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Abstract
We revisit the generalized hyperbolic (GH) distribution and its nested mod-
els. These include widely used parametric choices like the multivariate normal,
skew-t, Laplace, and several others. We also introduce the multiple-choice
LASSO, a novel penalized method for choosing among alternative constraints on
the same parameter. A hierarchical multiple-choice Least Absolute Shrinkage
and Selection Operator (LASSO) penalized likelihood is optimized to perform
simultaneous model selection and inference within the GH family. We illustrate
our approach through a simulation study and a real data example. The method-
ology proposed in this paper has been implemented in R functions which are
available as supplementary material.
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1 INTRODUCTION

As Cox [12] stated, “choice of an appropriate family of dis-
tributions may be the most challenging phase of analysis.”.
Researchers always face a trade-off between goodness of
fit and simplicity of the distributional assumptions. The
generalized hyperbolic (GH) distribution [5] provides a
particularly convenient family in this direction. It has flex-
ible tails, spanning from Gaussian to exponential tails, and
can handle skewed scatters. Moreover, the family contains
as special cases several widely used parametric distribu-
tions. Applications of the GH family are widespread [10,
34, 44]. In particular, the GH distribution is rapidly becom-
ing the most popular model for financial applications (e.g.,
Refs. [6, 9, 14]; S. I. [19, 39, 50]), and this is corroborated
by the presence of this distribution in classic textbooks of
the financial literature where this model is treated as a
reference model (e.g., Ref. [30]).

A contribution of this work indeed is that we outline
a precise taxonomy of the GH family and its many nested

models (the most famous ones). The main novelty with
respect to previous works is that we do not compare the
GH and alternatives by separately fitting each model, but
we specify a unified penalized likelihood framework that
successfully performs simultaneous parameter estimation
and model choice.

To proceed in this direction, we introduce the
multiple-choice Least Absolute Shrinkage and Selec-
tion Operator (LASSO), a new type of LASSO penalty.
Indeed, LASSO-type penalties [47] are commonly used
to shrink parameters to a single specific value (typically,
zero). Nested models within the GH family are selected
by fixing certain shape parameters at one of the different
alternative values. The multiple-choice LASSO is devised
precisely for this purpose: to allow shrinkage of the same
parameter toward one of several alternative values. To
restrict the possible choices, we will also build on the
hierarchical LASSO (as introduced by Ref. [7], see also
Ref. [24]) so that certain constraints can be activated only
conditionally.
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The rest of the paper is as follows: in the next section,
we review the GH distribution and provide a map of its
nested models. After reviewing LASSO and hierarchical
LASSO, we then introduce the multiple-choice LASSO.
In Section 3, we use the hierarchical and multiple-choice
LASSO to define penalized objective functions that can
yield any model within the GH family, and describe how
to optimize those in Section 4. In Section 5, we illustrate
the results of a simulation study conducted with the aim
of investigating the ability of our multiple-choice LASSO
procedure in discovering the true data-generating model.
We present a data analysis in Section 6. Some concluding
remarks are given in Section 7.

The methodology proposed in this paper has been
implemented in R [43] functions which are available as
supplementary material.

2 SETUP

2.1 The generalized hyperbolic
distribution and its special cases

The joint probability density function of a d-variate ran-
dom variable X following the GH distribution can be
written as

f (x;𝜽) =
exp

[
(x − 𝝁)′Σ−1

𝜸
]

(2𝜋)
d
2 |Σ|

1
2 K𝜆(

√
𝜒𝜓)

[
𝜒 + 𝛿(x;𝝁,Σ)
𝜓 + 𝜌(𝜸,Σ)

] 𝜆− d
2

2

K
𝜆− d

2

(√
[𝜒 + 𝛿(x;𝝁,Σ)][𝜓 + 𝜌(𝜸,Σ)]

)
, (1)

where 𝝁 ∈ Rd is the location parameter, Σ is a d × d
scale matrix, such that |Σ| = 1 for identifiability
purposes (see Ref. [29], for details), 𝜸 ∈ Rd is the skew-
ness parameter, 𝜆 ∈ R is the index parameter, and
𝜒, 𝜓 > 0 are concentration parameters; compactly, we
adopt the notation X ∼ d(𝝁,Σ, 𝜸, 𝜆, 𝜒, 𝜓). In (1),
𝜽 = {𝝁,Σ, 𝜸, 𝜆, 𝜒, 𝜓} contains all the parameters of the
model, 𝛿(x;𝝁,Σ) = (x − 𝝁)′Σ−1(x − 𝝁) is the squared
Mahalanobis distance between x and 𝝁 (with covariance
matrix Σ), 𝜌(𝜸,Σ) = 𝜸′ Σ−1

𝜸, and K𝜆 is the modified Bessel
function of the third kind with index 𝜆.

It is of practical importance to note that X ∼
d(𝝁,Σ, 𝜸, 𝜆, 𝜒, 𝜓) has the normal mean–variance
mixture (NMVM) representation

X = 𝝁 +W𝜸 +
√

WU, (2)

where W has a generalized inverse Gaussian (GIG) dis-
tribution, in symbols W ∼ (𝜆, 𝜒, 𝜓) (see Appendix A),
and U ∼d(0,Σ), whered(𝝁,Σ) denotes a d-variate nor-
mal distribution with mean 𝝁 and covariance matrix Σ.
As a related alternative, we can refer to the following

hierarchical representation of X ∼ d(𝝁,Σ, 𝜸, 𝜆, 𝜒, 𝜓) as

W ∼ (𝜆, 𝜒, 𝜓)
X ∣ W = w ∼d(𝝁 + w𝜸,wΣ),

(3)

where w is a realization of W . The hierarchical
representation in (3) is useful for random data generation
and for the implementation of the ECME algorithm
discussed in Section 4.

