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Abstract 
RNA-Seq is a well-established technology extensively used for transcriptome 

profiling, allowing the analysis of coding and non-coding RNA molecules. However, 

this technology produces a huge amount of data that require more sophisticated 

computational approaches for their analysis than other traditional technologies such as 

Real-Time PCR or microarrays, strongly discouraging non-expert users. For this 

reason, dozens of pipelines have been deployed for the analysis of RNA-Seq data. 

Although interesting, these present several limitations and their usage require a 

technical background, which may be uncommon in small research laboratories. 

Therefore, the application of these technologies in such contexts is still limited and, 

indeed, causes a clear bottleneck in knowledge advance. Motivated by these 

considerations, in this PhD thesis I present RNAdetector, a new free stand-alone, cross-

platform, and user-friendly RNA-Seq data analysis software that can be used 

completely offline by means of an easy-to-use Graphical User Interface (GUI) 

allowing the analysis of coding and ncRNAs from RNA-Seq datasets of any sequenced 

biological species.
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1. Introduction 

1.1 Next Generation Sequencing (NGS) 

Starting with the discovery of the DNA structure, great advancements have been made 

in understanding the complexity and diversity of genomes 1. For sure, one of the most 

important milestones in human genetics was when after more than one decade of 

intense work we obtained the complete sequence of the human genome in 2003 with 

the conclusion of the human genome project. Since then, many new versions of the 

human genome have been released and this effort pushed for the extraordinary 

progress which has been made in genome sequencing technologies. These new 

technologies, which have been developed after the first generation of sequencing 

(Sanger sequencing) used for the determination of the human genome, were called 

Next Generation Sequencing (NGS) 1. Over the past decade, NGS technologies have 

continued to evolve. In fact, today they allow sequencing of entire genomes in a few 

days, instead of 10 years as it was originally needed to complete the first version of 

the human genome, and they have brought the cost of sequencing a human genome 

down to around US$1,000 (as reported by Veritas Genomics) 2. In addition, NGS 

technologies are now also used in clinics to detect gene mutations or polymorphisms 

(e.g., CNV, SNPs, INDEL, STR) potentially associated with disease predisposition 

and support diagnosis confirmation 3,4.  Although exciting, these advancements are not 

without limitations. NGS platforms provide vast quantities of data, but the associated 

error rates (~0.1–15%) are higher and the read lengths generally shorter (35–700 bp 

for short-read approaches) than those of traditional Sanger sequencing platforms, 

requiring careful examination of the results 1. Although long-read sequencing 

https://paperpile.com/c/GDo9ua/W0zI
https://paperpile.com/c/GDo9ua/W0zI
https://paperpile.com/c/GDo9ua/mjf2
https://paperpile.com/c/GDo9ua/JA2E+zPNG
https://paperpile.com/c/GDo9ua/W0zI


Alessandro La Ferlita       Introduction 

3 

overcomes some limitations of other NGS approaches, it remains considerably more 

expensive and has lower throughput than other platforms, limiting the widespread 

adoption of this technology in favor of less-expensive approaches 1. 

1.1.1 Short reads NGS 

Short-read sequencing approaches are classified in two broad categories: sequencing 

by ligation (SBL) and sequencing by synthesis (SBS) 1. In SBL approaches, a probe 

sequence, which is bound to a fluorophore, hybridizes to a DNA fragment and is 

ligated to an adjacent oligonucleotide for imaging. The emission spectrum of the 

fluorophore indicates the identity of the base or bases complementary to specific 

positions within the probe 1. In SBS approaches, a polymerase is used and a signal, 

such as a fluorophore or a change in ionic concentration, identifies the incorporation 

of a nucleotide into an elongating strand 1. In most SBL and SBS approaches, DNA is 

clonally amplified on a solid surface. Having many thousands of identical copies of a 

DNA fragment in a defined area ensures that the signal can be distinguished from 

background noise 1. Massive parallelization is also allowed by millions of individual 

SBL or SBS reaction centers, each with its own clonal DNA template. A sequencing 

platform can collect information from many millions of reaction centers 

simultaneously, allowing sequencing of many millions of DNA molecules in parallel. 

In the last decade, several NGS platforms have been released. Below follows a brief 

description of the most used short-read NGS platforms. 

1.1.1.1 Pyrosequencing 

Pyrosequencing is an SBS based method for DNA sequencing described for the first 

time in 1993 5 and subsequently optimized till when the final variant was finally 

presented in 2005 by the company 454 Life Sciences becoming the first NGS 

https://paperpile.com/c/GDo9ua/W0zI
https://paperpile.com/c/GDo9ua/W0zI
https://paperpile.com/c/GDo9ua/W0zI
https://paperpile.com/c/GDo9ua/W0zI
https://paperpile.com/c/GDo9ua/W0zI
https://paperpile.com/c/GDo9ua/hBRq
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instrument 6. The methodology consists of a DNA library preparation first, and second 

in the sequencing reaction. The DNA is fragmented in several random fragments, 

denatured in single-strand DNA (ssDNA), and finally ligated to magnetic beads. 

There, ssDNA molecules are amplified by emulsion PCR (emPCR) in order to have 

millions of clones of the same DNA sequence in a single bead 7. This amplification is 

important in order to amplify the signal during the sequence reaction. Then, the ssDNA 

template is hybridized to a sequencing primer and incubated with several enzymes 

such as DNA polymerase, ATP sulfurylase, luciferase, and apyrase, and with the 

substrates adenosine 5´ phosphosulfate (APS) and luciferin. The addition of one of the 

four deoxynucleotide triphosphates (dNTPs) (dATPαS, which is not a substrate for 

luciferase, is added instead of dATP to avoid noise) initiates the second step. DNA 

polymerase incorporates the correct, complementary dNTPs onto the template. This 

incorporation releases pyrophosphate (PPi). ATP sulfurylase converts PPi to ATP in 

the presence of APS. This ATP acts as a substrate for the luciferase-mediated 

conversion of luciferin to oxyluciferin that generates visible light in amounts that are 

proportional to the amount of incorporated nucleotides. After that, the light produced 

in the luciferase-catalyzed reaction is detected by a camera and analyzed in a program. 

Unincorporated nucleotides and ATP are degraded by the apyrase, and the reaction 

can restart with another nucleotide (Fig. 1) (QIAGEN “Pyrosequencing Technology 

and Platform Overview”).  

https://paperpile.com/c/GDo9ua/sAEX
https://paperpile.com/c/GDo9ua/R5BZ
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Fig 1. Schematic picture of pyrosequencing workflow (Source Siqueira JF. et al. Journal of Oral Microbiology. 

2012). 

After several years, in 2013 Roche (which acquired the company 454 Life Sciences) 

announced to stop the production of the pyrosequencing platform because it was not 

competitive with the other newer NGS platforms already available on the market. 

1.1.1.2 Ion Torrent 

Ion Torrent is the evolution of pyrosequencing released in February 2010 by Ion 

Torrent Systems Inc 8. This methodology uses an approach similar to pyrosequencing 

to detect the DNA sequence. However, rather than using an enzymatic cascade to 

generate a signal, the Ion Torrent platform detects the H+ ions that are released after 

that each dNTP is incorporated. The resulting change in pH is detected by an integrated 

complementary metal oxide-semiconductor (CMOS) and an ion-sensitive field-effect 

transistor (ISFET) 9. In more details, the incorporation of a dNTP into a growing DNA 

strand involves the formation of a covalent bond and the release of PPi and a H+. A 

dNTP will only be incorporated if it is complementary to the leading unpaired template 

https://paperpile.com/c/GDo9ua/Rn9x
https://paperpile.com/c/GDo9ua/x3un
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nucleotide. Ion semiconductor sequencing exploits these facts by determining if a H+ 

is released upon providing a single species of dNTP to the reaction. Microwells on a 

semiconductor chip, which each contain many copies of one ssDNA molecule to be 

sequenced and DNA polymerase, are sequentially flooded with unmodified dNTP 8. 

If an introduced dNTP is complementary to the next unpaired nucleotide on the 

template strand it is incorporated into the growing complementary strand by the DNA 

polymerase. If the introduced dNTP is not complementary there is no incorporation 

and no biochemical reaction. The H+ that is released in the reaction changes the pH of 

the solution, which is detected by an ISFET. The unattached dNTP molecules are 

washed out before the next cycle when a different dNTP species is introduced 8 (Fig. 

2). Each chip contains an array of microwells with corresponding ISFET detectors. 

Each released H+ then triggers the ISFET ion sensor. The series of electrical pulses 

transmitted from the chip to a computer is translated into a DNA sequence, with no 

intermediate signal conversion required 8. Because nucleotide incorporation events are 

measured directly by electronics, the use of labeled nucleotides and optical 

measurements are avoided. 

 

Fig 2. Detection of the incorporated nucleotides with Ion Torrent technologies (Source Kchouk M. et al. Biology 

and Medicine. 2017) 

The major benefits of Ion Torrent are that it is faster and cheaper than other NGS 

platforms. This has been enabled by avoiding modified nucleotides and optical 

https://paperpile.com/c/GDo9ua/Rn9x
https://paperpile.com/c/GDo9ua/Rn9x
https://paperpile.com/c/GDo9ua/Rn9x
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measurements 10. However, the major limitation is that the pH change detected by the 

sensor is imperfectly proportional to the number of nucleotides detected, allowing for 

limited accuracy in measuring homopolymer lengths. 

1.1.1.3 ABI Solid Sequencing 

SOLiD (Sequencing by Oligonucleotide Ligation and Detection) is an NGS platform 

with an SBL approach developed by Life Technologies and available since 2006. The 

method consists, first of all, of a DNA library preparation where the DNA is 

fragmented in several random fragments which are then attached to magnetic beads 

with a universal P1 adapter sequence attached on its surface. Universal adapter 

sequences are needed in order that the starting sequence of every fragment is known 

and identical. After the ligation of the DNA fragments with the universal adaptors 

present on the surface of the magnetic beads, the emPCR can start 7. emPCR takes 

place in microreactors containing all the necessary reagents for PCR. As a result of the 

emPCR reaction, the DNA template is amplified and, therefore, million clonal DNA 

fragments are immobilized on a single magnetic bead. The resulting PCR products 

attached to the beads are then covalently bound to a glass slide where the sequencing 

reaction can start. First, primers hybridize to the P1 adapter sequence within the library 

template. Second, a set of four fluorescently labeled di-base probes compete for 

ligation to the sequencing primer. In fact, SOLiD platforms utilize two-base-encoded 

probes, in which each fluorometric signal represents a dinucleotide, and therefore, the 

raw output is not directly associated with the incorporation of a known nucleotide 11. 

Because the 16 possible di-nucleotide combinations cannot be individually associated 

with specific fluorophores, four fluorescent signals are used, each representing a 

subset of four dinucleotide combinations 11. The specificity of the di-base probe is 

achieved by interrogating every 1st and 2nd base in each ligation reaction. Multiple 

https://paperpile.com/c/GDo9ua/Rz3k
https://paperpile.com/c/GDo9ua/R5BZ
https://paperpile.com/c/GDo9ua/ym4d
https://paperpile.com/c/GDo9ua/ym4d
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cycles of ligation, detection, and cleavage are performed with the number of cycles 

determining the eventual read length. Following a series of ligation cycles, the 

extension product is removed and the template is reset with a primer complementary 

to the n-1 position for the second round of ligation cycles. Five rounds of primer reset 

are completed for each sequence tag. Through the primer reset process, each base is 

interrogated in two independent ligation reactions by two different primers 11 (Fig. 3). 

 

Fig 3. Schematic representation of SOLiD sequencing (Source Pereira DM. et al. Principles of Translational 

Science in Medicine (Second Edition). 2015) 

Due to the two base encoding system, this technology offers about 99.94% of accuracy 

12. Although its high accuracy, the very short read lengths (75 bp) is limiting its use 

for genome assembly and structural variant detection applications. 

1.1.1.4 Illumina 

The Illumina system is definitely the most used NGS platform today. The secret of its 

success is due first to the bigger Illumina’s suite of instruments, which range from the 

short-read sequencer for small low-throughput benchtop units to large ultra-high-

throughput instruments dedicated to population-level whole-genome sequencing 

(WGS), and second to the better balance between economic and efficiency. Illumina 

https://paperpile.com/c/GDo9ua/ym4d
https://paperpile.com/c/GDo9ua/TMXG
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sequencing technology works in three basic steps: amplification, sequencing, and 

analysis. The process begins with purified DNA. The DNA gets cutted into smaller 

pieces and loaded onto a specialized chip where amplification and sequencing will 

take place. On the surface of this chip there are thousands of oligonucleotides which 

are anchored to the chip and able to grab DNA fragments that have complementary 

sequences. Once the fragments have attached, a phase called cluster generation begins. 

This step makes about a thousand copies of each DNA fragment. Next, primers and 

modified nucleotides enter the chip. These nucleotides have reversible 3' blockers that 

force the polymerase to add only one nucleotide at a time as well as fluorescent tags. 

After each round of synthesis, a camera takes a picture of the chip. A computer 

determines what base was added by the wavelength of the fluorescent tag and records 

it for every spot on the chip. After each round, non-incorporated molecules are washed 

away. A chemical deblocking step is then used to remove the 3’ terminal blocking 

group and the dye in a single step. The process continues until the full DNA molecule 

is sequenced 13. With this technology, thousands of places throughout the genome are 

sequenced at once via massively parallel sequencing (Fig. 4). 

 

Fig 4. Schematic representation of Illumina sequencing (Source Illumina website) 

https://paperpile.com/c/GDo9ua/OxCk
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1.1.2 Long reads NGS 

It is widely known that genomes are highly complex and contain many long repetitive 

elements, and structural variations that are relevant to evolution, adaptation, and 

disease 14–16. However, many of these complex elements are so long that short-read 

NGS technologies are not able to resolve them. Long-read sequencing tries to solve 

this problem by producing reads of several kilobases, allowing for the identification 

of large genomic features. In addition, long reads can also be useful for transcriptome 

research. Indeed, they are capable of sequencing entire mRNA transcripts, allowing 

researchers to identify exon junctions and identify alternative splicing isoforms 1. 

Currently, there are two main types of long-read technologies: (1) single-molecule 

real-time (SMRT) sequencing approaches and (2) synthetic approaches. The SMRT 

approaches differ from short-read approaches because they do not rely on clonal 

amplified DNA fragments to generate a detectable signal, and they do not require 

chemical cycling for each dNTP added. On the other hand, the synthetic approaches 

do not generate actual long-reads; rather, they are an approach to library preparation 

that leverages barcodes to allow computational assembly of a larger fragment 1. 

However, at this moment, the most widely used long-read platform is the SMRT 

sequencing approach. Below follows a brief description of the main SMRT sequencing 

platforms. 

1.1.2.1 Pacific Biosciences (PacBio) 

Pacific Biosciences is an American biotechnology company founded in 2004 that 

develops systems for DNA sequencing. Their first product, the PacBio RS, was 

commercially released in 2011. After that, a subsequent version called the PacBio RS 

II was released in 2013 and during these years several optimized versions of this 

https://paperpile.com/c/GDo9ua/hZgR+wJDR+6HIL
https://paperpile.com/c/GDo9ua/W0zI
https://paperpile.com/c/GDo9ua/W0zI
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instrument were released. The instrument uses a special flow cell with many thousands 

of individual picolitre wells with transparent bottoms called zero-mode waveguides 

(ZMW) 17. On the contrary of short-read SBS technologies that bind the DNA and 

allow the polymerase to travel along with the DNA template, PacBio fixes the 

polymerase to the bottom of the well and allows the DNA strand to progress through 

the ZMW. dNTP incorporation on each single-molecule template per well is 

continuously visualized with a laser and camera system that records the color and 

duration of emitted light as the labeled nucleotide momentarily pauses during 

incorporation at the bottom of the ZMW. The polymerase cleaves the dNTP-bound 

fluorophore during incorporation, allowing it to diffuse away from the sensor area 

before the next labeled dNTP is incorporated 1,18,19. This platform also uses a unique 

circular template that allows each template to be sequenced multiple times as the 

polymerase repeatedly traverses the circular molecule (Fig. 5). Although it is difficult 

for DNA templates longer than ~3 kb to be sequenced multiple times, shorter DNA 

templates can be sequenced many times 1,18,19. 

 

Fig 5. Schematic representation of PacBio sequencing (Source Rhoads A and Au KF. Genomics, Proteomics & 

Bioinformatics. 2015) 

1.1.2.2 Oxford Nanopore Technologies (ONT) 

Oxford Nanopore Technologies is a UK company that is developing and selling 

nanopore sequencing products for the sequencing of single DNA molecules 20,21. 

https://paperpile.com/c/GDo9ua/g60L
https://paperpile.com/c/GDo9ua/W0zI+gJRd+SlfO
https://paperpile.com/c/GDo9ua/W0zI+gJRd+SlfO
https://paperpile.com/c/GDo9ua/CSNZ+sfGj
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Unlike other platforms, nanopore sequencers do not monitor incorporations or 

hybridizations of nucleotides guided by a template DNA strand. Whereas other 

platforms use a secondary signal, nanopore sequencers directly detect the DNA 

composition of a native ssDNA molecule. To carry out sequencing, DNA is passed 

through a protein pore as the current is passed through the pore 22. As the DNA 

translocates through the action of a secondary motor protein, a voltage blockade occurs 

that modulates the current passing through the pore. The temporal tracing of these 

charges is called squiggle space, and shifts in voltage are characteristic of the particular 

DNA sequence in the pore, which can then be interpreted as a k‑mer. Rather than 

having 1–4 possible signals, the instrument has more than 1,000 — one for each 

possible k‑mer, especially when modified bases present on native DNA are taken into 

account 22 (Fig. 6).  

 

Fig 6. Schematic representation of ONT sequencing (Source Göpfrich K. Science in School. 2018) 

https://paperpile.com/c/GDo9ua/Jtcg
https://paperpile.com/c/GDo9ua/Jtcg
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1.2 RNA sequencing (RNA-Seq) 

1.2.1 Transcriptome 

Although NGS technologies were primarily developed for genomic analysis, during 

the last years, they have been always more used also for transcriptome analysis.  By 

the term transcriptome, we mean the complete set of transcripts present in a cell or 

tissue for a specific developmental stage or physiological condition 23. The 

transcriptome includes all RNA species from RNA messengers (mRNAs) to non-

coding RNAs (ncRNAs). ncRNAs are RNA molecules that do not encode for proteins 

but represent a considerable amount of the transcriptome 24. They are involved in many 

aspects of cell physiology and regulate a broad spectrum of cellular processes, 

controlling gene expression, and contributing to genome organization and stability 24. 

ncRNAs can be classified according to their size in small ncRNAs (< 200 nucleotides) 

and long ncRNAs or lncRNAs (≥ 200 nucleotides) 24. Alternatively, they can also be 

classified according to their function in housekeeping and regulatory ncRNAs 24 (Fig. 

7). Housekeeping ncRNAs include ribosomal RNA (rRNA), transfer RNA (tRNA), 

small nuclear RNA (snRNA), and small nucleolar RNA (snoRNA) (Fig. 7). These 

ncRNAs are expressed in all cell types and they carry out essential functions in 

eukaryotic cells 24. On the other hand, regulatory ncRNAs include several classes of 

small and long molecules, such as microRNAs (miRNAs), small interfering RNAs 

(siRNAs), Piwi-associated RNAs (piRNAs), long non-coding RNAs (lncRNAs), 

circular RNAs (circRNAs), and tRNA-derived ncRNAs (Fig. 7).  

https://paperpile.com/c/GDo9ua/ooGq
https://paperpile.com/c/GDo9ua/0r3GE
https://paperpile.com/c/GDo9ua/0r3GE
https://paperpile.com/c/GDo9ua/0r3GE
https://paperpile.com/c/GDo9ua/0r3GE
https://paperpile.com/c/GDo9ua/0r3GE
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Fig 7. Classification of non-coding RNAs 

This latter group represents a novel class of small regulatory ncRNAs, which derive 

from pre-tRNA and tRNA processing 25, and they have been reported to have crucial 

roles in different biological processes, such as ribosome biogenesis, retrotransposition, 

virus infections, apoptosis, and cancer pathogenesis 26–33. In the last few years, several 

kinds of tRNA-derived ncRNAs have been discovered. However, a unique 

classification is still missing. A common grouping of such molecules is based on the 

location they originate from within the tRNA gene. tRNA-derived ncRNAs can 

therefore be divided into two main classes: (i) tRNA-derived small RNAs (tsRNAs), 

which derive from pre-tRNA; (ii) stress-induced tRNA fragments (tiRNAs), together 

with tRNA-derived fragments (tRFs), which derive from mature tRNA 25 (Fig. 8). 

tsRNA are produced inside the nucleus and result from the cleavage of the pre-tRNAs 

3’ trailer sequence by RNases Z. They usually begin after the 3’-end of mature tRNAs 

and are characterized by a polyuracil sequence at their 3’-ends 25 (Fig. 8). tiRNAs, 

which have a length of ~28–36 nt, are produced in the cytoplasm via specific cleavage 

of the anticodon loop of mature tRNAs by Rny1p and angiogenin (ANG) in yeast and 

mammalians cells, respectively 34–36.  This class comprises 5’-tiRNA and 3’-tiRNA, 

in reference to the 5' or 3' half of the mature tRNA they derive from, respectively 34 

(Fig. 8). tRFs, ranging from 14–30 nt in length, are derived from mature tRNA 34,37,38.  

https://paperpile.com/c/GDo9ua/hJfxe
https://paperpile.com/c/GDo9ua/whpmf+epS82+4bADY+qiqbC+JKl0m+OnYXT+blYSz+SttBz
https://paperpile.com/c/GDo9ua/hJfxe
https://paperpile.com/c/GDo9ua/hJfxe
https://paperpile.com/c/GDo9ua/bt6Oy+I8UpW+f7GFd
https://paperpile.com/c/GDo9ua/bt6Oy
https://paperpile.com/c/GDo9ua/bt6Oy+utMbj+HZ4Eg
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Three types of tRFs have been discovered to date: (i) tRF-5s, (ii) tRF-3s, and (iii) i-

tRFs 39,40. tRF-5s are generated in the cytoplasm by Dicer-mediated cleavage of the 

mature tRNA D-loop 39,41 (Fig. 8). tRF-3s are produced in the cytoplasm via cleavage 

of the T-loop in mature tRNAs operated by Dicer, angiogenin and other members of 

the RNase A superfamily. They are fragments originating from mature tRNA 3’-ends, 

and include the final CCA sequence 38,39,42 (Fig. 8). Finally, i-tRFs are enriched within 

the internal regions of mature tRNAs, usually straddling the anticodon region 39,43. It 

is important to highlight that in literature and in some databases, tsRNAs (which derive 

from 3’ trailer sequence of pre-tRNAs) are also termed tRF-1s 40,44,45. 

 

Fig 8. Classification of the different tRNA-derived ncRNA subclasses (Source Balatti V. et al.  Advances in 

Cancer Research. 2017) 

Various technologies have been developed to identify and quantify the transcriptome, 

including hybridization or sequence-based approaches. Hybridization-based 

approaches typically involve incubating fluorescently labeled cDNA with custom-

made microarrays or commercial high-density oligo microarrays. Specialized 

microarrays have also been designed to detect and quantify distinct spliced isoforms 

46. Hybridization-based approaches are high throughput and relatively inexpensive, 

except for high-resolution arrays 23. However, these methods have several limitations, 

https://paperpile.com/c/GDo9ua/vqm2b+P6xv2
https://paperpile.com/c/GDo9ua/vqm2b+M7B09
https://paperpile.com/c/GDo9ua/vqm2b+qwDqe+HZ4Eg
https://paperpile.com/c/GDo9ua/vqm2b+T029t
https://paperpile.com/c/GDo9ua/D6Xo+P6xv2+xDtmf
https://paperpile.com/c/GDo9ua/7z1U
https://paperpile.com/c/GDo9ua/ooGq
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which include: (1) reliance upon existing knowledge about RNA sequences to be 

analyzed; (2) high background levels noise due to cross-hybridization; (3) and a 

limited dynamic range of detection owing to both background and saturation of 

signals. Moreover, comparing expression levels across different experiments is often 

difficult and can require complicated normalization methods 23. In contrast to 

microarray methods, sequence-based approaches directly determine the cDNA 

sequence. Recently, the development of novel high-throughput sequencing methods 

has provided a new method for both mapping and quantifying transcriptomes. This 

method, termed RNA-Seq, has clear advantages over existing approaches and is 

expected to revolutionize the manner in which eukaryotic transcriptomes are analyzed 

23. 

1.2.2 RNA-Seq technology overview 

As we previously said, RNA-Seq relies on NGS platforms for RNA identification and 

quantification. Generally, first of all, a population of RNA (total or fractionated) is 

first purified and second converted to a library of cDNA fragments with adaptors 

attached to one or both ends 23. Each molecule, with or without amplification, is then 

sequenced in a high-throughput manner to obtain short sequences from one end 

(single-end sequencing) or both ends (pair-end sequencing) (Fig. 9)  

 

Fig 9. Single-end and paired-end reads (Source https://www.1010genome.com/illumina-sequencing/) 

https://paperpile.com/c/GDo9ua/ooGq
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The reads are typically 30–400 bp, depending on the NGS platform used. In principle, 

any high-throughput sequencing technology can be used for RNA-Seq, but Illumina 

platforms are definitely the most used for transcriptome analysis. Following 

sequencing, the resulting reads are either aligned to a reference genome or 

transcriptome or assembled de novo without the genomic sequence to produce a 

genome-scale transcription map that consists of both the transcriptional structure 

and/or level of expression for each gene (Fig. 10). 

 

Fig 10. Alignment of reads to a reference genome and de novo transcriptome assembly (Source Haas and Zody 

Nat. Biotech. 2010).  

Although RNA-Seq is still a technology under active development, it offers several 

key advantages over existing technologies. First, unlike hybridization-based 

approaches, RNA-Seq is not limited to detect only known transcripts 23. This makes 

RNA-Seq particularly attractive for non-model organisms with genomic sequences 

that are not determined yet. RNA-Seq can also reveal the precise location of 

transcription boundaries, to a single-base resolution. Furthermore, RNA-Seq can also 

give information about how two exons are connected or identify sequence variations 

(for example, SNPs) in transcripts 23 making this technology very helpful for studying 

complex transcriptomes. Finally, another important advantage of RNA-Seq relative to 

https://paperpile.com/c/GDo9ua/ooGq
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microarrays is that RNA-Seq has very low, if any, background signal because the reads 

can be unambiguously mapped to unique regions of the genome. RNA-Seq does not 

have an upper limit for quantification, which correlates with the number of sequences 

obtained. Consequently, it has a large dynamic range of expression levels over which 

transcripts can be detected 23. By contrast, microarrays lack sensitivity for genes 

expressed either at low or very high levels and therefore have a much smaller dynamic 

range 23. More importantly, RNA-Seq has also been shown to be highly accurate for 

quantifying expression levels, as determined using quantitative PCR (qPCR) 47 and 

spike-in RNA controls of known concentration 48. Taking all of these advantages into 

account, RNA-Seq is the first sequencing-based method that allows the entire 

transcriptome to be analyzed in a very high-throughput and quantitative manner. This 

method offers both single-base resolution for annotation and ‘digital’ gene expression 

levels at the genome-scale, often at a much lower cost than microarray. 

1.2.3 RNA-Seq experimental design 

A crucial prerequisite for a successful RNA-seq study is that the data generated have 

the potential to answer the biological questions of interest. This is achieved by first 

defining a good experimental design, that consist of choosing the library type, 

sequencing depth, and the number of replicates appropriate for the biological system 

under study, and second by planning an adequate execution of the sequencing 

experiment itself, ensuring that data acquisition does not become contaminated with 

unnecessary biases 49. One important aspect of the experimental design is the RNA-

extraction protocol used to remove the highly abundant ribosomal RNA (rRNA), 

which typically constitutes over 90 % of total RNA in the cell, leaving the other RNA 

species (mRNAs and ncRNAs) that we are normally interested in 49. Another 
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important step is whether to generate strand-preserving libraries. The first generation 

of Illumina-based RNA-seq used random hexamer primers to reverse-transcribe 

RNAs. This methodology did not retain the information contained on the DNA strand 

that is actually expressed, and therefore complicates the analysis and quantification of 

antisense or overlapping transcripts 49. Several strand-specific protocols, such as the 

widely used dUTP method, extend the original protocol by incorporating UTP 

nucleotides during the second cDNA synthesis step, prior to adapter ligation followed 

by digestion of the strand containing dUTP 50 (Fig. 11). 

