)

)
is separable.

(3) If G satisfies (AInc)g0,a with g0 > 1 and (ADec)g0,b, then W s(.),G(Ω) is uniformly convex and reflexive.

Proof. (1) By Remark 3.3, we know that 
∣∣∣∣∣∣.∣∣∣∣∣∣

s(.),G
and 

∣∣∣∣∣∣.∣∣∣∣∣∣s(.)
G

are equivalent norm on W s(.),G(Ω).

Same as of the proof of the Proposition 3.2, we have

min
(1
a
[u]g0

s(.),G,
1
ab

[u]g
0

s(.),G

)
≤

¨

Ω×Ω

G(|∇su|)dμ ≤ max
(
a[u]g0

s(.),G, b[u]g
0

s(.),G

)
.
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Let {um}m≥1 ⊂ W s(.),G(Ω) be a Cauchy sequence. Then, for any ε > 0, there exists N ∈ N such 
that ∣∣∣∣∣∣um − uj

∣∣∣∣∣∣G
s(.)

< ε, for allm, j > N, (3.8)

which yield that

∣∣∣∣∣∣um − uj

∣∣∣∣∣∣
G
≤

∣∣∣∣∣∣um − uj

∣∣∣∣∣∣G
s(.)

< ε.

Apply the completeness of LG(Ω) to a find a u ∈ LG(Ω) such that um → u in LG(Ω) as m → ∞. Then, 
there exists a subsequence {umk

} ⊂ W s(.),G(Ω) such that umk
→ u almost everywhere in Ω. As a result, 

the Fatou’s lemma and the inequality (3.8) with ε = 1 imply that
¨

Ω×Ω

G(|∇su|)dμ ≤ lim inf
k→∞

¨

Ω×Ω

G(|∇sumk
|)dμ

≤ C lim inf
k→∞

max
(
[umk

− uj ]g
0

s(.),G + [uj ]g
0

s(.),G, [umk
− uj ]s(.),G + [uj ]s(.),G

)
≤ C

(
1 + max

(
[uj ]g

0

s(.),G, [uj ]s(.),G
)
< ∞,

and ∣∣∣∣∣∣u∣∣∣∣∣∣
G
≤ C lim inf

k→∞

(∣∣∣∣∣∣umk
− uj

∣∣∣∣∣∣
G

+
∣∣∣∣∣∣uj

∣∣∣∣∣∣
G

)
≤ C

(
1 +

∣∣∣∣∣∣uj

∣∣∣∣∣∣
G

)
< ∞

for any fixed j > 0, where C(a, b) > 0. Therefore, u ∈ W s(.),G(Ω). Then, the Fatou’s lemma leads to

∣∣∣∣∣∣um − u
∣∣∣∣∣∣G
s(.)

≤ lim inf
k→∞

∣∣∣∣∣∣um − umk

∣∣∣∣∣∣G
s(.)

< ε,

i.e., um → u in W s(.),G(Ω) as m → ∞.

Let

Q : W s(.),G(Ω) → LG(Ω) × LG
(
Ω × Ω,dμ

)
defined by

Q(u) =
(
u, u(x)−u(y)

|x−y|s(x,y)

)
.

By the mapping Q, the space W s(.),G(Ω) is a closed subspace of LG(Ω) × LG
(
Ω × Ω, dμ

)
.

(2) By Theorem (3.5.2) in [19], LG(Ω) and LG
(
Ω ×Ω, dμ

)
are separable since G satisfies (ADec)g0,b property 

with g0 > 1. Thus, W s(.),G(Ω) is separable.
(3) Uniform convexity and reflexivity depend only on the space, hence by Corollary (3.6.7) in [19], LG(Ω)

and LG
(
Ω × Ω, dμ

)
are uniformly convex and reflexive spaces since G satisfies (AInc)g0,a with g0 > 1

and (ADec)g0,b properties. Therefore, W s(.),G(Ω) is uniformly convex and reflexive. �
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3.3. Embedding theorems

Let Ω be a bounded domain with Lipshitz boundary, s : Rn ×Rn →]0, 1[ be a measurable function and 
G be an Orlicz function satisfying (A). This subsection is devoted to the embedding results of the new 
fractional Orlicz-Sobolev space W s(.),G(Ω).

Theorem 3.3. Let Ψ be a Musielak function. Suppose there exists K disjoint open sets Ωi of Ω with Lipshitz 
boundary such that Ω̄ ⊂

(⋃i=K
i=1 Ωi

)
∪N , |N | = 0 and for all i = 1, 2, ...K

∞̂

1

( z

G(z)

) si
n−si dz = ∞ and

1ˆ

0

( z

G(z)

) si
n−si dz < ∞,

where

si = inf
(x,y)∈Ωi×Ωi

s(x, y).

Set

Ψ+
i (t) := sup

x∈Ωi

Ψ(x, t) < ∞ for all t � 0

and

G n
si

(t) = GoH−1
n
si

(t),

where

H n
si

(t) =
( tˆ

0

( z

G(z)

) si
n−si dz

)n−si
n

.

If Ψ+
i ≤ G n

si
for all i = 1, ...K, then there is a continuous embedding of W s(.),G(Ω) into LΨ(.)(Ω).

Moreover, if Ψ+
i � G n

si
for all i = 1, ...K, then the embedding

W s(.),G(Ω) ↪→ LΨ(.)(Ω)

is compact.

Now, we state another version of embedding results whose proof is similar to the previous theorem.

Theorem 3.4. Ψ is an N-Musielak function and n ≥ 2. Suppose that G is an N-Orlicz function and there 
exists K disjoint of open sets Ωi of Ω with Lipshitz boundary such that Ω̄ ⊂

(⋃i=K
i=1 Ωi

)
∪N , |N | = 0 and 

for all i = 1, 2, ...K

1ˆ

0

G−1(z)
z

n+si
n

dz < ∞ and
∞̂

0

G−1(z)
z

n+si
n

dz = ∞,

where
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si = inf
(x,y)∈Ωi×Ωi

s(x, y).

Set

Ψ+
i (t) := sup

x∈Ωi

Ψ(x, t) < ∞ for all t � 0

and

G�,si the N-Orlicz function defined by their inverse by

t 
→
tˆ

0

G−1(z)
z

n+si
n

dz.

If Ψ+
i ≤ G�,si for all i = 1, ...K, then there is a continuous embedding of W s(.),G(Ω) into LΨ(.)(Ω).

Moreover, if Ψ+
i � G�,si for all i = 1, ...K, then the embedding

W s(.),G(Ω) ↪→ LΨ(.)(Ω)

is compact.

Remark 3.4.

1. Under the additional restrictive condition (A), Theorem 3.3 is a sharper version of Theorem (8.1) in [2]
when the order function s is constant.