Figure 1 gives a hierarchical representation of all the
existing models the GH distribution nests as special or
limiting cases by varying the values/ranges of 𝜸, 𝜆, 𝜒 , and
𝜓 . Such a hierarchy is easily derived by using the repre-
sentation of the GH distribution given in (2). Appendix B
illustrates how to obtain some of these special and limit-
ing cases, those we believe are more difficult to be derived
and about which there is more confusion in the litera-
ture due to the use of different identifiability constraints.
On the left/right of Figure 1, we have the models related
to negative/positive values of 𝜆. Instead, on the bottom
(below the dashed line), we have the symmetric models
(those with 𝛾 = 0); as we can see, the symmetric counter-
part of each model on the top is available. The diagram in
Figure 1 can be considered as a contribution of this paper.
It provides, for the first time to our knowledge, a complete
and organized taxonomy of all the models nested within
the GH family.

Summarizing we have: 2 possibilities for 𝜸 (𝜸 free or
𝜸 = 0), 6 possibilities for 𝜆 (𝜆 → −∞, 𝜆 < 0, 𝜆 = −1∕2,
𝜆 = (d + 1)∕2, 𝜆 = 1 or 𝜆 > 0), 3 possibilities for 𝜒 (𝜒 free,
𝜒 → 0 or 𝜒 →∞), and 2 possibilities for 𝜓 (𝜓 free and
𝜓 → 0). Combining all these possibilities would gener-
ate 2 ⋅ 6 ⋅ 3 ⋅ 2 = 72 models. However, many of them are
not of practical interest. Just as two examples, the com-
bination {𝜸 = 0, 𝜆 < 0, 𝜒 → 0, 𝜓 → 0} would generate a
degenerate t distribution on 𝝁, while the combination
{𝜸 = 0, 𝜆 = 1, 𝜒 → 0, 𝜓 → 0}would generate a degenerate
Laplace distribution on 𝝁.

2.2 Preliminaries about LASSO
and hierarchical LASSO

Suppose to be interested to a particular configuration/-
value of 𝜽, say 𝜽0. The LASSO involves specification of an
L1 penalty for (possibly, a subset of) the parameter vector
𝜽, so that the estimate ̂𝜽 is exactly equal to 𝜽0 if the likeli-
hood at𝜽0 is not too far from the maximum. More formally,
given a random sample Sn = {xi; i = 1, … ,n} (observed
data) from X ∼ d(𝝁,Σ, 𝜸, 𝜆, 𝜒, 𝜓), estimation proceeds
through optimization of the penalized log-likelihood

n∑

i=1
log

[
f (xi;𝜽)

]
− Ph(𝜽) (4)
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BAGNATO et al. 3 of 13

F I G U R E 1 Hierarchy of the special and limiting cases of the generalized hyperbolic (GH) distribution in terms of 𝜸, 𝜆, 𝜒 and 𝜓 . On
the top-left corner, a recap on the values the GH-parameters can assume is provided.

for an appropriate penalty function Ph(𝜽), with f (⋅;𝜽) being
defined in (1). In classical LASSO, Ph(𝜽) = h‖𝜽 − 𝜽0‖L1

,
where || ⋅ ||L1 indicates the L1-norm (the sum of absolute
values) and h > 0 is a fixed penalty parameter. In linear
models, often times 𝜽0 = 0.

The resulting estimator is less efficient than the MLE,
but superefficient at 𝜽0 (see, for example, Ref. [48] and
references therein). It is well known that any superefficient
estimator may improve efficient estimators at most on a
subset of the parameter space of zero Lebesgue measure.

In our work, we will also make use of the hierarchical
LASSO [7], which is devised for structured sparsity: some
constraints can be activated only if others are simultane-
ously active. Without loss of generality, assume we allow
𝜃c = 0 only if 𝜃d = 0, with 𝜃c and 𝜃d being two elements of
𝜽. This can be obtained expressing

Ph(𝜽) = h
[
|𝜃d| +

max (|𝜃c|, |𝜃d|)
2

]
.

In words, some shrinkage for 𝜃c is allowed if ∣ 𝜃c ∣>∣
𝜃d ∣, but the constraint on ∣ 𝜃c ∣ can be exactly activated
only as soon as 𝜃d = 0; see Bien et al. [7] on this point.

2.3 The multiple-choice LASSO

We introduce in this section the multiple-choice LASSO,
which can be used to enforce one of several constraints
on the same parameter. For simplicity, assume we have
a one-dimensional parameter 𝜃 and several possible con-
straints on it, that is, we require superefficiency not only
at a single point 𝜃0 in the parameter space, but at a finite
collection of points {𝜃1, … , 𝜃C}. Our proposal is to specify

Ph(𝜃) = h min (|𝜃 − 𝜃1|, |𝜃 − 𝜃2|, … , |𝜃 − 𝜃C|). (5)

In words, only the smallest among all possible L1
norms contribute to the penalty. The idea is that if the MLE
is close enough to 𝜃𝑗 for some 𝑗 = 1, … ,C, then 𝜃 = 𝜃𝑗
as the remaining L1 norms are simply ignored due to the
minimum operator.

For illustration, in Figure 2A, B we show the penalty
function for LASSO and multiple-choice LASSO, respec-
tively, for a one-dimensional problem with h = 0.5 in
both cases. For the LASSO, we set 𝜃0 = 0, while for
multiple-choice LASSO, we set 𝜃0 ∈ {−3,−2,−1,0,1,2,3}.
The sawtooth shape of the penalty function for the
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F I G U R E 2 The
penalty function for Least
Absolute Shrinkage and
Selection Operator (LASSO)
(left panel), with 𝜃0 = 0; and
the penalty function for
multiple-choice LASSO
(right panel), with
𝜃0 ∈ {−3,−2,−1,0,1,2,3}.

multiple-choice LASSO is what allows objective functions
to be optimized exactly at 𝜃𝑗 , 𝑗 = 1, … ,C.

The resulting penalized objective function is clearly
non-convex. While in some cases, specific algorithms
might be exploited to optimize it, since the parameter
space is low dimensional in our context, we propose to
simply use a numerical method like the Constrained
Optimization BY Linear Approximation (COBYLA)
algorithm [40].

