
VLSI DESIGN
1998, Vol. 7, No. 4, pp. 401-423
Reprints available directly from the publisher
Photocopying permitted by license only

(C) 1998 OPA (Overseas Publishers Association) N.V.
Published by license under

the Gordon and Breach Science
Publishers imprint.

Printed in India.

Formal Codesign Methodology
with Multistep Partitioning

VINCENZA CARCHIOLO*, MICHELE MALGERI and GIUSEPPE MANGIONI

Istituto di Informatica e Telecomunicazioni, Facolt6 di lngegneria-Universitdt di Catania,
Viale Andrea Doria, 6 1 95125 Catania

(Received 22 February 1996; In finalform 26 August 1996)

A codesign methodology is proposed which is suitable for control-dominated systems
but can also be extended to more complex ones. Its main purpose is to optimize the
trade-off between hardware performance and software reprogrammability and
reconfigurability. The methodology proposed intends to cover the development of the
whole system. It deals in greater detail with the steps that can be made without the need
for any particular assumption regarding the target architecture. These steps concern
splitting up the specification of the system into a set of individually synthesizable
elements, and then grouping them for the subsequent mapping stage. In order to
decrease the complexity of each partitioning attempt, a two step algorithm is proposed,
thus permitting a wide exploration of possible solutions. The methodology is based on
the TTL language, an extension of the T-LOTOS Formal Description Technique which
provides a large amount of operators as well as a formal basis. Finally, an example
pointing out the complete design cycle, excepting the allocation stage is provided.

Keywords: Codesign, formal description technique, embedded systems, partitioning, top down
method

1. INTRODUCTION

The design of complex systems comprising hard-
ware and software elements is of considerable
interest on account of its extremely varied
applications, thanks to the current availability of
low-cost hardware devices. It is of fundamental
importance to optimize both the cost and the
performance of such systems; various studies have
been carried out on this kind of design, which is

*Corresponding author.

commonly called codesign. Codesign is an ap-
proach to the development of systems composed
by both hardware and software modules [1, 2]. Its
main purpose is to optimize the trade-off between
hardware performance andsoftware reprogramm-
ability and reconfigurability. Moreover the aim of
codesign is to be able to design a whole system
without excessive preliminary constraints on map-
ping the module onto hardware and software parts
[3, 4].

401

402 V. CARCHIOLO et al.

At present the sector which seems to offer most
prospects of codesign methodology application is
that of embedded control-dominated systems,
thanks to their low complexity. In these systems
output signals are caused directly by input signals,
which generally means that the systems do not
require extremely complex processing of the input
signals.
Embedded systems are often used in life-critical

situations, where reliability and safety are more
important criteria than performance. For this
reason we believe that the design approach should
be based on the use of a formal model to describe
the behaviour of the system before a decision on its
implementation is taken.

In this paper we propose a codesign method-
ology which is not only suitable for the above-
mentioned systems, but can also be extended to
more complex ones. The systems to which our
codesign methodology is applied are control-
dominated ones.

In order to achieve the final partitioning it is
necessary to define the processor, hardware com-
ponents and interfaces generally referred to as
the target architecture. The methodology proposed
currently refers to an architecture including a
single general-purpose processor and a few appli-
cation-specific hardware components (ASIC or
FPGA), a single-bus master software component
and a single-level memory hierarchy [5-7].
As the methodology proposed intends to cover

the development of the whole system, that is, from
the specifications in terms of both time and
behaviour to implementation of its components
(the software components by using a programming
language, the hardware ones by synthesis) certain
choices have to be made, especially that of the
technique used to .describe the system.
The language used for specification of the

system is TTL [8] (Templated T-LOTOS), an
extension of T-LOTOS [9] specially developed
for use in codesign. TTL is also a valid tool for the
subsequent stages of development, on account of
its formal bases and the operators it provides. TTL
allows consistency to be tested using mathematical

properties instead of simulation approaches; in
this sense the methodology is said to be formal.
The issues this paper deals with in greater detail

are the way in which the specification of the system
is split up into a set of individually synthesizable
elements, and the way in which they are grouped
prior to the mapping stage. These choices are
made without the need for any particular assump-
tion regarding the target architecture. It will need
to be chosen before mapping. However, the paper
does not deal in detail with the problem of
mapping, because it is possible to use most of the
approaches in literature.
The final part of the paper presents a case study

in order to evaluate the proposed design metho-
dology.
The steps needed to go from specification to

implementation are sketched in Section 2. Section
3 gives a brief description of the formal technique
used in the design. Section 4 describes in more de-
tail the process of specification and decomposition.
Section 5 explains preclustering, which is a part of
partitioning. Section 6 discusses implementation
and Section 7 introduces a case study for the
present methodology. Section 8 provides the
authors’ conclusions.

2. AN OUTLINE OF CODESIGN
METHODOLOGY

Figure outlines the main steps which go from
specifications to implementation of the system.
The first step in the methodology is, therefore,

the development of the specifications, using TTL.
The specification stage is followed by the splitting
stage which is subdivided into two steps: refine-
ment and decomposition. The first splitting step,
called refinement, makes the description of the
system less abstract, thus passing from specifica-
tion of the requirements of the system (maximum
abstraction) to a structured representation (mini-
mum abstraction). The refinement step, in which
specifications are made less abstract, in reality
includes several cycles of subsequent refinement.

MULTISTEP PARTITIONING 403

TTL Specification

Rfinemeat

TTL Slcification

Decomposition

Tasks set

Pro-clustering

Mapping

formal
verification

Splitting

Partitioning

Implementation

C program

FIGURE Methodology overview.

The TTL language provides adequate support
during the whole stage, thanks to its operators and
formal basis.
The second splitting step, called decomposition,

consists of dividing the specifications up into a set
of elements (called tasks) which can be synthesized
separately. Decomposition is based on syntactic
and semantic specification characteristics, as dis-
cussed in greater detail in Subsection 4.2 (a similar
approach to specification can be found in [10]).
Thanks to this approach the computational com-
plexity required is quite low.
At this stage, however, there are still no con-

straints on whether an element is to be implemen-
ted in hardware or software.

In the methodology proposed, the set of tasks
obtained from the decomposition step undergoes
two further stages which together perform parti-
tioning. In the first (predustering) the number of
tasks is reduced below a certain threshold (group-
ing them into so-called clusters) in order to make
the subsequent mapping stage less computation-
ally complex. Preclustering is followed by a
mapping stage in which the clusters are classified
as hardware or software, grouped together if
necessary and mapped on the target architecture;
this last stage performs the functions usually
referred to as partitioning in codesign. Dividing
partitioning into two stages speeds the operation
up and improves the cost-performance trade-off of
the system being developed.
The software partitions obtained are then

translated into C, the hardware partitions into
synthesizable VHDL. There is, however, nothing
to prevent the choice of other languages; the
current choice was dictated by the wide availability
of tools for these languages. If the results of the
mapping phase are unsatisfactory, the clustering
process can be repeated starting from any stage,
varying, for instance, the number of clusters
produced by preclustering. This fact is a peculiar-
ity of the methodology proposed thanks to the
choice of TTL and the use of the same language
throughout design. Finally, the interface and the
software scheduler are also generated, on the basis
of the target architecture and the hardware and
software partitions.

3. TTL: THE SPECIFICATION LANGUAGE

In literature the problem ofthe technique to be used
to describe a system has been widely discussed.
Several specification methods have been pro-
posed, including, FSM [11, 12], Petri nets [13]
and high level languages [5, 14, 15, 16].

In this paper we use TTL (Templated T-
LOTOS) as the specification language. It is an
extension of T-LOTOS ([9, 17]) which is suitable
for the codesign approach.

