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Abstract: It is known that the spike protein of human coronaviruses can bind to a secondary receptor,
or coreceptor, to facilitate the virus entry. While HCoV-229E uses human aminopeptidase N (hAPN)
as a receptor, HCoV-OC43 binds to 9-O-acetyl-sialic acid (9-O-Ac-Sia), which is linked in a terminal
way to the oligosaccharides that decorate glycoproteins and gangliosides on the surface of the host
cell. Thus, evaluating the possible inhibitory activity of heparan sulfate, a linear polysaccharide
found in animal tissues, and enoxaparin sodium on these viral strains can be considered attractive.
Therefore, our study also aims to evaluate these molecules’ antiviral activity as possible adsorption
inhibitors against non-SARS-CoV. Once the molecules’ activity was verified in in vitro experiments,
the binding was studied by molecular docking and molecular dynamic simulations confirming the
interactions at the interface of the spike proteins.

Keywords: heparan sulfate; enoxaparin; coronavirus; HCoV-229E; HCoV-OC43; APN; 9-O-Ac-Sia;
molecular docking

1. Introduction

Coronaviruses’ history begins in the 1930s [1,2]. However, in the last 60 years, there
has been a particular interest in their relationship with human diseases, thanks to the
discovery of the first two human strains, OC43 [3,4] and 229E [5]. Subsequently, this
interest became more and more consolidated with the discovery of the so-called pathogenic
coronaviruses [6–9] and, more appropriately, with the appearance of the pandemic viruses
SARS-CoV-1 [10], MERS-CoV [11], and SARS-CoV-2 [12].

The latest pandemic caused by SARS-CoV-2 has enormously raised the crucial role
of pericapsid glycoproteins in the pathogenesis of the infection [13,14], in the secondary
immune response [15], for vaccine [16], and also in the role that this protein could have in
controlling the T-cell-mediated response [17].

The genomic organization of human coronavirus has shown a variability among
structural proteins between α-coronavirus and β-coronavirus and the protein involved in
cell interactions [13,14,18,19].

It is known that the spike protein of human coronaviruses can bind to a secondary
receptor or coreceptor to facilitate such entry. MERS-CoV uses sialic acid as a coreceptor and
its main receptor, DPP4 [20]. Human CoV-NL63 uses ACE2 as a receptor and proteoglycans
heparan sulfate (HS) as a coreceptor [21], while SARS-CoV-1 pseudovirus binds to HS
as a coreceptor for infectivity. Differently, HCoV-229E uses human aminopeptidase N
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(hAPN) as a receptor [22], whereas HCoV-OC43 binds to 9-O-acetyl-sialic acid (9-O-Ac-Sia),
which is linked in a terminal way to the oligosaccharides that decorate glycoproteins and
gangliosides on the surface of the host cell [23].

Precisely, the attachment of the virus to the host cell is initiated by the interactions
between the protein S and its receptor. The site of receptor binding domains (RBDs) within
the S1 region of a coronavirus protein S varies for each coronavirus. For example, the
spike proteins S of SARS-CoV-1 and SARS-CoV-2 attach the virus to its cellular receptor,
angiotensin-converting enzyme 2 (ACE2) [24,25].

Nowadays, in silico medicinal chemistry has generated major interest in the research
field, leading to significant results. In the last few years, our research group has gained
experience in computational drug design [26–36] and identified several hit compounds
as inhibitors of the fusion process of SARS-CoV-2 HR1 [37,38], as well as on artificial
intelligence in de novo drug design for COVID-19 pharmaceutical research [35]. More-
over, there has been a renewed interest in the search for natural molecules with antiviral
activity [38–40] and the potential antiviral efficacy of glycans and proteoglycans [41,42].

Proteoglycans are heavily glycosylated proteins and a major component of non-
structural extracellular matrices. They are composed of independent structural domains,
the sequences and arrangements of which are highly conserved and discretely glycosylated,
thus determining a varying degree of matrices organization. Therefore, these molecules
participate in maintaining the bulk, shape, and strength of tissues in vivo. Moreover, they
are critically important for cell growth, survival, and differentiation [43–46]. Furthermore,
recent evidences have shown their use in clinical practices as biomarkers in diagnosis in
various pathologies [47–52].

