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Abstract: Astaxanthin (AST) is a dietary xanthophyll predominantly found in marine organisms
and seafood. Due to its unique molecular features, AST has an excellent antioxidant activity with a
wide range of applications in the nutraceutical and pharmaceutical industries. In the past decade,
mounting evidence has suggested a protective role for AST against a wide range of diseases where
oxidative stress and inflammation participate in a self-perpetuating cycle. Here, we review the
underlying molecular mechanisms by which AST regulates two relevant redox-sensitive transcription
factors, such as nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor κB (NF-κB).
Nrf2 is a cellular sensor of electrophilic stress that coordinates the expression of a battery of defensive
genes encoding antioxidant proteins and detoxifying enzymes. Likewise, NF-κB acts as a mediator
of cellular stress and induces the expression of various pro-inflammatory genes, including those
encoding cytokines, chemokines, and adhesion molecules. The effects of AST on the crosstalk between
these transcription factors have also been discussed. Besides this, we summarize the current clinical
studies elucidating how AST may alleviate the etiopathogenesis of oxidative stress and inflammation.
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1. Introduction

Astaxanthin (AST) is an oxygenated carotenoid belonging to a group of carotenoids
called xanthophylls, which primarily includes lutein, zeaxanthin, β-cryptoxanthin, and
canthaxanthin [1]. This compound occurs naturally in a wide variety of living organisms,
including microalgae and plants, but it is especially found in the aquatic environment
as a red-orange pigment common to many marine animals [2]. AST is synthesized by
phytoplankton and marine bacteria and then passed on to fish through the food chain.
However, fish grown in aquaculture (e.g., farmed salmonids) acquire the characteristic pink
color to their flesh from AST feed supplement [3]. Although AST was initially employed
as an animal food additive, when the first biological activities were reported and after
an extensive review of its safety profile, the US Food and Drug Administration (FDA)
approved the use of AST as a dietary supplement [4].

Recently, there has been an increasing scientific interest for AST in pharmaceutical and
nutraceutical applications. AST has a number of configurational (stereo) isomers showing
different physiological activities. The stereoisomers of AST include all-cis (3S, 3′S), cis-trans
(3R, 3′S), and all-trans (3R, 3′R) [5,6]. Several sources of natural AST have been reported;
however, the form obtained by the microalgae Haematococcus pluvialis is commonly used
for human consumption. The unique molecular structure of AST enables it to attract
free radicals or provide electrons and is responsible for its powerful antioxidant effect.
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Moreover, AST showed a greater ability to quench free radicals than other carotenoids,
such as zeaxanthin and β-carotenoids [7–9].

A plethora of studies has demonstrated the mechanism by which continued oxidative
stress leads to chronic inflammation, which, in turn, play a pivotal role in the pathophysiol-
ogy of many chronic conditions such as cancer, diabetes, cardiovascular, and neurological
diseases [10,11]. Extensive research has also revealed that AST exhibits multiple biologi-
cal activities, including protection against oxidation of macromolecules and modulation
of inflammatory responses. Notably, AST has emerged as potential key regulators of
stress-sensitive transcription factors involved in antioxidant and anti-inflammatory mecha-
nisms [12,13]. It has been reported that AST modulates nuclear factor erythroid 2-related
factor (Nrf2), which binds to antioxidant response elements (ARE) in the promoter regions
of most cytoprotective or detoxifying enzymes. Since Nrf2 regulates hundreds of genes that
are involved in the response against oxidative stress, it is considered the central regulator
of the maintenance of intracellular redox homeostasis [14,15]. Recent studies have also in-
dicated that AST modulates the nuclear transcription factor-κB (NF-κB) signaling network,
improving inflammation and oxidative stress in experimental models [16,17]. Several genes
underlying inflammatory and stress responses have been shown to be transcriptionally
regulated by NF-κB [18,19]. In addition, the complex interplay between Nrf2 and NF-κB
has been investigated in relation to the risk of multiple age-related diseases. A growing
body of research suggests that AST exhibits anti-aging effects, attenuating oxidative stress
and inflammation through activation of Nrf2 and inhibition of NF-κB [20–22]. This review
focuses on the biological activities and health benefits of AST, with a particular emphasis
on the regulation of Nrf2 and NF-κB signaling pathways.