3 SHAPE DETECTION THROUGH
PENALIZED LIKELIHOOD
MAXIMIZATION

As discussed at the end of Section 2.1, all possible combi-
nations of the discussed constraints on the parameters 𝜸, 𝜆,
𝜒 , and 𝜓 would lead to 72 parametric distributions, nested
within the GH distribution. Of these, only 16 have a clear
interpretation as outlined in Section 2.1 and Figure 1.

In the following, we show how to specify a multiple-
choice LASSO-type penalized likelihood function which
can possibly lead to any of the 72 models nested in the GH
distribution. We then specify a multiple-choice hierarchi-
cal LASSO-type penalized likelihood which restricts the
possible solutions only to the 16 models in Figure 1.

The penalized likelihood specification is as in (4). A
simple way to proceed is to specify Ph(𝜸, 𝜆, 𝜒, 𝜓) as a
multiple-choice LASSO penalty of the kind

Ph(𝜸, 𝜆, 𝜒, 𝜓) = h
{

min
[||||
𝜆 − d + 1

2
||||
,

||||
𝜆 + 1

2
||||
, |𝜆 − 1|, I(𝜆 < 0)

||||
1
𝜆

||||

]

+min
(
|𝜒|,

||||
1
𝜒

||||

)
+ |𝜓| + ||𝜸||L2

}
. (6)

We use here a penalty on ||𝜸||L2 to constrain all d ele-
ments of 𝜸 to be zero, in the spirit of group LASSO (see,

for example, Refs. [24, 49]). In case 𝜆 → −∞ and 𝜒 →
∞, define c = −𝜒∕2𝜆 as scale parameter of the resulting
Gaussian distribution. Note that the constraint ∣ 1∕𝜆 ∣ is
satisfied by 𝜆 → ±∞.

Penalty (6) will allow the user to select any of the 72
possible parametric distributions obtained through appro-
priate constraints. Many of these models might fit well, but
do not have a direct interpretation. In order to restrict the
list of possible models to the 16 ones listed in Figure 1, we
must exclude several possible combinations of constraints
on the parameters. To this end, we combine the hierar-
chical LASSO and the multiple-choice LASSO frameworks
and specify the penalty as

Ph(γ, 𝜆, 𝜒, 𝜓) = h

{
||γ||L2√

d
+ I(𝜆 ≤ 0)min

[||||
𝜆 + 1

2
||||

]
+

+ 1
2

max
(||||
𝜆 + 1

2
||||
, |𝜓|

)
, |𝜓| + 1

2
max

(||||
𝜆 + 1

2
||||
, |𝜓|

)
,

1
4

max

(
||γ||L2√

d
,

||||
1
𝜆

||||
, |𝜓|,

||||
1
𝜒

||||

)]
+

+ I(𝜆 > 0)min
[||||
𝜆 − d + 1

2
||||
, |𝜒|

+ 1
2

max(|𝜆 − 1|, |𝜒|), 1
2

max

(
||γ||L2√

d
, |𝜆 − 1|

)]}

,

(7)
where I(A) denotes the indicator function of A ⊆ R and

h > 0 is a penalty parameter. In the expression above, we
divide by

√
d to normalize the L2 norm with respect to the

number of elements of the vector involved.
To fix the ideas, we discuss how the GH and Gaussian

models are obtained. If the MLE is far from any of the
special cases in Figure 1 and the penalty parameter is not
too large, no constraint will be activated and the resulting
model will be a GH. Suppose now the MLE is close enough
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to the case 𝜸 = 0, with sufficiently small 𝜆, large 𝜒 , and 𝜓
close to zero. The low ||𝜸||L2 will make it advantageous to
activate the constraint leading to symmetric models. The
negative 𝜆 will remove the third addend of the penalty,
which is multiplied by I(𝜆 > 0). For the second addend,
the minimum among the three elements listed will be the
third, as 𝜆 at the MLE will definitely be much smaller than
0.5. Hence, the penalty will essentially reduce to

h
4

max

(
||𝜸||L2√

d
,

||||
1
𝜆

||||
, |𝜓|,

||||
1
𝜒

||||

)

,

and the max operator will lead all the constraints to acti-
vate (𝜆 → −∞, 𝜓 → 0, 𝜒 → ∞, ||𝜸||L2 → 0), leading to the
Gaussian model.

4 PENALIZED MAXIMUM
LIKELIHOOD ESTIMATION

We consider a penalized maximum likelihood (ML)
approach, with the penalty term given in (6) or (7), to
estimate 𝜽 in model (1). Given both the random sam-
ple Sn and a value for h, the penalized ML estimation
method is based on the maximization of the penalized
(observed-data) log-likelihood function

𝓁pen(𝜽|h) =
n∑

i=1
ln f (xi;𝜽) − Ph(𝜸, 𝜆, 𝜒, 𝜓). (8)

However, the problem of directly maximizing𝓁pen(𝜽|h)
over 𝜽 is not particularly easy. The penalized ML fitting
is simplified considerably by the application of algorithms
based on the expectation–maximization (EM) principle
[13]. These algorithms are the classical way to compute
ML estimates for parameters of distributions which are
defined as a mixture.

Regardless of the particular variant of the EM
algorithm used, it is convenient to view the observed
data as incomplete. The complete data are {(xi,wi); i =
1, … ,n}, where the missing variables w1, … ,wn are
defined based on the hierarchical representation given in
(3)—so that

Xi ∣ Wi = wi ∼d(𝝁 + wi𝜸,wiΣ),

independently for i ∈ {1, … ,n}, and

Wi ∼ (𝜆, 𝜒, 𝜓).

