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Summary

Usually in latent class (LC) analysis, external predictors are taken to be cluster conditional
probability predictors (LC models with external predictors), and/or score conditional
probability predictors (LC regression models). In such cases, their distribution is not of
interest. Class-specific distribution is of interest in the distal outcome model, when the
distribution of the external variables is assumed to depend on LC membership. In this
paper, we consider a more general formulation, that embeds both the LC regression and
the distal outcome models, as is typically done in cluster-weighted modelling. This allows
us to investigate (1) whether the distribution of the external variables differs across classes,
(2) whether there are significant direct effects of the external variables on the indicators, by
modelling jointly the relationship between the external and the latent variables. We show
the advantages of the proposed modelling approach through a set of artificial examples,
an extensive simulation study and an empirical application about psychological contracts
among employees and employers in Belgium and the Netherlands.

Key words: cluster-weighted models; continuous distal outcomes; direct effects; latent class
analysis; latent class regression models; psychological contracts.

1. Introduction

Latent class (LC) analysis (McCutcheon 1985) is a model-based clustering technique
that is very popular in the social and behavioural sciences, economics and health sciences
alike. The approach is used to cluster a set of observed categorical variables (known as
indicators) based on an underlying latent variable. Some example applications include
patterns of mobile internet usage for travelling (Okazaki et al. 2015), or, from health
sciences, types of treatment engagements among adolescents with severe psychiatric
problems, or change over time in nursing patterns (Roberts & Ward 2011).

In most instances, similarly to other latent variable models (such as factor analysis or
item response theory), the interest of the researchers is not merely in clustering, but also in
relating the clustering to antecedents and consequences in larger models. Some examples
of modelling the consequences of the clustering include assessing recidivism rate among
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214 CLUSTER-WEIGHTED LC MODELING

(a) Latent class model
with distal outcome

(b) Latent class
regression model

(c) Latent class
cluster-weighted
model

Figure 1. The three competing models: LC distal outcome (a), LC regression (b) and LC cluster-
weighted (c) models.

clusters of juvenile offenders (Mulder et al. 2012), or predicting distal pain outcomes from
clusters of pain management (Roberts & Ward 2011).

Historically, in LC analysis, predictors are added to the model using simultaneous
estimation based on the approach introduced by Dayton & Macready (1988). The inclusion
of consequences, usually called distal outcomes (for a graphical representation see
Figure 1a), is more problematic due to often strong distributional assumptions about the
outcome variables. When such assumptions are violated, the LC solution can be distorted,
and thus comparison with other models may become meaningless (Vermunt 2010; Bakk,
Tekle, & Vermunt 2013). Such circumstances may as well lead to over-extraction of classes
(Bauer & Curran 2003).

To overcome these problems, stepwise estimators have been proposed in literature,
which allow separating the estimation of the measurement from structural model (Bakk,
Tekle, & Vermunt 2013; Lanza, Tan, & Bray 2013; Asparouhov & Muthén 2014). While
stepwise approaches are currently the best practice in literature, they hinder detection and
testing of direct effects between the indicators of the LC and external variables.

Typically, in distal outcome models (LCdist), the distal outcome Z and Y are assumed
to be conditionally independent given the latent variable X (Bakk, Tekle, & Vermunt 2013;
Lanza, Tan, & Bray 2013). Direct effects of Z on Y are therefore not allowed for—neither
their presence tested. Notably, maximum likelihood (ML) estimation of latent variable
models is subject to severe bias when unmodelled direct effects are present in LC and latent
trait models (Asparouhov & Muthén 2014), regression mixture models (Kim et al. 2016;
Nylund-Gibson & Masyn 2016), and latent Markov models (Di Mari & Bakk 2018; Di
Mari et al. 2022) when unmodelled direct effects are present in LC and latent trait models,
and these are not accounted for.

Given the restrictiveness of the conditional independence assumption, and the possible
severity of its violation, we showcase a more general model that can account for complex
interdependencies between the external variable, LC membership and the indicators of the
LC model. In regression mixtures, a ‘circular’ relation among Y-X -Z is typically considered
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ROBERTO DI MARI, ANTONIO PUNZO AND ZSUZSA BAKK 215

in the cluster-weighted modelling approach (Ingrassia, Minotti, & Vittadini 2012; Ingrassia
et al. 2015; Mazza, Punzo, & Ingrassia 2018). That is, a more general model is specified,
where next to modelling the class-specific distribution of Z (distal outcome situation), also
the direct effect of Z on Y is modelled (LC regression). Then, standard inference tools can
assess the statistical significance of each effect.

In LC regression models (LCreg; Kamakura & Russel 1989; Wedel & DeSarbo 1994),
although the assumption of conditional independence of Y and Z can be relaxed (see
Fig. 1b), the distal outcome’s distribution is not of interest, and hence not modelled.
Therefore, in the traditional latent class analysis (LCA) approach, an external variable
enters the model either as a predictor (LC regression) or as a distal outcome, but never
as both at the same time. The cluster-weighted approach, in the context of LCA, allows
embedding the models in Figure 1a,b into a single one, as depicted in Figure 1c. Although
this idea is not new in LCA (Di Mari, Bakk, & Punzo 2020), the present paper demonstrates
that the assumptions of both distal outcome and LC regression models can be tested within
LC cluster-weighted (LCcw) umbrella.

Di Mari, Bakk, & Punzo (2020) already proposed the LC cluster-weighted approach,
presenting both simultaneous as well as two-step estimators. They provided a detailed
simulation study under different levels of violation of the assumption of local independence,
and of the distributional assumptions of the distal outcome (that are known to affect the
distal outcome model estimates). The simulation results showed the superiority of the LCcw
approach when compared to the distal outcome and the LC model with covariates, when
the underlying model assumptions of the latter two models are violated.

In this paper, we broaden the scope of cluster-weighted modelling in LCA by bringing
out a significant theoretical and practical connection with the LC regression model—the
primary competitor for assessing the relationship between Y and Z . Furthermore, we deal
with the important issue of model selection, especially relevant when the underlying model
assumptions are violated. We focus on how to handle direct effects with the different
approaches—whereby recommending readers to Di Mari, Bakk, & Punzo (2020) for the
treatment of violations of distributional assumptions of Z in distal outcome models.