2. Overview on the Health Benefits of Astaxanthin

Redox homeostasis, an important component for the maintenance of normal phys-
iological functions, is achieved by a well-controlled regulation between the formation
and removal of reactive oxygen species (ROS) in the body system. An excess of oxidative
molecules generated by a redox imbalance may damage cellular macromolecules, leading to
a variety of detrimental effects associated with inflammation and disease development [23].
AST possesses the ability to modulate redox imbalance and inflammatory status and,
therefore, it can be used as a potential tool in the clinical management of various chronic
conditions [24–26]. Below, we give a summary of important biological activities mediated
by AST (Figure 1).
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Biological Activity of Astaxanthin

Because of its peculiar chemical structure, especially the central polyene chain con-
taining 13 conjugated double bonds, AST may act as a natural agent against oxidative
damage by quenching singlet oxygen, scavenging free radicals, and preserving membrane
structure through the inhibition of lipid peroxidation. For example, the AST polyene chain
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captures free radicals in the internal membrane of the cell, and, simultaneously, the terminal
ring neutralizes reactive molecules on the surface of the membrane itself [27]. In addition,
AST reduces ROS formation by increasing the expression of oxidative stress-responsive
enzymes, such as superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase
(CAT) [28]. The strong anti-oxidant properties of AST also play a crucial role in protecting
biological systems from an uncontrolled inflammation associated with excessive levels of
oxidative stress [29,30].

Accompanied by an increased ROS production, a wide variety of pro-inflammatory
mediators are generated by M1 macrophages. In clinical and experimental studies, AST
exhibits its antioxidant and anti-inflammatory actions by reducing the production of cy-
tokines, such as interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α
(TNF-α) [29,31]. However, AST also has the ability to reduce inflammation by inhibiting
the cyclooxygenase-1 enzyme (COX-1) and nitric oxide (NO) [32,33]. In this context, AST
has shown cardioprotective properties, reducing biomarkers of inflammation associated
with cardiovascular damage and improving cardiac functions in mice. Moreover, it was
observed that AST might limit the formation of atheroma by inhibiting the oxidation of
low-density lipoproteins (LDL) and regulating the functions of macrophages involved in
atherogenesis. Notably, AST also has antihypertensive effects through attenuation of the
renin-angiotensin system and ROS-induced vasoconstriction [34–36].

Diabetes mellitus is characterized by decreased endogenous antioxidants, hyper-
glycemia, and impairment of the pancreatic β-cells. It has been reported that AST stimulates
GPx activity, increases insulin levels, and improves glucose metabolism by modulating
metabolic enzymes in diabetic animals. This effect protects pancreatic β-cells against
glucose toxicity. Likewise, AST may modulate peroxisome proliferator-activated recep-
tor gamma (PPAR-γ) with ameliorative effects on insulin resistance [37–40]. Besides its
anti-diabetic properties, AST also exerts immune-enhancing effects. Various studies have
shown that AST increases the immune response mediated by natural killer (NK) cells and T
lymphocytes, as well as the production of immunoglobulin M (IgM), IgG, and IgA [29,41].

The anti-oxidant and anti-inflammatory effects of AST are also related to its neuropro-
tective activity. The level of non-enzymatic oxidative markers (e.g., malondialdehyde and
NO), the activity of enzymatic antioxidants (e.g., SOD and CAT), and the expression of in-
flammatory cytokines (e.g., IL-1β, IL-6, and TNF-α) were positively modulated in different
regions of the brain [42,43]. Accompanied by its free radical scavenging properties, AST
also plays a crucial role against skin aging through activation of DNA repair mechanisms
and inhibition of the matrix metalloproteinases (MMPs) that degrade collagen and elastin
in the dermal skin layer [24]. Animal studies also revealed that AST decreased skeletal
muscle injury induced by exercise [44].