Because of this conditional structure, the penalized
complete-data log-likelihood function can be written as

𝓁pen,c(𝜽|h) = 𝓁1c(𝝁,Σ, 𝜸) + 𝓁2c(𝜆, 𝜒, 𝜓) − Ph(𝜸, 𝜆, 𝜒, 𝜓),
(9)

where

𝓁1c(𝝁,Σ, 𝜸) =
n∑

i=1

[
−d

2
ln(2𝜋) − d

2
ln (wi) −

1
2

ln |Σ|

−
𝛿(xi;𝝁,Σ)

2wi
+ (xi − 𝝁)Σ−1

𝜸 − wi

2
𝜸
′Σ−1

𝜸

]
,

(10)

and

𝓁2c(𝜆, 𝜒, 𝜓) =
n∑

i=1

{
(𝜆 − 1) ln (wi) −

1
2
𝜒

wi
− 1

2
𝜓wi

− 1
2
𝜆 ln(𝜒) + 1

2
𝜆 ln(𝜓) − ln

[
2K𝜆(

√
𝜒𝜓)

]}
.

(11)

Working on 𝓁pen,c(𝜽|h), we adopt the expectation-
conditional maximization either (ECME) algorithm [25].
The ECME algorithm is an extension of the expectation-
conditional maximum (ECM) algorithm which, in turn,
is an extension of the EM algorithm [28]. The ECM
algorithm replaces the M-step of the EM algorithm with
a number of computationally simpler conditional maxi-
mization (CM) steps. The ECME algorithm generalizes
the ECM algorithm by conditionally maximizing on some
or all of the CM-steps, the incomplete-data (penalized)
log-likelihood. As for the EM and ECM algorithms, the
ECME algorithm monotonically increases the likelihood
and reliably converges to a stationary point of the likeli-
hood function [28]. Moreover, Liu and Rubin [25] found
the ECME algorithm to be nearly always faster than
both the EM and ECM algorithms in terms of number
of iterations, and that it can be faster in total computer
time by orders of magnitude. In our case, the ECME
algorithm iterates between three steps, one E-step and
two CM-steps, until convergence. The two CM-steps arise
from the partition of 𝜽 as {𝜽1,𝜽2}, where 𝜽1 = {𝝁,Σ} and
𝜽2 = {𝜸, 𝜆, 𝜒, 𝜓}. The partition is chosen in such a way
that all the parameters in the penalization function Ph(⋅)
belongs to 𝜽2.

Below, we outline the generic iteration of the ECME
algorithm. As in Melnykov and Zhu [32, 33], quantities/-
parameters marked with one dot will correspond to the
previous iteration and those marked with two dots will
represent the estimates at the current iteration.

4.1 E-Step

The E-step is only needed for the first CM-step of the
algorithm—where we update 𝜽1—and requires the calcu-
lation of

Q
(
𝜽1, ̇𝜽2| ̇𝜽

)
= Q1(𝝁,Σ, �̇�| ̇𝜽) + C, (12)
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6 of 13 BAGNATO et al.

the conditional expectation of 𝓁pen,c(𝜽|h) given the
observed data, using the current fit ̇𝜽 for 𝜽, with 𝜽2 fixed
at ̇𝜽2 and where C is a constant not involving param-
eters inside 𝜽1. In (12), Q1(𝝁,Σ, �̇�| ̇𝜽) is the conditional
expectation of 𝓁1c(𝝁,Σ, 𝜸) in (9).

To compute Q
(
𝜽1, ̇𝜽2| ̇𝜽

)
, we need to replace any func-

tion m(Wi) of the latent variable Wi which appears in
(10), provided that it is related with either 𝝁 or Σ, by
E ̇𝜽[m(Wi)|Xi = xi], where the expectation (as it can be
noted by the subscript) is taken using the current fit ̇𝜽

for 𝜽, i = 1, … ,n. In particular, the functions satisfying
these requirements, involved in (10), are m1(w) = w and
m2(w) = 1∕w. To calculate the expectations of m1 and m2,
we first note that

Wi ∣ Xi = xi ∼ 
(
𝜆−d

2
, 𝛿(xi;𝝁,Σ)+𝜒, 𝜸′ Σ−1

𝜸+𝜓
)
.

Therefore, according to (A2) and (A3), respectively, we
need to compute the following quantities

v̇i ∶= E ̇𝜽(Wi|Xi = xi) =

√
𝛿

(
xi; �̇�, Σ̇

)
+ �̇�

�̇�

K
�̇�− d

2
+1

{√
�̇�

[
𝛿

(
xi; �̇�, Σ̇

)
+ �̇�

]}

K
�̇�− d

2

{√
�̇�

[
𝛿

(
xi; �̇�, Σ̇

)
+ �̇�

]}

(13)

u̇i ∶= E ̇𝜽

(
W−1

i |Xi = xi
)
=
√

�̇�

𝛿

(
xi; �̇�, Σ̇

)
+ �̇�

K
�̇�− d

2
+1

{√
�̇�

[
𝛿

(
xi; �̇�, Σ̇

)
+ �̇�

]}

K
�̇�− d

2

{√
�̇�

[
𝛿

(
xi; �̇�, Σ̇

)
+ �̇�

]}

−
2
(
�̇� − d

2

)

𝛿

(
xi; �̇�, Σ̇

)
+ �̇�

. (14)

Then, by substituting wi with v̇i and 1∕wi with u̇i in
𝓁1c(𝝁,Σ, 𝜸), we obtain

Q1(𝝁,Σ, �̇�| ̇𝜽) =
n∑

i=1

[
−1

2
ln |Σ| − u̇i

2
𝛿(xi;𝝁,Σ)

+(xi − 𝝁)′Σ−1
�̇� − v̇i

2
�̇�
′Σ−1

�̇�

]
, (15)

where we dropped the terms which are constant with
respect to 𝝁 and Σ.