404 V. CARCHIOLO et al.

The main extensions TTL introduces to T-
LOTOS are modularization (allowing, for exam-
ple, the use of libraries), use of templates (allowing
the definition of a generic process) and the
introduction of an iterative construct (loop) [8].
The main features of TTL are:

A high degree of abstraction. This makes it
possible to concentrate on what is to be done
without being affected by problems regarding
actual implementation. For example, the high
degree of abstraction of TTL guarantees that
the language is suitable for describing both
hardware and software, regardless of the target
architecture.
Concurrency. This feature makes it possible to
model systems made up of various parts which
evolve in parallel, a situation typical of hard-
ware systems.
The possibility of inserting time references. This
makes it possible to specify the timing cons traints
and estimate the evolution in time of the system.
This feature is necessary for real time systems.
The possibility ofusing component libraries. This
allows time to be saved in the specification stage
and leads to more efficient design thanks to the re-
utilization of already developed and thus care-
fully tested and optimized-components.
Formal basis. This allows a mathematical appro-
ach (as opposed to a simulation one) to be used to
test the consistence of each refinement step with
respect to the previous one. Moreover, the formal
basis allows us to check that the specification
possesses useful properties like deadlock free-
dom, liveness, respect of time constraints.

To manage the time constraints, we have
identified two kinds of time attributes which can
describe a wide range of situations: min/max and
rate constraints [5]. In TTL min/max constraints
can be directly expressed by the time attributes of
TTL actions. This is written in TTL as:

min constraint of tl time units on a given action a.
This means that action a has to occur after a
delay of at least tl time units. This is written in
TTL as a{tl...c}.

max constraint of tl time units on a given action
a. This means that action a has to occur within
a maximum of tl time units. This is written in
TTL as a{0.., tl}.
minimax constraint of tl time units on a given
action a. This is a combination of the two
previous cases. If the minimum delay is l, and
the maximum t2, it will be written as a{tl.., t2}.
fixed delay of tl time units on a given action a. It
is possible to fix a definite delay by writing a{tl}.

The language does not allow rate constraints on
actions to be specified directly. This is not a prob-
lem, however, as for practical purposes a rate de-
lay can always be expressed as min/max or a fixed
delay [18].
TTL has been developed in such a way as to use

all the existing tools for T-LOTOS (e.g., Lola
[19]). In fact it is possible to translate a TTL
specification into T-LOTOS using only syntactical
transformations. TTL can be supported by a set of
graphic tools which allow the designer to specify
the behaviour of the system in a simple, immedi-
ate, familiar way. A possible approach would be
like the one followed in [20], which illustrates a
technique by which it is possible to go from speci-
fication of the system by time diagrams to a T-
LOTOS specification; since TTL is a superset of
T-LOTOS a similar tool can be built.
The language has two components: the first is

the description of the behaviour of processes and
their interaction, and is mainly based on the CCS
[21] and CSP [22] models; the second is the
description of the data structure and expressions,
and is based on ACT ONE [23], a language for the
description of Abstract Data Types (ADTs).
The syntax ofthe most important TTL operators

is summarized in Table I; a complete description of
TTL syntax and semantics can be found in [24].

4. SPLITTING

4.1. Refinement

The process of specifying a system is generally
composed of several refinement steps. It starts with

MULTISTEP PARTITIONING 405

Name

TABLE Name and syntax of TTL operators

Syntax

inaction
termination

choice

action-prefix

parallel-composition

hiding
instantiation

guarding

disabling
enabling

local-definition

sum-expression

par-expression

loop-expression

stop
exit
exit(E1 En)
BI[] B2
g;B
i;B
g dl dn[SP]; B
where di is ?x" T or !E
Bll[gl gn]l B2
BIIIB2
BIIB2
hide gl,..., gn in B
P[gl,...,gn] (El En)
[GP]- > B
BI[> B2
BI>>B2
B>>aeeept x" tl, x" tn in B2
let x" t E, x t,, E in B
x.t=E
choice g in [gl g][]B
choice x" B
par g in gl g al a]l B
par g in [gl gn] III n
par g in [g gn] B
loop (guard; value-expression; B1)

a system-level description and proceeds by split-
ting the system into increasingly smaller pieces,
until it reaches a level at which the single pieces
can either be constructed by combining library
components or are described directly.

Figure 2 shows the refinement process during
the preliminary stages of codesign.

Level 0 coincides with top-level system specifi-
cation: at this level it is preferable to describe the
system in as abstract a way as possible. The next n
steps go from the abstract description of the sys-
tem to a concrete one: at each refinement step the
functional blocks are split into more elementary
ones, leaving the behaviour of the system un-
changed. Consistency between the description of
the system at level n and that at level n-1 is verifi-
able thanks to the formal base of the language.
Traditionally the consistency between what is
specified at level n and level n-1 was checked by
simulation. The use .of a language like TTL
supports a better approach to system specification.

System
Specification .1 Formal

(Level O) Verification

i,

FIGURE 2 Refinement Steps.

The aim of the refinement step is to obtain
specifications which can be efficiently implemented
and, at the same time, represent the same system as
level 0.
The division into modules also requires defini-

tion of the signals that have to be exchanged
among the modules, which are usually called inter-

nal signals.
Exploiting the formal basis of the language,

TTL aids the designer throughout the refinement
process, giving mathematical certainty that the
descriptions in the various steps are consistent.
The modularity ofTTL also makes it possible to

implement and include library components which
have already been tested and used. This plays an
important role in this step of the methodology, as
the replacement of certain blocks with library
modules which have a hardware counterpart nota-
bly increases the efficiency of the system.

4.2. Decomposition

The aim of the system decomposition stage is to
identify the main functional blocks of the system

406 V. CARCHIOLO et al.

being developed. These blocks represent the bricks
which will be used in the subsequent stages to per-
form partitioning. Decomposition consists of
splitting up the TTL specifications until a set of
tasks which can be synthesized separately is found.
The main aim of codesign methodologies is to

identify the blocks which permit the trade-off
between performance and manufacturing costs to
be optimized. It is, however, not desirable at this
stage to make choices that constrain when a block
must be mapped onto hardware or software. This
would reduce the degree of freedom in the
partitioning phase and therefore the possibility of
obtaining a near-optimal system. In addition,
making implementation choices at this stage would
reduce the possibility of re-designing the system.
Therefore to obtain the maximum independence
from the final implementation, the decomposition
criteria used must not involve choices which
depend on the target architecture and considera-
tions concerning implementation. On the basis of
the considerations made so far, therefore, the data
used must be obtained from the characteristics of
the specifications alone.
Given the features ofTTL there are two possible

alternatives for the choice of parts we consider to
be elementary.

Considering the single TTL constructs to be
elementary, i.e., considering the operators which
make up the behavioural expressions (external
offer, choice, etc.).
Considering the processes to be elementary.

The first hypothesis can be discarded straight
away as it would lead to an excessively high
number of tasks, thus introducing too high a
degree of complexity and fragmentation. The
second is more plausible, also in view of subse-
quent translation from TTL into the language
which will be used to implement the system.
Due the tool currently used to translate the

specification into synthesizable languages, if other
processes are instanced inside a given process they
have to be part of it. This hypothesis can be dis-
carded using an ad hoc developed TTL synthesizer

or some other translator which also accepts gen-
eric processes.
The decomposition process starts from the main

specification and decomposes it according to the
parallelism between the various processes. Figures
3a and 4a give some examples of decomposition
into tasks. In the first example three tasks are
obtained as they instance no other processes and
are each parallel with the other two. In the second
example the result of the decomposition process is
two tasks, as process P2 instances P3 and so they
constitute a single atomic element.