Several published studies have suggested that numerous viruses use the heparan
sulfate component of cell surface heparan sulfate proteoglycans (HSPGs), which are ubiq-
uitously expressed, as an initial receptor to attach to cells [53,54]. Moreover, there are
indications that the SARS-CoV-2 spike also interacts with HSs [55] and facilitates the at-
tachment of spike-bearing viral particles to the cell surface to promote viral entry [56]. In
fact, it has been demonstrated that the SARS-CoV-2 spike protein interacts with heparan
sulfate and ACE2 through the RBD [57].

According to the above observations, there is a need to investigate the effects of hep-
aran sulfate or enoxaparin sodium (EX) on virus adsorption and/or entry to develop any
potential pharmaceutical formulation to be used in the prevention of coronavirus disease.
Indeed, EX is a drug usually exploited in pulmonary disease treatment in place of hep-
arin [58]. It is produced starting from standard heparin and belongs to the low-molecular-
weight heparins (LMWH) group: a strongly acidic chain composed of the monosaccharides
glucosamine and glucuronic acid linked by disulfide bridges [59]. Moreover, some stud-
ies showed that therapeutic-dose LMWH had safer and/or more significant effects than
standard institutional heparin [60–62].

Therefore, our study aimed to develop a pilot study to evaluate the antiviral activity of
both HS and EX and/or their possible adsorption-inhibiting activity by using HCoV-229E
and HCoV-OC43. Once the molecules’ activity was verified in in vitro experiments, the
binding ability was evaluated by molecular docking and molecular dynamic simulations.

2. Materials and Methods
2.1. Chemicals, Cellular Lines, and Viruses

Heparan sulfate (HS) and enoxaparin sodium (EX) were kindly supplied by Techdow
Pharma S.r.l Assago Milanofiori (MI) Italy.; MRC5 (Lung Normal Fibroblast Cells ATCC®

CCL171™) and HCT-8 (Human Colon Adenocarcinoma Epithelial Cells HRT-18 CCL-244™)
were purchased from American Type Culture Collection (ATCC, Manassas, VA, USA) and
cultured as follows.

MRC5 cells were cultured in DMEM high glucose medium supplemented with 2 mM
L-glutamine, 100 U/mL penicillin–streptomycin mixture, and 10% fetal bovine serum
(FBS), at 37 ◦C, in a 5% CO2 humidified incubator. HCT-8 cells were cultured in RPMI-
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1640 medium supplemented with 2 mM L-glutamine, 100 U/mL penicillin–streptomycin
mixture, and 10% of FBS, at 37 ◦C, in a 5% CO2 humidified incubator. Adherent sub-
confluent cell monolayers were prepared in growth medium (2% FBS) in 96-well plates for
cytotoxicity assays and viral inhibition tests.

HCoV-229E and HCoV-OC43 strains were obtained from ATCC, passaged, and ampli-
fied on MRC5 and HCT8 cells, respectively.

2.2. Cell Viability Assay by MTT

The evaluation of the cytotoxic effects of the solutions under examination on hu-
man pulmonary eukaryotic cells was performed employing the MTT assay as previously
reported [63]. Therefore, cell viability was measured by colorimetric reduction of MTT
enzymatically catalyzed by mitochondrial succinate dehydrogenase. The color intensity
was measured at 570 nm using a spectrophotometric reader. Six assays for each sample
were performed, and the results were expressed as mean ± SD.

2.3. Cell Viability Assay by Air-Liquid Interface (ALI) Exposure

The evaluation of the cytotoxic effects was also performed by ALI exposure. MRC5
cells were seeded in 12 mm Transwells® inserts (Corning Incorporated, Corning, NY, USA)
at a density of 1.75 × 105 cells/mL sustained by 1 mL of medium in the basal compartment
of each well and 0.5 mL in the apical compartment of each insert, 48 h before exposure.
When the cells reached 80% confluency, the apical medium was removed from each insert.
As previously described, two inserts per test product were transitioned to the exposure
chamber with 20 mL of medium in the basal compartment to perform the ALI exposure [64].
ALI exposure was carried out using a Borgwaldt LM4E vaping machine with an aerosol
nebulizer (Borgwaldt-Kc, Hamburg, Germany) attached to vaporize the solutions object of
our study (Figure S1).