4.2 CM-step 1

The first CM-step requires the calculation of ̈𝜽1 as the value
of 𝜽1 that maximizes Q1(𝝁,Σ, �̇�| ̇𝜽) in (15), with 𝜽2 fixed at
̇𝜽2. After simple algebra, we obtain the following updates

�̈� = 1
n ̇u

( n∑

i=1
u̇ixi − �̇�

)

and Σ̈ = |||Σ̈
∗|||
− 1

d Σ̈∗ (16)

where

Σ̈∗ = 1
n

n∑

i=1
u̇i(xi − �̈�)(xi − �̈�)′−(x − �̈�)�̇�′−�̇�(x − �̈�)′ + ̇v�̇��̇�′,

(17)
̇u =

∑n
i=1u̇i∕n, ̇v =

∑n
i=1v̇i∕n, and x =

∑n
i=1 xi∕n. In (16),

the scalar |||Σ̈
∗|||
− 1

d is needed to ensure the identifiability
constraint |Σ̈| = 1.

4.3 CM-step 2

In the second CM-step, given h, we choose the value
of 𝜽2 that maximizes 𝓁pen(𝜽|h) in (8), with 𝜽1 fixed
at ̈𝜽1. As a closed-form solution for ̈𝜽2 is not ana-
lytically available, numerical optimization is needed,
and any general-purpose optimizer can be used
with this aim. Operationally, we perform an uncon-
strained maximization on Rd+3, based on a (log/exp)
transformation/back-transformation approach for 𝜒 and
𝜙, via the general-purpose optimizer optim() for R,
included in the stats package. In analogy with Bag-
nato and Punzo [4], we try two different commonly
used algorithms for maximization: Nelder–Mead, which
is derivatives-free, and BFGS which uses (numerical)
second-order derivatives. They can be passed to optim()
via the argument method. Once the two algorithms are
run, we take the best solution in terms of 𝓁pen(𝜽|h); see,
for example, Punzo and Bagnato [41] for a comparison of
the two algorithms, in terms of parameter recovery and
computational time, for ML estimation. The choice to run
both the algorithms is motivated by two facts: (1) some-
times the algorithms do not provide the same solution,
and (2) it can happen that an algorithm does not reach
convergence.

4.4 Selecting the penalty parameter

The choice of the penalty parameter h has direct conse-
quences on the estimation of 𝜽 and, as a sub-product,
on the selection of the best model in 1. Optimal
penalty/tuning parameters are “difficult to calibrate in
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BAGNATO et al. 7 of 13

practice” [23]. Specific techniques have their proponents
and opponents, making the task even more difficult. Gen-
erally speaking, choosing h by trial and error is informa-
tive, but it is also convenient to have an objective selection
method. This is the reason why data-driven methods are
typically preferred, and the literature about them is vast
[46]. Among data-driven methods, cross-validation (CV)
is a popular choice because it is easy to understand and
versatile. However, even with its simplicity and versatil-
ity, CV suffers from a heavy computational burden [18].
As a “simplified” variant of the CV method to select h,
we consider a simple grid-search partial leave-one-out
likelihood cross-validation (LCV) strategy [46]; the term
“grid-search” refers to the fact that the LCV statistic is only
evaluated on a convenient grid of values, while the term
“partial” refers to the fact that we only allow to a propor-
tion p of the sample to be left out one unit at a time. These
choices are motivated by the need to speed up the com-
putation that, otherwise, would be too computationally
cumbersome.

In detail, we consider the LCV statistic

LCVp(h) =
1

⌊pn⌋
∑

xi∈S⌊pn⌋

ln
[

f
(

xi; ̂𝜽h,Sn∖{xi}
)]
, (18)

where S⌊pn⌋ ⊆ Sn is the sub-sample, of size ⌊pn⌋, which
is allowed to be left out, and ̂𝜽h,Sn∖{xi} is the penalized
ML estimate of 𝜽, with penalty parameter h, obtained
on Sn∖{xi} (refer to Section 4). For each value of h in a
pre-specified grid G, we first compute LCVp(h); then, we
select the value of h in correspondence to the maximum
value of this statistic.

5 SIMULATION STUDY

In this section, we describe the results of a simulation
study conducted with the aim of investigating the ability
of our multiple-choice LASSO procedure in discovering
the true data generating model (DGM) among those in
Figure 1.

For each of the following DGMs, we consider 50 ran-
domly generated datasets, of size n = 1000, with d = 2
dimensions. The DGMs considered are: normal (N), t,
Cauchy ©, Laplace (L), symmetric generalized hyperbolic
(SGH), skew-t (St), variance gamma (VG), and asymmetric
Laplace (AL). The DGMs share the same location param-
eter 𝝁 = 0 and scale matrix Σ = I, with I denoting the
identity matrix. We fix 𝜸 = (−0.5,0.8) for the skewed DGMs
(St, VG, and AL). Parameters 𝜆, 𝜒 , and 𝜓 vary according to
the considered DGM; 1 provides the precise values of these
parameters for each Table 1.

T A B L E 1 Parameters 𝜆, 𝜒 , and 𝜓 of the DGMs used in the
simulation study.

DGM

Parameter N t, St C L, AL SGH VG

𝜆 −20 −1 −0.5 1 −1 1.5

𝜒 100 2 2 0.001 2 0.001

𝜓 0.001 0.001 0.001 0.5 3 0.5

We use our penalized ML procedure on each gener-
ated dataset. We select the penalty parameter h with the
LCV strategy described in Section 4.4, using the grid G =
{0,5,10,15,20,25,30,35,40,45,50,60,70,80,100} and a pro-
portion p = 0.1 of observations which are allowed to be left
out one at a time. On each generated dataset, we also com-
pute the Akaike information criterion (AIC; Ref. [1]) and
the Bayesian information criterion (BIC; Ref. [45]), and
we do that separately for each of the 16 models in the GH
family.

