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Abstract 

When it was first introduced in 2000, reverse vaccinology was defined as an in silico 
approach that begins with the pathogen’s genomic sequence. It concludes with a list 
of potential proteins with a possible, but not necessarily, list of peptide candidates that 
need to be experimentally confirmed for vaccine production. During the subsequent 
years, reverse vaccinology has dramatically changed: now it consists of a large number 
of bioinformatics tools and processes, namely subtractive proteomics, computational 
vaccinology, immunoinformatics, and in silico related procedures. However, the state 
of the art of reverse vaccinology still misses the ability to predict the efficacy of the 
proposed vaccine formulation. Here, we describe how to fill the gap by introducing 
an advanced immune system simulator that tests the efficacy of a vaccine formulation 
against the disease for which it has been designed. As a working example, we entirely 
apply this advanced reverse vaccinology approach to design and predict the efficacy 
of a potential vaccine formulation against influenza H5N1. Climate change and melting 
glaciers are critical due to reactivating frozen viruses and emerging new pandem-
ics. H5N1 is one of the potential strains present in icy lakes that can raise a pandemic. 
Investigating structural antigen protein is the most profitable therapeutic pipeline to 
generate an effective vaccine against H5N1. In particular, we designed a multi-epitope 
vaccine based on predicted epitopes of hemagglutinin and neuraminidase proteins 
that potentially trigger B-cells, CD4, and CD8 T-cell immune responses. Antigenic-
ity and toxicity of all predicted CTL, Helper T-lymphocytes, and B-cells epitopes were 
evaluated, and both antigenic and non-allergenic epitopes were selected. From the 
perspective of advanced reverse vaccinology, the Universal Immune System Simula-
tor, an in silico trial computational framework, was applied to estimate vaccine efficacy 
using a cohort of 100 digital patients.
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Background
Reverse vaccinology (RV) conjugated with computational modeling and simulation 
can accelerate and facilitate the vaccine discovery pipeline. RV approaches have been 
developed to take advantage of pathogens’ genome sequence to narrow the number of 
antigens for selecting the most suitable candidate. To this aim, portions of each pro-
tein candidate should be predicted using bioinformatic software or retrieving informa-
tion from biological databases and web servers. RV tools score predicted characteristics 
based on a manually chosen filter and rank. For example, to control a new possible pan-
demic due to genome recycling, RV can assist in accelerating the discovery of potential 
new targets that can be used in a vaccine formulation (or therapeutic) [1]. However, a 
multi-epitope vaccine computer-aided design is the most frequent immunoinformatic 
approach in the RV pipeline. Multi-epitope vaccine workflow is mainly categorized into 
four stages comprising (i) data collection and preparation; (ii) selection of those proteins 
that are naturally exposed to the immune system; (iii) epitope prediction; and (iv) com-
putational analysis and verification of vaccine candidate [2].

Although the RV now includes many bioinformatics tools and processes compared to 
when it was first introduced, it is still unable to predict the efficacy of a suggested vac-
cine formulation. Hence it also lacks the possibility to predict therapeutic failures.

Nowadays, climate change, particularly the melting of glaciers, represents critical 
issues. Ice is a reservoir of microorganisms, including fungi, bacteria, and viruses, which 
can be preserved in glaciers for over 100,000 years [3–8]. Environmental ice provides a 
mechanism for the surviving and recycling of microorganisms, which Rogers et al. called 
"genome recycling" [9]. It consists of the microorganisms traveling into the atmosphere 
and then deposition onto the glacier, where they are entrapped for days, years, centuries, 
millennia, or longer.

Influenza A virus survives freezing [10], is known to be present in frozen lakes fre-
quented by migratory aquatic birds, and has a high spill-over capability. Influenza viruses 
belong to the Orthomyxoviridae family, and they are classified into A, B, and C subtypes, 
depending on the differences in their nucleoprotein (NP) and in their matrix protein 
(M1) [11]. Influenza A virus is an RNA virus that rapidly evolves thanks to the mecha-
nisms of antigenic drift and antigenic shift [12]. Hemagglutinin (HA) and neuraminidase 
(NA) are the two most important structural and surface proteins, and to date, 18 HA 
and 11 NA are known [13]. The HA protein attaches to sialic-acid-terminating surface 
receptors and actively induces the endosome membrane to fuse during virus entry.

In contrast, the NA protein demonstrates the enzymatic activity of the influenza virus 
to remove sialic acid and reduce extracellular virion aggregation and superinfection. 
Antibodies to the NA protein are protective individually in animal challenge studies. 
However, the neuraminidase antibodies protect differently than the hemagglutinin pro-
tein antibodies [14, 15]. HA and NA proteins can both provoke cellular and humoral 
immune systems.

Influenza A virus has caused multiple pandemics over the past century, and some of 
them were caused by reassorted viruses, which had a combination of avian and human 
genes [15]. H5N1 strain has evolved throughout history, giving rise to different variants 
and causing the onset of zoonotic epidemics and human infections called "avian influ-
enza." There is little evidence of human-to-human transmission, suggesting that this 
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virus is not fully adapted to the human host [15]. Still, there is evidence of mutations 
accumulated by H5N1 that have made it more virulent and deadly in mammals [16]. The 
possibility of H5N1 being recycled from environmental ice, along with further mutations 
that could occur during human replication or a possible reassortment with a human 
virus, could produce a more virulent and contagious virus for humans, opening the door 
to potential pandemics.

To fill the gap that affects RV, here we present an advanced immune system simulator 
that enriches the RV pipeline with the possibility of testing the efficacy of a vaccine for-
mulation. In particular, as a working example, we propose a potential vaccine formulation 
against influenza H5N1. It is fully designed by combining different sets of programs pres-
ently used in RV (e.g., databases, software, and tools) with an immune system simulator that 
is in charge of predicting the efficacy of the proposed vaccine, also optimizing the dosage.

Material and methods
The Universal Immune System Simulator (UISS) is an agent-based model that accurately 
simulates the hallmarks of the human immune system [16].

UISS uses a multi-layer approach that considers three layers:

• The physiological response of the immune system to a non-self (or self in the pres-
ence of immune system impairment) entity (physiology layer);

• The dynamics related to the progression of the disease (disease layer);
• Eventually, the effects induced by different treatments on the control of the disease 

(treatment layer).