Decomposition can be performed automatically
by means of a recursive algorithm which applies
the considerations made previously.
The starting point of the decomposition algo-

rithm is the tree which represents the hierarchy of
TTL processes according to how they are in-
stanced; the trees for the processes in the example
given above are shown in Figures 3b and 4b. Each
node in the tree can be labelled with an attribute
which indicates whether it is made up of a parallel
combination of other processes. The possible
values of this attribute are:

para, which indicates that the node is made up
of a parallel combination of other processes (as
in the specification in the first example in Fig. 3);

((Plll P2)II P3)

PI :=
...; PI

lmm P2 :=

process P3 :=

PI P2 P3

FIGURE 3 Decomposition example of parallel process only.

MULTISTEP PARTITIONING 407

Specification :=
behaviour

(Plll P2)
where

process P1 :=
...; P1

endproc
process P2 :=

...; P3
endproc
process P3 :=

...; P3
endproc

endspec

P2

P1 (P3

(a) (b)

FIGURE 4 Decomposition example of process instancing
another process.

nopara, which means the opposite of para. The
attribute nopara is also assigned to processes
which instance themselves (like process P1 in
Fig. 3).

Figure 5 shows an example of a tree of proces-
ses, where the single nodes are marked with the
relative attribute. The algorithm for the decom-
position into tasks is described in Figure 6 (the
function do_task is described in C-like language).

In the algorithm, attrib(node) indicates the func-
tion which returns the value of the node attribute,

specification :=
behaviour

(PIlIP2)
where

process PI :=
...;PI

endproc
process P2 :=

(P3IIP4)
where

-process P3 :=
..;P3

endproc
process P4 :=

...;P4
endproc

endproc
endspec

P3 P4

(a) (b)

FIGURE 5 Example of decomposition with tree labelling.

step 1. Create Process Tree from the Specification and labelling ofnodes.
step 2. Set i=0 and calling function do_task(tree).

where:

do_task(alb *root)
if (attrib(ro0t)==PARA)

for each branch k-th ofroot
do_task(branchk.(root))

else if (attdb(root)==NOPARA)
if (root is selfinstaneing process){

i=i+l, Taski--root, return

else{
i=i+l, Taski=I; Pj, where Pj are instanced

in every branch ofroot, return

FIGURE 6 Decomposition algorithm.

while branchk.th(node) indicates the function which
gives the k-th branch of the node and Taski is the i-
th task.
When applied to the example in Figure 5 the

algorithm gives the following results:

T1 P1, T2 P3, T3 P4.

By adopting this algorithm it is possible for a
given specification to be decomposed into a low
number of tasks. However, too low a number of
tasks would mean few alternatives in the partition-
ing stage and therefore little chance of exploring
hw/sw trade-offs.
The optimal case is when the specification

is composed of a hierarchy of processes of two
types:

1) Processes which are only a parallel combination
of other processes; and

2) Processes which instance themselves. In this
case, in fact, the tasks are equivalent to the
branches of the process tree, and so the
maximum possible number.

To achieve close to optimal results, the initial
specification of the system has to be made in a style
that will favour the partitioning process. In

408 V. CARCHIOLO et al.

practice, it has to be made in such a way that the
processes fall into one of the following categories:

Processes which instance themsel.ves;
Processes obtained by means of a parallel com-
bination of several processes.

It should be pointed out that these rules should
only be taken as suggestions as to the specification
style to be adopted and not as TTL constraints.

5. PARTITIONING

After splitting the specifications up into tasks
according to the criteria outlined above, the parti-
tioning stage starts. It aims to map tasks onto
hardware or software components. In our ap-
proach the partitioning is divided into two stages
in order to reduce the complexity and the
computational cost, which are critical in develop-
ing complex systems; these stages are called
preclustering and mapping. The main difference
between the two stages is that mapping is made
after choosing the target architecture (e.g., the type
of processor, hardware circuits, bus etc.), accord-
ing to the actual delay introduced by the modules
and their manufacturing (monetary) costs, while
preclustering groups the tasks together according
to their "coupling degree". We focus our attention
on the preclustering stage showing an algorithm
which is able to perform it at a very low
computational cost. The results of preclustering
can be used by most mapping strategies, to be
found in literature, without any change.

5.1. Pre-clustering

The aim of preclustering is to reduce the number
of tasks to be partitioned with the purpose of
reducing the complexity of the problem of
partitioning.
The number of "sets of tasks" (which will be

called clusters) generated by preclustering is
obviously of .critical importance for mapping. If
this number is too high the complexity of the

problem is not significantly reduced; whereas if it
is too low, the mapping will not achieve a good
cost-performance trade-off. This is due to the fact
that the only stage where delays and manufactur-
ing costs are taken into account is mapping.
A lower computational cost would suggest

executing preclustering until is possible to reach
such a low number of clusters that they will be
allocated without making any choices in the
mapping stage. On. the other hand, the greater
number of parameters taken into account during
the mapping stage would suggest giving it as many
optimization chances as possible by providing a
large number of clusters. The best solution is
probably a compromise between the two strate-
gies. The most suitable number of clusters that
preclustering has to provide the mapping with is
very difficult to establish a priori and up to now
our methodology has proceeded by trial and error.
However, we are working on partially automating
this choice, basing it on data collected during
previous design cycles and interactions with
designers.
The preclustering algorithm adopted to group

tasks attempts to minimize the coupling degree
among the tasks defined as the "number of
interactions between two tasks". We believe the
coupling degree is critical for implementation of
the final device, mainly because the higher it is, the
higher the communication will be, which increases
the cost connected with interfaces. The precluster-
ing stage works on the system before the choice of
target architecture, so it is not possible to know.the
manufacturing cost or the delay cost. The coupling
degree, instead, can be evaluated and it appears to
be a valid heuristic method to reduce the complex-
ity of problems: in fact, by reducing, the coupling
degree tasks with higher interactions will be
grouped together and will be mapped on the same
partitions (either software or hardware).
On the basis of the tasks output by the

decomposition process, the preclustering algo-
rithm constructs a weighted (with respect to the
coupling degree) graph of the various tasks and
works on this to group them into separate clusters.

MULTISTEP PARTITIONING 409

Construction of the graph is preceded by classifi-
cation of the task interaction point by identifying
the type of data exchanged with the other tasks.
Then each type of data is associated with a weight
which depends on the amount of interaction
introduced by the transaction.
The weighted graph has a biunique correspon-

dence with the set of tasks output by the decom-
position process. More specifically:

Each task corresponds to a vertex in the graph;
Each interaction point corresponds to an edge
with a weight given by the function coupling
Degree (interactionPoint) which gives the weight

associated with the type of gate.

Figure 7 gives a simple example to clarify the
concept. We assign a weight of one to the Boolean
type and a weight of sixteen to the Int type; thus
the resulting graph is shown in.Figure 8. Therefore
the values returned by the function are the
following:

couplingDegree(gl couplingDegree(g4) 16

couplingDegree(g2) couplingDegree(g3

Given a graph with p nodes Vl, V2,..., Vp, it is
possible to associate with it an adjacency (or
distance) matrix, pxp in size, in which the element
aij is equal to the weight of the edge which con-
nects nodes v; and b" (if the edge does not exist we
assume that it has a weight of 0).

If,_in the previous example, we decide to provide
two tasks as input to the mapping stage algorithm,
it would be natural to combine task (2) and task
(3) as they are the ones which interact the most.