Table 2 shows the number of times the three com-
peting approaches (our multiple-choice LASSO method,
AIC, and BIC) select each model in our family. Here, there
are some models that are fitted to the data but they are
not used as DGMs; these models are the normal-inverse
Gaussian (NIG), hyperbolic (H), hyperbolic univariate
marginals (HUM), symmetric normal-inverse Gaussian
(SNIG), symmetric variance gamma (SVG), symmetric
hyperbolic (SH), skew-Cauchy (SC), and GH. Results are
organized as a contingency table where the true DGM is
given by column and the models in the GH-family by row.
The shadowed blocks report the true positive count (TPC),
measuring the number of times the AIC (on the top),
the BIC (on the middle), and the multiple-choice LASSO
approach (on the bottom), discover the true DGM. We can
note how, regardless of the DGM, our approach is able
enough to recognize the true underlying DGM, being the
counts mainly concentrated on the shadowed cells. The
best results are obtained for the t-DGM, where the TCP
is the maximum possible (50). On the opposite side, the
worst results are obtained for the N-DGM, where TPC =
42; in the remaining 8 cases, the more general skew-t distri-
bution is selected. Instead, AIC and BIC do not perform so
well. When the DGM is the normal one, the BIC performs
like our method; instead, the AIC finds the true DGM only
half the time (21 times). When the BIC does not select the
true N-DGM, it picks the SNIG (5 times) and SVG (3 times)
models. Moreover, it seems there are some DGMs AIC and
BIC are not able to detect; they are the t, C, SGH, and St.
In these cases, while our approach is able to recognize the
truth 50, 49, 45, and 49 times, respectively, the correspond-
ing counts for the AIC are 8, 0, 0, and 0, while for the BIC
are 1, 0, 0, and 1. If we limit the attention to AIC and BIC
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8 of 13 BAGNATO et al.

DGM

Fitted Method N t C L SGH St AL VG

N AIC 21 0 0 0 0 0 0 0

BIC 42 0 0 0 0 0 0 0

LASSO 42 0 0 0 0 0 0 0

t AIC 0 8 0 0 10 8 0 0

BIC 0 1 0 0 12 0 0 0

LASSO 0 50 1 0 4 0 0 0

C AIC 0 32 0 0 0 32 0 0

BIC 0 49 0 0 0 49 0 0

LASSO 0 0 49 0 0 0 0 0

L AIC 0 0 0 18 0 0 0 0

BIC 0 0 0 44 0 0 0 0

LASSO 0 0 0 46 0 0 0 0

SGH AIC 0 3 7 14 0 3 0 0

BIC 0 0 0 2 0 0 0 0

LASSO 0 0 0 0 45 0 0 0

St AIC 4 0 0 0 0 0 0 0

BIC 0 0 0 0 0 1 0 0

LASSO 8 0 0 0 0 49 0 0

AL AIC 0 0 0 4 0 0 27 0

BIC 0 0 0 0 0 0 48 0

LASSO 0 0 0 0 0 0 44 0

VG AIC 3 0 0 3 5 0 9 38

BIC 0 0 0 0 0 0 0 39

LASSO 0 0 0 0 0 0 3 48

NIG AIC 0 0 8 0 4 0 0 0

BIC 0 0 0 0 0 0 0 0

LASSO 0 0 0 0 0 0 0 0

H AIC 1 0 0 0 1 0 0 10

BIC 0 0 0 0 0 0 0 11

LASSO 0 0 0 0 0 0 0 1

HUM AIC 0 0 0 3 7 0 0 0

BIC 0 0 0 0 7 0 0 0

LASSO 0 0 0 1 0 0 0 0

SNIG AIC 10 0 35 0 8 0 0 0

BIC 5 0 50 0 11 0 0 0

LASSO 0 0 0 0 0 0 0 0

SVG AIC 10 0 0 5 10 0 0 0

BIC 3 0 0 4 12 0 0 0

LASSO 0 0 0 3 1 0 0 0

T A B L E 2 Number of times
AIC, BIC, and multiple-choice
LASSO select each model. The
true DGM is shown by column,
while the models in the
GH-family are given by row.
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BAGNATO et al. 9 of 13

T A B L E 2 (Continued)
DGM

Fitted Method N t C L SGH St AL VG

SH AIC 1 0 0 0 5 0 0 0

BIC 0 0 0 0 8 0 0 0

LASSO 0 0 0 0 0 0 0 0

SC AIC 0 3 0 0 0 3 0 0

BIC 0 0 0 0 0 0 0 0

LASSO 0 0 0 0 0 1 0 0

GH AIC 0 4 0 3 0 4 14 2

BIC 0 0 0 0 0 0 2 0

LASSO 0 0 0 0 0 0 3 1

T A B L E 3 Number of times AIC, BIC, and multiple-choice LASSO detect the true DGM.

DGM

N t C L SGH St AL VG Total % Truth

AIC 21 8 0 18 0 0 27 38 112 28.00

BIC 42 1 0 44 0 1 48 39 175 43.75

LASSO 42 50 49 46 45 49 44 48 373 93.25

# Replications 50 50 50 50 50 50 50 50 400

Note: The true DGM is shown by column. Overall total count and overall true positive percentage are reported in the last two columns.

only, we can note, as expected, how the AIC tends to prefer
less parsimonious models than the BIC. This can be noted,
just as an example, when the DGM is the AL distribution.
In this case, the BIC detects the truth 48 times, and the
remaining two times it picks the most general GH model.
Instead, the AIC detects the truth 27 times, the VG model
9 times, and the GH 14 times, with the AL being nested in
the VG model (refer to Figure 1).

To have an overall look at the performance of the
3 competing methods (AIC, BIC, and LASSO), Table 3
reports the TPCs in the shadowed blocks of Table 2 along
with the total count and true positive percentage (TPP)
over the 400 replications. By looking at the TPPs, it is easy
to realize how the LASSO approach performs very well
(with a TPP of 93.25%); moreover, it works much better
than the BIC (TPP= 43.75) which, in turn, works much
better than the AIC (TPP= 28.00).

6 DATA ANALYSIS

In finance, one of the main challenges is modeling the
joint distribution of stock prices and asset returns. The
considered models are inherently multivariate, as stressed
by McNeil et al. [30], with the multivariate normal (MN)

playing a special rule (Refs. [21, 42], Chapter 14). However,
many empirical financial studies show that the MN distri-
bution is not appropriate [15, 26]. A possible motivation
for this inappropriateness concerns its thin tails [8], which
are not consistent with the empirical heavy tails of the
distribution of returns. This has motivated numerous pro-
posals for alternative parametric multivariate heavy-tailed
distributions. In this direction, the GH family of distribu-
tions represents one of the most famous and widespread
proposals (Ref. [30], Chapter 6).