 

Fig 11. Strand-specific sequencing (Source Martin L. et al. Frontiers in Plant Science. 2013) 

Furthermore, sequencing can involve single-end (SE) or paired-end (PE) reads, 

although the latter is preferable for de novo transcript discovery or isoform expression 

https://paperpile.com/c/GDo9ua/jeRb
https://paperpile.com/c/GDo9ua/9Msg


Alessandro La Ferlita       Introduction 

20 

analysis 51,52. The best sequencing option depends on the analysis goals. The cheaper, 

short SE reads are normally sufficient for studies of gene expression levels in well-

annotated organisms or for the analysis of small ncRNAs, whereas longer and PE reads 

are preferable to characterize poorly annotated transcriptomes 49. Another important 

factor is sequencing depth, which is the number of sequenced reads for a given sample. 

More transcripts will be detected and their quantification will be more precise as the 

sample is sequenced to a deeper level. Nevertheless, optimal sequencing depth again 

depends on the aims of the experiment. While some authors will argue that as few as 

five million mapped reads are sufficient to quantify accurately medium to highly 

expressed genes in most eukaryotic transcriptomes, others will sequence up to 100 

million reads to quantify precisely genes and transcripts that have low expression 

levels 53. Finally, a crucial design factor is the number of replicates. The number of 

replicates that should be included in an RNA-seq experiment depends on both the 

amount of technical variability in the RNA-seq procedures and the biological 

variability of the system under study, as well as on the desired statistical power (that 

is, the capacity for detecting statistically significant differences in gene expression 

between experimental groups).  

1.2.4 RNA-Seq data analysis 

The power of RNA-Seq lies in the fact that the twin aspects of discovery and 

quantification can be combined in a single high-throughput assay. The use of RNA-

seq has spread well beyond the genomics community and has become a standard tool 

used by the life sciences research community. Many variations of RNA-seq protocols 

and analyses have been published, making it challenging for new users to appreciate 

all of the steps necessary to conduct an RNA-seq study properly 49. There is no optimal 

https://paperpile.com/c/GDo9ua/ZRJo+08Zs
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pipeline for the variety of different applications and analysis scenarios in which RNA-

seq can be used. Scientists plan experiments and adopt different analysis strategies 

depending on the organism being studied and their research goals. For example, if a 

genome sequence is available for the studied organism, it should be possible to identify 

transcripts by mapping RNA-seq reads onto the genome. By contrast, for organisms 

without sequenced genomes, quantification would be achieved by first assembling de 

novo reads into contigs and then mapping these contigs onto the transcriptome. For 

well-annotated genomes such as the human genome, researchers may choose to base 

their RNA-seq analysis on the existing annotated reference transcriptome alone, or 

might try to identify new transcripts and their differential expression. Furthermore, 

investigators might be interested only in mRNAs splicing-variants expression or small 

ncRNAs levels. Both the experimental design and the analysis procedures are very 

different in each of these cases 49. Every RNA-seq experimental scenario could 

potentially have different optimal methods for transcript quantification, normalization, 

and ultimately differential expression analysis. Moreover, quality control checks 

should be applied at different stages of the analysis to ensure both reproducibility and 

reliability of the results 49. Below follow a description of the several steps which are 

typically involved in a standard RNA-Seq data analysis. 

1.2.4.1 Quality Control 

As previously said, the analysis of RNA-seq data requires several steps such as 

obtaining raw reads, performing read alignment, and their quantification. At each of 

these steps, specific checks should be applied to monitor the quality of the data. 

Quality control for the raw reads involves the analysis of sequence quality, GC 

content, the presence of adaptors, overrepresented k-mers, and duplicated reads in 

order to detect sequencing errors, PCR artifacts or contaminations 49. FastQC 54 is a 

https://paperpile.com/c/GDo9ua/jeRb
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popular tool to perform these analyses on Illumina reads, whereas NGSQC 55 can be 

applied to any platform. As a general rule, read quality decreases towards the 3’ end 

of reads, and if it becomes too low, bases should be removed to improve mappability 

(trimming). Software tools such as Cutadapt 56 and Trimmomatic 57 can be used to 

discard low-quality reads, remove adaptor sequences, and eliminate poor-quality 

bases. Concerning quality control on the read alignment step, an important parameter 

to look at is the percentage of mapped reads, which is a global indicator of the overall 

sequencing accuracy and of the presence of contaminating DNA. For example, we 

expect between 70 and 90 % of regular RNA-seq reads to map onto the human 

genome. Instead, when reads are mapped against the transcriptome, we expect slightly 

lower total mapping rates because reads coming from unannotated transcripts will be 

lost. Tools generally used for the alignment quality control are Picard, RSeQC 58, and 

Qualimap 59. Finally, once those transcripts are mapped and quantified, they should be 

checked for GC content and gene length biases so that correcting normalization 

methods can be applied if necessary. For this purpose, several R packages (such as 

NOISeq 60 or EDASeq 61) have been developed to provide useful plots for quality 

control of count data. 

1.2.4.2 Alignment 

When a reference genome is available, RNA-seq analysis will normally involve the 

mapping of the reads onto the reference genome or transcriptome to infer which 

transcripts are expressed. Mapping to the reference transcriptome of a known species 

precludes the discovery of new, unannotated transcripts and focuses the analysis on 

quantification alone. On the other hand, if the organism does not have a sequenced 

genome, then the analysis consists first to assemble reads into longer contigs and then 

to treat these contigs as the expressed transcriptome to which reads are mapped back 

https://paperpile.com/c/GDo9ua/rcE7
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again for quantification 49. However, if the organism under study has a sequenced 

genome, we can choose two different read alignment approaches: 1) align the reads to 

a reference genome, 2) or align the reads to a reference transcriptome. Independently 

if it is used a genome or transcriptome as a reference sequence, reads may map 

uniquely (they can be assigned to only one position in the reference) or could be multi-

mapped reads (multireads) 49. Multimapping is primarily due to repetitive sequences 

or shared domains of paralogous genes. They normally account for a significant 

fraction of the mapping output when mapped onto the genome and should not be 

discarded 49. When the reference is the transcriptome, multi-mapping arises even more 

often because a read that would have been uniquely mapped on the genome would 

map equally well to all gene isoforms in the transcriptome that share the exon 49. In 

both cases, transcript identification and quantification is very challenging for 

alternative splicing genes 49. Several tools for the alignment of reads on a reference 

genome or transcriptome have been developed during the last years. For most common 

RNA-Seq applications, STAR 62 and HISAT 2 63 are very used for genome-based 

alignment while for transcriptome-based alignment a novel and powerful tool is 

SALMON 64. 

1.2.4.3 Novel transcripts discovery 

Identifying novel transcripts using the short reads provided by Illumina technology is 

one of the most challenging tasks in RNA-seq. Short reads rarely span across several 

splice junctions and thus make it difficult to directly infer all full-length transcripts. In 

any case, PE reads and higher coverage help to reconstruct lowly expressed transcripts, 

and replicates are essential to resolve false-positive calls (that is, mapping artifacts or 

contaminations) at the low end of signal detection. Several methods, such as Cufflinks 

65, iReckon 66, SLIDE 67, and StringTie 68, incorporate existing annotations by adding 

https://paperpile.com/c/GDo9ua/jeRb
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them to the possible list of isoforms. In general, accurate transcript reconstruction from 

short reads is difficult, and methods typically show substantial disagreement 69. 

1.2.4.4 De novo transcript reconstruction 

When a reference genome is not available or is incomplete, RNA-seq reads can be 

assembled de novo into a transcriptome using packages such as SOAPdenovo-Trans 

70, Oases 71, Trans-ABySS 72 or Trinity 73. In general, PE strand-specific sequencing 

and long reads are preferred because they are more informative 49. Although it is 

impossible to assemble lowly expressed transcripts that lack enough coverage for a 

reliable assembly, too many reads are also problematic because they lead to potential 

misassembly and increased runtimes. Therefore, in silico reduction of the number of 

reads is recommended for deeply sequenced samples. For comparative analyses across 

samples, it is advisable to combine all reads from multiple samples into a single input 

in order to obtain a consolidated set of contigs (transcripts), followed by mapping back 

of the short reads for expression estimation 49. Either with a reference or de novo, the 

complete reconstruction of transcriptomes using short-read Illumina technology 

remains a challenging problem, and in many cases, de novo assembly results in tens 

or hundreds of contigs accounting for fragmented transcripts. Emerging long-read 

technologies, such as SMRT from Pacific Biosciences, provide reads that are long 

enough to sequence complete transcripts for most genes and they are a promising 

alternative to Illumina short reads technology 49. 

1.2.4.5 Transcript quantification 

The most common application of RNA-seq is to estimate gene and transcript 

expression. This can be easily done by counting the number of reads that map to each 

transcript sequence. The easiest way to do it is to summarize raw counts of mapped 
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reads using programs such as HTSeq-count 74 or featureCounts 75 that allow a gene-

level (rather than transcript-level) quantification using Gene Transfer Format (GTF) 

files containing the genome coordinates of exons and genes. However, raw read counts 

alone are not sufficient to compare expression levels among samples, as these values 

are affected by factors such as transcript length, the total number of reads, and 

sequencing biases. For this reason, raw read counts must be first normalized. Several 

normalization methods are available, and they are used to remove technical biases in 

sequenced data such as depth of sequencing (more sequencing depth produces more 

read count for a gene expressed at the same level) and gene length (differences in gene 

length generate unequal reads count for genes expressed at the same level; longer the 

gene more the read count). One of these methods is to calculate the number of Read 

Per million Mapped reads (RPM). 

𝑅𝑃𝑀 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑎𝑑𝑠 𝑚𝑎𝑝𝑝𝑒𝑑 𝑡𝑜 𝑔𝑒𝑛𝑒 ∗  10 6

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑝𝑝𝑒𝑑 𝑟𝑒𝑎𝑑𝑠
 

RPM is used to normalize the difference in sequence depth across the samples, but it 

does not take into account differences in transcript length. Another very common way 

to normalize the raw counts is to calculate the Transcript Per Million (TPM).  

𝑇𝑃𝑀 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑎𝑑𝑠 𝑚𝑎𝑝𝑝𝑒𝑑 𝑡𝑜 𝑔𝑒𝑛𝑒 ∗  𝑟𝑒𝑎𝑑 𝑙𝑒𝑛𝑔𝑡ℎ ∗  106

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑠 ∗  𝑔𝑒𝑛𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖𝑛 𝑏𝑝
  

Instead of normalizing for sequencing depth only, TPM allows normalization for the 

difference in gene lengths. Correcting for gene length is not necessary when 

comparing changes in gene expression within the same gene across samples, but it is 

necessary for correctly ranking gene expression levels within the sample to account 

for the fact that longer genes accumulate more reads. Finally, several R packages for 

differential expression analysis such as LIMMA 76, DESeq 2 77 and edgeR 78 have their 
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own normalization methods that are used prior to the analysis for the identification of 

the differentially expressed transcripts. 

1.2.4.6 Differential expression analysis  

Differential expression analysis consists of comparing the gene expression values 

between groups of samples (for example disease vs controls; treated vs controls) in 

order to find genes involved in that biological scenario. Many statistical methods have 

been developed for detecting differentially expressed genes or transcripts from RNA-

seq data, and a major challenge is how to choose the most suitable tool for a particular 

data analysis. Most comparison studies have focused on simulated datasets 79–81 or on 

samples to which exogenous RNA (‘spike-in’) has been added in known quantities 

82,83. This enables a direct assessment of the sensitivity and specificity of the methods. 

However, no clear consensus has been reached regarding the best practices yet. 

Among these tools, limma 76 has been shown to perform well under many 

circumstances and it is also the fastest to run 79,82,84. DESeq 77 and edgeR 78 perform 

similarly in ranking genes but are often relatively conservative or too liberal, 

respectively, in controlling FDR 81,82,85. SAMseq performs well in terms of FDR but 

presents an acceptable sensitivity when the number of replicates is relatively high at 

least 10 61,81. NOISeq and NOISeqBIO (the adaptation of NOISeq for biological 

replication) are more efficient in avoiding false-positive calls at the cost of some 

sensitivity but perform well with different numbers of replicates 61,86,87. Cuffdiff and 

Cuffdiff2 have performed surprisingly poorly in the comparisons 79,82. All this 

limitation probably reflects the fact that detecting differentially expressed genes 

remains challenging. Considering the drop in the price of sequencing, it is 

recommended that RNA-seq experiments have a minimum of three biological 

replicates. Recent independent comparison studies have demonstrated that the choice 
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of the method can dramatically affect the outcome of the analysis and that no single 

method is likely to perform favorably for all datasets 79,82,84. Therefore, it is 

recommended using more than one package to calculate the differentially expressed 

genes for important analysis. In addition, users should take in mind that  while some 

of these differential expression tools can only perform a pairwise comparison, others 

such as LIMMA 76, DESeq2 77, and edgeR 78 can perform multiple comparisons, 

include different covariates or analyze time-series data. 

1.2.4.7 Pathway analysis 

The last step in a standard transcriptomics analysis is often the characterization of the 

molecular functions in which the differentially expressed genes (DEGs) are involved. 

The two main approaches for functional characterization that were first developed for 

microarray technology are (a) comparing a list of DEGs against the rest of the genome 

for overrepresented functions, and (b) gene set enrichment analysis (GSEA), which is 

based on ranking the transcriptome according to a measurement of differential 

expression. However, functional analysis requires the availability of sufficient 

functional annotation data for the transcriptome under study.  

Examples of resources that contain such functional annotation for several model 

species are Gene Ontology 88, and DAVID 89. Unfortunately, novel transcripts 

discovered during de novo transcriptome assembly or some newly discovered small 

ncRNA classes would lack functional annotation. In any case, only the functional 

annotation of genes and ncRNAs is not sufficient to understand the biological 

mechanisms underlying the phenotype under study. Indeed, we know that alteration in 

the expression profile of protein-coding genes and ncRNAs have significant impacts 

on the function of signaling and metabolic pathways. For this purpose, pathway 

analysis is becoming a more crucial step during RNA-Seq data analysis to understand 
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which roles the differentially expressed genes and ncRNAs are involved in. For 

pathway analysis we mean an extensive class of methods, which are able to determine 

the status of biological processes, identifying altered functionalities involved in 

complex diseases 90. The pathway-based analysis uses knowledge from pathway 

databases, providing insight on genes and how they interact 90.  Specifically, pathway 

analysis originally identified a class of techniques for (1) the analysis of ontological 

terms and protein-protein interaction (PPI) networks; (2) the inference of gene 

regulatory networks from expression data. The aim was to use pathways as knowledge 

bases for grouping genes or proteins into smaller subsets according to some 

relationships, thus reducing the dimensionality of expression data. More recently, 

research effort has been devoted to deploying a novel class of methods called 

knowledge base-driven pathway analysis. Such methods leverage existing databases 

such as the Kyoto Encyclopedia of Gene and Genomes (KEGG) 91, and Reactome 92 

to identify perturbed pathways associated with a specific phenotype or condition. The 

degree of perturbation can be measured starting from several parameters, including 

the number of DEGs belonging to the pathway, the magnitude of their expression 

changes, and their interaction type, direction, and strength. A typical knowledge base-

driven pathway analysis method starts from two input data: (1) a set of pathways 

representing the molecular interaction knowledge base, and (2) experimental data 

containing measurements of gene expressions, protein abundance, or metabolite 

concentration in two or more conditions. Some methods preprocess input data to select 

only a subset of genes considered to be differentially expressed based on a predefined 

cutoff, which is typically applied on fold-change, statistical significance, or both. 

However, the usage of cutoffs could be critical and data-dependent, influencing the 

quality of the results. A graph model is then built to represent pathways. Models 
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depend on pathway type: (1) signaling pathway where nodes are genes (or gene 

products) and edges represent signals, such as activation or repression, (2) metabolic 

pathway in which nodes are biochemical compounds and edges represent reactions 

that transform one or more compounds into another one. Pathways are then ranked 

according to the level of perturbation which is computed through to a scoring scheme. 

Following a temporal criteria, knowledge base-driven pathway analysis methods can 

be classified into three generations of approaches: (1) Overrepresentation analysis 

(ORA), (2) functional class scoring (FCS), and (3) pathway topology-based (PT). 

Unlike ORA and FCS methods that only consider the presence of specific sets of DEGs 

for each pathway to identify the dysregulated ones, PT systems fully exploit the 

topological information encoded by pathways when computing perturbation scores. 

Indeed, pathways are modeled as complex graphs where each node is a gene or a 

protein and each edge is an interaction between them. Even though thousands of genes 

are not annotated in pathways and existing annotations may be inaccurate, graphs 

contained in these databases provide a more detailed view of biological processes 

within the cell, helping the interpretation of high-throughput experiments 90. This is a 

significant advancement than the previous pathway analysis systems which do not 

consider the topology of pathways to calculate their perturbation but only the presence 

of a set of DEGs for each pathway. Finally, more recently, new approaches have been 

proposed to analyze pathways enriched with missing regulatory elements, such as 

miRNAs and their post-transcriptional regulatory interactions with genes. One of them 

is the approach proposed by MITHrIL 93. However, for other post-transcriptional 

regulators, such as tRNA-derived ncRNAs, biological pathways are still incomplete, 

and therefore, they have not been considered yet.  
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1.2.5 Pipelines for RNA-Seq 

The analysis of RNA-Seq data is very challenging and it requires specific 

bioinformatics and computer programming skills which may be uncommon in small 

research laboratories. Moreover, as we previously discussed, several steps (quality 

control; trimming and adaptors removing; alignment; read counting; normalization; 

differential expression analysis; etc) are usually required to perform a standard RNA-

Seq analysis. Therefore, in order to promote the use of RNA-Seq technologies and 

expand the community of scientists able to analyze such data, many pipelines have 

been developed to simplify the RNA-Seq analysis. Relevant examples include 

BioJupies 94, BioWardrobe 95, DEWE 96, easyRNASeq 97, ExpressionPlot 98, FX 99, 

GENE-counter 100, GeneProf 101, Grape RNA-Seq 102, MAP-RSeq 103, RAP 104, 

RobiNA 105, RSEQtools 106, RseqFlow 107, S-MART 108, TCW 109, TRAPLINE 110 and 

wapRNA 111. In addition, other pipelines have also been developed for the analysis of 

different ncRNA classes. Examples include DSAP 112, miRanalyzer 113,  miRExpress 

114, miRNAkey 115, iMir 116, CAP-miRSeq 117, mirTools 2.0 118, sRNAtoolbox 119, 

miRDeep 2 120, and MapMi 121 for miRNA analysis;  piPipes 122, PILFER 123, 

piRNAPredictor 124 and PIANO 125 for piRNA analysis; and UClncR 126 for lncRNA 

analysis. Although interesting, some of these tools present several limitations and 

shortcomings which have negatively impacted their usage among non-expert users 

such as (i) no Graphical User Interface but only command line shell; (ii) software 

dependencies prior to the pipeline installation; (iii) support only for UNIX operating 

systems; (iv) static workflow (they do not allow to select which tool has to be used for 

each step of the pipeline); (v) not suitable for the analysis of the whole transcriptome 

(e.g. mRNAs or few ncRNA classes supported); (vi) no downstream analysis modules 

(i.e. differential expression analysis or pathway analysis); (vii) only few species 
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https://paperpile.com/c/GDo9ua/ob6O9
https://paperpile.com/c/GDo9ua/aNHj
https://paperpile.com/c/GDo9ua/YppCL
https://paperpile.com/c/GDo9ua/7FLl
https://paperpile.com/c/GDo9ua/IbFsE
https://paperpile.com/c/GDo9ua/6dCk
https://paperpile.com/c/GDo9ua/Drxc
https://paperpile.com/c/GDo9ua/rrf93
https://paperpile.com/c/GDo9ua/5tZF
https://paperpile.com/c/GDo9ua/SAJIm
https://paperpile.com/c/GDo9ua/6xXo8
https://paperpile.com/c/GDo9ua/UcvJU
https://paperpile.com/c/GDo9ua/VrmF
https://paperpile.com/c/GDo9ua/BTISb
https://paperpile.com/c/GDo9ua/5ABd9
https://paperpile.com/c/GDo9ua/Vrph
https://paperpile.com/c/GDo9ua/44NE
https://paperpile.com/c/GDo9ua/RirX
https://paperpile.com/c/GDo9ua/AYAE
https://paperpile.com/c/GDo9ua/9arQ
https://paperpile.com/c/GDo9ua/3ygo
https://paperpile.com/c/GDo9ua/4Qzr
https://paperpile.com/c/GDo9ua/PAVk
https://paperpile.com/c/GDo9ua/E37g
https://paperpile.com/c/GDo9ua/TdZQ
https://paperpile.com/c/GDo9ua/h5IKw
https://paperpile.com/c/GDo9ua/DZgK
https://paperpile.com/c/GDo9ua/KlmF
https://paperpile.com/c/GDo9ua/UGdR
https://paperpile.com/c/GDo9ua/CrWW
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supported. These limitations must not be underestimated since RNA-Seq technologies 

are always more used both in research and biomedical laboratories and, therefore, the 

number of scientists interested to analyze such data is rising. For these reasons, the 

request for easy-to-use pipelines for the analysis of RNA-Seq data has become very 

urgent. 
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2. Aim of the project  

The aim of the Ph.D. research project funded by the Italian MIUR “PON RI FSE-

FESR 2014-2020” in collaboration with Nerviano Medical Sciences and Department 

of Cancer Biology and Genetics of The Ohio State University was to implement a 

user-friendly software for the analysis of RNA-Seq data. The idea was to develop a 

software that could be used by users with no computer programming background in 

order to promote its use in research and biomedical laboratories by expanding the 

community of life scientists able to analyze RNA-Seq data. In order to achieve this 

goal, we implemented RNAdetector a completely offline, cross-platform and stand-

alone software with an easy-to-use graphical user interface capable of analyzing 

coding and ncRNAs of any sequenced biological species. Precisely, RNAdetector has 

been designed to be able not only to identify and quantify such RNA molecules but 

also to be able to perform differential expression analysis, and miRNA-sensitive 

topological pathway analysis allowing users to infer important biological information 

from their data.
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3. Project milestones 
 

In order to complete the proposed project, several steps were required: 

1. First of all, our software aimed to analyze an extensive repertoire of different 

classes of ncRNAs from RNA-Seq data such as miRNA, piRNAs, snoRNAs, 

snRNAs, tUCRs, lncRNAs, circRNAs, and tRNA-derived ncRNAs. However, 

for the latter, no previous system for their detection from small RNA-Seq data 

was released when the project started in 2018. Also, at that time there were not 

extensive databases that covered all the different subclasses (already available 

databases such as tRFdb 44 and MINTbase 127 were primarily focused on tRFs 

deriving from mature tRNAs). Therefore, we had to implement our own 

method to detect all the different subclasses of tRNA-derived ncRNAs in small 

RNA-Seq datasets and include them in a novel database 128. Finally, this 

database would collect all the tRNA-derived ncRNAs that it would be possible 

to analyze with RNAdetector (we named this database tRFexplorer and we 

published it in 2019 128) 

2. Secondly, we had to test some recent pipelines for the analysis of ncRNAs 

from RNA-Seq data 129. The idea was to identify their strengths and 

weaknesses and, therefore, optimize RNAdetector in order to fill the gaps of 

the previous methodologies 129 (we published the results of this benchmark in 

2019 129) 

3. Finally, we had to implement RNAdetector. 

The project lasted 3 years and was carried out in collaboration with Nerviano Medical 

Sciences and the Department of Cancer Biology and Genetics of The Ohio State 

https://paperpile.com/c/GDo9ua/D6Xo
https://paperpile.com/c/GDo9ua/8pzc
https://paperpile.com/c/GDo9ua/B9ELS
https://paperpile.com/c/GDo9ua/B9ELS
https://paperpile.com/c/GDo9ua/sRJb6
https://paperpile.com/c/GDo9ua/sRJb6
https://paperpile.com/c/GDo9ua/sRJb6
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University where I spent one year and six months, respectively. In the end, two papers 

were published 128,129 and another one is under review in a well-known bioinformatics 

journal.  The methods and results discussed in this PhD thesis are related to these 3 

our papers. A summary of the PhD project milestones is shown in Fig. 12.  

 

Fig 12. PhD project milestones 

 

https://paperpile.com/c/GDo9ua/B9ELS+sRJb6
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4. Materials and methods 

4.1 Identification of tRNA-derived ncRNAs and 

database implementation 

 

As I previously discussed, our software aims to analyze an extensive repertoire of 

different classes of ncRNAs including also all the different tRNA-derived ncRNAs 

subclasses. However, for the latter, no previous system for their detection was released 

when the project started in 2018. Also, at that time there were not extensive databases 

that covered all the different subclasses (already available databases such as tRFdb 44 

and MINTbase 127 were primarily focused on tRFs deriving from mature tRNAs). 

Therefore, we had to implement our own method to detect all the different tRNA-

derived ncRNAs subclasses in small RNA-Seq datasets and include them in a novel 

database. Finally, this database will collect all the tRNA-derived ncRNAs that it will 

be possible to analyze with RNAdetector. For this reason, we selected the public small 

RNA-Seq datasets of the NCI-60 cancer cell lines and The Cancer Genome Atlas 

(TCGA) samples in order to identify all the expressed tRNA-derived ncRNAs and we 

included them in a novel database that we named tRFexplorer. In the next two sections, 

I discuss the methods used for the detection of the tRNA-derived ncRNAs and for the 

database implementation (these methods are also reported in our paper titled 

Identification of tRNA-derived ncRNAs in TCGA and NCI-60 panel cell lines and 

development of the public database tRFexplorer published in 2019 128). 

https://paperpile.com/c/GDo9ua/D6Xo
https://paperpile.com/c/GDo9ua/8pzc
https://paperpile.com/c/GDo9ua/B9ELS
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4.1.1 Identification of the tRNA-derived ncRNAs subclasses 

The identification of tsRNAs, 5’ leader RNAs, and tRFs in small RNA-Seq datasets is 

a complex process, since such small fragments may be mapped to multiple DNA 

regions. For this purpose, we implemented a conservative pipeline to get an accurate 

estimation of tsRNAs, 5’ leader RNAs, and tRFs expression. First, we assembled a 

custom annotation of the reference human genome (hg19) containing only known 

tsRNAs and tRFs. We included all tRF-5s, tRF-3s, and tRF-1s from tRFdb 

(http://genome.bioch.virginia.edu/trfdb/) 44, all tsRNA identified by Carlo Croce’s Lab 

31, and the 20nt upstream region of tRNA human genes for the 5’ leader RNAs. Human 

tRNA genes were taken from GtRNAdb (http://gtrnadb.ucsc.edu/) 130. Subsequently, 

we examined sncRNA-seq datasets of NCI-60 cell lines as provided by the Sequence 

Read Archive (SRA) (PRJNA390643) 131, as well as small RNA-seq datasets on 

TCGA. In the supplementary table 1 we provide a list of NCI-60 cell lines and the 

SRA datasets while the supplementary table 2 lists the analyzed TCGA cancer types 

with their relative numbers of tumor and control samples. Raw FASTQ files were pre-

processed for adaptor removal and quality filtering by applying Trim Galore 

(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) tuned for 

sncRNA-seq (Phred quality score ≥ 20). Trim Galore is a wrapper for Cutadapt 56 and 

FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), which is used 

as a consistent method to apply quality filtering and adaptor trimming. Filtered 

FASTQ files were then aligned to a reference human genome (hg19) using TopHat 

version 2.1.0 132 as well as to our custom annotation file. Read quantification has been 

performed with HTSeq version 0.10.0 74. In this phase, all ambiguously mapped reads 

were removed for a more accurate and conservative analysis. Data analysis was 

performed with R version 3.5.1. Raw counts were normalized with 2 different 

https://paperpile.com/c/GDo9ua/D6Xo
https://paperpile.com/c/GDo9ua/OnYXT
http://gtrnadb.ucsc.edu/
https://paperpile.com/c/GDo9ua/ZEMCM
https://paperpile.com/c/GDo9ua/2Gnx
https://paperpile.com/c/GDo9ua/rhbR
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://paperpile.com/c/GDo9ua/9AwDT
https://paperpile.com/c/GDo9ua/7c1B
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normalization methods: transcripts per million mapped reads (TPM) 133, and reads per 

million mapped reads (RPM) 48. 