2. When the order function s is constant, Theorem 3.4 reduces to the Theorem (1.2) in [6].
3. When G(t) = t2, Theorems 3.3 and 3.4 reduce to the Theorem (2.3) in [12]. Moreover, continuity condition 

for the order function s is not required in our Theorems. Clearly, our results also generalizes Theorem 
(2.3) in [12] for any p > 1 if we consider G(t) = tp. We state the result in this case:

Let Ω ⊂ Rn be a Lipshitz bounded domain and α : Ω̄ → [1, α+] be a continuous function. Suppose 

there exists K disjoint of open sets of Ω with Lipshitz boundary such that Ω̄ ⊂
(
∪i=K
i=1 Ωi

)
∪N , |N | = 0

and for all i = 1, 2, ...K

sup
y∈Ωi

{α(y)} ≤ np

n− sip
,

where si = inf(x,y)∈Ωi×Ωi
s(x, y). Then, we have

W s(.),p(Ω) ↪→ Lα(.)(Ω).

In the next theorem, we state another version of compactness results under the continuity condition in 
the order function, this result allows us to identify one of the function that can plays the role of a critical 
function in the class of Musielak functions. Moreover The analogous result for Musielak Sobolev spaces was 
proved by P. Harjulehto and P. Hästö in Theorem (6.3.8) [19].

Theorem 3.5. Ψ be a weak Musielak function, n ≥ 2 and p be a continuous function on Ω̄. Suppose that

1. s is continuous on Ω̄ × Ω̄;
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2. g0s(x, x) < n for all x ∈ Ω̄;
3. Ψ−1 ≈ t−p(.)G−1, where p(x) ∈

]
0, s(x,x)

n

[
for allx ∈ Ω̄.

Then, the embedding

W s(.),G(Ω) ↪→ LΨ(.)(Ω)

is compact.

Remark 3.5.

1. The condition of the continuity of the order function s in Theorem 3.5 is introduce to enlarge the interval 
of compactness.

2. If G(t) = tp and q ∈ C(Ω̄) verify

1 < q(x) < p�(x) = np

n− ps(x, x) for allx ∈ Ω̄,

we obtain the embedding

W s(.),p(Ω) ↪→↪→ Lq(.)(Ω).

The function (x, t) 
→ G�,p(x, t) := t
np

n−ps(x,x) plays the role of a critical function in this case. For a special 
case, see Theorem (2.1) in [33].

3. Let q ∈ C(Ω̄) such that

1 < q(x) < g0n

n− g0s(x, x) for allx ∈ Ω̄.

Then, we have

W s(.),G(Ω) ↪→↪→ Lq(.)(Ω).

Question: Let Φ be a weak Musielak function such that

Φ−1 ≈ t−
s(.)
n G−1.

Is W s(.),G(Ω) continuously embedded into LΦ(.)(Ω)?

Here and in the remainder of the proof, C denotes a positive constant independent of u ∈ W s(.),G(Ω)
and may vary from line to line.

Lemma 3.1. Let Ω be either a bounded or an unbounded open subset of Rn. Then, we have

W s+,G(Ω) ↪→ W s(.),G(Ω) ↪→ W s−,G(Ω),

where 0 < s− := inf(x,y)∈Ω×Ω s(x, y) and s+ := sup(x,y)∈Ω×Ω s(x, y) < 1.
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Proof. Let u ∈ W s(.),G(Ω) \ {0}. Then we have

ˆ

Ω

ˆ

Ω

G
( |u(x) − u(y)|
|x− y|s(x,y)

) dxdy
|x− y|n

=
ˆ

Ω

ˆ

Ω∩{|x−y|≥1}

G
( |u(x) − u(y)|
|x− y|s(x,y)

) dxdy
|x− y|n +

ˆ

Ω

ˆ

Ω∩{|x−y|<1}

G
( |u(x) − u(y)|
|x− y|s(x,y)

) dxdy
|x− y|n

≤
ˆ

Ω

ˆ

Ω∩{|x−y|≥1}

G
( |u(x) − u(y)|

|x− y|s−
) dxdy
|x− y|n +

ˆ

Ω

ˆ

Ω∩{|x−y|<1}

G
( |u(x) − u(y)|

|x− y|s+
) dxdy
|x− y|n

≤
ˆ

Ω

ˆ

Ω∩{|x−y|≥1}

G
( |u(x) − u(y)|

|x− y|s−
) dxdy
|x− y|n +

ˆ

Ω

ˆ

Ω

G
( |u(x) − u(y)|

|x− y|s+
) dxdy
|x− y|n .

We claim that

ˆ

Ω

ˆ

Ω∩{|x−y|≥1}

G
( |u(x) − u(y)|

|x− y|s−
) dxdy
|x− y|n ≤ C

ˆ

Ω

G(|u(x)|) dx.

Since t 
→ G(t)
t is increasing, then we have

ˆ

Ω

ˆ

Ω∩{|x−y|≥1}

G
( |u(x)|
|x− y|s−

) dxdy
|x− y|n

≤
ˆ

Ω

ˆ

Ω∩{|x−y|≥1}

G(|u(x)|)
|x− y|s−

dxdy
|x− y|n

≤ C

ˆ

Ω

G(|u(x)|) dx,

where we used the fact that 
ˆ

|z|≥1

1
|z|n+s−

dz exists.

By condition (A), we have

ˆ

Ω

ˆ

Ω∩{|x−y|≥1}

G
( |u(x) − u(y)|

|x− y|s−
) dxdy
|x− y|n

≤
ˆ

Ω

ˆ

Ω∩{|x−y|≥1}

[
G
( 2|u(x)|
|x− y|s−

)
+ G

( 2|u(y)|
|x− y|s−

)] dxdy
|x− y|n

≤ 2g
0
ˆ

Ω

ˆ

Ω∩{|x−y|≥1}

[
G
( |u(x)|
|x− y|s−

)
+ G

( |u(y)|
|x− y|s−

)] dxdy
|x− y|n

≤ C

ˆ

Ω

G(|u(x)|) dx.
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Thus, the claim is valid. So, we obtain
ˆ

Ω

ˆ

Ω

G
( |u(x) − u(y)|
|x− y|s(x,y)

) dxdy
|x− y|n

≤ C
(ˆ

Ω

G(|u(x)|) dx +
ˆ

Ω

ˆ

Ω

G
( |u(x) − u(y)|

|x− y|s+
) dxdy
|x− y|n

)
.

Therefore

W s+,G(Ω) ↪→ W s(.),G(Ω).

Similarly, W s(.),G(Ω) is continuously embedded into W s−,G(Ω). �
3.4. Proof of Theorem 3.3

Claim 1: The functions Ψ+
i are Orlicz functions.

It is clear Ψ+
i is convex, Ψ+

i (0) = 0 and Ψ+
i is continuous on ]0, ∞[. By convexity and the fact that 

Ψ+
i (0) = 0, we have

Ψ+
i (t) ≤ t

s
Ψ+

i (s) for all 0 < t < s,

therefore

lim
t→0+

Ψ+
i (t) = 0 = Ψ+

i (0).

It is also continuous in 0.

Claim 2: W s(.),G(Ωi) is continuously embedded into LΨ(.)(Ωi).

Indeed, by Lemma 3.1, we have

W s(.),G(Ωi) ↪→ W si,G(Ωi).