We will show evidence, based on a set of artificial examples, an extensive simulation
study and an empirical application, that (1) if direct effects are present, our approach,
contrary to the distal outcome model, yields unbiased estimates of the distal outcome cluster
specific means and variances; and (2) if the most suitable model is one between the distal
outcome model or the LC regression model, the relative class sizes and compositions will
be the same as the ones delivered under the proposed cluster-weighted modelling approach.

The paper proceeds as follows. In Section 2, we give model definitions and details on
the parameterisations. We illustrate the proposed modelling approach through three artificial
examples for both one and two external variable cases, for a total of six artificial examples,
in Section 3. We present the design and the results of the simulation study in Section 4.
In Section 5, we analyse data from the PSYCONES survey (Isaksson et al. 2003), and
conclude with some final remarks in Section 6.

2. Latent class analysis with external variables: three different approaches

2.1. The latent class cluster-weighted model

Let Y = (Y1, . . . , YJ )� be the vector of the full response pattern and y its realisation.
Let us assume also one continuous external variable Z is available, and we denote as z its

© 2023 Statistical Society of Australia.
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216 CLUSTER-WEIGHTED LC MODELING

realisation. Let us denote as X the categorical latent variable, with LCs s = 1, . . . , S . A
general form of association between Y, X and Z , involves modelling the following joint
probability

Pr (Z = z , X = s , Y = y) = Pr (Z = z , X = s) Pr (Y = y|Z = z , X = s), (1)

where the common assumption in LCA of Y and Z being conditionally independent given
the latent process is relaxed. From (1), several submodels can be specified (predictor model,
distal outcome model, etc). If substantive theoretical arguments postulate the latent variable
to be a predictor of the external variable Z , the LC cluster-weighted model specifies the
probability of observing a response pattern y as

Pr (Y = y, Z = z ) =
S∑

s=1

Pr (X = s)︸ ︷︷ ︸
a

Pr (Z = z |X = s)︸ ︷︷ ︸
b

Pr (Y = y|Z = z , X = s)︸ ︷︷ ︸
c

, (2)

which is defined by three components: the structural component (a), describing the LC
variable, the external variable model (b), modelling the LC-specific distribution of Z and
a measurement component (c), connecting the LC to the observed responses with a direct
effect of Z . Under the assumption of local independence of response variables given the
class membership and Z , the conditional distribution of the responses can be written as

Pr (Y = y|Z = z , X = s) =
J∏

j=1

Pr (Yj = yj |Z = z , X = s). (3)

For estimating the model in (2), we assume each Yj to be conditionally Bernoulli distributed,
with success probability πsj , and parametrise the conditional response probabilities through
the following log-odds

log

(
πjs

1 − πjs

)
= αjs + Zβjs , (4)

whereby Z is assumed to be conditionally Gaussian with mean μs and variance σ 2
s , for

1 ≤ s ≤ S .

The model in (2) can be used to assign observations to clusters based on the posterior
membership probabilities

Pr (X = s|Y = y, Z = z ) = Pr (X = s) Pr (Z = z |X = s) Pr (Y = y|Z = z , X = s)

Pr (Y = y, Z = z )
, (5)

according to, for instance, modal or proportional assignment rules.
The LC unconditional probabilities can as well be parametrised using logistic

regressions. We opt for the following parametrisation

log

(
Pr (X = s)

Pr (X = 1)

)
= θs , (6)

for 1 < s ≤ S , where we take the first category as reference, and we set to zero the related
parameter. The total number of free parameters to be estimated is therefore J × S (random

© 2023 Statistical Society of Australia.
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ROBERTO DI MARI, ANTONIO PUNZO AND ZSUZSA BAKK 217

intercepts) + J × S (random slopes) for the measurement model, S (means) + S (variances)
for the external variable model, and S − 1 random intercepts for the structural model.

Notice that, by setting the βjs s of (4) to zero, the LC cluster-weighted model reduces
to a standard LC with distal outcome model. In contrast, given that the external variable
component is completely missing, the LC regression is not formally nested in the LC cluster-
weighted model, although it can be thought of as a sub-model in which the conditional
distribution of Y|Z is modelled, and Z is taken as fixed value rather than a random variable
to be modelled as well.

2.2. The LC with distal outcome model

It is common, in LCA, to consider a less general version of the joint distribution of (1),
by assuming the responses and Z to be conditionally independent given the latent process.
If, again, the LC variable is taken to be a predictor of the external variable Z , this yields
the following LC with distal outcome model

Pr (Y = y, Z = z ) =
S∑

s=1

Pr (X = s) Pr (Z = z |X = s) Pr (Y = y|X = s). (7)

Under the local independence assumption of the indicators given the LC variable, the
response conditional probabilities can be written, similarly to (3), as

Pr (Y = y|X = s) =
J∏

j=1

Pr (Yj = yj |X = s), (8)

and parametrised through the following log-odds

log

(
πjs

1 − πjs

)
= αjs . (9)

The model of (7) can be used to cluster observations, according to modal or
proportional assignment rules, based on the following posterior membership probabilities

Pr (X = s|Y = y, Z = z ) = Pr (X = s) Pr (Z = z |X = s) Pr (Y = y|X = s)

Pr (Y = y, Z = z )
. (10)

The external variable Z is assumed, conditional to the LC, to be Gaussian with
mean μs and variance σ 2

s , s = 1, . . . , S , whereby the LC unconditional probabilities are
parametrised as in (6). This yields J × S + 2S + S − 1 free parameters to be estimated.
The only difference with model (2) is that Y, in the measurement component, is conditional
only on X , not on Z . That is, Y is assumed to be independent of Z given X , which is a
standard, and rather very strong, assumption of LCA.

2.3. The LC regression model

Rather than modelling the joint distribution Pr (Z , X , Y) in (1), the LC regression
models the conditional distribution of Y given Z and the LC variable, specifying the
following model for Y:

© 2023 Statistical Society of Australia.
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218 CLUSTER-WEIGHTED LC MODELING

Table 1. Summary of different modelling assumptions and number of free parameters to be estimated.