3. Nrf2 and NF-κB as Key Players in the Crosstalk between Oxidative Stress
and Inflammation

A sustained oxidative/inflammatory environment is an established risk factor for a
wide variety of chronic diseases. A series of studies focused on elucidating the mechanisms
involved in the onset and progression of chronic pathologies have concluded that oxidative
stress results in increased inflammation. Therefore, these processes are part of a vicious
cycle in which oxidative stress is both the cause and consequence of inflammation [45,46].
Eukaryotic cells have evolved a number of signal transduction pathways that orchestrate a
rapid cellular response to a multitude of exogenous and endogenous stress-induced agents,
including environmental pro-oxidants and inflammatory mediators. These pathways
involve the stimulation of redox-sensitive transcription factors, such as Nrf2 and NF-κB.
Their activation is critically involved in regulating the expression of an array of cellular
genes associated with cytoprotective elements and inflammatory molecules [18,47].

In general, while Nrf2 confers cell protection in response to reactive species, inflamma-
tion, and xenobiotics, the activation of NF-κB occurs in response to similar stimuli but also
controls the production of pro-inflammatory molecules [48,49]. Although the molecular
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mechanisms are not fully elucidated yet, current findings also suggest that Nrf2 and NF-κB
affect each other to coordinate anti-oxidant and inflammatory responses. This interplay
has also been investigated in relation to many degenerative and inflammatory diseases,
and it could be a promising target against many pathological conditions [50].

3.1. Nrf2 Regulation in Oxidative Stress and Inflammation

Nrf2 is a ubiquitously expressed transcription factor, member of the Cap’n’collar
(CNC) family, a subfamily of basic region-leucine zipper (bZIP) transcription factors. Nrf2
is composed of seven conserved functional domains (Neh1-7) regulating its transcriptional
activity as well as its stability [51]. As a master regulator of the antioxidant response, Nrf2
is responsible for both constitutive and inducible expression of ARE-dependent genes, en-
coding cytoprotective proteins and detoxification enzymes. Most Nrf2 is sequestered by a
repressor protein called Kelch-like ECH-associated protein1 (Keap1), a zinc metalloprotein
localized primarily in the cytoplasm. Keap1 is rich in cysteine residues highly reactive and
susceptible to electrophiles. Under basal/unstressed conditions, Keap1 promotes Nrf2 ubiq-
uitination and proteasomal degradation in combination with Cullin 3-based E3 ligase (Cul3)
complex. However, basal accumulation of Nrf2 in the nucleus is maintained to regulate the
expression of ARE-dependent genes and guarantee cellular redox homeostasis [52,53].

In response to electrophilic or oxidative stress, Keap1 undergoes conformational
changes and promotes the release of Nrf2, allowing its accumulation into the nucleus.
The dissociation of Nrf2 from Keap1 can be also promoted through its phosphorylation
by protein kinase C (PKC) and AMP-activated protein kinase (AMPK). In addition, the
activation of Nrf2 can be regulated by glycogen synthase kinase-3β (GSK-3β), indepen-
dent ofKeap1 activity [52,54,55]. Once inside the nucleus, Nrf2 heterodimerizes with one
of the small Maf (musculoaponeurotic fibrosarcoma oncogene homolog) proteins and
activates the ARE-dependent genes. The pool of genes within the ARE sequence encom-
passes approximately 600 genes encoding a series of redox balancing factors, detoxifying
enzymes, and stress response proteins, such as heme oxygenase-1 (HO-1), nicotinamide
adenine dinucleotide phosphate (NAD(P)H), NAD(P)H quinone oxidoreductase 1 (NQO1),
glutathione S-transferase (GST), glutathione reductase (GR), carbonyl reductase (CR),
glutamate-cysteine ligase catalytic subunit (GCLC), SOD, and GPx [14,56]. The transcrip-
tional activation of these protective genes through Nrf2-ARE inducers derived from natural
sources has gained enormous relevance in the development of new therapeutic strategies
for several pathologies, including neurodegenerative diseases, diabetes, and cardiovascular
diseases [15,57–59].