𝑅𝑃𝑀 =   
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑎𝑑𝑠 𝑚𝑎𝑝𝑝𝑒𝑑 𝑡𝑜 𝑎 𝑔𝑒𝑛𝑒 ×  106

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑝𝑝𝑒𝑑 𝑟𝑒𝑎𝑑𝑠 𝑓𝑜𝑟 𝑎 𝑔𝑖𝑣𝑒𝑛 𝑙𝑖𝑏𝑟𝑎𝑟𝑦
 

𝑇𝑃𝑀 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑎𝑑𝑠 𝑚𝑎𝑝𝑝𝑒𝑑 𝑡𝑜 𝑎 𝑔𝑒𝑛𝑒

𝑔𝑒𝑛𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖𝑛 𝑏𝑝
× (

1

∑
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑎𝑑𝑠 𝑚𝑎𝑝𝑝𝑒𝑑 𝑡𝑜 𝑎 𝑔𝑒𝑛𝑒

𝑔𝑒𝑛𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖𝑛 𝑏𝑝

) × 106 

All tsRNAs, 5’ leader RNAs, and tRFs with average log2 TPM less than 1 were 

removed. A summary of our full pipeline is illustrated in Fig. 13. 

 

Fig 13. Pipeline for the identification of the tRNA-derived ncRNAs in NCI-60 and TCGA small RNA-Seq datasets 

4.1.2 Database implementation 

All identified tsRNAs, 5’ leader RNAs, and tRFs with their expression profiles have 

been integrated into a novel database named tRFexplorer 128. tRFexplorer enables 

users to visualize the expression profile of each tRNA-derived ncRNA in both NCI-

60 cell lines and TCGA samples (33 cancer types). Furthermore, it uses the R package 

limma 76 to perform differential expression analysis on TCGA data. Interactive 

visualization of its results have been implemented through the R package Glimma 134. 

https://paperpile.com/c/GDo9ua/V6Vi7
https://paperpile.com/c/GDo9ua/TRC1
https://paperpile.com/c/GDo9ua/B9ELS
https://paperpile.com/c/GDo9ua/RjA3
https://paperpile.com/c/GDo9ua/Ec3dW
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Our database allows users to conduct correlation analyses of tRNA-derived ncRNAs 

expressions in NCI-60 with all data available on CellMiner 135,136. Correlation analysis 

with genes and miRNA expression profiles, as well as patient survival, of TCGA 

samples has also been implemented. tRFexplorer was developed by employing PHP 

and R for its backend, while Javascript, and React for the main user interface. All 

omics data and compound activities used for the correlation analysis were obtained 

from CellMiner 135,136. In supplementary table 3 we list all CellMiner datasets. 

Genomic viewer for tRNA-derived ncRNAs visualization is based on JBrowse 137. 

JBrowse is a fast and interactive genomic viewer built entirely with new HTML5 

technology. We customized our browser by allowing users to search for both tRNAs 

or tRNA-derived ncRNAs using both genomic coordinates or identifiers. 

4.2 Testing of previous ncRNAs pipelines  

After the implementation of tRFexplorer 128 and before proceeding with the 

development of our software for the analysis of RNA-Seq data named RNAdetector, 

we wanted to evaluate the state of the art of current ncRNA pipelines in order to 

identify their strengths and weaknesses, and therefore, optimizing RNAdetector by 

filling the gaps of the previous methodologies. For this purpose, the performances of 

eight ncRNA pipelines enabling the processing of RNA-Seq data, published between 

2015 and 2019, were compared. In particular, we evaluated the easiness of installation 

and usage together with their accuracies to identify ncRNAs and their expression 

levels by using both synthetic and real RNA-Seq datasets. A detailed description of 

the methods used for this benchmark is described in the next sections (these methods 

are also reported in our paper titled A benchmarking of pipelines for detecting ncRNAs 

from RNA-Seq data published in 2019 129).  

https://paperpile.com/c/GDo9ua/PQtku+MgpY4
https://paperpile.com/c/GDo9ua/PQtku+MgpY4
https://paperpile.com/c/GDo9ua/qoNe7
https://paperpile.com/c/GDo9ua/B9ELS
https://paperpile.com/c/GDo9ua/sRJb6
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4.2.1 Design of synthetic RNA-seq datasets 

Two synthetic human RNA-Seq datasets were generated and used for the comparison 

of the different ncRNAs pipelines. The first dataset simulates small non-coding RNA-

Seq data and includes miRNAs, piRNAs, snoRNAs, and tRNA-derived ncRNAs, 

while the second one simulates standard RNA-Seq data and covers mRNAs, 

circRNAs, and lncRNAs. Synthetic RNA-Seq data were obtained by using Flux 

Simulator 138. Briefly, Flux Simulator simulates a transcriptome starting from the 

genomics sequences of specific species and the corresponding gene structure 

annotation. Then, the obtained in silico transcriptome undergoes RT/fragmentation 

according to the chosen experimental technique. Flux Simulator pipeline provides 

optional steps for modeling the final library preparation, involving in silico ligation of 

adapter sequences, fragment size selection, and PCR amplification. Finally, Flux 

Simulator produces a FASTQ file as output in which reads associated with each 

ncRNA are annotated. In this way, it is possible to precisely calculate the species and 

the number of reads associated with each RNA molecule present in the synthetic 

dataset 138. The sequences of simulated reads are retrieved from the reference genome 

in correspondence to the genomic coordinates reported in the GTF file which is 

provided in input together with the reference genome. We choose Flux Simulator to 

generate RNA-Seq data since it comprises explicit models for the processes that 

determine the abundance and distribution of reads according to specified experimental 

protocols 138. Specifically, to build the two datasets, we first created custom annotation 

files (GTF format) for small RNAs and long RNAs, respectively. These files were 

created by using an R script which permits to randomly select molecules from the 

original genomics coordinates present in the following databases: UCSC 139 for 

mRNAs, miRNAs, and snoRNAs; our database tRFexplorer for all tRNA-derived 

https://paperpile.com/c/GDo9ua/FMUC
https://paperpile.com/c/GDo9ua/FMUC
https://paperpile.com/c/GDo9ua/FMUC
https://paperpile.com/c/GDo9ua/F2oC
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ncRNAs classes 128; piRBase 140 for piRNA; circBase 141 for circRNAs and LNCipedia 

142 for lncRNAs. This process yielded one GTF file for small RNA, containing 

genomics coordinates for 193 miRNAs, 100 snoRNAs, 500 piRNAs and 200 tRNA-

derived ncRNAs (equally split in 5 leader RNAs, tsRNAs, tRF-5s and tRF-3s), and 

one annotation file for long RNAs including coordinates for 100 genes encoding for 

proteins (895 exon genomic coordinates), 500 circRNAs and 500 lncRNAs. 

Concerning circRNAs, however, Flux simulator was not able to correctly simulate 

their sequences. A possible explanation could be that circRNAs genomics coordinates, 

which were used for the generation of simulated circRNAs reads, were huge, and the 

genes transcribed within circRNAs were not annotated for introns and exons in 

circBase. Therefore, Flux Simulator might have generated reads which straddle 

between exons and introns of coding-protein genes, which are not components of 

circRNA molecules. Therefore, circRNAs were not included in the evaluation. GTF 

files, together with the human HG19 reference genome, were then submitted to Flux 

Simulator 138 and synthetic FASTQ files were built. The parameters used for the 

generation of the two synthetic RNA-seq data sets are reported in Table 1. 

Small RNA-seq Standard RNA-seq 

NB_MOLECULES 5000000 NB_MOLECULES 5000000 

READ_NUMBER 15000000 READ_NUMBER 5000000 

TSS_MEAN NaN TSS_MEAN NaN 

FRAG_SUBSTRATE RNA FRAG_SUBSTRATE RNA 

POLYA_SCALE NaN POLYA_SCALE NaN 

POLYA_SHAPE NaN POLYA_SHAPE NaN 

PCR_PROBABILITY 0.5 PCR_PROBABILITY 0.5 

FRAG_METHOD UR FRAG_METHOD UR 

FRAG_EZ_MOTIF NlaIII FRAG_EZ_MOTIF NlaIII 

READ_LENGTH 35 READ_LENGTH 75 

PAIRED_END false PAIRED_END false 

FASTA YES FASTA YES 

 

Table 1. FluxSimulator’s parameters used for the generation of the two synthetic RNA-seq datasets. 

https://paperpile.com/c/GDo9ua/B9ELS
https://paperpile.com/c/GDo9ua/LSzp
https://paperpile.com/c/GDo9ua/UYDpp
https://paperpile.com/c/GDo9ua/7oYV
https://paperpile.com/c/GDo9ua/FMUC
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4.2.2 Real RNA-Seq datasets 

Additionally to the synthetic data, we used a real dataset of small RNA-Seq produced 

using Illumina HiSeq 2500 technology on MDA-MB-231 breast cancer cell line, 

obtained from the Sequence Read Archive (SRA) (SRR5689212) 131. This dataset 

contains RNA molecules shorter than 200 nucleotides, suitable for the evaluation of 

all types of small ncRNAs considered in this testing. A second RNA-Seq dataset on 

the same cell line obtained from GDC Legacy Archive 

(https://portal.gdc.cancer.gov/legacy-archive/files/0f5ba7d3-6f43-44af-9bbc-

f9b4c09bbfeb) was used for lncRNAs and circRNAs evaluation. 

4.2.3 Selected pipelines for the analysis of ncRNAs 

The purpose of this testing was to evaluate the performances and usage of currently 

available pipelines, allowing the processing of more than one ncRNA class and not 

limited to a single ncRNA type. Thus, we compared eight ncRNAs pipelines published 

between 2015 and 2019, enabling the analysis of more than one ncRNA class, 

specifically: miRNAs, piRNAs, snoRNAs, tRNA-derived ncRNAs, lncRNAs and 

circRNA. Tools or pipelines specifically developed for the analysis of a single ncRNA 

class were not included in this testing. In Table 2, the classes of ncRNAs analyzed for 

each pipeline are reported. A brief description of the features of each pipeline is 

provided below. 

 

 

 

 

https://paperpile.com/c/GDo9ua/2Gnx
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 miRNA piRNA snoRNA tRNA-derived lncRNA circRNA 

iSRAP X X X     

iSmaRT X X      

sRNApipe X X X     

miARma-seq X  X    X 

sRNAnalyzer X X X   X  

SPORTS1.0 X X X X   

Oasis 2 X X X       

sRNA workbench X           

 

Table 2. Classes of ncRNAs analyzed by each tested pipeline. 

iSmaRT is a bioinformatics pipeline with a Graphical User Interface (GUI) for 

the analysis of miRNAs and piRNAs from small RNA-seq data 143. iSmaRT enables a 

comprehensive analysis, including quality control, identification of miRNAs and 

piRNAs expressed in each sample, differential expression analysis, identification of 

RNA editing events on miRNA, RNA target prediction and Reactome Pathway 

Analysis (ReactomePA) 143. 

 

iSRAP is a tool provided with a command-line interface (CLI) for the profiling 

of small RNAs (miRNAs, piRNAs, and snoRNAs) 144. A YAML configuration file 

permits to define options and optimize small RNA profiling in different data sets 144. 

The pipeline can be executed starting from either FASTQ or BAM alignment files. 

Results are reported as PDF files and HTML documents, completed with graphical 

elements to illustrate the results. 

 

miARma-Seq is a pipeline enabling the identification and differential 

expression analysis of mRNAs, miRNAs, snoRNAs and circRNAs. It also allows for 

miRNA target prediction and the analysis of gene ontologies (GO) in any organism 

https://paperpile.com/c/GDo9ua/ixXd
https://paperpile.com/c/GDo9ua/ixXd
https://paperpile.com/c/GDo9ua/xRfe
https://paperpile.com/c/GDo9ua/xRfe
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with a sequenced genome available 145. miARma-Seq comes with several 

preconfigured parameters and can be executed through a CLI 145. It takes as input 

different files: raw FASTQ files, BAM alignment files or raw count txt files. Thus, the 

pipeline can start at different steps. The tool generates PDF documents as output. 

Boxplots and density plots of normalized and non-normalized data, multidimensional 

scaling (MDS) plots, principal component analysis (PCA) plots, heatmaps and 

clustering plots are also provided 145. 

 

Oasis 2 is a web tool for the analysis of miRNAs, piRNAs, snRNAs, snoRNAs, 

and rRNAs 146. It takes as input FASTQ or compressed FASTQ files. It performs the 

identification, quantification and differential expression analysis of all the ncRNAs 

classes mentioned above. The results are reported by means of text tables and plots. 

Oasis 2 can perform adaptor removal and can be used with several reference genomes 

146. 

 

SPORTS1.0 is a CLI pipeline for the identification and quantification of 

miRNAs, piRNAs, snoRNAs and tRNA-derived ncRNAs 147. It also allows for the 

analysis of rRNA small derived RNAs (rsRNA) 147. SPORTS1.0 can be used with a 

wide range of species with an available reference genome. It takes as input the 

following files: SRA data set, FASTQ and FASTA files. The output is provided as txt 

and PDF files, with annotation details for each sequence, length distribution along with 

other statistics and figures 147. 

 

sRNAnalyzer is a CLI pipeline with a text-based configuration file for the 

identification of miRNAs, piRNAs, snoRNAs, and lncRNAs 148. The pipeline allows 

https://paperpile.com/c/GDo9ua/jCdX
https://paperpile.com/c/GDo9ua/jCdX
https://paperpile.com/c/GDo9ua/jCdX
https://paperpile.com/c/GDo9ua/kTNX
https://paperpile.com/c/GDo9ua/kTNX
https://paperpile.com/c/GDo9ua/0QXs
https://paperpile.com/c/GDo9ua/0QXs
https://paperpile.com/c/GDo9ua/0QXs
https://paperpile.com/c/GDo9ua/99BB
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for processing the reads (upon adaptors removal), performing quality filters, read 

mapping and counting. It also filters the exogenous RNAs. For the endogenous 

sequences, sRNAnalyzer uses ‘map and remove’ structure (i.e., only unmapped reads 

go to the next steps), with a progressive alignment strategy to sequentially map the 

reads against various databases 148. sRNAnalyzer can be used with samples from 

different species by appropriately modifying the configuration files. Currently, 

configuration files for human, mouse, rat, horse, macaque, and plant are available 148. 

sRNAnalyzer takes as input FASTQ files and produces as output txt files describing 

the matches between mapped reads and the reference genome. 

 

sRNApipe is a web-based pipeline, available on Galaxy, which performs small 

RNA mapping, counting, normalization, and analysis of signatures for ping-pong 

amplification in the case of piRNAs 149. The pipeline allows for the identification of 

mRNAs, transposable elements, miRNAs, piRNAs, snRNAs, snoRNAs, rRNAs and 

tRNAs. sRNApipe takes as input single-end sequencing data in FASTQ format (Phred 

+33) with no adaptors and a list of FASTA reference files such as genome, mRNAs, 

transposable elements, rRNAs, tRNAs, snRNAs/snoRNAs and miRNAs 149. In the 1.0 

version only, the pipeline can be run without rRNAs, tRNAs and snRNAs/snoRNAs 

reference files. For the analysis of small ncRNAs in the synthetic dataset, the 

maximum read length, which by default is 29 nt, was set to 35 nt. 

 

sRNA workbench is a pipeline reported to allow for the analysis of miRNAs 

and other small RNAs (sRNAs). It performs identification, quantification, 

normalization and differential expression analysis of miRNAs. The mapping of 

miRNAs and sRNA loci on the reference genome is also possible 150. 

https://paperpile.com/c/GDo9ua/99BB
https://paperpile.com/c/GDo9ua/99BB
https://paperpile.com/c/GDo9ua/C40p
https://paperpile.com/c/GDo9ua/C40p
https://paperpile.com/c/GDo9ua/rjA0
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4.2.4 Pipeline comparison 

The eight ncRNAs pipelines were installed on a machine equipped with Ubuntu 18.04 

Operating System, Intel Core i7-6700 CPU (4 cores at 3.40 GHz), and 32 GB of RAM. 

The small RNA synthetic dataset was used to test iSmaRT, iSRAP, Oasis 2, 

sRNApipe, SPORTS1.0, and sRNA workbench. Instead, both small and standard RNA 

synthetic datasets were used to test miARma-Seq and sRNAnalyzer. To evaluate the 

performances of the different pipelines against the synthetic RNA-Seq datasets, we 

analyzed the true positive (TP), true negative (TN), false positive (FP), false negative 

(FN) rates, and then, we computed Precision, Sensitivity, and F-measure for each 

pipeline as follows:  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝐹𝑃 +  𝑇𝑃
 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  
2 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 

Moreover, we drew the scatterplots and calculated the R2 on the TP to compare the 

ncRNAs expression profile identified by each pipeline with the real RNAs expression 

values included in the RNA-Seq dataset. Pipeline performances were also tested 

against a real RNA-Seq dataset. To estimate the similarity of the different pipelines in 

detecting the same ncRNAs, we calculated the Jaccard similarity coefficient between 

each couple of pipelines for all the analyzed small ncRNA classes as follows: 

𝐽(𝐴, 𝑏)  =  
|𝐴 ∩  𝐵|

|𝐴 ∪  𝐵|
 

where A and B are the subset of ncRNAs identified by the pipeline PA and PB, 

respectively. Next, to compare the read count estimation among the different tools, we 
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computed the Pearson correlation matrix considering per each ncRNA type the subset 

shared by all pipelines as follows: 

𝜌𝐴, 𝐵 =
𝜎𝑋𝐴 ,𝑌𝐵

𝜎𝑋𝐴
𝜎𝑌𝐵

 

where xA and yB are the vectors of the expression values of ncRNAs identified by 

pipelines A and B, respectively, σxA is the covariance between the vectors xA and yB 

and σxA and σxB are the standard deviations of the two vectors. Statistical analysis has 

been performed using R (version 3.5.2), scatterplots, Jaccard index and Pearson 

correlation matrix were generated using the ggplot2 library 151. 

4.3 RNAdetector design and implementation  

Once the implementation of the database tRFexplorer 128 and the benchmark of 

previous non-coding RNA-Seq pipelines 129 were completed, we started the 

development of our software RNAdetector. A detailed description of its design and 

implementation follows below. 

4.3.1 RNAdetector design 

RNAdetector has been designed with the idea to be extremely easy-to-use, cross-

platform, completely offline, remotely controllable, and with a dynamic workflow able 

to analyze coding and ncRNAs. Briefly, RNAdetector allows starting the analysis with 

different input files such as FASTQ, BAM, or SAM files. By using Trim Galore 

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/), the system allows 

also to perform quality trimming and adaptors removal on FASTQ files. Accordingly 

with the type of input file, alignment strategy, and the types of RNAs which users want 

to analyze (small ncRNAs, mRNAs and\or lncRNA, or circRNAs) the proper pipeline 

https://paperpile.com/c/GDo9ua/SUPv
https://paperpile.com/c/GDo9ua/B9ELS
https://paperpile.com/c/GDo9ua/sRJb6
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will be executed. For mRNAs, small ncRNAs, and lncRNAs, the alignment can be 

executed on a reference genome  by using STAR 62 / HISAT2 63, or transcriptome by 

using SALMON 64. Read counting can also be performed by choosing one of the 

several available algorithms such as HTseq 74, FeatureCounts 75, or SALMON 64. 

Concerning circRNAs, reads are first mapped on the reference genome with BWA 152 

and second they can be quantified (for circRNAs already annotated on circBase 141) or 

de-novo identified and quantified by using CIRI 2 153,154 or CIRIquant 155. Finally, 

RNAdetector can perform normalization and differential expression analysis on such 

RNAs by using DESeq2 77, edgeR 78, and LIMMA 76 algorithms and, in addition, 

topological pathway analysis on protein-coding genes and miRNAs can also be 

performed by using MITHrIL 93. A final report based on metaseqR 156 with a summary, 

and interactive tables, and figures are automatically generated for an easier result 

interpretation obtained from the differential expression analysis module. Moreover, a 

second report has also been developed to show the results obtained from the optional 

pathway analysis module. Finally, an offline and interactive genome browser based 

on JBrowse 2 137 is also available in order to visualize the depth of coverage of mapped 

reads obtained by RNAdetector. A summary of the pipeline is shown in Fig. 14. 

 

Fig 14. Schematic representation of RNAdetector’s pipeline 

https://paperpile.com/c/GDo9ua/XKU3
https://paperpile.com/c/GDo9ua/GwTV
https://paperpile.com/c/GDo9ua/Sbca
https://paperpile.com/c/GDo9ua/7c1B
https://paperpile.com/c/GDo9ua/vsTF
https://paperpile.com/c/GDo9ua/Sbca
https://paperpile.com/c/GDo9ua/2W9za
https://paperpile.com/c/GDo9ua/UYDpp
https://paperpile.com/c/GDo9ua/nrWtR+F8j9g
https://paperpile.com/c/GDo9ua/PIJQD
https://paperpile.com/c/GDo9ua/c8HR
https://paperpile.com/c/GDo9ua/shWZ
https://paperpile.com/c/GDo9ua/RjA3
https://paperpile.com/c/GDo9ua/Fa3R
https://paperpile.com/c/GDo9ua/jAHMY
https://paperpile.com/c/GDo9ua/qoNe7
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After this short summary of RNAdetector’s workflow, below follow a detailed 

description of each step of the pipeline. 

4.3.1.1 Quality control and adaptors removing 

If users start the analysis from FASTQ as input files, quality control on raw reads 

could be performed (if users select this option). Quality control for the raw reads 

involves the analysis of sequence quality, GC content, the presence of adaptors, 

overrepresented k-mers, and duplicated reads in order to detect sequencing errors, 

PCR artifacts, or contaminations. In addition, as a general rule, read quality decreases 

towards the 3’ end of reads, and if it becomes too low, bases should be removed to 

improve mappability (trimming). Finally, if sequencing adaptors are still present on 

raw reads, they must be removed. For quality control analysis, trimming and adaptors 

removing two popular tools are FASTQC 54 and Cutadapt 56 which have been 

combined in a wrapper tool called Trim Galore 

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). In RNAdetector, 

we included Trim Galore to perform an automated quality control and adapters 

trimming before to proceed with read alignment.  For adapter trimming, Trim Galore 

uses the first 13 bp of Illumina standard adapters ('AGATCGGAAGAGC') by default 

(suitable for both ends of paired-end libraries) but accepts other adapter sequences, 

too. If it is not specified Trim Galore automatically detects the presence of possible 

adapters and proceeds with their trimming. The Phred quality of basecalls and the 

stringency for adapter removal can also be individually specified. Quality control, 

trimming, and adaptor removal can be performed on both single-end and paired-end 

FASTQ files.  

https://paperpile.com/c/GDo9ua/kxdc
https://paperpile.com/c/GDo9ua/rhbR
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4.3.1.2 Alignment to a reference genome or transcriptome 

After that the quality control and adaptors removing have been performed, trimmed 

reads can now be aligned to a reference genome or transcriptome for their 

identification. In RNAdetector, we give users the opportunity to align reads on a 

reference genome using STAR 62, or HISAT 2 157 or align reads on a reference 

transcriptome using SALMON 64. Instead, for circRNAs analysis reads are mapped on 

the reference genome by using BWA 152. The choice of one strategy over the other 

depends if the user wants to perform a gene-based or transcript-based analysis. In fact, 

it is known that protein-coding genes are not transcribed as a single transcript but many 

human genes go through a process called alternative splicing that allows a single gene 

to produce different transcripts which encode for different protein isoforms. Therefore, 

if users are interested in analyzing the expression profile of splicing variant transcripts, 

the alignment of the reads on a reference transcriptome is the suggested choice. On the 

contrary, if users are interested to summarize transcript expression at gene-level or 

they are interested to analyze small ncRNAs, the alignment of the reads on a reference 

genome is the suggested choice. For both approaches, RNAdetector stores in its remote 

repository human, mouse, and C.elegans indexed genomes and transcriptomes 

together with their relatives' custom GTF and FASTA files which can be downloaded 

directly from our repository by means of the user interface. Concerning the genome-

based alignment, human (HG19 and HG38), mouse (mm9 and mm10) and C.elegans 

(ce11) genomes have been indexed by using STAR 62, HISAT2 63, and BWA 152 and 

included in RNAdetector. Genome annotation for Human, Mouse, and C.elegans is 

also allowed by including several GTF files. Specifically, we included (1) GTF files 

with the genomic coordinates of protein-coding genes, snoRNAs, and lncRNAs 

retrieved from GENCODE for human and mouse (HG19 v19, HG38 v33, mm9 vM1, 

https://paperpile.com/c/GDo9ua/XKU3
https://paperpile.com/c/GDo9ua/k3G7g
https://paperpile.com/c/GDo9ua/Sbca
https://paperpile.com/c/GDo9ua/2W9za
https://paperpile.com/c/GDo9ua/XKU3
https://paperpile.com/c/GDo9ua/GwTV
https://paperpile.com/c/GDo9ua/2W9za
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mm10 vM26) and from ENSEMBL (ce11 WBcel235) for C.elegans (2) custom GTF 

files with the genomic coordinates of miRNAs (retrieved from miRBase 158), piRNAs 

(retrieved from piRBase 140), and tRNA-derived ncRNAs (retrieved from tRFexplorer 

128 for human and from tRFdb 44 for mouse and C.elegans) (3) GTF files with the 

genomic coordinates of human, mouse and C.elegans circRNAs retrieved from 

circBase 141 (4) and a GTF file with the genomic coordinates of human t-UCRs 

retrieved from UCbase 159. Genome-based alignment can be finally performed by 

using STAR 62, HISAT2 157 (both for mRNAs, small ncRNAs, lncRNAs analysis) or 

BWA 152 (for circRNAs analysis). Concerning transcriptome-based alignment, 

RNAdetector has custom human, mouse, and C.elegans transcriptomes indexed by 

SALMON 64 which were built by retrieving the mRNAs and lncRNAs FASTA 

sequence from GENCODE for human and mouse (HG19 v19, HG38 v33, mm9 vM1, 

mm10 vM26) and from ENSEMBL (ce11 WBcel235) for C.elegans. Finally, 

transcriptome-based alignment is performed by aligning reads present in the FASTQ 

files on the indexed transcriptome using SALMON 64. Although RNAdetector has been 

pre-built for human, mouse, and C.elegans RNA-Seq data analysis, other species can 

be analyzed by uploading their genomes and\or transcriptomes (in FASTA format) 

following the step-by-step procedure detailed in the user interface. In that case, fasta 

genomes and/or transcriptomes are automatically indexed by RNAdetector avoiding 

users to use any command-line tools for their indexing. Finally, additional ncRNA 

classes can be analyzed by providing their genomic coordinates in GTF or BED 

format. 

4.3.1.3 Read quantification 

After that reads have been aligned to a reference genome or transcriptome, they have 

to be quantified in order to infer protein-coding genes and\or ncRNAs expression 

https://paperpile.com/c/GDo9ua/NNEA
https://paperpile.com/c/GDo9ua/LSzp
https://paperpile.com/c/GDo9ua/B9ELS
https://paperpile.com/c/GDo9ua/D6Xo
https://paperpile.com/c/GDo9ua/UYDpp
https://paperpile.com/c/GDo9ua/M0RJ
https://paperpile.com/c/GDo9ua/XKU3
https://paperpile.com/c/GDo9ua/k3G7g
https://paperpile.com/c/GDo9ua/2W9za
https://paperpile.com/c/GDo9ua/Sbca
https://paperpile.com/c/GDo9ua/Sbca
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levels. For this purpose, RNAdetector allows users to select among several tools and 

options to perform the read quantification step. Specifically, If users choose the 

genome-based alignment strategy read quantification can be executed by choosing 

HTseq 74, FeatureCounts 75, or SALMON 64 (alignment-based mode). Instead, if users 

choose the transcriptome-based alignment strategy, reads are aligned and quantified 

by SALMON 64 in a single step for a faster and RAM memory saving analysis. 

Concerning circRNAs, a different workflow is executed for their identification and 

quantification. Precisely, reads are first mapped on the reference genome by BWA 152 

and then they can be quantified (for circRNAs already annotated on circBase 152) or 

de-novo identified and quantified by using CIRI 2 153,154 or CIRIquant 155. 