Dir. Eff. Z modelled #par

Latent class regression � × 2(J × S ) + (S − 1)

Latent class with distal outcome × � (J × S ) + 2S + (S − 1)

Latent class cluster weighted � � 2(J × S ) + 2S + (S − 1)

Pr (Y = y|Z = z ) =
S∑

s=1

Pr (X = s) Pr (Y = y|Z = z , X = s). (11)

In this case, the conditional response probabilities depend on the external variable Z and,
under local independence of the responses given the latent variable, the measurement model
can be written as in (3), and parametrised as in (4). The posterior membership probabilities,
computed based on the model in (11), are as follows

Pr (X = s|Y = y, Z = z ) = Pr (X = s) Pr (Y = y|Z = z , X = s)

Pr (Y = y, Z = z )
. (12)

With LC unconditional probabilities parametrised as in (6), the total number of free
parameters to be estimated is 2(J × S ) + S − 1.

Table 1 summarises how Z enters each of the three models, and the total number of
free parameters to be estimated. Intuitively, this shows that the first two models can be
seen as special cases of the third model, which therefore models the relationship between
the three sets of variables in the most exhaustive manner.

2.4. Maximum likelihood estimation

From (2), (7) and (11), given an observed sample of n units, it is possible to specify the
log-likelihood functions of the cluster-weighted, the distal outcome and the LC regression
models. Iterative procedures like the expectation–maximisation or Newton-type algorithms,
or a combination of both as implemented in Latent GOLD 5.1 (Vermunt & Magidson 2013),
can be used to maximise each lo–likelihood function with respect to the model parameters
in order to find the maximum likelihood estimates.

Specifically, Latent GOLD starts the model fitting with the EM algorithm, and then
switches to Newton–Raphson for the last few iterations. This is done to take the best
of both worlds. Namely, to exploit the stability of the EM, while retaining the speed of
Newton–Raphson when close to convergence (Vermunt & Magidson 2016).

Latent GOLD’s EM algorithm does posterior mode estimation with iterative propor-
tional fitting. The M step is instead a Newton-type step, therefore the log-likelihood is
increased (and not maximised). In models including multivariate Gaussian variables (such
as the distal outcome model), the Fisher scoring algorithm is only used for M steps when the
covariance-structure parameters have no closed-form solution. Readers interested in more
details of the estimation approach used by Latent GOLD can refer to (Vermunt 1997;
Vermunt & Magidson 2013). Alternative EM implementations are also available for LC
models with external variables. See, for instance, Durante, Canale, & Rigon (2019).

The log-likelihood surface, as in all mixture models, presents many local maxima
(McLachlan & Peel 2004). Thus, appropriate starting values can be crucial to find a

© 2023 Statistical Society of Australia.
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ROBERTO DI MARI, ANTONIO PUNZO AND ZSUZSA BAKK 219

meaningful maximiser. We use Latent GOLD 5.1 for model fitting, which implements
a well-refined initialisation strategy (details can be found in Vermunt & Magidson 2016,
Sec. 7.8).

2.5. Evaluating the latent class solution

A commonly used measure for class separation in LCA, and thus also for classification
error, is the entropy-based R2 (Magidson 1981). For response pattern i , this quantifies how
much the posterior membership probabilities deviate from uniformity by using the principle
of entropy as follows

Ei =
S∑

s=1

− Pr (Xi = s|Yi = yi ) log Pr (Xi = s|Yi = yi ), (13)

where Pr (Xi = s|Yi = yi ) are the posterior class membership probabilities for the simple
LC model. An analogous measure of entropy can be computed based on the posteriors from
the LC regression, the LC with distal outcome and the cluster-weighted LC models.

The total entropy, when no information on the response (and potentially the external
variables) is used to predict X , is defined as

ETOT =
S∑

s=1

− p̂s log p̂s , (14)

where p̂s is an estimate of Pr (X = s). Equation (14) considers only the estimated marginal
class probabilities rather than the posterior class membership probabilities as in (13). The
proportional reduction of entropy when y is available compared to the situation in which
y is unknown is an (entropy based) R2 measure for class separation—as well as for the
quality of the classification of a sample—and is defined as

R2
entr = ETOT − Ē

ETOT
, (15)

where Ē = n−1 ∑n
i=1 Ei .

3. Artificial data examples

To substantiate the benefits of the cluster-weighted modelling approach in LCA, in
this Section we propose an artificial data analysis on some exemplary LCA contexts. In
particular, we analyse six large data sets (30,000 sample units), three with 1 (block 1) and
the other three with two external variables (block 2). Under both blocks, we generate data
from each of the three models in Figure 1a–c.

In either block, we set the number of LCs to S = 2, and to begin with we fit all three
models assuming this value to be known. Then, we also show results on estimation of the
number of LCs based on BIC. The data were generated in R (R Core Team 2017), and
parameter estimation was carried out with Latent GOLD 5.1 (Vermunt & Magidson 2016).

To get approximately equal (realistic) conditions on class separation, we generated the
data such that the entropy-based R2 (Magidson 1981) for the correctly specified model is

© 2023 Statistical Society of Australia.
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220 CLUSTER-WEIGHTED LC MODELING

Table 2. LCreg data.

Class proportions Entr. R2 #par

LCreg 0.7010 0.2990 0.7675 25
LCdist 0.7357 0.2643 0.8639 17
LCcw 0.7018 0.2982 0.7681 29

Notes: Estimated class proportions, entropy-based R2 and number of parameters for each of the three estimated
models. Results from correctly specified model in bold font.

Table 3. LCreg data.

Means Wald(=) P Variances Wald(=) P

LCdist 0.0525*** −0.1640*** 0.0000 1.0301 0.8846 0.0000
(0.0071) (0.0122) (0.0100) (0.0158)

LCcw −0.0010 −0.0134 0.9000 0.9966 1.0105 0.6100
(0.0086) (0.0163) (0.0114) (0.0208)

Notes: Estimated means (***P -value<0.001, **P -value<0.01, *P -value<0.05) and variances, and P -values
from Wald test of equality of component means and variances for the LCdist model and the LCcw model.
Standard errors in parentheses. Reported P -values are function of the unobserved LC variable, and are therefore
approximate.

about 0.7 in all the three data sets—which is the minimum class separation to get a good
LC model (Vermunt 2010; Asparouhov & Muthén 2014). Below we present results from
Block 1. Results obtained with two external variables are comparable, and reported in the
Appendix.