Besides its role as a master regulator of the antioxidant response, the Nrf2-ARE signal-
ing pathway also regulates anti-inflammatory gene expression and inhibits the progression
of inflammation. For example, an increase in the expression of HO-1, activated by Nrf2,
leads to the inhibition of NF-κB, resulting in the inhibition of inflammatory mediators.
However, numerous experimental studies in disease models have shown how activation of
the Nrf2/HO-1 axis is accompanied by an attenuation of inflammatory reactions [47,60–62].
Furthermore, NQO1, GCLC, and HO-1 activated by Nrf2 may inhibit both cytokines and
chemokines, including TNF-α, IL-6, IL-1β, monocyte chemoattractant protein-1 (MCP1),
and macrophage inflammatory protein-2 (MIP2) [63,64]. It was also reported that Nrf2
suppresses the transcriptional activation of inflammatory genes without binding to ARE
sequence. A study revealed that Nrf2 binds the promoter regions of pro-inflammatory cy-
tokines (e.g., IL-6 and IL-1β) and inhibits the recruitment of RNA Pol II, which is, therefore,
unable to activate the transcription of these genes [65].

3.2. NF-κB as Cellular Stress Response Pathway

The NF-κB is a widely expressed transcription factor involved in many cellular pro-
cesses. In mammals, the family of NF-κB proteins includes RelA/p65, RelB, c-Rel, p50,
and p52. These proteins are characterized by an N-terminal Rel homology domain (RHD)
that establishes contact with DNA, promoting dimerization and binding to κB sites. In the
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canonical pathway, NF-κB is inhibited by IκB proteins. However, lipopolysaccharides
(LPS), growth factors, antigen receptors, and pro-inflammatory cytokines can activate
an IKK complex (IKKα and IKKβ), which phosphorylates IκB proteins, inducing their
ubiquitination and subsequent proteasomal degradation. Hence, NF-κB translocates to
the nucleus where, alone or in combination with other transcription factors, induces the
transcription of target genes [66]. Conversely, the noncanonical pathway mediates the
activation of the p52/RelB NF-κB complex. This NF-κB pathway relies on the inducible
processing of p100, an NF-κB precursor, in response to a group of stimuli associated with
ligands of a subset tumor necrosis factor receptor (TNFR) superfamily members [67].

A myriad of highly diverse genes has been demonstrated to be transcriptionally
regulated by NF-κB, including immuno-receptors, growth factors, cell adhesion molecules,
anti-apoptotic proteins, pathogens, chemotherapeutic agents, DNA damage, inflammatory
mediators, and oxidative stress-related enzymes [68]. This is indicative of the pivotal role
of NF-κB as a mediator of cellular stress. Remarkably, the NF-κB pathway exerts a double
effect in many diseases. It is involved in the regulation of genes involved in inflammation
and, likewise, mediates the expression of specific genes involved in the progression of
the pathology [69]. Therefore, the NF-κB pathway may be a crucial therapeutic target in
those conditions characterized by an elevated expression of this transcription factor and for
which inflammation promotes organ damage.

However, several reports show that NF-κB is also involved in the regulation of oxida-
tive stress response. For example, in a context-dependent manner, ROS can both activate
and inhibit the NF-κB signaling pathway [70]. Notably, NF-κB has also been reported
to regulate many antioxidant enzymes. One of the best-known targets is manganese su-
peroxide dismutase (MnSOD) that is localized in the mitochondria. In particular, the
levels of MnSOD are increased by TNFα through an NF-κB-dependent mechanism [71,72].
Other antioxidant enzymes induced by NF-κB include GST, NQO1, HO-1, and GPx [73].
Moreover, genes controlled by Nrf2, such as NQO1, GCLC, and glutamate-cysteine lig-
ase modifier subunit (GCLM), also possess an NF-κB binding site [47]. Although there
are conflicting results, several experimental studies have demonstrated that natural com-
pounds or chemopreventive agents activate Nrf2 by inhibiting NF-κB and its regulated
genes [57,74,75]. Conversely, ROS, LPS, oxidized LDL, and cigarette smoke have been
shown to increase both Nrf2 and NF-κB activity [76]. This indicates crosstalk between Nrf2
and NF-κB signaling pathways, which may cooperate in a stimulus-specific manner.