By Theorem (8.1) in [2], we obtain

W si,G(Ωi) ↪→ L
G n

si (Ωi).

Moreover, as Ψ+
i is an Orlicz function and Ψ+

i � G n
si

, then by Theorem 2.2 it follows that

L
G n

si (Ωi) ↪→ LΨ+
i (Ωi).

On the other hand, by definition of Ψ+
i , we infer that

LΨ+
i (Ωi) ↪→ LΨ(.)(Ωi).

Combining the previous embeddings we deduce the embedding
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W s(.),G(Ωi) ↪→ LΨ(.)(Ωi).

By claim (2), there exists a constant Ci such that
∣∣∣∣∣∣u∣∣∣∣∣∣

LΨ(.)(Ωi)
≤ Ci

∣∣∣∣∣∣u∣∣∣∣∣∣
W s(.),G(Ωi)

.

Note that

|u| =
i=K∑
i=1

|u|χΩi
,

then we obtain

∣∣∣∣∣∣u∣∣∣∣∣∣
LΨ(.)(Ω)

≤
i=K∑
i=1

∣∣∣∣∣∣u∣∣∣∣∣∣
LΨ(.)(Ωi)

.

Thus, we have

∣∣∣∣∣∣u∣∣∣∣∣∣
LΨ(.)(Ω)

≤
i=K∑
i=1

∣∣∣∣∣∣u∣∣∣∣∣∣
LΨ(.)(Ωi)

≤
i=K∑
i=1

Ci

∣∣∣∣∣∣u∣∣∣∣∣∣
W s(.),G(Ωi)

.

Therefore ∣∣∣∣∣∣u∣∣∣∣∣∣
LΨ(.)(Ω)

≤ C
∣∣∣∣∣∣u∣∣∣∣∣∣

W s(.),G(Ω)
.

So we find that

W s(.),G(Ω) ↪→ LΨ(.)(Ω).

If Ψ+
i � G n

si
, using Theorem (9.1) in [2] and proceeding as in the previous proof, we get that the 

embedding

W s(.),G(Ωi) ↪→ LΨ(.)(Ωi)

is compact. The compactness of this embedding in Ω can be established by extracting a suitable convergent 
sub-sequence in LΨ(.)(Ωi) for each i = 1, ...K from a bounded sequence {uk} in W s(.),G(Ω).

3.5. Proof of Theorem 3.5

Let q ∈ C(Ω̄) such that 0 < q(x) ≤ s(x,x)
n for all x ∈ Ω̄. Under assumptions from Theorem 3.5, we have

1ˆ

0

G−1(z)
z1+q(x) dz < ∞ and

∞̂

1

G−1(z)
z1+q(x) dz = ∞.

Hence, we define the auxiliary N-Musielak function Gq(.) associated to q, by

G−1
q(.)(x, t) :=

tˆ

0

G−1(z)
z1+q(x) dz.
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Claim 1: We have

t−p(.)G−1 ≈ G−1
p(.) .

Indeed, let x ∈ Ω̄ and β > 1. By Proposition 2.1, we have

β
1
g0 G−1(t) ≤ G−1(βt) ≤ β

1
g0 G−1(t) for all t > 0. (3.9)

Hence, by (3.9) and the definition of the function G−1
p(.)(x, .), we get

β
1
g0 .β−p(x)G−1

p(.)(x, t) ≤ G−1
p(.)(x, βt) ≤ β

1
g0 .β−p(x)G−1

p(.)(x, t),

for all x ∈ Ω̄ and t > 0.

This implies that

β
1
g0 −p(x) − 1
β − 1 G−1

p(.)(x, t) ≤
G−1

p(.)(x, βt) −G−1
p(.)(x, t)

β − 1 ≤ β
1
g0

−p(x) − 1
β − 1 G−1

p(.)(x, t).

Letting β → 1+ we obtain

p0 ≤
t
(
G−1

p(.)(x, .)
)′

(t)

G−1
p(.)(x, t)

≤ p0,

where

0 < p0 =
1 − g0 minx∈Ω̄ p(x)

g0
< 1 and 0 < p0 =

1 − g0 maxx∈Ω̄ p(x)
g0 < 1.

This implies that

p0G−1
p(.)(x, t) ≤ t−p(x)G−1(t) ≤ p0G

−1
p(.)(x, t) for allx ∈ Ω̄ and t > 0.

Claim 2: If q(x) > p(x) for all x ∈ Ω̄, then LGq(.)(Ω) is continuously embedded into LGp(.)(Ω).

Indeed, it is clear that

lim
t→+∞

sup
x∈Ω̄

t−q(x)G−1(t)
t−p(x)G−1(t)

= 0.

Using claim 1, as

t−p(.)G−1 ≈ G−1
p(.) and t−q(.)G−1 ≈ G−1

q(.) ,

we infer that

lim
t→+∞

sup
x∈Ω̄

G−1
q(.)(x, t)

G−1
p(.)(x, t)

= 0.

Hence, we have
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lim
t→+∞

sup
x∈Ω̄

Gp(.)(x, kt)
Gq(.)(x, t)

= 0,

for any k > 0. Therefore, we obtain LGq(.)(Ω) ↪→ LGp(.)(Ω).

As Ω is a bounded domain and p, s are continuous functions on Ω̄, there exists a constant c > 0 such that

s(x, x)
n

− p(x) ≥ c > 0,

for all x ∈ Ω̄. Hence, the finite covering theorem yields that there exist a positive constant ε(s, p) > 0 and 
a finite family of disjoint open bounded domains with Lipschitz boundary {Ωi : i = 1, ......K} such that 
Ω̄ ⊆

(
∪K
i=1 Ωi

)
∪N , 

∣∣∣N ∣∣∣=0 and diam(Ωi) < ε that verify

s(y,z)
n − p(x) ≥ c

2 > 0,

for any x ∈ Ωi and (y, z) ∈ Ωi × Ωi.

Set

si := min
(y,z)∈Ωi×Ωi

s(y, z), pi := max
x∈Ωi

p(x) and qi := pi + c

3 .

Then

p(x) < qi <
si
n

for all x ∈ Ωi.

Furthermore, using Theorem (1.2) in [6], we conclude that

W si,G(Ωi) ↪→↪→ LGqi (Ωi). (3.10)

By claim 2, we note that

LGqi (Ωi) ↪→ LGp(.)(Ωi). (3.11)

Applying Lemma 3.1 on Ωi, it follows that

W s(.),G(Ωi) ↪→ W si,G(Ωi). (3.12)

Therefore by (3.10), (3.11) and (3.12), we deduce that

W s(.),G(Ωi) ↪→↪→ LGp(.)(Ωi).

Finally, proceeding as in the previous theorem, we obtain

W s(.),G(Ω) ↪→↪→ LΨ(.)(Ω).
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4. Singular problem

4.1. Statement of the problem

In this section, we prove our main existence result of a nonnegative weak solution. Recall that the problem 
under consideration is the following one

⎧⎨
⎩ (−Δ)s(.)G u(x) = g(x)f ′(x, |u|) u

|u| in Ω

u = 0 in Rn \ Ω,
(4.1)

where Ω is a bounded domain with Lipschitz boundary.