Figure 9 shows the preclustering algorithm
written using a C-like syntax.
When execution terminates, the set C will

contain the n clusters which minimize the total
coupling degree function, defined as:

globalCouplingDegree(C - h C c

Figure 10 shows the various steps of the
algorithm when applied to the simple example in
Figure 7, with n 2. Figure 11, on the other hand,
shows a more complex example, in which p= 5
and n 3.

ispecification :=
behaviour

(P [g ,g2]llP2[g1,g2])
where

process P [gl,g2] :=
g1?x:int;
...;Pl[gl,g2]

endproc
process P2[g ,g2] :=
(P3[g 1,g3,g4]llP4[g3,g4,g2])
where

process-P3[81,83,84] :=
g3?y:boolean;
...;P3[gl,g3,g4]

endproc
process P4[g3,g4,g2] :=

g4?z:int;

g2?k:boolen;
...;P4[g3,g4,g2]

endproc
endproc

endspec

Decompositio_n

gl

g2

where:

type(gl)--type(g4)=int;

type(g2)--type(g3)=boolean

FIGURE 7 Example of gate classification after decomposition.

410 V. CARCHIOLO et al.

FIGURE 8 Weighted graph.

The proposed algorithm is optimal at minimiz-
ing the globalCouplingDegree function with the
same number of final clusters, in the sense that the
final configuration is one in which the function
reaches the absolute minimum. There may, how-
ever, be several configurations in which the global
CouplingDegree takes on the minimum value.

In the algorithm, the clusters r and s, to be
grouped together, are those for which the element
A[r, s] is the maximum of all the elements in the
matrix. If there are several elements which take on
the maximum value, the algorithm used in the
examples chooses one at random. Some enhance-
ment could be made in order to improve the
effectiveness of the algorithm in choosing the best
element. To make this clearer, let us consider the
example shown in Figure 12, which only repro-
duces the portion of the graph we are interested in.
On the basis of the algorithm illustrated above,
task (2) could be clustered with either (1) or (3, 4)
obtained by a previous iteration of preclustering. A
variation to the algorithm suggests clustering task
(2) with task (1) as this solution, in minimizing the
coupling degree, produces final clusters with a

A[i,j],.v is the weigthed graph matrix (ofp nodes), where n <_ p is the final
cluster number and C is the set of all cluster.

Initially let C containts all the tasks provided by decomposition, and let c=p.

While (n < c){
Merge cluster r and cluster s obtaining the cluster (r,s):

c C-(r)-(s);
C C + (r,s) where r and s make tree A[r,s] max {A[i,j] i,j C}

Update A[i,j]
Vt C: A[t,(r,s)] Air,r] + A[t,s]
c=c-1

FIGURE 9 Pre-clustering algorithm.

]- (1,2,3) 34
(i" ()[(3)]

2 3 (i’,(2,3)) 17

FIGURE 10 Example of simple pre-cluster algorithm application.

MULTISTEP PARTITIONING 411

Initial graph step step 2
gCouplingDegre(C)-22 gCouplingDcgree(C)=l7 gCouplingDegree(C)= O

FIGURE 11 Another example of pre-cluster algorithm
application.

FIGURE 12 A sample of graph showing enhanced algorithm.

lower number of tasks for each. This modification,
along with some others, has not been shown for
the sake of simplicity but they are implemented in
the working program. Having smaller clusters
means it is easier to explore hw/sw trade-offs
and consequently obtain a better final solution.

5.2. Mapping

This is the stage where the various clusters output
by the preclustering stage are classified as hard-
ware or software and allocated to the target
architecture. The purpose of this stage is to
allocate each module either to software or hard-
ware trying to maximize the performance of the
system and minimize the cost (in terms of money)
of manufacturing. To achieve this result the system

must find the best allocation for each module. The
mapping is influenced by the target architecture
chosen because it imposes requirements on the
dimension (of the hardware part, memory avail-
able, etc.) and on the interlaces between hardware
and software. Moreover, the scheduling algorithm
has a strong impact on the performance of the
system [25, 26].
The methodology has been devised in such a

way as to leave a wide choice of partitioning
methods. The mapping problem is not addressed
by this paper; some interesting strategies can be
found in [27] and [28], each one can easily be
integrated in our methodology and benefits from
the reduction in the number of input tasks.

6. IMPLEMENTATION

6.1. Scheduler, Interfaces, I/O and Software
Module Implementation

The last stage in the development of a device,
performed using typical codesign techniques, is the
definition of the interfaces (i.e., software drivers
and hardware counterpart) between the modules
and the scheduling algorithm needed to manage
the active tasks.
Such an algorithm is needed because the various

modules allocated to software use shared re-
sources, such as the CPU, and also because it is
required to manage the exchange of information
between hardware and software.

Choice of the interfaces affects the performance
of the system as a whole and is closely correlated
with the scheduling algorithm. Interfaces and
scheduling algorithms can indeed be said to
represent a single feature of the system and they
have to be chosen when the target architecture is
defined [29].
The scheduling algorithm is essentially the

operating system of the device being developed
and its main aim is to activate all the software
tasks correctly and in the right sequence and, at
the same time, manage synchronization of the

412 V. CARCHIOLO et al.

hardware modules; all these operations have to be
performed in such a way .as to respect the time
constraints of the device (max delay, max response
time, etc.). Choice of the appropriate scheduling
algorithm has to reach a compromise between the
need for a complete, reliable manager and the need
to avoid using excessive resources, especially
memory and CPU time, to manage itself. This
last point is even more important when the device
comes under the category of control-dominant
systems, where the management routines for single
signals are relatively simple and so do not require
very long processing times.
Two possible kinds of scheduling algorithm are

interrupt-driven and soft-managed.
The interrupt-driven technique is based on the

use of classical interrupt management techniques
to schedule both software and hardware tasks.
Each task (hardware or software) which requires
the exchange of an output signal generates an
interrupt which activates the related routine. Even
though it is logically simple and immediate, the
interrupt-driven algorithm introduces the com-
plexity inherent in the problem of saving the
context of any routine which may be active when
the interrupt occurs and managing priorities. In
addition, this algorithm requires memory in which
to store context information and a device to
manage several interrupt lines so as to be able to
cope with all the hardware tasks present.
The soft-managed technique is based on a

simple-polling algorithm, modified to deal with
synchronizing the .various tasks. Here the re-
sources needed to manage the algorithm itself are
very few, but care must be taken to prevent the
time required by the polling cycle from introducing
an excessive delay in the management of signals.
The technique also has to allow the parallel
evolution of all the hardware clusters at least until
they require input/output from other modules.
The algorithm may also allow some tasks to be
queried more frequently if their delay requirements
are greater.

Choice of the scheduling technique also affects
how the software modules are translated from

TTL to C because, according to the choice made,
different management interfaces and different
signal synchronization techniques will have to be
inserted. It will be necessary to follow the
rendezvous rules imposed by the TTL synchroni-
zation protocol, as happens with all the techniques
of the same family.
The scheduler can be described in TTL and so it

is possible to check that the system comprising the
scheduler and the modules behaves correctly
before passing on to actual synthesis of the
hardware modules, which is costly in terms of
time, by simulation of global behaviour. In the
future, by exploiting TTL’s capacity to describe
time quantitatively, it will be possible to obtain the
scheduler program in such a way as to respect the
time constraints by construction.

6.2. From TTL to VHDL

As said above, a TTL specification comprises a
behaviour and a data part. These two parts require
different translation procedures.

Data Part

This part is translated by establishing a relation
between the types of data in TTL and those of
VHDL, in the sense that each type in one language
is made to correspond to a type in the other.

Behaviour Part

This part of a TTL description is made up of a set
of processes combined by binary operators. It is
possible to identify three types of semantic
elements to be translated: events, processes and
operators.

Events: Synchronization in TTL is achieved by
means of multi-way rendezvous. VHDL, on the
other hand, achieves synchronization by using
signals. It is therefore necessary to decompose
the sophisticated TTL rendezvous into VHDL
signalS.

MULTISTEP PARTITIONING 413

Processes: A TTL process is quite similar to a
VHDL entity where the PORTS can be seen as
low-level gates.
Operators: TTL operators are translated into
the instructions provided by VHDL.