4. Modulation of Nrf2 and NF-κB by Astaxanthin and Its Impact on Their Crosstalk

Accumulating evidence indicates that most carotenoids may be an important strategy
for disease prevention and therapy [77,78]. These compounds can target a wide variety of
signaling pathways, and their effects are often related to the modulation of Nrf2 and/or
NF-κB pathways [79]. However, during the past 15 years, the literature has established a
pivotal role of AST in regulating these transcription factors, thus exerting multiple health
benefits [80].

4.1. Effects of Astaxanthin on Nrf2

Several experimental studies have reported that AST can protect the brain, heart,
kidney, eyes, lungs, skin, and liver from oxidative stress, regulating Nrf2 and related
factors [81–86]. The neuroprotective action of AST was associated with the activation of
Nrf2 and its antioxidant enzymes in different experimental models of brain aging with an
improvement of oxidative stress and mitochondrial dysfunction [87,88].

AST also alleviated brain damage in rats, upregulating Nrf2, HO-1, NADH, NQO-1,
and GST and, accordingly, ameliorating cerebral oxidative stress [89]. Recently, it has been
reported that AST protects against ochratoxin A (OTA)-induced myocardial injury through
mitochondria-mediated apoptosis and activation of the Nrf2 pathway. This effect was
accompanied by improved levels of cardiac and antioxidant enzymes [90].
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The nephroprotective potential of AST was assessed in a rat model of streptozotocin-
induced diabetes characterized by the accumulation of fibronectin in mesomeric glomerular
cells challenged with high glucose (HG). The treatment promoted the transcriptional
activity of Nrf2, as well as the expression of SOD1, NQO1, and HO-1, thus quenching
the highest level of ROS and inhibiting HG-induced fibronectin, intercellular adhesion
molecule 1 (ICAM1) and transforming growth factor β 1 (TGFβ1) expression. Therefore,
these data suggested a nephroprotective effect of AST related to the activation of Nrf2-ARE
signaling [91]. A high blood glucose level (i.e., hyperglycemia) induces oxidative stress
and ROS generation in the retina, playing a role in the etiology of diabetic retinopathy.
Different concentrations of AST on high glucose-cultured retinal cells attenuated apoptosis
and induced phase II enzymes with the involvement of the Nrf2 pathway [92].

The treatment with AST increased Nrf2 expression in alveolar epithelial cells pre-
treated with hydrogen peroxide. This increase was accompanied by elevated activity of
SOD and CAT, indicating that AST may improve pulmonary oxidative stress by modulating
Nrf2 [93]. Moreover, three in vivo studies showed that AST administration inhibited the
development of chronic obstructive pulmonary disease (COPD) and acute lung injury
through activation of Nrf2 and, accordingly, promoted HO-1 and inhibited Keap1 [85,94].

AST also plays an important role in the radioprotection and photoprotection of cells.
Nrf2 and its principal targets, such as SOD, CAT, and GPx, were significantly upregulated in
irradiated cells in the presence of AST. In addition, it has been reported that AST induced the
expression of Nrf2 and HO-1 in dermal fibroblasts, increasing protection against UV [95,96].

The hepatoprotective activity of AST has been reported in an in vivo study. AST
attenuated liver damage induced by doxorubicin, a chemotherapeutic drug. AST reduced
ROS accumulation by downregulating the expression of Keap1 and activating Nrf2 together
with SOD, CAT, and GPx. Moreover, AST improved the transaminases and reduced the
damaged hepatocytes in mice [97]. AST also shows preclinical antiproliferative effects in
various experimental models of cancer. For example, it has been observed that AST inhibits
cancer growth in leukemia cells by modulating the Nrf2-ARE signaling pathway [98,99].