3.1. LC regression (LCreg) data

The LCreg data set was generated from a two-class LCreg model, with class
memberships of 0.7 and 0.3, six dichotomous indicators (J = 6) and one continuous
Z —drawn from a standard normal distribution—loaded on all six indicators. The external
variable Z is loaded on the indicators with a coefficient of −0.5, if the most likely response
is on the first class, or 1, if the most likely response is on the second class, giving a large
effect size. In classical LCA this is known as differential item functioning (DIF), a violation
of the conditional independence assumption often ignored (Masyn 2017; see also Kankaraš,
Moors, & Vermunt 2010; Lee, Bulut, & Suh 2017; Suh & Cho 2014; Woods 2009).

We observe in Table 2 that the LCdist model overinflates the mixing proportion on
the bigger class, whereas the LCcw model yields nearly equivalent class proportions as in
the correctly specified case. This at the cost of four more parameters to be estimated.

Table 3 reports estimated means and variances for the variable Z based on the LCdist
and LCcw models, along with standard errors and P -values of the Wald tests of equality
of the means and the variances. Nothing is reported for LCreg, as Z is not modelled. In
the LCdist model, both means are wrongly estimated to be statistically different from zero.
Moreover, based on the reported Wald tests, we reject the nulls of equal means and equal
variances (with P -values smaller than 0.01). These findings for the LCdist model can be
explained by the fact that it wrongly predicts a clustered distribution on Z in order to
accommodate for a direct effect of Z on the indicators which is not accounted for. This
creates an additional source of entropy in the class solution (as displayed by the relatively
higher value of the entropy-based R2).

© 2023 Statistical Society of Australia.
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ROBERTO DI MARI, ANTONIO PUNZO AND ZSUZSA BAKK 221

Table 4. LCdist data.

Class proportions Entr. R2 #par

LCreg 0.5850 0.4150 0.2781 25
LCdist 0.7006 0.2994 0.7274 17
LCcw 0.7026 0.2974 0.7320 29

Notes: Estimated class proportions, entropy R2 and number of parameters for each of the three estimated
models. Results from correctly specified model in bold font.

Table 5. LCdist data.

Means Wald(=) P Variances Wald(=) P

LCdist −0.9911*** 1.0156*** 0.0000 1.0072 0.9886 0.4000
(0.0084) (0.0145) (0.0119) (0.0196)

LCcw −0.9889*** 1.0242*** 0.0000 1.0075 0.9810 0.2700
(0.0096) (0.0176) (0.0125) (0.0207)

Notes: Estimated means (***P -value<0.001, **P -value<0.01, *P -value<0.05) and variances, and P -values
from Wald test of equality of component means and variances for the LCdist model and the LCcw model.
Standard errors in parentheses. Results from correctly specified model in bold font. Reported P -values are
function of the unobserved LC variable, and are therefore approximate.

3.2. LC distal outcome (LCdist) data

The LCdist data set was generated from a two-class LCdist model, with class
memberships of 0.7 and 0.3, six dichotomous indicators (J = 6) and one continuous Z ,
drawn from a mixture of two normal distributions with means of −1 and 1 and common
variance of 1.

The LCreg model yields a completely distorted class solution, whereby both the LCdist
and LCcw models yield almost identical (correct) solutions (Table 4). Interestingly, the
misspecified response-Z relation in the LCreg model yields a solution with relatively smaller
class separation (as measured by the entropy-based R2).

Next, we compare estimates of class-specific means and variances of Z as obtained
by the LCdist and LCcw models (Table 5).

The LCdist and the LCcw models estimate almost identical means and variances of
Z , both correctly not rejecting the null of common variance across LCs. We observe that
the SE’s for the less parsimonious LCcw model are systematically larger than those of
the correctly specified model: this is not surprising, as having less degrees of freedom
corresponds, all else equal, to slightly more variable estimates.

3.3. LC cluster-weighted (LCcw )data

The LCcw data were generated from a two-class LCcw model, with class memberships
of 0.7 and 0.3, six dichotomous indicators (J = 6) and one continuous Z , drawn from a
mixture of two normal distributions with means of −1 and 1 and common variance of 1.

Both the LCreg and the LCdist models deliver distorted class solutions (Table 6).
Although with a higher entropy-based R2, the residual dependence among the indicators
due to the exclusion of the direct effect causes a more severe distortion in the LCdist model
compared to the LCreg model. Also relative class sizes are overturned for LCdist. Equally
we observe (Table 7) that the means and variance(s) of Z are both biased in the LCdist

© 2023 Statistical Society of Australia.
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222 CLUSTER-WEIGHTED LC MODELING

Table 6. LCcw data.

Class proportions Entr. R2 #par

LCreg 0.8899 0.1101 0.5611 25
LCdist 0.4373 0.5627 0.6441 17
LCcw 0.6993 0.3007 0.7045 29

Notes: Estimated class proportions, entropy-based R2 and number of parameters for each of the three estimated
models. Results from correctly specified model in bold font.

Table 7. LCcw data.

Means Wald(=) P Variances Wald(=) P

LCdist −1.4544*** 0.4159*** 0.0000 0.7044 1.2096 0.0000
(0.0102) (0.0120) (0.0111) (0.0159)

LCcw −1.0029*** 0.9955*** 0.0000 1.0215 0.9818 0.0380
(0.0104) (0.0122) (0.0146) (0.0160)

Notes: Estimated means (***P -value<0.001, **P -value<0.01, *P -value<0.05) and variances, and P -values
from Wald test of equality of component means and variances for the LCdist model and the LCcw model.
Standard errors in parentheses. Results from correctly specified model in bold font. Reported P -values are
function of the unobserved LC variable, and are therefore approximate.

Table 8. Adjusted Rand indexes, computed between clustering with correctly specified
models—LCreg, LCdist and LCcw models—and clustering with the other two models.

Fitted model

Data Correct model LCreg LCdist LCcwm

LCreg LCreg 1 0.9732 0.9997
LCdist LCdist 0.2125 1 0.9889
LCcw LCcw 0.1604 0.3101 1

model. Contrary to the correctly specified model, in LCdist the Wald test cannot reject the
equal variances hypothesis (at 1 % level).