In this phase of the methodology it is possible to
use a tool comprising two modules; the first
translates from TTL.into T-LOTOS (an extended
version of LOTOS including time) and the second
from T-LOTOS into VHDL.
The first step involves expanding the modules,

templates and loops of TTL to obtain the
specification in standard LOTOS with explicit
time constraints (which in turn is quite easy to
translate into T-LOTOS). For the second step it is
possible to use Harpo [30], which accepts T-
LOTOS in input and outputs VHDL. Harpo is
currently being developed but alread presents
interesting features, such as the possibility of
generating a synthesizable VHDL code. A draw-
back, however, is the fact that the code generated
is too large.

7. EXAMPLE: PONDAGE POWER
PLANT CONTROLLER

As an example of application of the method
proposed, we present a system to control the
production of electricity in a hydroelectric plant.
The aim of the example is to show the applicability
of the method to quite complex real systems.

7.1. Specifications

The controller essentially has two functions: it has
to check the level of the reservoir to make sure it
does not exceed a certain limit, and then directly
control the production of electrical power.
The system provides for two functioning modes,

manual and automatic. In the first mode the
parameters involved in power production are
supplied manually from the outside, while in the
second mode everything is controlled automati-
cally by a daily production program.

The controller, presented comprises several
blocks: the clock, the daily program, the control
panel, the regulator and a set of actuators.
Figure 13 shows the structural interconnection
between the various blocks, which we reached
after performing several refinement steps on the
abstract specifications of the system. Figure 14
shows the main TTL specification of the system.

In giving a detailed description of the features of
the individual blocks, we will make use of the
modularity offered by TTL.

Control Panel The Control Panel sets the func-
tioning mode for the system (manual or auto-
matic). Figure 15 shows the declaration of the
Control Panel. It comprises a public process called
main and three private processes (which cannot be
exported). Figuer 15 gives a definition of the main
process. As can be seen, the Control Panel module
is in turn a parallel combination of four processes;
CNTRL, B1, B2 and B3.
The CNTRL process (a definition of which is

given in Fig. 16) has two functions:

it detects the occurrence of the signal auto_t (as
opposed to manu_t) and informs the regulator of
the automatic (as opposed to manual) function-
ing mode by emitting the signal auto (manual);
it memorizes emission of the signals prgstart,
prgstop and prgwidth, so as to restore normal
functioning when passing from manual to
automatic.

The processes B1, B2 and B3 perform a sort of
logical OR on the input signals, so as to guarantee
correct functioning both in the automatic mode
and during the transition from manual to auto-
matic. Figure 17 gives a definition of these three
processes.

Daily Program This block manages the daily
automatic production of electricity. Figure 18
shows the declaration of the module.
The Daily Program module is a parallel

combination of two processes, DP1 and DP2 (see
Fig. 18); the first turns the plant on and off, while

414 V. CARCHIOLO et al.

Regulator

AC"3 ,.in --level

Control Panel

pstart

O
rnstart

pstop

mstop

pwidth!
0

width

auto

CNTRL

auto manu

prgstart

prgstop ?
prgwidth

Daily program

I

Clock

FIGURE 13 Complete scheme of a pondage power plant controller.

use comp.dcc (* module declaration file *)
specification power_plant[op,cl,width,up,dw,opr,clr,level,mstart,mstop,mwidth,auto_t,manu_t] :noexit
behaviour
((((((Regulator.main[pencsewidthincdecevepenRcseRpstartmstartpstpmstppwidthmWidthfwidthautmanu]
I[pstart,pstop,pwidth,auto,manu]l Control_Panel.main[pstart,pstop, pwidth,auto,auto_t,manu,manu_t])
[prgstart,prgstop,prgwidth]lDaily_Program.main[prgstart,prgstop,prgwidth,time])
[[time]lClock.main[time])
[[openR,closeR][Act.rnain[openR,closeR,opr,clr]) (* ACT2 *)
[[fwidth,inc,dec]lAct_step.main[inc,de,fwidth,up,dw]) (* ACT3 *)
[[open,lose][hct.main[open,close,op,cl]) (* ACT1 *)

endspec

FIGURE 14 Pondage power plant controller main specification.

module Control Panel is
private:
process B[sl,s2,s3];
process B3[pwidth,prgwidth,p3];
process CNTRL[auto_t,manu_t,auto,manu,p ,prgstart,p2,prgstop,p3,prgwidth](x:int,y:int4

public:
process main[pstart,pstop, pwidth, auto,auto_t,manu,manu_t];

end Control Panel

Control_Panel::main[pstart,pstop, pwidth, auto,auto_t,manu,manu_t]: noexit:--
(((CTRL[auto__t,manu_.t,auto,manu,pl,prgstart,p2,prgstop,p3,prgwidth](0,0)
Itprgstart,pl][B[pstart,prgstart,pl]) (* Bl *)
I[prgstop,p2]lB[pstop,prgstop,p2]) (* B2 *)
[[prgwidth,p3 [B3[pwidth,prgwidth,p3])

endproc

FIGURE 15 Control panel module declaration and main process definition.

MULTISTEP PARTITIONING 415

Control_Panel::
process CNTRLlauto_t,manu_t,auto,manu,pl,prgstart,p2,prgstop,p3,prgwtdth](x:int, y:int4): noexit:=
auto_t;auto ;(

[x=l]->pl ;p3 !y;CNTRL[auto_t,manu_t,auto,manu,p1,prgstart,p2,prgstop,p3,prgwidth](x,y)
[]
[x=]->p2;CNTRL[auto-t,manu-tauto,manupprgstartp2prgstpp3prgwidth](xy)

[]
rnanu__t;manu;CNTRL[auto_t,manu_t,auto,manu,p ,prgstart,p2,prgstop,p3,prgwidth](x,y)
[]
prgstart;CNTRL[auto_t,manu_t,auto,manu,pl,prgstart,p2,prgstop,p3,prgwidth](1,y)
[]
prgstop;CNTRL[auto__t,manu_t,auto,manu,p ,prgstart,p2,prgstop,p3,prgwidth](0,y)
[]
prgwidth?y:int4;CNTRL[auto_t,manu_t,auto,manu,p ,pr@tart,p2,prgstop,p3,prgwidth](x,y)

endproc

FIGUR.E 16 Control panel CNTRL process definition.

Contr’ol_Panel: :process Blsl,s2,s3l: noexit:=
s2;sl ;B1 [sl,s2,s3]
[]
s3 ;s ;B Is ,s2,s3

endproc

Control_Pane1::process B3[pwidth,prgwidth,P3l: noexit:
prgwidth?x:int4;pwidth!x; B3[pwidth,prgwidth,p3
[]
p3?x:int4;pwidth!x; B3[pwidth,prgwidth,p3]

endproc

FIGURE 17 Control panel B e B3 process definition,

the second manages differentiated production of
electricity according to the time of day.
On the basis of the time signal, the process DP1

(see Fig. 18 for a definition) turns the plant on and
off. It is turned on at 6.00 am (by emitting the
prgstart signal) and turned off at 9.00 pm (by
emitting the prgstop signal).
The process DP2 (see Fig. 18) uses the time

signal to regulate the level of production of
electricity. It acts indirectly on the aperture of
the valve (signal prgwidth: 0 completely closed, 10
completely open) which regulates the flow of water
into the power plant. According to the daily
requirements, production is divided into three time
bands:

From 9.00 pm on the previous day to 5.00 am
on the next day, aperture 0, corresponding to no
production of electricity;
From 6.00 am to 6.00 pm, 70% of maximum
production;
From 7.00 pm to 8.00 pm 50% of maximum
production.