The multi-layer approach allows UISS to be easily adapted and extensively applied to 
a large set of biological scenarios, as an in silico trial [17], to predict the disease progres-
sion and the effect of immunotherapies [18–23].

UISS–FLU is a specific disease layer implementation added to the UISS general frame-
work that aims at simulating the dynamics of the immune system response to the H5N1 
influenza A infectious disease. Moreover, UISS-FLU has also been added with the treat-
ment layer able to simulate and predict the efficacy of a potential vaccine formulation.

To go beyond the state of the art of RV, we propose this advanced workflow that can 
also predict the efficacy of the proposed vaccine formulation in a disease-compliant 
environment. The workflow, depicted in Fig. 1, consists of:

a. Selection of FASTA sequence of HA and NA proteins from different human H5N1 
strains;

b. Multiple Sequence Alignment (MSA);
c. Prediction of Cytotoxic T-lymphocyte epitopes (CTL);
d. Prediction of Helper T-lymphocyte epitopes;
e. Identification of linear B-cell epitopes;
f. Evaluation of antigenicity and allergenicity of all predicted epitopes;
g. Efficacy prediction of selected peptides through UISS-FLU modeling and simulation 

platform.
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This workflow may be further enhanced using the multiple methods integration. 
For example, the idea suggested in [24] can be adopted. However, the main aim of 
this work is to present a way to predict the efficacy of an in silico-designed vaccine 
candidate in a disease-centered simulation environment.

Selecting sequences of the most common H5N1 strains in humans and multiple sequence 

alignment (MSA)

The HA protein sequences of four H5N1 strains (A/Thailand/676/2005, A/Hong 
Kong/481/97, A/Hong Kong/213/2003, A/Viet Nam/1203/2004) and the NA pro-
tein sequences of other four H5N1 strains [A/Thailand/676/2005(H5N1), A/Hong 
Kong/213/2003(H5N1), A/Vietnam/CL115/2005(H5N1), A/Vietnam/CL36/2004(H5N1)] 
that were widespread around the world from 1997 to 2005, were retrieved from the 

Fig. 1 Workflow of the proposed advanced RV pipeline for multi-epitope vaccine design. After retrieving 
the H5N1 strain sequence from the NCBI database and performing Multiple Sequence Alignment (MSA), 
we predict CTL, Helper T-lymphocyte, and B cell epitopes using specific bioinformatic tools to evaluate 
their antigenicity and allergenicity levels and select the best epitopes. Finally, UISS-FLU is run to predict the 
efficacy of the multi-epitope vaccine formulation
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National Center for Biotechnology Information (NCBI) database. Then, we performed 
the multiple sequence alignment (MSA) for both HA and NA sequences to obtain a con-
sensus sequence that usually includes conserved residues, amino acids, or nucleotides. 
MSA provides a computational environment to analyze the homology and evolutionary 
correlation between the sequences investigated. We used ClustalOmega [25], while the 
results were analyzed through JalView [26]. ClustalOmega is a program that allows doing 
multiple sequence alignments, generating alignments between three or more sequences. 
We uploaded the obtained sequences on JalView software, a free MSA editing, visualiza-
tion, and analysis program. It is a web-based application that may also be installed locally 
and allows in-depth sequence analysis required when one learns about novel protein or 
RNA sequence groups, and how their sequence is related to their structure and function.

Prediction of CTL epitopes

Cytotoxic T-lymphocyte (CTL) epitopes were predicted using the web-based tool called 
NetCTL 1.2 Server.1 NetCTL 1.2 predicts human CTL epitopes in any protein by com-
bining proteasomal C terminal cleavage predictions, TAP transport efficiency, and MHC 
class I binding affinity predictions. We inserted the consensus sequences in FASTA for-
mat for the CTL epitopes prediction. We selected the human leukocyte antigen (HLA) 
Class I supertypes primarily involved in recognizing influenza epitopes: A1, A3, A24, 
and B7 alleles [27]. The weight on C terminal cleavage, TAP transport efficiency, and 
the threshold for epitope identification were set to default values of 0.15, 0.05, and 0.75, 
respectively.

Prediction of Helper T‑lymphocytes epitopes

The Helper T-lymphocytes epitopes were predicted using the NetMHCIIpan 4.0 Server,2 
which can predict the affinity binding score between a peptide and any MHC class II 
molecule [28]. Then, we uploaded the consensus sequences and selected the species 
"HighQ-DRB" with the alleles DRB1_0101, DRB1_0401, and DRB1_0402, respectively, as 
well as the species "DP" with the allele HLA-DPA10401-DPB10401.

Identification of linear B‑cell epitopes

The linear B-cell epitopes were predicted using the BepiPred Linear Epitope Prediction.3 
It is a web server able to predict B-cell epitopes from antigen sequences. It is based on a 
random forest algorithm trained on epitopes from antibody-antigen protein structures. 
A random forest is a supervised machine learning algorithm based on the predictions 
of the decision trees algorithm [29]. The random forest algorithm generates a "forest" of 
decision trees trained to predict the outcome of a specific event by taking the average or 
mean of the output from the various trees in the forest. The higher the number of trees, 
the higher the prediction’s precision. BepiPred takes protein sequences in FASTA format 
as input. It produces a table showing each residue with related scores and a significance 
threshold indicating if they are predicted to be part of an epitope as output. The global 

1 https:// servi ces. healt htech. dtu. dk/ servi ce. php? NetCTL- 1.2
2 https:// servi ces. healt htech. dtu. dk/ servi ce. php? NetMH CIIpan- 4.0
3 http:// tools. iedb. org/ bcell/

https://services.healthtech.dtu.dk/service.php?NetCTL-1.2
https://services.healthtech.dtu.dk/service.php?NetMHCIIpan-4.0
http://tools.iedb.org/bcell/
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antigenicity value for the entire peptide (B), representing its ability to be specifically rec-
ognized by the antibodies generated due to immune response, is calculated upon the 
scores of single epitopes as follows:

where ai is the antigenicity value for each residue in the peptide, and l is the total num-
ber of residues of the peptide. Peptides showing B ≥ 0.4 were considered antigenic and 
used in the next steps of the analysis.