Motivated by the above considerations, we fit the GH
distribution, and its special and limiting cases, on real
financial data. The data we consider are related to two
cryptocurrencies: TRON EUR (TRX-EUR) and FUNTo-
ken EUR (FUN-EUR). We downloaded the daily adjusted
close prices (in Euro) from https://finance.yahoo.com
/cryptocurrencies. The period under investigation goes
from January 1, 2021–September 1, 2023. We work with
daily log-returns, computed by taking logarithmic differ-
ences; this leads to n = 973 observations.

The scatter plot of the data is displayed in Figure 3.
Table 4 provides some descriptive statistics (and
Jarque-Bera normality tests) for the TRX-EUR and
FUN-EUR series, separately considered. All the series
are leptokurtic and the Jarque-Bera statistic confirms the
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10 of 13 BAGNATO et al.

F I G U R E 3 Scatter plot of daily log-returns of the pair
(TRX-EUR,FUN-EUR) spanning the period from September 1,
2019–September 1, 2023.

departure from univariate normality at the 1‰ level. As
concerns the dependence between cryptocurrencies, the
scatter plot in Figure 3 displays a positive correlation
between the series; such a sample correlation is 0.440,
with a p-value from the test of uncorrelation (computed
via the cor.test() function of the stats package)
which is lower than 1‰. This confirms the need for a
bivariate model allowing for correlation between series.
The scatter plot also shows a certain degree of skewness
and the need for a heavy-tailed bivariate distribution due
to some outlying points.

We first proceed by fitting each of the sixteen
models in Figure 1 separately. Having the com-
peting models a differing number of parameters,
we compare their goodness-of-fit, as usual, via
AIC and BIC. AIC and BIC picked the symmetric
GH and symmetric NIG, respectively, as the best model
for the data. Instead, our penalized estimation method
selected a NIG distribution. We selected the penalty
parameter h = 0.1 with the LCV strategy described in
Section 4.4, using the grid G = {0,0.1,0.2,0.3, … ,9.9,10}
and a proportion p = 0.05 of observations which are
allowed to be left out one at a time. However, as noted by

F I G U R E 4 Scatterplot of TRX-EUR and FUN-EUR series,
with isodensities from the LASSO-selected bivariate skew-t
distribution.

looking at the scatter plot in Figure 3, the data seems to
be skewed. To corroborate such a visual insight, we per-
formed a test of elliptical symmetry. Among the various
tests of elliptical symmetry available in the literature, we
considered the MPQ test of Manzotti, Pérez, and Quiroz
[27], which is implemented by the MPQ() function of the
ellipticalsymmetry package [3]. We use this test because
it preserves the claimed nominal significance level [2].
The resulting p-value is 0.032, suggesting the rejection of
the null hypothesis of elliptical symmetry, the type of sym-
metry underlying the symmetric GH and NIG models, at
the common 5% significance level. This is some evidence
in favor of the choice of the NIG model, as chosen by
our method. To further corroborate the choice, Figure 4
displays the scatter plot of the data together with the
estimated isodensities for the bivariate NIG distribution
selected by our approach.

7 CONCLUDING REMARKS

In this work, we have put forward a taxonomy of the GH
family, and showed how one can perform simultaneous

T A B L E 4 Descriptive statistics, and Jarque-Bera normality tests (with p-values in brackets), for the TRX-EUR and FUN-EUR series.

Mean SD Excess kurtosis Jarque-Bera test (p-value)

TRX-EUR 0.001 0.047 10.851 4776.236 (<0.001)

FUN-EUR 0.000 0.055 15.170 9832.570 (<0.001)
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BAGNATO et al. 11 of 13

estimation and selection of nested models within the fam-
ily. We argue that the GH family is flexible enough to
fit well a wide range of distributions in real applications,
and that the model selection procedure is effective in pro-
viding a simple and interpretable model class without
sacrificing goodness of fit. We also have introduced the
multiple-choice LASSO. We believe adaptive choice of the
shape parameters within the GH family is only one of the
possible applications of the multiple-choice LASSO, and
that its theoretical properties deserve further investigation.
Given the strong connections between penalized methods
and Bayesian approaches, and specifically the equivalence
of LASSO and use of a Laplace prior (e.g., Ref. [22]), we
can speculate that a similar representation should be avail-
able for the multiple-choice LASSO in the form of a prior
mixture of Laplace distributions.

Additionally, there are other flexible and general para-
metric families of distributions that might benefit from an
approach similar to the one proposed in this work (e.g.,
Ref. [16]).
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APPENDIX A. GENERALIZED INVERSE
GAUSSIAN DISTRIBUTION

The random variable W has a GIG distribution if
its pdf is

fGIG(w; 𝜆, 𝜒, 𝜓) =
(
𝜓

𝜒

) 𝜆

2 w𝜆−1

2K𝜆(
√
𝜓𝜒)

exp
[
−1

2

(
𝜓w +

𝜒

w

)]
, w > 0, (A1)

where the parameters satisfy the conditions: 𝜒 > 0 and
𝜓 ≥ 0, if 𝜆 < 0; 𝜒 > 0 and𝜓 > 0, if 𝜆 = 0; 𝜒 ≥ 0 and𝜓 > 0,
if 𝜆 > 0. If W has the pdf in (A1), then we simply write
W ∼ (𝜆, 𝜒, 𝜓). The expectations of W and 1∕W , used
in Section 4.1, are

E(W) =
√
𝜒

𝜓

K𝜆+1

(√
𝜓𝜒

)

K𝜆

(√
𝜓𝜒

) (A2)
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and

E
( 1

W

)
=
√
𝜓

𝜒

K𝜆+1

(√
𝜓𝜒

)

K𝜆

(√
𝜓𝜒

) − 2𝜆
𝜒

. (A3)