Clock Automatic management of production
requires knowledge of the real time, which is
provided by the block called Clock.

Figure 19 shows the statement of the module and
definition of the main process. As can be seen, the
Clock block has been decomposed into a parallel
combination of two processes counter and ck.

416 V. CARCHIOLO et al.

module Daily_Pgram is
private:
process DP [prgstarprgstop,time];
process DP2[prgwidtlhtime];

public:
process main[prgstart,prgstop,prgwidth,time];

end Daily_Program

Daffy_Program:: main[prgstart,prgstop,prgwidtlgtime]: noexit:--
(DP1 [prgstart,prgstop,time]][time][De2[prgwidth,time])

endproc

Daily_Program:: DP1 [prgstart,prgstop,time]: noexit:=
time?x:int5 in

[x=6]->prgstart;DP1 [prgstart,prgstop,fime]
[]
[x=21]-> prgstop,DP1 [prgstart,prgsp,time]
[]
[(x!=6) and (x!=21)]->DP [prgstart,prgstop,time]

endproc

Daffy_Program:: DP2[prgwidth,time]: noexit:=
time?x:intS;

[(x>=0) and (x<=5)]-> prgwidth!0; DP2[prgwidth,time]
[]
[(x>=6) and (x<=l 8)]-> prgwidth!7; DP2[prgwidth,time]
[]
[(x>=l 9) and (x<=20)]-> prgwidth[5; DP2[prgwidth,fime]
[]
[(x>=21) and (x<=23)]-> prgwidth!0; DP2[prgwidth,time]

endproc

FIGURE 18. Daily program declaration and definition.

module Clock is
private:
process counter[tick,time](x:int);
process ck[tick];

public:
process main[time];

end Clock

Clock:: process mainltimel: noexR:=
(counter[tick,time](0) I[tick]l ek[tiek])

endproc

Clock:: process ckltick]: noexit:=
tick{ ;ck[tick]

endproc

Clock:: process counter[tkk,time] (x:intS): noexit:=
let i:int=O in
time!x;
loop (i<3600; i+l; tick;exit);>> counter[ck,time]((x+l) mod 24)

endproc

FIGURE 19 Clock declaration and definition.

MULTISTEP PARTITIONING 417

Figure 19 also gives a definition of the ck
process, which produces a tick every second,
exploiting the possibility TTL offers of inserting
quantitative time references into the description.
For the purpose of automatically managing the

production of electricity, it is sufficient for the time
signal to be emitted every hour. We therefore
implemented the counter process (see Fig. 19)
which uses a typical construct of TTL (loop) to
create a counter which puts out the information
every 3600 ticks.

Regulator This block deals directly with control
of the plant. It has two main functions:

Checking that the level of the reservoir does not
exceed a certain emergency threshold, in which
case it tries to restore normality by acting on an
outlet valve;
Checking the level of production, and turning
the plant on and off by manual or automatic
controls.

Figure 20 describes the statement of the
regulator module, and the main process. Let us
analyze the functioning of the processes which
make up the regulator.
The processes R1 and R2 function in a similar

way (see Fig. 21). The former turns the plant on
by opening the valve (open signal) of the duct

which goes from the reservoir to the plant; the
latter turns the plant off by closing the valve (close
signal). Both processes deal with correct manage-
ment of the input signals in relation to the
functioning mode (manual or automatic).
The process R3 (See Fig. 22) manages the level

of production in the plant by acting on the valve
which regulates the flow entering the plant. By
means of the width signal, a sensor communicates
the current aperture of the valve, which is
compared with what has been programmed (in
the automatic functioning mode) or set manually
(manual functioning mode). On the basis of the
difference between the two values, it acts on
the motor which regulates the valve, emitting the
signals inc and dec (which indicate the direction in
which the engine has to move to increase or
decrease the angle of aperture) and the signal
fwidth (which indicates the relative angle of
rotation of the valve). This process is also
constructed in such a way that the automatic and
manual functioning modes are managed appro-
priately.
The process R4 (Fig. 23) controls the level of the

reservoir. The current level is provided by the
signal level (0 to indicate that the reservoir is
empty, 10 that it is completely full). The safety
level is set to a value of eight, which corresponds to
80% of the maximum capacity. If this level is

module Regulator is
private:
process R[u,i_a,i_m,a,m](x: int);
process R3[width,pwidth,mwidth,fwidth,auto,manu,inc,dec](x: int);
process R4[level,openR,closeR];

public:
process main[pen,cse,width,incdeceve,penRseRpstartmstartpstp,mstppwidthmwidth,autrnanu];

end Regulator

Regulator::
main[open,elose,wtdth,inc,dec,leveI,openR,closeR,pstart,mstart,pstop,mstop,pwtdth,mwidth,auto,manu]: noexit:=
(((R[open,pstart,mstart,auto,manu](1) (* gl *)
I[auto,manu]lR[close,pstop,mstop,auto,manu](I)) (* R2 *)
I[auto,manu]IR3 [width,pwidth,mwidth,auto,manu,inc,dec]))
IllR4[level,openR,closeR])

endproc

FIGURE 20 Regulator module declaration and main process Definition.

418 V. CARCHIOLO et al.

Regulator:: process R[u,i..a,i_m,a,m] (x:int):noexit:=
Ix=]->(i_a;u;R1 [u,i_a,i_m,a,m](x)

[] m; R1 [u,i_a,i_m,a,m](0)

x=0]->(i_m;u;R [u,i_a,i_m,a,m](x)
[] a; R1 [u,i_a,i_m,a,m](1)
)

endproc

FIGURE 21 Regulator R process definition.

exceeded the process R4 activates signals to open
an outlet valve so as to bring the situation back to
normal.

Act1, Act2 and Act3 The blocks Actl, Act2 and
Act3 deal with interfacing between the control
system and the actuators which drive the valves.
More specifically:

Actl runs the motor which controls the valve of
the duct going from the reservoir to the plant.
There are two possible positions for this valve
open and closed.
Act2 controls the outlet valve which serves to
keep the level of the reservoir below a certain
safety level. Here again there are only two
possible positions open and closed.
Act3 serves as an interface between the system
and the stepper motor which controls the inlet
valve. There are eleven positions for this valve,

from zero to ten, which correspond to 0% and
100% of the angle of aperture of the valve (and
therefore indirectly to the level of production).

Act and Act2 have a similar structure, the
statement of which is given in Figure 24 where
definition of the main process is also given.

Act3, as said above, serves as an interface with a
stepper motor which can move by steps towards
increasing or decreasing angles, according to
whether a signal up or dw is sent. The aim of
Act3 is to send as many up (or dw) signals as
the steps supplied by fwidth. Figure 24 gives the
declaration of the module and a definition of the
main process.

7.2. Decomposition

The specification of the system is given in such a
way as to obtain the maximum number of tasks in
the decomposition phase. Figure 25 shows the tree
which represents the hierarchy of TTL processes
on the basis of how they are instanced.
Applying the decomposition algorithm, we

obtain the following tasks:

T B1, T2 B2, T3 B3, T4 CNTRL,

T5 Actl, T6 R1, T7 R2, T8 R3,

T9 R4, T0 Act2, T DP1, T2 DP2,

T3 Counter, Z14 Ck, T15 Act3

Regulator.: process R3[widtb.,pwidth,mwidth,fwidth,auto,manu,inc,dec](x:int):noexit:
width?y:int4;(
[x=l]-> (pwidth?z:int4;(

z>y]->inc; fwidth!(z-y);R3[width,pwidth,rnwidth,fwidth,auto,manu,inc,dec](x)
[]
[z<=y]->dec;fwidth!(y-z); R3[width,pwidth,mwidth,fwidth,auto,manu,inc,dec](x)

[] manu; R3[width,pwidth,mwidth,fwidth,auto,rnanu,inc,dec](0)

endtroc

[]
ix=O]-> (mwidth?z:int4;(

[z>y]->inc;fwidth!(z-y); R3[width,pwidth,mwidth,fwidth,auto,manu,inc,dec](x)
[]
z<=y]->dec;flwidth(y-z); R3[width,pwidth,mwidth,fwidth,auto,manu,inc,dec](x)

[] auto; R3[width,pwidth,mwidth,fwidth,auto,manu,inc,dec](1)

FIGURE 22 Regulator R3 process definition.