We will work in the closed linear subspace

W
s(.),G
0 (Ω) :=

{
u ∈ W s(.),G(Rn) : u = 0 inRn \ Ω

}
.

This space is equipped with the norm

||u||s(.),G := ||u||G + [u]s(.),G,

where

[u]s(.),G := inf
{
λ > 0 :

¨

R2n

G( |∇
su|
λ

)dμ ≤ 1
}
.

Remark 4.1.

• By Lemma 3.1 and Poincaré inequality (see Theorem (6.1) in [8]), it is easy to see that the semi-norm 
[u]s(.),G becomes a norm in W s(.),G

0 (Ω). Moreover, the norms [u]s(.),G and ||.||s(.),G are equivalent.
• In what follows, we will use the norm [u]s(.),G which will be denoted by ||.||s(.),G again.
• C2

c (Ω) ⊂ W s+,G
0 (Ω).

• W s+,G
0 (Ω) ⊂ W

s(.),G
0 (Ω). (Lemma 3.1)

Now, we are in position to state our conditions. G and Ψ satisfying the compactness conditions of 
Theorem 3.3 and also Ψ satisfies the condition (A). We suppose the following assumptions on s, g and f .

(Hs): s is a measurable function in Rn ×Rn such that

(i) s(x, y) = s(y, x) for a.e. (x, y) ∈ R2n;
(ii) 0 < s− ≤ s(x, y) ≤ s+ < 1 for a.e. (x, y) ∈ R2n;

(Hf ): f : Ω × [0, ∞[→ [0, ∞[ such that

(i) for a.e. x ∈ Ω, f(x, 0) = 0 and f(x, .) ∈ C1(]0, ∞[) is strictly increasing;
(ii) x 
→ f(x, |u(x)|) is measurable for all measurable function u;
(iii) There exist 0 < f0 < f0 < 1 and a, b ≥ 1 such that

f(x, t)t−f0 ≤ af(x, z)z−f0 ,
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for a.e. x ∈ Ω and t, z > 0 with t < z and

f(x, t)t−f0 ≤ bf(x, z)z−f0
,

for a.e. x ∈ Ω and t, z > 0 with t > z;

(Hg): g : Ω → R+ is a measurable function verifying

g ∈ L(Ψof−1)�(Ω).

Remarks 4.1.

• Assumption (Hf ) confirms the existence of singularity at t = 0. Indeed, let x ∈ Ω, then we have

f(x,t)−f(x,0)
t−0 = f(x,t)

t ≥ 1
b
tf

0

t f(x, 1) = 1
b

1
t1−f0 f(x, 1),

for all 0 < t < 1. Since 0 < f0 < 1, we have a singularity in the right hand side term of equation (4.1).
• f−1 is a weak Musielak function. Indeed, let x ∈ Ω and 0 < α < β with α = f(x, t) and β = f(x, z) for 

some 0 < t < z. Then, we have

f−1(x, α)
α

= f−1(x, f(x, t))
f(x, t) = 1

f(x, t)t−f0 t
1−f0

and

f−1(x, β)
β

= f−1(x, f(x, z))
f(x, z) = 1

f(x, z)z−f0 z
1−f0

.

By assumption (Hf ), we have

1
f(x, z)z−f0 ≥ 1

b

1
f(x, t)t−f0 ,

therefore

f−1(x, β)
β

≥ 1
b

f−1(x, α)
α

(z
t

)1−f0

≥ 1
b

f−1(x, α)
α

,

hence

f−1(x, α)
α

≤ b
f−1(x, β)

β
.

By Lemma (2.5.12) in [19], x 
→ f−1(x, |u(x)|) is measurable for all u ∈ L0(Ω), therefore f−1 is a weak 
Musielak function. By Proposition 3.1, Ψof−1 is a weak Musielak function. Hence, the condition (Hg)
makes sense.

Definition 4.1. We say that u0 ∈ W
s(.),G
0 (Ω) is a weak solution of (4.1) if

g(.)f ′(., |u0|)ϕ ∈ L1(Ω)
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and
¨

R2n

G′(|∇su0|)
∇su0

|∇su0|
∇sϕdμ−

ˆ

Ω

g(x)f ′(x, |u0|)
u0

|u0|
ϕdx = 0,

for all ϕ ∈ W
s(.),G
0 (Ω).

Theorem 4.1. Under assumptions (Hs), (Hf ) and (Hg), (4.1) has a nontrivial weak solution u0 ∈
W

s(.),G
0 (Ω).

Problem (4.1) has a variational structure and E : W s(.),G
0 (Ω) → R defined by

E(u) =
¨

R2n

G(|∇s(.)u|) dμ−
ˆ

Ω

g(x)f(x, |u|) dx

is the energy functional associated to (4.1). Because of the presence of a singular term in (4.1), the functional 
E is not differentiable on W s(.),G

0 (Ω) in the Fréchet sense.

The next proposition is an extension of a result obtained by J. Giacomoni et al. in [17] and D. Edmunds 
et al. in [14] which is useful to verify some properties related to our existence result.

Proposition 4.1. Let Ω be either a bounded or an unbounded measurable subset of Rn, Φ a weak Musielak 
function and S : Ω × [0, ∞[→ [0, ∞[ satisfying (AInc)m0,a1 and (ADec)m0,a2 . Suppose that ΦoS is a weak 
Musielak function and x 
→ S(x, |u(x)|) is measurable for all u ∈ L0(Ω). If u ∈ LΦoS(Ω), then S(., |u|) ∈
LΦ(Ω), and we have

∣∣∣∣∣∣S(., |u|)
∣∣∣∣∣∣

Φ
≤ a1

∣∣∣∣∣∣u∣∣∣∣∣∣m0

ΦoS
, if

∣∣∣∣∣∣u∣∣∣∣∣∣
ΦoS

≤ 1;

∣∣∣∣∣∣S(., |u|)
∣∣∣∣∣∣

Φ
≤ a2

∣∣∣∣∣∣u∣∣∣∣∣∣m0

ΦoS
, if

∣∣∣∣∣∣u∣∣∣∣∣∣
ΦoS

≥ 1;

∣∣∣∣∣∣S(., |u|)
∣∣∣∣∣∣

Φ
≥ 1

a
m0
m0
2 a

m0
m0
1

∣∣∣∣∣∣u∣∣∣∣∣∣m0

ΦoS
, if

∣∣∣∣∣∣S(., |u|)
∣∣∣∣∣∣

Φ
≤ 1;

∣∣∣∣∣∣S(., |u|)
∣∣∣∣∣∣

Φ
≥ 1

a1

∣∣∣∣∣∣u∣∣∣∣∣∣m0

ΦoS
, if

∣∣∣∣∣∣S(., |u|)
∣∣∣∣∣∣

Φ
≥ 1.