Evaluation of antigenicity and allergenicity of collected CTL, Helper T‑cells, and B‑cell 

epitopes

Antigenicity is the capacity of an antigen to combine with the end products of the 
immune response, i.e., the ability of an antigen to induce an immunological response 
when the human body encounters it [30]. Allergenicity4 refers to the capacity of an anti-
gen to induce an anomalous immune response, which usually does not result in a pro-
tective effect but may cause function disorder or tissue damage. The antigenicity of all 
high-binding predicted CTL, Helper T-cells, and B-cells epitopes was evaluated using 
VaxiJen v2.0.5 VaxiJen is a server for predicting protective antigens, which is alignment-
independent. It was designed to perform antigen classification based only on the phys-
icochemical properties of proteins without using sequence alignment. VaxiJen uses auto 
cross-covariance (ACC) to transform protein sequences into fixed-length vectors. We 
submitted one peptide at a time among the selected high-binding epitopes to evalu-
ate their antigenicity. The target organism was set to a virus, and the threshold was the 
default one, set to 0.4 for our model. Then, to evaluate the allergenicity of selected high-
binding epitopes, we used AllerTOP v.2.0.6 AllerTop v.2.0 is based on translating pro-
tein sequences into uniform equal-length vectors using ACC [31] in the same way as 
VaxyJen. We inserted the sequence of each strong binder peptide found in the previ-
ous three steps and evaluated their allergenic potentiality. Finally, we collected all the 
epitopes found to be both antigenic and non-allergenic [30].

UISS‑FLU in silico trial for the selected epitopes

UISS-FLU is a specific implementation of the influenza disease layer in the UISS model-
ling and simulation platform. It can simulate the dynamics of the infection along with the 
disease progression, analyzing the lung compartment and, in particular, the lung epithe-
lial cells as an H5N1 preferential target. In particular, UISS-FLU considers the immuno-
logical machinery for computing the affinity receptor binding of B and T cells. To this aim, 
we implemented a mathematical infrastructure through the function Affinity. It takes as 
an input the parameter m representing the affinity of an m-bit match of each component 
of the vector of length bits. Since we calculated the affinity scores for B cells and T cells 
epitopes, we imported such scores directly into the affinity vector for the epitopes and 

B =

i=l
i=1ai

l

4 https:// www. efsa. europa. eu/ en/ gloss ary/ aller genic ity
5 http:// www. ddg- pharm fac. net/ vaxij en/ VaxiJ en/ VaxiJ en. html
6 https:// www. ddg- pharm fac. net/ Aller TOP/

https://www.efsa.europa.eu/en/glossary/allergenicity
http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
https://www.ddg-pharmfac.net/AllerTOP/
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peptides, matching the residues we would like to test. We created cohorts of 100 digital 
patients to test the selected formulations as described in [32]. Basically, all real patients are 
characterised by a series of biological and pathophysiological parameters which uniquely 
identify them by associating each of them with a specific immunological profile. To gener-
ate the cohort of virtual patients to be submitted to the simulator, and still keep the biologi-
cal diversity unchanged, it is necessary to assign a single value for each parameter included 
in the vector of features. In this way, varying from time to time one of the above values, 
you get many different vectors of features representing different digital patients, all equally 
plausible and acceptable from the biological and pathophysiological point of view. Below, 
the mechanism of creating vector of features is formally explained, as well as the technique 
used to take into account all possible biological correlations between them. In particular, a 
vector of features contains 22 input variables, for which a number of correlations equal to 
22 × 21/2 = 231 is also calculated.

This approach is based on current mathematical biology consensus and uses a Gaussian 
distribution to represent the population. The vector f =

{

f1, f2, . . . fd
}

 follows a d-variate 
Gaussian distribution with the following probability density function. This approach is 
based on current mathematical biology consensus and uses a Gaussian distribution to rep-
resent the population. Formally, the vector f =

{

f1, f2, . . . fd
}

 follows a d-variate Gaussian 
distribution with the following probability density function:

where µ is the mean, and � is the covariance matrix, defined as follows:

where σij = Cov
(

xi, xj
)

 and it is related to the correlations through the following formula:

We can calculate the covariance between two inputs by measuring their correlation. 
The elements on the diagonal of the covariance matrix, σ 2

i  , represent the marginal vari-
ances of each element, fi , and µi represents the corresponding marginal mean.

In general, we assume that fs is the vector of pre-defined features related to each 
patient, so that f =

{

fs, fr
}

 , where fs ∈ R
d−q and fr ∈ R

q is the vector of free features.
A treatment layer was also implemented into UISS-FLU to simulate the vaccine for-

mulation. In particular, for the proposed multi-epitope vaccine, we modeled the liposo-
mal (LP) structure recognized as one of the most common and effective vaccine delivery 
systems.

We designed the in silico trial with a 100 patients virtual cohort to obtain sufficient 
statistical power regarding immunological variability. UISS-FLU considers and imple-
ments three levels of stochasticity, which, in turn, are related to the biological diversity 
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simulation. The first one deals with immunological repertoire. UISS-FLU can simulate 
different MHC class I and II that influence the generation of the T and B repertoire 
shape. The second one implements the probability associated with different allelic 
expression within HLA molecules that is strictly correlated to the effective presenta-
tion of antigens by HLA class I molecules to  CD8+ T cells, required for viral elimina-
tion and generation of long-term immunological memory. The last one is related to 
the stochasticity involved in the initial conditions of the simulation itself. The stochas-
tic nature of initial conditions can allow for varying the initial disposition of entities in 
the compartment to exclude dependencies that may affect the simulation (i.e., provide a 
statistical error quantification on initial conditions). The 100 virtual patients have been 
set to reproduce the HLA "HighQ-DRB" with the alleles DRB1_0101, DRB1_0401, and 
DRB1_0402, as well as the species "DP" with the allele HLA-DPA10401-DPB10401, for 
maximizing vaccine coverage. Among the 100 virtual patients, we varied the initial con-
ditions and the probability associated with allelic expression within HLA to guarantee 
the avoidance of any statistical issues related to probabilistic perturbance.

We simulated different scenarios, i.e.:

1. Influenza virus challenge only virtual cohort.
2. Multi-epitope vaccine administered without virus challenge virtual cohort.
3. One injection of multi-epitope vaccine (with a different dosage ranging from 5000 to 

1,500,000 LP per ml) and influenza challenge at 40, 60, and 120 days.
4. One injection of multi-epitope vaccine (with a dosage of 500,000 LP per ml), a 

booster dose at 90 days (with the same dosage), and then an influenza challenge at 
120 days.