MULTISTEP PARTITIONING 419

Regulator:.: process R4[level,openR,closeR] :noexit:
level?x:int4;

[x>8]->openR;R4[level,openR,closeR]
[]
[x<8]->closeR;R4[level,openR,closeR]
[]
[x=8]->R4[level,openR,closeR]

endproc

FIGURE 23 Regulator R4 process definition.

module Act is
public:
process main[inl ,in2,out ,out2];

end Act

Act:: process mainlinl,in2,outl,out2]: noexit:=
inl ;outl ;main[inl,in2,oul ,ou2]
[]
in2;out2;main[in ,it2,outl,out2

endproc

module Act_step is
public:
process main[inc,dec,fwidth,up,dw];

end Act_step

Act_step:: process main[inc,dec,fwidth,np,dwl: noexit:=
let i:int=0 in
inc;fwidth?x:int4;loop(i<x;i+ ;up); main[inc,dec,fwidth,up,dw]
[]
dec; fwidth?x:int4;loop(i<x;i+ ;dw); main[inc,dec,fwidth,up,dw]

endproc

FIGURE 24 Act and act_step process declaration and
definition.

7.3. Partitioning

Pre-Clustering Application of the pre-clustering
algorithm passes through construction of the
adjacency matrix .for the weighted graph. We
assume that the function couplingDegree has the
following values:

5 for the time signal (minimum number of bits
required to represent the 24 hours of the day);
4 for prgwidth, pwidth, p3, fwidth (needed to

represent the 11 positions of the valve);
for all the other signals.

In this case the matrix of the graph is the one
shown in Figure 26. Applying the clustering
algorithm to this matrix with n= 10, we get the
following clusters:

C T1, C, T2, C3 T3+ T4+T+T+T3,

C4- T5, C5--Z6, C6--T7, C7-- T8-+-T15,

C8-- T9, C9-- TlO, ClO-- Z14

In this example, we chose to reduce the number
of tasks from 15 to 10, on account of particular
efficiency requirements. As mentioned previously,
in fact, the final number of clusters has to be
chosen in such a way as to:

Reduce the number of tasks as far as possible
(and consequently the complexity of the sub-
sequent mapping phase);

)Aet3

B1 B2 B3 CNTRL R1 R2 R3 R4 DP1 DP2 Counter Ck

FIGURE 25 Labelled process tree of pondage power plant Controller.

420 V. CARCHIOLO et al.

6 0 0
0 0 0
0 0 0
o o o
o o o
o 2
o

o ololol
o oi 1

FIGURE 26 Weighted graph matrix of pondage power plant controller.

Not impose constraints on the mapping of the
target architecture.

If we had decided to take the final number of
clusters to be used as input for the mapping
algorithm down to seven, the pre-clustering algo-
rithm would have put out the following clusters:

C1 Zl -1-- Z2+ Z3+ T4+ Z8+ Tll
-t- T12-[- T13 + T15, C2- Z5, C3- Z6, C4- T7,
C5- Z9, C6-- T10, C7- T14

For reasons linked to minimization of the
coupling degree, the cluster C1 is composed of
nine tasks; such a critically large cluster which
would represent a hard constraint in the mapping
stage. This means that a given cluster could be
mapped without taking into account the para-
meters directly linked with the target architecture,
which should be decisive for mapping.

In traditional design methodologies, the way in
which specification of the system was made was a
constraint for the subsequent mapping on the
target architecture, as there was a tendency to map
the blocks which functionally constituted the
specification (e.g., in this case the regulator, the
control panel, the daily program, etc.) directly
onto hardware or software. In our case, instead,

the composition of a cluster is not linked to the
functions it performs but is a result of application
of an algorithm which minimizes the degree of
coupling between the parts of the system. For
example, it would have been hard to envisage a
cluster like C3, which is made up of processes
belonging to different functional blocks and which
in substance represents an optimal choice with
respect to the coupling degree parameter.

8. RELATED WORK AND CONCLUSIONS

In this section we will examine the different
approaches that can be found in literature to solve
each aspect of codesign.

Several techniques have been proposed to tackle
the specification of hardware and software; in the
following we will sketch the characteristics of some
of them.

Esterel [31] is a synchronous language based on
FSM. The synchronous hypothesis states that time
is described as a sequence of instants, between
which no action can takes place. This hypothesis
permits the system to be modelled using only a
single FSM exhibiting a totally predictable beha-
viour. Unfortunately the resulting FSM is gener-
ally fairly large, thus making it difficult to specify
systems with a large amount of concurrency.

MULTISTEP PARTITIONING 421

Another technique belonging to FSM is State-
Charts [32]. It is a graphical specification language
which allows hierarchical decomposition, timing,
concurrency and subroutines. It allows a concise
specification and a clear documentation, but it
lacks in specification of software submodules.
Among the other languages used for co-specifi-

cation we can cite two examples: Cx, the entry
language for COSYMA [33], which extends ANSI
C with delays, tasks and task communication, and
Hardware C [34] Which can be translated into a
flow graph.

In the methodology introduced in this paper the
specification language used is TTL. It is derived
from T-LOTOS, an FDT based on the CCS and
CSP process algebras. TTL appears suitable for
describing control-dominated systems, as dis-
cussed throughout the paper.
As shown in the paper a key problem in

codesign methodologies is the validation of the
model of the system being developed. Simulation is
still the main tool used for this purpose and
consists of comparing the model against a set of
specifications. Many methods have been proposed
in literature, they differ in their method of
coupling hardware and software components.
For example, in [35] a single custom simulator is
used for both hardware and software, whereas
another approach proposes using a software
process running on a host computer loosely
connected with a hardware simulator [36].
TTL aims to perform verification on the

specification. Formal verification is the process of
checking that the behaviour of the system satisfies
a given property, also described using a formal
method. This approach has been widely adopted
to verify the correctness of protocols and it
appears useful in hardware/software property
checking. It also allows the congruence between
two successive refinement steps to be checked
without using a simulation approach. For these
reasons we refer to our methodology as a "formal
codesign methodology".

Several solutions to the partitioning problem are
proposed in literature. Some use a graph model to

represent the operations performed by devices and
associate a cost to them [33]. Others perform the
partitioning together with the implementation of
the scheduling algorithm as, for instance, in [29]
where the specification is made with a hardware
description language and synthesis tools are used
to estimate the costs. The basic idea of performing
scheduling and partitioning together is to minimize
the response time.
Our methodology divides the partitioning stage

into two steps. The first (preclustering) is based
only on the properties of the system and aims to
reduce the complexity of problems. This is

obtained by a simple algorithm whose complexity
is Very low especially compared with that of the
mapping algorithm. The second step groups the
remaining clusters and maps onto the target
architecture. The strategy used to reduce the
complexity of mapping is based on minimization
of the interaction among clusters.

Finally some problems dealing with mapping
have been discussed, including the choice of the
scheduling algorithms needed to allow hardware
and software modules to coexist. Proper choice of
the scheduling algorithm is, however, an open
problem to which further studies must be
devoted.