The cell exposure chambers used in this study were previously described by Azzopardi
et al. [65,66]. (Figure S2) [65,66].

In order to evaluate the cytotoxicity of the aerosols generated by the substances on cells,
the nebulizer was loaded with 2 mL of solutions, HS and EX, in two different concentrations:
10 mg/mL and 2.5 mg/mL. In addition, 2 mL of saline was vaporized as a negative control,
and 2 mL of 30% DMSO solution as a positive control. Nebulization was performed with
a regimen equal to a volume of 100 mL for 10 s at a frequency of 20 s interpuffs until
completion of the solution, i.e., for a time of 15 min × 30 puffs.

2.4. Antiviral Activity

The in vitro evaluation of antiviral activity on coronavirus 229E and OC43 strains was
performed in the adsorption phase on MRC5 and HCT-8 cells, respectively. Therefore,
cells were exposed to the substance and simultaneously infected with the virus (MOI 0.01).
Each assay provided different internal controls: K cells (cells not exposed to the virus or
substance), K virus (cells infected with the virus but not exposed to the substance), and K
substances (cells exposed to the substance but not infected with the virus).

The infectivity of viruses was determined by the MTT method: the reciprocals of viral
dilution that resulted in a 50% reduction of absorbance of formazan in the infected cells at
48–72 h was determined as the MTT ID50 (50% infective dose). The antivirus assay was
based on inhibiting virus-induced cytopathogenicity (CPE) in cells. Briefly, subconfluent
monolayers grown in 96-well tissue culture plates were treated with or without various
concentrations of HS and EX at doses below the CC50. Subsequently, the virus was added
for the adsorption (2 h at 37 ◦C, 5% CO2), and then, cells were maintained in the incubator
without a wash for 3–5 days to obtain a complete cytopathic effect. Finally, the viability of
virus-infected cells was quantified by the the MTT method. Data of viral inhibition were
calculated as the percentage of the CPE with respect to the negative control (K cells).
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2.5. Statistical Analysis

All experiments were performed at least three times, and data were summarized
using the mean (±SD). Where applicable, data were analyzed by one-way ANOVA with
correction for multiple comparisons by Bonferroni. All results with a p-value < 0.01 were
considered significant. All results and graphs were generated using GraphPad® Prism
ver. 8.4.2.

2.6. Molecular Modeling

The 2D chemical structures of the two studied molecules (PubChem CID: 70678539
and 60196282) were built using Marvin Sketch, and all the structures were subjected to
molecular mechanics energy minimization using the MMFF94 force field present in the
same software [67]. The 3D geometry of all compounds was then optimized using the PM3
Hamiltonian [68], as implemented in MOPAC 2016 package, assuming a pH of 7.0 [69].
Several versions of the heparan sulfate reported in the literature [70] were tested. No sig-
nificant differences were obtained when working with different variants. The same portion
of the molecule achieves the main interactions, and the side chains are pointing outside the
binding cavities, hence not relevant for protein/heparan interactions. Molecular docking
experiments were achieved with AutoDock 4.2.6, and AutoDock Vina provided in YASARA
(v. 22.5.22, YASARA Biosciences GmbH, Vienna, Austria) [71,72] using the crystal structures
of HCoV-229E RBD Class V in complex with human APN (PDB ID: 6U7G) and cryo-EM
structures of coronavirus OC43 S glycoprotein trimer (PDB ID: 6NZK) [73] collected from the
Protein Data Bank (PDB, http://www.rcsb.org/pdb, accessed on 10 September 2022) and the
Lamarckian genetic algorithm (LGA). The proteins have been optimized using YASARA soft-
ware. The maps were made by AutoGrid (4.2.6) with an architecture of 0.375 Å and an exten-
sion encompassing all atoms spanning 5 Å from the exterior of the structure of the ligand. Point
charges were originally defined according to the AMBER03 force field and then damped to
mimic the less polar Gasteiger charges used to optimize the AutoDock scoring function. All pa-
rameters were used at their default settings. In the docking tab, the macromolecule and ligand
were selected, and LGA parameters were set as ga_cauchy_beta = 1.0, ga_mutation_rate = 0.02,
ga_runs = 100, ga_crossover_mode = two points, ga_cauchy_alpha = 0.0, ga_pop_size = 150,
ga_num_generations = 27,000, ga_crossover_rate = 0.8, ga_num_evals = 25,000,000,
ga_elitism = 1, number of generations for picking worst individual = 10. The MD simulations
of the complexes were performed with the YASARA structure package. A periodic simulation
cell with boundaries extending 8 Å [74] from the surface of the complex was employed. The
box was filled with water, with a maximum sum of all water bumps of 1.0 Å and a density of
0.997 g/mL.