To analyze the simulation results of the 100 patients’ virtual cohorts, we used Met-
ricUISS [33]. MetricUISS is a tool developed in Python3, specifically designed for the 
statistical analysis of large amounts of data generated by UISS. Assessing disease sever-
ity in influenza and consequently evaluating the vaccine efficacy based on the num-
ber of infected cells alone may not provide a comprehensive measure. Various factors, 
including viral load, host immune response, and clinical symptoms, influence disease 
severity in influenza. Even if the simulation infrastructure cannot evaluate clinical symp-
toms directly, it can quantitively assess the viral load, the number of infected respira-
tory epithelial cells, and the immune system response. In Results section, also looking 
at the good clinical and laboratory practices to evaluate vaccine efficacy, we highlighted 
as the overall quantification of the involved biomarkers measuring disease severity and 
immune system response is revealing a good protection from disease.

Results
Selecting sequences of the most widespread H5N1 strains in humans and multiple 

sequence alignment (MSA)

Multiple sequence alignment (MSA) was performed through ClustalOmega on both HA 
and NA protein sequences for each H5N1 strain retrieved on the NCBI database. After 
completing MSA, the consensual sequences consisting of 575 residues for HA and 468 
for NA, were obtained by JalView.
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Prediction of CTL epitopes

NetCTL 1.2 Server was used to predict 9-mer long CTL epitopes. Two different thresh-
olds indicate the weak and the strong binding peptides; the threshold with the value 
of 0.500 represents a potent binding peptide, whereas the threshold with the value of 
2.000 shows a weak binding peptide. We selected the human HLA Class I supertypes A1, 
A3, A24, and B7 most involved in recognizing influenza epitopes. In addition, 19 high-
binder CTL epitopes of HA and 12 of NA protein were collected for further analysis.

Prediction of Helper T‑ lymphocytes epitopes

NetMHCIIpan 4.0 Server was used to predict 15-mer long Helper T-lymphocytes 
epitopes. Specific thresholds for strong and weak binders are shown in terms of % Rank, 
which is the percentile of predicted binding affinity compared to the distribution of 
affinities calculated on a collection of random natural peptides. If the peptide is among 
the selected threshold for strong binders (which we set to 1%), it will be classified as a 
strong binder. If the % Rank is higher than the threshold for strong binders but lower 
than the set threshold for weak binders (which we set to 5%), the peptide will be classi-
fied as a weak binder. We collected 23 high-binder epitopes of HA and 29 of NA protein 
for more analysis.

Identification of linear B‑cell epitopes

BepiPred Linear Epitope Prediction 2 was used to gain linear B-cell epitopes. Only the 
epitopes with a score above the threshold, whose value is 0.4, were selected. As a result, 
we retrieved 11 epitopes of HA and nine epitopes of NA protein with a length between 
10 and 40 amino acids.

Evaluation of antigenicity and allergenicity of selected CTL, Helper T‑lymphocytes, 

and B‑cell epitopes

The antigenicity and allergenicity of the selected epitopes were evaluated using VaxiJen 
v2.0 and AllerTOP v.2.0 servers. We collected all the peptides found to be both antigenic 
and non-allergenic, including two CTL epitopes, nine Helper T-lymphocytes epitopes, 
and three B-cell epitopes for HA protein, while five CTL epitopes, six Helper T-lympho-
cytes epitopes, and one B-cell epitope for the NA protein.

UISS‑FLU in silico trial of the selected epitopes

Applying the first steps described in the wortkflow depicted in Fig. 1, we selected the 
best epitopes accordingly to the scores released by the tools described above. Table  1 
shows the best ranked epitopes.

UISS-FLU was then run over single patient simulations on different formulations, 
using both HA and NA proteins for CTL, Helper-T-cells, and B epitopes. At the end of 
this single-patient simulation cycle, to select the most promising formulation, we per-
formed new UISS-FLU simulations on a cohort of 100 virtual patients. MetricUISS was 
finally employed to recover overall results, finding that the best epitopes formulation 
was the following:

LYDKVRLQL (MHC − I)+DAINFESNGNFIAPE(MHC − II)+LLNDKHSNGTVKDRSP (B)
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with a 500,000 LP per ml dosage and a booster at 90 days. These epitopes show an affin-
ity score of 0.737 for MHC-I, 0.582 for MHC-II, and 0.637 for B, respectively.

For all the simulated scenarios, we obtained a comprehensive overview of the follow-
ing different immune system dynamics:

• Lung epithelial infected cells and total lung epithelial cells population levels.
• IgM, IgG, and IgA concentration levels.
• IL-1, IL-2, IL-6, IL-12, IFN-γ, and TNF-α concentration levels.
• Neutrophils, MHC-II antigen-presenting macrophages, MHC-I antigen-presenting 

dendritic cells, and MHC-II antigen-presenting dendritic cells population levels.
• Activated CD4 + Th1 cells, activated CD8 + T cells, total memory B cells, and total 

memory Th1 cells population levels.

The complete collection results for all the conditions can be found in Additional file 
(data availability section). However, for this study, only the results of the following sce-
narios have been included in the manuscript:

• One injection of multi-epitope vaccine (with a dosage of 500,000 LP per ml) at time 
0, and a booster dose after 90 days (with same dosage), with no influenza challenge 

Table 1 Selected CD8, CD4 and B cell epitopes accordingly to the score computed by NetCTL, 
NetMHCIIpan and BepiPred predictors

Antigenicity and allergenicity was also evaluated through VaxiJen and AllerTOP servers

ID Allele Epitope Antigenicity Allergenicity Score

MHC-I (CD8 T cells)

CTL1 HLA-A*01:01 KSDQICIGY Antigenic Non-allergen 0,889,895

CTL2 HLA-A*24:02 LYDKVRLQL Antigenic Non-allergen 0,736,697

CTL3 HLA-B*07:02 CPYQGKSSF Antigenic Allergen 0,917,161

MHC-II (CD4 T cells)