Table 8 reports adjusted Rand indexes (ARIs) (Hubert & Arabie 1985), arranged in a
three-by-three table, comparing the hard partitions obtained with each fitted model under
the three data generating model scenarios. The results are in line with what was observed
above. When the data are generated with a LCreg model, the LCcw model delivers an almost
identical partition to that of the correctly specified model, followed close up by the LCdist
model—with an ARI of ≈ 0.97. In the LCdist data set as well, the LCcw model’s partition
is nearly as in the correctly specified model (ARI of ≈ 0.99), whereby the ARI drops to
≈ 0.21 when the comparison is with the LCreg partition. In the latest scenario—LCcw data
set—fitting both the LCreg and the LCdist models delivers in both cases quite different
partitions (≈ 0.16 and ≈ 0.31 ARIs) compared to the correctly specified model.

Based on the above data sets, in Table 9 we report also results on BIC values for
the three models in all three scenarios, for S = 1, . . . , 5. Although BIC values can be
compared for LCdist and LCcw, selecting a model among the three with BIC cannot be
done as Z in LCreg is not modelled and the model likelihoods are therefore not comparable.
In both the LCreg and LCdist data sets, BIC for the LCcw model selects, together with
the correctly specified model in the first two scenarios, the correct number of classes.

© 2023 Statistical Society of Australia.
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ROBERTO DI MARI, ANTONIO PUNZO AND ZSUZSA BAKK 223

Table 9. Model selection with BIC computed for each model at each data generating model—LCreg,
LCdist and LCcw—for S = 1, . . . , 5.

Number of components

Data S = 1 S = 2 S = 3 S = 4 S = 5

LCreg 235,957.23 191,309.94 191,411.62 191,539.73 191,642.90
LCreg

{
LCdist 321,109.39 283,926.34 278,042.32 277,453.71 277,117.53
LCcw 321,137.31 276,509.33 276,636.54 276,766.45 276,888.98

LCreg 233,652.06 231,508.46 231,251.75 231,041.07 230,893.17
LCdist

{
LCdist 348,714.25 331,953.90 332,037.14 332,112.24 332,189.69
LCcw 337,204.58 332,067.91 332,198.43 332,329.23 332,449.70

LCreg 213,395.81 207,054.91 206,149.45 205,996.43 205,922.50
LCcw

{
LCdist 321,792.35 310,231.51 306,431.47 305,466.02 304,613.18
LCcw 316,998.91 303,623.67 303,759.81 303,910.04 304,025.80

Notes: Data generating model and minimum BIC value, for each model at each scenario, in bold.

Interestingly, however, misspecifying the indicators-Z relation causes, in both the LCreg
and LCdist models, a severe overstatement of the number of classes (LCcw data set).

4. Simulation study
4.1. Design

This simulation study is designed to assess the cluster-weighted LC approach under
varying conditions on sample size, class size and class separation on both the indicators
and the continuous variable means. Using the same terminology of the artificial examples,
we generate data from a two-class LC model with six indicators (J = 6) and one external
variable under the three model specifications LRreg , LCdist and LCcw . This allows us to
give a fair account of each model’s performance both in the correct and in the incorrect
model specification cases.

As target measures, we consider estimated class proportions to assess the clustering
performance, and estimated means for the external variable (only for LCdist and LCcw). We
manipulate class separation through two channels: (1) by altering the response probabilities
that control the strength of the relationship between indicators and LCs; and (2) by varying
the class conditional means of the external variable.

Regarding (1), we consider two levels, 0.65 and 0.9, corresponding to entropy-based
R2 of about 0.7 and 0.9. Related to (2), the external variable, under the LCdist and LCcw
data generating models, is sampled from a clustered normal distribution with unit variance
and mean depending on class membership: the values are set to −1 and 1, −2 and 2 and
−3 and 3, corresponding to an increasing separation level.

Under the LCreg data generating model, Z is sampled from a standard normal. The
sample sizes used are 500 and 2000, and the relative class sizes equal to 0.5 (equal class
sizes) and 0.3 (unequal class sizes). The regression coefficient βjs (LCreg and LCcw data
generating models) is set to 0.5, which corresponds to a moderate–strong magnitude on
the logistic scale. For the resulting 56 simulation crossed scenarios, obtained by combining
the conditions on sample and class sizes, class separation on the indicators and the external
variable and data generating models, we generate 250 data sets. Data generation is done
within R (R Core Team 2022), whereas model estimation is carried out using Latent GOLD
5.1 (Vermunt & Magidson 2016) in combination with R.

© 2023 Statistical Society of Australia.
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224 CLUSTER-WEIGHTED LC MODELING

Table 10. Relative absolute bias for the class proportion of the first (smallest) class, with average
Monte Carlo standard deviations in parentheses, per data generating model, averaged over simulation
condition.

Model Specification

Data LCreg LCdist LCcwm

LCreg 0.025 0.119 0.033
(0.023) (0.046) (0.028)

LCdist 0.243 0.003 0.008
(0.080) (0.018) (0.026)

LCcw 0.310 0.098 0.009
(0.084) (0.018) (0.026)

4.2. Summary of the results

Under LCreg , the correctly specified model and LCcw do well (in terms of estimated
class sizes) in all conditions. LCdist has the worst performance, exacerbated by small
separation and equal class sizes.

With the LCdist data generating model, again the correctly specified model and LCcw
do well in all conditions. LCreg reaches its own best performance in conditions with
small separation on both indicators and external variable means (conditions 1–6). Larger
separation and equal cluster size conditions is where LCreg does worst. Both LCdist and
LCcw estimate well the external variable means in all conditions, with SEs recovering well
the true underlying variability.

Under LCcw , both classical approaches LCdist and LCreg are misspecified. Interest-
ingly, with the exception of the first four conditions (small separation on both indicators
and external variable means), LCdist performs relatively better (smallest bias in estimated
class sizes and smaller variance) than LCreg. LCdist estimates well the class conditional
means of the external variable only in large separation conditions. More generally, we
observe that class separation on the indicators has a relatively stronger impact on LCdist
outcome.