4.3.1.4 Differential expression analysis 

Once the read quantification step is performed, an optional step could be to perform a 

differential expression analysis in order to identify which mRNAs and\or ncRNAs are 

differentially expressed in a case vs control study. For this purpose, we included in 

RNAdetector three of the most common tools for the differential expression analysis 

such as DESeq2 77, edgeR 78, and LIMMA 76. As we discussed in the introduction, 

these three methods use different assumptions, normalization methods, and statistics 

to identify differentially expressed genes. Therefore, they can produce different results 

from the same datasets. However, we included these three different methods in order 

that users can choose the most suitable tool for their analysis. In addition, if users want 

to perform a more stringent analysis, it is also possible to perform the analysis by using 

a combination of these 3 methods or all of them and get only the differentially 

expressed genes and\or ncRNAs that are in common. 

https://paperpile.com/c/GDo9ua/7c1B
https://paperpile.com/c/GDo9ua/vsTF
https://paperpile.com/c/GDo9ua/Sbca
https://paperpile.com/c/GDo9ua/Sbca
https://paperpile.com/c/GDo9ua/2W9za
https://paperpile.com/c/GDo9ua/2W9za
https://paperpile.com/c/GDo9ua/nrWtR+F8j9g
https://paperpile.com/c/GDo9ua/PIJQD
https://paperpile.com/c/GDo9ua/c8HR
https://paperpile.com/c/GDo9ua/shWZ
https://paperpile.com/c/GDo9ua/RjA3
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4.3.1.5 miRNA-sensitive topological pathway analysis 

A final optional step of RNAdetector is the pathway analysis. Pathway analysis could 

be very helpful to understand the effect of the differentially expressed genes on 

metabolic and signaling pathways, allowing a more comprehensive knowledge of the 

biological mechanisms which are in place in the samples under study. For this purpose, 

we have included MITHrIL 93 in RNAdetector. MITHrIL is a topology-based and 

miRNA-sensitive pathway analysis system that allows for the identification of 

perturbed metabolic and signaling pathways starting from the LogFC values obtained 

by the differential expression analysis step. As all the other topology-based pathway 

analysis systems, MITHrIL fully exploits the topological information encoded by 

pathways when computing perturbation scores but in addition to the other methods, 

MITHrIL uses the information of validated miRNA-mRNA interaction to infer the 

impact of miRNAs on pathways. Pathways are then modeled as complex graphs where 

each node is a gene or miRNA and each edge is an interaction between them. Even 

though thousands of genes are not annotated in pathways and existing annotations may 

be inaccurate, graphs contained in these databases provide a more detailed view of 

biological processes within the cell, helping the interpretation of high-throughput 

experiments 90.  

4.3.2 Implementation and software architecture 

RNAdetector is a client-server application developed to simplify deployment and 

usage. The server has been developed in PHP, Bash, and R. All server code and 

dependencies are deployed through a Docker container for easy installation. 

Communication between client and server is based on an HTTP REST API 

specifically developed for RNAdetector. An internal Mysql database is used to store 

https://paperpile.com/c/GDo9ua/Fa3R
https://paperpile.com/c/GDo9ua/z5UA


Alessandro La Ferlita                                                          Materials and Methods 

53 

all server data. Authentication, API Security, and the data abstraction layer has been 

provided by the Laravel framework (https://laravel.com/). The Graphical User 

Interface (GUI) has been developed in Javascript using the Electron framework 

(https://electronjs.org/). Electron is an open-source framework developed and 

maintained by GitHub, allowing the development of desktop GUI applications using 

web technologies. Indeed, RNAdetector is completely offline and it can be used as a 

desktop application with several operating systems such as Windows Professional, 

macOS, and Linux. RNAdetector is distributed as a Docker container in order to 

guarantee an easy deployment and dependencies management and it can also be 

installed in servers and remotely controlled by installing RNAdetector’s app in laptops 

and\or tablets. To install RNAdetector, it is only necessary to install Docker in users’ 

machines and then download the installer specific for the user’s operating systems 

from our repository. After that, users have only to follow the instructions on the 

installation wizard to authorize the installer and proceed with the installation. A 

detailed explanation of how to install Docker and RNAdetector on Windows 

Professional, macOS, and Linux machines is reported at the following link 

https://github.com/alessandrolaferlita/RNAdetector/wiki/Requirements-and-Setup. 

RNAdetector is an open-source tool and it is available for download at 

https://rnadetector.atlas.dmi.unict.it/download.html. Source code and issue reporting 

is available at https://github.com/alessandrolaferlita/RNAdetector.  

4.3.3 Case study analysis 

In order to show an example of RNAdetector‘s analysis, we chose a public small RNA-

Seq project available on NCBI SRA (SRP183064) and we performed a complete 

analysis identifying the differentially expressed small ncRNAs and the impacted 

https://github.com/alessandrolaferlita/RNAdetector/wiki/Requirements-and-Setup
https://rnadetector.atlas.dmi.unict.it/download.html
https://github.com/alessandrolaferlita/RNAdetector
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biological pathways. Precisely, we used very recent small RNA-Seq datasets of Colon 

Rectal Cancer (CRC) 160 and we compared the expression profiles of the CRC samples 

against the adjacent normal tissue samples of the same patients in order to identify the 

differentially expressed miRNAs, snoRNAs, and tRNA-derived ncRNAs. We started 

the analysis from the FASTQ files, raw reads were trimmed and adapters were 

removed by selecting Trim Galore from the user interface. Trimmed reads were then 

aligned to the reference human genome (HG38) and counted by selecting from the 

user interface HISAT 2 157 and featureCounts 75 respectively. Prior to the statistical 

testing procedure, the read counts were filtered for possible artifacts that could affect 

the subsequent statistical testing procedures. After that, the count table was normalized 

for inherent systematic or experimental biases selecting edgeR 78 from the user 

interface as a normalization method after removing features that had zero counts over 

all the RNA-Seq samples. The normalized count matrix was then used for the 

differential expression analysis by selecting limma 76 and edgeR 78 from the 

RNAdetector’s user interface. Finally, in order to combine the statistical significance 

from multiple algorithms and perform a meta-analysis, the Simes correction and 

combination method was applied. Concerning the pathway analysis, it was performed 

by selecting the MITHrIL algorithm 93 which used the LogFC values of miRNAs 

obtained from the differential expression analysis step for its analysis. Pathways with 

FDR or adjusted p-values < 0.01 were considered impacted.

https://paperpile.com/c/GDo9ua/ZCbam
https://paperpile.com/c/GDo9ua/k3G7g
https://paperpile.com/c/GDo9ua/vsTF
https://paperpile.com/c/GDo9ua/shWZ
https://paperpile.com/c/GDo9ua/RjA3
https://paperpile.com/c/GDo9ua/shWZ
https://paperpile.com/c/GDo9ua/Fa3R
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5. Results 

5.1 tRNA-derived ncRNAs and their novel database 

tRFexplorer 

Our software, RNAdetector, aims to analyze an extensive repertoire of different classes 

of coding and ncRNAs including also all the different tRNA-derived ncRNAs 

subclasses. However, for the latter, no previous system for their detection was released 

when the project started in 2018. In addition, at that time there were not extensive 

databases that covered all the different subclasses (already available databases such as 

tRFdb 44 and MINTbase 127 were primarily focused on tRFs deriving from mature 

tRNAs). Therefore, we had to find a strategy to detect all the different tRNA-derived 

ncRNAs subclasses from small RNA-Seq datasets and include them in a novel 

database. Finally, this database will be used to collect all the tRNA-derived ncRNAs 

that it will be possible to analyze with RNAdetector. For this reason, we selected the 

public small RNA-Seq datasets of the NCI-60 cancer cell lines and TCGA in order to 

identify all the expressed tRNA-derived ncRNAs and we included them in a novel 

database called tRFexplorer 128. The results of the analysis and the presentation of 

tRFexplorer are described in more details in the next sections (these results are also 

reported in our paper titled Identification of tRNA-derived ncRNAs in TCGA and NCI-

60 panel cell lines and development of the public database tRFexplorer published in 

2019 128).  

https://paperpile.com/c/GDo9ua/D6Xo
https://paperpile.com/c/GDo9ua/8pzc
https://paperpile.com/c/GDo9ua/B9ELS
https://paperpile.com/c/GDo9ua/B9ELS
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5.1.1 tRNA-derived ncRNAs in NCI-60 cell lines and TCGA 

samples 

In order to identify the human tRNA-derived ncRNAs, we assessed the expression of 

tsRNAs, 5’ leader RNAs, and tRFs from small RNA-Seq datasets of the NCI-60 cell 

lines 131 and TCGA samples. In these datasets, we were able to identify 322 expressed 

tRNA-derived ncRNAs in NCI-60 (11 tRF-5s, 55 tRF-3s, 107 tsRNAs, and 149 5’ 

leader RNAs) and 232 expressed tRNA-derived ncRNAs (53 tRF-5s, 58 tRF-3s, 63 

tsRNAs, and 58 5’ leader RNAs) in TCGA. A number of tsRNAs, 5’ leader RNAs, 

and tRFs identified across NCI-60 cell lines and TCGA samples present noticeable 

expression levels. Moreover, all small RNA sequences mapped within 4 specific 

regions: 5’ end (tRF-5), 3’ end (tRF-3) of mature tRNA, and 3’ trailer (tsRNA) and 5’ 

leader (5’ leader RNAs) regions of primary tRNA genes. If these small RNA 

sequences were the result of a random degradation process, their ends would be 

equally distributed along the lengths of tRNA genes with a comparable frequency 44,45. 

In addition, we can observe that each TCGA cancer type (whose control samples are 

available) displays a different pattern of dysregulated tRNA-derived ncRNAs. Taken 

together, these results may suggest that these small RNAs are not fragments derived 

from the random cleavage of precursor and mature tRNAs, rather they are actively 

expressed and produced by specific ribonucleases and may be dysregulated in several 

human cancers. Indeed, recent evidence has shown dysregulated tRNA-derived 

ncRNAs in Chronic lymphocytic leukemia (CLL), colon, breast, ovary, lung, and 

prostate cancers 30,31,33,161–163. 

https://paperpile.com/c/GDo9ua/2Gnx
https://paperpile.com/c/GDo9ua/D6Xo+xDtmf
https://paperpile.com/c/GDo9ua/JKl0m+OnYXT+hpyH6+Bspql+SttBz+23Rtd
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5.1.2 tRFexplorer 

All identified tRNA-derived ncRNAs have been integrated into a novel database 

named tRFexplorer 128. tRFexplorer is an easy-to-use, web-based database 

(https://trfexplorer.cloud/) containing tRNA-derived ncRNAs expression profiles for 

NCI-60 cell lines and TCGA samples, together with all omics and compound activities 

data available on CellMiner. Leveraging CellMiner data, tRFexplorer enables users to 

perform correlation analysis inferring knowledge on the biological function of such 

molecules 128. Furthermore, a module allowing DE analysis for all tRNA-derived 

ncRNAs in TCGA samples has been released 128. A detailed explanation of 

tRFexplorer functions is provided in the following sections. 

5.1.2.1 Browse 

In the “Browse” section, users can search for tsRNAs, 5’ leader RNAs, and tRFs by 

“location” or “expression”. Browsing by location enables users to search and visualize 

all tRNA-derived ncRNAs in the reference human genome (Fig. 15). Specifically, 

through the custom genome browser, it is possible to interactively search tRNA-

derived ncRNAs either by genomic coordinates or by identifier. 

 

Fig 15. Genome browser available in tRFexplorer  

https://paperpile.com/c/GDo9ua/B9ELS
https://paperpile.com/c/GDo9ua/B9ELS
https://paperpile.com/c/GDo9ua/B9ELS
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Browsing by expression section enables users to filter data using at least one of the 

following options: (i) the type of fragment (tRF-3, tRF-5, tsRNA, and 5’ leader 

RNAs); (ii) the amino acid carried by the precursor tRNA; (iii) the anticodon 

sequence; (iv) the dataset in which the fragment is expressed (TCGA tumor types or 

NCI-60 cell lines); (v) the tissue subtype (normal, tumor, metastatic, recurrent, etc). It 

is also possible to set a minimum RPM threshold for tRNA-derived ncRNAs. The 

search procedure will scan our database looking for all tRNA-derived ncRNAs 

matching users’ criteria, and the results will be reported in a table. Once results become 

available, users may view a page with detailed information by selecting any single 

result. Such a page will show plots for assessing RPM expression levels in both NCI-

60 (Fig. 16 ), and TCGA (Fig. 17). A genomic viewer will show genomic locations 

for each tRNA-derived fragment. 

 

Fig 16. Expression of a tsRNA across all the NCI-60 cell lines 
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Fig 17. Expression of a tsRNA across all the TCGA cancer types 

5.1.2.2 Correlation Analysis 

In the “Correlation Analysis” section, users can perform correlation analyses of all 

identified tsRNAs, 5’ leader RNAs, and tRFs in NCI-60, with the omics and 

compound activities data available on CellMiner 135. Correlation analysis can also be 

performed with mRNA/miRNA expression profiles, as well as patient survival data, 

of TCGA samples. Specifically, the user selects the correlation measure (Pearson or 

Spearman) and which dataset to consider. A list of correlated and anticorrelated tRNA-

derived ncRNAs will be shown. The results can then be filtered by: (i) ncRNA name; 

(ii) genes, miRNAs, compound names; (iii) the genomic coordinates, when available; 

(iv) the minimum correlation value. By clicking on each result, an interactive scatter 

plot with the data of the selected molecules will appear (Fig. 18). 

https://paperpile.com/c/GDo9ua/PQtku
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Fig 18. Scatter plot which shows the correlation between the expression of ts-62 in the NCI-60 cell lines  and the 

expression of the mRNAs in the same cell lines 

5.1.2.3 Differential expression analysis 

In the “differential expression analysis” section, users can perform DE analyses to 

discover which tsRNAs, 5’ leader RNAs and tRFs are dysregulated in TCGA tumor 

types. To start the analysis, users select the cancer type and one of the available 

covariates (gender, race, vital status, sample type, or classification). It is also possible 

to set the maximum p-value and minimum log-fold-change (logFC) for the analysis. 

After selecting all the parameters, users must select at least one contrast to perform for 

the DE analysis, in association with the selected covariate. Once the analysis is 

launched, a list of differentially expressed tRNA-derived ncRNAs with their logFC 

and FDR adjusted p-value will be shown together with an interactive volcano plot to 

better visualize their differential expression (Fig. 19). By clicking on a specific point 

in the plot or row in the table, a swarm plot of the expression values will be also shown 

(Fig. 19). 
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Fig 19. Example of a volcano plot and swarm plot generated by tRFexplorer after the differential expression 

analysis performed on TCGA samples 

5.2 Evaluation of pre-existing ncRNA pipelines 

After the implementation of tRFexplorer and before proceeding with the development 

of RNAdetector, we wanted to evaluate the state of the art of current ncRNA pipelines 

in order to identify their strengths and weaknesses, and therefore, optimize 

RNAdetector by filling the gaps of previous methodologies. For this purpose, the 

performance of eight ncRNA pipelines enabling the processing of RNA-Seq data, 

published between 2015 and 2019, were compared. In particular, we evaluated the 

easiness of installation and usage together with their accuracy to identify ncRNAs and 

their expression levels by using both synthetic and real RNA-Seq datasets. The results 

of this benchmark are described in the next sections (these results are also reported in 

our paper titled A benchmarking of pipelines for detecting ncRNAs from RNA-Seq data  

published in 2019 129). 

https://paperpile.com/c/GDo9ua/sRJb6
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5.2.1 Installation and usage 

Installation, usage easiness and flexibility are crucial characteristics of bioinformatics 

pipelines. Moreover, these characteristics became even more important for the 

distribution of the application to non-expert users. Thus, we evaluated a number of 

features which might influence user experience, such as: (i) setup process, (ii) amount 

and quality of the documentation, (iii) presence of a GUI, (iv) possibility of using 

different input file formats, (v) possibility of analyzing more than one class of ncRNAs 

in a single run, (vi) pipeline flexibility, and (vii) output file formats (txt, pdf, image, 

etc.). In Table 3, we have reported a schematic evaluation of the main features of each 

pipeline. A summary of the criteria used for their evaluation is also reported in the 

supplementary table 4. 

 iSmaRT iSRAP miARma-Seq Oasis 2 SPORTS sRNAnalyzer sRNApipe sRNA 
workbench 

Installation ++ - ++ ++ - + + ++ 

Documentation ++ ++ ++ ++ + + + ++ 

GUI ++ - - ++ - - + ++ 

Different Input Types - + ++ - + - - - 

Report generation ++ ++ ++ ++ ++ + ++ - 

Multi-ncRNAs in single 
analysis 

- ++ - ++ + ++ + - 

Flexibility - + ++ - - - - - 

Usability\configuration ++ + ++ ++ - + ++ ++ 

 

Table 3. Some features possessed by the tested ncRNAs pipelines and their evaluation. 

iSmaRT is provided with a comprehensive documentation, including several 

examples, which guide the user in each step of the installation process and pipeline 

use. A unique file is provided for installation and configuration. The tool comes with 

a user-friendly GUI developed in Python. iSmaRT takes as input FASTQ files only 

and does not allow for starting the analysis from alignment files. Moreover, users 

cannot choose among several tools and options for each step of the pipeline. Different 
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ncRNA classes cannot be analyzed together in a single run. Output is provided as txt 

file and tiff plots. 

 

iSRAP requires manual installation of dependencies. The documentation is 

adequate to describe the tool usage. The configuration file is well structured, providing 

users with the flexibility of selecting at which step initiating the analysis. iSRAP takes 

as input both FASTQ and BAM files. The output is organized in independent folders, 

one for each step, containing txt and pdf files. iSRAP is a CLI tool; therefore, no GUI 

is provided. 

 

miARma-Seq comes with a modular configuration file, permitting users to 

select which step performs. Indeed, it accepts FASTQ, BAM and txt files with raw 

counts. miARma-Seq guide is organized as a tutorial, with an exhaustive 

documentation covering the major features of the pipeline. Although miARma-Seq can 

identify miRNAs, snoRNAs and circRNAs, it is not able to identify circRNAs together 

with miRNAs and snoRNAs in a single run. It is not equipped with a GUI. 

 

Oasis 2 is a web-based tool. No installation of the software or of dependencies 

is required. It is provided with a GUI which makes the tool very user friendly. The 

setting of few parameters, such as the reference genome and specification of which 

adaptors have to be removed, is required. However, Oasis 2 has a very strict workflow 

since users cannot select among different tools and options for each step of the 

pipeline. Oasis 2 user guide is provided as a video tutorial or PDF file. The output is 

organized in several folders. Results are reported as txt tables and plots. Oasis 2 can 
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process simultaneously several classes of ncRNAs (miRNAs, piRNAs and snoRNAs) 

in a single run. 

 

SPORTS1.0 has no setup scripts, therefore, all the parameters must be passed 

directly in the CLI. The provided documentation lists all the dependencies and the 

configuration necessary for users’ machine setup. The workflow is strict, predefined 

and customizability is not allowed. Outputs are provided as pdf documents for each 

ncRNAs class which can be analyzed in the same run. Moreover, a txt file summarizes 

the result. SPORTS1.0 does not have a GUI. 

 

sRNAnalyzer comes with a YAML configuration file, which permits the users 

to customize pre-processing and alignment options. A separate configuration file lists 

the paths for internal database setup. The workflow is very strict since users cannot 

choose among several tools and options for each step of the pipeline. The 

documentation is modest and only lists the required dependencies for the setup. The 

output is organized in profiles and features txt files. sRNAnalyzer does not have a GUI. 

 

sRNApipe requires a Galaxy Server installed on the users’ machine. Galaxy 

handles dependencies’ installation. The documentation is exhaustive regarding the 

pipeline usage; however, it is based on an old release. sRNApipe is very easy-to-use: 

the users only need to upload FASTQ and reference FASTA files. The output is 

organized in html format with text and plots. However, sRNApipe has a static and 

predefined workflow and users cannot choose which tools and parameters must be 

used for the alignment and read counting steps. 

 



Alessandro La Ferlita        Results 

65 

sRNA workbench can be used with both CLI and GUI. It is provided with a 

comprehensive documentation (PDF manuals and video tutorials), available through 

the website (http://srnaworkbench.cmp.uea.ac.uk/). sRNA workbench has been 

developed in Java. It requires the installation of one single dependency (Java FX). The 

tool can be launched by a jar file. sRNA workbench requires FASTQ or FASTA as 

input files. It is not possible to start the analysis at different steps of the pipeline. 

Although, in the sRNA workbench website, it is claimed that it can perform the analysis 

of sRNA, we only found pipelines for the identification and quantification of miRNAs. 

The mapping of miRNAs and sRNA loci on the reference genome is also possible. 

Finally, sRNA workbench presents a static and predefined workflow. 

5.2.2 Pipeline accuracy on synthetic datasets 

The identification of the correct RNA molecules and their quantification is one of the 

crucial tasks which an RNA-Seq analysis pipeline should accomplish. To test the 

ability of the different pipelines in recovering ncRNAs, we prepared two synthetic 

FASTQ files using Flux Simulator 138. Specifically, we built a FASTQ file simulating 

small RNA-Seq data (miRNAs, snoRNAs, piRNAs and tRNA-derived ncRNAs) and 

a FASTQ file for standard RNA-Seq data (mRNAs and lncRNAs). For each ncRNA 

class, we assessed the ability of the pipelines to identify the correct RNA molecules in 

terms of Precision, Sensitivity, and F-measure (Table 4). To determine the accuracy 

in expression profile measure, we computed the R2 coefficient between the real counts 

and the pipeline-quantified ones. Per each tool, we reported the scatterplots to 

visualize the relationship between real counts and predicted ones. 

 

 

https://paperpile.com/c/GDo9ua/FMUC
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 Precision Sensitivity F-measure  

iSmaRT 0.76 0.98 0.85 

miRNA 

iSRAP 0.84 1.00 0.91 

miARma 0.81 0.96 0.88 

Oasis 2 0.36 0.92 0.52 

SPORTS1.0 0.90 0.97 0.93 

sRNAnalyzer 0.18 0.98 0.30 

sRNApipe 0.86 0.92 0.89 

sRNA workbench 0.82 0.79 0.81 

iSmaRT 0.37 0.73 0.49 

piRNA 

iSRAP 0.17 1.00 0.30 

Oasis 2 0.19 0.72 0.30 

sRNAnalyzer 0.71 0.89 0.79 

iSRAP 0.52 1.00 0.68 

snoRNA 

miARma 0.58 0.99 0.73 

Oasis 2 0.37 0.65 0.47 

sRNAnalyzer 0.81 0.95 0.87 

sRNAnalyzer 0.25 0.99 0.40 lncRNA 

 

Table 4. Statistics obtained for each ncRNAs pipeline by using our synthetic RNA-seq dataset. 

miRNAs. Our synthetic small RNA-seq data set comprises 193 miRNA 

sequences, which were analyzed by all eight pipelines. Using this dataset, we 

calculated Sensitivity, Precision and F-measure values for each pipeline, as 

summarized in Table 4. The scatterplots and the R2 computed on the TPs between 

miRNAs expression values identified by each pipeline and the real counts present in 

the simulated data set are reported in Figure 20. SPORTS1.0 is the pipeline 

accomplishing the best performance in detecting miRNAs, followed by iSRAP, 

sRNApipe, miARma-Seq, iSmaRT, sRNA workbench, Oasis 2 and sRNAnalyzer (Table 

4), while sRNA workbench (R2 = 0.96), SPORTS1.0 (R2 = 0.96) and iSRAP (R2 = 

0.96) are the most accurate tools in read count estimation, followed by sRNApipe (R2 

= 0.94), miARma-Seq (R2 = 0.94), iSmaRT (R2 = 0.58), sRNAnalyzer (R2 = 0.52) and 
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Oasis 2 (R2 = 0.38) (Fig. 20). It is noteworthy that all pipelines share a common set of 

FP miRNAs. Although these false positives are covered by a high number of read 

counts, there are specific biological reasons which can explain these unexpected 

results. Indeed, miR-4521 has been recently re-annotated as a tRNA-derived small 

RNAs (tsRNAs), specifically ts-101 30. ts-101 is present in our synthetic small RNA-

seq data set, so it was correctly identified by sRNAnalyzer, SPORTS1.0, Oasis 2, 

iSmaRT, and sRNApipe although as a miRNA. Similarly, miR-3182 and miR-6516 

were identified by a significant number of counts by iSmaRT, miARma-Seq, Oasis 2, 

SPORTS1.0 and sRNAnalyzer because they share sequence similarity with the tRNA-

fragment (tRF) tRFdb-5026a (reported in tRFdb database 44) and the snoRNA ACA 

47, respectively, both contained in our simulated dataset. In addition, miR-214, miR-

522, miR-550b and miR-103b were also identified as FP miRNAs with high counts. 

This artifact could be explained by performing a blastn analysis (version 2.6.0+ 164). 

These miRNAs showed sequence identity (>= 91%) with the following miRNAs 

present in our dataset: miR-3120, miR-519a, miR-550a and miR-103a, respectively. 

 

Fig 20. Scatterplots and the R2 computed on the TPs between miRNAs expression values identified by each 

pipeline and the real counts present in the simulated dataset. 

https://paperpile.com/c/GDo9ua/JKl0m
https://paperpile.com/c/GDo9ua/D6Xo
https://paperpile.com/c/GDo9ua/M8xL
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piRNAs. To determine the accuracy of the pipelines for piRNAs detection, we 

evaluated their ability to detect the 500 different piRNA sequences contained in our 

synthetic data set. Six of eight tested pipelines (iSmaRT, iSRAP, Oasis 2, SPORTS1.0, 

sRNAnalyzer and sRNApipe) are reported to allow for the identification of piRNAs. 

However, SPORTS1.0 does not annotate piRNA sequences, thus, it just reports the 

total number of piRNA mapped reads without detailing the results. sRNApipe instead 

identifies the piRNA sequences mapping on transposable elements (TE) and protein-

coding genes only, and it does not report which are the identified molecules in the 

output. Therefore, we could only consider four of six ncRNAs pipelines for piRNA 

comparison. The pipeline showing the best performance in terms of Sensitivity, 

Precision and F-measure in piRNAs detection is sRNAnalyzer, followed by iSmaRT, 

iSRAP and Oasis 2 (Table 4). In terms of read count accuracy, the best performing one 

is iSRAP (R2 = 0.83), followed by iSmaRT (R2 = 0.66), Oasis 2 (R2 = 0.28) and 

sRNAnalyzer (R2 = 0.08) (Fig. 21). 

 

Fig 21. Scatterplots and the R2 computed on the TPs between piRNAs expression values identified by each 

pipeline and the real counts present in the simulated dataset. 

snoRNAs. To determine the accuracy in snoRNAs detection, we used 100 

different snoRNA sequences present in our synthetic dataset. Six of eight tested 

pipelines (iSRAP, miARma-Seq, Oasis2, SPORTS1.0, sRNAnalyzer, sRNApipe) are 
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claimed to detect snoRNAs. However, also in this case, SPORTS1.0 does not annotate 

snoRNA molecules, providing a summarization of the total number of snoRNAs 

mapped reads, which does not allow for a comparison, while sRNApipe could not 

detect any of the 100 snoRNAs present in the synthetic dataset. Thus, we could 

calculate the statistics for iSRAP, miARma-Seq, Oasis 2 and sRNAnalyzer only. The 

pipeline with the best performance in terms of Sensitivity, Precision and F-measure is 

sRNAnalyzer, followed by miARma-Seq, iSRAP and Oasis 2 (Table 4), while for read 

counts estimation, the best is iSRAP (R2 = 0.81) followed by miARma-Seq (R2 = 0.73), 

sRNAnalyzer (R2 = 0.50) and Oasis 2 (R2 = 0.04) (Fig. 22). 