Proof. If 
∣∣∣∣∣∣u∣∣∣∣∣∣

ΦoS
≤ 1, then by (AInc)m0,a1 property, we have

1 ≥
ˆ

Ω

Φ
(
x, S(x, |u(x)|

||u||ΦoS
)
)
dx

≥
ˆ

Ω

Φ
(
x,

1
a1||u||m0

ΦoS

S(x, |u(x)|)
)
dx.

Therefore ∣∣∣∣∣∣S(., |u|)
∣∣∣∣∣∣ ≤ a1

∣∣∣∣∣∣u∣∣∣∣∣∣m0
.

Φ ΦoS
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Suppose 
∣∣∣∣∣∣u∣∣∣∣∣∣

ΦoS
≥ 1. Then by (ADec)m0,a2 property, we have

1 ≥
ˆ

Ω

Φ
(
x, S(x, |u(x)|

||u||ΦoS
)
)
dx

≥
ˆ

Ω

Φ
(
x,

1
a2||u||m0

ΦoS

S(x, |u(x)|)
)
dx.

Hence ∣∣∣∣∣∣S(., |u|)
∣∣∣∣∣∣

Φ
≤ a2

∣∣∣∣∣∣u∣∣∣∣∣∣m0

ΦoS
.

Now, suppose that 
∣∣∣∣∣∣S(., |u|)

∣∣∣∣∣∣
Φ
≤ 1. Then by (AInc)m0,a1 and (ADec)m0,a2 properties, we have

1 ≥
ˆ

Ω

Φ
(
x,

S(x, |u(x)|)
||S(., |u|)||Φ

)
dx

≥
ˆ

Ω

Φ
(
x,

1
a2

S(x, |u(x)|
||S(., |u|)||

1
m0
Φ

)
)
dx

≥
ˆ

Ω

Φ
(
x, S(x, |u(x)|

(a1a2)
1

m0 ||S(., |u|)||
1

m0
Φ

)
)
dx.

It follows that
∣∣∣∣∣∣u∣∣∣∣∣∣

ΦoS

≤ (a1a2)
1

m0

∣∣∣∣∣∣S(., |u|)
∣∣∣∣∣∣ 1

m0

Φ
,

therefore

( 1
a1a2

)
m0
m0

∣∣∣∣∣∣u∣∣∣∣∣∣m0

ΦoS

≤
∣∣∣∣∣∣S(., |u|)

∣∣∣∣∣∣
Φ
.

If 
∣∣∣∣∣∣S(., |u|)

∣∣∣∣∣∣
Φ
≥ 1, by (AInc)m0,a1 property, we have

1 ≥
ˆ

Ω

Φ
(
x,

S(x, |u(x)|)
||S(., |u|)||Φ

)
dx

≥
ˆ

Ω

Φ
(
x, S(x, |u(x)|

a
1

m0
1 ||S(., |u|)||

1
m0
Φ

)
)
dx.

Thus, we obtain

∣∣∣∣∣∣u∣∣∣∣∣∣
ΦoS

≤ a
1

m0
1

∣∣∣∣∣∣S(., |u|)
∣∣∣∣∣∣ 1

m0

Φ

and

1
a1

∣∣∣∣∣∣u∣∣∣∣∣∣m0

ΦoS
≤

∣∣∣∣∣∣S(., |u|)
∣∣∣∣∣∣

Φ
. �
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Remark 4.2.

1. Let Ω be either a bounded or an unbounded measurable subset of Rn, Φ be a weak Musielak function 
and S : Ω × [0, ∞[→ [0, ∞[ satisfying (AInc)m0,1 and (ADec)m0,1. Suppose that ΦoS is a weak Musielak 
function and x 
→ S(x, |u(x)|) is measurable for all u ∈ L0(Ω). If u ∈ LΦoS(Ω), then S(., |u|) ∈ LΦ(Ω), 
and we have

∣∣∣∣∣∣u∣∣∣∣∣∣m0

ΦoS
≤

∣∣∣∣∣∣S(., |u|)
∣∣∣∣∣∣

Φ
≤

∣∣∣∣∣∣u∣∣∣∣∣∣m0

ΦoS
, if

∣∣∣∣∣∣u∣∣∣∣∣∣
ΦoS

≤ 1;

∣∣∣∣∣∣u∣∣∣∣∣∣m0

ΦoS
≤

∣∣∣∣∣∣S(., |u|)
∣∣∣∣∣∣

Φ
≤

∣∣∣∣∣∣u∣∣∣∣∣∣m0

ΦoS
, if

∣∣∣∣∣∣u∣∣∣∣∣∣
ΦoS

≥ 1.

2. In [14,17], it is established that if p, q are real measurable functions in Ω such that 0 < p− ≤ p(x) ≤ p+, 
1 ≤ q(x) < ∞, 1 ≤ p(x)q(x) < ∞ for a.e. x ∈ Ω and u ∈ Lp(x)q(x)(Ω), then

∣∣∣∣∣∣u∣∣∣∣∣∣p+

p(x)q(x)
≤

∣∣∣∣∣∣|u|p(.)∣∣∣∣∣∣
q(x)

≤
∣∣∣∣∣∣u∣∣∣∣∣∣p−

p(x)q(x)
if

∣∣∣∣∣∣u∣∣∣∣∣∣
p(x)q(x)

≤ 1;

∣∣∣∣∣∣u∣∣∣∣∣∣p−

p(x)q(x)
≤

∣∣∣∣∣∣|u|p(.)∣∣∣∣∣∣
q(x)

≤
∣∣∣∣∣∣u∣∣∣∣∣∣p+

p(x)q(x)
if

∣∣∣∣∣∣u∣∣∣∣∣∣
p(x)q(x)

≥ 1.

Proposition 4.1 generalizes this result. Indeed, set S(x, t) = tp(x) and Φ(x, t) = tq(x). It is clear that S
satisfies (AInc)p−,1, (ADec)p+,1 properties, and Φ(x, t) = tq(x) and ΦoS(x, t) = tp(x)q(x) are weak Musielak 
functions.

4.2. Proof of the main result

Lemma 4.1. Under assumptions (Hs), (Hf ) and (Hg), the functional E is coercive on W s(.),G
0 (Ω).

Proof. Let u ∈ W
s(.),G
0 (Ω) with 

∣∣∣∣∣∣u∣∣∣∣∣∣
s(.),G

> 1. Then, from Proposition 3.2, we have

¨

R2n

G(|∇su|) dμ ≥
∣∣∣∣∣∣u∣∣∣∣∣∣g0

s(.),G
. (4.2)

Since u ∈ LΨ(.)(Ω), then by Proposition 4.1 and Hölder’s inequality, we get

ˆ

Ω

g(x)f(x, |u|) dx �
∣∣∣∣∣∣g∣∣∣∣∣∣

(Ψof−1)�

∣∣∣∣∣∣f(., |u|)
∣∣∣∣∣∣

Ψof−1
.