In Table 10 we present relative absolute bias in the class proportion for the first
(smallest) class, with average Monte Carlo standard deviations in parentheses, averaged over
all the levels of separation between classes and sample size per data generating model for the
three models. Except for the correctly specified case, LCreg delivers the most distorted class
composition overall, with up to 30% bias under the LCcw data generating process. When a
LCdist model is fitted, under LCreg and LCcw , the bias is relatively lower—between 10%
and 12%. The aggregate numbers show that, on average, class distortion for the cluster-
weighted model specification is below 3%. In contrast, the distal outcome model’s class
proportion output is estimated with relatively smaller variance than its competitors. This is
not surprising, as LCdist’s specification with a single distal outcome requires estimating a
smaller number of free parameters than LCreg and LCcw.

Similarly, Table 11 presents the aggregate relative absolute bias for the first-class
estimated distal outcome mean, averaged over simulation rounds and conditions, per data
generating process. In line with what we commented above, the distal outcome’s means are
estimated, on average, with bias by LCdist when there is model misspecification. In our
settings, this bias is, on average, of the order of 8% relative to the true parameter value.

© 2023 Statistical Society of Australia.
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ROBERTO DI MARI, ANTONIO PUNZO AND ZSUZSA BAKK 225

Table 11. Relative absolute bias for the first (smallest) class distal outcome mean , with average
Monte Carlo standard deviations in parentheses, per data generating model, averaged over simulation
condition.

Model specification

Data LCdist LCcwm

LCdist 0.002 0.003
(0.059) (0.054)

LCcw 0.077 0.001
(0.059) (0.047)

The detailed simulation output (stacked barplots and linegraphs) can be found in the
Data S1.

5. Real data application: relating LC model of psychological
contract types to job insecurity

We analysed data from the Dutch and Belgian sample of the Psychological Contracts
across Employment Situation (PSYCONES) project (European Commission, 2006). The
sample consisted of n = 1353 respondents. We selected J = 8 indicator variables, mea-
suring psychological contract type: the first four refer to employee obligations (whether a
promise was made or not), and the last 4 to employer obligations, where each set of four
indicators contained two items for relational and two for transactional obligations. Examples
of the wording of indicators are: ‘This organization promised me a reasonably secure job’
and ‘This organization promised me a good pay for the work I do’. The typology on these
indicators was first proposed by Cuyper et al. (2008), who identified a LC model with
four classes corresponding to mutual high obligations, employee over-obligation, employee
under-obligation and mutual low obligations in the Belgian and German sample of the
PSYCONES data. The four-class model was replicated on the Dutch and Belgian sample
by Bakk, Tekle, & Vermunt (2013). We replicated the LC model proposed by Bakk, Tekle,
& Vermunt (2013) and related it to perceived job insecurity measured using a scale devel-
oped by De Witte et al. (2000), that consists of four indicators with five categories and had
a Cronbach’s alpha value of 0.88. While Bakk, Tekle, & Vermunt (2013) used a stepwise
distal outcome model, and thus ignored possible direct effects between the eight indicators
of the LC membership and job insecurity, we re-analyse the data using cluster-weighted
LC and LC regression models that allow also for possible direct effects.

In Table 12 we report the simple LC model with four classes. The respondents
belonging to the mutual high obligation class have a high probability to have all employee
and employer obligations, while in the over-obligation class employees have a high
probability to have all obligations, while they perceive that the employer scores low on
their side. The under-obligation class shows a reverse pattern: employers score high on
all obligations while employees are disengaged. In the mutual low class both parties
have low obligations. More detailed description of the model is available in Cuyper
et al. (2008).

Subsequently, we investigated whether there is a difference with regard to perceived
job insecurity among the four classes. To verify if the same number of classes would be

© 2023 Statistical Society of Australia.
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226 CLUSTER-WEIGHTED LC MODELING

Table 12. Class proportions and class-specific probabilities of a positive response for the four-class
model estimated for the PSYCONES data (Belgian and Dutch combined sample).

Class 1 Class 2 Class 3 Class 4
Mutual low Under-obligation Over-obligation Mutual high

Class proportion 0.090 0.100 0.290 0.520
Employers’ obligations
Secure job 0.210 0.870 0.360 0.900
Advancement 0.180 0.850 0.300 0.900
Good pay 0.260 0.750 0.280 0.870
Safe work environment 0.290 0.730 0.550 0.970
Employees’ obligations
Loyalty 0.080 0.360 0.730 0.980
Volunteer 0.170 0.370 0.830 0.980
On time 0.180 0.390 0.960 0.980
Good performance 0.280 0.770 0.970 0.990

Table 13. Number of components (Ncomp), BIC, number of parameters (#par), expected classification
error (Class. Err.), and entropy-based (Entr.) R2 for each of the three models, from 1 to 6 (seven in
case of LCdist) components.

S BIC #par Class. Err. Entr. R2

LCreg 1 11,637.241 16 0 1
2 10,447.216 33 0.074 0.724
3 10,161.689 50 0.113 0.714
4 10,139.188 67 0.123 0.718
5 10,212.570 84 0.178 0.669
6 10,296.546 101 0.116 0.764

LCdist 1 15,621.130 10 0 1
2 14,280.901 21 0.066 0.742
3 13,933.870 32 0.101 0.737
4 13,847.386 43 0.189 0.682
5 13,829,068 54 0.186 0.687
6 13,803.998 65 0.186 0.721
7 13,836.384 76 0.212 0.705

LCcw 1 15,491.408 18 0 1
2 14,280.162 37 0.063 0.758
3 13,999.164 56 0.089 0.756
4 13,989.909 75 0.169 0.700
5 14,006.917 95 0.147 0.739
6 14,050.696 113 0.206 0.710

selected applying the different approaches, first we looked at model fit indices. In Table 13
we report overall fit statistics for the LCreg, LCdist and LCcw models with one to six
classes for LCcw and LCreg, and till seven classes for LCdist. While with LCcw and
LCreg the best fitting model would be the four-class model (with class definitions very
similar to the simple LC model), with LCdist a six-class model is selected by BIC as best
fitting. The six-class model breaks down the mutual high class into three smaller classes
to account for the unmodelled direct effects of job insecurity and to better model its class-
specific distribution. However, when using LCcw we allow for modelling the mild direct
effects between job insecurity and some of the indicators, and the four-class model (that is
validated in literature) stays the best fit.