 

Fig 22. Scatterplots and the R2 computed on the TPs between snoRNAs expression values identified by each 

pipeline and the real counts present in the simulated dataset. 

tRNA-derived ncRNAs. SPORTS1.0 is the only pipeline reported to allow for 

tRNA-derived ncRNAs analysis. Although SPORTS1.0 can identify reads mapped on 

tRNA genes, it does not annotate their specific type and just reports the number of 

mapped reads for each tRNA gene. tRNA-derived ncRNAs are typically classified 

according to their origin within the tRNA gene and belong to two main classes: (i) 

tsRNA, arising from pre-tRNA; (ii) tiRNAs and tRFs, deriving from mature tRNA 25. 

tRF can be further classified in tRF-5 and tRF-3 according to the ribonuclease cleavage 

site within mature tRNA D-loop or T-loop, respectively 25. This annotation is 

https://paperpile.com/c/GDo9ua/hJfxe
https://paperpile.com/c/GDo9ua/hJfxe
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commonly used in tRNA-derived ncRNAs databases, such as tRFdb 44, MINTbase 127 

and also in our tRFexplorer 128. Therefore, we used this annotation for our small RNA-

seq simulated dataset. Specifically, we selected 50 5’ leader tsRNAs, 50 3’ trailer 

tsRNAs, 50 tRF-5 and 50 tRF-3. SPORTS1.0 did not annotate the specific types of 

tRNA-derived ncRNAs, but it only retrieved the number of mapped reads for each 

tRNA gene. For this reason, it was not possible to establish which tRNA-derived 

ncRNAs present in our synthetic data set were detected by the pipeline and an accurate 

performance evaluation could not be performed. 

 

lncRNAs. Among the tested pipelines, sRNAnalyzer is the only one reported to 

analyze lncRNAs. To evaluate its performance, we selected 500 different lncRNA 

sequences from our synthetic long RNA-seq dataset. sRNAnalyzer identified lncRNAs 

with high Sensitivity (0.99) and low precision (0.25) (Table 4). sRNAnalyzer can 

efficiently estimate the lncRNAs expression profile (R2 = 0.96) (Fig. 23). 

 

Fig 23. Scatterplot and the R2 computed on the TPs between lncRNAs expression values identified by 

sRNAnalyzer and the real counts present in the simulated dataset. 

https://paperpile.com/c/GDo9ua/D6Xo
https://paperpile.com/c/GDo9ua/8pzc
https://paperpile.com/c/GDo9ua/B9ELS
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5.2.3 Pipeline similarity and correlation on real datasets 

To go beyond the limited complexity of the RNA species present in a synthetic dataset, 

we also performed a comparative analysis using real data. Specifically, we selected a 

small RNA-Seq dataset retrieved from Sequence Read Archive (SRA) (SRR5689212), 

which belongs to a breast cancer cell line (MDA-MB-231) of the NCI-60 panel 131. 

This dataset covers RNA molecules shorter than 200 nucleotides, thus including all 

the small ncRNAs analyzed in this testing. In addition, to cover lncRNAs and 

circRNAs, we used another RNA-Seq dataset from GDC 

(https://portal.gdc.cancer.gov/legacy-archive/files/0f5ba7d3-6f43-44af-9bbc-

f9b4c09bbfeb), covering the same breast cancer cell line. To evaluate similarities and 

differences in ncRNAs identification among the different pipelines, we used the 

Jaccard similarity coefficient between each couple of pipelines for all small ncRNAs 

classes assessed in this testing (Fig. 24). Next, we calculated the Pearson correlation 

matrix on the common small ncRNAs identified by each pipeline to establish their 

ability in estimating read counts. 

 

Fig 24. Jaccard similarity matrix for small ncRNAs identification 

miRNAs. Concerning miRNAs identification, we observed a high similarity 

between SPORTS1.0 and sRNApipe (J = 0.94), iSRAP and miARma-Seq (J = 0.9) and, 

https://paperpile.com/c/GDo9ua/2Gnx
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to a lesser extent, SPORTS1.0 and sRNA workbench (J = 0.8), sRNApipe and sRNA 

workbench (J = 0.78), iSmaRT and sRNApipe (J = 0.77) and iSmaRT and SPORTS1.0 

(J = 0.77) (see Jaccard similarities in Fig. 24). Pearson correlation matrix calculated 

among miRNAs identified by all the pipelines also showed high correlations in read 

count estimation for all tools (Fig. 25). 

 

Fig 25. Pearson correlation of the common identified miRNA raw counts for each couple of pipelines.  
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piRNAs. Concerning piRNAs identification, we observed generally low 

similarities among the tools, possibly due to the high numbers of FP piRNAs identified 

by each method. iSmaRT and iSRAP are the most similar ones, although at a low level 

(J = 0.31) (Fig. 24). Concerning piRNAs counts estimation, iSRAP, iSmaRT and 

sRNAnalyzer show high correlations, while Oasis 2 seems to be less consistent with 

the others (Fig. 26). 

 

Fig 26. Pearson correlation calculated on the read counts of the common identified piRNAs for each couple of 

pipelines. 

snoRNAs. Concerning snoRNAs identification and quantification, iSRAP, 

miARma-Seq and sRNAnalyzer show very high similarities and correlation. On the 

other hand, Oasis 2 seems to be less consistent with the other tools both in terms of 

similarity and read count estimation (Fig. 24 and Fig. 27). 
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Fig 27. Pearson correlation calculated on the read counts of the common identified snoRNAs for each couple of 

pipelines. 

lncRNAs could be analyzed only with sRNAnalyzer, while circRNAs could be 

evaluated only with miARma-Seq; therefore, comparative statistics could not be 

calculated. Nevertheless, we executed both pipelines with the real RNA-Seq data set 

obtained from GDC and identified 11.715 lncRNA and 819 circRNAs using 

sRNAnalyzer and miARma-Seq, respectively. 

5.3 RNAdetector 

The benchmark of the previous pipelines for the analysis of ncRNAs from RNA-Seq 

data has shown variable accuracies to identify and quantify the different classes of 

ncRNAs. However, major concerns come from their usage. Indeed, we believe that 
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some limitations and shortcomings may have negatively impacted their usage by non-

expert users. Among them, we highlight (i) no Graphical User Interface but only 

command line shell; (ii) software dependencies prior to the pipeline installation; (iii) 

support only for Linux operating systems; (iv) strict workflow; (v) not suitable for the 

analysis of the whole transcriptome (e.g. mRNAs, and\or few classes of ncRNAs 

supported); (vi) no downstream analysis modules (i.e. differential expression analysis 

or pathway analysis); (vii) only few species supported. To overcome these limitations, 

we have developed RNAdetector, a free stand-alone, cross-platform, and user-friendly 

RNA-Seq data analysis software which can be used completely offline by mean of an 

easy-to-use GUI allowing the analysis of coding and ncRNAs from RNA-Seq datasets 

of any sequenced biological species. A detailed description of RNAdetector is 

described in the next sections. 

5.3.1 Software introduction 

RNAdetector has been designed to be extremely easy-to-use, flexible, cross-platform, 

and highly comprehensive, allowing users to analyze not only mRNAs but also 

different classes of ncRNAs. Precisely, several classes of human, mouse, and 

C.elegans ncRNAs such as miRNAs, piRNAs [only for human at this moment], 

snoRNAs, lncRNAs, t-UCR [only for human at this moment], circRNAs, and all 

tRNA-derived ncRNAs classes reported in tRFexplorer 128 and tRFdb 44 are already 

stored in the remote repository of RNAdetector and they can be downloaded directly 

by mean of the user interface allowing an easier analysis. However, additional species 

can also be analyzed by uploading their genomes and\or transcriptomes (in FASTA 

format) and the genomic coordinates (in GTF or BED format) of the RNA molecules 

to be analyzed following the step-by-step procedure detailed in the user interface. 

https://paperpile.com/c/GDo9ua/B9ELS
https://paperpile.com/c/GDo9ua/D6Xo
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More importantly, RNAdetector allows not only the identification and quantification 

of the aforementioned classes, but it also provides downstream analysis modules such 

as differential expression analysis and miRNA-sensitive topological pathway analysis 

93 giving users the opportunity to infer import biological information from their RNA-

Seq data.  

5.3.2 Deployment and installation 

In order to promote a wide use of this tool, we believed that an easy installation and 

dependency management had to be one of its features. For this purpose, RNAdetector 

is distributed as Docker container and automatically installed after its first execution. 

No previous dependencies are needed to be installed in users’ machines and it can be 

used as a simply offline desktop application with several operative systems such as 

Windows Professional, macOS, and Linux. To install RNAdetector, it is only 

necessary to install Docker in users’ machines and then download the installer specific 

for the user’s operating systems from our repository 

https://rnadetector.atlas.dmi.unict.it/download.html. After that, users have only to 

follow the instructions on the installation wizard to authorize the installer and proceed 

with the installation. A detailed explanation of how to install Docker and RNAdetector 

in Windows, macOS and Ubuntu machines is reported at the following link of our 

GitHub page https://github.com/alessandrolaferlita/RNAdetector/wiki/Requirements-

and-Setup. Moreover, RNAdetector can be installed in servers and it can be remotely 

controlled by installing our application in laptops or tablets. No internet connection is 

needed to perform the analysis. In fact, RNAdetector is a completely offline stand-

alone software developed to handle not only public RNA-Seq datasets but also private 

patient-derived RNA-Seq data which are covered by patients' privacy and they cannot 

https://paperpile.com/c/GDo9ua/Fa3R
https://rnadetector.atlas.dmi.unict.it/download.html
https://github.com/alessandrolaferlita/RNAdetector/wiki/Requirements-and-Setup
https://github.com/alessandrolaferlita/RNAdetector/wiki/Requirements-and-Setup
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be analyzed by using other web-based pipelines. However, internet connection is 

needed to update the software. A summary of its system requirements is shown in 

Table 5. 

Feature Description 

Supported operating systems Windows Professional; macOS; Linux 

Dependencies Docker 

Connectivity Offline (Internet connection is only required for the installation and updates) 

Minimum System 
Requirements 

Processor: 6 cores processor 

RAM: 16GB 

Hard drive: 1Tb (space is required to store the analysis of multiple samples) 

Recommended System 
Requirements 

Processor: 8 cores processor or greater 
RAM: 32GB or more 

Hard drive: 2Tb or more (space is required to store the analysis of multiple samples) 

Table 5. RNAdetector’s system requirements 

5.3.3 Functionalities 

One of the different strengths of RNAdetector is its interactive and easy-to-use GUI. 

Our GUI has been implemented to be used by users with no computer programming 

background in order to promote its use both in small research and biomedical 

laboratories. Our GUI allows users to select among several tools and options to 

perform the most suitable analysis for their data. In fact, users can select which input 

files they want to use to start their analysis (e.g., FASTQ, SAM, or BAM), and 

accordingly with RNA-Seq strategy, which class of RNAs they want to analyze. 

Precisely, in addition to the mRNAs, several classes of human, mouse, and C.elegans 

ncRNAs such as miRNAs, piRNAs [only for human at this moment], snoRNAs, 

lncRNAs, t-UCRs [only for human at this moment], circRNAs, and all tRNA-derived 

ncRNAs classes reported in tRFexplorer 128 and tRFdb 44 are already stored in the 

remote repository of RNAdetector and they can be downloaded directly by mean of 

the user interface allowing an easier analysis. However, additional species can also be 

analyzed by uploading their genomes and\or transcriptomes and the genomic 

https://paperpile.com/c/GDo9ua/B9ELS
https://paperpile.com/c/GDo9ua/D6Xo
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coordinates (in GTF or BED format) of the RNA molecules to be analyzed following 

the step-by-step procedure detailed in the user interface. In order to give an extreme 

flexibility to our software, users can also select which tool they want to use for each 

step of the pipeline and its parameters. For the alignment, users can choose to be 

executed on a reference genome by using STAR 62 / HISAT 2 157 or transcriptome by 

using SALMON 64. Indeed, the alignment strategy is a critical point for RNA-Seq data 

analysis, and it must be evaluated accordingly with the purpose of the analysis. For 

example, the alignment of reads to a reference transcriptome with SALMON is the 

suggested strategy to analyze the expression profile of splicing-variant transcripts 

while for other RNA molecules which are not subject to alternative-splicing or to 

summarize read counts at gene-level expression the alignment on a reference genome 

could be a good option. In addition, in order to see the depth of coverage of the mapped 

reads across the entire genome, an offline interactive genome browser based on 

JBrowse 2 137 was integrated in the user interface. Concerning read counting, it can 

also be performed by choosing one of the several available tools such as HTseq 74, 

FeatureCount 75, or SALMON 64. However, for circRNAs the pipeline has a strict 

workflow which consists of aligning the reads on a reference genome with BWA 152 

and then novel or already annotated circRNAs on circBase 141 can be identified and 

quantified by using CIRI 2 153,154 or CIRIquant 155. Optional downstream analysis 

modules on the identified and quantified mRNAs and ncRNAs are also available. 

Specifically, RNAdetector allows users to perform differential expression analysis and 

miRNA-sensitive topological pathway analysis. Normalization and differential 

expression analysis can be performed by DESeq2 77, edgeR 78 , LIMMA 76 or by the 

combination of these three methods accordingly with user preference while miRNA-

sensitive topological pathway analysis is executed by MITHrIL 93 algorithm. MITHrIL 

https://paperpile.com/c/GDo9ua/XKU3
https://paperpile.com/c/GDo9ua/k3G7g
https://paperpile.com/c/GDo9ua/Sbca
https://paperpile.com/c/GDo9ua/qoNe7
https://paperpile.com/c/GDo9ua/7c1B
https://paperpile.com/c/GDo9ua/vsTF
https://paperpile.com/c/GDo9ua/Sbca
https://paperpile.com/c/GDo9ua/2W9za
https://paperpile.com/c/GDo9ua/UYDpp
https://paperpile.com/c/GDo9ua/nrWtR+F8j9g
https://paperpile.com/c/GDo9ua/PIJQD
https://paperpile.com/c/GDo9ua/c8HR
https://paperpile.com/c/GDo9ua/shWZ
https://paperpile.com/c/GDo9ua/RjA3
https://paperpile.com/c/GDo9ua/Fa3R
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fully exploits the topological information encoded by pathways when computing 

perturbation scores and then pathways are modeled as complex graphs where each 

node is a gene or miRNA, and each edge is an interaction between them. Even though 

thousands of genes are not annotated in pathways and existing annotations may be 

inaccurate, graphs contained in these databases provide a more detailed view of 

biological processes within the cell, helping the interpretation of high-throughput 

experiments 90. All the tools used by RNAdetector for each step of the pipeline are all 

well-known and widely used freeware tools with tested and proven efficiency 

individually used by bioinformaticians for the analysis of RNA-Seq data and 

integrated in RNAdetector in order to simplify users’ experience. At this moment, 

RNAdetector supports several species such as human, mouse and C.elegans that are 

already available for download in our remote repository. However, it can also be easily 

used with any other sequenced organisms by uploading their genomes and\or 

transcriptomes in FASTA format following the step-by-step procedures detailed in the 

user interface. A summary of RNAdetector’s functionalities, supported species, RNA 

types, and input files is shown in Table 6. A complete user’s guide is available at the 

Wiki section of our GitHub page at the following link 

https://github.com/alessandrolaferlita/RNAdetector/wiki.  

Feature Description 

Input Files FASTQ; BAM; SAM 

Supported Analysis Quantification; Differential expression analysis; Pathway analysis 

Supported Species Human; Mouse; C.elegans. Additional sequenced species can be analyzed by uploading their genome and\or 

transcriptome in FASTA format following the step-by-step procedure detailed in the user interface. 

Supported RNA types mRNAs; miRNAs; snRNAs; snoRNAs; piRNA [only for human at this moment]; tsRNAs; tUCR [only for 
human at this moment]; lncRNAs; circRNAs. Additional ncRNAs classes can be analyzed by uploading 
their genomic coordinates in GTF or BED format following the step-by-step procedure detailed in the user 

interface. 

Output Files Graphical final report for both Differential Expression Analysis and Pathway Analysis with summary of the 

results, figures, and tables. Text files with raw counts, normalized counts, differentially expressed genes, and 

impacted pathways can also be downloaded. 

 

Table 6. RNAdetector’s supported analysis, species, RNA types and files. 

https://paperpile.com/c/GDo9ua/z5UA
https://github.com/alessandrolaferlita/RNAdetector/wiki
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5.3.4 Final report and output files 

To guarantee an easy interpretation of the results, we believed that an interactive and 

exhaustive report with a summary of the results, tables, and several plots must be 

crucial. Specifically, we developed two different automatic reports for differential 

expression and pathway analysis modules respectively. The report for the differential 

expression analysis is based on metaseqR 156 but we modified it in order to better show 

RNAdetector’s results. It shows a summary of the results with all parameters and input 

options used for the analysis (in order to allow an easier experimental reproducibility), 

and several figures which show the quality of the sequencing and its results such as 

Multidimensional scaling plots, RNA-Seq reads noise plots, Correlation plots, 

Pairwise scatterplots, Box Plots, RNA composition plots, Gene/transcript length bias 

plots, Mean-difference plots, Mean-variance plots, Volcano plots, DEG heatmaps, and 

Meta-analysis Venn diagrams. All the pictures generated by RNAdetector in its final 

report are high quality pictures which can be used for publications and easy results 

interpretation. In addition, an interactive table for each comparison is also present with 

all the results obtained from the analysis. Finally, the entire report for the differential 

expression analysis can also be downloaded as a PDF file for user’s convenience or 

viewed directly through the user interface. Similarly to the differential expression 

analysis report, the report for the miRNA-sensitive topological pathway analysis 

presents a summary with the results and several interactive figures and tables that show 

the biological pathways that have been found perturbed. Also in this case, the entire 

report can be downloaded as a PDF file or viewed directly through the user interface. 

In addition to the final reports, users can also download specific figures shown in the 

report and text files with raw and normalized read count matrices, differentially 

expressed mRNAs\ncRNAs and perturbed pathways. 

https://paperpile.com/c/GDo9ua/jAHMY


Alessandro La Ferlita        Results 

81 

5.3.5 Case study 

In order to show an example of RNAdetector‘s analysis, we chose a public small RNA-

Seq project available on NCBI SRA (SRP183064) and we performed a complete 

analysis identifying the differentially expressed small ncRNAs and the impacted 

biological pathways. Precisely, we used very recent small RNA-Seq datasets of Colon 

Rectal Cancer (CRC) 160 and we compared the expression profiles of the CRC samples 

against the adjacent normal tissue samples of the same patients in order to identify the 

differentially expressed miRNAs, snoRNAs, and tRNA-derived ncRNAs and the 

impacted biological pathways.  The total number of samples used was 12 (6 CRC 

samples and 6 adjacent normal tissue samples). In this case study, two conditions are 

presents (tumor samples and adjacent normal tissue). However, studies with a more 

complex experimental design which present more than two conditions are also 

supported by RNAdetector. Before starting the differential expression analysis, 

RNAdetector performs some quality control analyses whose results are included in the 

final report. For example, through a Multi-Dimensional Scaling (MDS) analysis 

performed by RNAdetector, it is evident that (except for two samples) the CRC 

samples and the normal adjacent tissue samples identify two distinct clusters (Fig. 28). 

 

Fig 28. MDS plot showing the CRC (blue triangles) and adjacent normal tissue (red circles) samples. 

https://paperpile.com/c/GDo9ua/ZCbam
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In addition to the MDS analysis, the correlation analysis also showed high correlations 

between the samples of the same biological condition (Fig. 29) confirming the good 

quality of the samples used for the analysis.  

 

Fig 29. This figure shows a ‘correlogram’ plot generated by RNAdetector in its final report, where the samples 

are hierarchically clustered and the correlations between samples are presented as ellipses inside each cell. 

Each cell represents a pairwise comparison and each correlation coefficient is represented by an ellipse whose 

‘diameter’, direction, and color depict the accordance for that pair of samples. Highly correlated samples are 

depicted as ellipses with narrow diameters, while poorly correlated samples are depicted as ellipses with wide 

diameters. Also, highly correlated samples are depicted as ellipses with a left-to-right upwards direction while 

poorly correlated samples are depicted as ellipses with a right-to-left upwards direction. From the correlogram 

plot is evident how CRC and normal tissue samples form two distinct groups (samples are named with their SRR 

identifiers). 

Through the differential expression analysis, RNAdetector identified 426 statistically 

significant small ncRNAs with a p-value threshold of 0.05 (357 out of 426 with an 

FDR or adjusted p-value < 0.05) and of these, 215 (191 with an FDR or adjusted p-

value < 0.05) were up-regulated, 153 (140 with an FDR or adjusted p-value < 0.05) 

were down-regulated and 58 (26 with an FDR or adjusted p-value < 0.05) were not 
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differentially expressed according to an absolute fold-change cutoff value of 1 in log2 

scale. Precisely, a tRNA-fragment 3’ (tRF-3) named tRFdb-3033a, a tsRNAs named 

ts-112, 87 snoRNAs, and 337 miRNAs were found differentially expressed. The 

complete list of the differentially expressed small ncRNA can be found in the 

supplementary table 5 while in Fig. 30 they are displayed in a volcano plot generated 

by RNAdetector in its final report.  

 

Fig 30. This figure shows a volcano plot generated by RNAdetector in its final report with the up-regulated (red) 

and down-regulated (green) small ncRNAs identified after the comparison between CRC samples vs adjacent 

normal tissue samples. 

The aforementioned numbers refer to the combined analysis performed by LIMMA 

and edgeR selecting only the small ncRNAs which have been found differentially 

expressed by both approaches. A heatmap generated by RNAdetector with the top 100 



Alessandro La Ferlita        Results 

84 

differentially expressed small ncRNAs is also shown in Fig. 31 confirming the 

presence of two distinct clusters.  

 

Fig 31. This figure shows a heatmap generated by RNAdetector with the top 100 differentially expressed small 

ncRNAs. The top 100 deregulated small ncRNAs were selected for their statistical significance in terms of 

smaller adjusted p-value. Also with the top 100 deregulated small ncRNAs, CRC and normal tissue samples form 

two distinct clusters (samples are named with their SRR identifiers). 

After the differential expression analysis, the deregulated miRNAs were used for the 

pathway analysis. In fact, in RNAdetector there is the possibility to perform miRNA-

sensitive topological pathway analyses by using MITHrIL algorithm 93. In this 

experiment, 166 pathways were found significantly impacted (FDR or adjusted p-

value threshold of 0.01) in the CRC samples compared with adjacent normal tissue 

samples due to the alteration in the expression profiles of miRNAs. The complete list 

of the impacted pathways can be found in the supplementary table 6 while in Fig. 32 

they are shown in a volcano plot generated by RNAdetector in its final pathway 

https://paperpile.com/c/GDo9ua/Fa3R
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analysis report. In the end, in order to support the experimental reproducibility, all the 

parameters and input options used for each step of the pipeline are reported in the final 

reports generated by RNAdetector. 

 

Fig 32. This figure shows a volcano plot generated by RNAdetector in its pathway analysis report with the 

significantly impacted pathways. All significantly impacted pathways are represented in terms of their measured 

accumulation (x-axis) and the significance (y-axis). The significance is represented in terms of the negative log 

(base 10) of the p-value so that more significant genes are plotted higher on the y-axis. The dotted lines represent 

the thresholds used to select significantly impacted pathways. Significantly impacted pathways with positive 

accumulation are shown in red, while the negative ones are in blue. 

5.3.6 Feature comparison of RNAdetector against pre-

existing pipelines 

To highlight the extensive feature’ set of RNAdetector, we compared our software 

against some other relevant examples. Specifically, in the next two sections we 

compared RNAdetector against 19 pipelines for RNA-Seq data analysis and 7 pipelines 

for ncRNAs analysis, respectively. 
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5.3.6.1 Feature comparison with previous RNA-Seq pipeline 

Among the RNA-Seq analysis pipelines, we selected ArrayExpressHTS 

(https://www.bioconductor.org/packages/release/bioc/html/ArrayExpressHTS.html), 

BioJupies 94, BioWardrobe 95, DEWE 96, easyRNASeq 97, ExpressionPlot 98, FX 99, 

GENE-counter 100, GeneProf 101, Grape RNA-Seq 102, MAP-RSeq 103, RAP 104, 

RobiNA 105, RSEQtools 106, RseqFlow 107, S-MART 108, TCW 109, TRAPLINE 110 and 

wapRNA 111. Although interesting, some of them present shortcomings that may have 

negatively impacted their usage among non-expert users (a table that shows the 

features of RNAdetector compared with the other methods is presented in the 

supplementary table 7).  For instance, with the exception of web-based and cloud-

based pipelines that do not require a local installation (e.g. BioJupies 94, FX 99, 

GeneProf 101, RAP 104, TRAPLINE 110, and wapRNA 111), all of them have 

dependencies that have to be previously installed in the user’s computer or they require 

the installation and setup of virtual machines. In addition, some of these pipelines do 

not have GUIs (e.g. ArrayExpressHTS, easyRNASeq 97, GENE-counter 100, Grape 

RNA-Seq 102, MAP-RSeq 103, RSEQtools 106, and RseqFlow 107). This limits their 

usage by users who are confident with the command-line shell. Another limiting aspect 

of such pipelines is their low flexibility. In fact, some of these pipelines have no 

customizable work-flows (e.g. BioJupies 94, BioWardrobe 95, ExpressionPlot 98, FX 99, 

Grape RNA-Seq 102, MAP-RSeq 103, RobiNA 105, RseqFlow 107, S-MART 108, TCW 

109, TRAPLINE 110, and wapRNA 111) and, therefore, they do not allow users to select 

the proper tools and options in each step of the pipeline (e.g. alignment, read 

quantification, differential expression analysis, etc.). Finally, important features of an 

RNA-Seq analysis pipeline include 1) the presence of downstream analysis modules, 

2) the presence of a graphical and interactive final report for an easy interpretation of 

https://www.bioconductor.org/packages/release/bioc/html/ArrayExpressHTS.html
https://paperpile.com/c/GDo9ua/6ugiZ
https://paperpile.com/c/GDo9ua/4GsMA
https://paperpile.com/c/GDo9ua/Lmx53
https://paperpile.com/c/GDo9ua/ob6O9
https://paperpile.com/c/GDo9ua/aNHj
https://paperpile.com/c/GDo9ua/YppCL
https://paperpile.com/c/GDo9ua/7FLl
https://paperpile.com/c/GDo9ua/IbFsE
https://paperpile.com/c/GDo9ua/6dCk
https://paperpile.com/c/GDo9ua/Drxc
https://paperpile.com/c/GDo9ua/rrf93
https://paperpile.com/c/GDo9ua/5tZF
https://paperpile.com/c/GDo9ua/SAJIm
https://paperpile.com/c/GDo9ua/6xXo8
https://paperpile.com/c/GDo9ua/UcvJU
https://paperpile.com/c/GDo9ua/VrmF
https://paperpile.com/c/GDo9ua/BTISb
https://paperpile.com/c/GDo9ua/5ABd9
https://paperpile.com/c/GDo9ua/6ugiZ
https://paperpile.com/c/GDo9ua/YppCL
https://paperpile.com/c/GDo9ua/IbFsE
https://paperpile.com/c/GDo9ua/rrf93
https://paperpile.com/c/GDo9ua/BTISb
https://paperpile.com/c/GDo9ua/5ABd9
https://paperpile.com/c/GDo9ua/ob6O9
https://paperpile.com/c/GDo9ua/7FLl
https://paperpile.com/c/GDo9ua/6dCk
https://paperpile.com/c/GDo9ua/Drxc
https://paperpile.com/c/GDo9ua/SAJIm
https://paperpile.com/c/GDo9ua/6xXo8
https://paperpile.com/c/GDo9ua/6ugiZ
https://paperpile.com/c/GDo9ua/4GsMA
https://paperpile.com/c/GDo9ua/aNHj
https://paperpile.com/c/GDo9ua/YppCL
https://paperpile.com/c/GDo9ua/6dCk
https://paperpile.com/c/GDo9ua/Drxc
https://paperpile.com/c/GDo9ua/5tZF
https://paperpile.com/c/GDo9ua/6xXo8
https://paperpile.com/c/GDo9ua/UcvJU
https://paperpile.com/c/GDo9ua/VrmF
https://paperpile.com/c/GDo9ua/BTISb
https://paperpile.com/c/GDo9ua/5ABd9
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the results and 3) the availability of ncRNA analysis settings. Concerning the 

downstream analysis modules, ArrayExpressHTS, easyRNASeq 97, Grape RNA-Seq 

102, RSEQtools 106, do not present any downstream analysis module. On the contrary, 

BioWardrobe 95, ExpressionPlot 98, RobiNA 105, and S-MART 108 include at least one 

tool for the differential expression analysis module while BioJupies 94,  DEWE 96, 

GENE-counter 100, GeneProf 101, RAP 104, RseqFlow 107, TCW 109, TRAPLINE 110, 

and wapRNA 111 allow to perform differential expression analysis and other different 

downstream analyses (see supplementary table 7 for further details). Other pipelines 

do not generate any interactive graphical final report with a summary of the results 

together with figures and tables (e.g. ArrayExpressHTS, easyRNASeq 97, FX 99, 

GENE-counter 100, RSEQtools 106, RseqFlow 107, and TRAPLINE 110) making more 

difficult the interpretation of the obtained results. Finally, as an extremely limiting 

aspect, none of these pipelines allows specific settings for ncRNA analyses. Only 

TRAPLINE 110 and wapRNA 111 enable the analysis of miRNAs and their targets. 