APPENDIX B. SPECIAL AND LIMITING
CASES OF THE GH DISTRIBUTION

B.1 GH → Skew-t → t → Gaussian
If 𝜆 < 0 and 𝜓 → 0, then W ∼ (𝜆, 𝜒, 𝜓) tends to W ∼


(
−𝜆, 𝜒

2

)
, where (⋅) denotes the inverse gamma dis-

tribution. Therefore, the NMVM representation in (2)
becomes

X = 𝝁 − V
𝜒

2𝜆
𝜸 +

√
VU,

where V = − 2𝜆
𝜒

W ∼ (−𝜆,−𝜆) and U ∼d

(
0,− 𝜒

2𝜆
Σ
)

,
with |Σ| = 1. Note that, thanks to the multiplicative fac-
tor −𝜒∕(2𝜆), |Cov(U)| = [−𝜒∕(2𝜆)]d|Σ| = [−𝜒∕(2𝜆)]d can
be any positive real number. Under this setting, X ∼
td

(
𝝁,− 𝜒

2𝜆
Σ,− 𝜒

2𝜆
𝜸,−2𝜆

)
, which represents a skew-t dis-

tribution with location parameter 𝝁, scale matrix − 𝜒

2𝜆
Σ,

skewness parameter − 𝜒

2𝜆
𝜸, and 𝜈 = −2𝜆 degrees of free-

dom [17, 36]. Compared to the GH-parametrization
adopted by McNicholas [31], in our case, because of the
identifiability constraint |Σ| = 1, there is no reason to force
𝜒 and 𝜆 to be related as 𝜒 = 𝜈 = −2𝜆. In other words, with
our parametrization, 𝜒 is unconstrained. Indeed, if we
impose the constraint 𝜒 = 𝜈 = −2𝜆 with our parametriza-
tion, then we would get |Cov(U)| = 1. If, in addition, 𝜸 = 0,
then X ∼ td

(
𝝁,− 𝜒

2𝜆
Σ,−2𝜆

)
, which represents a t distribu-

tion with location parameter 𝝁, scale matrix − 𝜒

2𝜆
Σ, and

𝜈 = −2𝜆 degrees of freedom. Finally, if we further con-
sider 𝜆 = −𝜒∕(2c), with c > 0, and 𝜒 → ∞, then we obtain
X ∼d(0, cΣ) as a limiting case.

B.2 GH → Variance Gamma → Asymmetric Laplace
→ Laplace
If 𝜆 > 0 and 𝜒 → 0, then W ∼ (𝜆, 𝜒, 𝜓) tends to W ∼


(
𝜆,

𝜓

2

)
, where (⋅) denotes the gamma distribution.

Then, the NMVM representation in (2) becomes

X = 𝝁 + V 𝜓

2𝜆
𝜸 +

√
VU,

where V = 2𝜆
𝜓

W ∼ (𝜆, 𝜆) and U ∼d

(
0, 𝜓

2𝜆
Σ
)

,
with |Σ| = 1. Note that, thanks to the multiplicative
factor 𝜓∕(2𝜆), |Cov(U)| = [𝜓∕(2𝜆)]d|Σ| = [𝜓∕(2𝜆)]d
can be any positive real number. Under this setting,
X ∼ d

(
𝝁,

𝜓

2𝜆
Σ, 𝜓

2𝜆
𝜸, 𝜆

)
, which represents a variance

gamma distribution with location parameter 𝝁, scale
matrix 𝜓

2𝜆
Σ, skewness parameter 𝜓

2𝜆
𝜸, and shape parame-

ter 𝜆 [37]. Compared to the VG-parametrization adopted
by [37] and McNicholas [31], in our case, because of
the identifiability constraint |Σ| = 1, there is no rea-
son to force 𝜓 and 𝜆 to be related as 𝜓 = 2𝜆. In other
words, with our parametrization, 𝜓 is unconstrained.
Indeed, if we impose the constraint 𝜓 = 2𝜆 with our
parametrization, then we would get |Cov(U)| = 1. If, in
addition, 𝜆 = 1, then V ∼ (1), which is a standard expo-
nential distribution, and X ∼ d

(
𝝁,

𝜓

2
Σ, 𝜓

2
𝜸

)
, which

represents an asymmetric Laplace distribution with
location parameter 𝝁, scale matrix 𝜓

2
Σ, and skewness

parameter 𝜓

2
𝜸; see Kozubowsi and Podgórski [20] and

Morris, Punzo, McNicholas, and Browne [35]. Finally,
if we further consider 𝜸 = 0, then X ∼ d

(
𝝁,

𝜓

2
Σ
)

,
which represents a Laplace distribution with location
parameter 𝝁 and scale matrix 𝜓

2
Σ; see Kozubowski and

Podgórski [20].

B.3 GH→Normal-Inverse Gaussian→ Skew-Cauchy
→ Cauchy
If 𝜆 = −1∕2, then X ∼d(𝝁,Σ, 𝜸, 𝜒, 𝜓), which denotes
the normal-inverse Gaussian distribution with location
parameter 𝝁, scale matrix Σ, skewness parameter 𝜸,
and concentration parameters 𝜒 and 𝜓 [38]. If, in
addition, 𝜓 → 0, then X ∼ d(𝝁, 𝜒Σ, 𝜒𝜸), which repre-
sents the skew-Cauchy distribution with location param-
eter 𝝁, scale matrix 𝜒Σ, and skewness parameter 𝜒𝜸

[11]. Note that, d(𝝁, 𝜒Σ, 𝜒𝜸) can be also obtained
as a special case of td

(
𝝁,− 𝜒

2𝜆
Σ,− 𝜒

2𝜆
𝜸,−2𝜆

)
when 𝜆 =

−1∕2; refer to Section B.1. Finally, if we further con-
sider 𝜸 = 0, then X ∼ d(𝝁, 𝜒Σ), which represents a
Cauchy distribution with location parameter 𝝁 and scale
matrix 𝜒Σ.
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