© 2023 Statistical Society of Australia.
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ROBERTO DI MARI, ANTONIO PUNZO AND ZSUZSA BAKK 227

(a) LCreg, S = 4 (b) LCcw, S = 4

(c) LCdist, S = 6 (d) LCA, S = 4

Figure 2. Probability profile plot for LCreg (S = 4), LCcw (S = 4), LCdist (S = 4) and LCA
S = 3).

As Figure 2 shows, the definition of the class-specific response pattern on the eight
indicators is comparable between the simple LCA, LCreg and LCcw, while using LCdist
we obtain three classes that split up the mutual high class to better model the distribution
of the distal outcome.

In Table 14, the direct effects as modelled with LCcw are reported. While these effects
are mild, still modelling them improves the estimation of the relationship between the LC
variable and the distal outcome. This leads to a model with four classes that, differently to
the distal outcome model, has comparable classes to the simple LC model. Most noticeable
is the direct effects on the openness to volunteer and the perception of a safe working
environment. Higher job insecurity is associated with lower levels of volunteering in all
classes but the mutual low class, while higher level of job insecurity is also associated with
lower levels of perceived safe environment in the under obligation and mutual high classes.
Indeed, both direct effects show relevant substantive insights.

Furthermore, in Table 15 we report the class-specific means and variances obtained
using the LCcw approach. The job insecurity is the highest in the over-obligation class
(with also the highest variance), while lowest in the under-obligation class (with also
the lowest variance, mostly due to within-class homogeneity). The main conclusions are
comparable to the initial results by Bakk, Tekle, & Vermunt (2013), where the authors
used a three-step distal outcome model. That is job insecurity is the largest using both
approaches in the over-obligation class and lowest in the under-obligation class, but effect

© 2023 Statistical Society of Australia.
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228 CLUSTER-WEIGHTED LC MODELING

Table 14. Estimated direct effects of job insecurity on each variable per LC.

Coefficients

Insecurity on Mutual high Over-ob Under-Ob Mutual low Wald(0) P Wald(=) P

Job security −0.813 −0.148 −0.138 −0.595 0.000 0.130
Advancement −0.322 0.347 0.677 0.172 0.040 0.090
Good pay −0.203 −0.105 −0.042 −0.258 0.040 0.920
Safe environ −0.492 0.191 −1.085 −0.056 0.630 0.020
Loyalty −1.135 −0.469 −0.936 −0.057 0.050 0.250
Volunteer −0.720 −0.503 −1.092 0.102 0.000 0.030
Timeliness −1.080 −0.867 −0.862 −0.372 0.000 0.650
Perform −0.636 −0.220 1.696 −0.259 0.010 0.600

Notes: ***P -value<0.01, **P -value<0.05, *P -value<0.1, P -values from Wald test of joint equality of each
variable’s direct effect to zero— Wald(0)—and from Wald test of equality of effects across LCs—
Wald(=)—for the LCcw model. Reported P -values are function of the unobserved LC variable, and are
therefore approximate.

Table 15. The class-specific means, variances and corresponding Wald test statistics for the LCcw
model on the PSYCON data.

Mutual high Over-ob Under-Ob Mutual low Wald test statistic

Means 2.515 2.9089 1.5864 2.3691 304.66
(0.0832) (0.088) (0.0442) (0.0996)

Variances 0.8145 1.0532 0.2407 0.8857 172.23
(0.0684) (0.0906) (0.0273) (0.1137)

sizes differ. Nevertheless using the stepwise distal outcome approach the direct effects were
ignored.

6. Conclusion

In this paper, we have brought modelling ideas from the regression mixture literature
into LCA. Our focus has been to motivate the use of the cluster-weighted modelling
approach as a general specification for the joint relationship of the response variables, the
external variable and the latent variable. Six artificial data analyses, and a comprehensive
simulation study have been used to illustrate this idea, and the actual advantage of the
proposed approach was showed through an application using data from the Dutch and
Belgian sample of the PSYCONES project (European Commission, 2006).

The cluster-weighted modelling approach, contrary to the simpler distal outcome
model, was able to bring to light, meaningful insights about the relationship between
job insecurity and some indicators of the psychological contract type LCs. By allowing
for a more general LCcw type of specification, we were able to show the presence of
substantively interesting direct effect of job insecurity on volunteering and on perceived
safe work environment in some of the classes.

In the applied researcher perspective, the proposed approach has several advantages.
By relaxing the conditional independence assumption, cluster-weighted modelling allows
to model direct effects when these are of substantive interest, as well as when they are not.
In other words, if direct effects are present, our approach, contrary to the distal outcome

© 2023 Statistical Society of Australia.
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ROBERTO DI MARI, ANTONIO PUNZO AND ZSUZSA BAKK 229

model, is able to correctly estimate the distal outcome cluster-specific means and variances.
Practically, by starting from the most general model and then testing the model assumptions
of both the distal outcome and the LC regression models, it guarantees a more flexible
option.

The approach we suggest has some limitations as well. First, it can be unstable if
some of the response patterns are unobserved, or their sample frequency is too small (for
standard sufficient conditions for identifiability of LCA see, for instance, Bandeen-Roche
et al. 1997). In such cases, simpler models can be more attractive. Second, in exploratory
contexts where the goal of the analysis is not always clear in mind, the circularity of cluster-
weighted modelling might be relatively harder to interpret and simpler models might be
preferable.

Appendix: Results of data analysis on Block 2 of section 3 with two external variables

Data were generated with entropy-based R2 for the correctly specified model is about 0.7 in
all the three data sets. To avoid the well-known issue of degeneracy of Gaussian mixtures
(McLachlan & Peel 2004; see also Di Mari, Rocci, & Gattone 2017; Garcı́a-Escudero
et al. 2018 and references therein), we impose homoscedasticity in the class conditional
variances for both external variables.

A.1. LCreg data

The LCreg data set was generated like in 3.1 for the LC model with two continuous
external variables—each drawn from a standard normal distribution—loaded on all six
indicators. The external variables Z1 and Z2 are loaded on the indicators with a coefficient
of 0.5, if the most likely response is on the first class, or −0.5, if the most likely response
is on the second class, giving a moderate/large effect size (Tables A1 and A2).

Table A1. LCreg data.