HTL1 DRB1_0101 EWSYIVEKANPANDL Antigenic Non-allergen 0.994155

HTL2 DRB1_0101 SYIVEKANPANDLCY Antigenic Non-allergen 0.877016

HTL3 DRB1_0101 PTTYISVGTSTLNQR Antigenic Non-allergen 0.793413

HTL4 DRB1_0101 EFFWTILKPNDAINF Antigenic Non-allergen 0.862769

HTL5 DRB1_0402 KIQIIPKSSWSSHEA Antigenic Non-allergen 0.834586

HTL6 DRB1_0402 IQIIPKSSWSSHEAS Antigenic Non-allergen 0.642752

HTL7 HLA-DPA10401-DPB10401 GRMEFFWTILKPNDA Antigenic Non-allergen 0.26179

HTL8 HLA-DPA10401-DPB10401 RMEFFWTILKPNDAI Antigenic Non-allergen 0.25399

HTL9 DRB1_0101 PEWSYIVEKANPAND Antigenic Non-allergen 0.995068

HTL10 HLA-DPA10401-DPB10401 GRMEFFWTILKPNDA Antigenic Non-allergen 0.261798

HTL11 DAINFESNGNFIAPE Antigenic Non-allergen 0.58238

ID Epitope Antigenicity Allergenicity Score

B_HA

B_HA1 QRLVPRIATRSKVNGQSG Antigenic Non-allergen 0.569

B_HA2 GAINSSMPFHNI Antigenic Non-allergen 0.582

B_HA3 MESVRNGTYDYPQYSEEARLKREEI Antigenic Non-allergen 0.5354

B_NA

B_NA1 DTVGWSWPDGAELPF Antigenic Non-allergen 0.53013333

B_NA2 LLNDKHSNGTVKDRSP ANTIGEN Allergen 0.637
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exposure, aimed at evaluating the effect of the multi-epitope vaccine on the immune 
system.

• One injection of multi-epitope vaccine (with a dosage of 500,000 LP per ml) at time 
0, a booster dose at 90  days (with the same dosage), and then influenza challenge 
exposure at 120  days to evaluate the immune system response to H5N1 influenza 
virus after two doses administration of the multi-epitope vaccine.

• Immune system response to influenza virus after two doses compared to the immune 
response after only one dose of multi-epitope vaccine.

Immune system response after two doses of multi‑epitope vaccine

Using UISS-FLU, we simulated a cohort of 100 virtual patients. Each virtual patient 
receives two doses of our multi-epitope vaccine, one at day 0 and the second 90 days 
after, without any previous challenge exposure to the H5N1 influenza virus.

Among all the plots produced by UISS-FLU, we obtained the ones representing the 
dynamics of infected and total epithelial cells (Fig.  2). These plots show that the vac-
cine does not affect the lung epithelial cells because the level of infected lung epithelial 
cells remains 0, and the number of total lung epithelial cells remains relatively constant 
over time. However, the dynamics of the number of lung epithelial cells after a challenge 
with the H5N1 influenza virus, both in digital patients with (Fig.  7) and without vac-
cine administration (Fig. 12), is different: generally, after H5N1 infection, an increase in 
the number of lung infected epithelial cells, as well as a strong reduction of the num-
ber of total lung epithelial cells, is observed. Moreover, in unvaccinated digital patients, 
the H5N1 influenza challenge induces a decrease of about 60% in total epithelial lung 
cells (Fig.  12B), in agreement with the data presented in other experimental studies 
concerning the influenza infection kinetics in unvaccinated humans [34]. These results 

Fig. 2 UISS-FLU in silico prediction of infected lung epithelial cells (panel A) and total lung epithelial (panel 
B) cells population levels. In addition, population-averaged lung epithelial cells dynamics after the first dose 
of the multi-epitope vaccine administered at time 0 and the second one after 90 days are depicted. Red error 
bars represent the standard deviation
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demonstrate that UISS-FLU correctly simulates the effect of both vaccine administra-
tion and the H5N1 influenza virus on lung epithelial cells.

Figure  3 shows the dynamics of activated CD4 + Th1 cells, activated CD8 + T cells, 
total memory B cells, and total memory Th1 cells. Vaccine administration does not affect 
the CD8 + T cells but can increase the activated CD4 + T cells, especially when admin-
istering two doses. Each dose increases total B memory cells (Fig. 3C) and Th1 memory 
cells (Fig. 3D). After the administration of two doses of vaccine, the level of these cells 
increases more, indeed.

Figure  4 describes the concentration levels of IgM, IgG, and IgA. For IgG (Fig.  4B), 
after administering the first dose, we observe an increasing peak, while after the booster 
administration, the IgG peak will enormously increase. Vaccine administration also 
affects the IgM concentration levels, as in the plots, we have one peak after the first dose 
administration and another higher after booster administration (Fig.  4A). IgA’s value 
remains equal to 0 (Fig. 4C) as they are tissue immunoglobulins, and the vaccine does 
not affect tissues.

Figure 5 represents neutrophils, MHC-II antigen-presenting macrophages, MHC-I 
antigen-presenting dendritic cells, and MHC-II antigen-presenting dendritic cells 
dynamics after administering two doses of multi-epitope vaccine. Except for MHC-I 
antigen-presenting dendritic cells, whose value is 0 (Fig. 5C), for the other three enti-
ties (Fig. 5A, B, and D), we observe two peaks related to the increase in the number 
of cells after the administration of each dose, showing that the vaccine administration 
can elicit an immune response. MHC-I antigen-presenting dendritic cells value is 0 
because when dendritic cells present the antigen in class I, they nibble infected cells 
that are not present if a challenge with the virus is missing.

The dynamics of the main cytokines involved in the immune response to the multi-
epitope vaccine are shown in Fig.  6. A peak characterizes IL-1 and TNF-α concen-
tration levels after administering the first dose and a second higher peak after the 
booster administration (Fig. 6A and F). As IL-1 and TNF-α are known to induce an 

Fig. 3 UISS-FLU in silico prediction of activated CD4 + Th1, activated CD8 + T, total memory B, and total 
memory Th1 cells population levels. Population averaged immune system dynamics after the first dose of the 
multi-epitope vaccine administered at time 0 and the second one after 90 days are depicted. Red error bars 
represent the standard deviation
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increase in body temperature [35], we can affirm that the proposed multi-epitope 
vaccine could cause fever, especially after administering the second dose. Generally 
speaking, observing IL-1, IL-2, IFN-γ, and TNF-α concentrations levels, we can also 
notice two peaks after the two doses of administration (Fig. 6A, B, E, F); this means 
that the vaccine can elicit the immune response also by producing these anti-inflam-
matory cytokines.