4.2. Astaxanthin and the Crosstalk between NF-κB and Nrf2

As mentioned, inflammation and oxidative stress are closely linked, and they widely
contribute to multiple chronic diseases. For example, high ROS levels influence many
aspects of cancer, such as sulfur-based metabolism, NADPH generation, and the activity of
antioxidant transcription factors. The overexpression of NF-κB, which contributes to estab-
lishing an inflammatory microenvironment, was also widely observed in tumor samples
and associated with cancer progression, metastasis, poor prognosis, and chemotherapy
treatments [100,101].

Besides its role in regulating antioxidant genes via the Nrf2-ARE pathway, a large body
of evidence indicates that AST treatment can inhibit NF-κB, which attenuates inflammation
in both in vitro and in vivo studies [102,103]. A recent report in rodents indicated that the
inhibitory effect of AST on NF-κB expression might be exerted via regulating the kinase
subunits of the IKK complex. This effect was associated with decreased TNF-α and IL-6
secretion [104]. However, multiple studies have reported that AST can inhibit NF-κB activa-
tion. Suzuki et al. demonstrated that AST has a dose-dependent ocular anti-inflammatory
effect through suppression of NO, TNF-α, and prostaglandin E2 (PGE2) production, which
occurs by blocking the NF-κB transcription factor [105]. Similarly, another study demon-
strated that AST reduced renal inflammation in a dose-related manner by regulating the
NF-κB pathway and HO-1, ultimately preventing acute kidney injury [106]. Other authors
have reported that AST inhibited NF-κB and Wnt/β-catenin signaling pathways in hepato-
cellular carcinoma cells and in a hamster model of oral cancer [103,107]. AST may also be a
new candidate for the management of neuropathic pain by inhibiting neuroinflammation
through the modulation of extracellular signal-regulated kinase (ERK)1/2, p38 mitogen-
activated protein kinase (p38 MAPK), and NF-κB p65 [108]. AST also attenuated apoptosis
after stretch injury in cultured astrocytes by reducing the expression of NF-κB-mediated
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pro-inflammatory factors [109]. Collectively, these findings emphasize how AST may exert
anti-inflammatory effects through inhibition of the NF-κB transcription factors.

Although it is still under elucidation, recent studies have also demonstrated that AST
may play a key role in modulating the complex interplay/crosstalk mechanism between
Nrf2 and NF-κB pathways. Nrf2 activation has been related to its ability to antagonize
NF-κB, suggesting that the induction of Nrf2 mediates anti-inflammatory responses (Fig-
ure 2) [110]. Moreover, in vitro and in vivo data have revealed that AST enhances Nrf2
activity and its antioxidant enzymes, inhibits pro-inflammatory mediators, and attenuates
the NF-κB signaling network. Farruggia et al. have indeed shown that AST exerts its
anti-inflammatory effect not only by inhibiting nuclear translocation of NF-κB p65 and
decreasing the expression of IL-6 and IL-1β but also by reducing cellular ROS accumulation
in Nrf2-dependent and -independent mechanisms [111].
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Similarly, AST exerted protective effects against oxidative damage and inflammation
induced by OTA in the lungs of mice. The treatment with AST increased the expression
of Nrf2, HO-1, and MnSOD, whereas the expression of Keap1 and NF-κB significantly
decreased [112]. Recently, Chen et al. investigated the underlying effects of AST treatment
on aging animals. The anti-aging properties of AST were shown to be related to Nrf2
and NF-κB pathways and involved in cellular immunity. After AST treatment, Nrf2
expression was up-regulated, whereas Keap1, IL-1β, IL-6, and NF-κB p65 were significantly
reduced. Interestingly, AST also elevated the levels of IL-2, immunoglobulin M (IgM), and
immunoglobulin G (IgG), suggesting a novel mechanism by which AST could regulate
cellular immunity and, eventually, attenuate immunosenescence [113].