Class proportions Entr. R2 #par

LCreg 0.3004 0.6996 0.5967 27
LCdist 0.4456 0.5544 0.6583 28
LCcw 0.2996 0.7004 0.5971 44

Notes: Two external variables. Estimated class proportions, entropy-based R2 and number of parameters for each
of the three estimated models. Results from correctly specified model in bold font.

Table A2. LCreg data.

Z1 Z2

Means Wald(=) P Variance Means Wald(=) P Variance

LCdist −0.1809*** 0.1512*** 0.0000 0.9766 −0.1729*** 0.1551*** 0.0000 0.9734
(0.0095) (0.0094) (0.0081) (0.0095) (0.0094) (0.0081)

LCcw 0.0048 0.0025 0.9328 1.0038 0.0146 0.0132 0.7438 1.0000
(0.0143) (0.0081) (0.0082) (0.0144) (0.0081) (0.0082)

Notes: Two external variables. Estimated means (***P -value<0.001, **P -value<0.01, *P -value<0.05) and
variances, and P -values from Wald test of equality of component means for the LCdist model and the LCcw
model. Standard errors in parentheses. Reported P -values are function of the unobserved LC variable, and are
therefore approximate.

© 2023 Statistical Society of Australia.
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230 CLUSTER-WEIGHTED LC MODELING

A.2. LC distal outcome (LCdist) data

The LCdist data set was generated from a two-class LCdist model, with class
memberships of 0.7 and 0.3, six dichotomous indicators (J = 6) and two continuous external
variables, both drawn from a normal distribution with unit variance and mean depending
on class membership of either −1 or 1 (Tables A3 and A4).

Table A3. LCdist data.

Class proportions Entr. R2 #par

LCreg 0.5010 0.4990 0.1599 27
LCdist 0.6937 0.3063 0.6818 28
LCcw 0.6934 0.3066 0.6787 44

Notes: Two external variables. Estimated class proportions, entropy R2 and number of parameters for each of the
three estimated models. Results from correctly specified model in bold font.

Table A4. LCdist data.

Z1 Z2

Means Wald(=) P Variance Means Wald(=) P Variance

LCdist −1.0114*** 0.9785*** 0.0000 1.0161 0.4992*** −0.5113*** 0.0000 1.0065
(0.0087) (0.0146) (0.0112) (0.0077) (0.0127) (0.0090)

LCcw −1.0116*** 0.9775*** 0.0000 1.0166 0.4990*** −0.5099*** 0.0000 1.0071
(0.0097) (0.0164) (0.0118) (0.0081) (0.0139) (0.0092)

Notes: Two external variables. Estimated means (***P -value<0.001, **P -value<0.01, *P -value<0.05) and
variances, and P -values from Wald test of equality of component means for the LCdist model and the LCcw
model. Standard errors in parentheses. Reported P -values are function of the unobserved LC variable, and are
therefore approximate.

A.3. LCcw data

The LCcw data set was generated from a two-class LCdist model, with class
memberships of 0.7 and 0.3, six dichotomous indicators (J = 6) and two continuous external
variables, both drawn from a normal distribution with unit variance and mean depending
on class membership of either −1 or 1. Both Z1 and Z2 are loaded on the indicators with
a coefficient of 0.5, if the most likely response is on the first class, or −0.5, if the most
likely response is on the second class, giving a moderate/large effect size (Tables A5–A8).

Table A5. LCcw data.

Class proportions Entr. R2 #par

LCreg 0.5500 0.4500 0.3224 27
LCdist 0.5004 0.4996 0.5877 28
LCcw 0.3018 0.6982 0.7353 44

Notes: Two external variables. Estimated class proportions, entropy R2 and number of parameters for each of the
three estimated models. Results from correctly specified model in bold font.

© 2023 Statistical Society of Australia.
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Table A6. LCcw data.

Z1 Z2

Means Wald(=) P Variance Means Wald(=) P Variance

LCdist 0.0473** −0.8517*** 0.0000 1.6225 −0.4047*** 0.7991*** 0.0000 0.8454
(0.0172) (0.0117) (0.0153) (0.0104) (0.0133) (0.0091)

LCcw 0.9993*** −1.0075*** 0.0000 0.9760 −0.5079*** 0.5012*** 0.0000 0.9931
(0.0142) (0.0075) (0.0094) (0.0113) (0.0077) (0.0087)

Notes: Two external variables. Estimated means (***P -value<0.001, **P -value<0.01, *P -value<0.05) and
variances, and P -values from Wald test of equality of component means for the LCdist model and the LCcw
model. Standard errors in parentheses. Reported P -values are function of the unobserved LC variable, and are
therefore approximate.

Table A7. Adjusted Rand indexes , computed between clustering with correctly specified
models—LCreg, LCdist and LCcw models—and clustering with the other two models. Two external
variables.

Fitted model

Data Correct model LCreg LCdist LCcwm

LCreg LCreg 1 0.3592 0.9976
LCdist LCdist 0.0597 1 0.9870
LCcw LCcw 0.3312 0.3051 1

Table A8. Model selection with BIC computed for each model at each data generating model—LCreg,
LCdist and LCcw—for S = 1, . . . , 5. Data generating model and minimum BIC value, for each model
at each scenario, in bold. Two external variables.

Number of components

Data S = 1 S = 2 S = 3 S = 4 S = 5

LCreg 241,594.70 216,434.30 216,598.30 216,731.50 216,870.90
LCreg

{
LCdist 413,838.40 394,636.90 389,691.80 389,371.80 388,883.70
LCcw 412,023.70 386,883.80 387,028.10 387,242.80 387,361.30

LCreg 239,603.70 239,120.30 239,080.80 239,100.10 239,073.10
LCdist

{
LCdist 441,991.90 428,871.60 428,956.10 429,033.30 429,128.00
LCcw 434,547.40 429,095.60 429,278.90 429,456.00 429,599.80

LCreg 242,531.80 234,943.10 234,472.40 234,281.10 234,076.40
LCcw

{
LCdist 443,603.30 429,953.50 424,364.30 421,796.10 421,160.30
LCcw 436,546.50 417,642.30 417,820.20 418,007.40 418,201.30

Supporting information

Additional supporting information may be found in the online version of this article at
http://wileyonlinelibrary.com/journal/anzs.

Data S1. Supplementary Material.
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