The setup included optimizing the hydrogen bonding network [75] to increase the
solute stability and a pKa prediction to fine-tune the protonation states of protein residues
at the chosen pH of 7.4 [76]. NaCl ions were added with a physiological concentration,
neutralizing the cell. Water molecules were deleted to readjust the solvent density to
0.997 g/mL.

The simulation was run using the GAFF2 force fields [77] with AM1BCC [78] calculated
charges for ligands, ff14SB force fields [79] for the solute, and TIP3P force fields for water.
The cutoff was 10 Å for van der Waals forces (the default used by AMBER) [80], and no
cutoff was applied to electrostatic forces (using the particle mesh Ewald algorithm) [81].
The equations of motions were integrated with multiple time steps of 2.5 fs for bonded
interactions and 5.0 fs for nonbonded interactions at a temperature of 298 K and a pressure
of 1 atm using algorithms described in detail previously [82,83]. A short MD simulation was
run on the solvent only to remove clashes. The entire system was then energy-minimized
using the steepest descent minimization to remove conformational stress, followed by a
simulated annealing minimization until convergence (<0.01 kcal/mol Å). Finally, 100 ns
MD simulations without any restrictions were conducted, and the conformations of each
system were recorded every 200 ps.

http://www.rcsb.org/pdb
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3. Results and Discussion

Cytotoxicity evaluation of HS and EX was assessed (tested range 0.31–10.0 mg/mL)
by performing MTT assay on MRC5 and HCT-8 cell lines at different exposure times (24,
48, 72 h). The results, shown in Figures 1 and 2, demonstrated that HS solution guaranteed
cell viability well beyond the chosen reference threshold (80%) at all times tested. Instead,
high concentrations (10.0–5.0 mg/mL) of EX reduced cell viability, while the concentration
of 2.5 mg/mL was well tolerated (Figure 1). Moreover, HCT-8 cells exposed to HS and EX
showed high viability up to the concentration of 2.5 mg/mL up to 72 h (Figure 2).
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Figure 1. Cytotoxicity evaluation of HS and EX in MRC5 cells after 24, 48, and 72 h treatment by
performing classic MTT assay. The data represent the mean ± standard deviation (SD) of three
independent experiments. The graph showed high survival of MRC5 cells at all doses tested except
for 10.0 mg/mL and 5.0 mg/mL of EX at 48 h and 72 h.

Cell viability was also evaluated by ALI exposure, which is the most physiologically
relevant assay for bronchial epithelial cell lines. It was performed by exposing the cells to
all fractions and components of aerosols generated by the selected substances [65]. As can
be seen from the graph (Figure 3), the exposure method worked since the DMSO solution
caused 50.97% of cell death, while the physiological solution did not show cytotoxic
relevance under the experimental conditions. Therefore, it was possible to state that we
carried out a high cell survival after exposure to HS and EX, both at 10 mg/mL (87.63%
and 58.38%, respectively) and 2 mg/mL (95.32% and 95.15%, respectively).
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Figure 2. Cytotoxicity evaluation of HS and EX in HCT-8 cells after 24, 48, and 72 h treatment by
performing classic MTT assay. The data represent the mean ± standard deviation (SD) of three
independent experiments. The graph showed survival of HCT-8 cells above the reference threshold
up to the concentration of 2.5 mg/mL at 72 h for both HS and EX.
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Figure 3. Cytotoxicity evaluation of HS and EX by performing MTT assay after ALI exposure. The
graph showed the percentage of cell survival after ALI exposure to HS and EX at 10 mg/mL and
2.5 mg/mL. The data represent the mean± standard deviation (SD) of three independent experiments;
**** p < 0.001.