Again, by Proposition 4.1, we have

ˆ

Ω

g(x)f(x, |u|) dx �
∣∣∣∣∣∣g∣∣∣∣∣∣

(Ψof−1)�
max

(
a
∣∣∣∣∣∣u∣∣∣∣∣∣f0

Ψof−1of
, b
∣∣∣∣∣∣u∣∣∣∣∣∣f0

Ψof−1of

)

�
∣∣∣∣∣∣g∣∣∣∣∣∣

(Ψof−1)�
max

(
a
∣∣∣∣∣∣u∣∣∣∣∣∣f0

Ψ
, b
∣∣∣∣∣∣u∣∣∣∣∣∣f0

Ψ

)
.

Then, we obtain from Theorem 3.3 that
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ˆ

Ω

g(x)f(x, |u|) dx � C
∣∣∣∣∣∣g∣∣∣∣∣∣

(Ψof−1)�

∣∣∣∣∣∣u∣∣∣∣∣∣f0

s(.),G
. (4.3)

Finally, combining (4.2) and (4.3), we obtain

E(u) =
¨

R2n

G(|∇su|) dμ−
ˆ

Ω

g(x)f(x, |u|) dx

≥
∣∣∣∣∣∣u∣∣∣∣∣∣g0

s(.),G
− C

∣∣∣∣∣∣g∣∣∣∣∣∣
(Ψof−1)�

∣∣∣∣∣∣u∣∣∣∣∣∣f0

s(.),G
.

Since 0 < f0 < 1 < g0, we infer that E(u) → ∞ as 
∣∣∣∣∣∣u∣∣∣∣∣∣

s(.),G
→ ∞ and we conclude that E is coercive 

on W s(.),G
0 (Ω). �

Lemma 4.2. Under assumptions (Hs), (Hf ) and (Hg), there exists v0 ∈ W
s(.),G
0 (Ω) such that E(tv0) < 0

for t > 0 small enough.

Proof. Let v ∈ C∞
0 (Ω) \ {0} and 0 < t < 1. Hence, by conditions (A) and (Hf ), we have

G(|∇stv|) ≤ tg0G(|∇sv|)

and

f(x, t|v|) ≥ 1
b
tf

0
f(x, |v|).

Therefore

E(tv) =
¨

R2n

G(|∇stv|) dμ−
ˆ

Ω

g(x)f(x, t|v|) dx

≤ tg0

¨

R2n

G(|∇sv|) dμ− 1
b
tf

0
ˆ

Ω

g(x)f(x, |v|) dx.

Consequently, E(tv) < 0 for all 0 < t < t
1

g0−f0

0 , where

t0 < min
(
1, 

ˆ

Ω

g(x)f(x, |v|) dx

b

¨

R2n

G(|∇sv|) dμ

)
. �

Lemma 4.3. Let J : W s(.),G
0 (Ω) → R defined by

J(u) :=
¨

R2n

G(|∇su|) dμ.

Then, we have
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1. J ∈ C1(W s(.),G
0 (Ω)) and

〈
J ′(u), ϕ

〉
=
¨

R2n

G′(|∇su|) ∇su

|∇su|∇
sϕdμ, for all ϕ ∈ W

s(.),G
0 (Ω).

2. J is sequentially weakly lower semicontinuous.

Proof. By standard arguments, it is easy to see that

〈
J ′(u), ϕ

〉
=
¨

R2n

G′(|∇su|) ∇su

|∇su|∇
sϕdμ,

for all u, ϕ ∈ W
s(.),G
0 (Ω). It suffices to prove that J ′ : W s(.),G

0 (Ω) →
(
W

s(.),G
0 (Ω)

)�

is continuous.

Let (uk)k ⊂ W
s(.),G
0 (Ω) with uk → u strongly in W s(.),G

0 (Ω), then

∇suk −→ ∇su in LG(R2n, dμ).

By dominated convergence theorem, there exists a subsequence ∇sukj
and a function T in LG(R2n, dμ)

such that

∇sukj
(x, y) → ∇su(x, y) for a.e (x, y) ∈ R2n

and

|∇sukj
(x, y)| ≤ |T (x, y)| for a.e (x, y) ∈ R2n.

Hence

G′(|∇sukj
(x, y)|)

∇sukj
(x, y)

|∇sukj
(x, y)| → G′(|∇su(x, y)|) ∇su(x, y)

|∇su(x, y)| for a.e. (x, y) ∈ R2n

and

|G′(|∇sukj
(x, y)|)

∇sukj
(x, y)

|∇sukj
(x, y)| | ≤ |G′(|T (x, y)|)| for a.e. (x, y) ∈ R2n.

By Proposition 2.1, we have

G�(G′(|T (x, y)|)) ≤ (g0 − 1)G(|T (x, y)|).

It follows that

G′o|T | ∈ LG�

(R2n,dμ).

Using Hölder’s inequality, we get

∣∣∣¨
R2n

(
G′(|∇sukj

|)
∇sukj

|∇sukj
| −G′(|∇su|) ∇su

|∇su|
)
∇sϕdμ

∣∣∣
≤ 2

∣∣∣∣∣∣(G′(|∇sukj
|)

∇sukj

|∇sukj
| −G′(|∇su|) ∇su

|∇su|
)∣∣∣∣∣∣

G�

∣∣∣∣∣∣ϕ∣∣∣∣∣∣
G,s

.



34 H. Boujemaa et al. / J. Math. Anal. Appl. 526 (2023) 127342
Then, by dominated convergence theorem, we obtain

J ′(ukj
) → J ′(u) in

(
W

s(.),G
0 (Ω)

)�

.

(2) On one hand, by (1), we have J ∈ C1(W s(.),G
0 (Ω)) and

〈
J ′(u), ϕ

〉
=
¨

R2n

G′(|∇su|) ∇su

|∇su|∇
sϕdμ,

for all u, ϕ ∈ W
s(.),G
0 (Ω). On the other hand, J is a convex functional since G is. Let (uk)k ⊂ W

s(.),G
0 (Ω)

with

uk ⇀ u weakly in W
s(.),G
0 (Ω).

By convexity of J , we have

J(uk) ≥ J(u) +
〈
J ′(u), uk − u

〉
.

Therefore, we obtain

J(u) ≤ lim inf
k

J(uk).

This implies that J is weakly lower semicontinuous. �
Lemma 4.4. Under assumptions (Hs), (Hf ) and (Hg), there exists u0 ∈ W

s(.),G
0 (Ω) such that

E(u0) = inf
u∈W

s(.),G
0 (Ω) E(u) = m.

Proof. Let (uk)k ⊂ W
s(.),G
0 (Ω) be a minimizing sequence for m, that is such that

limk→∞ E(uk) = m.

Since E is coercive, (uk)k ⊂ W
s(.),G
0 (Ω) is bounded in W s(.),G

0 (Ω). As W s(.),G
0 (Ω) is reflexive, therefore, 

up to a subsequence, there exists u0 ∈ W
s(.),G
0 (Ω) such that

uk ⇀ u0 weakly in W
s(.),G
0 (Ω),

uk → u0 strongly in LΨ(.)(Ω), (4.4)

uk(x) → u0(x) for a.e. x ∈ Ω.