Immune system response to H5N1 influenza virus after two doses of multi‑epitope vaccine

We also simulated the infection of a cohort of 100 in silico patients vaccinated with 
two doses of the multi-epitope vaccine proposed (respectively at time 0 and 90 days), 

Fig. 4 UISS-FLU in silico prediction of IgM, IgG, and IgA concentration levels. Population averaged immune 
system dynamics after the first dose of the multi-epitope vaccine administered at time 0 and the second one 
after 90 days. Red error bars represent the standard deviation

Fig. 5 UISS-FLU in silico prediction of activated neutrophils, MHC-II antigen-presenting macrophages, 
MHC-I antigen-presenting dendritic cells, and MHC-II antigen-presenting dendritic cells population levels. 
Population averaged immune system dynamics after the first dose of multi-epitope vaccine administered at 
time 0 and the second one after 40 days are depicted. Red error bars represent the standard deviation
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obtaining a specific immune system response that allows us to evaluate the ability of 
the vaccine to protect individual patients from H5N1 influenza infection.

The results coming from the dynamics of lung epithelial cells after the multi-epitope 
vaccine administration and challenge with the H5N1 influenza virus (Fig. 7) are different 
from those describing the same dynamics after only one administration of the multi-
epitope vaccine (Fig. 2). The observed peaks in Fig. 7 show that the infection on these 
cells is caused by the infection itself and not by administering the vaccine. In Panel A, 
the peak with an upward trend represents the number of infected lung epithelial cells, 
which increases after the infection. As a demonstration of the protective ability of the 
multi-epitope vaccine, this peak is shorter than the one reported in the lung-infected 
epithelial cells in unvaccinated patients after influenza infection (Fig. 12). In Panel B, the 
peak with a downward trend represents the total lung epithelial cells and decreases when 

Fig. 6 UISS-FLU in silico prediction of IL-1, IL-2, IL-6, IL-12, IFN-γ, and TNF-α concentration levels. 
Population-averaged immune system dynamics are depicted after the first dose of the multi-epitope vaccine 
administered at time 0 and the second one after 40 days. Red error bars represent the standard deviation

Fig. 7 UISS-FLU in silico prediction of infected lung epithelial cells (panel A) and total lung epithelial cells 
(panel B) population levels. Population averaged lung epithelial cells dynamics after the first dose of the 
multi-epitope vaccine administered at time 0, the second at time 40, and the challenge exposure to the 
H5N1 virus at 120 days are depicted. Red error bars represent the standard deviation
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the virus infects those cells. Moreover, comparing this plot to the one representing the 
lung infected epithelial cells in unvaccinated patients after influenza infection (Fig. 12), 
the higher number of total lung epithelial cells after administration of two doses of vac-
cine is another demonstration of the protective effect of the multi-epitope vaccine itself.

The differences between the results describing the immunoglobulins dynamics in 
vaccinated people after the influenza challenge at 120  days (Fig.  8), rather than with-
out the influenza challenge (Fig.  4), allow us to understand better the vaccine’s effect 
on the humoral immune response. The IgG concentration level is almost the same in 
both conditions with (Fig. 8B) and without (Fig. 4B) challenge with the H5N1 virus; this 
indicates that IgG dynamics levels increase primarily thanks to the vaccine administra-
tion. Plots reporting IgM levels show two identical rising peaks at 40 and 90 days in both 
conditions (Fig. 4A, and Fig. 8A, respectively) after the administration of each dose of 
vaccine; however, in vaccinated patients after challenge exposure with influenza virus 
(Fig.  8A), another peak at 120  days is present, showing that the challenge with virus 
induces further production of IgM. While the IgA levels are equal to 0 after only two 
doses of vaccine (Fig. 4C), the challenge with the H5N1 virus leads to an increase in their 
level (Fig. 8C); this should be explained by the fact that IgA is tissue immunoglobulins, 
and while the vaccine does not affect tissues, the virus does. Furthermore, in the plot 
describing the IgA levels in digital patients challenged with the influenza virus without 
previous vaccine administration (see Additional file: Fig.  22, data availability section), 
there is also an increase in IgA at the time of challenge. Still, the concentration is higher 
than in vaccinated subjects. Precisely, this lower height of the IgA levels in vaccinated 
people shows how the vaccine can be able to reduce IgA production.

Plots in Fig. 9 show the IL-1, IL-2, IL-6, IL-12, INF-γ, and TNF-α concentration levels 
after administering two doses of multi-epitope vaccine at 40 and 90 days, respectively, 
along with the challenge exposure with H5N1 virus at 120 days. Focusing on IL-1 and 
TNF-α, we have already reported that their level increases after vaccine administration 
(Fig. 6A and F). Hence we observed fever as the main adverse reaction to the vaccine. 

Fig. 8 UISS-FLU in silico prediction of IgM, IgG, and IgA concentration levels. Population averaged immune 
system dynamics after the first dose of multi-epitope vaccine administration at time 0, the second at time 40, 
and the challenge exposure to the H5N1 virus at 120 days are depicted. Red error bars represent the standard 
deviation
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Furthermore, after the challenge with the H5N1 virus at 120  days, another peak both 
for IL-1 and TNF-α (Fig. 9A and F) can be observed: this latter presents a lower height 
compared to the ones related to the increase of the two cytokines linked to the adminis-
tration of the vaccine, meaning that this multi-epitope vaccine protects patients against 
fever after the infection.

The high peak at 120 days present in IL-6 dynamics (Fig. 9C) shows that the infection 
induces IL-6 production, conversely to the vaccine (Fig. 6C).

After the challenge with the H5N1 virus, comparing vaccinated patients to the unvac-
cinated ones, the results show a markable reduction of ING-γ in vaccinated people 
(Fig. 9E) differently to non-vaccinated ones (see Additional file: Fig. 23, data availability 
section).