Based on the results obtained on the MRC5 and HCT-8 cell lines, the antiviral activity
of coronavirus strains was evaluated at the concentration range of 0.08–2.5 mg/mL. The
exposure time was necessarily 72 h since HCoV-229E, and HCoV-OC43 strains begin to
cause CPE from 3 days onwards after cell infection, with an average of 5 days. Finally, the
MOI used was equal to 0.01.

Figure 4A shows the CPE results of the HCoV-229E strain on MRC5 cells after exposure
to HS and EX. A reduction in viral CPE (30%) was evident only at the highest concentration
tested, i.e., 2.5 mg/mL, with a CPE equal to 70% compared to the K virus (Figure 4C, left).
Regarding results concerning the HCoV-OC43 strain on HCT-8 cells, no antiviral activity
was evident at the concentrations tested (Figure 4B,C right).
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study confirmed this interaction with inhibition activity. The other region studied for the 
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activity was studied. If the studied HS and EX could act as cofactors, the global activity 
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Figure 4. (A) Percentage of the CPE calculated by MTT assay of HCoV-229E strain on MRC5 cells
after exposure to HS and EX substances. The graph shows the highest and lowest concentrations
tested, respectively. The 2.5 mg/mL concentration contributed to a 30% reduction in CPE. In contrast,
the concentration equal to 0.08 mg/mL had no antiviral activity showing a cytopathic effect equal to
the K virus. (B) Percentage of the CPE calculated by MTT assay of HCoV-OC43 strain on HCT-8 cells
after exposure to HS and EX substances. The graph shows the highest and lowest concentrations
tested, respectively. None of the tested doses showed antiviral activity showing a cytopathic effect
equal to the K virus. (C) Morphological change and CPE due to HCoV-229E (left) and HCoV-OC43
strains (right) read-out 72 h post administration (2.5 mg/mL) by ALI exposure. MOI 0.01; All data
were calculated as the percentage of the CPE with respect to the negative control (K cells). The data
represent the mean ± standard deviation (SD) of three independent experiments; **** p < 0.001.

HCoV-229E binds to mammalian cells through its spike’s receptor-binding domain
(RBD) [14].

Molecular modeling experiments were performed to confirm the interactions of the
two studied molecules at the interface between the spike protein of 229E and APN.

Different regions of the spike proteins were studied, as suggested by the literature.
Notably, for 229E and APN, a recent paper [73] suggested a study at the interface between
spike and APN. In this case, inhibition of the interaction spike/APN is expected, and our
study confirmed this interaction with inhibition activity. The other region studied for the
spike protein of 229E was suggested by a different study [84] where a possible cofactor
activity was studied. If the studied HS and EX could act as cofactors, the global activity
would create an equilibrium between the inhibition/cofactor activity for the single molecule.
As already reported for similar oligosaccharides [84], the presence of the molecule on the
surface (but not at the interface between the two proteins; they have to interact in order for
the molecule to act as a cofactor) of the spike protein of SARS-CoV-2 revealed a significant
conformational adjustment of the spike RBD, resulting in increased contact with the ACE2
protein and, hence, a cofactor activity.

Mainly, molecular docking experiments and molecular dynamics were performed.
From the 2D poses shown in Figures 5 and 6, it can be seen that both compounds interact
with residues at the interface between the two subunits with Arg357 and Arg316, as already
reported [73].
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Primarily, HS can establish a salt bridge and electrostatic interactions with the residue
Arg316 due to sulfate groups and can also form hydrogen bonds with Leu310 and Gly313
(Figure 5).

Otherwise, the binding pose of EX is influenced by the different sulfate and carboxyl
groups present in the molecule. The presence of the two functional groups allows the
formation of a salt bridge and electrostatic interactions with Arg316 and Arg357; moreover,
the molecule can form several hydrogen bonds with other residues such as Asp356, Tyr318,
Gly313, and Gly315 (Figure 6).