By Lemma 4.3, we have
¨

R2n

G(|∇su0|) dμ ≤ lim inf
k→∞

¨

R2n

G(|∇suk|) dμ. (4.5)

We claim that
ˆ

Ω

g(x)f(x, |u0(x)|) dx = lim
k→∞

ˆ

Ω

g(x)f(x, |uk(x)|) dx. (4.6)
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It is clear that

lim
k→∞

g(x)f(x, |uk|) dx = g(x)f(x, |u0|) for a.e. x ∈ Ω.

According to Vitali’s theorem it suffices to show that the family
{
g(x)f(x, |uk|), k ∈ N

}
is uniformly absolutely continuous, which means:

Given ε > 0 there exists η > 0, such that, if |Ω′| < η, then 
ˆ

Ω′

g(x)f(x, |uk|) dx < ε, for all k.

Let ε > 0, there exists γ, η > 0 such that

∣∣∣∣∣∣g∣∣∣∣∣∣γ
Ω′,(Ψof−1)�

≤
ˆ

Ω′

(
Ψof−1

)�

(|g(x)|) dx ≤ εγ ,

for every Ω′ ⊂ Ω with |Ω′| < η. On the other hand, by Proposition 4.1 and Hölder’s inequality, one has
ˆ

Ω′

g(x)f(x, |uk|) dx ≤
∣∣∣∣∣∣g∣∣∣∣∣∣

Ω′,(Ψof−1)�

∣∣∣∣∣∣f(., |uk|)
∣∣∣∣∣∣

Ω′,Ψof−1

≤ max
(
b
∣∣∣∣∣∣uk

∣∣∣∣∣∣f0

Ψ
, a
∣∣∣∣∣∣uk

∣∣∣∣∣∣f0

Ψ

)
ε.

Finally, the fact that 
∣∣∣∣∣∣uk

∣∣∣∣∣∣
Ψ

is bounded, implies that the claim is valid.

Hence, by (4.5) and (4.6), we deduce that

m ≤ E(u0) ≤ lim infk→∞ E(uk) = m.

Consequently

E(u0) = m. �
By Lemma 4.2 and the fact that u0 is a global minimum, we have

m = E(u0) < 0 = E(0),

therefore u0 �= 0.

It is clear that ∣∣∣∇s|u0|
∣∣∣ ≤ |∇su0|,

hence

|u0| ∈ W
s(.),Φ
0 (Ω).

Therefore
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E(|u0|) ≤ E(u0) = inf
u∈W

s(.),Φ
0 (Ω) E(u),

this implies that

E(|u0|) = E(u0).

Thus, we can suppose that u0 ≥ 0.

Now, we are in position to prove Theorem 4.1. Let ϕ ≥ 0 and t > 0, we have

0 ≤ lim inf
t→0

E(u0 + tϕ) − E(u0)
t

≤
¨

R2n

G′(|∇su0|)
∇su0

|∇su0|
∇sϕdμ

− lim sup
t→0

ˆ

Ω

g(x)f(x, u0 + tϕ) − f(x, u0)
t

dx,

hence

lim sup
t→0

ˆ

Ω

g(x)f(x, u0 + tϕ) − f(x, u0)
t

dx

≤
¨

R2n

G′(|∇su0|)
∇su0

|∇su0|
∇sϕdμ.

By the mean value theorem, there exists ε ∈]0, 1[ such that
ˆ

Ω

g(x)f(x, u0 + tϕ) − f(x, u0)
t

dx =
ˆ

Ω

g(x)f ′(x, u0 + tεϕ)ϕ dx.

Since ϕ ≥ 0, by Fatou’s lemma, we get

lim sup
t→0

ˆ

Ω

g(x)f(x, u0 + tϕ) − f(x, u0)
t

dx

≥ lim inf
t→0

ˆ

Ω

g(x)f(x, u0 + tϕ) − f(x, u0)
t

dx

= lim inf
t→0

ˆ

Ω

g(x)f ′(x, u0 + tεϕ)ϕdx ≥
ˆ

Ω

g(x)f ′(x, u0)ϕdx.

Therefore
¨

R2n

G′(|∇su0|)
∇su0

|∇su0|
∇sϕdμ−

ˆ

Ω

g(x)f ′(x, u0)ϕdx ≥ 0, (4.7)

for all ϕ ∈ W
s(.),G
0 (Ω) with ϕ ≥ 0. Hence, we get

0 ≤
ˆ

Ω

g(x)f ′(x, u0)|ϕ|dx ≤
¨

R2n

G′(|∇su0|)
∇su0

|∇su0|
∇s|ϕ|dμ < ∞



H. Boujemaa et al. / J. Math. Anal. Appl. 526 (2023) 127342 37
for all ϕ ∈ W
s(.),G
0 (Ω). Therefore

g(.)f ′(., u0)ϕ ∈ L1(Ω),

for all ϕ ∈ W
s(.),G
0 (Ω).

Now, let ϕ ∈ W
s(.),G
0 (Ω) and consider the following sets

Ωε :=
{
x ∈ Rn : u0 + εϕ ≤ 0

}
,

Ωε :=
{
x ∈ Rn : u0 + εϕ > 0

}
,

A+
u0

:=
{

(x, y) ∈ R2n : ∇su0(x, y) > 0
}
,

A−
u0

:=
{

(x, y) ∈ R2n : ∇su0(x, y) ≤ 0
}
.

We define also the following functions

ϕε := u0 + εϕ,

ϕ+
ε := max

(
u0 + εϕ, 0

)
,

ϕ−
ε := max

(
− (u0 + εϕ), 0

)
.

It is clear that ∣∣∣∇sϕε(x, y)
∣∣∣ ≥ ∣∣∣∇sϕ+

ε (x, y)
∣∣∣ a.e. (x, y) ∈ R2n.

Hence, ϕ+
ε , ϕ

−
ε ∈ W

s(.),G
0 (Ω). Choosing ϕ+

ε in (4.7), one has

0 ≤
¨

R2n

G′(|∇su0|)
∇su0

|∇su0|
∇sϕ+

ε dμ−
ˆ

Ω

g(x)f ′(x, u0)ϕ+
ε dx

=
¨

R2n

G′(|∇su0|)
∇su0

|∇su0|
∇sϕε dμ +

¨

R2n

G′(|∇su0|)
∇su0

|∇su0|
∇sϕ−

ε dμ

−
( ˆ

Ω

−
ˆ

Ωε

)(
g(x)f ′(x, u0)ϕε dx

)

=
(¨
R2n

G′(|∇su0|)|∇su0|dμ−
ˆ

Ω

g(x)f ′(x, u0)u0 dx
)

+ ε
(¨
R2n

G′(|∇su0|)
∇su0

|∇su0|
∇sϕdμ−

ˆ

Ω

g(x)f ′(x, u0)ϕdx
)

+
¨

R2n

G′(|∇su0|)
∇su0

|∇su0|
∇sϕ−

ε dμ +
ˆ

Ωε

g(x)f ′(x, u0)ϕε dx.