Lastly, some of these compared pipelines such as BioWardrobe 95, DEWE 96, 

ExpressionPlot 98, FX 99, GeneProf 101, RseqFlow 107, and wapRNA 111 are no longer 

maintained. RNAdetector overcomes all these limitations by including all these 

aforementioned features, which might be individually present in specific pipelines, 

with new additional ones in a single integrated solution in order to simplify the user’s 

experience. 

5.3.6.2 Feature comparison with previous ncRNA-Seq pipeline 

We also compared the features of RNAdetector against some recent ncRNA pipelines 

which are able to analyze more than one class of ncRNAs from RNA-Seq data. These 

pipelines are iSmaRT 143, iSRAP 144, miARma-Seq 145, Oasis 2 146, SPORTS1.0 147, 

sRNAnalyzer 148, and sRNApipe 149. All these pipelines are able to identify and 

https://paperpile.com/c/GDo9ua/ob6O9
https://paperpile.com/c/GDo9ua/6dCk
https://paperpile.com/c/GDo9ua/SAJIm
https://paperpile.com/c/GDo9ua/4GsMA
https://paperpile.com/c/GDo9ua/aNHj
https://paperpile.com/c/GDo9ua/5tZF
https://paperpile.com/c/GDo9ua/UcvJU
https://paperpile.com/c/GDo9ua/6ugiZ
https://paperpile.com/c/GDo9ua/Lmx53
https://paperpile.com/c/GDo9ua/7FLl
https://paperpile.com/c/GDo9ua/IbFsE
https://paperpile.com/c/GDo9ua/rrf93
https://paperpile.com/c/GDo9ua/6xXo8
https://paperpile.com/c/GDo9ua/VrmF
https://paperpile.com/c/GDo9ua/BTISb
https://paperpile.com/c/GDo9ua/5ABd9
https://paperpile.com/c/GDo9ua/ob6O9
https://paperpile.com/c/GDo9ua/YppCL
https://paperpile.com/c/GDo9ua/7FLl
https://paperpile.com/c/GDo9ua/SAJIm
https://paperpile.com/c/GDo9ua/6xXo8
https://paperpile.com/c/GDo9ua/BTISb
https://paperpile.com/c/GDo9ua/BTISb
https://paperpile.com/c/GDo9ua/5ABd9
https://paperpile.com/c/GDo9ua/4GsMA
https://paperpile.com/c/GDo9ua/Lmx53
https://paperpile.com/c/GDo9ua/aNHj
https://paperpile.com/c/GDo9ua/YppCL
https://paperpile.com/c/GDo9ua/IbFsE
https://paperpile.com/c/GDo9ua/6xXo8
https://paperpile.com/c/GDo9ua/5ABd9
https://paperpile.com/c/GDo9ua/ixXd
https://paperpile.com/c/GDo9ua/xRfe
https://paperpile.com/c/GDo9ua/jCdX
https://paperpile.com/c/GDo9ua/kTNX
https://paperpile.com/c/GDo9ua/0QXs
https://paperpile.com/c/GDo9ua/99BB
https://paperpile.com/c/GDo9ua/C40p
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quantify different sets of ncRNAs classes with variable accuracy 129. However, many 

of them present similar limitations to those of the previously discussed RNA-Seq 

pipelines (further details are reported in the supplementary table 8). All but miARma-

Seq 145 (that is deployed by docker container), Oasis 2 146 (that is a web-based 

application), and sRNApipe 149 (that is a Galaxy server application) are standalone 

tools that need several dependencies to be previously installed on users’ machines. 

Moreover, only iSmaRT 143, Oasis 2 146, and sRNApipe 149 have a GUI (for the last 

two is web interface). In addition, none of them generate a graphical final report with 

a summary of the results and figures that can help users to interpret the results. 

However, all but sRNAnalyzer 148 generate text files containing the results of the 

analysis together with several plots. Also for such pipelines, users have no chance to 

customize the workflows by selecting the suitable aligners and read-counting tool 

along with several parameters and options. Finally, only iSmaRT 143, miARma-Seq 

145, and Oasis 2 146 allow performing differential expression analysis, miRNA target 

predictions, and GO\pathways enrichment analyses while iSRAP 144 supports only a 

differential expression analysis module. As a final consideration, none of the tested 

ncRNA pipelines are able to analyze a comprehensive list of different classes of 

regulatory ncRNAs (e.g. miRNAs, piRNAs, snoRNAs, tUCRs, lncRNAs, circRNAs, 

and tRNA-derived ncRNAs). Indeed, they are restricted to analyze a small set of 

different classes of ncRNAs which mainly include miRNAs, piRNAs, and snoRNAs 

(for further details see supplementary table 8). 

https://paperpile.com/c/GDo9ua/sRJb6
https://paperpile.com/c/GDo9ua/jCdX
https://paperpile.com/c/GDo9ua/kTNX
https://paperpile.com/c/GDo9ua/C40p
https://paperpile.com/c/GDo9ua/ixXd
https://paperpile.com/c/GDo9ua/kTNX
https://paperpile.com/c/GDo9ua/C40p
https://paperpile.com/c/GDo9ua/99BB
https://paperpile.com/c/GDo9ua/ixXd
https://paperpile.com/c/GDo9ua/jCdX
https://paperpile.com/c/GDo9ua/kTNX
https://paperpile.com/c/GDo9ua/xRfe
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6. Discussion 

As extensively discussed in this PhD thesis, in the last years, NGS technologies are 

boosting our understanding of the molecular mechanisms underlying prokaryotic and 

eukaryotic cell signaling, development, and organization 165. In fact, these 

technologies allow the sequencing of entire genomes in a few days, yielding the 

possibility to detect gene mutations or polymorphisms (e.g., CNV, SNPs, INDEL, 

STR) potentially associated with different diseases 165 (read 1.1 Next Generation 

Sequencing for more details). In addition to the DNA sequencing, NGS platforms are 

also extensively used for transcriptome profiling (RNA-Seq), allowing the 

identification of differentially expressed genes, splicing variants, or complex gene 

rearrangements which could represent driver events in specific diseases 23. Unlike 

other technologies for transcriptome analysis such as Real Time PCR or microarray, 

RNA-Seq allows the analysis of the whole transcriptome. On the contrary, 

hybridization-based approaches have several limitations. Among them, they need 

existing knowledge about the RNA sequences to be analyzed. Therefore, non-

annotated and novel transcripts cannot be analyzed by these technologies. On the other 

hand, RNA-Seq technologies directly identify all the cDNA sequences produced after 

the library preparation. As a consequence, all the RNA species that are present in the 

biological samples are sequenced and analyzed (read 1.2 RNA sequencing for more 

details). This aspect is very important for transcriptome analyses since the real 

complexity of the transcriptome is still to be elucidated. An important factor of such 

complexity is the huge variety of ncRNAs that are produced by the eukaryotic cells. 

As discussed in the introduction, ncRNAs are RNA molecules which do not encode 

https://paperpile.com/c/GDo9ua/TkftI
https://paperpile.com/c/GDo9ua/TkftI
https://paperpile.com/c/GDo9ua/ooGq
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for proteins but represent a considerable amount of the transcriptome involved in many 

aspects of cell physiology 23,24 and they can be classified according to their size or 

function 24 (read 1.2.1 Transcriptome for more details). Upon the increasing research 

interest in ncRNAs, the identification of the different subclasses has emerged as a 

critical issue. Indeed, RNA-Seq produces a dramatically higher amount of data than 

other traditional technologies demanding for fast and effective computational 

approaches 166. For this purpose, several pipelines have been deployed for the analysis 

of gene expression from RNA-Seq data. Relevant examples include BioJupies 94, 

BioWardrobe 95, DEWE 96, easyRNASeq 97, ExpressionPlot 98, FX 99, GENE-counter 

100, GeneProf 101, Grape RNA-Seq 102, MAP-RSeq 103, RAP 104, RobiNA 105, 

RSEQtools 106, RseqFlow 107, S-MART 108, TCW 109, TRAPLINE 110 and wapRNA 

111. In addition, other pipelines have been developed for the analysis of different 

ncRNA classes: DSAP 112, miRanalyzer 113,  miRExpress 114, miRNAkey 115, iMir 116, 

CAP-miRSeq 117, mirTools 2.0 118, sRNAtoolbox 119, miRDeep 2 120, and MapMi 121 

for miRNA analysis;  piPipes 122, PILFER 123, piRNAPredictor 124 and PIANO 125 for 

piRNA analysis; and UClncR 126 for lncRNA analysis. More recent pipelines have also 

been released to analyze small RNA-Seq data allowing the analysis of more than one 

class of ncRNAs such as iSmaRT 143, iSRAP 144, miARma-Seq 145, Oasis 2 146, 

SPORTS1.0 147, sRNAnalyzer 148, sRNApipe 149, and sRNAworkbench 150. However, 

many of these tools present several limitations and shortcomings which have 

negatively impacted their usage by non-expert users highlighting the need for more 

comprehensive, flexible, and easy-to-use free tools that could be used either for 

research or clinical purposes 129. In particular, within a biomedical research setting, 

the availability of stand-alone offline software is crucial to guarantee data safety and 

patient privacy. Therefore, the need for such tools is clearly urgent. To overcome these 

https://paperpile.com/c/GDo9ua/ooGq+0r3GE
https://paperpile.com/c/GDo9ua/0r3GE
https://paperpile.com/c/GDo9ua/asTKB
https://paperpile.com/c/GDo9ua/6ugiZ
https://paperpile.com/c/GDo9ua/4GsMA
https://paperpile.com/c/GDo9ua/Lmx53
https://paperpile.com/c/GDo9ua/ob6O9
https://paperpile.com/c/GDo9ua/aNHj
https://paperpile.com/c/GDo9ua/YppCL
https://paperpile.com/c/GDo9ua/7FLl
https://paperpile.com/c/GDo9ua/IbFsE
https://paperpile.com/c/GDo9ua/6dCk
https://paperpile.com/c/GDo9ua/Drxc
https://paperpile.com/c/GDo9ua/rrf93
https://paperpile.com/c/GDo9ua/5tZF
https://paperpile.com/c/GDo9ua/SAJIm
https://paperpile.com/c/GDo9ua/6xXo8
https://paperpile.com/c/GDo9ua/UcvJU
https://paperpile.com/c/GDo9ua/VrmF
https://paperpile.com/c/GDo9ua/BTISb
https://paperpile.com/c/GDo9ua/5ABd9
https://paperpile.com/c/GDo9ua/Vrph
https://paperpile.com/c/GDo9ua/44NE
https://paperpile.com/c/GDo9ua/RirX
https://paperpile.com/c/GDo9ua/AYAE
https://paperpile.com/c/GDo9ua/9arQ
https://paperpile.com/c/GDo9ua/3ygo
https://paperpile.com/c/GDo9ua/4Qzr
https://paperpile.com/c/GDo9ua/PAVk
https://paperpile.com/c/GDo9ua/E37g
https://paperpile.com/c/GDo9ua/TdZQ
https://paperpile.com/c/GDo9ua/h5IKw
https://paperpile.com/c/GDo9ua/DZgK
https://paperpile.com/c/GDo9ua/KlmF
https://paperpile.com/c/GDo9ua/UGdR
https://paperpile.com/c/GDo9ua/CrWW
https://paperpile.com/c/GDo9ua/ixXd
https://paperpile.com/c/GDo9ua/xRfe
https://paperpile.com/c/GDo9ua/jCdX
https://paperpile.com/c/GDo9ua/kTNX
https://paperpile.com/c/GDo9ua/0QXs
https://paperpile.com/c/GDo9ua/99BB
https://paperpile.com/c/GDo9ua/C40p
https://paperpile.com/c/GDo9ua/rjA0
https://paperpile.com/c/GDo9ua/sRJb6
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limitations, my PhD research project was focused on the development of a free stand-

alone, cross-platform, and user-friendly RNA-Seq data analysis software which can 

be used completely offline by mean of an easy-to-use GUI allowing the analysis of 

coding and ncRNAs from RNA-Seq data of any sequenced biological species. 

However, in order to achieve this goal several steps were required. 

First of all, our software aimed to analyze an extensive repertoire of different classes 

of ncRNAs from RNA-Seq data. However, for tRNA-derived ncRNAs, no previous 

system for their detection was released when the project started in 2018. In addition, 

there were not extensive databases that covered all the different subclasses (already 

available databases such as tRFdb 44 and MINTbase 127 were primarily focused on 

tRFs deriving from mature tRNAs). Therefore, we had to implement our own database 

that collects all the tRNA-derived ncRNAs classes that it will be possible to analyze 

with RNAdetector. For this reason, we selected the public small RNA-Seq datasets of 

the NCI-60 cell lines and TCGA samples in order to identify all the expressed tRNA-

derived ncRNAs and we included them in a novel database called tRFexplorer 128 (for 

more details read 5.1 tRNA-derived ncRNAs and their novel database tRFexplorer). 

Secondly, we wanted to evaluate the state of the art of current ncRNA pipelines in 

order to identify their strengths and weaknesses, and therefore, optimize our software 

by filling the gaps of the previous methodologies. For this purpose, the performances 

of eight ncRNA pipelines enabling the processing of RNA-Seq data, published 

between 2015 and 2019, were compared 129. In particular, we evaluated the easiness 

of installation and usage together with their accuracy to identify ncRNAs and their 

expression levels by using both synthetic and real RNA-Seq datasets 129. The 

benchmark of these pipelines showed variable accuracy to identify and quantify 

different ncRNA classes 129. However, major concerns were related to their 

https://paperpile.com/c/GDo9ua/D6Xo
https://paperpile.com/c/GDo9ua/8pzc
https://paperpile.com/c/GDo9ua/B9ELS
https://paperpile.com/c/GDo9ua/sRJb6
https://paperpile.com/c/GDo9ua/sRJb6
https://paperpile.com/c/GDo9ua/sRJb6
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functionalities and usage 129. In fact, many of them presented (i) no Graphical User 

Interface but only command line shell; (ii) software dependencies prior to the pipeline 

installation; (iii) support only for Linux operating systems; (iv) not suitable for the 

analysis of the whole transcriptome (e.g. few ncRNA classes supported); (v) static 

workflow which does not allow to select among different tools and parameters for each 

step of the pipeline; (vi) no downstream analysis modules (i.e. differential expression 

analysis or pathway analysis); (vii) only few species supported (for more details read 

5.2 Evaluation of pre-existing ncRNA pipelines). 

After taking note of these limitations, we started the development of our software 

RNAdetector. As extensively discussed, RNAdetector was designed as an easy-to-use, 

flexible, cross-platform, and comprehensive pipeline, allowing users to analyze 

mRNAs and ncRNAs of any sequenced biological species (for more details read 5.3.1 

Software introduction). Specifically, RNAdetector allows not only the identification 

and quantification of coding and ncRNAs, but it also provides downstream analysis 

modules such as differential expression analysis and miRNA-sensitive topological 

pathway analysis 93 giving users the opportunity to infer import biological information 

from their RNA-Seq data (for more details read 5.3.3 Functionalities). In order to 

manage the several dependencies, RNAdetector is distributed as a Docker container 

and automatically installed after its first execution. No previous dependencies are 

needed to be installed in users’ machines and it can be used as a simple offline desktop 

application with several operating systems such as Windows Professional, macOS, 

and Linux (for more details read 5.3.2 Deployment and installation). Moreover, 

RNAdetector can be installed in servers and it can be remotely controlled by installing 

our application in laptops or tablets. No internet connection is needed to perform the 

analysis. In fact, RNAdetector is a completely offline stand-alone software developed 

https://paperpile.com/c/GDo9ua/sRJb6
https://paperpile.com/c/GDo9ua/Fa3R
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to handle not only public RNA-Seq datasets but also private patient-derived RNA-Seq 

data which are usually covered by patients’ privacy and they cannot be analyzed by 

using other web-based pipelines. Moreover, to guarantee an easy interpretation of the 

results, we thought that an interactive and complete report with a summary of the 

results, tables, and several plots must be crucial. Therefore, we developed two 

different automatic reports for differential expression analysis and pathway analysis 

respectively that show a summary of the results together with several interactive 

figures and tables. In addition, an interactive genome browser is also present in order 

to visualize the depth of coverage of mapped reads produced by RNAdetector (for 

more details read 5.3.4 Final report and output files). Finally, by comparing the 

features of RNAdetector against some relevant RNA-Seq and ncRNA-Seq analysis 

pipelines, we showed that some shortcomings are shared between the previous RNA-

Seq and ncRNA-Seq pipelines. However, RNAdetector fills these important gaps by 

combining several features with new additional ones in a single one-stop-shop 

software to simplify the user's experience allowing, at the same time, a complete 

analysis of RNA-Seq data (for more details read 5.3.6 Feature comparison of 

RNAdetector against pre-existing pipelines). 
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7. Conclusions 

In conclusion, in this PhD thesis, I have presented my research project that led the 

development of RNAdetector, a free stand-alone, cross-platform and user-friendly 

software for the analysis of coding and ncRNAs from RNA-Seq data of any sequenced 

biological species. Among its key features we stress: (i) it is freely available for non-

commercial usage; (ii) thanks to our Docker-based backend, RNAdetector can be 

easily installed and deployed in any operating system; (iii) it has an intuitive GUI that 

allows researchers with no programming background to be shortly productive; (iv) our 

internal repository contains the latest updates to all supported genomes and 

transcriptomes; (v) it is omni-comprehensive, in fact, all ncRNAs classes already 

discovered for sequenced organisms can be analyzed; (vi) it is flexible, indeed it 

allows users to select among several tools and options for each step of the pipeline; 

(vii) finally our integrated reporting solution can be used to easily visualize and share 

results. In the end, we believe that RNAdetector is a timely system that could fill an 

important gap between the needs of biomedical and research labs to process RNA-Seq 

data and their common lack of technical background in performing such analyses 

which usually relies in outsourcing through third parties bioinformatics facilities or 

using expensive commercial software. 
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Future perspectives 

RNAdetector is open-source software that will undergo future developments with the 

aim of increasing its functionalities. Specifically, we are planning to 1) add new 

downstream analysis modules such as differential exon usage analysis, alternative 

polyadenylation analysis, and detection of fusion-transcript; 2) implement a cloud-

version of RNAdetector for iOS and Android mobile devices. Finally, with the 

advancement in the functional annotation of the newly emergent classes of ncRNAs, 

we hope to add additional downstream analysis modules for their functional 

characterization.
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Availability 

tRFexplorer 

-Website https://trfexplorer.cloud/browse 

RNAdetector 

 -Home page https://rnadetector.atlas.dmi.unict.it/index.html  

 -Download https://rnadetector.atlas.dmi.unict.it/download.html  

 -User guide https://github.com/alessandrolaferlita/RNAdetector/wiki  

-Operating system(s):   Windows Professional, macOS, Linux. 

-Programming language:  JavaScript, PHP, Perl, Shell, R. 

-Other requirements:   Docker. 

-License: Creative Commons Attribution-ShareAlike 4.0 International license. 

-Any restrictions to use by non-academics: no restrictions.

https://trfexplorer.cloud/browse
https://rnadetector.atlas.dmi.unict.it/index.html
https://rnadetector.atlas.dmi.unict.it/download.html
https://github.com/alessandrolaferlita/RNAdetector/wiki
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Supplementary tables 

Supplementary table 1 - NCI-60 cell lines and their public small RNA-Seq datasets. 

 

Cell line Type of cancer SRA dataset 

T-47D BREAST SRR5689215 

MCF-7 BREAST SRR5689213 

MDA-MB-231 BREAST SRR5689212 

BT-549 BREAST SRR5689211 

HS-578T BREAST SRR5689210 

SF-295 CNS SRR5689217 

SF-268 CNS SRR5689216 

SF-539 CNS SRR5689214 

U251 CNS SRR5689209 

SNB-75 CNS SRR5689208 

SNB-19 CNS SRR5689175 

HCT-116 COLON SRR5689179 

HT-29 COLON SRR5689178 

KM12 COLON SRR5689177 

SW-620 COLON SRR5689176 

COLO 205 COLON SRR5689174 

HCT-15 COLON SRR5689173 

HCC2998 COLON SRR5689172 

MOLT-4 LEUKEMIA SRR5689193 

K-562 LEUKEMIA SRR5689192 

SR LEUKEMIA SRR5689191 

RPMI 8226 LEUKEMIA SRR5689190 

CCRF-CEM LEUKEMIA SRR5689183 

HL-60(TB) LEUKEMIA SRR5689182 

LOX-IMVI MELANOMA SRR5689197 

MALME-3M MELANOMA SRR5689196 

MDA-MB-435 MELANOMA SRR5689195 

M14 MELANOMA SRR5689194 

SK-MEL-5 MELANOMA SRR5689189 
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SK-MEL-28 MELANOMA SRR5689188 

UACC-62 MELANOMA SRR5689167 

UACC-257 MELANOMA SRR5689164 

SK-MEL-2 MELANOMA SRR5689165 

NCI-H522 NSCLC SRR5689201 

NCI-H460 NSCLC SRR5689200 

HOP 62 NSCLC SRR5689171 

NCI-H23 NSCLC SRR5689170 

EKVX NSCLC SRR5689169 

HOP 92 NSCLC SRR5689168 

A549 NSCLC SRR5689166 

NCI-H322M NSCLC SRR5689163 

NCI-H226 NSCLC SRR5689162 

OVCAR-5 OVARIAN SRR5689207 

OVCAR-4 OVARIAN SRR5689206 

OVCAR-8 OVARIAN SRR5689205 

OVCAR-3 OVARIAN SRR5689204 

NCI/ADR-RES OVARIAN SRR5689203 

IGR-OV1 OVARIAN SRR5689202 

SK-OV-3 OVARIAN SRR5689198 

DU-145 PROSTATE SRR5689199 

PC-3 PROSTATE SRR5689187 

A498 RENAL SRR5689186 

CAKI-1 RENAL SRR5689185 

786-0 RENAL SRR5689184 

SN12C RENAL SRR5689181 

TK-10 RENAL SRR5689180 

UO-31 RENAL SRR5689161 

ACHN RENAL SRR5689160 

RXF393 RENAL SRR5689159 

 

 

 

 

 

 

 

 



Alessandro La Ferlita       Supplementary tables 

116 

Supplementary table 2 - Analyzed TCGA samples. 

 

Tumor type Tumor name Tumor 
samples 

Control 
samples 

ACC Adrenocortical Carcinoma 79  

BLCA Bladder Urothelial Carcinoma 408 19 

BRCA Breast invasive carcinoma 1101 113 

CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma 306 3 

CHOL Cholangiocarcinoma 36 9 

COAD Colon adenocarcinoma 459 41 

DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma 48  

ESCA Esophageal carcinoma 185 11 

GBM Glioblastoma multiforme 167  

HNSC Head and Neck squamous cell carcinoma 522 44 

KICH Kidney Chromophobe 66 25 

KIRC Kidney renal clear cell carcinoma 534 72 

KIRP Kidney renal papillary cell carcinoma 291 32 

LAML Acute Myeloid Leukemia 173  

LGG Brain Lower Grade Glioma 533  

LIHC Liver hepatocellular carcinoma 374 50 

LUAD Lung adenocarcinoma 517 59 

LUSC Lung squamous cell carcinoma 501 51 

MESO Mesothelioma 87  

OV Ovarian serous cystadenocarcinoma 309  

PAAD Pancreatic adenocarcinoma 179 4 

PCPG Pheochromocytoma and Paraganglioma 184 3 

PRAD Prostate adenocarcinoma 498 52 

READ Rectum adenocarcinoma 166 10 

SARC Sarcoma 263 2 

SKCM Skin Cutaneous Melanoma 472 1 

STAD Stomach adenocarcinoma 414 35 

TGCT Testicular Germ Cell Tumors 139  

THCA Thyroid carcinoma 513 59 

THYM Thymoma 120 2 

UCEC Uterine Corpus Endometrial Carcinoma 546 23 

UCS Uterine Carcinosarcoma 57  

UVM Uveal Melanoma 80  

  10327 720 
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Supplementary table 3 - CellMiner’s datasets included in tRFexplorer. 

 

CellMiner Dataset Description 

DNA CNV - Roche 
NibleGen 385K aCGH 

385K element tiling array based on NCBI Build 35 of the human genome (HG17) and re-mapped to 
NCBI Build 35 (HG19); 50-mer tiling with a median probe spacing of 6,000 bp. 

DNA CNV - Combined 
aCGH 

Probe intensities combined from four platforms: Agilent Human Genome CGH Microarray 44A, 
Nimblegen HG19 CGH 385K WG Tiling v2.0, Affymetrix GeneChip Human Mapping 500k Array Set 
and Illumina Human1Mv1_C Beadchip 

DNA SNP per Gene - 
Affy 500K 

This platform is used for whole-genome association studies. It is comprised of two arrays which enable 
genotyping of more than 500,000 single nucleotide polymorphisms (SNPs). 

DNA SNP per Gene - 
Illumina 1M SNP 

BeadChip array based on Illumina's Infinium Assay with probes for 1072820 SNPs 

DNA Methylation - 
Illumina 450K 

Approximately 450,000 probes querying the methylation status of CpG sites within and outside of 
genes. 

RNA Affy HG-U133_AB Human Genome U133. 44,000 probeset 2-chip set. Gene expression. 

RNA Affy HG-U133 
Plus 2.0 

Aproximately 47,000 transcripts 

RNA Affy HuEx 1.0 1432155 probesets for all human gene exons 

RNA Agilent Human 
mRNAs 

44,000 Probes for approximately 41,000 genes, with 4 arrays spotted on each slide. 

RNA Expression 
Combined z-scores 

Gene expressions 

RNA Agilent Human 
miRNAs 

15,000 probes for 723 human and 76 human viral miRNA's. Each slide contains 8 arrays. 

RNA microRNA OSU 
V3 Chip 

Custom microarray developed at Microarray Shared Resource Comprehensive Cancer Center, OSU 
microarray facility. It contains 11k probes (2 technical replicates) for murin and human microRNAs 
together with hypothetical microRNAs and control probes. 

RNA ABC Transporters 
Array 

47 specific oligonucleotide probes were designed for each of the ABC transporters using DNAStar 
Primer Select. Expression levels were measured by real-time quantitative RT-PCR using the 
LightCycler RNA Amplification SYBR Green kit and a LightCycler machine. 

RNA OSU Transporter 
Array 

Spotted 70-mer microarray 

Protein Lysate Array Reverse-phase lysate arrays (RPLA) for 162 antibodies for 94 genes. Each array included 64 lysates 
(60 cancer cells and 4 replicate control pools) in 10 serial two-fold dilutions. 

Compound Activities Negative log10 (GI50) values of sulforhodamine B assay for ~ 50K compounds, including more than 
20,000 that passed quality control, 158 Food and Drug Administration approved and 79 clinical trial 
drugs. Higher values equate to higher sensitivity of cell lines. 
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Supplementary table 4 - Criteria used for the evaluation of the ncRNA pipelines. 

 

Criteria - + ++ 

Installation Manually Dependencies 
Installation. 

Acceptable difficulty. It 
required manually 
installation of some tools, 
automatically 
dependency installation. 

Very simple, all in-one 
installer package, run with 
single command, or 
installation is not required. 

Documentation Unclear, not available or 
very incomplete. 

Not fully clear, 
incomplete (not explain 
every step). 

Comprehensive, focused 
and clear (documentation 
explains every steps). 

GUI Absent, only command 
line. 

Present, GUI of third-
party tool. 