Molecular dynamic experiments were performed to study the formed complexes over
time. For both experiments, the docked conformation was used as a starting geometry,
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and 100 ns of dynamic were conducted in water as described in the experimental section.
Generally, both the studied complexes revealed stability over time as measured by the
slight fluctuation of the root-mean-square deviation (RMSD) of atomic positions reported
in Figure 7 for the spike-HS complex and Figure 8 for the spike-EX complex.
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The binding energy was also calculated for each snapshot of the MD simulations, and
the values are reported in Figure 9.
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For HS, the starting contact residues (Figure S3) from the docking calculation with
Leu310 and Gly313 are disengaging/engaging over time (Figures S4–S6), but the electro-
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static interactions with the residue Arg316 of the sulfate groups are present over time of the
MD, and a 100 ns the Arg321 is taking over. Other residues are also engaging interactions,
particularly, Arg357, Arg357, Arg312, and Gly315, Gly313 (at 27 ns, Figure S4).

EX has a similar behavior: losing some initial contact (Figure S7) and gaining some
different, but pivoting around the Arg316 and Arg357, constantly interacting with the
molecule. Notably, at 26 ns (Figure S8), the molecule is interacting with Arg357; at 77 ns
(Figure S9) is interacting with Arg321, Arg311, Arg357, and Asn319 and still interact-
ing with Arg316. At 100 ns, the molecule interacts with Arg316, Asn319, and Tyr318
(Figure S10).

Moreover, the activity as a possible cofactor for the viral entry process of the HCoV-
229E was also considered and modeled to verify a possible competition of the inhibitor
activity for both molecules. Indeed, the entry process of the SARS-CoV-2 virus requires
a combination of HS and heparin on the cell surface to act as a cofactor and mediate
the interaction between the spike protein and ACE [84]. If the studied HS and EX were
able to act as cofactors, the global activity would result in an equilibrium between the
inhibition/cofactor activity for the single molecule. To verify this, the molecules were first
docked to the surface of the spike protein interacting with APN. Then, an MD simulation
was performed to analyze the binding activity over time.

The calculated binding poses between the spike protein and HS/EX are reported in
Figure 10.
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protein is shown in grey, at the surface of the crystal structures of HCoV-229E RBD Class V (PDB ID:
6U7G).

Both molecules can interact in two close but different binding sites on the surface of
the spike protein when in complex with the APN protein. For HS, the main interactions
are with Lys388 (H-acceptor and ionic), Thr412 (H-acceptor), Val325 (H-acceptor), Ile327
(H-acceptor), Glu334 (H-acceptor), and Leu329 (H-acceptor). EX differently interacts with:
Asn307 (H-acceptor), Asn326 (H-acceptor), Leu210 (H-acceptor), Glu309 (H-acceptor), and
Arg316 (H-acceptor and ionic interactions). Once the capabilities of the surface interac-
tion are verified, the question to answer is if this can be maintained over time and if this
interaction could increase the interaction between APN and spike. As already reported
for similar oligosaccharides, the presence of the molecule on the surface of the spike pro-
tein of SARS-CoV-2 revealed a significant conformational adjustment of the spike RBD,
resulting in increased contact with the ACE2 protein and, hence, a cofactor activity [84].
MD experiments were settled to verify or discard this assumption for spike–APN interac-
tion of HCoV-229E. A total of 100 ns of dynamic were performed for the two complexes
HS/spike/APN and EX/spike/APN. A third dynamic was performed to calculate the
binding interaction over time between the spike and APN themselves. As reported in
Figure 11, the calculated binding energy was constant over time between the spike and
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the APN. The increase of the interaction energy between spike and APN was not revealed
from the HS/spike/APN and EX/spike/APN experiments. As reported in Figure 12, both
molecules could not maintain their surface binding poses over time; hence, no difference in
the binding energies between APN and spike was revealed when HS and EX were present.
Mainly, HS started to lose contact after 10 ns, and at 30 ns it is wholly disjoined from the
spike surface; Otherwise, after only 2 ns, EX is no longer at the binding site, and at 5 ns, the
molecule is entirely far away.
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In conclusion, between the two postulated inhibition and cofactor mechanisms, the
only one identified as possible by our calculation is the inhibition one for both molecules
that well explain the activity measured in our reported in vitro experiments for HCoV-229E.