Figure 10 depicts the prediction of activated neutrophils, MHC-II antigen-present-
ing macrophages, MHC-I antigen-presenting dendritic cells, and MHC-II antigen-
presenting dendritic cells dynamic levels after a first dose of the multi-epitope vaccine 
administrated at time 0, a second dose at time 40, and a challenge exposure with 
H5N1 virus at 120  days. Comparing the results to the ones depicting the dynamics 
of the same cells without influenza challenge (Fig. 5), except for MHC-I antigen-pre-
senting dendritic cells, another peak at time 120 days, less high, is present. Similarly, 
comparing the levels of these cells in vaccinated patients challenged with the H5N1 
virus rather than in unvaccinated ones (see Additional file: Fig.  24, data availabil-
ity section), we can see a substantial reduction in the number of cells in vaccinated 
people. This evidence sheds light on how the vaccine can modulate and reduce the 
response to the viral infection. In addition, MHC-I antigen-presenting dendritic cells 
levels are equal to 0 after administering two doses of multi-epitope vaccine (Fig. 5C). 
At the same time, a peak at around 120 days can be observed in vaccinated patients 
after challenge exposure to the H5N1 virus (Fig.  10C). This means that the activa-
tion of these cells depends on the infection and cannot be attributed to the vaccine 
administration.

Fig. 9 UISS-FLU in silico prediction of IL-1, IL-2, IL-6, IL-12, INF-γ and TNF-α concentration levels. Population 
averaged immune system dynamics after the first dose of the multi-epitope vaccine administered at time 0, 
the second one after 40, and the challenge exposure to the H5N1 virus at 120 days are depicted. Red error 
bars represent the standard deviation
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Figure 11 shows the in silico results of activated CD4 + Th1 cells, activated CD8 + T 
cells, total memory B cells, and total memory Th1 cells after administering two doses 
of the multi-epitope vaccine and the challenge exposure to the H5N1 virus. In the acti-
vated CD8 + T cells dynamics, only a peak at 120 days (Fig. 11B) is present; this can be 
attributed to the virus activation of CD8 + T cells, as the vaccine does not affect these 
cells. Next, focusing on the total memory B cells (Fig. 11C) and total memory Th1 cells 
(Fig. 11D), we can evaluate the effect of the proposed multi-epitope vaccine. After two 
vaccine doses, the memory cells population level remains high and constant on time, 
compared to the memory cells dynamics in unvaccinated people (see Additional file: 
Fig. 25, data availability section), where the number of cells starts to decrease in a few 

Fig. 10 UISS-FLU in silico prediction of activated neutrophils, MHC-II antigen-presenting macrophages, 
MHC-I antigen-presenting dendritic cells, and MHC-II antigen-presenting dendritic cells population levels. 
Population averaged immune system dynamics after the first dose of the multi-epitope vaccine administered 
at time 0, the second at time 40, and the challenge exposure to the H5N1 virus at 120 days are depicted. Red 
error bars represent the standard deviation

Fig. 11 UISS-FLU in silico prediction of activated CD4 + Th1 cells, activated CD8 + T cells, total memory B 
cells, and total memory Th1 cells population levels. Population averaged immune system dynamics after 
the first dose of the multi-epitope vaccine administered at time 0, the second at time 40, and the challenge 
exposure to the H5N1 virus at 120 days. Red error bars represent the standard deviation
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days. This means that with one dose at 0 and a second one 90 days after, the vaccine’s 
protective effect remains unaltered even after 120 days.

One of the main goals of this work is to evaluate how the designed multi-epitope vac-
cine can modify the immune response in patients who encounter the H5N1 virus. For 
this reason, we focused on comparing the results representing the dynamics of lung 
epithelial cells in vaccinated subjects (Fig. 7) with the unvaccinated ones (Fig. 12) after 
encountering the H5N1 influenza virus. In Fig. 12B, we can observe that, compared to 
the initial number of total lung epithelial cells (300 cells/µl), after the H5N1 influenza 
challenge, there is a reduction of about 180 cells/µl in unvaccinated people. This data 
appears to agree with experimental data obtained in other studies, according to which 
the percentage of dead epithelial cells at the peak of the virus titer varied from 37 to 
66% [34]. A strong reduction of lung epithelial infected cells in vaccinated patients can 
be observed. Using UISS-FLU, we simulated several combinations of epitopes, and 
we focused on the results not only of the best formulation but also of the worst one. 
We noticed that the number of lung epithelial infected cells in unvaccinated patients 
(Fig. 12) is similar to the number of the same cells in vaccinated patients with the worst 
combination we tried (see Additional file: Fig. 46, data availability section) after 120 days 
from the administration of the vaccine. We can also highlight that the error bar in Fig. 7 
is higher in the vaccinated patients than in immune system scenarios without vaccine 
(Fig. 12); this can reveal interesting insights about the response variability of the effects 
of the multi-epitope vaccine, while the variability between patients is lower in response 
to the virus.

Assessment of the optimal number of doses to maximize the efficacy of the multi‑epitope 

vaccine

Another aim of this work is to assess how many doses of the multi-epitope vaccine pro-
posed are needed to maintain vaccine protection against H5N1 influenza virus infec-
tion and in which timing frame these doses should be administered. Through the 

Fig. 12 UISS-FLU in silico prediction of infected lung epithelial cells (panel A) and total lung epithelial (panel 
B) cells population level. Population averaged immune lung epithelial cells for the in silico unvaccinated 
cohort after H5N1 influenza virus infection at 40 days is depicted. Red error bars represent the standard 
deviation
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UISS-FLU platform, we initially evaluated the effect that the challenge with the H5N1 
virus could have after 40, 60, and 120 days from the administration of the best formu-
lation of the multi-epitope vaccine, and we noticed that after 120 days, the protection 
from the vaccine begins to decrease. For this reason, we tested a booster dose at differ-
ent time intervals from the first dose. Ultimately, we found that the best formulation has 
the most prolonged protective effect when administrated in two doses at 0 and 90 days, 
respectively. In addition, we obtained several results from in silico predictions (see Addi-
tional file, in data availability section), and we noticed that the number of lung epithe-
lial infected cells in in silico vaccinated patients with a booster at 90 days is lower than 
in the ones immunized with a single dose. Furthermore, the number of total epithelial 
lung cells in virtual patients vaccinated with one dose is lower than in the ones with 
the booster, confirming that the multi-epitope vaccine better protects when a booster is 
administered.

Ethical approval from a named institution and written informed consent were not 
sought as the study does not include any patient or animal.