Present, proprietary GUI 
or Web Interface. 

Different Input Types Accepted single input 
type (e.g. FASTQ files). 

Accepted FASTQ or 
BAM files. 

Accepted FASTQ or BAM 
or txt files. 

Report generation Report output in a single 
file type. 

Report output in different 
file types. 

Report output in different 
file types and plot graphs. 

Multi-ncRNAs in single 
analysis 

Single ncRNA class 
analyzed in a single run. 

Multi ncRNA classes 
analyzed in a single run 
but some of them are not 
annotated. 

Multi ncRNA classes 
analyzed in a single run. 

Flexibility It is not possible to start 
the analysis at different 
steps of the pipeline. 

It is possible to start the 
analysis at different steps 
of the pipeline. 

It performs different types 
of analysis, and it is also 
possible to start the 
analysis at different steps 
of the pipeline. 

Usability/Configuration Configuration file missed 
or few parameters to set. 

Configuration file present 
but not well organized. 

Configuration file is very 
simple to use and set. 
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Supplementary table 5 - Differentially expressed small ncRNAs found in the case 

study datasets. 

 

gene_id meta_p-value meta_FDR log2_normalized_fold_change 

MIMAT0003215 4,18E-14 3,57E-11 4,880170987 

MIMAT0026615 2,31E-12 9,86E-10 5,300302331 

MIMAT0004598 9,35E-12 2,66E-09 3,458329062 

MIMAT0000770 1,85E-11 3,96E-09 -7,194756854 

MIMAT0000437 2,51E-11 4,30E-09 -4,835322132 

MIMAT0001536 3,82E-11 5,45E-09 4,62771123 

MIMAT0000427 8,12E-11 8,89E-09 -5,692386084 

MIMAT0000250 8,31E-11 8,89E-09 -3,118014746 

MIMAT0000435 1,13E-10 1,07E-08 -4,62398685 

MIMAT0000416_1 1,46E-10 1,25E-08 -5,235100391 

MIMAT0000416 5,47E-10 4,25E-08 -5,309290158 

MIMAT0000072 7,13E-10 4,77E-08 2,870442925 

MIMAT0001620 7,65E-10 4,77E-08 3,97402926 

MIMAT0004764 7,81E-10 4,77E-08 -6,609604962 

MIMAT0004601 9,70E-10 5,53E-08 -3,607127298 

MIMAT0000682 1,21E-09 6,46E-08 4,280589831 

MIMAT0002806 1,41E-09 7,11E-08 -7,011742202 

MIMAT0000758 1,78E-09 8,00E-08 4,371877391 

MIMAT0004552 1,87E-09 8,00E-08 -3,592017258 

MIMAT0004614 1,88E-09 8,00E-08 -2,740969939 

MIMAT0000252_2 1,96E-09 8,00E-08 4,076859939 

MIMAT0004958 2,41E-09 9,36E-08 4,07570966 

MIMAT0000318 2,85E-09 1,06E-07 3,887672204 

MIMAT0000103 3,45E-09 1,23E-07 -3,388236653 

MIMAT0000427_1 4,15E-09 1,42E-07 -5,425182057 

MIMAT0004549 5,49E-09 1,81E-07 2,913633385 

MIMAT0003242 6,14E-09 1,95E-07 4,101143416 

MIMAT0000707 7,44E-09 2,27E-07 -3,781719876 

MIMAT0000432 1,02E-08 3,00E-07 3,429979447 

MIMAT0000243 1,70E-08 4,69E-07 3,161058641 

MIMAT0000259 1,70E-08 4,69E-07 3,619512847 

MIMAT0001413 1,88E-08 4,91E-07 -3,425606741 

MIMAT0004599 1,90E-08 4,91E-07 -3,732768282 

MIMAT0031177 2,42E-08 6,05E-07 3,734188509 

U72 2,48E-08 6,05E-07 2,953751323 
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MIMAT0000073 3,02E-08 7,16E-07 2,955734092 

MIMAT0005899 4,47E-08 1,03E-06 3,219215598 

MIMAT0000095 5,21E-08 1,17E-06 3,183166164 

MIMAT0003321 7,06E-08 1,55E-06 2,67516031 

MIMAT0000261 7,39E-08 1,58E-06 4,121599658 

MIMAT0004571 9,10E-08 1,90E-06 3,275041707 

MIMAT0004698 1,33E-07 2,69E-06 3,888628389 

MIMAT0004494 1,35E-07 2,69E-06 2,174769461 

MIMAT0000443 1,51E-07 2,93E-06 -2,455595591 

MIMAT0000267 1,92E-07 3,56E-06 2,479324126 

MIMAT0004560 1,92E-07 3,56E-06 3,75826539 

MIMAT0000281 2,39E-07 4,35E-06 3,132996332 

ACA43 2,45E-07 4,36E-06 2,606821935 

HBII-95 3,76E-07 6,56E-06 2,374065718 

MIMAT0004608 4,25E-07 7,17E-06 3,913016698 

MIMAT0000071 4,28E-07 7,17E-06 2,202091642 

MIMAT0000088 4,44E-07 7,31E-06 -2,856701713 

U23 6,57E-07 1,03E-05 2,489178962 

MIMAT0005796 6,62E-07 1,03E-05 -1,997011196 

MIMAT0000738 6,79E-07 1,04E-05 -5,394768902 

HBII-99B 7,19E-07 1,08E-05 2,227930605 

MIMAT0000691 9,30E-07 1,37E-05 2,366970571 

MIMAT0019814 9,92E-07 1,44E-05 4,407139762 

MIMAT0004548 1,72E-06 2,45E-05 -3,624490865 

MIMAT0004615 2,58E-06 3,62E-05 -2,139789283 

MIMAT0002891 2,72E-06 3,75E-05 2,116409492 

MIMAT0000457 3,05E-06 4,09E-05 2,584962501 

ACA58 3,06E-06 4,09E-05 2,349584438 

MIMAT0003393 3,15E-06 4,14E-05 2,066882865 

MIMAT0000423_1 3,42E-06 4,44E-05 -2,72131056 

U71d 3,60E-06 4,59E-05 2,304467125 

MIMAT0000422_1 3,76E-06 4,73E-05 -3,91753784 

MIMAT0004752 4,00E-06 4,90E-05 -4,392317423 

MIMAT0004592 4,01E-06 4,90E-05 -2,644848908 

MIMAT0004517 4,21E-06 5,07E-05 -2,961180751 

MIMAT0000617 4,52E-06 5,36E-05 2,903522357 

MIMAT0004925 5,08E-06 5,95E-05 -4,790076931 

MIMAT0022709 5,49E-06 6,34E-05 2,450032921 
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MIMAT0004657 5,89E-06 6,72E-05 3,151309323 

ACA31 6,07E-06 6,83E-05 2,812848584 

MIMAT0000085 6,41E-06 7,12E-05 -2,238707235 

MIMAT0002874 8,63E-06 9,46E-05 2,607667031 

MIMAT0000460_1 8,95E-06 9,58E-05 4,010533868 

MIMAT0000423 8,96E-06 9,58E-05 -2,902988347 

MIMAT0000075 1,03E-05 0,000109173 1,788093537 

MIMAT0004680 1,13E-05 0,000117753 1,897011687 

MIMAT0000066 1,17E-05 0,000120548 -2,079883022 

MIMAT0000074_1 1,23E-05 0,000125177 1,974206381 

MIMAT0003260 1,27E-05 0,000128219 3,652076697 

MIMAT0026478 1,37E-05 0,000136432 -4,349408831 

MIMAT0000449 1,41E-05 0,000138241 3,075625573 

MIMAT0004673 1,68E-05 0,000163343 -1,614425802 

ts-112 1,80E-05 0,000173395 -2,022507399 

MIMAT0004507 2,13E-05 0,000201982 2,077286001 

MIMAT0003294 2,16E-05 0,000202986 2,360747344 

MIMAT0004928 2,22E-05 0,000205913 3,172099373 

MIMAT0000728 2,35E-05 0,000215767 3,173073233 

MIMAT0000222 2,54E-05 0,000231084 3,850451278 

MIMAT0004543 3,23E-05 0,000290357 3,916806064 

U28 3,40E-05 0,00030018 1,602810502 

MIMAT0000752 3,41E-05 0,00030018 -2,198897632 

MIMAT0004504 3,50E-05 0,00030511 4,273583703 

MIMAT0000276 3,67E-05 0,000317144 2,516249751 

U68 3,76E-05 0,000321151 2,13258564 

MIMAT0000091 3,94E-05 0,000333167 1,964852056 

MIMAT0022842 4,13E-05 0,000346563 2,038039361 

MIMAT0002875 4,22E-05 0,000350181 -2,533059731 

U17b 4,47E-05 0,000367267 2,147295002 

MIMAT0001636 4,76E-05 0,000387322 2,790076931 

MIMAT0019981 5,06E-05 0,00040585 2,921997488 

MIMAT0022727 5,08E-05 0,00040585 1,943956417 

MIMAT0004588 5,22E-05 0,000413254 -1,722316808 

MIMAT0004515 5,92E-05 0,000464586 -1,642651159 

MIMAT0000070 6,08E-05 0,000472543 1,58033653 

MIMAT0003888 6,18E-05 0,000476308 -1,955215043 

MIMAT0000418 6,95E-05 0,000530323 -1,946789094 
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MIMAT0000275_1 7,07E-05 0,000534908 -2,61169385 

MIMAT0000087 7,39E-05 0,000554273 -2,568156239 

MIMAT0000419 7,50E-05 0,000557933 -1,62956557 

MIMAT0000094 8,76E-05 0,000646007 1,942460476 

U15A 9,26E-05 0,000676611 1,841818332 

U17a 0,000102261 0,00073592 2,067057467 

MIMAT0000074 0,000103103 0,00073592 2,084064265 

MIMAT0003220 0,000103727 0,00073592 2,2410081 

MIMAT0004502 0,000104148 0,00073592 -1,781420382 

MIMAT0022721 0,000110478 0,000774254 3,843983844 

MIMAT0004703 0,000124336 0,000864284 2,465781566 

MIMAT0004683 0,000136731 0,00094278 1,630327805 

MIMAT0000090 0,000141476 0,000967696 1,693202243 

MIMAT0000226_1 0,000149066 0,001011522 2,869777423 

MIMAT0004671 0,000152224 0,001020633 3,249196709 

U36A 0,000152797 0,001020633 1,774707688 

MIMAT0004978 0,000161676 0,001069423 2,902702799 

MIMAT0000076 0,000163008 0,001069423 1,751763387 

MIMAT0000425 0,000163853 0,001069423 -1,897493391 

MIMAT0004485 0,000170682 0,001105557 -1,945086919 

MIMAT0000680 0,000176842 0,001127579 1,314448261 

MIMAT0000773 0,000177607 0,001127579 -1,881737118 

HBII-240 0,000178039 0,001127579 2,125530882 

MIMAT0004550 0,000183383 0,001152887 -2,570193041 

MIMAT0031175 0,000189967 0,001185558 -4,181897643 

MIMAT0019220 0,000202208 0,001252808 2,566346823 

MIMAT0001635 0,000218709 0,001345296 2,25947088 

MIMAT0003249 0,000227131 0,001387123 2,480525091 

MIMAT0000428_1 0,000231065 0,001401137 -3,037089319 

MIMAT0000731 0,000233118 0,001403186 -1,996729323 

MIMAT0004793 0,000234685 0,001403186 2,554588852 

MIMAT0000772 0,000261533 0,00155285 1,441356673 

MIMAT0003389 0,00030845 0,001818042 2,494618566 

MIMAT0004493 0,000310449 0,001818042 1,435386145 

MIMAT0000089 0,000314113 0,001826984 2,625214668 

U36B 0,000318282 0,001832429 1,508109582 

U71b 0,000319336 0,001832429 1,752213368 

MIMAT0026720 0,000338221 0,001920766 -2,44625623 
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MIMAT0001341 0,000339223 0,001920766 1,724000699 

MIMAT0030020 0,000341488 0,001920869 2,529253068 

MIMAT0004983 0,000346851 0,001938287 1,972414168 

MIMAT0003385 0,00035393 0,001965003 -3,222392421 

MIMAT0015053 0,000370406 0,002043207 2,61667136 

ACA28 0,00037866 0,002060227 1,994304803 

MIMAT0000434 0,000378831 0,002060227 2,056471564 

MIMAT0001625 0,00038072 0,002060227 3,129283017 

MIMAT0000260 0,000406443 0,002185588 2,276124405 

ACA3-2 0,000422336 0,002256857 1,83051911 

MIMAT0000461 0,000437991 0,002325977 -1,699073713 

MIMAT0004511 0,000443508 0,002340735 -2,620237975 

MIMAT0000689 0,000449628 0,002358476 -1,634989303 

MIMAT0000077 0,000461493 0,002405953 -1,449365269 

MIMAT0003297 0,00049638 0,002563554 -1,587692293 

MIMAT0002173 0,000497719 0,002563554 4,834692334 

MIMAT0000080 0,000538767 0,00274194 -1,314627839 

MIMAT0000097 0,00056041 0,002835208 -2,627655225 

MIMAT0018184_1 0,000563833 0,002835748 -4,142957954 

MIMAT0022717 0,00058822 0,002941099 -4,475733431 

MIMAT0000082_1 0,000593093 0,002948226 -1,203183813 

ACA44 0,000614801 0,003038467 1,677167678 

MIMAT0000429 0,000642223 0,003155749 -3,663333564 

MIMAT0000098 0,000672766 0,003284799 -2,036394902 

MIMAT0004503 0,000676169 0,003284799 1,512450001 

MIMAT0000438 0,000697506 0,00336931 -1,49562312 

MIMAT0004603 0,000705948 0,00339093 -2,369827797 

MIMAT0004498 0,000717161 0,003425548 1,816799768 

MIMAT0004909 0,000732177 0,003477841 1,948594095 

U33 0,000777165 0,003670318 1,157293444 

U106 0,000781592 0,003670318 1,459789593 

HBII-13 0,000785577 0,003670318 -1,255216268 

MIMAT0000065 0,000794853 0,003693472 -1,042143336 

U20 0,000832691 0,003841462 1,452409293 

MIMAT0000093 0,000839208 0,003841462 1,018581386 

MIMAT0000718 0,000844338 0,003841462 -1,345467652 

ACA8 0,000844672 0,003841462 1,857120044 

MIMAT0000424_1 0,000862572 0,003902113 -2,399930607 
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U64 0,000875476 0,003934278 1,749565631 

U47 0,000878885 0,003934278 1,480968739 

MIMAT0000064 0,00089301 0,003976685 -2,372478696 

ACA63 0,000903851 0,003986675 -1,498453507 

MIMAT0003880 0,000904579 0,003986675 1,40599236 

MIMAT0002820 0,00096782 0,004221866 -1,460470924 

MIMAT0004505 0,001051484 0,004552086 1,285242071 

MIMAT0004951 0,001054779 0,004552086 -1,551871714 

MIMAT0018965 0,001059491 0,004552086 2,781359714 

MIMAT0000715 0,001100713 0,004705547 -1,299707512 

U13 0,001147168 0,004879743 1,808537556 

MIMAT0000430_1 0,001187268 0,005025319 -1,993135459 

MIMAT0004763 0,001205884 0,005078969 -2,453172628 

U43 0,001223454 0,005127711 -1,262935455 

MIMAT0004586 0,001245471 0,005175687 1,663152949 

MIMAT0023712 0,001247008 0,005175687 -1,215587243 

14q(II-3) 0,001356673 0,00560365 -1,424687669 

MIMAT0022482 0,001474029 0,006059108 2,184424571 

MIMAT0004565 0,001482033 0,006062862 -2,637814383 

MIMAT0026482 0,001518524 0,006182563 2,012600037 

MIMAT0004761 0,001644678 0,006664452 4,320167637 

U95 0,001731671 0,00698386 -1,004914693 

MIMAT0010214 0,001767678 0,007095608 -1,5334322 

MIMAT0000265 0,00180476 0,007210605 -1,942190732 

MIMAT0000082 0,001825996 0,00726152 -1,142439734 

MIMAT0004797 0,001869154 0,007398736 -1,601675746 

MIMAT0004489 0,002066795 0,008143363 1,855414378 

MIMAT0004953 0,002087509 0,008187248 -2,741466986 

MIMAT0000683 0,002124559 0,00829451 -1,222968808 

MIMAT0000275 0,002157673 0,008385501 -2,186413124 

MIMAT0003247 0,002184618 0,008451802 -1,674829701 

MIMAT0000062 0,00222594 0,008569955 -1,28804258 

ACA32 0,002235205 0,008569955 1,827503141 

MIMAT0004587 0,002263271 0,008638823 -1,226562063 

MIMAT0015015 0,002332337 0,008862882 2,895302621 

HBII-82 0,002348726 0,008885668 1,89077093 

MIMAT0004605 0,002386403 0,008976574 -2,251816182 

U77 0,002413078 0,008976574 1,822654058 
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MIMAT0000458 0,002416061 0,008976574 1,693688375 

MIMAT0018205 0,002424707 0,008976574 -1,466085105 

MIMAT0019820 0,002432581 0,008976574 2,624490865 

MIMAT0000067 0,002435749 0,008976574 -0,883173187 

U15B 0,002496854 0,009162277 1,16544335 

MIMAT0000681 0,002535947 0,00926596 -1,043080091 

MIMAT0004985 0,002569202 0,009347522 1,985303489 

MIMAT0000705 0,002700154 0,009782337 1,234953711 

MIMAT0022838 0,002777077 0,010018569 1,657531127 

U14A 0,002821853 0,010137328 1,641344971 

MIMAT0005792_1 0,00288929 0,010296656 -1,3264062 

MIMAT0003239 0,00289029 0,010296656 -1,165063478 

MIMAT0025470 0,002925793 0,010379889 -2,722466024 

MIMAT0003257 0,002996684 0,010548946 1,840219556 

U79 0,002998121 0,010548946 1,199548678 

MIMAT0005923 0,003054208 0,010702244 4,554588852 

MIMAT0025477 0,003135292 0,010941528 2,688055994 

U101 0,003151445 0,010953192 0,938847362 

MIMAT0003250 0,003337355 0,011552381 -2,492396382 

ACA50 0,003404895 0,011738651 1,761612601 

U49B 0,003515242 0,01207041 1,360452362 

MIMAT0018972 0,003531131 0,012076469 -2,554588852 

HBII-180C 0,003780037 0,012876221 1,549216839 

MIMAT0022471 0,003925527 0,013318751 -2,076350886 

MIMAT0000067_1 0,003948613 0,013344127 -1,018910059 

MIMAT0000684 0,004041741 0,013605073 -1,236137513 

MIMAT0000083 0,004114243 0,013776035 -0,873262426 

SNORD121A 0,004124754 0,013776035 1,514573173 

MIMAT0004597 0,004211817 0,014012075 -1,107190784 

MIMAT0000244 0,004244152 0,014064921 -1,04510803 

MIMAT0022258 0,00427022 0,014096671 2,584962501 

MIMAT0003258 0,00444705 0,014612903 1,525256255 

U24 0,004460781 0,014612903 1,097241646 

MIMAT0000510 0,004503599 0,014696858 -1,087862116 

MIMAT0000272 0,004820653 0,015671703 3,077244765 

U57 0,004954716 0,016046522 1,139953253 

MIMAT0001618 0,004995975 0,016119088 1,256013978 

MIMAT0003338 0,005042832 0,016209104 1,004063159 
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14q(II-1) 0,005074022 0,016248274 -1,351763324 

MIMAT0000721 0,005145876 0,016416881 1,591095114 

MIMAT0002819 0,005183478 0,016475367 -1,342195536 

MIMAT0004801 0,005213062 0,01650803 1,215108695 

MIMAT0010251 0,005254569 0,016578069 3,211504105 

MIMAT0002872 0,005649984 0,01773435 1,499493159 

U38B 0,005662547 0,01773435 0,972979076 

MIMAT0022726 0,005702972 0,01779577 -1,362983163 

MIMAT0000226 0,005892956 0,018321735 2,437063806 

snR38C 0,005957472 0,018455213 1,426442263 

MIMAT0014996 0,005980242 0,01845887 4,232660757 

MIMAT0000440 0,006016955 0,018505384 0,900033028 

MIMAT0000063 0,006098796 0,018689858 -0,847030893 

MIMAT0000460 0,006390857 0,019514938 3,014873276 

MIMAT0002813 0,006537624 0,01982527 1,484024977 

MIMAT0000703 0,006538861 0,01982527 -0,754391134 

MIMAT0026472 0,007051815 0,021304952 -1,971985624 

MIMAT0026479 0,007218847 0,021732797 -1,343954401 

HBII-234 0,007377683 0,022133049 1,279115011 

MIMAT0002873 0,007484448 0,022374837 1,333423734 

MIMAT0000717 0,007664766 0,022834059 -1,254929356 

MIMAT0000262 0,008154469 0,02420858 -1,078379293 

U16 0,008248012 0,024401559 1,221364128 

MIMAT0004602 0,008355606 0,024634633 -1,208430747 

MIMAT0004767 0,00861785 0,025320487 -1,639597757 

MIMAT0005882 0,008655016 0,025342597 1,33219643 

HBII-316 0,008841817 0,025744506 1,215977582 

MIMAT0004809 0,008852497 0,025744506 -1,150882554 

ACA33 0,009254248 0,026821635 1,38466385 

ACA26 0,009507677 0,027463054 1,485426827 

U83A 0,00979519 0,028198275 1,088900505 

MIMAT0000104 0,010516248 0,030082567 0,961831736 

MIMAT0001343 0,010520103 0,030082567 0,862710778 

MIMAT0026621 0,010682575 0,030445338 -1,383704292 

U51 0,010807329 0,030698558 1,261213793 

MIMAT0004491 0,010965262 0,031044036 1,235216462 

MIMAT0002888 0,011310151 0,031758957 0,94403957 

U44 0,011316141 0,031758957 -0,980612835 
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MIMAT0005930 0,011329219 0,031758957 2,157541277 

MIMAT0000253 0,011417255 0,031813659 -0,971376526 

MIMAT0016895 0,01142315 0,031813659 -0,872377497 

14q(II-12) 0,011682495 0,032430304 -1,270357747 

MIMAT0000092 0,011925965 0,032999028 1,029590319 

MIMAT0000693 0,012040346 0,033208052 -0,787110389 

tRFdb-3033a 0,012646659 0,033685025 -1,150941898 

tRFdb-3033a.1 0,012646659 0,033685025 -1,150941898 

tRFdb-3033a.2 0,012646659 0,033685025 -1,150941898 

tRFdb-3033a.3 0,012646659 0,033685025 -1,150941898 

tRFdb-3033a.4 0,012646659 0,033685025 -1,150941898 

tRFdb-3033a.5 0,012646659 0,033685025 -1,150941898 

tRFdb-3033a.6 0,012646659 0,033685025 -1,150941898 

tRFdb-3033a.7 0,012646659 0,033685025 -1,150941898 

tRFdb-3033a.8 0,012646659 0,033685025 -1,150941898 

tRFdb-3033a.9 0,012646659 0,033685025 -1,150941898 

tRFdb-3033a.10 0,012646659 0,033685025 -1,150941898 

MIMAT0004556 0,012881031 0,034147834 -1,411589764 

MIMAT0000750 0,012900293 0,034147834 -0,791291163 

ACA18 0,013111749 0,034576979 1,308027278 

U45C 0,013143296 0,034576979 1,250491124 

MIMAT0004555 0,013293835 0,034865733 -1,04075976 

HBII-210 0,013381284 0,034987761 -0,938012269 

ACA20 0,013532442 0,035184395 1,412125904 

U50 0,013554783 0,035184395 0,869727535 

MIMAT0003161 0,013579942 0,035184395 1,3408283 

MIMAT0000433 0,013888172 0,035818453 1,220353536 

U31 0,013908452 0,035818453 -0,847607713 

MIMAT0004774 0,013969932 0,035868745 1,038882661 

U83B 0,014080748 0,035964668 0,932547818 

MIMAT0026476 0,014131581 0,035964668 2,885751829 

MIMAT0004693 0,014133484 0,035964668 1,260460462 

MIMAT0004613 0,014270361 0,036205218 1,553253641 

U42B 0,014598307 0,03692767 -0,880057176 

MIMAT0005584 0,014924245 0,037640796 1,761840263 

MIMAT0004945 0,016232343 0,040819567 -0,785971052 

U48 0,01684336 0,042231886 -0,91799878 

MIMAT0004927 0,017075767 0,042618036 1,218534946 
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MIMAT0000081 0,01709706 0,042618036 0,721333924 

MIMAT0021086 0,017634191 0,043829166 2 

MIMAT0019693 0,01777677 0,044055473 2,032421478 

MIMAT0022692 0,017981841 0,044245923 1,674599713 

MIMAT0018204 0,017988969 0,044245923 -1,934904972 

HBII-180A 0,018050887 0,044245923 1,476438044 

MIMAT0004678 0,018060616 0,044245923 -1,100603941 

MIMAT0001541 0,018162208 0,044367681 2,612518223 

HBII-108B 0,018773162 0,045729497 1,036246566 

MIMAT0000762 0,018926402 0,045971799 -0,880329769 

U29 0,019055495 0,046154243 -0,756232442 

MIMAT0004584 0,020388249 0,049242804 0,695652891 

MIMAT0004495 0,020693441 0,049839133 -1,031197688 

MIMAT0003273 0,020776827 0,049899402 -1,86507042 

MIMAT0000280 0,020865996 0,049973185 1,526545814 

MIMAT0004488 0,021162731 0,050542278 1,352516415 

HBII-85-8 0,021380658 0,050920508 -1,117925725 

MIMAT0004484 0,021454306 0,050953976 -0,630289395 

MIMAT0018186 0,022180642 0,0525331 -1,02727293 

MIMAT0000459 0,022422987 0,052960369 -1,115100977 

MIMAT0004672 0,022946752 0,054048135 0,757333574 

snR38B 0,023418802 0,054799098 1,213955584 

MIMAT0000254 0,023457859 0,054799098 -1,251209191 

U76 0,023626281 0,055042153 0,920565533 

MIMAT0004497 0,024386165 0,056559926 -0,87182379 

ACA46 0,024410073 0,056559926 1,459431619 

MIMAT0022833 0,024747082 0,057149356 -1,807354922 

U82 0,024798142 0,057149356 -0,785231823 

MIMAT0005794 0,025015213 0,057494643 -0,90749588 

MIMAT0007885 0,025727747 0,058973789 3,475733431 

MIMAT0022472 0,026062706 0,059581855 -3,189824559 

snR39B 0,027858969 0,06351845 -0,807171772 

MIMAT0000454 0,02838443 0,064544382 -2,619896291 

MIMAT0003244 0,028524478 0,064690793 1,438573014 

ACA57 0,02995947 0,067765468 1,112921513 

MIMAT0004949 0,031489456 0,071038219 1,499571009 

MIMAT0005825 0,03199737 0,071994083 -0,867053506 

MIMAT0018183 0,032135631 0,072115392 -0,83588062 
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MIMAT0005874 0,032350325 0,072407141 1,080170349 

MIMAT0002871 0,032664674 0,072919833 0,789229423 

MIMAT0000453 0,032978276 0,073428193 1,401740677 

U60 0,034143758 0,075825748 0,843930992 

U58C 0,034372033 0,076134944 1,028149942 

U45A 0,035090931 0,077526475 0,998029105 

MIMAT0009198 0,036279578 0,079945978 1,014451156 

MIMAT0000646 0,036380393 0,079962047 1,11451704 

MIMAT0027519 0,037474705 0,082156084 -2,736965594 

MIMAT0004509 0,037720435 0,082483305 0,615199731 

MIMAT0000716 0,037960988 0,082797563 -1,257157839 

MIMAT0004950 0,038136901 0,082969594 2,044394119 

MIMAT0017988 0,03896194 0,084549388 1,062735755 

MIMAT0001532 0,039633267 0,085788463 2,754887502 

U78 0,039909116 0,086167409 0,843560766 

U73a 0,040045987 0,086245135 -0,67361659 

MIMAT0026721 0,040407289 0,086795147 2,115477217 

MIMAT0018068 0,040504402 0,086795147 1,525461489 

MIMAT0000730 0,041001831 0,087641415 1,21342664 

MIMAT0003327 0,041996216 0,089543055 2,289506617 

MIMAT0016888 0,042114096 0,089571025 0,879201856 

MIMAT0002175 0,043964944 0,093275501 -1,086100737 

MIMAT0026475 0,044530323 0,094241153 1,230005605 

MIMAT0000450 0,044840764 0,094663836 -0,951825827 

ACA48 0,045027455 0,094823829 0,832890014 

MIMAT0000759 0,045478533 0,095282302 0,672725835 

MIMAT0001627 0,04552291 0,095282302 -1,116343961 

MIMAT0027479 0,045579487 0,095282302 1,547487795 

MIMAT0011777 0,045774248 0,095321271 0,880039376 

HBII-85-16 0,04586406 0,095321271 -0,827441687 

MIMAT0019952 0,045932589 0,095321271 1,405256478 

HBII-85-2 0,046323198 0,095899115 -0,885995371 

HBI-43 0,046599328 0,09614175 0,842540102 

U22 0,046665294 0,09614175 0,760150382 

U53 0,046949561 0,096424241 1,046833165 

MIMAT0000092_1 0,047027963 0,096424241 0,861412221 

MIMAT0002818 0,047141521 0,096425839 1,505235308 

MIMAT0000062_2 0,047486788 0,096900248 -0,608969156 
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MIMAT0000764 0,047929899 0,097571579 0,673031229 

MIMAT0005901 0,048467706 0,098432039 -0,948925815 

MIMAT0004776 0,049127653 0,099535885 -0,987616276 

MIMAT0000227 0,049446926 0,099945915 -0,536898508 

MIMAT0004674 0,049695365 0,10006205 -0,69366876 

MIMAT0027103 0,049738446 0,10006205 -1,167841687 

MIMAT0017982 0,049995784 0,100343652 -0,930459067 
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Supplementary table 6 - Dysregulated pathways found in the case study datasets. 