To study the activity of HS and EX in HCoV-OC43, attention was focused on a different
protein. 9-O-acetylated sialic acids (9-O-Ac-Sias) were identified as the main ligand of the
NTDs of lineage A β-coronaviruses as shown for the prototype BCoV virus and related
human virus HCoV-OC43 [13]. Docking calculations were performed to identify a possible
interaction between HS, EX, and the sialoglycan-binding site. This site is conserved in all
other coronaviruses known to attach to 9-O-Ac-Sia-decorated oligosaccharides present at
the surface of host cells targeted by these viruses. Occupying the sialoglycan-binding with
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high affinity will inhibit the virus recognition of 9-O-Ac-Sia-decorated oligosaccharides
and inhibit cellular entry. To verify this assumption, docking calculations were performed
using the HCoV-OC43 spike (PDB ID: 6NZK), and the binding results were compared to
the original ligand (methyl 9-O-acetyl-5-acetamido-3,5-dideoxy-D-glycero-α-D-galacto-non-
2-ulopyranosidonic acid).

As expected from the experimental results concerning the OC43 strain on HCT-8
cells where no antiviral activity was evident, the docking calculation suggested that no
relevant interactions are present between HS/EX with the OC43 spike sialoglycan-binding
site. According to our docking calculation, HCoV-OC43 was not inhibited by heparan
sulfate and enoxaparin because of the relatively lower free energies of binding of the two
molecules compared with the original ligand pyranosidonic acid. In fact, the calculated
energy of binding of the original pyranosidonic acid ligand was −6.40 kcal/mol, whereas
the energies of binding of HS and EX were −6.28 and −5.77 kcal/mol, respectively. A
more negative free energy of binding would result in better interaction. Heparan sulfate
and enoxaparin have not achieved the same value (−6.40 kcal/mol) of the original ligand;
hence, they are unsuitable for the same binding site.

This would result in preferential binding to the 9-O-Ac-Sia-decorated oligosaccharides
at the cellular level of the sialoglycan-binding site spike protein and, hence, a non-relevant
competition/inhibition of this activity by the two studied molecules as demonstrated in
our in vitro experiments.

4. Conclusions

HS solution guaranteed cell viability well beyond the chosen reference threshold
(80%) at all times tested. Instead, high concentrations (10.0–5.0 mg/mL) of EX reduced
cell viability, while the concentration of 2.5 mg/mL was well tolerated. Moreover, EX and
HS showed cytotoxicity in a dose-dependent fashion in ALI exposure. Both EX and HS
showed a slight viral 229E inhibition. In fact, a reduction in virus CPE of about 30% was
observed with the tested dose equal to 2.5 mg/mL against HCoV-229E. All other doses
tested showed no inhibition, and no inhibition was observed for the HCoV-OC43 strain at
any of the doses tested.

HS increases the interaction with the cellular receptor or, in itself, can represent an
alternative receptor for the entry of the virus into cells [85,86]. It is now well established
that the binding of a virus to its cellular receptor can be prevented by the presence of a
synthetic receptor acting as a competitor [87,88]. However, while for HIV this aspect has
been confirmed [89], in the case of the coronavirus, this type of action for glycans and
proteoglycans has yet to be fully confirmed/clarified [90].

In our study, we have shown that the presence of HS or EX can interfere by reducing
the effects of the virus. Furthermore, this antiviral activity of HS and EX was found only
against an α-coronavirus. Most likely, as suggested by the docking study, the presence of
the two molecules reduces the viral load but not completely inhibiting it since it would
act as a partial inhibitor of the link with APN [91]. On the contrary, no inhibitory activity
could be hypothesized on β-coronavirus HCoV-OC43. Our results open a new probable
mechanism of action of proteoglycans as selective antiviral competitive inhibitors.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/v15030663/s1, Figures S1. ALI exposure system; Figure S2. Perspex
aerosol exposure chamber; Figures S3–S10 Heparan and Enoxaparin MD snapshots and calculated
2D interactions [92].
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