5. Astaxanthin and Clinical Trials

Natural AST is a powerful antioxidant with translational implications for various
physiological disorders. The bioavailability of AST in humans has been reported. After
consuming a dose of 40 mg AST as a lipid-based formulation, the plasma concentration in-
creased to ~190 µg/L, compared to subjects without supplementation [114]. Although there
are no human studies assessing the effect of AST on Nrf2 and NF-κB transcription factors,
promising clinical trials demonstrated its potential for the prevention or co-treatment of
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several human diseases, especially those related to oxidative stress, chronic inflammation,
and aging.

Oxidative stress and neuroinflammation play a major role in brain aging. An increasing
number of human studies have reported a potential neuroprotective effect of AST against
cognitive impairment [115,116]. In a randomized, double-blind, placebo-controlled study,
the effect of AST (12 mg/day) has been studied on the cognitive function of 96 elderly
subjects. After 12 weeks of treatment, the results showed a significant improvement in
cognitive performance, as the treated subjects demonstrated a faster response time in the
CogHealth battery, a memory and thinking capability test [117].

Hyperlipidemia, lipid peroxidation, and pro-inflammatory factors have been asso-
ciated with the etiology of many cardiovascular diseases, including atherosclerosis [118].
Three randomized, placebo-controlled trials reported that supplementation with AST (from
8 to 20 mg/day) might improve lipid profile (e.g., LDL, HDL, and triglyceride levels),
decrease oxidation of fatty acids, and reduce biomarkers of oxidative stress, such as MDA
and isoprostanes [119–121].

Emerging studies show that certain antioxidant phytochemicals may protect against
various degenerative processes linked to visual impairment [122]. Currently, two clinical
studies reported that ingestion of AST (6–12 mg/day) improved visual acuity and retinal
blood flow [123,124]. There is also mounting evidence that AST possesses various clinical
applications in the field of dermatology. A number of clinical trials indicated that AST
might play a functional role in attenuating several oxidant events associated with skin ag-
ing, including DNA damage, reduced production of antioxidants, inflammatory responses,
and the presence of matrix metalloproteinases (MMPs) [24]. In fact, many authors demon-
strated that treatment with AST, orally or topically administered, reduced the levels of
MDA, MMP-1, MMP-12, 8-hydroxy-2′-deoxyguanosine (8-OHdG), and pro-inflammatory
mediators (e.g., IL-1α). These molecular changes were associated with an improvement of
skin parameters, such as skin wrinkles, moisture content, age spots size, elasticity, sebum
oil content, skin texture, and moisture content [24,125–127].

Some human intervention studies have also reported the potential benefits of AST on
the immune system. For example, the results reported by Park et al. indicated that AST
might enhance both cell-mediated and humoral immune responses, including T cell and B
cell proliferation, natural killer (NK) cell cytotoxic activity, and IL-6 production [29].

Despite the small number of human trials, the clinical findings discussed in this
paragraph suggest that AST may be a promising candidate for the prevention and co-
treatment of several diseases associated with oxidative stress, inflammation, and aging.

6. Conclusions

AST is a multi-target compound that employs several mechanisms to exert its potential
beneficial effects. Here, we reviewed experimental evidence showing that AST may confer
cell protection against the detrimental effect of redox imbalance and chronic inflammation.
This cytoprotective property is mainly mediated at the transcription level by modulating
the complex biochemical network associated with Nrf2 and NF-κB signaling pathways.
Therefore, in accordance with the findings discussed above, AST could be a promising
agent against chronic disorders in which oxidative stress and inflammation are the main
partners. However, most published studies have been performed in cells and animals using
concentrations that are not achievable by humans.

Currently, no data demonstrate that Nrf2 and NF-κB are modulated by AST in humans.
Despite this, preliminary clinical studies suggest that AST may be useful for the prevention
and/or treatment of atherosclerosis, cognitive impairment, visual fatigue, and dermatologi-
cal diseases. These human disorders are all associated with redox imbalance, inflammation,
and aging. More well-designed clinical trials are needed to investigate whether AST may
regulate Nrf2 and NF-κB in humans and protect against diseases characterized by excessive
oxidative stress and inflammation.
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