 

# Pathway Id Pathway Name Impact Factor 
Corrected 

Accumulator 
pValue Adjusted pValue 

path:hsa04915 
Estrogen signaling 
pathway 

141,5919455 29,37020617 0 0 

path:hsa04152 
AMPK signaling 
pathway 

111,1487884 23,68710986 0 0 

path:hsa04630 
JAK-STAT signaling 
pathway 

142,6238189 23,3672053 0 0 

path:hsa04010 
MAPK signaling 
pathway 

175,5042568 20,62252326 0 0 

path:hsa04914 
Progesterone-mediated 
oocyte maturation 

84,18542026 18,099952 0 0 

path:hsa04926 
Relaxin signaling 
pathway 

161,7895825 18,06528308 0 0 

path:hsa04066 
HIF-1 signaling 
pathway 

152,0335168 17,61437649 0 0 

path:hsa04151 
PI3K-Akt signaling 
pathway 

184,7552123 16,60656147 0 0 

path:hsa04530 Tight junction 121,0519833 -16,21177977 0 0 

path:hsa04140 Autophagy - animal 114,2792721 15,97382395 0 0 

path:hsa04668 TNF signaling pathway 153,6970547 15,15532845 0 0 

path:hsa04550 
Signaling pathways 
regulating pluripotency 
of stem cells 

163,5696817 14,93880354 0 0 

path:hsa04620 
Toll-like receptor 
signaling pathway 

158,3799077 13,83452509 0 0 

path:hsa04014 Ras signaling pathway 134,6365584 13,28883801 0 0 

path:hsa04150 
mTOR signaling 
pathway 

137,2405076 13,08889722 0 0 

path:hsa04115 p53 signaling pathway 133,8234914 13,04525948 0 0 

path:hsa04810 
Regulation of actin 
cytoskeleton 

104,3613291 -12,81017753 0 0 

path:hsa04210 Apoptosis 162,3983766 12,72988821 0 0 

path:hsa04923 
Regulation of lipolysis 
in adipocytes 

38,72952459 11,99015355 0 0 

path:hsa04012 ErbB signaling pathway 152,4283396 11,84885009 0 0 

path:hsa04662 
B cell receptor 
signaling pathway 

149,0742261 11,75392835 0 0 

path:hsa04919 
Thyroid hormone 
signaling pathway 

182,1227329 11,66511078 0 0 

path:hsa04211 
Longevity regulating 
pathway 

153,8382119 11,55160155 0 0 

path:hsa04380 
Osteoclast 
differentiation 

174,9962572 11,44175005 0 0 

path:hsa04072 
Phospholipase D 
signaling pathway 

81,67978489 10,44888945 0 0 

path:hsa04660 
T cell receptor 
signaling pathway 

154,9192642 10,01976255 0 0 

path:hsa04213 
Longevity regulating 
pathway - multiple 
species 

103,9274246 9,856324468 0 0 

path:hsa04935 
Growth hormone 
synthesis, secretion 
and action 

140,6288458 9,602942328 0 0 
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path:hsa04070 
Phosphatidylinositol 
signaling system 

73,21778709 9,083096511 0 0 

path:hsa04062 
Chemokine signaling 
pathway 

168,7593354 -9,035746942 0 0 

path:hsa04725 Cholinergic synapse 79,17120763 8,74392333 0 0 

path:hsa04917 
Prolactin signaling 
pathway 

160,9709 8,331293401 0 0 

path:hsa04218 Cellular senescence 176,8844456 8,285306995 0 0 

path:hsa04114 Oocyte meiosis 114,4885472 8,095141091 0 0 

path:hsa04024 
cAMP signaling 
pathway 

164,252999 7,793042563 0 0 

path:hsa04370 
VEGF signaling 
pathway 

85,79468148 7,469601017 0 0 

path:hsa00562 
Inositol phosphate 
metabolism 

67,10262946 7,406562649 0 0 

path:hsa04913 
Ovarian 
steroidogenesis 

45,01209095 7,219906668 0 0 

path:hsa04664 
Fc epsilon RI signaling 
pathway 

75,864209 7,034005415 0 0 

path:hsa04666 
Fc gamma R-mediated 
phagocytosis 

74,38638282 6,938589179 0 0 

path:hsa04340 
Hedgehog signaling 
pathway 

72,84633834 6,933841452 0 0 

path:hsa04020 
Calcium signaling 
pathway 

48,81351263 6,743736818 0 0 

path:hsa04360 Axon guidance 103,9728822 -6,378179109 0 0 

path:hsa04920 
Adipocytokine signaling 
pathway 

120,5543523 6,114021289 0 0 

path:hsa04670 
Leukocyte 
transendothelial 
migration 

64,80644527 -6,081857123 0 0 

path:hsa04022 
cGMP-PKG signaling 
pathway 

80,08003082 -5,663207935 0 0 

path:hsa04928 
Parathyroid hormone 
synthesis, secretion 
and action 

126,8082061 5,578021111 0 0 

path:hsa04621 
NOD-like receptor 
signaling pathway 

145,040538 -5,495515236 0 0 

path:hsa04650 
Natural killer cell 
mediated cytotoxicity 

81,49229544 5,29890327 0 0 

path:hsa04110 Cell cycle 152,7933055 5,240928889 0 0 

path:hsa04510 Focal adhesion 144,8546582 5,10346321 0 0 

path:hsa04921 
Oxytocin signaling 
pathway 

101,6671267 -5,08012143 0 0 

path:hsa04350 
TGF-beta signaling 
pathway 

134,7072061 -4,574809342 0 0 

path:hsa04912 
GnRH signaling 
pathway 

134,8040672 4,272689886 0 0 

path:hsa04722 
Neurotrophin signaling 
pathway 

172,4353659 4,217531153 0 0 

path:hsa04658 
Th1 and Th2 cell 
differentiation 

136,0205813 -4,164477971 0 0 

path:hsa04726 Serotonergic synapse 40,8084486 4,080838561 0 0 

path:hsa04910 
Insulin signaling 
pathway 

118,0627765 3,71438513 0 0 
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path:hsa04612 
Antigen processing and 
presentation 

42,57880102 3,625658289 0 0 

path:hsa04520 Adherens junction 117,3158573 -3,550389218 0 0 

path:hsa04728 Dopaminergic synapse 80,90481414 3,408395312 0 0 

path:hsa00270 
Cysteine and 
methionine metabolism 

46,48497164 -3,288103047 0 0 

path:hsa04659 Th17 cell differentiation 145,2721715 3,204832073 0 0 

path:hsa04215 
Apoptosis - multiple 
species 

46,00580444 -3,177956502 0 0 

path:hsa04657 IL-17 signaling pathway 123,466414 3,042926077 0 0 

path:hsa04922 
Glucagon signaling 
pathway 

57,54681471 -2,919485835 0 0 

path:hsa04625 
C-type lectin receptor 
signaling pathway 

167,4726315 2,536269683 0 0 

path:hsa04310 Wnt signaling pathway 174,970501 -2,503860946 0 0 

path:hsa04330 
Notch signaling 
pathway 

87,63855738 -2,185039634 0 0 

path:hsa04060 
Cytokine-cytokine 
receptor interaction 

112,6969358 2,145876217 0 0 

path:hsa04730 Long-term depression 45,430401 2,122797769 0 0 

path:hsa04141 
Protein processing in 
endoplasmic reticulum 

54,70120769 2,069953995 0 0 

path:hsa04720 Long-term potentiation 46,61956006 -2,027856838 0 0 

path:hsa04068 
FoxO signaling 
pathway 

151,9102702 -1,958153684 0 0 

path:hsa04540 Gap junction 45,9729722 1,934772946 0 0 

path:hsa04144 Endocytosis 108,3216583 1,899940429 0 0 

path:hsa04750 
Inflammatory mediator 
regulation of TRP 
channels 

58,62048697 1,873131251 0 0 

path:hsa04714 Thermogenesis 69,62715886 -1,789894211 0 0 

path:hsa04071 
Sphingolipid signaling 
pathway 

169,6188416 -1,757352014 0 0 

path:hsa04390 
Hippo signaling 
pathway 

163,8735933 -1,483978157 0 0 

path:hsa04064 
NF-kappa B signaling 
pathway 

123,3842217 1,319858015 0 0 

path:hsa04961 
Endocrine and other 
factor-regulated 
calcium reabsorption 

72,54005521 1,273041494 0 0 

path:hsa04261 
Adrenergic signaling in 
cardiomyocytes 

71,06957301 1,164096922 0 0 

path:hsa04514 
Cell adhesion 
molecules (CAMs) 

40,30515551 -1,05790822 0 0 

path:hsa04216 Ferroptosis 90,32069044 0,894824795 0 0 

path:hsa01100 Metabolic pathways 131,3145036 0,854597625 0 0 

path:hsa04371 
Apelin signaling 
pathway 

128,3218226 0,844375016 0 0 

path:hsa04061 
Viral protein interaction 
with cytokine and 
cytokine receptor 

58,72914766 -0,735149719 0 0 

path:hsa04137 Mitophagy - animal 132,6293247 0,720719511 0 0 

path:hsa04925 
Aldosterone synthesis 
and secretion 

38,89964494 -0,598856738 0 0 
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path:hsa04623 
Cytosolic DNA-sensing 
pathway 

104,9896366 0,575589168 0 0 

path:hsa04622 
RIG-I-like receptor 
signaling pathway 

116,7926341 0,558532059 0 0 

path:hsa04217 Necroptosis 102,0338687 0,514081741 0 0 

path:hsa04512 
ECM-receptor 
interaction 

47,3335375 -0,507817399 0 0 

path:hsa00310 Lysine degradation 45,49584948 0,450087743 0 0 

path:hsa04916 Melanogenesis 83,19349093 -0,285880124 0 0 

path:hsa04015 
Rap1 signaling 
pathway 

124,5313268 0,280642994 0 0 

path:hsa04611 Platelet activation 95,23159445 0,162052851 0 0 

path:hsa04927 
Cortisol synthesis and 
secretion 

62,78701049 -0,141229637 0 0 

path:hsa04973 
Carbohydrate digestion 
and absorption 

30,39245226 9,856636904 1,28E-13 3,15E-13 

path:hsa04270 
Vascular smooth 
muscle contraction 

38,1943697 -7,265439138 1,77E-12 4,31E-12 

path:hsa00590 
Arachidonic acid 
metabolism 

33,49064979 6,770690191 4,42E-12 1,07E-11 

path:hsa04960 
Aldosterone-regulated 
sodium reabsorption 

28,07256595 8,253324799 2,62E-11 6,28E-11 

path:hsa00020 
Citrate cycle (TCA 
cycle) 

15,11002609 -4,240619753 1,41E-08 3,34E-08 

path:hsa04723 
Retrograde 
endocannabinoid 
signaling 

26,30113567 -3,124111608 2,34E-08 5,50E-08 

path:hsa01200 Carbon metabolism 20,10369964 -4,561766885 5,14E-08 1,20E-07 

path:hsa04976 Bile secretion 20,11556408 -3,171535791 6,43E-08 1,48E-07 

path:hsa04918 
Thyroid hormone 
synthesis 

28,46853769 0,644480421 1,10E-07 2,52E-07 

path:hsa03460 
Fanconi anemia 
pathway 

26,61821542 0,453914717 1,13E-07 2,56E-07 

path:hsa04911 Insulin secretion 28,2853555 -0,50852594 1,87E-07 4,19E-07 

path:hsa04713 Circadian entrainment 30,55797388 0,310883763 1,89E-07 4,21E-07 

path:hsa04080 
Neuroactive ligand-
receptor interaction 

27,47632754 0,624974902 2,55E-07 5,61E-07 

path:hsa04710 Circadian rhythm 27,40799875 0,136224673 3,00E-07 6,56E-07 

path:hsa04924 Renin secretion 22,1315126 2,254984244 4,31E-07 9,32E-07 

path:hsa00760 
Nicotinate and 
nicotinamide 
metabolism 

22,25952164 0,865403838 5,34E-07 1,15E-06 

path:hsa04962 
Vasopressin-regulated 
water reabsorption 

19,26198967 1,09841294 5,97E-07 1,27E-06 

path:hsa03013 RNA transport 25,52550349 -0,266804086 6,52E-07 1,38E-06 

path:hsa03320 
PPAR signaling 
pathway 

20,74187806 -1,596393732 6,88E-07 1,42E-06 

path:hsa00520 
Amino sugar and 
nucleotide sugar 
metabolism 

5,923676905 0,837348021 6,88E-07 1,42E-06 

path:hsa00524 
Neomycin, kanamycin 
and gentamicin 
biosynthesis 

5,912530246 0,722550958 6,88E-07 1,42E-06 

path:hsa04971 Gastric acid secretion 18,69608677 -2,229113869 3,14E-06 6,40E-06 
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path:hsa00982 
Drug metabolism - 
cytochrome P450 

13,82588163 1,444947357 3,69E-06 7,47E-06 

path:hsa00790 Folate biosynthesis 19,73105288 0,175782042 3,94E-06 7,91E-06 

path:hsa03015 
mRNA surveillance 
pathway 

14,57940488 -2,278543517 4,76E-06 9,46E-06 

path:hsa04610 
Complement and 
coagulation cascades 

16,04287161 1,170288645 4,79E-06 9,46E-06 

path:hsa00830 Retinol metabolism 9,372323771 1,303391452 8,35E-06 1,63E-05 

path:hsa03440 
Homologous 
recombination 

16,08041335 -0,808422593 8,38E-06 1,63E-05 

path:hsa00330 
Arginine and proline 
metabolism 

13,64483314 -3,754164237 8,59E-06 1,66E-05 

path:hsa04136 Autophagy - other 22,82485294 0,203823463 1,01E-05 1,93E-05 

path:hsa00564 
Glycerophospholipid 
metabolism 

13,30880927 1,651635375 1,11E-05 2,11E-05 

path:hsa04392 
Hippo signaling 
pathway - multiple 
species 

19,06330353 0,244780466 2,08E-05 3,92E-05 

path:hsa04979 Cholesterol metabolism 14,99813657 -0,770899166 2,21E-05 4,13E-05 

path:hsa04672 
Intestinal immune 
network for IgA 
production 

13,04809231 2,352593391 2,47E-05 4,59E-05 

path:hsa00220 Arginine biosynthesis 9,582466218 -2,806145574 3,35E-05 6,17E-05 

path:hsa00230 Purine metabolism 12,34735859 -4,096120955 8,47E-05 1,55E-04 

path:hsa00350 Tyrosine metabolism 10,98655126 -1,586018351 1,11E-04 2,01E-04 

path:hsa04970 Salivary secretion 14,63862175 -1,03063087 1,14E-04 2,05E-04 

path:hsa00980 
Metabolism of 
xenobiotics by 
cytochrome P450 

13,42820958 0,411942911 1,19E-04 2,14E-04 

path:hsa00591 
Linoleic acid 
metabolism 

8,242482635 0,494892259 1,45E-04 2,59E-04 

path:hsa00480 Glutathione metabolism 11,96869331 0,345190339 1,50E-04 2,65E-04 

path:hsa00563 
Glycosylphosphatidylin
ositol (GPI)-anchor 
biosynthesis 

5,82666549 1,259513228 2,51E-04 4,40E-04 

path:hsa00140 
Steroid hormone 
biosynthesis 

10,6544011 -1,041542296 3,62E-04 6,30E-04 

path:hsa04978 Mineral absorption 12,00974823 0,733605949 3,84E-04 6,64E-04 

path:hsa00620 Pyruvate metabolism 7,514581609 -3,433252716 4,03E-04 6,93E-04 

path:hsa00380 Tryptophan metabolism 7,700085338 -2,086353152 4,34E-04 7,39E-04 

path:hsa04972 Pancreatic secretion 14,12277648 -0,15774068 4,72E-04 8,00E-04 

path:hsa00010 
Glycolysis / 
Gluconeogenesis 

8,846136868 -2,141730824 5,45E-04 9,16E-04 

path:hsa00600 
Sphingolipid 
metabolism 

6,738974375 2,83398622 6,85E-04 0,001143973 

path:hsa04724 Glutamatergic synapse 12,50259547 -0,922993889 7,00E-04 0,001162587 

path:hsa00250 
Alanine, aspartate and 
glutamate metabolism 

4,280692482 -3,596182307 9,62E-04 0,001585869 

path:hsa01230 
Biosynthesis of amino 
acids 

7,491950149 -3,714356037 0,001175639 0,001925883 

path:hsa00260 
Glycine, serine and 
threonine metabolism 

7,089264679 0,966554537 0,001546588 0,002516997 

path:hsa01210 
2-Oxocarboxylic acid 
metabolism 

5,764639832 -0,444960906 0,002263756 0,003660228 
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path:hsa01212 Fatty acid metabolism 7,101805253 -1,180258444 0,002429858 0,00390345 

path:hsa00062 Fatty acid elongation 6,025077579 -1,044796192 0,002565201 0,004094456 

path:hsa00051 
Fructose and mannose 
metabolism 

5,157076777 0,86826671 0,003509478 0,005565988 

path:hsa00730 Thiamine metabolism 5,691658398 0,166464637 0,003723118 0,005867446 

path:hsa04975 
Fat digestion and 
absorption 

4,699647392 0,329065973 0,0038377 0,006009983 

path:hsa00500 
Starch and sucrose 
metabolism 

4,453183521 0,673174151 0,003889218 0,006052595 

path:hsa04260 
Cardiac muscle 
contraction 

8,887718033 -0,205739502 0,004023404 0,006222532 

path:hsa00670 
One carbon pool by 
folate 

9,336141409 -0,047561585 0,004985854 0,007663442 

path:hsa00640 
Propanoate 
metabolism 

4,308827951 -2,356880552 0,005642957 0,008620223 

path:hsa04977 
Vitamin digestion and 
absorption 

0 -0,310734758 0,005997001 0,009105203 

path:hsa00052 Galactose metabolism 4,548817841 0,764342437 0,006261492 0,009449161 

path:hsa00983 
Drug metabolism - 
other enzymes 

8,445067453 0,15811195 0,006317658 0,009476487 

path:hsa00561 
Glycerolipid 
metabolism 

5,290737357 0,334112188 0,006671613 0,009947495 
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Supplementary table 7 - Table with feature comparisons of RNAdetector vs other 

RNA-Seq pipelines. 

  Deployment Supported 
OS 

Offline GUI Input 
files 

Aligners Counting tools DEA 
tools 

Downstream 
analysis 

Settings 
for ncRNA 
analysis 

Multi-species 
supported 

Graphical 
final 

report 

RNAdetector 

Docker. No 
previous 

dependencies 
required. 

Windows 
MacOS 
Linux 

X X 
FASTQ, 

BAM, 
SAM 

STAR 
HISAT2 

BWA 
SALMON 

featureCounts 
HTSeq 

SALMON 
CIRI and 

CIRIquant for 
circRNAs 

DESeq 
edgeR 
LIMMA 

miRNA 
sensitive 

topological 
pathway 
analysis 

X X X 

ArrayExpressHTS 

Bioconductor. 
It can be run 

locally or 
remotely at 
EBI cloud 

Linux 
MacOS 

X - FASTQ 
BOWTIE 
TOPHAT 

BWA 

Cufflinks 
MMSEQ 

- - - X - 

BioJupies 

Web-based 
application on 

Jupyter 
Notebooks. 

Windows 
MacOS 
Linux 

- X FASTQ Kallisto Kallisto 

LIMMA 
Characteri

stic 
Direction 

Several 
enrichment 

analyses are 
supported 

- X X 

BioWardrobe 

Standalone 
(it seems to 
be no longer 
maintained) 

MacOS 
Linux 

X X 
FASTQ 

SRA 
STAR STAR DESeq - - X 

Only 
figures 

DEWE 

Docker 
(it seems to 
be no longer 
maintained) 

Windows 
MacOS 
Linux 

X X FASTQ 
BOWTIE2 
HISAT2 

StringTie 
HTSeq 

Ballgown 
edgeR 

GSEA - X X 

easyRNASeq Bioconductor 
Windows 
MacOS 
Linux 

X - BAM - 
IRanges 

GenomicRanges 
- - - X - 

ExpressionPlot 

Standalone 
software that 

runs on a 
virtual 

machine 
(it seems to 
be no longer 
maintained) 

Windows 
MacOS 
Linux 

X X 
FASTQ, 

BAM 
BOWTIE - DESeq - - X X 

FX 

Amazon 
cloud system 
or it can be 
installed on 

local Hadoop 
clusters 

(it seems to 
be no longer 
maintained) 

Windows 
MacOS 
Linux 

- X 
FASTQ 

SAM 
GSNAP - - 

SNP and 
INDEL 

detection 
- 

Only human 
and mouse 

- 

GENE-Counter 

Standalone. 
Several 

dependencies 
are quired. 

MacOS 
Linux 

X - FASTQ 
CASHX 
BOWTIE 

BWA 
CASHX 

NBPSeq 
edgeR 
DESeq 

GO analysis - X - 

GeneProf 

Cloud-based 
application 
(it seems to 
be no longer 
maintained) 

Windows 
MacOS 
Linux 

- X 
SRA 

importer 
tool 

BOWTIE 
TOPHAT 

- 
DESeq 
edgeR 

GO analysis - X X 

Grape RNA-Seq 

Standalone. 
Deployment 
with Docker 

or Conda are 
also 

available. 

MacOS 
Linux 

X - 
FASTQ 

SAM 
BAM 

GEM FluxCapacitor - - - X X 

MAP-RSeq 

standalone 
virtual 

machine or 
parallel Sun 
Grid Engine 

cluster. 
Several 

dependencies 
are required. 

Windows 
MacOS 
Linux 

X - FASTQ TOPHAT 
HTSeq 

featureCounts 
- 

SNP calling, 
Fusion 

transcript 
detection 

- Only human X 

RAP 
Cloud 

application 

Windows 
MacOS 
Linux 

- X 

FASTQ 
SRA 
BAM 
SAM 

TOPHAT 
Cufflinks 
HTSeq 

Cuffdiff2 
DESeq 

Splicing 
junction 

detection, 
Exon usage 

analysis, 
Fusion 

transcript 
detection, 
Differential 

polyA 
analysis 

- X X 

RobiNA 
Standalone 

software 

Windows 
MacOS 
Linux 

X X 
FASTQ 

BAM 
SAM 

BOWTIE - 
DESeq 
edgeR 

- - X X 

RSEQtools Standalone 
MacOS 
Linux 

X - MRF - mrfQuantifier - - - X - 
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RseqFlow 

Standalone 
tool on 

Pegasus 
virtual 

machine (it 
seems to be 

no longer 
maintained) 

Windows 
MacOS 
Linux 

X - 

Single 
ended 

reads in 
FASTQ 
format 

BOWTIE 
PerM 

- DESeq SNP calling - X - 

S-MART Standalone 
Windows 
MacOS 
Linux 

X X 
FASTQ 

SAM 
- - 

Independe
nt method 
developed 

by the 
authors 

- - X 
Only 

figures 

TCW 

Java desktop 
application. 

Several 
dependencies 
are required 

MacOS 
Linux 

X X FASTA - - 

edgeR 
DESeq 

EDASeq 
DEGseq 

GO analysis - X X 

TRAPLINE 
Galaxy web 
application 

Windows 
MacOS 
Linux 

- X FASTQ 
TOPHAT

2 
Cufflinks Cuffdiff2 

Splicing 
junction 

detection, 
SNP 

detection, 
GO analysis, 

Protein 
interaction, 

miRNA target 
prediction 

miRNAs X - 

wapRNA 

Web 
application or 
executable 

packages for 
installation on 
user's local 
server (it 

seems to be 
no longer 

maintained) 

Linux - X 
FASTA 
FASTQ 

CoronaLit
e BWA 

in-house built 
Perl module 

DEGseq 

GO analysis, 
KEGG 

pathway 
functional 

enrichment, 
miRNA target 

prediction 

miRNAs X 
Figures 

and tables 
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Supplementary table 8 - Table with feature comparisons of RNAdetector vs other 

ncRNA-Seq pipelines. 

 

  Deployment Supported 
OS 

GUI Input files Aligners Counting DEA 
tools 

Downstream 
analysis 

Regulatory 
ncRNA 

supported 

More species 
supported 

Graphical 
final 

report 

RNAdetector Docker Windows 
MacOS 
Linux 

X FASTQ 
BAM SAM 

STAR 
HISAT2 

BWA 
SALMON 

featureCounts
HTseq 

SALMON 

DESeq 
edgeR 
LIMMA 

miRNA-sensitive 
topological 

pathway analysis 
(MITHrIL) 

miRNAs, 
snoRNAs, 
piRNAs, 

tsRNAs, tUCRs, 
lncRNAs, 
circRNAs 

X X 

iSmaRT Standalone 
(website 
does not 
work. Not 

maintained) 

Linux X FASTQ BOWTIE sRNAbench DESeq 
edgeR 

NOISeq 

GO and pathway 
enrichment 
analysis. 

miRNA\piRNA 
target prediction. 

miRNAs, 
piRNAs 

Human, mouse, 
rat 

Only txt 
files and 
figures in 

output 

iSRAP Standalone MacOS, 
inux 

- FASTQ 
BAM 

BOWTIE2 BEDTools DESeq 
edgeR 
LIMMA 

- miRNAs, 
piRNAs, 

snoRNAs 

X Only txt 
files and 
figures in 

output 

miARma-Seq Docker Windows 
MacOS 
Linux 

- FASTQ 
BAM 

BOWTIE2
, BWA 

featureCounts edgeR 
NOISeq 

GO and pathway 
enrichment 

analysis, miRNA 
target prediction 

miRNAs, 
circRNAs 

X Only txt 
files and 
figures in 

output 

Oasis 2 Web-based Windows 
MacOS 
Linux 

X FASTQ STAR featureCounts DESeq GO and pathway 
enrichment 

analysis, miRNA 
target prediction 

miRNAs, 
piRNAs, 

snoRNAs 

X Only txt 
files and 
figures in 

output 

SPORTS1.0 Standalone Linux - FASTQ BOWTIE ? - - miRNAs, 
piRNAs, 

snoRNAs, 
tsRNA 

X Only txt 
files and 
figures in 

output 

sRNAnalyzer Standalone MacOS 
Linux 

- FASTQ BOWTIE ? - - miRNAs, 
piRNAs, 

snoRNAs, 
lncRNA 

X - 

sRNApipe Galaxy 
server 

installed in 
user’s 

machine 

MacOS 
Linux 

X Single-end 
FASTQ 
with no 

adaptors 

BWA ? - - miRNAs, 
piRNAs, 

snoRNAs 

X X 
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