References
[1] De Micheli (Aug. 1994). Computer-Aided Hardware-

Software Codesign. IEEE Micro.
[2] Hardt, R. and Camposano (Oct. 1993). Trade-Offs in

HW/SW Codesign. Proc. International Workshop on
Hardware-Software Codesign.

[3] Barros, W. and Rosenstiel, X. Xiong (Oct. 1993). Hard-
ware/Software Partitioning with UNITY. Proc. Interna-
tional Workshop on Hardware-Software Codesign.

[4] Chiodo, P., Giusto, A., Jurecska, H. C., Hsieh, A. and
Sangiovanni-Vincentelli, L. Lavagno (Aug. 1994). Hard-
ware-Software Codesign of Embedded Systems. IEEE
Micro.

[5] Gupta, R. K. and De Micheli, G. (September 1993).
Hardware-Software Cosynthesis for Digital Systems.
IEEE Design and Test Computer.

[6] Gupta, R. K., Coelho, C. N. and De Mich61i, G. (January
1994). Program Implementation Schemes for Hardware-
Software Systems. IEEE Computer.

[7] Bolognesi, T., D: Latella and Pisano, A: "Toward a
graphic syntax for LOTOS", Proc. of EUTECO’88,
Vienna April 1988, North-Holland.

422 V. CARCHIOLO et ali

[8] Carchiolo, V., Malgeri, M. and Mangioni, G. "TTL: A
LOTOS Extension for System Description", on Proc. of
Basys ’96, Lisboa, Portugal.

[9] Quemada, J. and Fernandez, A. (1987). Introduction of
Quantitative Relative Time into LOTOS IFIP Workshop
on Protocol Specification, Testing and Verification VII
North Holland.

[10] Eide, A. (March 1993). "Compiling UNITY programs to
parallel processes in a coupled environment", Master
Thesis, University. of Trondheim. and FZI, .Karlsruhe.

[11] Alur, A. and Dill, D. (1990). "Automata for .modelling
Real Time Systems", In Automata Languages and
Programming: 17th annual Colloquium, 443 of LNCS.

[12] Chiodo, P., Giusto, A., Jurecska, H. C., Hsieh, A.,
Sangiovanni-Vincentelli and L. Lavagno (October 1993).
A Formal Specification Model for Hardware
Codesign. Proc. International Workshop on Hardware-
Software Codesign.

[13] Murata (April 1989). Petri nets: Properties, analysis and
applications. Proc. IEEE.

[14] Carchiolo, V., Di Stefano, A., Faro, G. and Pappalardo
(April 1989). ECCS and LIPS: Two Languages for OSI
Systems Specification and Verification. ACM Transac-
tions on Programming Languages and Systems, 11(2), pp.
284- 329.

[15] Tiedemann, W. D., Lenk, S., Grobe, C. and Grass, W.
(1993). Introducing Structure into Behavioural Descrip-
tions obtained froma Timing Diagram Specification.
Microprocessing and Microprogramming 38, North-Hol-
land.

[16] McCaskill A. and Milne, G. J. (June 1992). Hardware
description and verification using the CIRCAL-System.
Technical Report HDV-24-92, University of Strathclyde,
Department of Computer Science, Glasgow.

[17] ISO IS 8807, Information Processing Systems, Open
System lnterconnection, LOTOS, A Formal Description
Technique Based on the Temporal Ordering of Observa-
tional Behaviour. ISO, June 1988.

[18] Chou, P. and Borriello, G. (June 1994). Software
Scheduling in the Co-Synthesis of Reactive Real Time
Systems proceeding of the Design Automation Confer-
ence, San Diego CA.

[19] Quemada, S. and Pav6n, A. Fernandez (June 1989). State
Exploration by Transformation with LOLA. Workshop
on Automatic Verification Methods for Finite State
Systems, Grenoble.

[20] Tiedemann, D., Lenk, S., Grobe, C. and Grass, W. (1993).
Introducing Structure into Behavioural Descriptions ob-
tainedfrom a Timing Diagram Specification. Microproces-
sing and Microprogramming 38, North-Holland.

[21] Milner, R. (1980). A calculus of communicating systems.
LCNS 92, Springer-Verlag, New York.

[22] Hoare, C. A. R. (1985). "Communicating Sequential
Processes". International Series in Computer Science.
Prentice Hall.

[23] Ehrig, H. and Mahr, B. (1985). Fundamentals ofAlgebraic
Specifications 1 EATCS Monographs on Computer
Science, Springer.

[24] Carchiolo, V., Malgeri, M. and Mangioni, G. July 1995.
"TTL: Templated T-LOTOS", Internal report of the
University of Catania.

[25] Takach, W. Wolf. (January 1995). An automaton model
for scheduling constraints in synchronous machines. IEEE
Transactions on Computers.

[26] Axelsson (June 1995). "Analysis and Improvement of
Task Schedulability in Hardware/Software Codesign",
Internal Report Linkping University, Sweden, LITH-
IDA-R-95, 24.

[27] Kalavade and Lee, E. A. (June 1995). "The extended
Partitioning Problem: Hardware/Software Mapping and
Implementation-Bin Selection", Proc. of Inter. Workshop
on Rapid Prototyping, Chapel Hill, NC.

[28] Lopez, M. Jan. 1995. Reference Manualfor the LOTOS
to I/’HDL translation tool. Internal report of FORMAT/
.ESPRIT Project No. 6128.

’[29] Olokutun, K., Helaihel, R., Levitt, J. and Ramirez, R.
(August 1977). A software-hardware cosynthesis ap-
proach to digital system simulation. IEEE Micro., 14(4),
48- 58.

[30] Delgado Kloos, de Miguel Moro, T., .ValladareS, T. R.,
Filho, G. R. and Lopez, A. M. (1993). IZHDL generation
from a timed extension of the formal description technique
LOTOS within the FORMAT project. Microprocessing
and. Microprogramming 38, North-Holland.

[31] Berry, G., Couronne’, P. and Gonthier, G. (September
1991). The synchronous approach to reactive and real-
time systems. IEEE Proceeding, 79.

[32] Drusinski, D. and Har’.el, D. (July 1989). Using state-
charts for hardware description and synthesis. IEEE
Transactions on Computer-Aided Design, $(7).

[33] Ernst, R. and Henkel, J. (September 1992). Hardware-
software codesign of embedded controllers based on
hardware extraction. In Proceeding of the International
Workshop on Hardware-Software Codesign, Boston.

[34] Ku, D. and De Micheli, G. (1992). High level synthesis of
ASICs under timing and synchronization constraints.
Kluwer Academic Publisher.

[35] Gupta, R. K., Coelho Jr. C. N. and De Micheli, G. (June
1992). Synthesis and simulation of digital systems contain-
ing interacting hardware and software components. In
Proceeding of the Design Automaton Conference.

[36] Wilson (1994), Hardware/software selected cycle solution.
In Proceeding ofthe International Workshop on Hardware-
Software Codesign.

Authors’ Biographies

Vincenza Carchiolo is currently associate professor
of Computer Science in Institute di Informatica e
Telecommunicazioni at University of Catania. Her
research interests include distributed system, for-
mal language, embeded system design, CAD
methodology. She received a degree with Honors
in Electrical Engineering from University of
Catania, Italy in 1983. She is member of ACM.

Miehele Malgeri is researcher in Institute di
Informatica e Telecommunicazioni at University
of Catania. His research interests include distri-
buted system, formal language, embeded system
design, CAD methodology and networks. He
received a degree with Honors in Electrical

MULTISTEP PARTITIONING 423

Engineering from University of Catania, Italy in
1983.
Giuseppe Mangioni received a degree with

Honors in Information Engineering from Univer-

sity of Catania, Italy in 1995. He is currently a
Ph.D., candidate of Catania. His research interests
include distributed system, formal language and
their application in Codesign.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