If we define h : [−ε, ε] → R as

h(t) := E((1 + t)u0).
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Hence h(0) = inft∈[−ε,ε] h(t), from where h′(0) = 0. It is straightforward to see that u0 satisfies

¨

R2n

G′(|∇su0|)|∇su0|dμ−
ˆ

Ω

g(x)f ′(x, u0)u0 dx = 0.

Therefore, we get

0 ≤ε
(¨
R2n

G′(|∇su0|)
∇su0

|∇su0|
∇sϕdμ−

ˆ

Ω

g(x)f ′(x, u0)ϕdx
)

+
¨

R2n

G′(|∇su0|)
∇su0

|∇su0|
∇sϕ−

ε dμ.

Thus, dividing by ε, we obtain

0 ≤
(¨
R2n

G′(|∇su0|)
∇su0

|∇su0|
∇sϕdμ−

ˆ

Ω

g(x)f ′(x, u0)ϕdx
)

+ 1
ε

¨

R2n

G′(|∇su0|)
∇su0

|∇su0|
∇sϕ−

ε dμ.

We now claim that there holds

0 ≤
¨

R2n

G′(|∇su0|)
∇su0

|∇su0|
∇sϕdμ−

ˆ

Ω

g(x)f ′(x, u0)ϕdx.

The claim will follow if we prove that

lim
ε→0

1
ε

¨

R2n

G′(|∇su0|)
∇su0

|∇su0|
∇sϕ−

ε dμ = 0. (4.8)

Let

Nε(x, y) = G′(|∇su0(x, y)|)
∇su0(x, y)
|∇su0(x, y)|

∇sϕ−
ε (x, y)

and

N (x, y) = G′(|∇su0(x, y)|)
∇su0(x, y)
|∇su0(x, y)|

∇sϕ(x, y).

It is clear that

Nε(x, y) = Nε(y, x).

Hence, we have
¨

R2n

G′(|∇su0|)
∇su0

|∇su0|
∇sϕ−

ε dμ = I1 + 2I2,

where
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I1 :=
ˆ

Ωε

ˆ

Ωε

Nε(x, y) dμ and I2 :=
ˆ

Ωε

ˆ

Rn\Ωε

Nε(x, y) dμ.

It is clear that, if I1 + 2I2 ≤ 0, then
¨

R2n

G′(|∇su0|)
∇su0

|∇su0|
∇sϕdμ−

ˆ

Ω

g(x)f ′(x, u0)ϕdx ≥ 0.

Without loss of generality, we may assume that I1 + 2I2 ≥ 0.

Estimate of I1:

I1 = −
ˆ

Ωε

ˆ

Ωε

G′(|∇su0|)
|∇su0|2
|∇su0|

dμ− ε

ˆ

Ωε

ˆ

Ωε

G′(|∇su0|)
∇su0

|∇su0|
∇sϕdμ.

It is clear that
ˆ

Ωε

ˆ

Ωε

G′(|∇su0|)
|∇su0|2
|∇su0|

dμ ≥ 0,

therefore

I1 ≤ −ε

ˆ

Ωε

ˆ

Ωε

G′(|∇su0|)
∇su0

|∇su0|
∇sϕdμ.

Estimate of I2:

Consider

Z+
u0

:=
(
Ωε × (Rn \ Ωε)

)
∩A+

u0

and

Z−
u0

:=
(
Ωε × (Rn \ Ωε)

)
∩A−

u0
.

We have
¨

Z+
u0

Nε(x, y) dμ =
¨

Z+
u0

G′(|∇su0|)
∇su0

|∇su0|
(−(u0 + εϕ)(x)

|x− y|s(x,y)

)
dμ.

Let (x, y) ∈ Z+
u0

, then ∇su0(x, y) ≥ 0 and u0(y) + εϕ(y) ≥ 0, which implies that

¨

Z+
u0

Nε(x, y) dμ ≤
¨

Z+
u0

G′(|∇su0|)
∇su0

|∇su0|
(−(u0 + εϕ)(x)

|x− y|s(x,y)

)
dμ

+
¨

Z+
u0

G′(|∇su0|)
∇su0

|∇su0|
( (u0 + εϕ)(y)
|x− y|s(x,y)

)
dμ.

Hence
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¨

Z+
u0

Nε(x, y) dμ ≤−
¨

Z+
u0

G′(|∇su0|)
|∇su0|2
|∇su0|

dμ− ε

¨

Z+
u0

G′(|∇su0|)
∇su0

|∇su0|
∇sϕdμ

≤ −ε

¨

Z+
u0

G′(|∇su0|)
∇su0

|∇su0|
∇sϕdμ.

On the other hand
¨

Z−
u0

Nε(x, y) dμ =
¨

Z−
u0

G′(|∇su0|)
∇su0

|∇su0|
(−(u0 + εϕ)(x)

|x− y|s(x,y)

)
dμ ≤ 0.

Finally, we get

I2 =
ˆ

Ωε

ˆ

Rn\Ωε

Nε(x, y) dμ ≤ −ε

¨

Z+
u0

G′(|∇su0|)
∇su0

|∇su0|
∇sϕdμ.

Collecting the previous estimations of I1 and I2, we obtain
¨

R2n

G′(|∇su0|)
∇su0

|∇su0|
∇sϕ−

ε dμ ≤ −ε
(ˆ

Ωε

ˆ

Ωε

N (x, y) dμ + 2
ˆ

Ωε

ˆ

Rn\Ωε

N (x, y) dμ
)

≤ 2ε
ˆ

Ωε

ˆ

Rn

|N (x, y)|dμ.

By Proposition 2.1, it is easy to see that

G′(|∇su0|) ∈ LG�

(R2n,dμ),

and invoking Hölder’s inequality, we deduce that

N ∈ L1(R2n,dμ).

Hence, for any r > 0 there exists Rr sufficiently large such that
¨

(suppϕ)×(Rn\BRr )

|N (x, y)|dμ <
r

2 .

Also, by the definition of Ωε, we have Ωε ⊂ suppϕ and 
∣∣∣Ωε × BRr

∣∣∣ → 0 as ε → 0+. Thus, since N ∈
L1(R2n, dμ) there exist ηr > 0 and εr > 0 such that for any ε ∈]0, εr[,

∣∣∣Ωε ×BRr

∣∣∣ < ηr and
¨

Ωε×BRr

|N (x, y)|dμ <
r

2 .

Therefore, for any ε ∈]0, εr[,
¨

Ωε×Rn

|N (x, y)|dμ < r,
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from which we get

lim
ε→0+

¨

Ωε×Rn

|N (x, y)|dμ = 0.

Therefore, (4.8) is valid. By the arbitrariness of ϕ, we have
¨

R2n

G′(|∇su0|)
∇su0

|∇su0|
∇s(−ϕ) dμ−

ˆ

Ω

g(x)f ′(x, u0)(−ϕ) dx ≥ 0,

for all ϕ ∈ W
s(.),G
0 (Ω).

Consequently
¨

R2n

G′(|∇su0|)
∇su0

|∇su0|
∇sϕdμ−

ˆ

Ω

g(x)f ′(x, u0)ϕdx = 0,

for all ϕ ∈ W
s(.),G
0 (Ω).
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