Discussion
As expected, a formulation of multi-epitope vaccine with a higher binding affinity score 
of each epitope should have shown more efficacy; hence we tried a formulation with 
0.73, 0.79, and 0.53 affinity binding scores for CTL, Helper-T- lymphocytes, and B-cell 
epitopes, respectively; on the other hand, we also evaluated another formulation with 
0.73, 0.58, and 0.63 affinities binding score. However, conversely to what we expected, 
based on the result of UISS-FLU, the high binding affinity score is not necessarily cor-
related to the high efficacy of the vaccine and can be related to the vaccine’s antigenicity. 
For example, the formulation with a higher binding affinity score (0.79) for Helper-T-
lymphocytes epitope shows fewer titers of IgG than the formulation with a low binding 
affinity score for Helper T-lymphocytes epitope. This could be noticed after administer-
ing the first dose at time 0 and the influenza virus challenge at day 40.

The evaluation of vaccine efficacy is a complex measurement that illustrates how it 
works and indicates the type of immune responses the vaccine generates and their mag-
nitude over time. Vaccination aims to develop long-lived immunological protection. 
The administration of each dose of vaccine leads to an increase in the total number of 
Th-1 and B-cell memory. A high number of B and T-cell memory in virtual patients who 
received long-term booster doses is remarkable compared to those just exposed to the 
H5N1 influenza virus challenge.

Several approaches have been employed to predict vaccine efficacy at the human pop-
ulation level, including mathematical models able to predict the correlation between 
antibody titers and vaccine efficacy. Among these, a notable study undertook the devel-
opment of a model capable of simulating the dynamic progression of SARS-CoV-2 
infection within the host. Leveraging this model, the researchers conducted simula-
tions utilizing virtual patient populations while incorporating the crucial influence of 
neutralizing antibody (NAb) responses. By shedding light on these mechanistic founda-
tions, the study offers plausible explanations for the observed efficacy of these vaccines 
[36]. Another study aimed to find a correlate of protection (CoP) for COVID-19 vac-
cines. Evaluating antibody titers of seven existing vaccines showed a strong correlation 
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between neutralizing titer and efficacy and binding antibody titer and efficacy. These 
findings support post-immunization antibody titers for establishing a CoP for COVID-
19 vaccines [37].

Moreover, in silico vaccine design frequently does not consider specific steps that lead 
to the final vaccine formulation. For example, codon optimization and cloning, adju-
vant selection, and delivery system selection are usually performed in an in  vitro/in 
vivo settings. However, some examples of toolkits can provide some suggestions within 
this context. For example, the JCat (Java Codon Adaptation Tool)7 server gives insights 
about a nucleotide sequence, essential properties, including codon adaptation Index 
(CAI), and information to assess the protein expression in the host. Snapgene represents 
another example8 that can be used to clone the candidate construct to ensure cloning 
and expression.

Influenza infections start in the upper respiratory part, where lung epithelial cells are 
infected [38]. For this reason, another important factor in explaining influenza vaccine 
efficacy is the number of infected lung epithelial cells. The outcome of UISS-FLU dem-
onstrates that the number of infected lung epithelial cells is approximately ten times 
higher in virtual patients exposed to influenza than in those who received a booster dose.

According to the results obtained from UISS-FLU for all the simulated scenarios and 
related concentration and population levels of several immunological entities (IL-1, IL-2, 
IL-6, IL-12, INF-γ, TNF- α, T-cell memory, B-cell memory, number of infected epithelial 
cells, IgG, IgM, IgA), we suggest that a booster dose of the best formulation of multi-
epitope vaccine is required to be administered to obtain long-term protection.

Conclusion
Reverse vaccinology is the first application of genomic technologies in vaccine design, 
demonstrating a great revolution in vaccine discovery. It provides a helpful context 
for researchers to identify protective targets and design an effective vaccine pipeline 
for pathogens, supporting traditional approaches. Recently, the RV pipeline has been 
increasingly developed using immunoinformatic tools, which are cost-effective and 
time-saving in predicting potential antigenic epitopes required for vaccine candidates.

Designed in silico RV pipeline, particularly in an emergency scenario, is beneficial to 
control future possible endemic or pandemics provoked by climate changes that heavily 
affect our planet. Indeed, global warming indirectly affects the emergence of new pan-
demics through melting glaciers and the release of survived viruses. The H5N1 strain of 
influenza A virus may be one of the sources of a future pandemic because of its presence 
in frozen lakes. For these reasons, it may be beneficial to have a ready-to-use pipeline for 
discovering a potential vaccine against the pathogen to accelerate and optimize a new 
vaccine formulation.

However, the current RV pipeline misses the possibility of evaluating the efficacy of 
an in silico-designed vaccine. To go beyond the RV state of the art, we proposed to use 
an advanced immune system modeling and simulation platform capable of envisaging 
the efficacy of the candidate vaccine in a disease-related context of use. As a working 

7 http:// www. prodo ric. de/ JCat
8 https:// www. snapg ene. com

http://www.prodoric.de/JCat
https://www.snapgene.com
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example, we showed the concrete application of this extended RV pipeline to the design 
of a multi-epitope vaccine against H5N1 influenza, also estimating its efficacy. As a 
result, the in silico-designed multi-epitope vaccine consisting of T and B-cell epitopes of 
HA and NA proteins was found to be antigenic, immunogenic, and effective, based on 
UISS-FLU outcomes. We can suggest that this vaccine pipeline can be used for different 
diseases scenario based on their specific pathogens. However, in vivo experimental con-
firmation and regulatory approval are still needed to confirm the in silico predictions. 
Unfortunately, experimental confirmation is a time and money-consuming process that 
is out of our scope, as an in-silico team. In this context, using tools and methods based 
on sequence and structure analysis and prediction, like simulated molecular docking, 
can help improve prediction accuracy, providing a much clearer understanding of the 
conformational changes of molecules and peptides to verify the affinity of epitopes.

Furthermore, molecular docking can evaluate the interaction between the HLA allele 
and selected peptides and T-cell epitopes with the highest binding energy value. Also, 
dynamic simulation can support the vaccine construct’s stability prediction and popula-
tion coverage analysis. These tools can be used in an integrative environment to provide 
a good in silico platform for vaccine design. However, all the existing toolkits still lack 
vaccine efficacy prediction that can now be addressed by employing in silico trial plat-
forms, like the one proposed in this work.
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